
Chapter 1 
 

Introduction 
Filters are essential components in the RF front end of wireless communication systems. 

Microstrip planar filters are usually preferred due to its low cost, good reliability and ease in 

synthesis and design. In the RF front end, a high-performance planar microwave filter is 

usually required to have a good attenuation level in rejection bands and a sufficiently wide 

upper stopband. It is particularly favorable that transmission zeros can be easily created and 

tuned close to passband, since one of important missions of a bandpass filter is to suppress the 

undesired frequency components near the passband. The creation of transmission zeros in a 

planar filter can be achieved by establishing proper cross couplings [1-3], tapping input/output 

resonators [4, 5], and employing a zero degree feed scheme [6]. 

In [7], λ/4 microstrip resonators are proposed to design a compact and low loss filter with 

elliptic function-type performance. This microstrip bandpsss filter possesses two transmission 

zeros at upper and lower sides of the passband. The filter design in this thesis will start with the 

concepts in [7]. However, it is found that strong couplings between feed lines and end 

resonators are required in the structure, so that a small coupling gap becomes inevitable. In 

addition, the size of resonators needs some adjusting to perform a flat passband. 

In this thesis, uniform impedance resonators (UIRs) and stepped impedance resonators 

(SIRs) are employed to design a bandpass filter with an elliptic function-like response and a 

sharp transition band, of which the idea is achieved by locating two transmission zeros close to 

the passband. The basic resonators are UIRs or SIRs tapped with an open stub at its center. The 

length of the open stub can be trimmed to control the transmission zero at either the lower or 

upper side of the passband. In a cascade of such two stages, one makes a transmission zero at 

the lower edge of the passband and the other zero at the upper edge, then a bandpass filter with 
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sharp transition bands can be obtained. Both direct, or parallel-line, coupling and three-line 

coupling microstrip structures [8] are incorporated into the design. 

Chapter 2 will give the theoretical background and some important features of the 

proposed circuits. Although the proposed circuits can achieve the expected performance, some 

undesired effects in response will occur simultaneously, such as spurious responses. We will 

exploit some techniques to suppress these effects. Chapter 3 will demonstrate the simulated and 

measured responses of the fabricated bandpass filters. Chapter 4 will draw the conclusion. 
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Chapter 2 
 

The Filter Structures 

In this chapter, design curves for the proposed structures of two λ/4 resonators with a 

tapped stub to implement the elliptic function-like response will be given. First, the property of 

resonators tapped with a λ/4 open stub in parallel-coupled microstrip bandpass filters is 

investigated. The resonance characteristics of such three-end resonator are presented and 

discussed. Then, the filter synthesis with a cascade of two such resonators is presented. Next, 

two kinds of input/output coupling structures, i.e., between feed lines and end resonators, are 

brought out. Finally, some design skills for improvement of filter performance are proposed. 

 
 

2.1  Two λ/4 resonators with a tapped open stub 

Fig. 2.1-1 (a) shows layout of a parallel-coupled microstrip line bandpass filter. Its typical 

passband response is shown in Fig. 2.1-1 (b). A single resonator in this bandpass filter can be 

considered as a λ/2 resonator or two λ/4 resonators. Our objective is to create transmission 

zeros near passband to implement an elliptic function-like response, as shown in Fig. 2.1-2. To 

generate transmission zeros, according to the method in [7], we can tap an open-end stub at the 

middle of the λ/2 resonator. The circuit layout of two λ/4 resonators tapped with a λ/4 open 

stub is shown in Fig. 2.1-3 (a), and its equivalent circuit is in Fig. 2.1-3 (b). It has been shown 

in [7] that two λ/4 parallel-coupled transmission-line sections can be equivalent to J-inverters, 

and the junction of the tapped open stub and the two λ/4 resonators works as a K-inverter. The 

tapped open stub has an important property that the notch frequency of the whole resonator can 

be adjusted by changing length of the tapped open stub, so that a transmission zero can be well 

controlled to locate close to the passband edge. From the equivalent circuit in Fig. 2.1-3 (b), 

the three-end resonator can be treated as two-pole coupled resonators. In order to simulate the 
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resonant properties of this structure, we apply couplings through small gaps to both ends of the 

resonator, as shown in Fig. 2.1-4 (a). The simulated |S21| response is shown in Fig. 2.1-4 (b), 

where two resonant frequencies: fo and fp and one transmission zero at fz can be observed. Thus, 

that the circuit in Fig. 2.1-4 (a) is a two-pole resonator can be validated.  

