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靜態攝影機所拍攝影片之相對深度估計 

 

 

       研究生：何開暘      指導教授：王聖智 教授 

 

國立交通大學 

電子工程學系  電子研究所碩士班 

 

摘要 

 

 

在本篇論文裡，我們提出一套應用於固定式攝影機拍出影片的深

度估計系統。藉由對現有的單張影像深度估計方法的擴展，我們希望

能從影片中取出有用的時間資訊，將其加入單張影像深度估計演算法

來產生更準確的背景深度的估計，接著給予移動物體適當的深度來產

生整段影片深度的輸出。在固定式攝影機拍攝的影片之中，我們可以

觀測到移動物體和場景中障礙物的遮蔽現象，然而在短時間之內資訊

並不足夠，我們需要利用長時間累計的結果來做出正確的遮蔽邊界判

斷。因此，我們利用統計的方式將移動物體的底部高度記錄於其所經

過的地方，利用一段時間統計出來的結果來判斷靜止前景物體的位置

及其深度範圍，我們將這些資訊加入單張影像遮蔽邊界演算法來產生

邊界判斷及對應的相對深度輸出。對於移動的物體，我們用背景相減

法將它們找出來並做基本的形態學處理，根據追蹤及遮蔽的判斷我們

使用不同的方式給予它們深度並得到影片的深度輸出。 
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Student: Kai-Yang Ho      Advisor: Prof. Sheng-Jyh Wang 

 

Department of Electronics Engineering, Institute of Electronics 
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Abstract 

 

In this thesis, we propose a method to estimate the depth of a video taken from a 

static camera. By extending the single image depth estimation algorithm, we explore 

the temporal knowledge in the video. Combining both single image knowledge and 

temporal knowledge, we get better depth estimation of the background image. After 

that, we estimate the proper depth of the moving objects and get the video depth 

output. In a video, some boundaries can be detected when moving objects are 

occluded by the static occluding objects. However, short term temporal knowledge is 

not enough and we need long term temporal knowledge to find them. In our approach, 

we get the statistics by recording the object bottom height in the pixels the the object 

has passed. Using this statistical information, we find static occluding objects and 

their maximum depth. We add these cues into the boundary detection algorithm to get 

the boundary result and the relative depth. For those moving objects, we use the 

background subtraction method to identify them and perform morphological 

operations for post processing. Depending on the states of moving objects, we use 

different ways to estimate their depth. Finally, we get the depth of the video contents. 
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Chapter 1.  

INTRODUCTION 

Depth estimation is an important issue in computer vision. Human can easily 

perceive and interpret the 3-D scene. We wish computer can also have the same 

ability to understand the 3-D scene itself. If a computer can understand 3-D 

knowledge, it would be of a great help in many works, like surveillance, navigation, 

and image editing. Hence, it is valuable to find some ways to get the depth 

information automatically. Up to now, many techniques have been explored. In a 

vision-based system, the most common and stable approach is to use binocular 

knowledge. With two or more images taken from the same scene with a little 

displacement of camera position, we can estimate the 3-D depth using geometric rules. 

However, in most images or videos, we do not have this kind of stereoscopic 

knowledge.  

In the past few years, some people try to find the geometric properties in a single 

image and use them to estimate the depth [1,2,3]. However, they face the common 

problem: there are too few images. Usually, their approaches can only work at 

specific scenes. In recent years, with the progress of computer vision techniques, 

some people estimate the 3-D depth by using machine learning methods and by using 

images [5,8,10]. Their works seems to work better in getting some 3-D scene 

knowledge from the image. In our work, we aim to extend these learning-based 

methods from images to videos and plan to include the temporal information into the 

learning-based approach for the depth estimation of the 3-D scene. 
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In this thesis, we propose an algorithm to estimate the relative depth of the 3-D 

scene in the videos captured by a static camera. We first estimate the depth of the 

background and then calculate the depth of moving objects in the video frames. We 

explore the temporal knowledge which is helpful for background depth estimation. 

The most valuable knowledge is the occlusion effect which can help us find the 

boundaries and explore the figure/ground relationship. We use a background 

subtraction method to find the moving objects, and then use statistical method to 

record some useful data. By analyzing these data, we find the candidates of occluding 

objects and get their boundaries. After getting the depth of the background image, we 

assign depth to moving objects. Here, we use a simple tracking technique and use the 

maximum/minimum depth information to obtain more reliable estimation. 

