第一章 緒論

1.1 前言

兆赫波波段一般係指頻率介於 0.1 兆赫至 20 兆赫之間的電磁波, 波長範圍在微波與紅外線之間(圖 1.1),此波段電磁波有著十分特殊 的性質,許多分子的轉動或震動能階皆落於此波段(如 H₂O、CO₂、 CO、NH₃),可被多數分子以其特徵頻率所吸收[1](圖 1.2),能穿透許 多在可見光波段不透明之材料(如塑膠、紙類、衣服等)[2](圖 1.3),金 屬在此波段特性似於完美導體,有極佳的反射率,基於上述特性,近 年來兆赫波相關應用與研究受到相當大的矚目。由於兆赫波為低能量 且非游離輻射,相較於 X 光對人體細胞較無傷害,因此可應用在醫 療顯像[3]、走私檢驗、防恐偵測上。兆赫波之高頻特性亦可提升資 料傳輸頻寬,以滿足未來通訊大資料量傳輸的需求。此外,兆赫波亦 可應用在大氣探測、環境監控、分子檢測等領域。

雖然兆赫波有著許多優良特性,但由於主被動元件開發不易,使 得電磁波的應用發展留下一個兆赫波缺口。在自然界並無高強度的兆 赫波輻射源,因此發展出室溫操作、高功率且高穩定性的兆赫波輻射 源一直是此領域研究的重點課題。目前常見的兆赫波輻射源有(1)黑 體輻射源(2)同步輻射或自由電子雷射(3)氣體或半導體雷射(4)雷射激 發的非線性材料及(5)半導體電子震盪元件。黑體輻射源兆赫波段輻 射功率低且同調性差,同步輻射及自由電子雷射系統過於龐大,現階 段兆赫波輻射源的研究較集中在半導體雷射、非線性材料及半導體電 子震盪上。半導體電子震盪元件有(1)甘恩二極體(2)崩渡二極體(3)共 振穿隧二極體(4)短通道高電子遷移率電晶體等。上述元件因寄生電 容效應,其功率隨頻率增加而快速下降,然而在近年的研究,共振穿 隧二極體其輻射基頻已可提升至800 GHz[4],但輸出功率只有數微瓦, 此功率距應用所需的毫瓦等級還有不小差距。

圖1.1 電磁波頻譜。

圖1.3 (a)雙層異質塑膠標的物 (b)兆赫波顯像結果,可判斷內外層不同材質。[2]

1.2 文獻探討

1993年Michael Dyakonov與Michael Shur提出在場效電晶體(FET) 中可實現的一種新的兆赫輻射機制。此機制係透過二維電子氣體 (2DEG)產生電漿波震盪輻射,俗稱D-S非穩態震盪[5]。其理論提出, 短通道長度的場效電晶體在適當偏壓條件下,閘極區域下通道內的二 維電子氣行為會如同淺水波一般震盪,其震盪頻率可高達兆赫波頻段, 由流體方程式可模擬其狀態,此電漿波震盪能產生類似於時變電偶極 矩的特性,並藉由閘極金屬耦合成電磁波輻射出來。

而後相關FET研究,皆以此理想模型為基礎做相關的理論計算, 如考慮通道中電子濃度不均、元件結構等因素的影響[6-8]。此一理論 機制直至2004年才有突破性的實驗成果,W. Knap與J. Lusakowski等 人在4.2 K低溫下,量測開極長度60奈米InGaAs HEMT元件所發出的 兆赫波輻射(0.4-1 THz)[9],輻射峰值的頻率會受汲極偏壓影響而偏移, 且須於元件操作於飽和區時才能量測到輻射訊號,而輻射強度為約 nW等級,其單位面積輻射功率比室溫黑體輻射高出六個數量級以上。 相同團隊也於隔年發表了輻射訊號可隨汲極偏壓與開極偏壓調整的 研究[10]。

室溫兆赫波輻射源則是到了2006年才有成果發表,N. Dyakonova 等人量測InGaAs/InAlAs 以及 AlGaN/GaN兩種HEMT結構在4.2K和 300 K下的兆赫波輻射頻譜(0.5-3 THz)[11],其單一元件輻射功率可達 0.1 μW,並可透過源極與閘極偏壓調整功率輸出。A. El Fatimy等人 於2010年發表的研究則指出不僅可透過閘極偏壓調控輻射峰值頻率, 當閘極偏壓改變使得載子濃度增加而造成介面散射的程度提高,輻射 訊號峰值的半高寬也因此變大[12]。

為了進一步提升輸出功率,Otsuji 等人則提出了雙閘極週期性排 列結構(dual grating gates),利用寬度不一的兩個閘極在源極與汲極間 形成交錯排列[13][14],並且外加兩個大小不同偏壓在此雙閘極,以 此調變通道方向的電子濃度成週期性分布,並透過電流激發而產生室 溫兆赫輻射,其輻射強度可達1 μW。而後於2010年又提出另一種週 期結構,其為單一閘極,而源極、汲極部分則各自為週期性排列[15], 在滿足動量守恆情況下,較有效的將通道內電漿波耦合成電磁波輻射 出來,以此增強同調性較好的非穩態電漿波輻射機制,其輸出功率可 提升至1.8 μW,並觀察其偏振現象,當偏振片金屬線與元件金屬電極 平行時會有最大的訊號,代表元件輻射訊號的主要電場偏振方向與週

5

1.3 pHEMT 元件兆赫波輻射機制

本實驗室去年已對 InGaAs/GaAs dual-finger pHEMT 做系統性的 訊號量測[20],發現其主要輻射訊號強度落於 9-16 THz,且特徵頻譜 與材料特性有關,因此排除為非穩態電漿波震盪的機制所產生。圖 1.4(a)為 SI-GaAs 基板的吸收頻譜,圖 1.4(b)為與 GaN/Si HEMT 的輻 射頻譜比較,可發現 InGaAs/GaAs pHEMT 的輻射頻譜峰值對應到 GaAs 基板的吸收頻譜峰值,主要為 9 THz 及 15.5 THz 兩個峰值,而 在另一種材料元件 GaN/Si HEMT 兆赫波段輻射頻譜並無觀察到此二 峰值存在,由此推測其兆赫波輻射機制與材料聲子有關。

圖 1.4 (a)SI-GaAs 兆赫波段吸收頻譜。(b) InGaAs/GaAs pHEMT 與 GaN/Si HEMT 兆赫波段輻射頻譜。

1.4 研究動機

本實驗室在兆赫波領域包含偵測器、濾波元件及週期性金屬結構 皆有相當的研究成果[16-19],而在兆赫波輻射源部分,去年已透過穩 懋半導體所製作的 pHEMT dual-finger pHEMT 做系統性的訊號量測 [20],發現其輻射頻譜落於 9-16 THz,不同文獻上觀測到的 1-5 THz。 初步推測其輻射機制與熱電子有效的激發聲子並產生電磁輻射有 關。

此篇論文透過並聯 pHEMT 元件的方式來達成提升輸出兆赫輻射 功率的目的。方法為將元件的源極與汲極電極作週期性的指(finger) 狀交互排列,並抽掉閘極金屬電極。藉由改變結構參數,如元件尺寸、 finger 數目、金屬覆蓋率以及散熱空間,量測並比較其輻射強度、輻 射場型、偏振特性及頻譜的變化,以釐清 multi-finger 元件於兆赫波 段的輻射特性與機制。