In Fig. 2.1-5, we plot the dependence of pole frequencies, fo and fp, and the transmission 

zero frequency fz on stub lengths. Based on the results shown in Fig. 2.1-5, several important 

properties of fz, fo and fp are summarized as follows. (1) The circuit has three open-circuit ends, 

and it has two resonant frequencies. (2) Let fo be fixed at 2.45 GHz, the fundamental resonant 

frequency. One can see that it is independent of the stub length. (3) The transmission pole fp is 

of course resulted from the tapped open stub, because it interacts with the resonator and hence 

produces an additional pole. (4) The transmission zero fz can be located either on lower or 

upper side of the passband, and fp always locates between fo than fz.  

The properties of the two resonant frequencies have been known, but how the 

transmission zero occurs? The reason is given as follows. First, decompose the single section 

of two quarter-wave resonators with a tapped stub into several blocks of transmission line 

sections, as shown in Fig. 2.1-6. Then, apply the transmission (ABCD) matrix technique to 

calculate the transmission response S21 of the circuit: 
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The scattering parameter S21 and the transmission matrix are related by 
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From this result, and if  hold, S0ZZZ BA ≈≈ 21 can be treated as a function of , instead of 

θ

2θ

1 and θ3, and the transmission zeros can be solely determined by the length of the tapped open 

stubs. This reflects the properties of the transmission zero in simulation shown in Fig. 2.1-5. 

We also investigate the effects of the tap position of the stub on the resonant properties of the 

resonator. In Fig. 2.1-7 (a), when shifting the tapped stub away from the center, we obtain 

results as shown in Fig. 2.1-7 (b), which shows that the zero is almost the same no matter 

where the stubs is tapped, which can also be validated by (2.1) through (2.3). Further, from the 

results shown in Fig. 2.1-7 (b), the insertion of the tapped stub at center of the resonator maybe 

the best choice, since not only the resonant frequency (i.e. the pole frequency) of the 

fundamental two λ/4 UIRs is not altered, but also the two resonant frequencies (i.e. poles) are 
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both at same side of the transmission zero. It is important since this eliminates the possibility of 

the notch appeal entering the passband. In addition, fewer couplings are required for synthesis 

of filter passband because the two resonant frequencies (i.e. poles) have a smaller deviation. 

 

 

2.2  The Filter Design  

The filter design method by exploiting the proposed resonator is described as follows. For 

a bandpass filter with an elliptic function-like response and sharp transitions at passband edges, 

two transmission zeros are required. Since the circuit in Fig. 2.1-4 (a) can create one 

transmission zero, an intuitive way is to cascade two such two-pole resonators. In the filter 

synthesis, according to our experience, first follow the design steps of conventional 

parallel-coupled bandpass filter, but passband should design with wider bandwidth than needed, 

Next, utilize Fig.2.1-5 to adjust the length of the tapped stub to locate two transmission zeros 

on both sides of the passband, change the resonator size if necessary, and then finely adjust the 

couplings in the structure to obtain the desired filter passband response. Since the transmission 

zeros have been determined by the stub length, their frequencies of transmission zeros are 

almost unchanged during the cascade connection of the two stages. This can greatly save time 

in synthesizing the filter to achieve an elliptic function-like response. 

