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ABSTRACT : The stability-equation method is extended to the analysis and design of 

multivariable controlsystems. The systems areJirst compensatedby constantprecompensating 

matrices, and then compensated by lead/lag compensators. The method can take into 
consideration integrity and asymptotic behaviour simultaneously. In addition, other con- 

siderations, such as high frequency alignment and low-interaction at high frequency, can be 
analysed. Numerical examples are given and comparisons made with other methods in the 
current literature. 

Nomenclature 

4j 

btj 
D, 
4 
ES, 
W) 
Fe’,(S) 
F&3 
G(S) 
SijCs) 

g(S) 

kl,kz 
P(S) 
pm 
Pi, 
p&9 
S 
WI 

parameters for integrity analysis 
parameters for asymptotic behaviour analysis 
determinant of G(S) 
determinant of P(S) 
steady-state error 
characteristic polynomial 
even stability-equation 
odd stability-equation 
plant transfer function matrix 
elements of plant transfer function matrix 
integers 
controller gain matrix 
diagonal elements of controller gain matrix 
precompensating matrix 
closed-loop characteristic polynomial of T(S) 
elements of constant precompensating matrix P(S) 
open-loop characteristic polynomial of G(S) or G,(S) 
Laplace operator 
closed-loop transfer function matrix 
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u = nJm 
X negative sum of roots of the characteristic polynomial 

Y y= -s2 

yei roots of even stability-equation 

Y0j roots of odd stability-equation 

I. Introduction 

It is known from many practical examples offered by Han (1, 2) and other 
researchers, that the stability-equation method is highly capable of handling single- 
input single-output systems. The main purpose of this paper is to utilize the 
stability-equation method for the analysis and design of multivariable feedback 
control systems. 

From the analysis of the asymptotic behaviour of a feedback control system, 
one can predict the closed-loop poles approximately, because they tend to approach 
the open-loop zeros when the open-loop gain is increasing. This characteristic 
has been extended to the design of multivariable feedback control systems by 
Kouvaritakis (3-5). Kouvaritakis has noted the effects in the direction of asymp- 
totes of root loci to system characteristics. Following Kouvaritakis’ approach, the 
advantage of the method we propose in this paper is that the locations of the 
closed-loop poles can be predicted approximately, while the stability of the system 
has already been checked, because consideration of stability is the general property 
of the stability-equation method. 

On the other hand, while designing a controller for a multivariable feedback 
control system it is important to check the stability of the system when one or more 
transducers or actuators fail. The term “high integrity” is defined as when the 
system remains stable under all likely failures. This integrity consideration has been 
discussed in detail by Belletrutti and MacFarlane (6). It will be shown later in the 
paper that the proposed method can take into consideration both integrity and 
damping behaviour simultaneously. In addition, other considerations, such as high 
frequency alignments and low-interactions, can also be achieved. 

The considered system is first compensated by the constant precompensating 
matrix to match the desirable specifications. If the constant precompensating 
matrix is not sufficient for compensation, then the system can be further com- 
pensated by the use of cascaded lead/lag compensators. Based upon the constant 
precompensating matrix, it will be shown that only a simple geometry trans- 
formation in the parameter plane is required for obtaining the suitable lead/lag 
compensators. 

ZZ. Main Approach for Choosing the Values of Parameters in Compensators 

Assume that the system characteristic equation is F(S) which can be decomposed 
into two parts concerning even and odd exponents of S; i.e. 

F(S) = F,(S) + F,(S) = 0. (1) 
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Let y = -S*, then the stability-equations are (1,2) 

fe (Y) = Fe (8 (2) 

and 

_L(Y> = Fo WS. (3) 

From (l), one has the following stability criterion. 

Stability Criterion: a system with characteristic equation F(s) is stable if the 
roots yez and yoj (i, j = 1,2, , . .) of the stability-equations h(y) = 0 and h(y) = 0, 
respectively, are all real and positive and are alternating in sequence. 

For a system with two parameters (k, and k2), the stability-equations can be 
written as 

.A(Y) = f ajy’ = 0 (4) 
i=O 

and 

h(v) = j$OW = 0 (5) 

where the coefficients a,‘s and bj’s are assumed in the form of 

a, = Aej + Beikl + Ccik2 (6) 

and 

b, = A,j+Bojk, + C’ojkz (7) 

where A’s, B’s and c’s are constants. By inserting Eqs (6) and (7) into Eqs (4) and 
(5) the result can be arranged as 

for the even stability-equation, and 

,$oA,,jyj+k, i BojYi3-k2 ’ coiy’=o 
j=O j=O 

for the odd stability-equation. From these two equations the following two kinds 
of curves can be plotted : 

(1) The stability-boundary curves: For a sufficient number of suitable values of 
y, the simultaneous solutions of Eqs (8) and (9) can be used to sketch a number of 
curves in a k, vs. k2 plane. Then the curve for yei = yoj which constitutes the 
stability-boundary can be obtained. 

