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藉由模擬行人行為之不尋常行為偵測 

 
 

       研究生：鄭郁霖      指導教授：王聖智 博士 

 

國立交通大學 

電子工程學系  電子研究所碩士班 

 

摘要 

 

在本論文中，我們提出一套自動化的行人異常行為偵測之監控系

統。不同於一般監控系統是以環境場景分析的觀點出發來偵測異常行

為的發生，我們是採取以行人的觀點為我們的出發點。行人的行為有

千奇百種，若要仔細的去一一描述各種不同的行為是有困難的。但在

一般的情況下，行人的行為是有跡可循的，並非如一般想像的隨機變

動；亦即行人的行為都會因當時的周遭環境而採取在當下最適當的應

對行為。因此描述周遭環境因素對行人行為所造成影響，將有助於我

們去模擬各種行人的行為。在此，我們藉由行人的特性來描述行人的

行為與周遭環境因素之間的關係，這些行人的特性包含了：目的地、

舒適距離和朋友關係等。之後再去描述這些不同的特性對於行為所造

成影響，來幫助我們來預測行人可能的行為模式進而幫助我們達到偵

測異常行為發生的目的。相較於去建立所謂的場景模型，透過以行人

的觀點來偵測異常行為的發生，我們將可以偵測出更多種抽象的異常

行為發生。 
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Abstract 

 

In this paper, we propose a surveillance system which is able to 
detect abnormal behaviors automatically. Unlike other approaches, we do 
not detect abnormal behaviors by constructing a scene model with normal 
behaviors. Instead, we emphasize the important aspect of pedestrian since 
it is the pedestrian who performs abnormal behaviors. There are actually 
various pedestrian behaviors and it is difficult to express every pedestrian 
behavior in detail. However, it is still possible to model pedestrian 
behavior since pedestrian behavior, in general, always reflects some kinds 
of close relationship with the current environment. Hence, we first take 
some social factors of the environment into account for the estimation of 
pedestrian properties. After that, we predict the possible pedestrian 
behaviors by using these estimated pedestrian properties. An abnormal 
behavior can be detected as long as the behavior of pedestrian is very 
different from the predicted behaviors. With this system, we are capable 
of detecting more abstract abnormal behaviors than before.  
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Chapter 1.  

INTRODUCTION 

As the rapid progress of computer industry, automatically visual surveillance 

systems have attracted much more attentions of researches than before. One of the 

reasons of the importance of visual surveillance systems is that once an intelligent 

surveillance system is developed, we can pay precious attentions only to those crucial 

events and objects. As a result, automatic visual surveillance has been applied widely 

in daily life. For example, analyzing traffic flows at intersection and inspecting 

luggage at airport. Although there are various applications of visual surveillance 

systems, the ultimate goal of researchers is the same. That is to develop a system 

which can detect abnormality automatically with high accuracy and can provide 

warnings to operators. 

Due to the versatile applications of surveillance systems, it is almost impossible 

or at least very difficult to develop a generic surveillance system which can be applied 

to all different fields. As a result, in this thesis, we will only focus on those 

surveillance videos captured in non-crowded and wide-range scenes, as shown below 

in Figure 1-1. 

Based on existing computer vision algorithms, it is still hard to analyze the body 

motion of pedestrians. Hence, most surveillance systems for non-crowded and 

wide-range scenes detect abnormal behaviors based on pre-trained scene models that 

are pre-learned from videos with normal-behavior pedestrians. Given a video, as long 

as the detected object in the video does not obey this scene model, we assume there is 
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an occurrence of abnormal event. These approaches are mainly from the aspect of 

scene. However, it is actually the pedestrian who performs abnormal behaviors. 

Therefore, we detect abnormal behaviors from the aspect of pedestrian rather than the 

aspect of scene. By adopting the aspect of pedestrian, there would be a better chance 

to detect more abstract abnormal behaviors. 

 

Figure 1-1 Our surveillance video with non-crowded and wide range scene 

In Chapter 2 of this thesis, we will first discuss some related works. In Chapter 3, 

we will present how we construct the module of pedestrian behavior model and how 

we integrate the pedestrian behavior modeling module with the detection and tracking 

module. After that, we will explain in details about how to detect unusual behaviors 

based on the proposed framework. In Chapter 4, some experimental results are 

presented. Finally, our conclusions are given in Chapter 5. 
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Chapter 2.  

BACKGROUNDS 

 In general, most intelligent surveillance systems mainly consist of two parts. One 

part is tracking while the other part is abnormality detection. Tracking tracks certain 

regions or objects from the previous frame to the current frame. Abnormality 

detection, in general, makes use of tracked motion information to distinguish the 

salient event from daily events. Up to now, there have been plentiful techniques for 

tracking and abnormality detection. In this thesis, we will pay our attention mainly to 

those topics that are closely related to our non-crowded and complex surveillance 

videos. 

At the beginning of this chapter, we will briefly review a few existing methods 

for tracking. After that, we will present some prevalent techniques for abnormality 

detection. Basically, most of these methods for tracking and abnormality detection 

ignore some important factors that may affect the movement of the tracked object. 

These factors include the destination of the object, the comfortable distance between 

objects, and the anticipated collision along the path of movement. These factors have 

a great impact over object’s behaviors. Moreover, they may change as the 

environment changes. By knowing these factors, we believe we can not only track the 

object more accurately but also detect more complicated abnormal behaviors. Hence, 

at the end of this chapter, we will briefly introduce a few existing works which try to 

estimate these factors or to properly model object’s behaviors. 
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2.1. Object Tracking 

Object tracking has been one of the key processes in surveillance systems for a 

long time. Lots of researchers have put a great amount of efforts to develop 

techniques that can solve the correspondence problems. Establishing correspondence 

between frames has been thought as one of most challenging problems in object 

tracking, especially when occlusion occurs. Nowadays, due to the contributions of 

those researchers, the techniques of object tracking have evolved into much more 

complicated techniques. In this section, to obtain a comprehensive review of object 

tracking, we only introduce the basic form of some well-known tracking techniques 

rather than introducing the latest tracking techniques. The following discussion about 

object tracking is mainly based on [1]. 

In the following, we will introduce the basic methods for single-object tracking 

first. After that, we extend our discussion from single-object tracking to 

multiple-object tracking. We will introduce various approaches for multiple-object 

tracking. The main difference between single-object tracking and multiple-object 

tracking is the establishment of object correspondence over frames, especially when 

occlusion between objects occurs. 

2.1.1. Single-Object Tracking 

Single-object tracking is relatively simple compared to multiple-object tracking. 

In single-object tracking, the needs for establishing correspondence between objects 

are much simpler. However, up to now, there is not any tracking technique that is 

suitable for all cases. Each tracking technique has its pros and cons. Different tracking 
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methods shall be adopted depending on the purpose and the circumstance. According 

to the approaches of these basic tracking techniques, we roughly classify them into 

two categories: deterministic tracking and probabilistic tracking.  

2.1.1.1. Deterministic Tracking 

The concept of deterministic tracking is quite intuitive. Given a region in the 

previous frame, we find the most similar region in the current frame. In this category, 

some algorithms take point-based approach, some use kernel-based approach, and 

others adopt silhouette approach. Below, we will introduce a few well-known tracking 

methods. 