The greatest challenge is that the background subtraction method cannot perform 

well on complicated scenes. It often misses some pixels where the color of the 

foreground object is similar to that of the background. This might cause some false 

negatives in the detection of occluding objects. To obtain more stable and reliable 

depth estimation, we have to design a method that is not so sensitive to the occurrence 

of false negatives. 

In this thesis, we first discuss some related works in Chapter 2. In Chapter 3, we 

will describe how to estimate the video depth. Some experimental results are shown in 

Chapter 4 and we will make brief conclusions on Chapter 5. 
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Chapter 2.  

BACKGROUND 

Vision-based depth estimation has been discussed for many years. Many 

algorithms have been proposed. In this thesis, our system works on video sequences 

from a single static camera only and do not have binocular knowledge about the scene. 

In this chapter we will introduce some works about single image depth estimation. In 

the first section, some relevant works about single image depth estimation will be 

introduced. In the second section, we will introduce the algorithms proposed by Derek 

Hoiem in detail which is most relevant to our work. 

2.1. SINGLE IMAGE DEPTH ESTIMATION 

ALGORITHMS 

Depth estimation from a single image is a very difficult topic. Due to the lack of 

depth knowledge, we must restrict the images to satisfying some conditions. In the 

past years, depth reconstruction can be performed based on very specific settings. 

Some people estimate depth using vanishing lines. In [1], Battiato classifies images as 

indoor image, outdoor image with geometric elements, or outdoor image without 

geometric elements. By detecting vanishing lines and using the information collected 

in the classification step, a depth map is estimated. The result is shown in Figure 2-1. 
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Figure 2-1 The results of Battiato’s proposed system [1] 

Shape from shading and shape from texture are traditional works to do 3-D 

reconstruction. They can be used to reconstruct relative depth. However, these 

methods can only be performed on uniform color and/or texture images. Some other 

works use known objects size to get the depth. However, there must exist some 

specific objects in the image and these objects should be detected before the 

estimation of depth. 

To estimate depth with more images, people look for more general properties to 

connect depth and image. In [4], the authors estimate the depth scale of the scene. 

They analyze the Fourier transform and wavelet transform coefficients of the image 

and then infer the depth scale of the scene. Their result is shown in Figure 2-2. 

 

Figure 2-2 The results of Torralba’s proposed system [4] 
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In recent years, with the progress of computer vision, people want to estimate 

image depth using machine learning techniques. Two types of method appear. One is 

to estimate depth from appearance features, while the other is to estimate depth by 

using image segmentation and figure/ground assignment. These methods can estimate 

depth in more images. In the rest of this section, we will introduce the first type of 

method and will leave the second type of method to the next section. 

Saxena starts to estimate depth from image features. In [5], they first divide the 

image into small rectangular patches. In each patch, they get some cues from texture 

variation, texture gradient, and color. The filters they used are shown in Figure 2-3. 

There are two kinds of features in their algorithm. One is absolute depth feature, and 

the other is relative feature. The absolute depth features are calculated from the sum 

and the sum square of filter output in each patch. In their work, they assume the depth 

and absolute depth features have linear relationship. That is, the depth can be roughly 

estimated from the linear combination of the absolute depth features. Besides, these 

parameters can be trained beforehand. 

 

Figure 2-3 The filters used by Saxena [5] 

The relative features are calculated from the difference between the histograms 

of nearby patches. Because adjacent patches often have close depth, they penalizes the 

difference of depth between adjacent patches if the histograms are similar. They use 

MRF model to take account these two types of features. To get more global structure 

of the scene, they use multiple special scales of patch size and filter size. The multiple 

scale structure is shown in Figure 2-4 and some results are shown in Figure 2-5. 
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Figure 2-4 The multiple scale structure [5] 

 

Figure 2-5 The result of Saxena’s proposed system [5] 

In [6], Saxena improves the depth estimation algorithm. Instead of dividing the 

image into rectangular patches, they use the superpixel segmentation algorithm [7] to 

divide the image into small uniform regions. Moreover, they assume each region is a 

planar surface. They want to estimate the 3-D position and orientation of each 

superpixel which is called the plane parameter. Having the plane parameter means we 

can get the depth of each pixel in the region. Like their previous work, they get some 

image features in each superpixel and use MRF model to consider the relationship 

between adjacent regions. Moreover, they consider the geometric structure between 

adjacent regions, which are connected structure, co-planar structure, and co-linearity. 
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Connected structure means two regions connect each other without a boundary 

between them. Co-planar structure means two regions are in the same plane so there is 

no edge between them. Co-linearity means two regions lie on a straight line in the 2-d 

image. When two nearby regions are more similar, their plane parameter should 

satisfy the geometric structure more. 