(2) The constant-y curves : By assigning a sufficient number of values of y to Eqs 
(8) and (9) the constant-y curves for even and odd stability-equations can be plotted 
in the k, vs. k, plane. 
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These two kinds of curves offer the information for analysis and design. From 
(1) and (2), it has been shown that the differences among the magnitudes of the 
real roots (yei and yOj) can be used as indications of damping characteristics ; 
therefore, the proper values of parameters (k, and k2) of a compensator can be 
chosen by inspecting the relative differences (spacings) among these constant-y 
curves. This is the main approach of this paper for choosing the values of par- 
ameters in compensators. 

ZZZ. Precompensation with Constant A4atvi.x 

Consider the multivariable feedback control system shown in Fig. 1, where P(S) 
and K(S) denote the desired precompensating matrix and controller gain matrix, 
respectively. Assume at the time that 

G(S) = [ 
S”(S) g’*(s) 
921(S) g22(S) 1 

P(S) = 
Pll Pl2 

[ 1 P21 P22 

and 

k, 0 
K(s) = 0 II 1 k 

2 

then the closed-loop system transfer matrix is (7) 

T(S) = [I+ G(S)P(SjK(S)I- ‘G(S)P(S)K(S) 

i 

k,.c?,,((S)+k,k& U,dS) 

k,&I(S) k,&,(S)+k,k,D, I 
= 

l+k,~l,(S)+k2822(S)+k,k2D~ 

where 

Sllc3 gl2v) = 

9216‘3) 8226% I[ 

(12) 

(13) 

[ 

P*,s11(~)+P2,g12(~) Pl29llw+P22gl2(~) 

= P,lg2l(~)+P*1ihcQ P12921(~)+P22g22w 1 (14) 

FIG. 1. Block diagram of a multivariable feedback control system. 
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and D, = DpDg ; D, and Dg are the determinants of P(S) and G(s), respectively. 
The closed-loop characteristic polynomial is (7) 

PC(S) = P,(S)[l+klB,,(S)+k2822(S)+k,k2DpDgl= 0 (15) 

where PO(S) is the characteristic polynomial of the open-loop system. 
According to the considerations of integrity and asymptotic behaviour, Eq. (15) 

is decomposed into the following two equations : 

P,(S)[l+k,g,,(S)l+k,P,(S)[922(S)+k,DpDgl= 0 (16) 

P,(S)tl+k2822(S)l+k,Po(S)[g,1(S)+k2DpDgl= 0. (17) 

The first term of Eq. (16) represents the characteristic polynomial of loop- 1 while 
the transducers or actuator element of loop-2 is fail (e.g. k2 = 0 or the feedback 
loop is open) ; the roots of the second term of Eq. (16) represent the open-loop 
zeros of loop-2. Similarly, the first term of Eq. (17) represents the characteristic 
polynomial of loop-2 while the transducer or actuator element of loop-l is fail (e.g. 
k, = 0) ; the roots of the second term represent the open-loop zeros of loop- 
1. Therefore, the analyses of the first terms of Eqs (16) and (17) represent the 
“consideration of integrity” ; and the analyses of the second terms of Eqs (16) and 
(17) represent the “analysis of asymptotic behaviour”. 

From Eq. (13), it can be seen that if steady-state accuracy and low-interaction 
at low-frequency are to be achieved by “tight-feedback”, then condition D,(S + 

0) ~max{Ip~~gj,(S~O)lk,l, Ipi~~~~(S+O)lk~I) . 1s re 9 uired (8) ; thus, the value of 
min (Dd’*/jpjll) will be the larger the better for all i,j = 1,2. Note that the term 
“tight-feedback” is defined as large loop gains for the asymptotic behaviour. 

For the consideration of high frequency alignment, the equivalence of high-order 
exponents of the second terms of Eqs (16) and (17) is required. This will be discussed 
in the examples given later. 

Following all the equations given above, it can be seen that the proposed method 
is to do : 

(1) parameter analysis of both PO(S) [Q11(S)+k2DpDg] and P,(S) [g22(S)+ 
klDpDg] for the analysis.of asymptotic behaviour, and 

(2) parameter analysis of both PO(S) [l +k,g, l(S)] and PO(S) [l +k2g2*(S)] for 
the consideration of integrity. 