MEAN-SHIFT TRACKING 

Mean-shift algorithm is a mathematic tool to find the local extreme value of any 

function. As long as an initial object appearance and a similarity metric are given, the 

mean-shift algorithm will maximize the appearance similarity iteratively based on the 

given similarity metric. 

OPTICAL FLOW TRACKING 

Optical flow tracking generates dense flow fields by computing the flow vector 

of each pixel under the brightness constancy constraint. 

KLT TRACKING 

As an interest point is given, KLT tracking iteratively computes the translation of 

given region centered on the interest point. Once the new location of the interest point 

is found, KLT tracking computes an affine transform to evaluate the quality of the 

new location of the interest point. If the quality is good, KLT tracking continuously 
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tracking this interest point and take its nearby region as a feature. Otherwise, the 

interest point is eliminated. 

EIGEN TRACKING 

Eigen tracking builds a subspace representation of a given appearance by using 

Principal Component Analysis (PCA). Given an input frame, we reconstruct input 

appearance by using eigenvectors. The tracked object is found by minimizing the 

difference between reconstructed appearance and input appearance.  

SVM TRACKING 

In general, SVM is a classification scheme. As a set of positive and negative 

training features are given, SVM finds the best hyper-plane which separates these two 

classes with the largest separation. In SVM tracking approach, images of tracked 

objects as treated as positive features while things that are not tracked are treated as 

negative features. 

CONTOUR TRACKING 

Contour tracking methods are employed when tracking a complete object is 

needed. Starting at an initial contour, contour tracking methods iteratively evolve an 

initial contour to the current contour. In order to evolve the contour correctly, contour 

tracking methods require some degree of object overlapping between the previous 

frame and the current frame. 
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2.1.1.2. Probabilistic Tracking 

In general, observations from surveillance video contain noise. Moreover, object 

motions can undergo random perturbation. Hence, contrary to deterministic tracking 

which uses observations only, probabilistic tracking tries to model the states behind 

the observations. In other words, probabilistic tracking use the state-space approach to 

take into account the observation uncertainties as well as model uncertainties. The 

state-space model of probabilistic tracking is shown in Figure 2-1. The states behind 

observations could be object position, velocity, and acceleration. 

 

Figure 2-1 State-space model for probabilistic tracking 

KALMAN FILTER 

Kalman filter is one of the classical methods in probabilistic tracking. Kalman 

filter provides an efficient way to estimate the state which is governed by a linear 

stochastic equation and disturbed by an additive Gaussian noise. Not only the states 

are corrupted by an additive Gaussian noise, Kalman filter also assumes that the 

observations are perturbed by an additive Gaussian noise too. The assumption of 

additive Gaussian noises makes the closed-form solution is achievable. 

Kalman filter is mainly composed of two steps: prediction step and correction 

step. Prediction step uses state model to predict new state, as shown in Figure 2-1. 

Correction step uses the current observation to update the state to decrease the 

problem of error propagation. 



8 
 

PARTICLE FILTER 

However, the corrupted noises in observations and state models in reality would 

not be as simple as an additive Gaussian noise. Moreover, the state transition might 

not follow a linear dynamic equation. As a result, the closed-form solution will not be 

obtained easily or even be unobtainable. 

Particle filter provides a solution for solving non Gaussian distribution and 

non-linear dynamic model by using a group of particle with different weights to 

approximate the distribution. Similar to Kalman filter, there are two steps in Particle 

filter, prediction step and correction step. Prediction step in Particle filter uses a set of 

particles to generate a new set of particles. Correction step in Particle filter uses 

observations to update the weight of each particle in new set. Since the objects are 

described as a probability distribution approximated by numbers of particles, we have 

a big chance to find the right position of object even when occlusion occurs. 

2.1.2. Multiple Objects Tracking 

Even though object tracking has been thought as a mature field, nowadays, a 

robust multiple objects tracking remains a challenging topic. One of crucial problems 

in multiple objects tracking is the establishment of correspondence. Unlike we discuss 

in single object tracking, we do not classify techniques into different categories here 

because most techniques we introduced in single object tracking cannot be applied 

directly in multiple objects tracking. Correspondence problem has to be solved first. 

In the following, we will briefly describe some widely used methods that deal with 

correspondence problem. 
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JOINT PROBABILITY DATA ASSOCIATION FILTER (JPDAF) 

The JPDAF [2], [3], is actually an extension of the Kalman filter. The JPDAF 

tries to associate all observations with each existing track in a probabilistic approach. 

Rather than choosing the nearest neighbor or data closest to what is expected, the 

JPDAF computes new weights for the various candidate observations. Then, the 

JPDAF integrates these weights into the innovation step of Kalman filter. As a result, 

each observation is assigned to a certain track. 

MULTIPLE HYPOTHESIS TRACKING (MHT) 

Since establishing correspondence with previous frame and current frame has a 

great chance to be inaccurate. The core idea of MHT algorithm is to defer the 

correspondence decision until enough observations are measured. The MHT keeps 

several correspondence hypotheses at each time step and over time period, the most 

likely hypothesis is chosen as the final track of object. With the help of deferring the 

time of making correspondence decision, MHT algorithm is able to continuously track 

multiple objects even some observations of objects are missing. 

According to these basic tracking techniques above, we can find out that most of 

tracking techniques do not take the interactions between objects into account. Most of 

these techniques only consider the difference between objects and background and 

solve correspondence problem or collision problem as needed. 

2.2. Abnormality Behavior Detection 

Automatically abnormality detection is an appealing and practical topic since it 

can help valuable human attention to focus on the most salient context. Many 

researchers have put lots of effort here. However, automatically abnormality detection 
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remains to be a quite challenging problem. Due to its highly intellectual and abstract 

concepts, to give a complete definition of abnormality is even hard for us. Therefore, 

abnormality is usually defined in a subjective form. Sometimes, the definition of 

abnormality is given according to the algorithms can detect.  

Since there is a great diversity of approaches to abnormal detection, in this 

section, we will only focus on the abnormal behaviors with non-crowded and complex 

scenes. In our surveillance video, most of methods to detect abnormal behaviors are 

based on tracked information. As we mentioned before, abnormality is an abstract 

concept. However, the tracked information is not able to express this concept. Namely, 

even though the motion trajectories can be tracked perfectly, if there is no appropriate 

translation, the motion trajectories would be useless. As a result, most of methods to 

detect unusual behaviors are based on the construction of normal scene model by 

training. As long as the object which contradicts this normal scene model, the object 

will be viewed as the occurrence of abnormal behavior. Below, we will take two 

examples which are similar to our surveillance videos. 

[4] proposed a scene model which models the pixel-wise probability density 

function of object size and object velocity at training step. Each probability density 

function in each pixel is modeled as a multivariate Gaussian mixture function. The 

Gaussian mixture function is learned by using motion trajectory with EM-based 

learning. 

As for the abnormality detection, they use two different abnormal measurements. 