In [8], Liu performs the semantic labeling before estimating depth. They think 

that directly estimating depth from image features is difficult because the relationship 

between appearance properties and depth in each object is different. For example, sky 

and water region have similar appearance features, but their relationships to depth are 

different. Hence, they roughly classify images into some semantic classes and train 

the parameters in each class. Once they get an image, they first predict the semantic 

label in each pixel. After that, they use the parameters in that class to estimate the 

depth. Some results of their algorithm are shown in Figure 2-6. Images from left to 

right are the original image, their semantic labels prediction, ground truth depth, and 

their depth prediction. 

 

Figure 2-6  Result of Liu’s proposed system [8] 
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Using appearance features, depth can be roughly estimated. However, the 

relationship between depth and appearance features is not so simple. Even after the 

classification of the image into semantic labels, the diversity in each class is still large. 

For example, there are many types of trees in the world. Different species of tree have 

different size, color, and texture. If we classified the image into many labels, 

classification accuracy in each label would be low. Hence, in this type of method, the 

images in the dataset could not have big diversity. That is, the images in the training 

data and the testing images have to be similar. 

 

2.2. DEPTH ESTIMATION FROM 

OCCLUSION REASONING 

Depth estimation from appearance features is difficult. Even human cannot 

predict depth well simply based on small-region features. In fact, we can perceive the 

depth usually because we know the whole structure in the scene. Besides, we can 

detect the objects in the image and get their position relationship. Hoiem proposed an 

algorithm in [9] to label the image into geometric classes. They use the classification 

result to find the occlusion boundaries in the image [10]. By knowing the surfaces and 

boundaries, they get the depth order of the image contents. In the following 

subsection, we will introduce the algorithms proposed by Hoiem. 

2.2.1. SURFACE LAYOUT 

To get the 3-D structure of the scene, Hoiem proposed an algorithm in [9] to 
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recover the rough surface layout of an outdoor image. They classify the image into 

geometric labels. Each pixel belongs to either ground plane, vertical surface, or the 

sky. The vertical surfaces are subdivided into planar surface facing left or right, or 

center and non-planar surface which is solid or porous. One classification result is 

shown in Figure 2-7. Different colors mean different main classes (ground, vertical, 

sky). The marks indicate the subclass labels of vertical regions. 

  

Figure 2-7  The labels of Hoiem’s system [9] 

In their work, they assume the camera axis is roughly aligned with the ground 

plane. They remove some pictures whose horizon is too high or too low. They find 

most pixels can be represented by three main classes. Because their classification is 

based on object‟s geometric orientation, it‟s possible that the same object belongs to 

different classes. The subcategories provide few geometric properties but are valuable 

in scene understanding. Many objects belong to the “solid” class and provide some 

cues for object recognition. 

Like other semantic labeling task, they need some cues to estimate the geometric 

labels. In their work, they use location cues, color cues, texture cues and perspective 

cues. The detail cues are listed in Figure 2-8. 
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Figure 2-8  The cues used in Hoiem’s surface system [9] 

In their perspective cues, they use vanishing line to infer the geometric structure. 

They first find the long lines in the image, and then find their intersections, which are 

possible vanishing points in the image. They classify the vanishing points into vertical 

vanishing points and horizon vanishing points. When more pixels in a region 

contribute to vertical (or horizon) vanishing points, the region is more likely to be a 

vertical (or support) surface.  

Some cues listed before need a large spatial support to get information. Hence, 

how to get the appropriate region size is an issue of their work. In their algorithm, 

they first segment the image into superpixels. In each superpixel, they assume the 

pixel labels within it are the same. After that, they get some features in the superpixels 

and some features between nearby superpixels. Their system can roughly recognize 

the label of each superpixel independently. However, like other recognition works, 
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they need to consider the relationship between nearby regions. Instead of using MRF 

model, they merge the regions which are most likely to have the same label. This is 

because some cues, such as perspective information, can be effective only when a big 

region is considered. Since it may happen that two different label regions are merged, 

they use multiple segmentations to avoid commitment to any particular segmentation 

process. Because they don‟t know the proper segment number in each image, they use 

many different segmentation numbers. One of their segmentation results is shown in 

Figure 2-9. 