 

 

2.3  Two UIR Coupling Structures 

Referring to the design steps described in Section 2.2 and [7], a two-stage UIR filter with 

direct coupling structure, shown in Fig. 2.3-1, can be developed. It is known that this kind of 

filter structure suffers from two drawbacks. One is that the strong couplings are needed 

between feed lines and end resonators, hence quite tight coupling gaps are inevitable, and the 
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other is that the dimensions of each resonators in the filter need adjusting to maintain a flat 

passband response, so that the dimensions of the two quarter-wavelength UIRs with tapped 

stub will be different. To solve the first problem and release the limitation of the gap size, we 

apply the idea of [8], where a three-line structure is proposed. This coupling structure can 

provide stronger couplings without narrow gap sizes. We call it three-line structure herein. The 

circuit layout is shown in Fig. 2.3-2. For the three-line structure, there are three quasi-TEM or 

dominant modes. Each mode has its modal phase constant, eigenvoltage vector, and 

characteristic impedance. The inductance matrix  and the capacitance matrix  per unit 

length for the structure can be obtained by using spectral domain approach (SDA) [10, 11]. 

Due to symmetry of the structure, the three-line structure can be derived from the eigenvoltage 

matrix as follows. 
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Each vector of  is the eigenvoltage vector of the matrix product of . The matrix 

 can be used to derive the relation between port voltages and port currents which are 

defined in Fig. 2.3-3 as  
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[ ] [ ]Ta VVVV 321= , , ,  The 

impedance matrix  and [  can be derived as in [12]: 
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[ ] [ ] [ ][ ]TVimiVa MjZMZ θcotdiag −=              (2.6a) 

[ ] [ ] [ ][ ]TVimiVb MjZMZ θcscdiag −=              (2.6b) 

 

In (2.6a) and (2.6b),  with  being the phase constant of the ith mode,  being the 

length of the coupled section, and  given by 
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where  is the characteristic impedance of the ith mode. Note that in (2.7),  should 

be used for mode 2. When input is connected to the second line of a symmetric three-line 

structure, only modes 1 and 3 will be excited, since mode 2 is an odd mode. Hence, for a 

six-port network in Fig. 2.3-3, if the input is connected to terminal 2, and terminal 1 and 3 are 

open-circuited, then the voltage and current at terminal 4 must be identical to terminal 6. We 

can deduce that output current is equal to  and the output port voltage can be  or 

. The structure terminal conditions can be written as 

iZ0 02 =m
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                                                      (2.8a) iII =2

iVV =2                      (2.8b) 

0531 === III                    (2.8c) 

oIII =+ 64                     (2.8d) 

oVVV == 64                    (2.8e) 

 

The network in Fig. 2.3-3 thus becomes a two-port. The approximations in [12] are used to 

establish the equivalence between the coupled section in Fig. 2.3-3 and the admittance inverter 

circuits in Fig. 2.3-4 (a) and Fig. 2.3-4 (b). Assume that three modal phase constants of the 
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three-line structure are approximately the same, and let 2
πβ =li , then compare the circuits 

shown in Fig. 2.3-3 and Fig. 2.3-4 (a), we obtain 
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According to [12], we can further approximate Fig. 2.3-4 (a) to Fig. 2.3-4 (b) with . 

To meet this purpose, the product of (2.9b) and (2.9c) is reduced to following approximation: 
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From the design equations for a bandpass filter in [13], the value of  for each admittance 

inverter can be determined from the values of lumped elements of the lowpass filter prototype. 

Once  is determined, (2.9a) and (2.11) can be solved to determine the value of  

and  for each coupled section. The results are 
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Compare (2.12a) and (2.12b) with the design equations of the traditional coupled-line filter in 

[13, (8.108)], we can easily deduce that  and  in three-line coupled section play 

the same roles as those 

11 mZm 33 mZm

2
oeZ  and 2

ooZ  in a two-line coupled section. It is known that the 

coupling coefficient C for traditional two-line coupled section can be written as 
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Then, the coupling coefficient K for three-line coupled section can be defined as 
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Fig. 2.3-5 plots the design graphs for two-line and three-line λ/4 coupled structure and the 

dimension can be determined by the graphs. From the comparison of Fig. 2.3-6, we can deduce 

that three-line coupling structure can provide larger coupling coefficient than conventional 

two-line coupling structure (i.e. K>C) at the same line width and coupling gap width. Hence 

the structure of two λ/4 UIRs with a tapped stub using three-line coupling input structure can 

have a flatter passband response and wider passband bandwidth. 