One measurement is local abnormal analysis such as instantaneous change of velocity 

or size. The other one measurement is global abnormal analysis. Global abnormal 

analysis tries to detect abnormal behaviors which cannot be detected by local 

abnormal analysis such as walking onto road or glass. By using these two abnormal 
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analysis methods, the abnormal behaviors can be detected in this surveillance system 

are shown in Figure 2-2. Those abnormal behaviors are walking with unusual path, 

riding a biking, suddenly sitting down, skating and walking on road. 

 

Figure 2-2 Detected abnormal behaviors 

Another example is described in [5]. The scene model in [5] is much more 

complex than in [4]. [5] constructed a scene model which jointly models object 

appearance and dynamics of the scene. As a result, this scene model is able detect 

both in temporal abnormality and in spatial abnormality. They adopted the mixture of 

dynamic textures (MDT) to model the dynamics of scene and they used discriminant 

saliency to model spatial abnormality. That is, MDT is used to detect temporal 

abnormal behaviors which do not occur frequently and discriminant saliency is used 

to discriminate the appearance of object from others. The abnormal behaviors can be 

detected in [5] is shown in Figure 2-3. Those abnormal behaviors are driving a car, 

riding a bike and skating. 

As we can see from those two examples of abnormal behavior detection, we can 

find out that the abnormal behaviors can be detected in non-crowded and wide range 

scenes are very similar. As most of other approaches for abnormal detection, [4] and 

[5] all detect abnormal behaviors from the aspect of scene. There are few approaches 
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which detect abnormal behaviors from the aspect of pedestrian. 

 

Figure 2-3 Detected abnormal behaviors 

2.3. Pedestrian Behavior Modeling 

Whenever we talk about human behavior, we might feel that human behavior is 

irregular and not predictable. In general, this is true for those behaviors found in 

complex scenes. However, we might still be able to model human behavior in some 

restricted and simple scene, such as in a huge population of individuals. 

In order to model pedestrian behavior accurately, taking social interactions into 

account is an essential step. For a long time, social interactions, interactions between 

environment and objects and interactions between objects, have been known to affect 

pedestrian behavior heavily. However, these dynamic social interactions are less 

explored. 

Modeling pedestrian behavior, especially crowd behavior, has been an important 

part in civil engineering and computer graphic fields and has been studied extensively 

in those fields. The main goal in those fields is to create realistic crowds motion in a 

simulated way. For example, in civil engineering [6] and [7], having pedestrian 

models can provide valuable information for designing and planning evacuation plans 
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and pedestrian areas, as shown in Figure 2-4. 

 
Figure 2-4 People in yellow shirts evacuate a building  

Most of models which are used in those fields are based on the Social Force 

Model. The Social Force Model, proposed by Helbing and Molnar in [8] is one of the 

first pedestrian behavior models which take social interactions into consideration. The 

Social Force Model tries to capture the effects of neighboring pedestrians and scene 

on each individual pedestrian. The Social Force Model describes the effects, or 

so-called social factors, by using a combination of different social forces. These 

different social forces that drive pedestrians toward their goals are analogous to the 

real forces which apply on moving object in reality. This model allows a large scale 

view of large crowds and has been extended to describe various kinds of crowds [9]. 

In [9] proposed a combination of social panic model and social force model to create 

a more generalized model.  

Modeling pedestrian behavior in computer vision has received much more 

attentions in past few years since we can get lots of advantages from an accurate 

pedestrian behavior model. Having an accurate pedestrian model not only improve the 

tracking performance but also improve the performance of abnormal behavior 

detection. 
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Rather than using a simulated way to model pedestrian behavior, most of models 

in computer vision use real-world data to produce an accurate pedestrian behavior 

model. One of earliest pedestrian behavior models to take advantage of behavioral 

priors in tracking problems is Discrete Choice Model in [10]. 

2.3.1. Discrete Choice Model (DCM) 

Discrete Choice Model, proposed by Antonini et al. in [10], uses a series of 

specific discrete choices to model pedestrian behavior. The next position of individual 

pedestrian is decided as a sequence of discrete choices is made. At each time instant, 

they dynamically discretize spatial locations for each individual pedestrian. The most 

probable location in next time step for individual pedestrian is chosen based on social 

factors in the scene from a discrete choice set, as shown in Figure 2-5. The DCM uses 

33 possible locations in the discrete choice set. That is, the next position of pedestrian 

locates on one of thirty-three discrete positions. 

 

Figure 2-5 Choice Set. (a) Speed choice set. (b) Orientation choice set. (c) Choice set 

of combining (a) and (b).  

However, discretization in possible positions introduces some difficulties. One of 

the difficulties is size of discretization grid. Fine spatial discretization increases not 
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only the accurate prediction but also the complexity of computation substantially. 

However, coarse spatial discretization affects the accuracy of prediction. Making a 

balance between fine grid and coarse grid is quite challenging. 

Contrary to discrete grid of spatial position, Linear Trajectory Model has been 

proposed recently in continuous form in [11]. 

2.3.2. Linear Trajectory Avoidance (LTA) 

Linear Trajectory Avoidance (LTA) is a model which takes scene information and 

interactions between different targets into account. LTA model considers three social 

factors which influence pedestrian behavior heavily. These factors are all objects in 

scene, constant velocity and the destination. Based on these three factors, LTA 

constructs the overall energy for each pedestrian. The next time position of pedestrian 

is predicted by minimizing the overall energy as white dots in Figure 2-6. 

 

Figure 2-6 Illustration for the predicted position for each pedestrian. Magenta 

points are the predicted position without taking social interactions into account. 

White points are the predicted position with taking social interactions into 

account. 

Figure 2-6 shows that if the pedestrians take social interactions into account, the 

phenomenon of avoidance will happen as shown in white dots in Figure 2-6. That is, 

the left-hand side pedestrian will slow down and turn right slightly. However, the 
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right-hand side pedestrian will accelerate and turn right slightly. 

The LTA model has been shown to work well for multiple objects tracking in 

complex scenarios. However, there are some limitations of the current LTA model. An 

example of limitations shown in [12] is the pedestrian is walking as part of a group, as 

shown in Figure 2-7. The LTA model does not model groups of pedestrians since the 

behavior of pedestrian in a group is quite different from the behavior of single 

pedestrian. 

 

Figure 2-7 An example of limitations of the LTA model.  

Estimating social relationship has received much more attentions recently [13] 

and [14]. Most of them only try to explore the group relation of a crowd in photos or 

in surveillance videos. However, there are still few methods to explore social group 

and put it into tracking scheme. 
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Chapter 3.  

PROPOSED METHOD 

Most research works in abnormality detection focus on the construction of scene 

model. The scene model could be clusters of normal trajectories or distributions of 

normal object size and normal object velocity. All these approaches try to obtain the 

scene knowledge with normal behaviors or events to detect abnormalities. 

In our thesis, instead of obtaining the scene knowledge, we detect abnormalities 

from the aspect of pedestrian. We believe that more abstract abnormalities can be 

detected from this aspect. Figure 3-1 shows the flow chart of our abnormal 

surveillance system. 