7

第二章 製程及參數設定

2.1 磊晶結構介紹

本論文 pHMET 的磊晶層,是利用分子束磊晶(Molecular beam epitaxy)在 SI-GaAs 基板上依序長成,其結構參數如圖 2.1 所示,為常 見的磊晶結構,主要包含有 (a) GaAs 覆蓋層(Capping Layer),(b) AlGaAs 施體層(Donor Layer),(c) AlGaAs 無摻雜間隔層(Space Layer), (d)InGaAs 無摻雜通道層(Channel Layer),以下說明各層之作用: (a)GaAs 覆蓋層:

在覆蓋層中加入高濃度的 Si 掺雜,可提供良好的歐姆接觸(Ohmic Contact),降低源極電阻(Source Resistance),且可避免 AlGaAs 表面 產生氧化,於閘極掘入(Gate Recess)時須將此層完全蝕刻去除,避免 平行傳導效應(Parallel Conduction Effect)產生。

(b)AlGaAs 施體層:

此層一般會以高濃度的 Si 作為摻雜,以提高 InGaAs 通道的電子 濃度。但高摻雜濃度伴隨著崩潰電壓降低的缺點,為改良其特性,一 般會在其與無摻雜間隔層間,成長一厚度極薄約 10 Å 高濃度摻雜層 (Si Delta-Doping Layer)作為替代的載子提供層,除提高崩潰電壓外, 也可提升通道內的二維電子濃度。 (c) AlGaAs 無摻雜間隔層:

由於通道中的電子與載子供應層掺雜的離子間存在著庫倫作用力, 稱為庫倫散射(Coulomb Scattering),故以此層結構將載子供應層與通 道分開,降低庫倫散射效應。

(d)InGaAs 無摻雜通道層:

相較於傳統 GaAs 通道層,以 InGaAs 為通道層能有更小的能隙(更高的載子遷移率),對載子的侷限能力更好,因此可得到較高的二維電子濃度(電子速率)。

圖 2.1 InGaAs/GaAs pHEMT 元件磊晶結構。

2.2 元件製作流程及參數說明

元件製作所使用的光阻為AZ5214E,其為正光阻性質,若在第一 次曝光將圖形轉移至晶片後,於顯影前先將光阻加熱給予適當熱能, 便可使曝光處轉變為負光阻特性,接著移開光罩再做二次曝光,便可 得到所需之圖形。此光阻特殊之處在於經過正負反轉後,可使得光阻 開口形成上窄下寬的形狀,有利於金屬剝離(Lift-Off)這道程序。製程 主要分成四步驟: I.歐姆接觸(Ohmic Contact), II. 高臺蝕刻(Mesa Etching),III. 開極掘入(Gate Recess)與IV金屬接線 (Interconnection)。 圖2.2為元件側視的製程流程圖。

圖 2.2 製程流程圖。

I.歐姆接觸 (Ohmic Contact)

良好的歐姆接觸可降低源極與汲極端金屬與半導體的接觸電阻, 提升元件的高頻特性。元件的源極汲極間距固定為5μm。

(a) 將試片放置在丙酮(ACE)溶液中以超音波震盪器震盪五分鐘,並 以去離子水 (D.I. water)清洗晶片,而後使用氮氣槍將晶片吹乾。

(b) 將試片放置於120度的烤箱烤3分,目的為去除試片表面的水氣。

(c) 將試片滴上光阻液AZ5214E,以初轉轉速每秒1000 轉,10秒,末

- 轉速每秒5000 轉,30 秒使光阻均勻覆蓋在試片上。
- (d) 將上好光阻的試片放置在90度的烤盤上軟烤50秒。
- (e) 以棉花棒去除邊緣光阻以利曝光時試片與光罩貼合。

(f) 使用曝光機作第一次曝光3.5秒定義圖形。

(g)將試片放置120度烤盤上50秒作曝光處的反轉烤。

(h)試片作第二次曝光空曝14秒並以顯影液AZ300顯影25秒,而後以去離子水清洗試片並吹乾。

(i)以紫外線臭氧去光阻機去除試片表面殘餘光阻,並以HCl:H₂O =
 1:10溶液浸泡30秒去除氧化層以利金屬鋪蓋,後以去離子水清洗試片。

(j)以電子槍蒸鍍機 (E-gun)先後蒸鍍上鍺(Ge)/金(Au)/鎳(Ni)/金(Au)
 150 Å/350 Å/200 Å/2000Å。

(k)將鍍好金屬的試片浸泡在丙酮中以去除歐姆接觸外的金屬,再以 去離子水清洗試片。

(1)將試片置入於充滿氮氣的環境中再將試片置於RTA機台以400度 加熱40秒,使半導體與金屬之間形成歐姆接觸。

Ⅱ.高臺蝕刻 (Mesa Etching)

此步驟之目的為將各元件相互隔離,須將主動區以外的高摻雜層 及通道層蝕刻乾淨,確保各元件獨立操作時不互相影響。試片蝕刻深 度約為2500Å。

清洗試片並覆蓋光阻,步驟與歐姆接觸(a)-(e)相同。

(f)使用光罩並以紫外光作第一次曝光2秒定義圖形。

(g) 將試片放置120度烤箱內2分作未曝光處的反轉烤。

(h)試片作第二次曝光空曝14秒並以顯影液AZ300顯影25秒,而後以去 離子水清洗試片並吹乾。

(i)以紫外線臭氧去光阻機去除試片表面殘餘光阻,而後以NH4OH:

H₂O₂:H₂O = 3:1:100 蝕刻試片92秒定義出主動區。

(j)以丙酮(ACE)去除試片上的光阻,再以去離子水清洗試片。

Ⅲ.閘極掘入(Gate Recess)

閘極掘入主要是將高摻雜的覆蓋層蝕刻去除,避免平行導通現象, 確保載子於通道內傳導,也可藉此步驟控制元件的電流。此元件只作 閘極掘入而不鋪蓋閘極金屬,其線寬為1.5μm。

(a)將試片放置在丙酮(ACE)溶液中以超音波震盪器震盪五分鐘,並以 去離子水 (D.I. water)清洗晶片,而後使用氮氣槍將晶片吹乾。

(b) 將試片放置於120度的烤箱烤3分,目的為去除試片表面的水氣。

- (c) 將試片滴上光阻液AZ5214E,以初轉轉速每秒1000 轉,10秒,末 轉速每秒6000 轉,30 秒使光阻均勻覆蓋在試片上。
- (d) 將上好光阻的試片放置在90度的烤盤上軟烤50秒。

(e) 以棉花棒去除邊緣光阻以利曝光時試片與光罩貼合。

(f) 使用光罩並以紫外光作第一次曝光2.5秒定義圖形。

(g)將試片放置120度烤箱內2分作未曝光處的反轉烤。

(h)試片作第二次曝光空曝14秒並以顯影液AZ300顯影30秒,而後以去離子水清洗試片並吹乾。

(i)以紫外線臭氧去光阻機去除試片表面殘餘光阻,而後以NH4OH:

 H_2O_2 : H_2O = 3:1:1000 蝕刻試片150秒去除高摻雜覆蓋層。

(j) 以丙酮(ACE)去除試片上的光阻,再以去離子水清洗試片。

Ⅳ.金屬接線 (Interconnection)