 

Figure 2-9 One multiple segmentation result of Hoiem’s system[9] 

After multiple segmentations, they use the pre-trained parameters to predict the 

label likelihood of each segment. Moreover, for each segment, they calculate the 

likelihood of being homogeneous as a weighting parameter. After that, they calculate 

the superpixel label likelihood by combining different segmentation results. Their 

surface label and likelihood estimating result is shown in Figure 2-10. 

 

Figure 2-10 The result of Hoiem’s surface layout estimation [9] 
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2.2.2. OCCLUSION BOUNDARY 

With the help of surface layout estimation, Hoiem proposed an algorithm to 

recover the occlusion boundaries and depth ordering of an image. In their work, their 

goal is to segment the image into main objects and to know the figure/ground 

relationship between nearby objects. Using the vertical/ground structure, they 

estimate objects depth by detecting the contact points between objects and ground. 

Some regions are occluded by other regions. After that, they use the figure/ground 

relationship to know the max/min depth of those regions. One of their outputs is 

shown in Figure 2-11. In the left picture, the region to the left of an arrow is in front 

of the region to the right of the arrow.  

 

Figure 2-11 One result of Hoiem’s occlusion boundary algorithm[10] 

Because objects usually are not homogenous in appearance, recovering occlusion 

boundaries is a difficult work. Many objects are composed of many different 

color/texture regions and thus the cues used in many segmentation algorithms are 

usually not enough. In their work, they use many cues to recognize the boundaries. 

The cues can be classified as boundary cues, region cues, surface layout cues, and 

depth-based cues. The detail cues are listed in Figure 2-12. 
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Figure 2-12 The cues used in Hoiem’s boundary system [10] 

In their approach, they use the result of their surface layout algorithm to get 

information about boundaries. These are very useful cues because most edges 

between different surface labels are boundaries. These labels can also reveal 

figure/ground knowledge. For example, solid regions are more likely to be in front of 

planar surfaces. Their experiment result demonstrates the importance of these cues. 

In their algorithm, they start with an over-segmentation result of the image and 

then slowly remove the most unlikely edges to get the final boundaries. Their initial 

segmentation is produced from the watershed segmentation process with soft 

boundary map. Usually there are thousands of regions at the beginning and most 

boundaries are preserved in the edges between these regions. They use the cues listed 

before to predict for each edge the likelihood of being a boundary. Because many cues 

need a larger special support, they use a hierarchical segmentation process. At each 

time, they calculate the boundary likelihood of each edge and remove the most 
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unlikely edges until the boundary likelihood of all the remaining edges are up to a 

given threshold. Because regions have grown up and edges have been longer, they 

refine the boundary prediction and then remove the unlikely boundaries again. This 

process keeps going until no new region forms. The flow chart of their system is 

shown in Figure 2-13. 

  

Figure 2-13  The flow chart of Hoiem’s occlusion boundary system[10] 

In their algorithm, they need to estimate the likelihood of boundary labels. They 

use a CRF (Conditional Random Field) model to enforce boundary continuity and 

consistency. That is, the boundary likelihoods of connected edges are related. Hence, 

they need to consider all possible labels of the image instead of estimating each 

boundary confidence alone. For example, in a junction where three edges are 

connected, 27 different labels can be assigned but only 5 types of labels are possible. 

The valid types are shown in Figure 2-14. 

  

Figure 2-14  Illustration of five valid junctions [10] 

In this figure, the arrow line means there is a boundary between two regions and 

the region to the left of the arrow is occluding the region to the right of the arrow. The 
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dot line means there is no boundary. The surface figure/ground relationship can also 

be revealed by the colors, where a darker surface is closer to the camera. They 

calculate the junction likelihood using the likelihoods of outgoing arrows and dot 

lines. Usually the likelihood of an outgoing arrow is conditioned on the data of the 

incoming arrow. They estimate these kinds of likelihood using some cues such as the 

relative angle of two adjacent boundaries. They also consider the consistency of 

surface labels, putting penalty to some cases such as there is no boundary between 

different surface labels. Since the max-product inference of their model is intractable, 

they use Yuille‟s algorithm to provide a soft-max likelihood. The effect of using CRF 

model is shown in Figure 2-15. Small errors are corrected by the CRF model. 

