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Abstract

In this paper, we propose a surveillance system which is able to
detect abnormal behaviors-automatically. Unlike other approaches, we do
not detect abnormal behaviors by-constructing a scene model with normal
behaviors. Instead, we emphasize the important aspect of pedestrian since
it is the pedestrian who performs abnormal behaviors. There are actually
various pedestrian behaviors and it is difficult to express every pedestrian
behavior in detail. However, it is still possible to model pedestrian
behavior since pedestrian behavior, in general, always reflects some kinds
of close relationship with the current environment. Hence, we first take
some social factors of the environment into account for the estimation of
pedestrian properties. After that, we predict the possible pedestrian
behaviors by using these estimated pedestrian properties. An abnormal
behavior can be detected as long as the behavior of pedestrian is very
different from the predicted behaviors. With this system, we are capable
of detecting more abstract abnormal behaviors than before.
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Chapter 1.

INTRODUCTION

As the rapid progress of computer industry, automatically visual surveillance
systems have attracted much more attentions of researches than before. One of the
reasons of the importance of visual surveillance systems is that once an intelligent
surveillance system is developed, we can pay precious attentions only to those crucial
events and objects. As a result, automatic visual surveillance has been applied widely
in daily life. For example, analyzing_traffic flows at intersection and inspecting
luggage at airport. Although there are various applications of visual surveillance
systems, the ultimate goal of researchers is-the same. That is to develop a system
which can detect abnormality automatically with high accuracy and can provide

warnings to operators.

Due to the versatile applications of surveillance systems, it is almost impossible
or at least very difficult to develop a generic surveillance system which can be applied
to all different fields. As a result, in this thesis, we will only focus on those
surveillance videos captured in non-crowded and wide-range scenes, as shown below

in Figure 1-1.

Based on existing computer vision algorithms, it is still hard to analyze the body
motion of pedestrians. Hence, most surveillance systems for non-crowded and
wide-range scenes detect abnormal behaviors based on pre-trained scene models that
are pre-learned from videos with normal-behavior pedestrians. Given a video, as long

as the detected object in the video does not obey this scene model, we assume there is



an occurrence of abnormal event. These approaches are mainly from the aspect of
scene. However, it is actually the pedestrian who performs abnormal behaviors.
Therefore, we detect abnormal behaviors from the aspect of pedestrian rather than the
aspect of scene. By adopting the aspect of pedestrian, there would be a better chance

to detect more abstract abnormal behaviors.

Figure 1-1 Our surveillance video with-non-crowded and wide range scene

In Chapter 2 of this thesis, we will first discuss some related works. In Chapter 3,
we will present how we construct the module of pedestrian behavior model and how
we integrate the pedestrian behavior. modeling module with the detection and tracking
module. After that, we will explain in details about how to detect unusual behaviors
based on the proposed framework. In Chapter 4, some experimental results are

presented. Finally, our conclusions are given in Chapter 5.



Chapter 2.

BACKGROUNDS

In general, most intelligent surveillance systems mainly consist of two parts. One
part is tracking while the other part is abnormality detection. Tracking tracks certain
regions or objects from the previous frame to the current frame. Abnormality
detection, in general, makes use of tracked motion information to distinguish the
salient event from daily events. Up to now, there have been plentiful techniques for
tracking and abnormality detection. In this thesis, we will pay our attention mainly to
those topics that are closely related to our non-crowded and complex surveillance

videos.

At the beginning of this chapter, we will briefly review a few existing methods
for tracking. After that, we will present some prevalent techniques for abnormality
detection. Basically, most of these  methods for tracking and abnormality detection
ignore some important factors that may affect the movement of the tracked object.
These factors include the destination of the object, the comfortable distance between
objects, and the anticipated collision along the path of movement. These factors have
a great impact over object’s behaviors. Moreover, they may change as the
environment changes. By knowing these factors, we believe we can not only track the
object more accurately but also detect more complicated abnormal behaviors. Hence,
at the end of this chapter, we will briefly introduce a few existing works which try to

estimate these factors or to properly model object’s behaviors.



2.1. Object Tracking

Object tracking has been one of the key processes in surveillance systems for a
long time. Lots of researchers have put a great amount of efforts to develop
techniques that can solve the correspondence problems. Establishing correspondence
between frames has been thought as one of most challenging problems in object
tracking, especially when occlusion occurs. Nowadays, due to the contributions of
those researchers, the techniques of object tracking have evolved into much more
complicated techniques. In this section, to obtain a comprehensive review of object
tracking, we only introduce the basic form of some well-known tracking techniques
rather than introducing the latest tracking technigues. The following discussion about

object tracking is mainly based on [1].

In the following, we will introduce the basic methods for single-object tracking
first. After that, we extend .our~ discussion from single-object tracking to
multiple-object tracking. We will introduce various approaches for multiple-object
tracking. The main difference between single-object tracking and multiple-object
tracking is the establishment of object correspondence over frames, especially when

occlusion between objects occurs.

2.1.1. Single-Object Tracking

Single-object tracking is relatively simple compared to multiple-object tracking.
In single-object tracking, the needs for establishing correspondence between objects
are much simpler. However, up to now, there is not any tracking technique that is

suitable for all cases. Each tracking technique has its pros and cons. Different tracking



methods shall be adopted depending on the purpose and the circumstance. According
to the approaches of these basic tracking techniques, we roughly classify them into

two categories: deterministic tracking and probabilistic tracking.

2.1.1.1. Deterministic Tracking

The concept of deterministic tracking is quite intuitive. Given a region in the
previous frame, we find the most similar region in the current frame. In this category,
some algorithms take point-based approach, some use kernel-based approach, and
others adopt silhouette approach. Below, we will introduce a few well-known tracking

methods.

MEAN-SHIFT TRACKING

Mean-shift algorithm is-a mathematic tool to find the local extreme value of any
function. As long as an initial-object appearance and a similarity metric are given, the
mean-shift algorithm will maximize the.appearance similarity iteratively based on the

given similarity metric.

OPTICAL FLOW TRACKING

Optical flow tracking generates dense flow fields by computing the flow vector

of each pixel under the brightness constancy constraint.