 

 

2.4  Improvement of Filter Performance 

A. Stepped Impedance Resonator 

A planar filter is much favorable to have a wide stopband and enough rejection level in 

the stopband. The presented elliptic function-like response bandpass filters synthesized by 

UIRs, however, show spurious responses at twice the passband frequency. In order to 
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overcome this problem, stepped impedance resonators (SIRs) are introduced to improve the 

stopband performance of the proposed filter. Fig. 2.4-1 draws the layout of a traditional SIR. 

According to [5], the resonant characteristics of an SIR structure can be efficiently analyzed by 

odd mode and even mode analysis. The odd mode is excited, as shown in Fig. 2.4-2 (a), the 

center of the resonator is virtually grounded called an “electric wall”. We can obtain two 

parallel susceptances when looking into the SIR at the P-Q plane. While this resonance occurs, 

the overall impedance of this half SIR should be zero. Hence, from the transmission line theory, 

we obtain 
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There are two possible solutions to this equation 
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If (2.15c) is valid, it means that  or  is infinite. Thus, (2.15a) can be rewritten as 1tanθ 2tanθ
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Obviously, if , then  will be 0 or π (i.e. λ/2). The solutions are unreasonable. 

Similarly, if , then  will be 0 or π (i.e. λ/2). The solutions are also unreasonable. 

Hence, the reasonable solution should be (2.15b) and (2.15b) can be rewritten as 

0tan 2 =θ
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21 cottan θθ R=                   (2.15f) 

 

where impedance ratio R is defined as Z2/Z1. 

Following the same manner, the resonance condition for the even mode can be derived. 

When the even mode is excited, as shown in Fig. 2.4-2 (b), the center of the resonator is open 

circuit and can be treated as a “magnetic wall”. When this resonance occurs, the input 

impedance looking into the half SIR should be infinite. Hence, from the transmission line 

theory, we can obtain 
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There are two possible solutions to this equation 
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Because of the same reasons in the odd mode analysis, the reasonable solution will be (2.16c) 

and (2.16c) can be rewritten as 

 

21 cotcot θθ R−=                (2.16d) 

 

From (2.15f) and (2.16d), the resonance characteristics of an SIR can be plotted against its 

structure parameters as shown in Fig. 2.4-3, where the x-axis, 
21

2

θθ
θ
+

=u , is the length ratio 

and those for the y-axis represent the odd mode and even mode resonant frequencies 

normalized to fundamental frequency of a UIR. Fig. 2.4-4 shows the graphs of the higher order 
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frequencies normalized to the fundamental frequency of a SIR. As shown in Fig. 2.4-4, when 

, the first higher order resonant frequency (i.e. f1<R 2) will be pushed to higher than twice the 

fundamental frequency and it can be used to improve performance of the filter in the upper 

rejection band. At the same time, the size of the resonator can be reduced, too. According to 

Fig. 2.4-3 and Fig. 2.4-4, the dimension parameters of a SIR and frequencies of fundamental 

resonance and first higher order resonance can be determined. 

 

B. Tapped Radial-Type Open Stub 

Recall the achieved method given in Section 2.2, the creation of elliptic function-like 

response is by locating the zeros near the passband edges. Nevertheless, the rejection level of 

the side lobe is poor. It can be due to narrow bandwidth of the zero created by the tapped 

uniform impedance stub. According to [14], the theoretical results can show that the radial-type 

stub can maintain a low-impedance value in a wider frequency range than a conventional 

uniform impedance stub. Thus, we try to replace the uniform impedance stub with radial-type 

stub to acquire a better rejection level. The design methods of the planar circuit-type radial stub 

can be also obtained as the description in [14]. However, the design methods are complicated. 