  

Figure 2-15   The effect of Hoiem’s CRF model [10] 
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Chapter 3.  

PROPOSED METHOD 

The goal of our work is to estimate the depth map of videos taken from static 

cameras. Because the backgrounds in the video frames are stationary, we first estimate 

the depth map of the background. Using Hoiem‟s single-image depth estimation 

algorithm, we add the temporal information in it and get the depth map of the 

background. After that, we get the depth of the moving objects and have the video 

depth output. The flow chart of our system is shown in Figure 3-1. In this chapter, we 

will introduce the detail of our system. 

 

 

Figure 3-1  The flow chart of our system 
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3.1. TEMPORAL KNOWLEDGE 

Video is composed of many images, so a way to have the video depth output is to 

estimate the depth of each image using single-image depth estimation. However, 

general single image depth estimation algorithms take a few minutes to process one 

single frame. It would be impractical to estimate the depth frame by frame. In our 

system, since the camera is static and the background is stationary, we only need to 

estimate the background depth once. However, here comes a question: what temporal 

knowledge can we get from the moving objects in the video to help us estimate the 

background depth? In many cases, objects give little knowledge when they just pass 

in front of the camera. On the contrary, when objects pass behind some obstacles in 

the image, we can detect the boundaries of obstacles more easily. Figure 3-2 shows an 

example. When only the background image is given, it is hard to detect the boundary 

within the red circle based on boundary detection algorithm. However, when a car 

passes through it, it becomes easier to find this boundary.  

  

Figure 3-2  Left: Background image with boundary which is hard to detect. 

Right: Moving object passes through the boundary. 

We want to utilize moving objects to obtain temporal knowledge, but we don‟t 

want to spend too much time in it. An efficient way to detect moving objects is based 

on background subtraction. In our approach, we perform the background subtraction 
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process proposed in [11] and use the result to detect some boundaries in the 

background image. However, current background subtraction algorithms still cannot 

perform well in complex scenes. In most videos that contain complicated scenes, the 

background subtraction results are unstable. In the situation that a moving object has a 

color different from the background, we can see the boundary in the background 

subtraction result when the moving object passes through the back of an occluding 

object. However, when the color of the moving object and the background are similar, 

we might detect some false boundaries even if the moving object is not occluded by 

any object. Some examples are shown in Figure 3-3 and Figure 3-4. 

  

Figure 3-3 When a car passes through the back of the tree, we can see the 

boundary in the background subtraction result last for a short time. 

 

Figure 3-4  The man in the middle of the image walks in front of the tree, but 

we see the false boundary in the background subtraction result 

due to the similarity of color.  

That is, short-term temporal information like motion history image (MHI) is not 

enough. We need a sequence of video frames and a way to detect the possible 

boundaries. An easy way to collect temporal information is to count the number of 

objects passing over each pixel. We can do this by summing the value of background 
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subtraction result. The equation is expressed in Eq. 3-1, where Bk means the k-th 

background subtraction image.  

k

k

S B                     Eq. 3-1 

Using this process, if there is an occluding object in the image and some moving 

objects pass behind it, we may find that the accumulated count at a pixel on the 

occluding object is less than that on nearby background pixels. However, the color 

similarity problem still exists. We find that pixels with a dark color are more likely to 

get an accumulated count that is less than the true value. This might be due to the low 

contrast of the camera which makes the objects within the dark regions look similar to 

the background.  

Figure 3-5 shows an example of the summation of four minutes background 

subtraction results. In the scene, people walk on the sidewalk and cars run on the road. 

The contours of the trees can be seen in this picture which can used to infer the 

boundaries. However, there is also strong contrast near the tire and the chassis of the 

cars which is cause by the drawback of the background subtraction algorithm. 

  

Figure 3-5 Left:  The background image. Right: The summation of four 

minutes background subtraction results 

Hence, how to make the system less sensitive to the drawback of the background 

subtraction process is a crucial issue of our work. Before, we counted the frequency of 
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objects passing through each pixel and used the difference of value as boundary cues. 

In fact, moving objects may pass through the occluding object from the back or from 

the front side. If there is no moving object passing through the front of an occluding 

object, the value counted on the pixels of the occluding object would be very small. 

Hence, if we know the appearance times of moving objects passing through the back 

side, we can detect the boundaries more precisely.  

Although we don‟t have the depth of moving objects, we have another cue which 

is relevant to the depth. That is the bottom height of the moving object. Usually the 

bottom height gives the roughly object depth if the object is not severely occluded. 