KLT TRACKING

As an interest point is given, KLT tracking iteratively computes the translation of
given region centered on the interest point. Once the new location of the interest point
is found, KLT tracking computes an affine transform to evaluate the quality of the

new location of the interest point. If the quality is good, KLT tracking continuously
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tracking this interest point and take its nearby region as a feature. Otherwise, the

interest point is eliminated.

EIGEN TRACKING

Eigen tracking builds a subspace representation of a given appearance by using
Principal Component Analysis (PCA). Given an input frame, we reconstruct input
appearance by using eigenvectors. The tracked object is found by minimizing the

difference between reconstructed appearance and input appearance.

SVM TRACKING

In general, SVM s a classification scheme. As a set of positive and negative
training features are given, SVM finds-the best hyper-plane which separates these two
classes with the largest separation.-In SVM tracking-approach, images of tracked
objects as treated as positive features while things that are not tracked are treated as

negative features.

CONTOUR TRACKING

Contour tracking methods are employed when tracking a complete object is
needed. Starting at an initial contour, contour tracking methods iteratively evolve an
initial contour to the current contour. In order to evolve the contour correctly, contour
tracking methods require some degree of object overlapping between the previous

frame and the current frame.



2.1.1.2.  Probabilistic Tracking

In general, observations from surveillance video contain noise. Moreover, object
motions can undergo random perturbation. Hence, contrary to deterministic tracking
which uses observations only, probabilistic tracking tries to model the states behind
the observations. In other words, probabilistic tracking use the state-space approach to
take into account the observation uncertainties as well as model uncertainties. The
state-space model of probabilistic tracking is shown in Figure 2-1. The states behind

observations could be object position, velocity, and acceleration.

Hidden state @ e @ @
0bservation @ @ @

Figure 2-1-State-space model-for-probabilistic tracking

KALMAN FILTER

Kalman filter is one of the classical methods in probabilistic tracking. Kalman
filter provides an efficient way to estimate the state which is governed by a linear
stochastic equation and disturbed by an additive Gaussian noise. Not only the states
are corrupted by an additive Gaussian noise, Kalman filter also assumes that the
observations are perturbed by an additive Gaussian noise too. The assumption of

additive Gaussian noises makes the closed-form solution is achievable.

Kalman filter is mainly composed of two steps: prediction step and correction
step. Prediction step uses state model to predict new state, as shown in Figure 2-1.
Correction step uses the current observation to update the state to decrease the

problem of error propagation.



PARTICLE FILTER

However, the corrupted noises in observations and state models in reality would
not be as simple as an additive Gaussian noise. Moreover, the state transition might
not follow a linear dynamic equation. As a result, the closed-form solution will not be

obtained easily or even be unobtainable.

Particle filter provides a solution for solving non Gaussian distribution and
non-linear dynamic model by using a group of particle with different weights to
approximate the distribution. Similar to Kalman filter, there are two steps in Particle
filter, prediction step and correction step. Prediction step in Particle filter uses a set of
particles to generate a new set of particles. Correction step in Particle filter uses
observations to update the weight of each particle in new set. Since the objects are
described as a probability distribution-approximated by -numbers of particles, we have

a big chance to find the right-pasition of object even when occlusion occurs.

2.1.2. Multiple Objects Tracking

Even though object tracking has been thought as a mature field, nowadays, a
robust multiple objects tracking remains a challenging topic. One of crucial problems
in multiple objects tracking is the establishment of correspondence. Unlike we discuss
in single object tracking, we do not classify techniques into different categories here
because most techniques we introduced in single object tracking cannot be applied
directly in multiple objects tracking. Correspondence problem has to be solved first.
In the following, we will briefly describe some widely used methods that deal with

correspondence problem.



JOINT PROBABILITY DATA ASSOCIATION FILTER (JPDAF)

The JPDAF [2], [3], is actually an extension of the Kalman filter. The JPDAF
tries to associate all observations with each existing track in a probabilistic approach.
Rather than choosing the nearest neighbor or data closest to what is expected, the
JPDAF computes new weights for the various candidate observations. Then, the
JPDAF integrates these weights into the innovation step of Kalman filter. As a result,

each observation is assigned to a certain track.

MULTIPLE HYPOTHESIS TRACKING (MHT)

Since establishing correspondence with previous frame and current frame has a
great chance to be inaccurate. The: core .idea-of MHT algorithm is to defer the
correspondence decision until. enough-observations are measured. The MHT keeps
several correspondence hypotheses at each time step and over time period, the most
likely hypothesis is chosen as the final track of object. With the help of deferring the
time of making correspondence decision, MHT algorithm is able to continuously track

multiple objects even some observations of objects are missing.

According to these basic tracking techniques above, we can find out that most of
tracking techniques do not take the interactions between objects into account. Most of
these techniques only consider the difference between objects and background and

solve correspondence problem or collision problem as needed.

2.2. Abnormality Behavior Detection

Automatically abnormality detection is an appealing and practical topic since it
can help valuable human attention to focus on the most salient context. Many

researchers have put lots of effort here. However, automatically abnormality detection
9



remains to be a quite challenging problem. Due to its highly intellectual and abstract
concepts, to give a complete definition of abnormality is even hard for us. Therefore,
abnormality is usually defined in a subjective form. Sometimes, the definition of

abnormality is given according to the algorithms can detect.

Since there is a great diversity of approaches to abnormal detection, in this
section, we will only focus on the abnormal behaviors with non-crowded and complex
scenes. In our surveillance video, most of methods to detect abnormal behaviors are
based on tracked information. As we mentioned before, abnormality is an abstract
concept. However, the tracked information is not able to express this concept. Namely,
even though the motion trajectories can be tracked perfectly, if there is no appropriate
translation, the motion trajectories would be useless. As a result, most of methods to
detect unusual behaviors are-based-on the construction of normal scene model by
training. As long as the object which contradicts this normal scene model, the object
will be viewed as the occurrence, of ‘abnormal-behavior. Below, we will take two

examples which are similar to our surveillance videos.

[4] proposed a scene model which models the pixel-wise probability density
function of object size and object velocity at training step. Each probability density
function in each pixel is modeled as a multivariate Gaussian mixture function. The
Gaussian mixture function is learned by using motion trajectory with EM-based

learning.