其目的為提供探針量測及金線打線外加偏壓之接點。

(a) 將試片放置在丙酮(ACE)溶液中以超音波震盪器震盪五分鐘, 並

以去離子水 (D.I. water)清洗晶片,而後使用氮氣槍將晶片吹乾。

(b) 將試片放置於120度的烤箱烤3分,目的為去除試片表面的水氣。
(c) 將試片滴上光阻液AZ5214E,以初轉轉速每秒1000 轉,10秒,末
轉速每秒6000 轉,30 秒使光阻均勻覆蓋在試片上。

- (d) 將上好光阻的試片放置在90度的烤盤上軟烤50秒。
- (e) 以棉花棒去除邊緣光阻以利曝光時試片與光罩貼合。
- (f) 使用光罩並以紫外光作第一次曝光2秒定義圖形。
- (g)將試片放置120度烤盤上50秒作未曝光處的反轉烤。

(h)試片作第二次曝光空曝14秒並以顯影液AZ300顯影30秒,而後以去離子水清洗試片並吹乾。

(i)以紫外線臭氧去光阻機去除試片表面殘餘光阻,並以HCl:H₂O =
 1:10溶液浸泡30秒去除氧化層以利金屬鋪蓋,後以去離子水清洗試片。

(j)以電子槍蒸鍍機 (E-gun)先後蒸鍍上鈦(Ti)/金(Au) 200Å /3000Å。

(k) 將鍍好金屬的試片浸泡在丙酮中以去除金屬接線外的區域,再以 去離子水清洗試片。 圖 2.3(a)為光學顯微鏡觀察下的 40 finger pHEMT,其通道寬度為 50 μm、圖 2.3(b)為 10 finger pHEMT,其通道寬度為 100 μm。元件結 構參數說明見圖 2.4,其為 multi-finger 元件,源極與汲極間距為 5 μm(圖示),finger pitch (p)為 15 μm,W 為通道寬度,元件的金屬覆蓋 率(Fill Factor, F)定義為:主動區上電極寬度 d 除以 p。主動區以外用 以打線加偏壓的金屬電極,其寬度固定為 100 μm、長度 L 為 finger 數與 p 的乘積,以 40 finger pHEMT 為例其長度 L 為 600μm。所有量 測元件的變動參數包含:通道寬度、finger 數以及金屬覆蓋率。

圖 2.3(a) 顯微鏡下 40 finger pHEMT。(b)顯微鏡下 10 finger pHEMT。

第三章 pHEMT 室溫輻射強度及場型量測 <u>3.1 實驗架設</u>

直流電性量測使用 Keithley 2602 source meter 提供直流偏壓,將 樣品貼於 PCB 基板,打線上使用導電性較好之金導線連接元件電極 與 PCB 基板腳位,再以銅導線與 9-pin 的 D-sub 接頭連結,並以 GPIB 介面由電腦發送指令給 source meter 掃汲極偏壓並擷取電流,見圖 3.1。 如此可有效固定量測線材,避免於量測時線材晃動造成電性差異。

圖 3.1 直流電性量測示意圖。

於量測輻射強度時,由於元件訊號微弱容易受外界干擾,因此我 們使用 Agilent 8116A pulse generator 提供脈衝偏壓,脈衝頻率為 12.5 Hz、脈衝寬度 40 ms(duty cycle = 50%)。為量測通過元件的電流,們 於源極串連一 1 ohm 的電阻。透過鎖相放大器(SR850 Lock-in amplifier)擷取調變訊號以利微小訊號的量測。兆赫波段的輻射強度量 測是以DTGS-D201 作為偵測器,其有效響應頻段主要為 10~700 cm⁻¹。 為加強偵測器所得輻射強度,我們使用兩聚焦鏡增加收光量,第一個 拋物面鏡將位於焦點的元件輻射訊號轉為平行光,再經由第二個拋物 面鏡將平行光訊號聚焦至偵測器接收,如圖 3.2。

由於量測場型須有較大的元件活動空間並考慮場型角度量測的 解析度,因此我們選用的拋物面鏡焦距為19.01 公分、收光角為15°。 場型量測時元件架設與轉軸定義如圖 3.3 所示,將 PCB 基板置於兩互 相垂直的電控旋轉台軸心交點上,如此可同時做 φ 及 θ 角度的調整, 並利用電腦操作旋轉台,此旋轉台轉動角度最小解析度為1°,元件 及量測系統皆利用氦氖雷射對準,確保元件置換時空間位置的精確性。 量測時會分別旋轉 φ=0°、φ=90° 兩個軸向作量測,考量拋物面鏡 收光角度,θ將以15°為單位做變動,量測範圍為+75°~-75°, 元件轉動角度定義如圖 3.4 所示。

圖 3.2 場型量測架設。

3.2 pHEMT 正向輻射強度與輻射功率轉換效率比較

3.2.1 不同 finger 數元件輻射效率之影響

在此挑選兩不同 finger 數的 pHEMT(20 finger 及 40finger),固定 通道寬度W=50μm,兩元件位於同一晶片上。元件*I-V*電性如圖 3.5, 元件所量測之直流電流較脈衝量測為低,此為熱效應使載子遷移率降 低進而造成電流下降,可預期在高功率元件時影響會較大。40 finger pHEMT 由於其 finger 數多一倍,相當於單一 finger 元件並聯數增加 一倍,因此其飽和電流也約增加一倍。

元件輸入電壓隨輻射強度變化如圖 3.6 所示,40 finger pHEMT 由 医 於其電流較大,在相同電壓下輸入功率較大,因此有較強的輻射訊號。 圖 3.7、3.8 為兩不同 finger 數元件其電流及偵測器訊號強度對脈衝提 供的汲極偏壓做圖,我們可觀察到元件進入飽和區後,其輻射強度與 線性區相比提升較快,20 finger pHEMT 其轉折較不明顯,推測與其 較快進入飽和區有關。

圖 3.6 20 finger、40 finger 元件電壓與輻射強度關係。

圖 3.8 40 finger 元件電性與輻射強度比較。

為比較元件輻射功率轉換效率,我們對元件輸入功率與輻射強度 做圖,如圖 3.9 所示,箭頭標示處為元件進入飽和區的轉折點,由圖 可觀察到低功率與高功率輸入時為兩段不同斜率,且轉折點約略發生 在元件進入飽和區時,這意味著元件進入飽和區後會有較好的輻射效 率,由於 20 finger 元件其飽和電流明顯較小,因此在較低輸入功率便 進入飽和區而提升輻射效率,造成 20 finger 元件在相同輸入功率下, 有較高的輻射強度。根據此觀察,我們推測元件進入飽和區後,通道 內靠近汲極端產生的大電場能有效加速電子,提昇其動能。高動能電 子可有效激發材料聲子產生熱聲子(聲子累積)現象,進而使得輻射效 率提高。

此外,為了解光柵結構對單一電子能量轉換效率是否有提升,我 們將輻射強度對電流作歸一,圖 3.10 顯示量測 20 finger 與 40 finger pHEMT 兩個元件平均輻射強度(對電流歸一)與電場強度的關係圖。 可看到兩條曲線大致重合,這結果說明增加兩倍電極的指數,相同電 場下元件並無明顯提昇其輻射效率。