In other words, one has the following four equations for doing parameter analysis : 

P,(S)Ln,1sl1(S>+~2,9,2(S)+k2DpDgl = 0 (18) 

f’,(S) [P,2gZ1(S)+P22922(S)+k,DpDgl= 0 (19) 

P&S) [1 +k,p,,g,,(S)+k,p,,g,,(S)l = 0 (20) 

PO(S) [1 +kzP12921(S)+k*P22g22(S)l =-0. (21) 
Let ai.i = kjpij and bi,i = pii/k,Dp (i, j = 1,2 and m = 1 ifj = 2 otherwise m = 2), 

then Eqs (l S)-(2 1) become 

P,(S)[D,+b,,g,,(S)+b,,g,,(S)l = 0 (22) 
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PO(S) [D,+b12921(S)+b22922(S)l = 0 (23) 

P,(S)[l+a,,g,,(S)+a,,g,*(S)l= 0 (24) 

P,(S) [l +a,2sZ1(S)+a22922(S)1 = 0. (25) 

Based upon the definitions of aij and b,, the relationships among them are found 
as 

aii/azi = b,i/b,i = pli/~2~ for i = 1,2. (26) 

Because there are three objectives which must be considered simultaneously; i.e. 

(1) the asymptotic behaviour of each loop (loop gains are large), (2) the high 
integrity and (3) the low-interaction between every loop, it is required that the 
values of k, and k, must be large. Therefore, one should analyse these equations 
in the a-a planes as far from the origin as possible, and in the b-b planes as near 
the origin as possible. 

Equations (22) and (23) show the asymptotic behaviours of loop-l and loop-2 
respectively, and Eqs (24) and (25) show the considerations .of integrity of loop-l 
and loop-2, respectively ; therefore one can solve the problems concerning integrity 
and asymptotic behaviour simultaneously. 

The application of the proposed method for analysis and design of multivariable 
feedback control system is explained along with the following example. 

Example 1 
Consider the system shown in Fig. 1. Assume that the plant transfer matrix is 

(8) 

1-S 2-s 

(1 cl+si? 
G(S) = 

I 1 1-3s 1-s (27) 

3(1+s)2 m 

and that the precompensating matrix and the controller matrix are given as shown 
in Eqs (11) and (12), respectively. The characteristic polynomial is (7) 

3S2+9S2+9S+3+kl[p,,(-3S2+3)+pzl(-3S2+3Sf6)] 

+kz[pd-3S2-2Sf1)+p22(-3S2+3)]+kIkJ$ = 0. (28) 

From Eqs (22)-(25) the equations for parameter analysis are 

(-3b,, -3b21)S2+3bz1S+(3b1, +6bzl +l) = 0 (29-a) 

(-3b,,-3b22)S2-2b12S+(b,2+3bZ2+1) = 0 (29-b) 

(S+1)[S2+(2-a,1-a~1)S+(1+2a21+a11)] =0 (29-c) 

(S+1)[3S2+(6-33a,,- 3a22)S+(3+aIz+3a22)] = 0. (29-d) 

By use of a computer, the constant-y curves can be plotted easily, as shown in Fig. 
2(a)-(d), where the shaded curves are the stability boundaries. In these figures the 
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constant-X curves which represent the negative sum of the characteristic roots of 
each equation are also plotted. Generally, the larger the value of X the better the 
damping characteristics of the system. By use of all these curves one can choose 
proper points in these planes to make the system have desirable characteristics 

(L2). 
Since the high-order exponents of the characteristic polynomial contribute to 

transient responses, the high-order equivalence of Eqs (28-a) and (28-d) will make 
the subsystem have similar transient responses ; i.e. they may have the same rising 
times and settling times. It is impossible to achieve “strict equivalence” of the 
subsystems because the structure of controller is limited. But one can achieve the 
equivalent property to some degree by using a proper type of controller. 

For multivariable feedback control systems, the interaction at high frequency 
is usually a serious problem. One can eliminate or reduce this kind of interaction 
by setting the high-order exponents of Eqs (29-a) and (29-d) equal to or near to 
zero. 

(a) 

FIG. 2. Parameter analyses of: (a) Eq. (29-a) for small values of b, , and b,, ; (b) Eq. (29-b) 
for small value of b,, and bs2; (c) Eq. (29-c) for large value of a,, and a,,; (d) Eq. 