The steps we collect the bottom height statistics are shown in Figure 3-6. First, we use 

the background subtraction method proposed by Barnich [11]. We use the 

morphological opening process to clear some noisy regions in the subtraction result. 

After that, we merge 10 successive frames and do the morphological closing process. 

The reason for using 10 frames is that there could be a big loss of moving object 

pixels in the background subtraction result. By combining the results of 10 frames, we 

can fill in some of these pixels. The selection of 10 frames is due to the fact that the 

period of time a moving object passes through a pixel last roughly 10 frames. Besides, 

the object depth usually does not have a big change within 10 frames. After the above 

processes, we eliminate small regions that are less than 100 pixels and merge some 

nearby regions. At this time we get some regions and can easily get their bottom 

heights. For each region we record the bottom height at all the pixels within the 

region. 
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Figure 3-6   Temporal knowledge collection steps 

The recording equation can be written as Eq. 3-2. Si means the i-th statistical 2-d 

data recording the number of passing objects corresponding to the bottom height i in 

each pixel. Because our video size is 480 by 720, there are 480 possible bottom 

heights. In Figure 3-7, we show two examples after a period of time of recording. 

These two examples correspond to the bottom heights 100 and 165. The brighter 

region has a bigger counting number. The label n means the n-th object in the frame. 

Function ( )h n  means the bottom height of the n-th object. ,k nB  means the binary 

image of k-th frame with the value 1 only on the pixels of the n-th object. (One 

example is the last image in Figure 3-6.) 

  ,( )i k n

k n

S i h n B               Eq. 3-2 

   

Figure 3-7  The statistical data of bottom height 100 and 165 

When two nearby regions have a large difference of numbers at some bottom 
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heights, there might exist an occluding object in the region that has a smaller number. 

Hence, we can detect the occluding object. Figure 3-8 shows an example. If we count 

the number of object passing through the red and blue dot at different bottom heights, 

we might have the statistical results like the right one. The red histogram means the 

appearance number statistics. On the red dot, moving objects can pass through it both 

on the sidewalk and the road and there are two groups in its histogram. On the other 

hand, on the blue dot, only those moving objects on the road can pass through it. 

When the moving objects walk on the sidewalk, they are occluded by the tree and we 

don‟t see their appearance on the blue dot. In this case, the curve has only one group. 

The big difference of the appearance on the height of the sidewalk gives the cue that 

there is an occluding object on the blue dot. 

        

Figure 3-8 An example of appearance number at different height of two points 

 

After the statistical analysis, we want to find some occluding objects in the 

image. A way to find the occluding objects is to predict and compare. In the prediction 

step, we use a horizontal filter to predict the statistics without occlusion. In the 

comparison step, we compare the predicted one with the observed one. Here we use 

the total number statistics (which is equal to summing the 480 statistical data) to 

explain these steps. If we count the total number of moving objects passing through 

red blue 
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each pixel in the scene (a) of Figure 3-9, we may get the result (b) of Figure 3-9 (the 

lighter pixel has a larger number). In this image, we see the contour of the trees. We 

can detect the boundaries by taking gradients, but we may detect false boundaries on 

the top and the bottom of the path. Because we take the video shot on the eye level, 

moving objects statistics are quite uniformly distributed on the x axis in the image if 

there is no occlusion. Hence, we can do a horizontal filtering to „predict‟ the 

appearance number at each pixel without occlusion. The predicted image is shown in 

(c) of Figure 3-9. By comparing the difference of the observed appearance number 

and the predicted one, we can find the regions where the appearance number are 

shorter and are likely to be the occluding region. The detection result is shown in (d) 

of Figure 3-9. The equations of filtering and comparing are written in Eq. 3-3 and Eq. 

3-4. The label f is the horizontal filter. F is the predicted likelihood of occluding 

regions. 