As for the abnormality detection, they use two different abnormal measurements.
One measurement is local abnormal analysis such as instantaneous change of velocity
or size. The other one measurement is global abnormal analysis. Global abnormal
analysis tries to detect abnormal behaviors which cannot be detected by local

abnormal analysis such as walking onto road or glass. By using these two abnormal
10



analysis methods, the abnormal behaviors can be detected in this surveillance system
are shown in Figure 2-2. Those abnormal behaviors are walking with unusual path,

riding a biking, suddenly sitting down, skating and walking on road.

Figure 2-2 Detected abnormal behaviors

Another example is described-in [5]. The scene-model in [5] is much more
complex than in [4]. [5] constructed a scene model which jointly models object
appearance and dynamics of.the scene. As a result, this scene model is able detect
both in temporal abnormality and in spatial abnormality. They adopted the mixture of
dynamic textures (MDT) to model the dynamics of scene and they used discriminant
saliency to model spatial abnormality. That is, MDT is used to detect temporal
abnormal behaviors which do not occur frequently and discriminant saliency is used
to discriminate the appearance of object from others. The abnormal behaviors can be
detected in [5] is shown in Figure 2-3. Those abnormal behaviors are driving a car,

riding a bike and skating.

As we can see from those two examples of abnormal behavior detection, we can
find out that the abnormal behaviors can be detected in non-crowded and wide range
scenes are very similar. As most of other approaches for abnormal detection, [4] and

[5] all detect abnormal behaviors from the aspect of scene. There are few approaches

11



which detect abnormal behaviors from the aspect of pedestrian.

Skating

Figure 2-3 Detected abnormal behaviors

2.3. Pedestrian Behavior Modeling

Whenever we talk about-human-behavior, we might feel that human behavior is
irregular and not predictable. In general, this Is true for those behaviors found in
complex scenes. However, we might still be able to model human behavior in some

restricted and simple scene, such as in-a-huge.population of individuals.

In order to model pedestrian behavior accurately, taking social interactions into
account is an essential step. For a long time, social interactions, interactions between
environment and objects and interactions between objects, have been known to affect
pedestrian behavior heavily. However, these dynamic social interactions are less

explored.

Modeling pedestrian behavior, especially crowd behavior, has been an important
part in civil engineering and computer graphic fields and has been studied extensively
in those fields. The main goal in those fields is to create realistic crowds motion in a
simulated way. For example, in civil engineering [6] and [7], having pedestrian

models can provide valuable information for designing and planning evacuation plans
12



and pedestrian areas, as shown in Figure 2-4.

Figure 2-4 People in yellow shirts evacuate a building

Most of models which are used in those fields are based on the Social Force
Model. The Social Force Model, propoased by Helbing and Molnar in [8] is one of the
first pedestrian behavior models which take social interactions into consideration. The
Social Force Model tries to capture the effects of neighboring pedestrians and scene
on each individual pedestrian. The Social Force Model describes the effects, or
so-called social factors, by using.a combination of different social forces. These
different social forces that drive pedestrians toward their goals are analogous to the
real forces which apply on moving object in reality. This model allows a large scale
view of large crowds and has been extended to describe various kinds of crowds [9].
In [9] proposed a combination of social panic model and social force model to create

a more generalized model.

Modeling pedestrian behavior in computer vision has received much more
attentions in past few years since we can get lots of advantages from an accurate
pedestrian behavior model. Having an accurate pedestrian model not only improve the
tracking performance but also improve the performance of abnormal behavior

detection.

13



Rather than using a simulated way to model pedestrian behavior, most of models
in computer vision use real-world data to produce an accurate pedestrian behavior
model. One of earliest pedestrian behavior models to take advantage of behavioral

priors in tracking problems is Discrete Choice Model in [10].

2.3.1. Discrete Choice Model (DCM)

Discrete Choice Model, proposed by Antonini et al. in [10], uses a series of
specific discrete choices to model pedestrian behavior. The next position of individual
pedestrian is decided as a sequence of discrete choices is made. At each time instant,
they dynamically discretize spatial locations for each individual pedestrian. The most
probable location in next time step for individual pedestrian is chosen based on social
factors in the scene from a discrete choice set, as shown'in Figure 2-5. The DCM uses
33 possible locations in the discrete choice set. That is, the next position of pedestrian

locates on one of thirty-three discrete positions.
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Figure 2-5 Choice Set. (a) Speed choice set. (b) Orientation choice set. (¢) Choice set
of combining (a) and (b).

However, discretization in possible positions introduces some difficulties. One of

the difficulties is size of discretization grid. Fine spatial discretization increases not

14



only the accurate prediction but also the complexity of computation substantially.
However, coarse spatial discretization affects the accuracy of prediction. Making a

balance between fine grid and coarse grid is quite challenging.

Contrary to discrete grid of spatial position, Linear Trajectory Model has been

proposed recently in continuous form in [11].

2.3.2. Linear Trajectory Avoidance (LTA)

Linear Trajectory Avoidance (LTA) is a model which takes scene information and
interactions between different targets into account. LTA model considers three social
factors which influence pedestrian behavior heavily. These factors are all objects in
scene, constant velocity and.the destination. Based.on these three factors, LTA
constructs the overall energy for'each pedestrian. The next time position of pedestrian

is predicted by minimizing the overall energy as white dots in Figure 2-6.

R |

Q§ ,

i 1
0.5 0

Figure 2-6 Illustration for the predicted position for each pedestrian. Magenta
points are the predicted position without taking social interactions into account.
White points are the predicted position with taking social interactions into

account.

Figure 2-6 shows that if the pedestrians take social interactions into account, the
phenomenon of avoidance will happen as shown in white dots in Figure 2-6. That is,

the left-hand side pedestrian will slow down and turn right slightly. However, the

15



right-hand side pedestrian will accelerate and turn right slightly.

The LTA model has been shown to work well for multiple objects tracking in
complex scenarios. However, there are some limitations of the current LTA model. An
example of limitations shown in [12] is the pedestrian is walking as part of a group, as
shown in Figure 2-7. The LTA model does not model groups of pedestrians since the
behavior of pedestrian in a group is quite different from the behavior of single

pedestrian.

Figure 2-7 An example of limitations.of the LTA model.

Estimating social relationship has received much more attentions recently [13]
and [14]. Most of them only try to explore the group relation of a crowd in photos or
in surveillance videos. However, there are still few methods to explore social group

and put it into tracking scheme.
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Chapter 3.