 

Figure 3-1 Flow chart of our proposed surveillance system 

In our system, we try to integrate a module of pedestrian behavior modeling into 

the original module of detection and tracking. This module of pedestrian behavior 

modeling describes the social interactions between scene and pedestrians and the 
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social interactions between pedestrians. Finally, we detect unusual behaviors based on 

this introduced module of pedestrian behavior modeling. At the beginning of our 

system, we make an assumption to simplify problems. We assume that the pedestrians 

who appear at each time step can all be detected with an additive Gaussian noise 

perturbation. That is, we do not try to solve occlusion and correspondence problems 

in our system. As a result, in this thesis, we will mainly focus on how to construct our 

module of pedestrian behavior modeling and how to detect unusual behaviors based 

on this module of pedestrian behavior modeling. 

We organize this chapter as follows. At the beginning of this chapter, we will 

present our purposed graphical representation which shows the approach we take the 

module of pedestrian behavior modeling into pedestrian tracking. Then, we will 

discuss how we construct the module of pedestrian behavior modeling by estimating 

pedestrian properties. After that, we will talk about how to combine pedestrian 

properties with detection and tracking module. Finally, we will discuss how to make 

use of this module of pedestrian behavior modeling to detect unusual behaviors and 

even to detect abnormal behaviors. 

3.1. Graphical Representation 

As mentioned before, we detect abnormal behaviors mainly based on the module 

of pedestrian behavior modeling and this module will describe the social interactions 

between surrounding and objects social interactions between objects. However, 

modeling pedestrian behavior directly is difficult since there are lots of pedestrian 

behaviors. As a result, we explore the social factors which have a great impact on 

pedestrian behavior first instead. The social factors we used here are personal 

properties. 
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This approach can be well-understood by using a graphical representation. In 

order to take the effect of social factors, which lead to various behaviors of pedestrian, 

into account, we introduce an additional state layer above the original graphical model 

of Kalman filter in our tracking module, as shown in Figure 3-2. Our proposed 

graphical model actually is quite similar to the switching Kalman filter as shown in 

Figure 3-2. In fact, the functionality of our proposed additional state layer is 

analogous to the switching state in the switching Kalman filter. The introduced 

additional state layer in our proposed structure is used to describe various hidden 

properties of pedestrian which lead to lots of different pedestrian behaviors and 

switching state in the switching Kalman filter tries to model different possible causes. 

These hidden properties of pedestrian in our proposed structure are actually the 

thoughts of pedestrian, such as comfortable distance, preferred walking velocity and 

destination etc. These properties are much more abstract than usual tracked 

information, like exact position or exact velocity and effect pedestrian behavior 

heavily. With the help of these hidden properties of pedestrian which already consider 

the social factors, we are able to accurately model the behavior of pedestrian. 

 

Figure 3-2 (a) Graphical model of switching Kalman filter (b) Graphical model of 

proposed method 

Even though the graphical model of our proposed graphical model and the 

switching Kalman filter looks like the same, there are two main differences between 
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these two graphical models. First, the switching state in traditional switching Kalman 

filter is usually a discrete random variable. This additional state layer in our structure 

however, is a set of deterministic variables and random variables. Second, as we are 

handling multiple pedestrians, these states in our additional state layer of our structure 

are no longer independent. There are some interactions between these additional states 

as shown in Figure 3-3.  

These structures, our proposed structure and the switching Kalman filter, in 

general have greater descriptive power than the traditional Kalman filter since it 

contains multiple choices. However, having an exact inference is intractable not only 

in our proposed structure but also in the switching Kalman filter. We have to make 

some assumptions to simplify our proposed structure to make inference properly.  

 

Figure 3-3 Proposed graphical model for our multiple pedestrians 

The simplified method we use is to decouple our proposed structure into two 

independent and small structures as shown in Figure 3-4 and both of these two 

structures are computation feasible. One structure is the additional state layer portion 

or switching portion which contains the property of switching, and the other structure 

is the original Kalman filter portion which includes linear and dynamic properties of 

the system. 
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Figure 3-4 Decouple our proposed graphical model (a) Switching portion. (b) 

Kalman filter portion. 

This decoupled technique, in fact, is just a variational inference technique for 

Bayesian network [15]. Namely, we construct a η-parameterized distribution which is 

close to the exact distribution but is computation feasible. 

In general, the variables in additional state layer are actually all random variables. 

The reason why we describe the additional state layer in our proposed as a set of 

deterministic variables and random variable is we are not handle large random 

variables at the same time. If we want to estimate these large random variables at the 

same time, the uncertainty of each random variable will increase. This result is not 

what we want. Therefore, we fix some random variables and we can also view these 

fixed random variables as deterministic variables. The value of these deterministic 

variables will be trained beforehand in training step. 

With the help of these simplified methods, we are able to make inference under 

our proposed structure. The first step of our proposed structure is to estimate the rest 

random variables. After obtaining these random variables as well as deterministic 

variables, we transform these variables into position information of pedestrian by 



22 
 

using a set of energy functions in switching portion, as shown in Figure 3-4. Then we 

pass the estimated position information of pedestrian from the switching portion to the 

Kalman filter portion, as shown in Figure 3-4. We will make use of the estimated 

position information in Kalman filter portion to help us detect and track pedestrian. 

These two portions correspond to the two following sections of pedestrian behavior 

modeling and pedestrian tracking, respectively. 

In following sections, we will discuss how to estimate these random variables in 

switching portion first. Then we will talk about the tracking scheme in Kalman filter 

portion.  

3.2. Pedestrian Behavior Modeling 

As we mentioned in previous section, we introduce an additional state layer to 

describe the hidden properties of pedestrian. These hidden pedestrian properties, such 

as comfortable distance and destination, have been known to have a great impact on 

the behavior of pedestrian. Since there are varieties of pedestrian behaviors, modeling 

pedestrian behavior directly is quite difficult. Instead of modeling pedestrian behavior 

directly, we try to estimate the hidden pedestrian properties first. With the help of 

hidden pedestrian properties, we have better knowledge about the pedestrian and what 

kind of behavior is going to be performed. Then, we begin to further model pedestrian 

behavior. 

Our proposed method to model pedestrian behavior is nothing but a linear 

combination of a set of energy functions. These energy functions are parameterized by 

the estimated hidden personal properties. By using these energy functions, we turn 

these hidden personal properties into an analytical and tractable form. An energy map 
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is constructed by combining different energy functions. By minimizing the energy 

map, we are able to predict the next time step position of the pedestrian. That is, we 

are capable of modeling pedestrian behavior as we make use of this energy map well. 

The discussions in this section focus on the inference of decoupled switching 

portion as shown in Figure 3-4. 

3.2.1. Personal Property Estimation 

Personal properties are known to have a great influence on personal behavior and 

are viewed as random variables in our proposed structure. To avoid estimating large 

random variables at the same time, we fix some of variables in our structure. Namely, 

the fixed variables are deterministic variables. As for those remaining random 

variables, we estimate them by using data-driven method. Below, we will talk about 

which variables are fixed while which are not. We will also talk about how to 

determine or estimate these variables. 

SCENE KNOWLEDGE 

The behavior of pedestrian, in general, obeys some rules which are established 

by society. For example, normally we do not climb trees or street lights and we also 

do not enter the region where prohibitory enter sign is set up. Having scene prior 

knowledge is useful to detect those behaviors which do not occur often. 