(29-d) for large value of aI2 and nz2. 
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(c) 
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FIG. 2. Continued 
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3 

From Eq. (13), the steady-state error (E,,J of loop-l is 

Ess1 = l - 1 +k,g,,(O)+k,g,,(O)+k,k,D,(O) 

1 +M22(0) 

= l+k,g,,(o)+kz~22(0)+k*k*D~(O~ 

and the steady-state error (ESS2) of loop-2 is 

Essz = 1 - 
kL(0)f~lW&(O) 

l+k,g,,(O)+k2822(0)+k,k2D~(O) 

1 +k,g,,(O) 

= l+k,g,,(O)+kzg,,(O)+klk,D,(O). 

Since “tight-feedback” (with large loop gains) is used, the steady-state error (Es,) 

404 
Journal of the Franklin Institute 

Pergamon Journals Ltd. 



Stability-equation Methodfor Multivariable Feedback Control Systems 

of the overall systems is defined approximately by 

and 

ES, = max (IPiiSil(O)l)lD,D,(O) min (k,) i,j, m = I,2 (30-a) 

-KS = max (Ib,g,(O)I)/D~(O) i,j = f,2. (30-b) 

According to the presentations given above, the following conditions are neces- 
sary for choosing a suitable precompensating matrix : 

(a) From Eq. (29-a), for achieving fine damping properties, the result shown in 
Fig. 2(a) indicates that b21/b,2 should approach - 1 ; correspondingly, from Eq. 
(29-b), Fig. 2(b) indicates that bz2/bl 2 should also approach - 1. 

(b) For achieving integrity against transducer failure in loop-2, Fig. 2(c) indicates 
that a*,/a,, should lie in between - 1 and - l/2. Correspondingly, for integrity 
against transducer failure in loop- 1, a2Ja, 2 should lie in between - 1 and - l/3 as 
indicated in Fig. 2(d). 

(c) High frequency alignment demands that -3b, 1 -3bz1 = -3bl,-3bz2 and 
3bz, = -2b12 for the equivalence of the high order exponents in Eqs (29-a) and 
(29-b). 

(d) Low-interactions at high frequency requires that -b, 1 = bz, -b,, = bz2 in 
order to make the higher-order exponents of Eqs (29-a) and (29-b) as small as 
possible. 

(e) Steady-state errors (ES,) are defined approximately by Eqs (30-a) and (30-b). 

For a specified steady-state error (E,,): the approximated values of the bij’s for 
analysis can be determined by Eq. (30-b) and the loop gains k, are obtained by 
relating bij of Eq. (30-b) equal to piilk,DP (i, j = 1,2 and m = 1 ifj = 2, otherwise 
m = 2). If the steady-state error is specified to be within 5%, then Eq. (30-b) 
becomes 0.05 = 6b,, ; i.e. the analyses for b,‘s around 0.01 should be examined. 
Following the conditions (a)-(d) and by inspecting the constant-y curves shown 
in Fig. 2(a)-(d), the proper choices of b,, and b,, are -0.0183 and 0.0167, 
respectively [point Q, in Fig. 2(a) for which yr = 169 and X = 81, and proper 
choices of blz and b,, are -0.0133 and 0.0117, respectively [point Q2 in Fig. 2(b) 
for which y, = 196 and X = 51. Based upon the relationship defined by Eq. (26), 
one of the possible choices of P(S) is 

P(S) = [-iA -3. 
The controller gain matrix for E,, equal to 5% is selected to be 

K(S) = 
200 0 

i 1 0 200 . (32) 

The overall controller becomes 

P(S)K(S) = 
-2200 -1600 

2000 1400 1 

(31) 

(33) 
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and the closed-loop system transfer function matrix is 

S2+7S+6 

S2+5.33S+204.33 1 (34) 

where A(S) = S3 +403S2+ 3069.67S+42667.667. The simulated results are shown 
in Fig. 3 which indicate that the damping characteristics of the system are accept- 
able. Naturally, the choice of the overall controller is not unique; the simulated 
results for other choices of P(S) and K(S) are given in Table I. 

From the above presented example it can be seen that the stability boundary, 
constant-y curves and constant-Xcurves provided by the stability-equation method 
are useful for analysis and design. 

IV. Pvecompensation with Lead/Lag Compensators 

In the last section, while doing analysis and design for a system with a constant 
precompensating matrix the following assumptions are made : 

(a) The problem is solvable by the strategy of making it “tight-feedback”, i.e. 
high loop gains are generally required. 