When the filter is a cascade of two λ/4 resonators with a tapped radial stub, one should keep in 

mind two fundamental rules. One is that the radial stub will has effective size larger than the 

actual circuit size, and the other is that the wider the degree of the angle, the more affected the 

fundamental resonator. Following the design equations in [14] and the two fundamental rules 

described, the filter cascaded by two λ/4 resonators with a tapped radial stub can be easily 

synthesized. 

 

C. Mixed Type Coupling Sturcture 

After simulate and measure the two proposed coupling structures, direct coupling and 

three-line coupling structures discussed in Section 2.3, we find that direct coupling structure 
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possesses better stopband rejection level while three-line coupling structure owns flatter 

passband response and sharper transition on their responses. However, these second-order 

filters still suffer some troubles, such as quite tight coupling-gaps in direct coupling structure 

and poor stopband rejection level in three-line coupling structure. From Section 2.3 and 

measured responses, three-line coupling structure can relax the tight coupling-gap limitation, 

and direct coupling structure can acquire better stopband rejection level. It seems that these two 

structures can be a complementary of each other. Furthermore, it is known the higher the order 

of the filter, the larger the attenuation level in the stopband [13, Chapter 8]. Hence, the better 

rejection level can be obtained by employing the higher order the proposed bandpass filter. 

Following those concepts, we develop a star-shape bandpass filter, which consists of two sets 

of three-line coupling structure at the both end (i.e. input and output) stages and applying direct 

coupling structure at the center stage, like shown in Fig. 2.4-5. By the way, from the simulated 

and measured responses for the stepped impedance resonator case, the higher the spurious 

frequency, the better the stopband rejection level can be achieved. Consequently, the uniform 

impedance microstrip lines in the star-shape filter are replaced with the stepped impedance 

resonators so as to improve the stopband performance. 

 

 

 

 

 

 

 

 

 
 

 14



 
 
 
 

λ/4λ/4 λ/4λ/4

input

output
 

Fig. 2.1-1 (a) Circuit layout of a parallel-coupled microstrip line bandpass filter 
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Fig. 2.1-1 (b) |S21| response of a parallel-coupled microstrip line bandpass filter 
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Fig. 2.1-2 Elliptic function-like response 
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Fig. 2.1-3 (a) Circuit layout of two quarter-wavelength resonators with a tapped stub 
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Fig. 2.1-3 (b) Equivalent circuit of two quarter-wavelength resonators with a tapped stub 
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Fig. 2.1-4 (a) Circuit layout of gap-coupling test of two λ/4 UIRs with a tapped stub 
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Fig. 2.1-5 Dependence of the transmission zero fz and pole frequencies, fo and fp, of the UIR 
circuit on normalized stub length 
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Fig. 2.1-6 Decomposition of a single section of two quarter-wavelength resonators with a 
tapped stub into equivalent transmission line block 
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Fig.2.1-7 (a) Circuit layout of shifting the tapped stub 
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Fig 2.1-7 (b) Phenomena of shifting the tapped stub away from center of the resonator 
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Fig 2.3-1 Circuit layout of direct coupling structure for cascading λ/4 UIRs tapped with an 
open stub 
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Fig. 2.3-2 Circuit layout of three-line coupling structure for cascading λ/4 UIRs tapped with an 
open stub 
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Fig. 2.3-3 Circuit layout of coupled three-line structure as a six-port network 
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Fig. 2.3-4 (a) Equivalent admittance inverter        (b) Further approximation of (a) 
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Fig. 2.3-5 Design graphs of two-line and three-line structures on a εr = 10.2 substrate 
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Fig. 2.3-6 Comparison of coupling coefficient of two-line and three-line quarter-wavelength 
coupled section on a εr = 10.2 substrate 
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Fig. 2.4-1 Circuit layout of a SIR (stepped-impedance resonator) 
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Fig. 2.4-2 (a) Odd mode excitation 
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Fig. 2.4-2 (b) Even mode excitation 
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Fig. 2.4-3 Normalized resonant frequencies of a SIR 
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Fig. 2.4-4 Ratios of the leading four higher order resonant frequencies to the fundamental 
frequency of a SIR with R=0.3 
 

 
 
 

 
Fig. 2.4-5 Star-shape filter 
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Chapter 3 
 

Simulation and Measurement Results 

In this chapter, several filters with a cascade of two λ/4 resonators with a tapped stub are 

designed and fabricated. The full-wave simulator IE3D [9] is used for the CAD works, and an 

HP8720 network analyzer is used for the measurements. 