The scene knowledge we adopt in our proposed system is locations of obstacles 

and restricted region. We assume that the scene knowledge is known in advance and is 

labeled manually. 
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DESTINATION 

Pedestrian always moves toward his destination if there is no accidental event 

happened. Knowing the pedestrian destination is useful for us to predict his next move. 

The importance of pedestrian’s destination is shown in [11]. [11] also shows that even 

roughly guess the destination helps to make more accurate prediction. 

The possible destinations, in fact, can be trained at the beginning of surveillance 

system by simply recording the exit and entry points of scene. However, we do not 

take destination information into our proposed structure. We treat it as the optional 

information. Because our scene is relatively simple and most abnormal events we 

used are designed, the destination information in our proposed system is not as useful 

as in daily life scene. 

COMFORTABLE DISTANCE 

Comfortable distance is used to describe the avoidance phenomenon as pedestrian 

confront other unfamiliar objects. Everyone feels different comfortable distance. 

Knowing the comfortable distance of pedestrian improves the prediction of pedestrian 

behavior since next possible actions which pedestrian might take are under our 

controlled. 

However, estimating comfortable distance for everyone seems to be complex and 

difficult not only because the comfortable distance for everyone is different but also 

because the comfortable distance might vary as the surrounding changes. As a result, 

we make a simplified assumption here that everyone has the same comfortable 

distance and we take it as a deterministic variable. The exact value of this comfortable 

distance is obtained in training step. 

 



25 
 

PREFERRED VELOCITY 

The property of preferred velocity is very similar to the property of comfortable 

distance. That is, everyone has his own preferred walking velocity and it varies as 

surrounding changes. Estimating preferred walking velocity for each one sounds 

impracticable which is just like the comfortable distance. 

Therefore, we take previous observed velocity as the preferred velocity of this 

object since we believe that the object always tries to maintain a constant velocity. To 

be more specific, if the object is individual pedestrian, we take his previous velocity 

as his preferred velocity; if the object is a group consists of several pedestrians, we 

take group’s previous mean velocity as the group’s preferred velocity. 

SOCIAL GROUP 

Knowing the social group is important to model pedestrian behavior, since the 

behavior of pedestrian in groups tends to be very different from the behavior of 

pedestrian in single. In general, pedestrian behavior in group is hard to predict, 

however, the whole group behavior, in most case, is relatively simple and easy to 

model. By tracking object in group unit, tracking performance can be improved 

drastically. 

However, estimating the social group is not an easy job because of often 

changing of group size. Therefore, we use pair-wise feature with bottom-up grouping 

to solve the problem of various group sizes. That is, we take features from every two 

pedestrians. Then, we adopt Support Vector Machine (SVM) to help us classify 

whether these two pedestrians belong to the same group. We extract eight features 

which are illustrated in Figure 3-5 and summary at Table 3-1. These features are the 

time difference of showing up, relative distance, velocity magnitude differences of 
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past two steps, velocity orientation differences of past two steps and number of 

neighboring pedestrians. 

 
Figure 3-5 Illustration of extracting group features 

 

Table 3-1 Features for group estimation 

No. Notation Feature Description 

1 ∆𝒕𝑑𝑠𝑑𝑔𝑦
𝑖𝑗  Normalized time difference of showing up 

 2 ∆𝑷𝑖𝑗 Relative distance 

3,4 ∆𝒗−1
𝑖𝑗  , ∆𝒗−2

𝑖𝑗  Normalized past two magnitudes of speed 

5,6 ∆𝜙−1
𝑖𝑗  , ∆𝜙−2

𝑖𝑗  Past two directions of speed 

7,8 𝑵𝑖 , 𝑵𝑗 The number of nearby objects 

The output of SVM is a binary number. In other words, it shows that whether these 

two pedestrians are in the same group. Based on SVM result, we group pedestrians 

from bottom to top. Since we believe that connected pedestrians are always exist to 

connect individual pedestrian to a large group as shown in Figure 3-6. At the end of 

grouping, we will obtain the best group size which is mainly determined by SVM. 

 
Figure 3-6 Illustration of bottom-up grouping (a) Pair-wise grouping (b) Final group size 
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3.2.2. Energy Functions for Tracking 

Suppose we are able to obtain those hidden pedestrian properties by estimation or 

by training. The next step is to transform these abstract properties into tractable and 

concrete descriptions. The method we adopt is the same as in [11], which uses a set of 

energy functions. Different properties correspond to different energy functions. Then, 

we construct an energy map by simply combining different energy functions in linear 

way in Eq. 3-1. These energy functions we used are Avoidance Energy (𝑬𝑎𝑎)、

Constant Speed Energy (𝑬𝑐𝑐)、Scene Prior Energy (𝑬𝑠𝑠𝑠𝑠) and optional Destination 

Energy (𝑬𝑑𝑑𝑑𝑑). 

 𝑬𝑡𝑡𝑡𝑡𝑡𝑖 = 𝒘𝑎𝑎𝑬𝑎𝑎𝑖 + 𝒘𝑐𝑐𝑬𝑐𝑐𝑖 +  𝒘𝑠𝑠𝑠𝑠𝑬𝑠𝑠𝑠𝑠𝑖 + �𝒘𝑑𝑑𝑑𝑑𝑬𝑑𝑑𝑑𝑑𝑖 � Eq. 3-1 

We have to emphasis that our tracking unit is each group rather than each 

individual pedestrian. That is, the index 𝒊 in Eq. 3-1 represents each group rather 

than represents each pedestrian. The Eq. 3-1 can also be viewed as an objective 

function for each pedestrian. Most of methods only use the information of constant 

velocity which is Constant Speed Energy (𝑬𝑐𝑐). Now, we add additional constraints 

on this pedestrian which are Avoidance Energy (𝑬𝑎𝑎) and Scene Prior Energy (𝑬𝑠𝑠𝑠𝑠). 

These two additional terms can be taken as regularization terms. In this remaining 

section, we will detail the mathematical expressions of different energy functions. 

3.2.2.1. Avoidance Energy 

Pedestrians will always take actions in advance to avoid the collision with other 

objects and we use the Avoidance Energy to describe this phenomenon. The 

Avoidance Energy for a specific pedestrian in the scene is composed of other single 
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pedestrian and other pedestrians in group as expressed in Eq. 3-2. 

 𝑬𝑎𝑎𝑖  =  � 𝑬𝑠𝑠𝑠𝑠𝑠𝑠
𝑗

𝑖≠𝑗,   𝑗 ∈ 𝑆

 +  � 𝑬𝑔𝑔𝑔𝑔𝑔
𝑗

𝑖≠𝑗,   𝑗 ∈ 𝐺

 Eq. 3-2 

   

SINGLE AVOIDANCE ENERGY 

For each pedestrian, we use a Gaussian function as shown in Figure 3-7 as our 

energy function. 

 
Figure 3-7 Energy function of single pedestrian 

The mathematical expression is in Eq. 3-3 and σs  represents the comfortable 

distance of pedestrian in Eq. 3-3. This Gaussian function is centered on the predicted 

location at next time step in Eq. 3-4 and 𝑷𝑖 represents the location of pedestrian and 

v�i represents the predicted velocity of pedestrian in Eq. 3-4. 