1 (b) 

.-.\. Y2 
I - / \ 

/’ 
.I-._._.-.-‘-‘-’ 

./’ 
9 ./ 
7 

0 
0.8 

t (5) 

FIG. 3. Step responses of Example 1 for : (a) Y, = 1 and r2 = 0 ; (b) r, = 0 and rz = 1. 
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TABLE I 
Accompanying table of performance for Example 1 

cl(t), rl(O= 1, rdO=O c*(t), r,(O=O, f-2(4= 1 

tr t, 
P(S) k,=kz 6) 6) (2) y;; (i) ;) (2) ;zj 

-11 -8 200 0.18 0.44 14.3 2.1 0.22 0.49 14.3 4.3 
lo 7 8. 0.30 0.59 6.7 4.7 0.43 0.68 5.2 9.6 

40 0.51 0.38 1.7 8.2 0.60 0.77 1.2 16.9 

-11 -5 200 0.15 0.68 19.2 1.2 0.22 0.74 17.4 4.4 
lo 4 8. 0.17 0.72 17.4 1.4 0.26 0.77 15.2 5.2 

40 0.24 0.63 10.7 2.6 0.41 0.77 8.3 9.9 

-11 -3 200 0.13 0.84 25.2 0.2 0.19 0.87 23.0 3.0 
10 2 ;; 0.14 0.91 23.4 0.4 0.21 0.96 21.2 4.2 

0.19 0.86 17.8 0.8 0.33 0.70 13.9 7.9 

t,, rise time; act, steady-state accuracy; t,, settling time; m,, % peak-overshot. 

(b) The determinant of the plant transfer function matrix possesses only left-half 
plane zeros, and that the pole-zero excess values of transfer function is less than 
four. 

Assumption (b) is due to the fact that if the number of pole-zero excess is four 
then the summation of the characteristic roots of Eq. (15) will be uncontrollable 
for any kind of constant precompensating matrix. It will be shown in this section 
that this limitation can be overcome by introducing lead/lag compensators to the 
constant precompensating matrix. In addition, the lead/lag compensators can 
reduce the controlling effects, e.g. the smaller loop gains can be used to obtain the 
same damping characteristics and steady-state accuracies as the system considered 
in Section III. 

Consider the system shown in Fig. 1. Assume that the parameter k2 is cascaded 
by q2(S) = (n/m) (S+m)/(S+n), then the equations to be analysed become 

~o(S)(S+n)[l+k,p,,g,,(S)+klpzlg,,(S)l= 0 (35) 

P,(S) (S+n) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ = 0 (36) 

~o(S)(S+n)Lp,,g,,(S)+palgl2(S)+k2q2(S)DpDgl = 0 (37) 

P,(S) (S++,(S) [P12921(S)+P22g,2(S)+klDpDgl= 0. (38) 

Therefore one has 

(S+n)RJ(S) 11 +a,,gl,(S)+a*,g,,(S)l = 0 

(S+m)p,(S)[1+92(S)(a,2g21(S)+a22922(53)1 = 0 

(39) 

(40) 
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(S+n)P,(S)[~,+4;‘(S)(b,,g,,(S)+b,,g,2(S))l = 0 (41) 

(S+mMS) [D,fb12g21(S)+b22g22(S)l = 0. (42) 

Since the terms (S+m) and (S+n) of Eqs (39))(42) represent one zero at -m and 
one zero at -y1, respectively, the analyses of Eqs (39)-(42) can be simplified by 
neglecting these terms. Comparing these simplified equations to Eqs (22)-(25), the 
analyses of integrity for loop-l [Eq. (39)] and asymptotic behaviour of loop-2 [Eq. 
(42)] are not changed. The analyses of Eqs (40) and (41) are interpreted in the 
following paragraphs. 

(1) Consider the analysis in the a, 2 vs. a22 plane. The equations with and without 
the lead/lag compensator q2(S) to be analysed are correspondingly 

~~(S)+p,(S)[a1292~(S)+a22922(S)l= 0 (43) 

and 

ib(S)(S+n)+po(S) (S+m)~[a,2g21(S)+a,,g22(S)l = 0. (44) 

The coefficients of the polynomial shown in Eq. (43) are generally in the form of 

1 r,+s, r,+sz r,+S3 . ..) 

or 1 rl rz+s2 r,+S? . ..) 

where ri)s and s;s represent the first and second parts of the coefficients of the 
polynomial given in Eq. (43). Similarly, the coefficients for the polynomial given 
in Eq. (44) are in the form of 

1 rl+n+usl r2+nr1+uS2+n31 r,+nr2+us3+ns2 . . . . 

or 1 rl+n r2+nrl +us2 r,l-nr2+uS3+tzS2 . . . . 

where u = n/m. Assume the feedback is tight, i.e. the aij’s are large and the ri)s are 
small in comparison to sj’s, then one has 

1 r,+n+us, us2+ns2 us3+ns2 . ..) 

or 1 r,+n rz+nrl +us2 us2+ns2 . . . . 