PROPOSED METHOD

Most research works in abnormality detection focus on the construction of scene
model. The scene model could be clusters of normal trajectories or distributions of
normal object size and normal object velocity. All these approaches try to obtain the

scene knowledge with normal behaviors or events to detect abnormalities.

In our thesis, instead of obtaining the scene knowledge, we detect abnormalities
from the aspect of pedestrian. We believe that more abstract abnormalities can be
detected from this aspect. Figure 3-1 shows the flow chart of our abnormal

surveillance system.

Input- E
l Scene priorl

Detection and i Pedestrian
tracking- behavior modeling-
l Motion information.
Unusual )

behavior analysis

v

Output-

Figure 3-1 Flow chart of our proposed surveillance system

In our system, we try to integrate a module of pedestrian behavior modeling into
the original module of detection and tracking. This module of pedestrian behavior

modeling describes the social interactions between scene and pedestrians and the
17



social interactions between pedestrians. Finally, we detect unusual behaviors based on
this introduced module of pedestrian behavior modeling. At the beginning of our
system, we make an assumption to simplify problems. We assume that the pedestrians
who appear at each time step can all be detected with an additive Gaussian noise
perturbation. That is, we do not try to solve occlusion and correspondence problems
in our system. As a result, in this thesis, we will mainly focus on how to construct our
module of pedestrian behavior modeling and how to detect unusual behaviors based

on this module of pedestrian behavior modeling.

We organize this chapter as follows. At the beginning of this chapter, we will
present our purposed graphical representation which shows the approach we take the
module of pedestrian behavior modeling into pedestrian tracking. Then, we will
discuss how we construct thes-module-of pedestrian behavior modeling by estimating
pedestrian properties. After-that, we will talk about how to combine pedestrian
properties with detection and-tracking‘module: Finally,-we will discuss how to make
use of this module of pedestrian behavior modeling to detect unusual behaviors and

even to detect abnormal behaviors.

3.1. Graphical Representation

As mentioned before, we detect abnormal behaviors mainly based on the module
of pedestrian behavior modeling and this module will describe the social interactions
between surrounding and objects social interactions between objects. However,
modeling pedestrian behavior directly is difficult since there are lots of pedestrian
behaviors. As a result, we explore the social factors which have a great impact on
pedestrian behavior first instead. The social factors we used here are personal

properties.
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This approach can be well-understood by using a graphical representation. In
order to take the effect of social factors, which lead to various behaviors of pedestrian,
into account, we introduce an additional state layer above the original graphical model
of Kalman filter in our tracking module, as shown in Figure 3-2. Our proposed
graphical model actually is quite similar to the switching Kalman filter as shown in
Figure 3-2. In fact, the functionality of our proposed additional state layer is
analogous to the switching state in the switching Kalman filter. The introduced
additional state layer in our proposed structure is used to describe various hidden
properties of pedestrian which lead to lots of different pedestrian behaviors and

switching state in the switching Kalman filter tries to model different possible causes.

These hidden properties of pedestrian in-our proposed structure are actually the
thoughts of pedestrian, such as comfortable distance, preferred walking velocity and
destination etc. These properties are much more abstract than usual tracked
information, like exact position or exact velocity ‘and effect pedestrian behavior
heavily. With the help of these hidden properties of pedestrian which already consider

the social factors, we are able to accurately model the behavior of pedestrian.

Switching .‘\'lnte ! ;'\.ddllmnall 1}1’.1’@" Sgl—lﬂ 53,. »{ 54 Ii

¥y ¥ ¥ ¥ ¥ ¥ vy ¥
Exact I’n.\;iiiunf\Flz::—l"f_ P Palw Pq; Exact Position( P1 *"' Pz_,-—*'t Py P4,
X . 4 l b & y . ¥ I _
Observation| 01) (0z) (03} (0) Observation| 0y) (0z) (03} (04)
{a) Switching Kalman filter. (b) Proposed graphical model.

Figure 3-2 (a) Graphical model of switching Kalman filter (b) Graphical model of

proposed method

Even though the graphical model of our proposed graphical model and the

switching Kalman filter looks like the same, there are two main differences between
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these two graphical models. First, the switching state in traditional switching Kalman
filter is usually a discrete random variable. This additional state layer in our structure
however, is a set of deterministic variables and random variables. Second, as we are
handling multiple pedestrians, these states in our additional state layer of our structure
are no longer independent. There are some interactions between these additional states

as shown in Figure 3-3.

These structures, our proposed structure and the switching Kalman filter, in
general have greater descriptive power than the traditional Kalman filter since it
contains multiple choices. However, having an exact inference is intractable not only
in our proposed structure but also in the switching Kalman filter. We have to make

some assumptions to simplify our. preposed structure to make inference properly.

! Exact Position

‘ . ‘ ‘ ogmnon

Figure 3-3 Proposed graphical model for our multiple pedestrians

The simplified method we use is to decouple our proposed structure into two
independent and small structures as shown in Figure 3-4 and both of these two
structures are computation feasible. One structure is the additional state layer portion
or switching portion which contains the property of switching, and the other structure
is the original Kalman filter portion which includes linear and dynamic properties of

the system.
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Figure 3-4 Decouple our proposed graphical model (a) Switching portion. (b)

Kalman filter portion.

This decoupled technique, in fact, is just a_.variational inference technique for
Bayesian network [15]. Namely, we construct a #-parameterized distribution which is

close to the exact distribution but'is computation feasible.

In general, the variables in additional state-layer are-actually all random variables.
The reason why we describe the additional state layer in our proposed as a set of
deterministic variables and random variable is we are not handle large random
variables at the same time. If we want to estimate these large random variables at the
same time, the uncertainty of each random variable will increase. This result is not
what we want. Therefore, we fix some random variables and we can also view these
fixed random variables as deterministic variables. The value of these deterministic

variables will be trained beforehand in training step.

With the help of these simplified methods, we are able to make inference under
our proposed structure. The first step of our proposed structure is to estimate the rest
random variables. After obtaining these random variables as well as deterministic

variables, we transform these variables into position information of pedestrian by
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using a set of energy functions in switching portion, as shown in Figure 3-4. Then we
pass the estimated position information of pedestrian from the switching portion to the
Kalman filter portion, as shown in Figure 3-4. We will make use of the estimated
position information in Kalman filter portion to help us detect and track pedestrian.
These two portions correspond to the two following sections of pedestrian behavior

modeling and pedestrian tracking, respectively.