 𝑬𝑠𝑠𝑠𝑠𝑠𝑠𝑖 = 𝑒𝑒𝑒 �−
𝒅𝑖𝟐

𝟐𝝈𝑠𝟐
� Eq. 3-3 

 
 𝒅𝑖𝟐 =  �𝑿 − �𝑷𝑖 + 𝒗�𝑖��

𝟐
 Eq. 3-4 

   

GROUP AVOIDANCE ENERGY 

As for group object, we take mixture of Gaussian function as our energy function 

as shown in Figure 3-8. 
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Figure 3-8 Energy function of group 

This mixture of Gaussian function is simply the Gaussian function for each pedestrian 

plus an additional weighted Gaussian function in Eq. 3-5. This mixture of Gaussian 

function is centered on predicted group center at next time step in Eq. 3-6 and Eq. 3-7. 

 𝑬𝑔𝑔𝑔𝑔𝑔𝑖 = 𝑒𝑒𝑒 �−
𝒅𝑖𝟐

𝟐𝝈𝑠𝟐
� + 𝑒𝑒𝑒�−

𝒅𝑗𝟐

𝟐𝝈𝑠𝟐
� + 𝒘𝑔 𝑒𝑒𝑒 �−

𝒅𝑖𝑖𝟐

𝟐𝝈𝑔𝟐
� Eq. 3-5 

 
 𝒅𝑘𝟐 =  ‖𝑿 − (𝑷𝑘 + 𝒗�𝐺)‖𝟐,     𝑘 = 𝑖, 𝑗 Eq. 3-6 
 
 𝒅𝑖𝑖𝟐 =  �𝑿 − �𝑷𝑖𝑖 + 𝒗�𝐺��

𝟐
 Eq. 3-7 

3.2.2.2. Constant Velocity Energy 

Pedestrian in single or in group, in general, always move in a constant velocity. 

The Constant Velocity Energy is used to constrain the object to maintain a constant 

velocity. Our Constant Velocity Energy mainly consists of two components, 

Magnitude Energy and Orientation Energy. We combine these two components in a 

linear way as presented in Eq. 3-8. 

 𝑬𝑐𝑐𝑖  =  𝑬𝑚𝑚𝑚𝑖 +  𝒘𝑜𝑜𝑜 𝑬𝑜𝑜𝑜𝑖  Eq. 3-8 

The Constant Velocity Energy for each object is shown in Figure 3-9. The color of 

map shows that the object’s energy at each location. The lower energy, the more 
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probable of the pedestrian shows up at next time step. That is, the pedestrian always 

moves toward to the position where the energy is the lowest. 

 
Figure 3-9 Constant Velocity Energy 

Since the property of constant velocity belongs to the pedestrian who is being 

tracked, this energy function of pedestrian in group will be slightly different than the 

energy function in single. Therefore, we will talk about both cases in detail below. 

MAGNITUDE ENERGY 

Since object prefers to keep same magnitude as in previous step, the Magnitude 

Energy is calculated by computing the deviation of velocity magnitude from the 

magnitude of preferred velocity and taking absolute value of deviation as presented in 

Eq. 3-9 or Eq. 3-10. Eq. 3-9 and Eq. 3-10 represent single object and group object of 

the Magnitude Energy respectively. In Eq. 3-9, 𝑢i is the preferred velocity of single 

pedestrian and 𝑢G in Eq. 3-10 is the preferred velocity of group.  

 𝑬𝑚𝑚𝑚𝑖 = 𝑎𝑎𝑎�‖𝒗‖ − �𝒖𝑖��,  Eq. 3-9 
 
 𝑬𝑚𝑚𝑚𝑖 = 𝑎𝑎𝑎(‖𝒗‖ − ‖𝒖𝐺‖),  Eq. 3-10 

Figure 3-10 shows the figure of Magnitude Energy. It makes sense that the figure 

of Magnitude Energy is non-oriented and sensitive to magnitude.  
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Figure 3-10 Figure of Magnitude Energy 

ORIENTATION ENERGY 

Since object prefers to move in same direction as in previous step, we calculate 

the deviation of angle from the direction of preferred velocity first as expressed in Eq. 

3-11 or Eq. 3-12. Eq. 3-11 and Eq. 3-12 represent single object and group object 

respectively. In Eq. 3-11, 𝑃𝑖 is the current location of single pedestrian and 𝑃𝐺  in 

Eq. 3-12 is the center location of group. 

 𝜙 =  
�𝑿 − 𝑷𝑖� ∙ 𝒖𝑖

‖𝑿 − 𝑷𝑖‖ × ‖𝒖𝑖‖
 Eq. 3-11 

 
 
 

𝜙 =  
(𝑿 − 𝑷𝐺) ∙ 𝒖𝐺

‖𝑿 − 𝑷𝐺‖ × ‖𝒖𝐺‖
 Eq. 3-12 

Then, we use a level-shifted cosine function as our energy function for the orientation 

energy in Eq. 3-13. 

 𝑬𝑜𝑜𝑜𝑖  =  
𝟏 + 𝑐𝑐𝑐(𝜙)

𝟐
 Eq. 3-13 

Figure 3-11 shows the figure of Orientation Energy. It is reasonable that the 

figure of Orientation Energy is oriented and non-sensitive to magnitude.  
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Figure 3-11 Figure of Orientation Energy 

3.2.2.3. Scene Prior Energy 

As mentioned before, the scene knowledge we used is the locations of obstacles 

and the restricted regions. We model energy function of obstacles simply by using a 

Gaussian function and we use a level-shift constant as an energy function for the 

restricted regions which are illustrated respectively in Figure 3-12. 

 

Figure 3-12 Illustration of scene prior energy (a) Obstacle energy. (b) Restricted 

region energy  

3.2.3. Parameters Optimization 

Finally, there is still one thing we left behind without discussion. That is, how to 

decide the values of deterministic variables. As we talked before, every hidden 

property actually can be viewed as a random variable. Since we are not able to handle 

such large unknowns at the same time, we fix some random variables to be 
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deterministic values. These variables, deterministic variables, are comfortable 

distance of individual (σs) and comfortable distance of groups (σg). 

These deterministic variables as well as those weighted coefficients, 𝑤𝑜𝑜𝑜, 𝑤𝑔 

and 𝑤𝑐𝑐, are determined by training data in training step. In training step, we take 

normal surveillance videos and construct an energy map for each pedestrian 

respectively. We estimated each pedestrian position by finding the minimum location 

of the energy map in Eq. 3-14. Then, we compute least-square error by comparing the 

estimated position with ground truth observation in Eq. 3-15. We choose those 

parameters with smallest least square error. 

 
 

𝑷�𝑛|𝑛−1
𝑖 =  arg min

𝑷
𝑬𝑡𝑡𝑡𝑡𝑡𝑖 (𝚯) Eq. 3-14 

 
 

arg min
𝚯

�𝑶 − 𝑷�𝑛|𝑛−1
𝑖 (𝚯)�

𝟐
 Eq. 3-15 

3.3. Pedestrian Tracking 

As we mentioned before, we decouple our proposed structure into switching 

portion and Kalman filter portion. In this section, the following discussions will focus 

on the inference of decoupled Kalman filter portion as shown in Figure 3-4. 