The coefficients of the system with and without the lead/lag compensator are shown 
in Table II, which will approximately be true if tight feedback is applied and the 
value of m x II is not too large compared to the value of U. From Table II, the 
relationships between the analyses with and without lead/lag compensators are 
shown in Table III, where u denotes the scaling factor. 

(2) Consider the analysis in the bl 1 vs. bzl plane. The equations, with and without 
the lead/lag element q2(S), to be analysed are correspondingly 

and 

~o(S)[b,1g,,(S)+b21g,2(S)l+~o(S)DB = 0 (45) 

p,(S)(S+n)[b,,glI(S)+b2*g12(S)+Yo(S)(S+m)~U, = 0. (46) 
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TABLE II 
The coeficients of the even and odd stability equations 

Cases Even/odd Coefficients 

1 
even (odd) 1 sz sq sg . 
odd (even) v,+s, s3 sg s, . . . 

1 with q2(S) 
even (odd) 1 us1 usq i4.r~ . . . 

odd (even) r,+n-rn-kus, us3 us5 us, 

2 
even (odd) 1 sz sq s(j . . 
odd (even) r, sg s5 s, . . . 

2 with q2(S) 
even (odd) 1 us2 usq l.0~ . . . 
odd (even) r,+n-m us3 us5 1.0~ . . . 

Even, even stability equation ; u = n/m ; odd, odd stability equation. 

Note that these equations are similar to Eqs (43) and (44) for doing analysis in the 
aI2 vs. al2 plane. Performing the same procedure except that large values of aij’s 
are replaced by assuming small values of b,‘s. The final resulted case for the 
coefficients of the polynomials given in Eqs (43) and (44) are the same as those for 
Eqs (45) and (46). The transformed results for the analyses in the b, , vs. b,, plane 
are given in Table IV. 

TABLE III 
The tran.sformation of old analyses to new analyses in a, z vs. az2 plane 

With const 
precompensating 

Case matrix (old) 

1 a,2-a22 plane 

x = &, 

Yeven(odd) 

Yodd(even) 

2 al2 - az2 plane 
X = X0,, a constant 

Yeven(odd) 

Yodqeven) 

With lead/lag compensators (new) 

ua,2-ua22 plane (U = n/m) 
Const-X curves are reproduced and 
X= X,,, = XO,d+n-m 
Const-y,,, curves are reproduced 
Const-y,+.j curves are reproduced with the dominant (or 
highest) y,(,, values changed by a multiplicating factor 
Xold/Xnew at each corresponding point 

ua,2-uazz plane 
X = X,,, = X0,, + n - m a constant 
Const-y,,, curves are reproduced 
Const-yOo curves are reproduced with the dominant y+) 
values changed by a constant multiplicating factor of 

Xold/Xnew 
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TABLE IV 
The transformation of old analyses to new analyses in the b, , vs. bz, plane 

With const. 
precompensating matrix 

(old) With lead/lag compensators (new) 

b,,-b,, plane 
x = X4, 
Yeven(odd) 

Yodd(even) 

u'b, , - u’b,, plane (u’ = l/u = m/n) 
X = X,,, = X,,,fn-m 
Const-y,(,, curves are reproduced 
Const-y,(,, curves are reproduced except for the dominant (or 
highest) y+) values changed by a multiplicating factor Xold/Xnew 
at each corresponding point 

From Tables III and IV, one can see that a simple geometry transformation is 
required for cascading lead/lag elements to the considered system. Similarly, if a 
lead/lag compensator q,(s) is cascaded to k,, the same transformation can be 
derived in the aI1 vs. a2, and b,, vs. bzz planes leaving the analyses in the aI2 vs. 
uz2 and blI vs. b,, planes unchanged. This unchanged property and geometry 
transformation shown in Tables III and IV will be justified by introducing a known 
compensator to parameter kz. The details are given in the following example. 

Example 2. Precompensation with a lag compensator 

Consider the analyses performed in Example 1 as shown in Figs. 2(a)-(d). If 
the lag compensator q2(S) = 0.2(S+ l)/(S+O.2) is cascaded to parameter kZ, the 
results of the analyses are shown in Fig. 4(a)-(d). Comparing these figures to Fig. 
2(a)-(d), it can be seen that the constant-y curves in the b12 vs. bz2 and a,, vs. a21 
planes are the same, and that the results of the analyses in the b 1 1 vs. b2, and a, 2 

x __-_ 

Y- e 

FIG. 4. Parameter analysis of Example 2 for : (a) small values of b, , and b,, ; (b) small 
values of b,, and b,,; (c) large values of a,, and a*,; (d) large values of aI2 and a**. 
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(b) 

b 
22 

b 12 

0 

:: 

x -_-- 

v, - 

-1000 -500 0 

Stability boundary 

- 500 

,y __-- 

K - 

0.2 f7,2 

-1000 -500 0 

FIG. 4. Continued 
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vs. a22 planes are nearly the same except for the change of scale. The scaling factor 
is 5(n/m) with respect to those of the analyses without the lag compensator. These 
results justify the formulation of Tables II-IV. 