24

圖 3.10 20 finger 與 40 finger 元件的平均輻射強度與電壓關係。

3.2.2 散熱區域對輻射功率轉換效率之影響

為了解散熱區域,也就是受操作元件以外的晶片空間對元件輻射 訊號強度的影響,我們挑選兩參數相同元件,W = 50 µm、40 finger pHEMT,差別在於一元件除高台區域(mesa)及外加偏壓所需的金屬電 極外,單獨切下,無額外散熱區域,其晶片大小約為300 µm x 600 µm。 另一元件包含周圍散熱區域其晶片大小約為300 µm x 600 µm。 3.11 內小插圖)。圖 3.11 為兩元件輸入功率對輻射強度做圖,於輸入 功率 400 mW 時元件輻射強度,無散熱區域的元件約為有散熱區域元 件的 1.5 倍,推測造成此差異的原因為:有散熱區域的元件,元件其 外的區域會將元件的產生的聲子透過熱傳導帶走,使得元件能產生兆 赫輻射的聲子數目下降,輻射強度減弱。

圖 3.11 散熱區域對輻射功率轉換效率的影響。

3.3 輻射場型量測

前一節我們對不同元件做正向輻射強度比較,此節將分析元件輻 射場型及其成因。為了解元件本體結構對輻射場型影響,我們先對無 散熱區域的元件做場型量測,比較不同 finger 數及不同通道寬度的元 件場型,由於脈衝產生器的輸出功率最大為1 W,且在阻抗為50 Ω 時才有最大輸出,因此在大電流元件會無法加過飽和,所以在不同元 件比較時,我們會將偏壓固定在線性區,而後再利用較小電流元件觀 察其飽和偏壓前後對輻射場型的影響,元件脈衝電性如圖 3.12 所示。

圖 3.12 不同元件之脈衝電性。

3.3.1 無散熱區域元件之輻射場型

我們首先觀察 W = 50 μ m、40 finger 元件輻射場型。其晶片的寬 度為 $300\mu m$,長度為 $600\mu m$ 。分別量測 $\phi = 0^{\circ}$ 、 $\phi = 90^{\circ}$ 兩個軸向, θ的量測角解析度為15°。元件偏壓操作在1.1V,結果如圖3.13所 示,其輻射場型於兩個 phi 軸向並不相同,且正向輻射強度最弱。為 釐清其成因,我們對不同尺寸元件做場型量測後對元件正向輻射強度 做歸一,如此可了解各角度輻射強度的相對關係,受測元件皆操作在 1.1V。圖 3.14、3.15 為 40 finger pHEMT, 不同通道寬度 W = 50 μm、 100 μ m、150 μ m 於 $\phi = 0^\circ$ 、 $\phi = 90^\circ$ 場型比較,其整體晶片長度固 定為 600 μm, 寬度改變為 300 μm、350 μm、400 μm, 當 φ = 0° 時, 元件通道寬度越短則側向輻射的強度越強,且峰值發生位置會往大角 度方向移動,其峰值與正向強度相比甚至可達 1.6 倍,而在另一軸向 ♦=90°,其場形並無明顯改變。而後我們對元件的另一方向做尺寸 上的改變,固定通道寬度 W = 100 μm,改變 finger 數為 10、40 兩 元件,對應其整體晶片寬度固定為 350 μm,長度改變為 150 μm、600 μ m,圖 3.16、3.17 為 $\phi = 0^{\circ}$ 、 $\phi = 90^{\circ}$ 場型量測結果,其趨勢與前 述元件相同,當 $\phi = 0^{\circ}$,元件通道寬度並無改變,所量測到的場型 也無明顯變化,而當量測↓=90°時,由於元件在此軸向有長度變化, 10 finger pHEMT 於 $\phi = 90^{\circ}$ 方向尺寸角小,其大角度輻射也較強,

輻射峰值位置也往大角度方向移動。

於上述元件兩不同維度尺寸上的改變,可觀察出輻射場型對元件 尺寸的相依性,小尺寸元件中,側向輻射強度與正向相比可高達 1.6 倍的差異,可能的成因有二:其一為晶片側壁輻射,推測大角度輻射 訊號是來自於晶片側壁平面,由於晶片側壁厚度達 300 μm,且相較 於元件表面並無金屬電極覆蓋阻擋輻射訊號,所以在小尺寸元件中側 壁面積所佔比例較高,而量到側向出光對正向出光的相對強度較大; 其二為晶片側邊邊界所造成共振的結果,晶片側面邊界如同共振腔的 一般,提供正向輻射光一個水平方向的動量k(k=2nπ/L,n為整數, L為晶片邊長)。當L下降,k將上升,造成輻射訊號往大角度出射。

圖 3.13 W = 50 μm、40 finger 無散熱區域元件不同角度輻射場型。

圖 3.15 不同通道寬度元件輻射場型(φ=90°)。

圖 3.17 不同通道寬度元件輻射場型(φ=90°)。

3.3.2 散熱區域對輻射場型之影響

為了解散熱區域對場型的影響,我們挑選 W = 50 µm 、40 finger 元件做場型量測,受操作元件本體包含金屬電極為寬度 300 µm、長 度 600 µm,而整體晶片尺寸為 2200 µm x 2200 µm,受操作元件在晶 片中心位置,元件操作於 1.1 V,量測結果如圖 3.18 所示,輻射場型 於 $\phi = 0^{\circ}$ 、 $\phi = 90^{\circ}$ 雨軸並無明顯差異。與無散熱區域之元件圖 3.13 十分不同。圖 3.19 為 $\phi = 0^{\circ}$ 時,有無散熱區域之兩元件輻射場型對 正向輻射強度歸一後結果,此軸向由於元件尺寸較小,其輻射強度差 異更明顯,有散熱區域之元件其輻射峰值發生在 $\theta = 30^{\circ}$ 處,約為正 向輻射強度的 1.1 倍,而無散熱區域之元件其輻射峰值往大角度方向 ($\theta = 90^{\circ}$)移動,約發生在 $\theta = 60^{\circ}$ 且與正向輻射強度差 1.6 倍,並且 往大角度的方向兩元件輻射強度差異越大。

當元件晶片尺寸較大時,其晶片正面與側面相比,貢獻較多的輻 射,相對來說,來自側壁的輻射比重因此降低。而晶片尺寸大,其邊 寬也較長,由晶片邊界共振腔效應造成的大角度輻射也會變弱。由上 述結果可推論當 (1)散熱面積遠大於操作元件本體面積 (2)晶片厚度 極薄時,其輻射峰值會發生在正向(θ=0°)。

32

圖 3.19 散熱區域對輻射場型(phi=0°)影響比較圖。

3.3.3 不同偏壓點之輻射場型

使用與 3.3.2 節相同的兩個元件。圖 3.20 為 W = 50µm 、40 finger 有散熱區域元件於 \$\phi\$ = 0° 時不同偏壓下輻射場型。圖 3.21 為輻射 場型對正向輻射強度歸一後結果,其輻射場型並不隨偏壓而改變。圖 3.22 為無散熱區域元件於 \$\phi\$ = 0° 時不同偏壓下輻射場型,圖 3.23 為輻射場型對正向輻射強度歸一後結果,可發現無散熱區域的元件其 輻射場型與偏壓有關,在元件進入飽和區高偏壓下 3.05 V、4 V,其 元件大角度輻射強度與正向輻射相比抬升較快,越接近側壁(0= 90°),效應越明顯,但出現輻射強度峰值的角度並無改變,而在有 散熱區域元件並無觀察到此結果,造成此現象確切機制目前尚不清楚, 從觀察僅能推斷其與晶片大小尺寸有關。