In following sections, we will discuss how to estimate these random variables in
switching portion first. Then we will talk about the tracking scheme in Kalman filter

portion.

3.2. Pedestrian Behavior Modeling

As we mentioned in previous section, we introduce an additional state layer to
describe the hidden properties of pedestrian. These hidden pedestrian properties, such
as comfortable distance and destination, have beenknown to have a great impact on
the behavior of pedestrian. Since there are varieties of pedestrian behaviors, modeling
pedestrian behavior directly is quite difficult. Instead of modeling pedestrian behavior
directly, we try to estimate the hidden pedestrian properties first. With the help of
hidden pedestrian properties, we have better knowledge about the pedestrian and what
kind of behavior is going to be performed. Then, we begin to further model pedestrian

behavior.

Our proposed method to model pedestrian behavior is nothing but a linear
combination of a set of energy functions. These energy functions are parameterized by
the estimated hidden personal properties. By using these energy functions, we turn

these hidden personal properties into an analytical and tractable form. An energy map
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is constructed by combining different energy functions. By minimizing the energy
map, we are able to predict the next time step position of the pedestrian. That is, we

are capable of modeling pedestrian behavior as we make use of this energy map well.

The discussions in this section focus on the inference of decoupled switching

portion as shown in Figure 3-4.

3.2.1. Personal Property Estimation

Personal properties are known to have a great influence on personal behavior and
are viewed as random variables in our proposed structure. To avoid estimating large
random variables at the same time, we fix some of variables in our structure. Namely,
the fixed variables are deterministic variables. As .for those remaining random
variables, we estimate them by using data-driven method. Below, we will talk about
which variables are fixed while which“are not. We will also talk about how to

determine or estimate these variables.

SCENE KNOWLEDGE

The behavior of pedestrian, in general, obeys some rules which are established
by society. For example, normally we do not climb trees or street lights and we also
do not enter the region where prohibitory enter sign is set up. Having scene prior

knowledge is useful to detect those behaviors which do not occur often.

The scene knowledge we adopt in our proposed system is locations of obstacles
and restricted region. We assume that the scene knowledge is known in advance and is

labeled manually.
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DESTINATION

Pedestrian always moves toward his destination if there is no accidental event
happened. Knowing the pedestrian destination is useful for us to predict his next move.
The importance of pedestrian’s destination is shown in [11]. [11] also shows that even

roughly guess the destination helps to make more accurate prediction.

The possible destinations, in fact, can be trained at the beginning of surveillance
system by simply recording the exit and entry points of scene. However, we do not
take destination information into our proposed structure. We treat it as the optional
information. Because our scene is relatively simple and most abnormal events we
used are designed, the destination information in our proposed system is not as useful

as in daily life scene.

COMFORTABLE DISTANCE

Comfortable distance is used to describe the avoidance phenomenon as pedestrian
confront other unfamiliar objects. Everyone-feels different comfortable distance.
Knowing the comfortable distance of pedestrian improves the prediction of pedestrian
behavior since next possible actions which pedestrian might take are under our

controlled.

However, estimating comfortable distance for everyone seems to be complex and
difficult not only because the comfortable distance for everyone is different but also
because the comfortable distance might vary as the surrounding changes. As a result,
we make a simplified assumption here that everyone has the same comfortable
distance and we take it as a deterministic variable. The exact value of this comfortable

distance is obtained in training step.
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PREFERRED VELOCITY

The property of preferred velocity is very similar to the property of comfortable
distance. That is, everyone has his own preferred walking velocity and it varies as
surrounding changes. Estimating preferred walking velocity for each one sounds

impracticable which is just like the comfortable distance.

Therefore, we take previous observed velocity as the preferred velocity of this
object since we believe that the object always tries to maintain a constant velocity. To
be more specific, if the object is individual pedestrian, we take his previous velocity
as his preferred velocity; if the object is a group consists of several pedestrians, we

take group’s previous mean velocity as the group’s preferred velocity.

SocIAL GROUP

Knowing the social group is important to model pedestrian behavior, since the
behavior of pedestrian in groups tends to be very different from the behavior of
pedestrian in single. In general, ‘pedestrian.-behavior in group is hard to predict,
however, the whole group behavior, in most case, is relatively simple and easy to
model. By tracking object in group unit, tracking performance can be improved

drastically.

However, estimating the social group is not an easy job because of often
changing of group size. Therefore, we use pair-wise feature with bottom-up grouping
to solve the problem of various group sizes. That is, we take features from every two
pedestrians. Then, we adopt Support Vector Machine (SVM) to help us classify
whether these two pedestrians belong to the same group. We extract eight features
which are illustrated in Figure 3-5 and summary at Table 3-1. These features are the

time difference of showing up, relative distance, velocity magnitude differences of
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past two steps, velocity orientation differences of past two steps and number of

neighboring pedestrians.

o
- ij B
fﬂtei:fry i'--"‘---_

Figure 3-5 Illustration of extracting group features

Table 3-1 Features for group estimation

No. Notation Feature Description
1 At Normalized time difference of showing up
2 APY Relative distance

34 | av’, , Y, |‘Normalized pasttwo magnitudes of speed

56 | ApY , ApY ~| Pasttwo directions ofspeed

7.8 N', N/ The number of nearby objects

The output of SVM is a binary number. In other words, it shows that whether these
two pedestrians are in the same group. Based on SVM result, we group pedestrians
from bottom to top. Since we believe that connected pedestrians are always exist to
connect individual pedestrian to a large group as shown in Figure 3-6. At the end of

grouping, we will obtain the best group size which is mainly determined by SVM.