By inspecting the constant-y and constant-X curves shown in Fig. 4(a))(d), the 
following results can be obtained : 

(a) Let b,,‘s be around O.Ol(E,, = 5%) and b,Jbzl = - ll/lO [i.e. point 
Q3( -0.01375,0.0125) in Fig. 4(a) which gives X = 8 and ye = 501, where ye shows 
the dominant characteristic of loop-l. It can be seen that the nice damping charac- 
teristics can be obtained because the large values of ye and X. 

(b) Since high-frequency alignment is under consideration, the analysis in the 
b,, vs. b22 plane for b,‘s around 0.01 (E,, = 5%) shows that the choice of 
b,,/b,, = -3/2 with ye = 50 and X= 2 [i.e. point Q4 (-0.01875,0.0125) in Fig. 

4(b)] is proper. 

Therefore, the precompensating matrix is 

P(S) = 1 10 

Since the steady-state error ES, is specified to be 5%, the controller gain matrix can 
also be predicted as 

20 0 
K(S) = 0 2. 

[ 1 
for the relationships among b,‘s and pij’s are defined by Eq. (26). 

The overall controller is 

I - 220 -300% 

P(S)K(S) = 
200 200 __ s+l 

5s+ 1 1 

(48) 

(4% 

and the overall system transfer function matrix becomes 

5S2+46S+275.67 5s2+10s+5 

5S2+32.67S+6.33 5S2+10S+271.67 1 (50) 

where A(S) = 5S3+211S2+ 11273+5614.33. The simulated results as shown in 
Fig. 5 agree with the analysis. 

The same problem has been solved by MacFarlane (9) utilizing the characteristic 
root-loci method in which a three-step controller design with a leading com- 
pensating element cascading kl was adapted. But in this paper, only a geometry 
transformation generated from the analyses of constant precompensating matrix 
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(a) 

TA 
‘\ 

‘1.. Y2 _.-. . 
. ._.A. 1.5 

t (s) 

./‘2. 
I / ZI. Y2 

-.-.--4 

/’ 

/’ 

s 
K 

FIG. 5. Step responses of Example 2 for (a) r, = 1 and r2 = 0; (b) r1 = 0 and r2 = 1 

is required, and the scaling factors are closely related to the parameters of the 
lag/lead compensator. 

Example 3. Precompensation with lead compensators 
Consider the system shown in Fig. 1. Assume that the plant transfer function 

matrix is (10) 

G(S) = : 10 

s(s+ 1) (S+2) s(s+ 1) 

3.5 -1 6 

S(S+ 2) S(S+ 1). 

(51) 

Since the pole-zero excess values of Det [G(S)] is four, frequency compensation is 
necessary in general. 

Performing parameter analyses without the lead/lag compensator, the equations 
to be analysed are 

-bzlS3+(10bll -3b21)S2+(3.5+10b,1 -2b*,)S+63.5 = 0 (52-a) 

(3.5b,~+6b22)S3(7b,2+1Sb22)S2+(3.5+3.5b12+12b22)S+63.5 = 0 (52-b) 

S(S+1)[S3+3S2+(2-a21)S+(10a11-2a21)] = 0 (52-c) 
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and 

S(S+l) [S3+3S2+(2+3.5a12+6a22)S+(3.5a,2+12a22)] = 0. (52-d) 

The parameter analyses are given in Fig. 6(a)-(d). Since the corrsponding pairs of 
p1anes(a,,-a2,vs.h,~-b2,p1anesanda,,-a2,vs.b,,-b,,p1anes)donotshare 
proper common volumes, the integrity may be violated due to the requirement of 
fine damping characteristics. For example, the parameters b, 2 and bz2 lying in the 
stability boundaries shown in Fig. 6(b) will violate the integrity when loop-l is 
opened because the corresponding values of aI2 and a22 are outside the stability 
boundaries shown in Fig. 6(d). Similarly, the selections of 6, 1 and b,, (i.e. a,, and 
aZ,) will violate the consideration of integrity when loop-2 is opened. Therefore, 
the frequency compensating elements are necessary in general, to enlarge the stable 
regions shown in Fig. 6(b) and (c). One may assume that 

P(S) = 
6 1 

i 1 -3.5 0 (53) 

which is commonly chosen by every method in the current literature (8, 9, 11-13) 
where high frequency interactions are minimized by matrix transformation. 