Although the graphical model looks like the same as Kalman filter as shown in 

Figure 3-13, there is one main difference between these two models. In the decoupled 

Kalman filter portion, there are some parameters that are passed down from switching 

portion but traditional Kalman filter does not have these parameters as shown in 

Figure 3-13. 
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Figure 3-13 Graphical representation (a) Traditional Kalman filter (b) Our 

Kalman filter portion 

The parameter comes from switching portion in our proposed structure is the position 

information of pedestrian. Following, we will briefly introduce the basic operations of 

traditional Kalman filter first. Then we will turn our attentions to our decoupled 

Kalman filter portion. 

As we mentioned in Chapter 2, traditional Kalman filter is a very classical 

statistic tracking technique. As shown in Figure 3-13, traditional Kalman filter has 

two state layers. One state layer is the hidden state, which describes the hidden 

information behind the observations, and the other state layer is the observation. The 

relationship between these states can be completely characterized by two linear 

equations with a Gaussian additive noise respectively in Eq. 3-16 and Eq. 3-17.  

 
 

𝐏𝑛 = 𝑨𝑷𝑛−1 + 𝒖𝑛 Eq. 3-16 

 
 

𝑶𝑛 = 𝑯𝑷𝑛  + 𝒘𝑛 Eq. 3-17 

By predicting and estimating the evolution of hidden state, traditional Kalman 

filter is able to detect objects in Eq. 3-18 and Eq. 3-19. 

 
 

𝐏�𝑛|𝑛−1 = 𝑨𝑷�𝑛−1|𝑛−1 Eq. 3-18 

 
 

𝑶�𝑛 = 𝑯𝑷�𝑛|𝑛−1 Eq. 3-19 

However, since the predicted state 𝑃�n|n−1 in our decoupled Kalman filter comes 
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from the switching portion, the predicted equation is a little different from the original 

one in Eq. 3-18. The change of 𝑃�n|n−1 leads to a time-vary transition matrix 𝐴̂n in 

Eq. 3-20.  

 𝑷�𝑛|𝑛−1 = 𝑨�𝑛𝑷�𝑛−1|𝑛−1 Eq. 3-20 

Except for the time-vary transition matrix, the rest equations in our decoupled Kalman 

filter are exactly the same as in traditional Kalman filter. For example, the correction 

of predicted state is described in Eq. 3-21, the Kalman coefficient is expressed in Eq. 

3-22 and MSE matrix is shown in Eq. 3-23 and Eq. 3-24 are the same as in traditional 

Kalman filter. 

 
 

𝑷�𝑛|𝑛 = 𝑷�𝑛|𝑛−1 + 𝐊𝑛�𝑶𝑛 − 𝑯𝑷�𝑛|𝑛−1� Eq. 3-21 

 
 𝐊𝑛 = 𝐌𝑛|𝑛−1𝑯T�𝑪𝒏 + 𝑯𝐌𝒏|𝒏−𝟏𝑯T�

−𝟏
 Eq. 3-22 

 
 

𝐌𝑛|𝑛−1 = 𝑨�𝑛𝐌𝑛−1|𝑛−1𝑨�𝑛T + 𝐐u Eq. 3-23 

 
 

𝐌𝑛|𝑛 = (𝐈 − 𝐊𝑛𝑯)𝐌𝑛|𝑛−1 Eq. 3-24 

3.4. Unusual Behavior Detection 

Until now, we are able to track pedestrians with their personal properties. The 

next step is to detect unusual behaviors based on their personal properties. 

The approach we use to detect unusual behaviors is to calculate the difference 

between two estimated personal properties and observation. To more specific, we 

detect unusual behaviors by comparing difference between two maps. These maps are 

constructed by using the Avoidance Energy function which is centered at each 

pedestrian position. That is, at each time step, from those estimated personal 

properties we are able to predict the next time position of each pedestrian. Then we 
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construct a map based on the position of each pedestrian. At the same time, we 

observe the position of detected pedestrians and we are able to produce another map 

based on the observed position. The difference between these two maps reveals the 

behavior to which we should pay more attention as shown in Figure 3-14. 

 
Figure 3-14 Illustration of finding unusual behaviors 

The intuitive perspective of computing difference of two maps is that we hope 

that all the social factors are included in our estimated personal properties and the 

behavior of pedestrian should follow our estimated behavior. However, the exact 

observed behavior of pedestrian is quite different from our estimated behavior. This 

means that we should beware of this observed behavior since some unknown factors 

which we do not take into consideration at current time step affect the pedestrian. This 

observed behavior which differs from predicted behavior is called unusual behavior in 

our thesis. 

However, the detected unusual behavior has an extreme high probability to be a 

normal behavior. For example, the pedestrian might suddenly get a call and slow 

down his paces in order to response the call. Since our estimated personal properties 
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are not able handle such kinds of accidental events, this behavior will be detected as 

an unusual behavior by our proposed method. However, this behavior of pedestrian is 

pretty normal and trivial. Therefore, it is necessary for us to further analysis what kind 

of behavior is preforming. 

In order to understand what behavior is performing, we take a spatiotemporal 

patch as a feature to help us distinguish abnormal behaviors from those normal, daily 

behaviors, as illustrated in Figure 3-15.  

 
Figure 3-15 Illustration of extracting abnormal features 

As long as the unusual behavior is detected, we will recognize who performs this 

unusual behavior. Then, we take a spatiotemporal patch which centers on the unusual 

pedestrian from the last two energy maps and current energy map. However, the size 

of this spatiotemporal patch varies which depends on the past motion of the unusual 

pedestrian. To make use of this spatiotemporal feature, we have to normalize this 

feature to the same standard. The normalization step is illustrated in Figure 3-16. First, 

we convert this spatiotemporal patch to a binary patch and use sign distance 

transformation. Then we normalize this patch to a 20-by-40 size patch. This 

normalized patch will be taken as an input of Support Vector Regression (SVR). SVR 

compares this normalized feature to those pre-defined, well-labeled features and gives 
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out a predicted value. This predicted value indicates which pre-defined behavior is the 

most probable. The pre-defined and well-labeled features are extracted in training step 

as shown in Figure 3-17. 

 
Figure 3-16 Illustration of abnormal feature normalization 

In our work, we defined three usual behaviors. They are running, walking and 

stopping. If the predicted value does not fall into one of the labeled value, we view 

this behavior as an abnormal behavior. We have to emphasis that although the patch of 

running behavior is labeled and trained beforehand. We still take running behavior as 

an abnormal behavior since we are interested in the reason of running. 

 

Figure 3-17 Illustration of abnormal feature matching 
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Chapter 4.  

EXPERIMENTAL RESULTS 

In this chapter, we will present our experimental results. To demonstrate our 

detected results, we have to briefly describe our surveillance environment. Our 

surveillance videos are taped outdoors from a bird-eye view. The frame rate of our 

surveillance videos is 15 fps and the resolution of our surveillance videos is 600 × 

800. Since our proposed method is based on the prediction step, we do not process 

every consecutive frame. We take 3 frames in 1 second to observe pedestrians instead. 