(b)

Figure 3-6 Illustration of bottom-up grouping (a) Pair-wise grouping (b) Final group size
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3.2.2. Energy Functions for Tracking

Suppose we are able to obtain those hidden pedestrian properties by estimation or
by training. The next step is to transform these abstract properties into tractable and
concrete descriptions. The method we adopt is the same as in [11], which uses a set of
energy functions. Different properties correspond to different energy functions. Then,
we construct an energy map by simply combining different energy functions in linear
way in Eqg. 3-1. These energy functions we used are Avoidance Energy (E,,) °
Constant Speed Energy (E.,) ~ Scene Prior Energy (E,..) and optional Destination
Energy (E gest)-

totat = WavElw + WEls + WecenESéen + (WaestEdest) Eq. 3-1

We have to emphasis that our tracking unit is each group rather than each
individual pedestrian. That is, the index i in Eqg. 3-1 represents each group rather
than represents each pedestrian. . The Eq. 3-1 can also be viewed as an objective
function for each pedestrian. Most of methods only use the information of constant
velocity which is Constant Speed Energy (E.,). Now, we add additional constraints
on this pedestrian which are Avoidance Energy (E,,) and Scene Prior Energy (Es.q4n)-
These two additional terms can be taken as regularization terms. In this remaining

section, we will detail the mathematical expressions of different energy functions.

3.2.2.1. Avoidance Energy

Pedestrians will always take actions in advance to avoid the collision with other
objects and we use the Avoidance Energy to describe this phenomenon. The

Avoidance Energy for a specific pedestrian in the scene is composed of other single
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pedestrian and other pedestrians in group as expressed in Eq. 3-2.

Efw = Z Esmgle Z Eéroup Eq. 3-2

i#j, JES i#j, JEG

SINGLE AVOIDANCE ENERGY

For each pedestrian, we use a Gaussian function as shown in Figure 3-7 as our

energy function.

Energy function for single object

Single Object

Figure 3-7 Energy function of single pedestrian

The mathematical expression“is.in Eqg. 3-3 and o represents the comfortable
distance of pedestrian in Eq. 3-3. This Gaussian function is centered on the predicted
location at next time step in Eq. 3-4 and P* represents the location of pedestrian and

¥ represents the predicted velocity of pedestrian in Eq. 3-4.

. d:
E.lsingle = exp <_ ZO’%) Eqg. 3-3
= x— () 0. 34

GRouUP AVOIDANCE ENERGY

As for group object, we take mixture of Gaussian function as our energy function

as shown in Figure 3-8.
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Group Energy

_Group Object

Figure 3-8 Energy function of group

This mixture of Gaussian function is simply the Gaussian function for each pedestrian
plus an additional weighted Gaussian function in Eqg. 3-5. This mixture of Gaussian

function is centered on predicted group center at next time step in Eq. 3-6 and Eq. 3-7.

. di* i’ i’
l — —_—
Egroup = €xp| — 202 +exp| — 202 twgexp| — 207 Eqg. 3-5

d = |X— (P*HBNE k=i Eq. 3-6

di® = |x - (PU+%%)| Eq. 3-7
3.2.2.2.  Constant Velocity Energy

Pedestrian in single or in group, in general, always move in a constant velocity.
The Constant Velocity Energy is used to constrain the object to maintain a constant
velocity. Our Constant Velocity Energy mainly consists of two components,
Magnitude Energy and Orientation Energy. We combine these two components in a

linear way as presented in Eq. 3-8.
Eév = E;.nag T Wori Ef)ri Eg. 3-8
The Constant Velocity Energy for each object is shown in Figure 3-9. The color of

map shows that the object’s energy at each location. The lower energy, the more
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probable of the pedestrian shows up at next time step. That is, the pedestrian always

moves toward to the position where the energy is the lowest.

Figure 3-9 Constant Velocity Energy

Since the property of constant velocity belongs to the pedestrian who is being
tracked, this energy function of pedestrian_in group will be slightly different than the

energy function in single. Therefore, we will talk about both cases in detail below.

MAGNITUDE ENERGY

Since object prefers to keep same magnitude as in-previous step, the Magnitude
Energy is calculated by computing the deviation of velocity magnitude from the
magnitude of preferred velocity and taking absolute value of deviation as presented in
Eq. 3-9 or Eq. 3-10. Eqg. 3-9 and Eqg. 3-10 represent single object and group object of
the Magnitude Energy respectively. In Eq. 3-9, u' is the preferred velocity of single

pedestrian and uS in Eq. 3-10 is the preferred velocity of group.
Elyag = abs(llvll — [luf]]), Eq. 3-9
Efnag = abs(llvll — [luf|D, Eqg. 3-10

Figure 3-10 shows the figure of Magnitude Energy. It makes sense that the figure

of Magnitude Energy is non-oriented and sensitive to magnitude.
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Figure 3-10 Figure of Magnitude Energy

ORIENTATION ENERGY

Since object prefers to move in same direction as in previous step, we calculate
the deviation of angle from the direction of preferred velocity first as expressed in Eq.
3-11 or Eqg. 3-12. Eq. 3-11 and Eq. 3-12 represent single object and group object
respectively. In Eq. 3-11, P’ is the current location of single pedestrian and P¢ in

Eq. 3-12 is the center location-of group.

_ pl) .qyl

¢ = ({ iP) ul. Eg. 3-11
IX — P x [ju||
__ pG\ ..,G

oo X—P)u Eq. 3-12

X = PO x luf]]

Then, we use a level-shifted cosine function as our energy function for the orientation

energy in Eq. 3-13.

F 1+ cos(¢)

ori — 2

Eq. 3-13

Figure 3-11 shows the figure of Orientation Energy. It is reasonable that the

figure of Orientation Energy is oriented and non-sensitive to magnitude.
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Figure 3-11 Figure of Orientation Energy

3.2.2.3.  Scene Prior Energy

As mentioned before, the scene knowledge we used is the locations of obstacles
and the restricted regions. We model energy function of obstacles simply by using a
Gaussian function and we use a ‘level-shift constant as an energy function for the

restricted regions which are illustrated-respectively.in Figure 3-12.

Tfu*-

1

(a)

Figure 3-12 Illustration of scene prior energy (a) Obstacle energy. (b) Restricted

region energy

3.2.3. Parameters Optimization

Finally, there is still one thing we left behind without discussion. That is, how to
decide the values of deterministic variables. As we talked before, every hidden
property actually can be viewed as a random variable. Since we are not able to handle

such large unknowns at the same time, we fix some random variables to be
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deterministic values. These variables, deterministic variables, are comfortable

distance of individual (o) and comfortable distance of groups (o).