Fig. 3.1-1 (a) shows the circuit layout of the filter synthesized by two λ/4 UIRs with a 

tapped stub using direct coupling. According to our experience, the contribution from fp to the 

coupling coefficients in the filter is negligible. Thus, the synthesis of passband response can be 

approximated by three coefficients C01, C12 and C23 determined at fo of the main resonators. For 

a Butterworth response with a bandwidth ∆ = 10%, C01 = C23 = 0.30 and C12 = 0.11. If a 

coupling angle of 60° is used, the gap sizes are found to be 0.25 mm and 1.2 mm for the end 

and middle coupled stages, respectively, for a substrate with εr = 10.2 and thickness 1.27 mm. 

It is found that the resonator tapped with longer stub has to be cut down by 6%, and the other 

one increased by 4%. Fig. 3.1-1 (b) shows the simulation and measurement results for the filter 

and Fig. 3.1-1 (c) shows the photo of the circuit. The actual 3-dB bandwidth of the elliptic 

function-like response is smaller than 10%, this is because that the zeros created by λ/4 

open-end stub are forced to locate near the both passband edges. Therefore the actual 

bandwidth will be smaller than the designed value. The zeros are located at 2.3 and 2.6 GHz. 

The measured insertion loss at the center frequency is -1.5dB. 

The filter can also be implemented by a three-line coupling structure in Fig. 3.1-2 (a). It is 

found that the size of either resonator has not to be trimmed during the synthesis and it is the 

benefit of exploiting the three-line coupling structure. This greatly saves effort in design such a 

filter. In addition, because of the stronger couplings provided by three-line coupling structure, 

the gap size limitation can also be released. The gap size is found to be 0.5mm, which can be 
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fabricated easily. Fig.3.1-2 (b) plots the simulation and measurement responses, which possess 

very sharp transition bands. The actual 3-dB bandwidth is also smaller than the designed value 

because of the zeros. Fig. 3.1-2 (c) is the photo of the circuit.  

Compare the responses in Fig. 3.1-1 (b) with those in Fig. 3.1-2 (b), we can find that the 

three-line coupling structure possesses much sharper transition bands. The simulation and 

measurement responses in Fig. 3.1-1 (b) and Fig. 3.1-2 (b) present spurious responses at twice 

the design frequency. It degrades the attenuation level of the filter in upper rejection band. In 

order to improve filter performance in the stopband, we turn to design the filters with SIRs. 

The SIR has harmonic resonances much higher than twice the fundamental frequency if the 

structure parameters of the SIR (i.e. impedance ration factor and length ratio factor) can be 

properly determined. The two possible coupling structures for the SIR design are shown in the 

Fig. 3.1-3 (a) and Fig. 3.1-3 (b), where the impedance ratio R=0.3 and the length 

ratio
3
2

21

2 =
+

=
θθ

θu , which will be fabricated on a substrate with εr = 2.2 and thickness 0.508 

mm. Following the same design procedure in Chapter 2, Fig. 3.1-5 (a) shows the resonance 

characteristics of two λ/4 SIRs with a tapped open stub. The dependence of the poles and the 

zero are shown in Fig. 3.1-5 (b). In the direct coupling structure shown in Fig. 3.1-3 (a), the 

couplings between each resonator are performed by central coupled lines. Fig. 3.1-6 (a) shows 

the simulation and measurement responses from 2 to 3 GHz, and Fig. 3.1-6 (b) shows those 

from 1 to 12 GHz. The insertion loss at the center passband is -2.6dB. The filter possesses an 

attenuation level better than -40dB before the unwanted response goes up at 10.5 GHz. Fig. 