圖 3.21 大尺寸晶片元件不同偏壓之輻射場型歸一化後結果。

圖 3.23 無散熱區域元件不同偏壓之輻射場型歸一化後結果。

第四章 pHEMT 室溫輻射偏振特性

4.1 量測方式

為觀測元件本體輻射的偏振特性,避免相鄰元件結構的干擾,受 測元件於晶片上單獨切下,除操作區域及金屬電極外,無多餘結構。

受測元件參數為金屬覆蓋率 F = 16%、40 finger pHEMT, W = 50
μm、100 μm、150 μm 三元件,金屬覆蓋率 F = 16%、10 finger pHEMT、
W = 100 μm 一元件,另金屬覆蓋率 F = 40%、40 finger pHEMT、W = 100 μm 一元件,共五元件受測,金屬電極覆蓋率並不影響元件電性, 脈衝電性可參考圖 3.12。

量測架設與場型量測時相同,可參考圖 3.2,差別僅在元件與第 一個拋物面鏡中置放一偏振片,藉由轉動偏振片量測偵測到的訊號強 度(*I*)變化來觀察偏振現象。元件金屬電極與偏振片角度關係定義如圖 4.1,偏振片可穿透偏振方向水平於光學桌桌面的電磁波的角度,定 義為0°;偏振片可穿透偏振方向垂直於光學桌桌面的電磁波的角度, 定義為90°。量測之訊號偏振度(Degree of Polarization)定義為:

Degree of Polarization
$$= \frac{I_{90^{\circ}} - I_{0^{\circ}}}{I_{90^{\circ}} + I_{0^{\circ}}} \dots (4.1)$$

首先針對相同 finger 數 40 finger pHEMT,不同通道寬度 W=50 μm、100 μm、150 μm 做偏振特性量測,偏壓皆維持在 1.3 V(I-V 為圖 3.12),圖 4.2 為轉動偏振片所測得之輻射強度,圖 4.3 為圖 4.2 對 I₉₀ · 之輻射強度做歸一後結果,可觀察出 I₉₀° 有較高的輻射強度接收,I 0°較小,代表元件輻射訊號的電場與金屬電極垂直時輻射訊號較強。 此外,當通道寬度越大,兩方向的訊號強度差越大,這代表著元件輻 射訊號偏振特性越強。

而在另一軸向的變化,圖 4.4 為固定通道寬度 W = 100μm,10、 40 finger pHEMT 兩元件於外加偏壓 1.3 V 偏振特性圖,圖 4.5 為歸一 後結果,10 finger pHEMT 於轉動偏振片時無強度變化,代表元件輻 射訊號並無偏振特性。於此兩不同軸向元件尺寸的變化,可了解輻射 訊號偏振特性與元件大小有關,若元件尺寸較小,則訊號便無偏振特 性。

此外我們對各元件做不同偏壓下偏振度的量測,圖 4.6 為 40 finger pHEMT、通道寬度 100 µm,不同金屬覆蓋率 F = 16%、40% 兩元件, 輻射訊號偏振度與汲極偏壓的關係,偏振度隨偏壓上升而增加,且金 屬覆蓋率較高的元件其輻射訊號偏振度也較高。

一維週期性排列的金屬線是一種常見的偏振片結構,過去我們已 對兆赫波段此結構的偏振片有完整的研究[19],而本論文的 pHEMT 結構,其金屬電極就如同偏振片的金屬線功用一般,當元件尺寸越大, 其週期性結構便越完整,偏振度因此變強。當金屬電極覆蓋率越高, 偏振度亦會提昇因此變強。

39

圖 4.3 不同通道寬度元件輻射訊號的偏振特性歸一化後結果。

圖 4.5 不同 finger 數元件輻射訊號的偏振特性歸一化後結果。

圖 4.7 為 40 finger pHEMT,不同通道寬度元件 W = 50 μm、100 μm、 150 μm,其電壓對輻射訊號偏振度關係。除偏振度隨元件尺寸加大而 增加外,可發現輻射訊號偏振度變化並不純然隨偏壓加大而增加。由 於通道寬度 W = 50 μm 元件可施予偏壓過飽和區,故挑選此元件特別 討論,其電性與偏振度關係如圖 4.8。於低偏壓線性區時,輻射訊號 偏振度隨電壓上升,接近飽和區時偏振度增加趨勢減緩,而過飽和後 則隨偏壓下降至一定值後穩定。

圖 $4.8 \text{ W} = 50 \mu \text{m} \cdot 40$ finger 元件偏振度與電性比較。

這樣的結果我們推測與電子激發聲子的方向性有關,以電子於二 維通道內激發 longitudinal optical(LO) phonon 為例,見圖 4.9,施加一 沿 x 方向的電場可增加電子於 x 方向的動能。當此電子動能到達 LO 的能量時,電子會十分有效的透過釋放一個 LO phonon 後回到能帶底 部。這時電子釋放出的 LO phonon 所對應的電偶極震盪方向以平行於 電流方向居多,使得離子電偶極振盪所產生的兆赫波偏極化方向平行 電流方向(即垂直於光柵方向)強過垂直於電流方向(即平行於光柵方 向),加上前者比後者較易穿過光柵,使得輻射出元件的兆赫波具有 明顯的偏極度。當電場持續上升,能量高於LO能量的電子數量會持 續增加,在滿足能量與動量守恆的條件下,這些電子將有較多機率釋 放出不同方向的 LO (圖 4.9),即產生不同方向震盪的電偶極。整體而 言,沿著電流方向震盪的電偶極比例下降,導致輻射偏振度的增加幅 度趨緩。當電場足夠強(進入飽和區)到產生熱電子與熱生子效應時, 電偶極震盪的方向將更為凌亂,使得輻射偏振度下降。

第五章 pHEMT 室溫輻射頻譜

5.1 量测方式

此節我們針對元件場型及偏振特性做頻譜上的量測,除觀察輻射 訊號其頻譜組成,也可與室溫偵測器所量得結果比較是否有一致性。 量测方式是使用傅立葉轉換紅外線光譜儀對場型頻譜及偏振特性頻 譜做量測,使用 4.2 K 低溫操作之 Silicon bolometer, 搭配的分光鏡為 Mylar 6 µm,可偵測頻段約在 300 GHz~20 THz,於量測時須抽真空 至3 mbar 以降低腔體內的水氣對輻射訊號的吸收。樣品輻射訊號經 第一面抛物鏡轉成平行光後導入 FTIR 腔體,由麥克森干涉儀於偵測 器量得干涉圖再經傳立葉轉換後便可獲得頻譜資訊。其光路架設與前 章節利用 DTGS 偵測器量測的方式做整合, 如圖 5.1 所示。場型量測 時,旋轉台位置及仰角經雷射光點對準固定,量測頻譜時僅需移開光 路上第二面抛物面鏡將訊號導入 FTIR 腔體內即可。腔體側壁窗口為 白色 HDPE 塑膠材質,其可通過波數主要範圍 < 700 cm⁻¹。由於輻射 訊號經過光路後, Si bolometer 所測得訊號強度遠小於 DTGS 所測得 強度,因此我們挑選可輸入功率較大能產生較高輻射強的元件量測, 為通道寬度 W = 50 μm、40 finger 的 pHEMT。而造成 Si bolometer 偵測到微弱輻射強度的可能原因有三,其一為量測頻譜時的光路較長, 輻射訊號被水氣吸收。其二,HDPE 窗口的面積略小於訊號經第一面