These deterministic variables as well as those weighted coefficients, w,,;, wy
and w,,, are determined by training data in training step. In training step, we take
normal surveillance videos and construct an energy map for each pedestrian
respectively. We estimated each pedestrian position by finding the minimum location
of the energy map in Eq. 3-14. Then, we compute least-square error by comparing the
estimated position with ground truth observation in Eg. 3-15. We choose those

parameters with smallest least square error.

—~7

Prjp-y = arg min Ett01(0) Eq. 3-14

arg;nin”O — T’,iﬂn_l(@)”z Eq. 3-15

3.3. Pedestrian Tracking

As we mentioned before, we" decouple our proposed structure into switching
portion and Kalman filter portion. In this section, the following discussions will focus

on the inference of decoupled Kalman filter portion as shown in Figure 3-4.

Although the graphical model looks like the same as Kalman filter as shown in
Figure 3-13, there is one main difference between these two models. In the decoupled
Kalman filter portion, there are some parameters that are passed down from switching
portion but traditional Kalman filter does not have these parameters as shown in

Figure 3-13.
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(a) Traditional Kalman filter (b) Kalman filter portion

Figure 3-13 Graphical representation (a) Traditional Kalman filter (b) Our

Kalman filter portion

The parameter comes from switching portion in our proposed structure is the position
information of pedestrian. Following, we will briefly introduce the basic operations of
traditional Kalman filter first. Then we will turn our attentions to our decoupled

Kalman filter portion.

As we mentioned in Chapter_2, traditional Kalman filter is a very classical
statistic tracking technique. As shown.in Figure 3-13; traditional Kalman filter has
two state layers. One state layer is the hidden state, which describes the hidden
information behind the observations, and the other state layer is the observation. The
relationship between these states .can be completely characterized by two linear

equations with a Gaussian additive noise respectively in Eq. 3-16 and Eqg. 3-17.
P, = AP,_, +u, Eq. 3-16
0, = HP, +w, Eq. 3-17

By predicting and estimating the evolution of hidden state, traditional Kalman

filter is able to detect objects in Eg. 3-18 and Eq. 3-19.

’P\nln—l = Aijn—lln—l Eqg. 3-18

0, =HP,, , Eq. 3-19

However, since the predicted state I3n|n_1 in our decoupled Kalman filter comes
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from the switching portion, the predicted equation is a little different from the original
one in Eqg. 3-18. The change of Pn|n_1 leads to a time-vary transition matrix A, in
Eqg. 3-20.

Pojn1=A4,Pp 11 Eq. 3-20
Except for the time-vary transition matrix, the rest equations in our decoupled Kalman
filter are exactly the same as in traditional Kalman filter. For example, the correction

of predicted state is described in Eq. 3-21, the Kalman coefficient is expressed in Eq.

3-22 and MSE matrix is shown in Eq. 3-23 and Eq. 3-24 are the same as in traditional

Kalman filter.
P = Popny + Kn(0, — HPyji) Eq. 3-21
Ky = My HT(Coit HMHT) Eq. 3-22
M1 = ann—1|n—1z;£ +Qy Eq. 3-23
My, = (1= Ky H)Myjneg Eq. 3-24

3.4. Unusual Behavior Detection

Until now, we are able to track pedestrians with their personal properties. The

next step is to detect unusual behaviors based on their personal properties.

The approach we use to detect unusual behaviors is to calculate the difference
between two estimated personal properties and observation. To more specific, we
detect unusual behaviors by comparing difference between two maps. These maps are
constructed by using the Avoidance Energy function which is centered at each
pedestrian position. That is, at each time step, from those estimated personal

properties we are able to predict the next time position of each pedestrian. Then we
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construct a map based on the position of each pedestrian. At the same time, we
observe the position of detected pedestrians and we are able to produce another map
based on the observed position. The difference between these two maps reveals the

behavior to which we should pay more attention as shown in Figure 3-14.

/ Personal Properties \

Com Scen
Dist  pref Prior Dest
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Figure 3-14 Illustration of finding unusual-behaviors

The intuitive perspective of computing difference of two maps is that we hope
that all the social factors are included in our estimated personal properties and the
behavior of pedestrian should follow our estimated behavior. However, the exact
observed behavior of pedestrian is quite different from our estimated behavior. This
means that we should beware of this observed behavior since some unknown factors
which we do not take into consideration at current time step affect the pedestrian. This
observed behavior which differs from predicted behavior is called unusual behavior in

our thesis.

However, the detected unusual behavior has an extreme high probability to be a
normal behavior. For example, the pedestrian might suddenly get a call and slow

down his paces in order to response the call. Since our estimated personal properties
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are not able handle such kinds of accidental events, this behavior will be detected as
an unusual behavior by our proposed method. However, this behavior of pedestrian is
pretty normal and trivial. Therefore, it is necessary for us to further analysis what kind

of behavior is preforming.

In order to understand what behavior is performing, we take a spatiotemporal
patch as a feature to help us distinguish abnormal behaviors from those normal, daily

behaviors, as illustrated in Figure 3-15.

Figure 3-15 Illustration'of extracting abnormal features

As long as the unusual behavior is detected, we will recognize who performs this
unusual behavior. Then, we take a spatiotemporal patch which centers on the unusual
pedestrian from the last two energy maps and current energy map. However, the size
of this spatiotemporal patch varies which depends on the past motion of the unusual
pedestrian. To make use of this spatiotemporal feature, we have to normalize this
feature to the same standard. The normalization step is illustrated in Figure 3-16. First,
we convert this spatiotemporal patch to a binary patch and use sign distance
transformation. Then we normalize this patch to a 20-by-40 size patch. This
normalized patch will be taken as an input of Support Vector Regression (SVR). SVR

compares this normalized feature to those pre-defined, well-labeled features and gives
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out a predicted value. This predicted value indicates which pre-defined behavior is the

most probable. The pre-defined and well-labeled features are extracted in training step

as shown in Figure 3-17.
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Figure 3-16 Illustration of abnormal-feature normalization

In our work, we defined three usual behaviors. They are running, walking and
stopping. If the predicted value does not fall into one of the labeled value, we view
this behavior as an abnormal behavior. We have to emphasis that although the patch of
running behavior is labeled and trained beforehand. We still take running behavior as

an abnormal behavior since we are interested in the reason of running.