3.1-4 (a) shows the photo of the circuit. Fig. 3.1-7 (a) plots the simulation and measurement 

responses of three-line coupling structure in Fig. 3.1-3 (b) from 2 to 3 GHz, the broadband 

responses from 1 to 10 GHz are shown in Fig. 3.1-7 (b), and Fig. 3.1-4 (b) shows the photo of 

the circuit. The passband insertion loss is -1.7dB at the design frequency. The spurious 

response goes up at 8GHz, and before this frequency the attenuation level is about -30dB. 

 26



However, from the results shown in Fig. 3.1-7 (a), we can find that the passband response is 

not so flat.  

In order to improve flatness of the passband response, we turn to adopt a substrate with εr 

= 10.2 and thickness 1.27 mm. Based on the design procedure of the three-line coupling 

structure and choosing impedance ratio R = 0.5 and length ratio 
3
2

21

2 =
+

=
θθ

θu  for the SIRs, 

one can complete the design. The circuit layout is shown in Fig. 3.1-8 (a). Fig. 3.1-8 (b) and 

Fig. 3.1-8 (c) show the simulation and measurement responses in local and broadband views, 

respectively. The photo of the circuit is shown in Fig. 3.1-8 (d). An improved passband 

response with insertion loss -1.3dB is obtained.  

However, this circuit suffers from a poor rejection level at about 8dB near the 

transmission zeros. It should be that the strong couplings make this undesired effect happen. To 

enhance the stopband performance while maintain the passband response flatness at the same 

time, we replace the stepped-impedance stub with a radial-type stub with the same SIR 

parameters: R=0.5 and 
3
2

21

2 =
+

=
θθ

θu , as shown in Fig. 3.1-9 (a), to widen the bandwidth of 

transmission zeros. The simulation and measurement results in local and broadband view are 

shown in Fig. 3.1-9 (b) and Fig. 3.1-9 (c), respectively. The photo of the circuit is shown in Fig. 

3.1-9 (d). A flat passband response with insertion loss around -1.3dB is obtained and the 45° 

radial-type stub provides about 4 dB enhancement to stopband rejection level. From the results 

in Fig. 3.1-8 (b) and Fig. 3.1-9 (b), a good stopband rejection level and a flat passband 

response seem to be conflict with each other. This might be a design trade-off depending on 

user’s demand.  

Fig. 3.1-10 (a) depicts the circuit layout of mixed type (i.e. star-shape filter) bandpass 

filter. The resonator of two λ/4 SIRs with a tapped open stub is with size parameters of R=0.5 

and 
3
2

21

2 =
+

=
θθ

θu . The narrowest gap width is 0.3mm, which can be fabricated out easily in 

general process. It should be noted that one of the four three-end resonators needs to be 
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shortened 0.1mm to form an acceptable passband response. The simulation and measurement 

results are shown in Fig. 3.1-10 (b) and Fig. 3.1-10 (c), which are the local and broadband view 

respectively. The passband insertion loss is about -2.5dB and the spurious response goes up at 

about 2.6 times the designed frequency. The worst stopband rejection level near the passband is 

about -28 dB, which is better than the direct coupling and three-line coupling structures 

synthesized by SIRs. The additional zero at about 3GHz is because the inter-stage coupling 

[15]. Fig. 3.1-10 (d) shows the photo of the star-shape filter. 
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Fig. 3.1-1 (a) Circuit layout of filter of two λ/4 UIRs with a tapped stub cascaded by direct 
coupling structure 
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Fig. 3.1-1 (b) Simulation and measurement results of Fig 3.1-1 (a) 
 
 

 
Fig. 3.1-1 (c) Photo of the circuit in Fig 3.1-1 (a) 
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Fig. 3.1-2 (a) Circuit layout of filter of two λ/4 UIRs with a tapped stub cascaded by three-line 
coupling structure 
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Fig. 3.1-2 (b) Simulation and measurement results of Fig 3.1-2 (a) 
 

 
Fig. 3.1-2 (c) Photo of the circuit in Fig 3.1-2 (a) 