抛物面鏡轉為平行光束的面積,部分訊號無法導入FTIR 腔體內,其 三為麥克森干涉儀所造成的損耗。場型量測時架設方式與利用 DTGS 量測相同,利用長焦距拋物面鏡量測,其焦距為 19.01 cm、收光角度 為 15°。而量測偏振特性時須放置偏振片使得訊號強度降低,因此 改用短焦距拋物面鏡增強測得訊號,其焦距為 5.08 cm、收光角度為 60°,由於樣品與第一面拋物面鏡間無空間可放置偏振片,因此量測 頻譜時將偏振片改置於原第二面拋物面鏡位置處。

圖 5.1 量測光路示意圖。

5.2 傅立葉轉換紅外光頻譜分析儀

頻譜量測所使用之紅外線光譜分析儀(FTIR)型號為"Bruker IFS 66v/S",見圖 5.2,其原理可參考 Werner[21]。

FTIR 頻譜量測的基本原理為麥克森干涉儀,如圖 5.3 所示。當光 源自圖中 S 點出發,經過分光鏡使一半的光反射、一半的光穿透,反 射光傳播至固定不動的反射鏡 M_1 後,再經全反射回到分光鏡,此時 光所走的路程為 2L。穿透光則傳播至可移動的反射鏡 M_2 且同樣反射 回到分光鏡,此時所走的路程為 2(L+X)。兩道光程差為 2X 的光在分 光鏡交會並產生干涉,最後聚焦在偵測器上並量得干涉圖,干涉圖經 過傳立葉轉換處理成頻譜圖,其轉換所利用的關係式為: $C(V, A_V) = \frac{189}{1(nAx)exn}(2\pink)......(5.1)$

上式中,I(nΔx)為偵測器所測得干涉圖強度,S(K·Δv)為經過傅立葉 轉換後的頻譜圖,Δv為頻譜解析度,N維量測時取樣的次數。其中Δv與 N的關係為:

$$\Delta v = 1/(N \cdot \Delta x)....(5.2)$$

因此若要提升量測解析度,則取樣次數必須增加,因此量測的時間便 會拉長。

	S		
圖	5.2	Bruker IFS 66v/S FTIR °	,

圖 5.3 麥克森干涉儀示意圖。

5.3 黑體輻射頻譜量測與光路較正

利用 FTIR 所量測得到的樣品輻射頻譜 $S_{samnle}(k,T)$ 並非真實頻譜, 因光路吸收及背景輻射會影響所量得結果,必須經過參數校正以獲得 樣品輻射真實頻譜,校正方法參考 Thomas N. Adam[22]、E.L. Dereniak[23]。量測所得頻譜滿足有如下關係式:

 $S(k,T) = R(k) \times [P(k,T) + G(k)].....(5.3)$

S(k,T): FTIR 儀器量測所得頻譜,單位為相對強度(arb. unit)。

P(k,T): 樣品頻譜,單位為每單位波數分之瓦特數(W/cm^{-1})。

R(k):光路系統(鏡組、分光鏡、HDPE 窗口)之頻譜響應。

G(k):背景輻射。

量測頻譜時,樣品輻射訊號透過脈衝偏壓方式而有調變,所擷取 到偵測器接收調變厚的光訊號轉成電訊號並由 SR 850 鎖相放大器解 調,因此不會擷取到未調變之背景輻射,對樣品輻射言,(5.3)式可近 似為:

 $S_{\text{sample}}(k,T) = R(k) \times P_{\text{sample}}(k,T)....(5.4)$

我們可利用黑體輻射源,量得兩個不同溫度下頻譜 $S_{BB1}(k,T_1)$ 與 $S_{BB2}(k,T_2)$,再利用理想黑體輻射公式計算兩溫度下頻 : 譜P_{RB1}(k,T₁)與P_{RB2}(k,T₂),經由(5.5)式換算可得光路系統之頻譜響 應參數R(k),透過(5.5)式與(5.6)即可獲得樣品頻譜。

$$R(k) = [S_{BB2}(k, T_2) - S_{BB1}(k, T_1)] / [P_{BB2}(k, T_2) - P_{BB1}(k, T_1)]. (5.5)$$
$$P_{\text{sample}}(k, T) = S_{\text{sample}}(k, T) / R(k)....(5.6)$$

FTIR 量測所得頻譜圖橫軸為波數(wavenumber),單位為公分倒數 (cm⁻¹),因此計算理想黑體輻射時,將橫軸同樣表示成波數;縱軸單 位為每單位波數分之瓦特(W/cm⁻¹)。黑體假設為一朗伯(Lambertian) 光源,即輻射率與方向無關的光源,有以下關係式:

$$M(W/cm^2) = L(W/cm^2 \cdot sr) \times \pi(sr).....(5.7)$$

L 為 radiance,物理意義為單位光源面積在單位立體角上所放出的總 輻射功率。M 為 exitance,為單位光源面積所輻射出的總功率。式(5.7) 即為單位光源面積之半球面輻射總功率。黑體輻射源入射 FTIR 的總 功率為:

$$P = \int_{k_1}^{k_2} MF \cdot GF \cdot M(k,T) dk \quad (W).....(5.8)$$

MF: chopper 調變因子

GF: FTIR 之 HDPE 窗口所看到等效光源視角因子

M(k,T):黑體輻射在單位面積單位波數下之輻射功率(W·cm⁻²·k−1

其中M(k,T)利用黑體輻射公式:

$$M(\lambda,T) = \frac{2\pi hc^2}{\lambda^5} \cdot \frac{1}{e^{\frac{hc}{\lambda KT}} - 1} \dots (5.9)$$

$$M(k,T) = \frac{k^{5}hc^{2}}{16\pi^{4}} \cdot \frac{1}{\frac{hck}{e^{2\pi KT} - 1}}.....(5.10)$$

$$h = 6.626 \times 10^{-34} \text{ (J} \cdot \text{S)} \quad \text{ ens fress}$$

$$c = 3 \times 10^{10} \quad (\text{cm/s}) \quad \text{ Kis}$$

$$K = 1.38 \times 10^{-23} \quad (\text{J/K}) \quad \text{ is seg fress}$$

$$T : \text{ in Ling } (K)$$

$$k : \text{ is seg } (cm^{-1})$$

即

$$P = \int_{k_{1}}^{k_{2}} 0.45 \cdot \left(\frac{\frac{d^{2}}{2}}{\frac{d^{2}}{2} + D^{2}} A_{D} \frac{A_{HDPE}}{A_{M}}\right) \cdot \left(\frac{k^{3}hc^{2}}{8\pi^{3}} + \frac{1}{\frac{hck}{e^{2\pi KT} - 1}}\right) dk \quad (W).....(5.11)$$

d:黑體輻射源光圈直徑(cm)

D:黑體輻射與拋物面鏡的距離(cm)

A:於D處拋物面鏡的收光面積

A_{HDPE}: HDPE 面積

A_M: 抛物面鏡面積(平行光出光方向)

黑體輻射源擺放位置利用雷射光源等工具定位至與樣品相同處, 我們以理論計算出黑體輻射於溫度 T = 423 K 在本實驗架設下之輻射 頻譜,如圖 5.4。實際量測得黑體輻射於 T = 423 K 頻譜如圖 5.5。黑 體輻射量測參數如下:

Black body T = 423 K

SR850 sensitivity = 200 mV

Chopper frequency = 12.5 Hz

Aperture radius = 0.508 cm

Spectrum resolution = 20 cm^{-1}

圖 5.4 理論計算隻黑體輻射頻譜。

圖 5.5 實際量得黑體輻射頻譜。

5.4 輻射頻譜量測結果

5.4.1 無散熱區域元件各向輻射頻譜

量測各向輻射頻譜時,須旋轉元件以接收各向訊號。因此實驗架 設與使用 DTGS 量測時相同,將樣品至於旋轉台並利用長焦距拋物面 鏡將訊號導入 FTIR 腔體,光路架設參考圖 5.1,量測元件為通道寬 度 W = 50 μ m、40 finger pHEMT,其脈衝電性請參考圖 3.12,DTGS 所量測輻射場型可參考圖 3.13,於 DTGS 所量得輻射場型,正向出光 為最弱, $\phi = 0^{\circ}$ 時強度變化較大,隨 θ 角度增加而增強,且在大角度 $\theta = 75^{\circ}$ 時訊號仍然很強,因此在此軸向除量測 $\theta = 0^{\circ}$ 、30°、60° 外另外再多量測其最大角度 $\theta = 75^{\circ}$, $\phi = 90^{\circ}$ 時,量測 $\theta = 0^{\circ}$ 、30°、

Sample : width = 50 μ m \cdot 40 fingers \cdot fill factor = 16% pHEMT (without heat dissipation area)

Agilent 8116A pulse generator : pulse frequency = 12.5Hz, duty cycle = 50%

 $V_D = 3.84 \text{ V}, I_D = 270 \text{ mA}$

SR850 : sensitivity = 2mV

Spectrum resolution = 20 cm^{-1}

圖 5.6 為 ∮ = 0°所量得校正後之各向輻射頻譜,可觀察於 9 THz 附近及 15.5 THz 附近有兩個峰值存在,其中 9 THz 對應到為 GaAs optical-phonon 震盪頻率, 15.5 THz 推測為兩個聲子結合 (multi-phonons)所產生。在強度部分,正向為最弱,隨量測側向角度 增加輻射強度隨之增強,為觀察頻譜各峰值組成比例的變化,我們將 各向量測結果於15.5 THz 頻譜峰值處做歸一, 如圖 5.7, 可看出兩峰 值隨角度增加皆越明顯突出,而相對於 15.5 THz 的峰值,9 THz 的峰 值於大角度時峰值強度提升速度較 15.5 THz 快,頻譜中 9 THz 成份 比重隨量測角度增加而佔有較高比例。圖5.8為♦=90°所量得頻譜, 其強度抬升較 $\phi = 0^{\circ}$ 弱,與室溫下DTGS 場型量得結果一致,這是 由於元件尺寸在此軸向較大的關係,圖 5.9 為歸一後結果, 15.5 THz 的特徵峰值依然隨角度增加而越突出,但9THz的強度雖隨角度有略 為提升其特徵峰值卻已幾乎消失。

55

圖 5.7 無散熱區域元件各角度輻射頻譜歸一後結果(φ=0°)。

圖 5.9 無散熱區域元件各角度輻射頻譜歸一後結果(φ=90°)。

5.4.2 有散熱區域元件各向輻射頻譜

此節所量測之樣品除元件本體外,周圍有散熱空間存在,量測元 件為通道寬度 W = 50 µm、40 finger pHEMT,脈衝電性請參考圖 3.5, 使用 DTGS 所量測場型結果,請參考圖 3.18,其大角度的輻射強度較 正向弱,與無散熱區域元件的結果相異,頻譜量測參數如下: Sample:width = 50 µm、40 fingers pHEMT (with heat dissipation area) Agilent 8116A pulse generator: pulse frequency = 12.5 Hz, duty cycle = 50%

 $V_D = 3.12 \text{ V}, I_D = 260 \text{ mA}$ SR850 : sensitivity = 2 mV Spectrum resolution = 20 cm⁻¹ 1896

圖 5.10 為 φ = 0°所量得校正後之各向輻射頻譜,依然可觀察出 有兩主要峰值存在,頻譜整體強度趨勢同於 DTGS 量測結果,有先升 後降的變化,圖 5.11 為歸一後結果,15.5 THz 的峰值依然隨角度增 加而越突出,但9 THz 峰值隨角度變化趨勢與無散熱區域元件相反, 當量測角度增加時,9 THz 峰值反而減弱而較趨平緩;在另一軸向 φ = 90°,其量測及歸一後結果如圖 5.12、5.13,與 φ = 0°所量得趨勢相 同,差別在僅在於其變化較小。 由上述量測結果得知,15.5 THz 特徵峰值不論元件有無散熱區域, 皆會隨側向角度增加而越突出,而9 THz 變化趨勢會受晶片尺寸影響 而有不同的結果,於此僅能推測兩峰值產生的輻射機制不同。而在大 角度輻射強度是由晶片側壁所貢獻的猜測下,可歸納9 THz 的峰值與 晶片輻射面面積大小有關。當元件無散熱區域時, \$\phi = 0° 軸向晶片側 壁裸露面積明顯大於晶片正上方,其峰值也於側向最為明顯。而 \$\phi = 90° 側壁面積較小,頻譜變化也較不明顯,當元件有足夠散熱區域時, 晶片上方裸露面積明顯大於晶片側壁面積,在此條件觀察下,9 THz 峰值於正向則較為突出。

圖 5.11 大尺寸晶片元件各角度輻射頻譜歸一後結果(φ=0°)。

圖 5.13 大尺寸晶片元件各角度輻射頻譜歸一後結果(φ=90°)。

5.4.3 不同偏壓點之輻射頻譜其偏振特性

由於使用 DTGS 量測元件偏振特性時,元件於飽和前後會有不同 的偏振度變化,見圖 4.8,因此我們操作可加過飽和的元件並挑選三 個不同偏壓點作量測,此三個偏壓點的偏振度於 DTGS 量測時正好有 先升後降的變化,偏壓分別為 0.9 V、1.29 V、4.08 V,為提升訊號強 度、頻譜解析度,我們改以短焦拋物面鏡量測,結果見圖 14-16,量 測參數如下:

Sample : width = 50 μ m \ 40 fingers \ fill factor = 16% pHEMT (without heat dissipation area) Agilent 8116A pulse generator : pulse frequency = 12.5 Hz, duty cycle = 50%

 $V_{\rm D} = 0.9 \, {\rm V} \, \cdot \, 1.29 \, {\rm V} \, \cdot \, 4.08 \, {\rm V}$

 $I_D = 178 \text{ mA} \cdot 231 \text{ mA} \cdot 250 \text{ mA}$

SR850 : sensitivity = 2mV

Spectrum resolution = 10 cm^{-1}

當偏振片與元件金屬電極平行時(Pol90),訊號強度較強,且偏振 片於垂直與平行金屬電極所量得訊號差值確實有先升後降的變化,其 趨勢與 DTGS 所量得結果一致,而偏振特性較明顯的頻率位置是發生 在多個聲子結合處(Multi-phonon),這說明了輻射訊號的偏振度變化, 確實會與材料的聲子模態有關。

圖 5.14 不同偏振方向輻射頻譜(V_D=0.9 V)。

圖 5.15 不同偏振方向輻射頻譜(V_D=1.29 V)。

圖 5.16 不同偏振方向輻射頻譜(V_D=4.08 V)。

第七章 結論

我們量測於室溫操作下的 InGaAs/GaAs multi-finger pHEMTs,改 變其元件尺寸、金屬覆蓋率及考慮元件散熱區域的影響,觀察其輻射 強度、場型、偏極化特性及輻射頻譜,得到以下結論:

1. 操作 pHEMT 於飽和區可明顯的提昇輻射強度:

由於 pHEMT 元件輻射與材料聲子有關,當元件操作進入飽和 區後通道內產生的大電場可加速電子,提昇電子能量,並透過散 射機制有效激發能輻射出兆赫波的聲子,而有較好的輻射效率。 Finger 數目較少的元件在較低的輸入功率下便可進入飽和區而提 升輻射效率,使得在相同輸入功率下可獲得較高的幅射強度。

2. <u>無散熱空間的 pHEMT 可提高正向輻射強度</u>:

於實驗量得結果,相同參數條件下,無散熱空間的元件比有熱 空間的元件有較強的輻射強度,可差至1.5倍。推測散熱空間可將 操作元件的熱帶開,使得整體元件中可輻射兆赫波的聲子數目降 低,輻射訊號也因此較弱。

3. 越小尺寸的元件有越大角度的輻射場型:

輻射場型於元件尺寸單方向變小時,其輻射強度峰值會往大角 度偏移,所量得元件正向及峰值輻射強度最高有 1.6 倍的差異。而 當元件有足夠散熱區域,晶片尺寸較大時,此差異下降。推測來 自晶片側壁面的輻射及邊界所造成類似共振腔的效果,皆可能是 產生此現象的原因。

4. 元件輻射訊號偏振度與元件尺寸及金屬覆蓋率正相關:

實驗結果顯示,當元件通道寬度加大、 finger 數目增加及金屬覆 蓋率提高,元件的輻射訊號偏振度便會加強,由於 multi-finger 元件 其結構類似於常見的偏振片結構,當加大元件尺寸,使其週期性結構 越完整,或提高金屬覆蓋率均可加強偏振效應。

<u>元件發出隨偏壓改變偏振度的輻射可能與受激聲子的方向性有</u> 關:

元件輻射訊號偏振度會隨偏壓進入深飽和區有先升後降的變化, 於頻譜量測可觀察出,偏振特性較強處對應到的是材料聲子的頻率, 因此元件輻射偏振特性隨偏壓變化的現象,我們推測與電子激發聲子 的方向性有關,當電場足夠強(進入飽和區)到產生熱電子與熱聲子效 應時,這些電子將有較多機率釋放出不同方向的 LO phonons,電偶 極震盪的方向將較為凌亂,使得輻射偏振度下降。

6. 元件輻射頻譜和出光角度與元件幾何形狀有關:

由頻譜可觀察有9THz及15.5THz兩峰值存在,當量測的輻射角 度改變時,兩峰值的變化趨勢並不相同,15.5THz於側向出光時會較 為突出,而9THz會受晶片尺寸影響,當元件晶片尺寸較小時,其側 向出光比例會增加;而當元件製作在較大的晶片上時,其側相出光的 比例會降低,由此可知兩峰值的輻射機制並不相同。

高偏壓下操作的 pHEMT 可有效率的產生兆赫輻射,原因為元件 內部有強電場加速電子使其有效激發聲子。同樣的概念可以延伸至異 質接面雙極電晶體(HBT),強電場由 HBT 中集極與基極間的空乏區 提供。並可結合過去我們實驗室於二維週期性金屬結構的研究,來實 現於室溫操作高功率、高同調性、體積小、成本低的兆赫波輻射源。

參考文獻

[1] BB Hu, MC Nuss, "Imaging with terahertz waves", Opt. Lett. 20, 1716 (1995).

[2] B. Ferguson, S. Wang, D. Gray et al., "T-ray computed tomography", Opt. Lett. **27**, 1312 (2002).

[3] M. Walther, B. M. Fischer, A. Ortner, A. Bitzer et. al., "Chemical sensing and imaging with pulsed THz radiation", Anal. Bioanal. Chem. **397**, 1009 (2010).

[4] S. Suzuki, A. Teranishi, K. Hinata et al., "Fundamental Oscillation of up to 831 GHz in GaInAsAlAs Resonant Tunneling Diode", Appl. Phys. Expre. 2, 054501 (2009).

[5] M. Dyakonov and M. Shur, "Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current", Phys. Rev. Lett. **71**, 2465 (1993).

[6] M. V. Cheremisin, G. G. Samsonidze, "D'yakonov–Shur instability in a ballistic field-effect transistor with a spatially nonuniform channel", Semiconductor **33**, 578 (1999).

[7] F.J. Crowne, "Dyakonov-Shur plasma excitations in the channel of a real high-electron mobility transistor", J. Appl. Phys. **87**, 8056 (2000).

[8] V. Ryzhiia, A. Satou, W. Knap et al., "Plasma oscillations in high-electron mobility transistors with recessed gate", J. Appl. Phys. **99**, 084507 (2006).

[9] W. Knap, J. Lusakowski, T. Parenty et al, "Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors", Appl. Phys. Lett. **84**, 2331 (2004).

[10] J. Lusakowski, W. Knap, N. Dyakonova et al, "Voltage tuneable terahertz emission from a ballistic nanometer InGaAs/InAlAs transistor", J. Appl. Phys. 97, 064307 (2005).

[11] N. Dyakonova, A. E. Fatimy, J. Łusakowski et al, "Room-temperature terahertz emission from nanometer field-effect transistors", Appl. Phys. Lett. **88**, 141906 (2006).

[12] A. El Fatimy, N. Dyakonova, Y. Meziani et al., "AlGaN/GaN high electron mobility transistors as a voltage-tunable room temperature terahertz sources", J. Appl. Phys. **107**, 024504 (2010).

[13] Y. M. Meziani, H. Handa, W. Knap et al., "Room temperature terahertz emission from grating coupled two-dimensional plasmons", Appl. Phys. Lett. **92**, 201108 (2008).

[14] T Otsuji, Y M Meziani, T Nishimura et al., "Emission of terahertz radiation from dual grating gate plasmon-resonant emitters fabricated with InGaP/InGaAs/GaAs material systems", J. Phys.: Condens. Matter **20**, 384206 (2008).

[15] T. Onishi, T. Tanigawa, S. Takigawa, "High power terahertz emission from a single gate AlGaN/GaN field effect transistor with periodic Ohmic contacts for plasmon coupling", Appl. Phys. Lett. **97**, 092117 (2010).

[16] 石正瑜,"矽掺硼之阻擋雜質能帶紅外線偵測器之研究",國立交 通大學碩士論文。 [17] P. K. Chung, H, C. Huang, and S. T. Yen., 2010, September, "Transmission enhancement of metal-patterned resonant filters on silicon substrates in terahertz".

[18] 黃信傑,"兆赫波波段金屬網狀濾波器之研究",國立交通大學碩 士論文。

[19]孫仲村,"以含不對稱十字架孔洞金屬膜實現兆赫波段相位延遲器",國立交通大學碩士論文。

[20] 張皓宇,"以0.15µm pHEMT實現室溫兆赫波輻射源之研究",國 立交通大學碩士論文。

[21] W.Herres and J.Gronholz, "Understanding FT-IR Data processing" (Bruker).

[22] Thomas N.Adam, "Design, fabrication, and characterization of microdisk terahertz sources based on silicon-germanium alloys", University of Delaware, Ph.D thesis in electrical engineering department.
(2003)

[23] E. L. Dereniak, G. D. Boreman, "Infrared Detectors and systems".(1996)