Pre-defined Behaviors
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Abnormal Feature g
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Figure 3-17 Illustration of abnormal feature matching
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Chapter 4.

EXPERIMENTAL RESULTS

In this chapter, we will present our experimental results. To demonstrate our
detected results, we have to briefly describe our surveillance environment. Our
surveillance videos are taped outdoors from a bird-eye view. The frame rate of our
surveillance videos is 15 fps and the resolution of our surveillance videos is 600 x
800. Since our proposed method is based on the prediction step, we do not process
every consecutive frame. We take 3 frames in 1 second to observe pedestrians instead.
That is, we observe pedestrian once in-every 5 frames. We have to emphasis that the
trade-off exists between pedestrian—tracking and. abnormal behavior detection.
Pedestrian tracking always-want to work at low frame rate. However, to detect
abnormal behaviors accurately, we need more observations to improve the correctness

and we take 3 frames in 1 secondto balance these two in our surveillance system.

Our processing information is detailed above, then, we are able to present our
experimental results. The rest of this chapter is organized as following: First of all, we
will present the accuracy of constructing our module of pedestrian behavior modeling.
Then, we will demonstrate some abnormal behaviors which can be detected both by
using our proposed method and by constructing a scene model. Then, we will show
some behaviors which will be viewed as abnormal behaviors but those behaviors will
not be taken as abnormal behaviors in our proposed method. Finally, we will present

some false alarm of abnormal behavior in our method.

As we mentioned before, we have five parameters to be determined in training

step. The value of these five parameters is shown in table 4-1.
39



Table 4-1 Model parameters

17.5 0.444 6.667 1250

We take another normal surveillance video in 1.5 minute to test our constructed
model compare with linear prediction. The result is listed in table 4-2. We can find out

that our proposed model is about 3.5 better than linear prediction.

Table 4-2 Comparison with linear prediction

| Least Square Error

Our proposed method 18486
Linear prediction 65883

The other result is the accuracy of group prediction. We take 2575 pair-wise
features for training data and we take another 200 pair-wise features for testing. We

got about 96.6% accuracy of group prediction with our-proposed pair-wise feature.

As we mentioned earlier in our unusual behavior detection, we defined some
pre-defined normal behaviors_in our data set. The pre-defined behaviors in our data
set are stopping, walking and running. As-we-recognize the detected behavior belongs
to one of these pre-defined behaviors. This detected behavior will not be taken as an
abnormal behavior and it will be viewed as warning instead. We draw yellow box as
our warning behaviors. However, if the detected behavior does not belong to the
pre-defined behavior, it will be viewed as an abnormal behavior and we use red box to

present our detected abnormal behaviors.

There is one exception that if the detected behavior is recognized as accelerate
suddenly, it will also be taken as an abnormal behavior and we use red box to present

this behavior too.

At the following discussion, we will demonstrate our results of abnormal
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behavior detection. One of the easiest abnormal behaviors is the pedestrian accelerate

suddenly as shown in Figure 4-1.

Fiat S dden \J )

VEINE

Another easy abnormal behs pede

an walks into restricted region. In
(0
our case, the pedestrian walks-onto gra ,.4. ich is defined as a restricted in our

scene as shown in Figure 4-2.

Figure 4-2 Walk onto grass region

The next abnormal behavior is robbery as shown in Figure 4-3. The concept of
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robbery requires intelligent knowledge and this action cannot be recognized in our
surveillance system. However, since robbery mainly contains simple actions such as
suddenly running and these simple behaviors can be detected in our proposed method

as shown in Figure 4-3.

frame = 107§

Figure 4-3 Robbery

Figure 4-4 Avoidance phenomenon without warning

These three abnormal behaviors above can be easily detected in most of

surveillance systems. The following examples show that our proposed method is
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insensitive to the avoidance phenomenon. The avoidance behavior might be viewed as
abnormality in most of surveillance systems since the trajectory of avoidance
phenomenon is different from normal trajectory. These examples of avoidance

behavior are shown in Figure 4-4 and in Figure 4-5.

Figure 4-6 Greet and walk together with his friend

It presents that a pedestrian greet with his friend at the center of scene. Then, this
43



pedestrian accompanies his friend toward the direction which is opposite to his
original direction. In this case, the action of greeting can be captured at frame 83 and
recognized as a stopping action. As he turns around toward opposite direction, this
movement can be captured at frame 92 and recognized as a walking action. The status
of social group for these two pedestrian has been changed since frame 92, the
changing status of social group for these two pedestrian is also be captured at frame

100.

The next example is two pedestrians start from different sides and meet at the
center of the scene. They chat for a while and move separately toward their original

destinations as shown in Figure 4-7.

Figure 4-7 Greet and chat with friend, then move separately

As they meet at the center of scene at frame 97, the behavior of stopping is detected
for each pedestrian. As they stay together longer, they will be viewed as a group as
shown at frame 105. Then the group status will maintain until they separate at frame

129 and this behavior of separation will be recognized as an abnormal behavior.

The next example shows that friends toward different destinations as shown in
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Figure 4-8. As they separate at frame 72, we are able to detect this behavior since the

group status is changed.

Figure 4-8 Friends toward different destinations

The next example shows that friends group together.as shown in Figure 4-9.

Figure 4-9 Friends group together

As they group together at frame 94, we are able to detect this behavior since the group

status is changed.

However, these are still some unwanted warnings in our surveillance system as
45



shown in Figure 4-10.

action.
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Chapter 5.

CONCLUSIONS

In this thesis, we introduce a module of pedestrian behavior modeling which tries
to model pedestrian behavior into our tracking scheme. This module of pedestrian
behavior modeling takes social interactions between objects and social interactions
between scene and objects into account to model possible behaviors of pedestrian. By
introducing this module, we track pedestrian from the pedestrian aspect which are
quite different from most tracking methods. Most of tracking methods do not take the

social factors which effects behavior of pedestrian heavily into consideration.

As for the abnormal behavior analysis, we detect abnormal behaviors based on
the introduced module rather than constructing a normal scene model. Since the
module of pedestrian behavior modeling is from the aspect of pedestrian, we are able
to detect much more abnormalities: by using the introduced module of pedestrian
behavior modeling than by using a scene model which is constructed in most

approaches for abnormal behavior detection.
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