Consider the analysis in the b,, vs. b2, plane for b, Jb2, = 6/-3.5, the ratio of 
yJy, is approximately at 1.1, and the value of Xis 20. From the prediction indicated 
in Table IV and for a proper value of y,/y,, the frequency compensating element 
cascaded to k, may be chosen as 

qz(S) = 5o(s+ I)/@+ 50). (54) 

Similarly, the analysis in the b,, vs. b,, plane demands a frequency compensating 
element cascaded to k, which is 

s,(S) = loo(s+ l)/(S+ 100). (55) 

(a) 

-001 0 

FIG. 6. Parameter analysis of: (a) Eq. (52-a) for small values of b,, and b, , ; (b) Eq. (52-b) 
for small values of b,, and b,>; (c) Eq. (52-c) for large values of czzl and a, 1 ; (d) Eq. 

(52-d) for large values of uza and a I *. 
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(b) 

n 

I t 

- 0.001 

-0002 

(c) 

b 
12 

v,/v, =0.1 I 
/ x=3 , b 

( 22 

ye /h = 0.165 

Ye- - 
uo - - 

oi I 
50 

- 

% 

-50 

FIG. 6. Continued 
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The overall controller can be reformed as 

(56) 
50 __ 

Performing the analyses with Eq. (56), the results are given in Fig. 7(a)-(d). From 
these figures one can see that the results agree with the prediction for Eq. (52) and 
with the compensators ql(S) and qs(S) which enlarge the stable regions. The 
analyses with and without lead/lag compensators are related by the relationship 
shown in Tables III and IV. 

Following the presented results given above, the precompensated plant becomes 

G(S) = G(S)P(S) 

7S+134 10 

50 s-k 100 s+ 50 1 

The controller gain matrix K(S) can be predicted from the following con- 
siderations : 

(a) From Fig. 7(a), observing the b 1 1 vs. b, 1 plane for b 1 ,/b,, = 6/ - 3.5, a proper 
result is obtained for bll around the value of 0.07 which offers the asymptotic 
characteristics of 

ye = 1000, y, = 4700 with X = 69, 

i.e. point Q5 (-0.040,0.0685) in Fig. 7(a). 

FIG. 7. Parameter analysis of Example 3 (a) for small values of: bzl and bl 1 ; (b) for small 
values of b,, and b12; (c) for large values of azl and a,, ; (d) for large values of uz2 and a,,. 
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(d) 

-lOOO- 

FIG. 7. Continued 
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(b) Consider Fig. 7(b) for b 22 = 0. A proper result is obtained for 6r2 around 
the value of 0.02, i.e. 

y, = 1000, y, = 5200 with X = 101, 

i.e. point Qs(0.0,0.019) in Fig. 7(b) which is obviously aligned with the result of 

(a). 
(c) Since the value of Dp is 3.5 and the values of p, 1 and plz are at 6 and 1 

respectively, the controller gain matrix is 

(58) 

Therefore, the overall controller is 

1500 ___ 

(59) 
0 1250 __ 

The characteristic roots of the closed-loop system are found at 

- 1, - 1, -29.068, -35.845+j43.818, -25.621 fj61.780. 

The step responses of the overall system are shown in Fig. 8. 

4 
I-- 

c 
x 

% .-.-._.- 
0 -.-.-.- 

t (s) 

(b) 

---y 
! 

! 
./ 

./ 

t (5) 

FIG. 8. Step responses of Example 3 for: (a) r, = 1 and r2 = 0; (b) r, = 0 and Y? = 1. 
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From the above given examples, the following remarks can be made : 

(a) The design of multivariable feedback control systems by use of the stability- 
equation method is an interative and interactive procedure similar to the inverse 
Nyquist array method (8) and the characteristic root-locus method (9, 14). 
However, the calculations necessary for achieving the closed-loop characteristics 
are easier in the stability-equation method. 

(b) The stability-equation method can take into consideration the stability, 
integrity and performance of the system simultaneously. This advantage over the 
sequential-return-difference method (15, 16) is attractive, since the sequential- 
return-difference method is a way of trial and error, i.e. the compensating element 
chosen for the first loop possesses consequential effects to the remaining loops 
which are generally unpredictable. 

V. Conclusions 

The stability-equation method has been extended and applied to the analysis 
and design of multivariable feedback control systems. 

From the presented examples it can be seen that the system characteristics, such 
as stability, integrity and performance can be considered simultaneously ; thus it is 
a useful tool for analysis and design. 
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