 30



 

Fig. 3.1-3 (a) Circuit layout of filter of two λ/4 SIRs with a tapped stub cascaded by direct 
coupling structure 

 
Fig. 3.1-3 (b) Circuit layout of filter of two λ/4 SIRs with a tapped stub cascaded by three-line 
coupling structure 

 
Fig. 3.1-4 (a) Photo of the circuit in Fig 3.1-3 (a) 
 

 
Fig. 3.1-4 (b) Photo of the circuit in Fig 3.1-3 (b) 
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Fig. 3.1-5 (a) Circuit layout of gap-coupling test of two λ/4 SIRs with a tapped stub 
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Fig. 3.1-5 (b) Dependence of the transmission zero fz and pole frequencies, fo and fp, of the SIR 
circuit on normalized stub length 
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Fig. 3.1-6 (a) Simulation and measurement results of Fig 3.1-3 (a) 
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Fig. 3.1-6 (b) Broadband simulation and measurement results of Fig 3.1-3 (a) 
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Fig. 3.1-7 (a) Simulation and measurement results of Fig 3.1-3 (b) 
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Fig. 3.1-7 (b) Broadband simulation and measurement results of Fig 3.1-3 (b) 
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Fig. 3.1-8 (a) Circuit layout of filter of two λ/4 SIRs with a tapped stub cascaded by three-line 
structure on a εr = 10.2 substrate of 1.27 mm thickness 
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Fig. 3.1-8 (b) Simulation and measurement results of Fig. 3.1-8 (a) 
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Fig. 3.1-8 (c) Broadband simulation and measurement results of Fig. 3.1-8 (a) 

 
Fig. 3.1-8 (d) Photo of the circuit in Fig 3.1-8 (a) 
 

 

Fig. 3.1-9 (a) Circuit layout of two λ/4 SIRs with a tapped 45° radial stub cascaded by 
three-line coupling structure on a εr = 10.2 substrate of 1.27 mm thickness 
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Fig. 3.1-9 (b) Simulation and measurement results of Fig. 3.1-4 (a) 
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Fig. 3.1-9 (c) Broadband simulation and measurement results of Fig. 3.1-4 (a) 
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Fig. 3.1-9 (d) Photo of the circuit in Fig 3.1-9 (a) 

 

 
Fig. 3.1-10 (a) Circuit layout of star-shape filter 
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Fig. 3.1-10 (b) Simulation and measurement results of Fig. 3.1-10 (a) 
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Fig. 3.1-10 (c) Broadband simulation and measurement results of Fig. 3.1-10 (a) 

 

 

 

 

 
Fig. 3.1-10 (d) Photo of the circuit in Fig 3.1-10 (a) 
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Chapter 4 
 

Conclusion 
A simple design for bandpass filters with a sharp transition is presented. The building 

blocks of the filters are quarter-wavelength uniform impedance resonators (UIRs) and 

stepped-impedance resonators (SIRs) with a tapped open stub. Both direct coupling scheme 

and a three-line coupling structure are used to realize the cascade of two coupled stages. 

Transmission zeros are created on both sides of the passband. Direct coupling structure can be 

easily implemented; however it will suffer from realization of the small coupling gap size and 

the tuning of resonator dimensions while the filter synthesizing. Three-line coupling structure 

can mainly eliminate the adjustment work and also release the coupling gap size limitation. 

The UIR design presents good |S11| responses as well as good insertion loss in the 

passband, while the SIRs design case possesses a wide upper rejection band with a good 

attenuation level. All the presented filters show a sharp transition band. In particular, the 

three-line coupling structure can perform a sharper transition. In addition, several improvement 

techniques to achieve a flatter passband and better stopband rejection level by exploiting 

different substrate and radial stubs are presented, while the elliptic function-like responses are 

still unaltered. The flatter passband response usually conflicts with a poor rejection level, 

although taking advantage of the radial-type stub will just obtain limited improvement in filter 

performance. Certain trade-off can be made to meet user’s demands. 
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