That is, we observe pedestrian once in every 5 frames. We have to emphasis that the 

trade-off exists between pedestrian tracking and abnormal behavior detection. 

Pedestrian tracking always want to work at low frame rate. However, to detect 

abnormal behaviors accurately, we need more observations to improve the correctness 

and we take 3 frames in 1 second to balance these two in our surveillance system. 

Our processing information is detailed above, then, we are able to present our 

experimental results. The rest of this chapter is organized as following: First of all, we 

will present the accuracy of constructing our module of pedestrian behavior modeling. 

Then, we will demonstrate some abnormal behaviors which can be detected both by 

using our proposed method and by constructing a scene model. Then, we will show 

some behaviors which will be viewed as abnormal behaviors but those behaviors will 

not be taken as abnormal behaviors in our proposed method. Finally, we will present 

some false alarm of abnormal behavior in our method. 

 As we mentioned before, we have five parameters to be determined in training 

step. The value of these five parameters is shown in table 4-1. 
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Table 4-1 Model parameters 

𝝈𝒔 𝝈𝒈 𝒘𝒐𝒐𝒐 𝒘𝒈 𝒘𝒄𝒄 Least Square Error 

14 17.5 0.444 4 6.667 1250 

We take another normal surveillance video in 1.5 minute to test our constructed 

model compare with linear prediction. The result is listed in table 4-2. We can find out 

that our proposed model is about 3.5 better than linear prediction. 

Table 4-2 Comparison with linear prediction  

 Least Square Error 

Our proposed method 18486 
Linear prediction 65883 

The other result is the accuracy of group prediction. We take 2575 pair-wise 

features for training data and we take another 200 pair-wise features for testing. We 

got about 96.6% accuracy of group prediction with our proposed pair-wise feature. 

As we mentioned earlier in our unusual behavior detection, we defined some 

pre-defined normal behaviors in our data set. The pre-defined behaviors in our data 

set are stopping, walking and running. As we recognize the detected behavior belongs 

to one of these pre-defined behaviors. This detected behavior will not be taken as an 

abnormal behavior and it will be viewed as warning instead. We draw yellow box as 

our warning behaviors. However, if the detected behavior does not belong to the 

pre-defined behavior, it will be viewed as an abnormal behavior and we use red box to 

present our detected abnormal behaviors.  

There is one exception that if the detected behavior is recognized as accelerate 

suddenly, it will also be taken as an abnormal behavior and we use red box to present 

this behavior too. 

At the following discussion, we will demonstrate our results of abnormal 
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behavior detection. One of the easiest abnormal behaviors is the pedestrian accelerate 

suddenly as shown in Figure 4-1. 

 
Figure 4-1 Sudden acceleration 

 Another easy abnormal behavior is the pedestrian walks into restricted region. In 

our case, the pedestrian walks onto grass region which is defined as a restricted in our 

scene as shown in Figure 4-2. 

 
Figure 4-2 Walk onto grass region 

The next abnormal behavior is robbery as shown in Figure 4-3. The concept of 

frame = 87 frame = 97 

frame = 67 frame = 77 

frame = 87 frame = 97 

frame = 67 frame = 77 
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robbery requires intelligent knowledge and this action cannot be recognized in our 

surveillance system. However, since robbery mainly contains simple actions such as 

suddenly running and these simple behaviors can be detected in our proposed method 

as shown in Figure 4-3. 

 
Figure 4-3 Robbery 

 

 
Figure 4-4 Avoidance phenomenon without warning 

These three abnormal behaviors above can be easily detected in most of 

surveillance systems. The following examples show that our proposed method is 

frame = 63 frame = 73 

frame = 42  frame = 53 

frame = 125 frame = 131 

frame = 107 frame = 111 frame = 92 

frame = 117 
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insensitive to the avoidance phenomenon. The avoidance behavior might be viewed as 

abnormality in most of surveillance systems since the trajectory of avoidance 

phenomenon is different from normal trajectory. These examples of avoidance 

behavior are shown in Figure 4-4 and in Figure 4-5. 

 
Figure 4-5 Avoidance phenomenon without warning 

Another new example behavior is shown below in Figure 4-6. 

 
Figure 4-6 Greet and walk together with his friend 

It presents that a pedestrian greet with his friend at the center of scene. Then, this 

frame = 100 frame = 113 

frame = 72 frame = 83 frame = 57 

frame = 92 

frame = 146 frame = 156 

frame = 126  frame = 136 
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pedestrian accompanies his friend toward the direction which is opposite to his 

original direction. In this case, the action of greeting can be captured at frame 83 and 

recognized as a stopping action. As he turns around toward opposite direction, this 

movement can be captured at frame 92 and recognized as a walking action. The status 

of social group for these two pedestrian has been changed since frame 92, the 

changing status of social group for these two pedestrian is also be captured at frame 

100. 

The next example is two pedestrians start from different sides and meet at the 

center of the scene. They chat for a while and move separately toward their original 

destinations as shown in Figure 4-7. 

 
Figure 4-7 Greet and chat with friend, then move separately  

As they meet at the center of scene at frame 97, the behavior of stopping is detected 

for each pedestrian. As they stay together longer, they will be viewed as a group as 

shown at frame 105. Then the group status will maintain until they separate at frame 

129 and this behavior of separation will be recognized as an abnormal behavior. 

The next example shows that friends toward different destinations as shown in 

frame = 129 frame = 143 

frame = 97 frame = 105 frame = 67 

frame = 110 
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Figure 4-8. As they separate at frame 72, we are able to detect this behavior since the 

group status is changed. 

 
Figure 4-8 Friends toward different destinations 

The next example shows that friends group together as shown in Figure 4-9. 

 
Figure 4-9 Friends group together 

As they group together at frame 94, we are able to detect this behavior since the group 

status is changed. 

However, these are still some unwanted warnings in our surveillance system as 

frame = 82 frame = 92 

frame = 62 frame = 72 

frame = 94 frame = 104 

frame = 64 frame = 84 
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shown in Figure 4-10. 

 
Figure 4-10 Avoidance phenomenon with warning 

It is because the avoidance phenomenon of pedestrian is much more serious than we 

expected and we are not able to handle this movement even it just an avoidance 

action. 

  

frame = 195 frame = 206 

frame = 170 frame = 183 
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Chapter 5.  

CONCLUSIONS 

In this thesis, we introduce a module of pedestrian behavior modeling which tries 

to model pedestrian behavior into our tracking scheme. This module of pedestrian 

behavior modeling takes social interactions between objects and social interactions 

between scene and objects into account to model possible behaviors of pedestrian. By 

introducing this module, we track pedestrian from the pedestrian aspect which are 

quite different from most tracking methods. Most of tracking methods do not take the 

social factors which effects behavior of pedestrian heavily into consideration. 

As for the abnormal behavior analysis, we detect abnormal behaviors based on 

the introduced module rather than constructing a normal scene model. Since the 

module of pedestrian behavior modeling is from the aspect of pedestrian, we are able 

to detect much more abnormalities by using the introduced module of pedestrian 

behavior modeling than by using a scene model which is constructed in most 

approaches for abnormal behavior detection. 
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