Sp S f                  Eq. 3-3 

max( ,0)F Sp S             Eq. 3-4 

 

However, using the total number statistics usually produces many false alarms 

due to the aforementioned drawback of the background subtraction process. 
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Figure 3-9  The filtering process to find the occluding object region 

We do the prediction and comparison processes separately at each bottom height 

to erase the background subtraction similarity problem. We use the same predicting 

filter but adjust the way of comparison. Only when the predicted number is a few 

times larger than the observed number, we think that pixel is on an occluding object 

and count the number of difference. The equations are written in Eq. 3-5 and Eq. 3-6. 

                      i iSp S f                     Eq. 3-5 

       
( , ) ( , )

( , )
0

i i

i

Sp x y S x y
F x y


 


 
, ( , ) 5 ( , )

,

iSp x y S x y

else


 Eq. 3-6 

 

If we perform these steps over the statistics in Figure 3-8, we would get the result 

shown in Figure 3-10. The histograms from left to right are the object bottom height 

histogram, predicted object bottom height histogram, and the occluded object bottom 

height histogram. In this example, we can detect the tree because it occludes the 

pedestrian on the sideway. 
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Figure 3-10  The histograms of two points with the prediction and comparison steps 

Because moving objects do not always walk parallel to the camera, we average 

the statistical result at each bottom height with nearby bottom heights and then do the 

filtering separately. There exists one problem, that is, moving object is not fully 

occluded by the occluding object. Its bottom is occluded but we can still see the 

remaining part. In this case, the bottom height jumps from one value to another value 

and makes both side have a big change at some heights. To deal with this situation, we 

also consider the total number change at nearby regions. The occluding object 

possibility would be suppressed if the total number change is small. 

Now we have two kinds of statistics. One is the object bottom height statistics 

and the other is the occluded object bottom statistics. Using these statistics, we can get 

the depth range at each pixel. From the object bottom height statistics, at each point 

we know the roughly depth of objects that might occlude it. Hence, we know that the 

depth of this point is larger than the depth of these objects. From the occluded object 

bottom height statistics, at each point we know the roughly depths of the occluded 

objects. Hence, we know that the depth of this point is smaller than the depth of these 

objects. Here we use the maximum 2% of object bottom height as the minimal depth 

and use the minimum 2% of occluded object bottom height as the maximal depth. 

Combing with the maximal depth range of ground, we get the maximal and minimal 

depths, as shown in Figure 3-11. 



 

26 

 

  

Figure 3-11  The depth range. Left: Minimal depth. Right: Maximal depth. 

In the occluded object bottom height statistics, there are 480 statistical 2-d data 

recording the number of occluded objects at each bottom height. If we sum up the 480 

2-d data, we can get the result image in (d) of Figure 3-12, which shows the predicted 

likelihood of occluding region. The detection results using other statistics are shown 

in Figure 3-12, including the image (a) that counts the total number at each pixel 

(refer to Eq. 3-7), the image (b) that averages the objects bottom height passing 

through each pixel (refer to Eq. 3-8), and the image (c) that combines the first two 

statistics (refer to Eq. 3-9). 

,k n

k n

S B               Eq. 3-7 

,

,

( ) k n

k n

k n

k n

h n B

S
B





            Eq. 3-8 

a bS S S                 Eq. 3-9 

 Statistical method using Eq. 3-7 is likely to be affected by the aforementioned 

color similarity problem. Statistical method using Eq. 3-8 can deal with this color 

similarity problem. However, it is likely to be affected by the noise in some regions 

where objects rarely pass through. Statistical method using Eq. 3-9 is to find the 

interaction of the result using Eq. 3-7 and Eq. 3-8. It produces better result than the 



 

27 

 

other two methods. The statistical method that produces Figure 3-12 (d) spends the 

longest time but is the most stable one. Using this statistics, we can roughly get the 

maximal depth range. 

 

Figure 3-12  The results of occluding objects detection using different statistics 

 

3.2. BACKGROUND DEPTH ESTIMATION 

After we collected the moving object information, we want to estimate the depth 

of the background image by combing single-image cues with it. We do this work by 

extending Hoiem‟s algorithm [10]. Here, let‟s review Hoiem‟s single-image depth 

estimation algorithm first. To estimate the depth of an image, they need to know the 

surface orientations and the boundaries in the image. They use their surface 

estimation algorithm to estimate the surface orientations and use them as cues to 

recover the occlusion boundaries in the image. After that, they combine the two 

results to get the relative depth map. In our algorithm, we collect some useful 
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temporal knowledge and add it in some modules of Hoiem‟s algorithm. The flowchart 

of Hoiem‟s algorithm and the modules that we have added in the temporal knowledge 

are shown in Figure 3-13. In this section, we will introduce the adjustments we have 

made over the flowchart. 

  

Figure 3-13 The flowchart of Hoiem’s algorithm with some blocks adding temporal 

knowledge 

In their work, they start with a watershed segmentation process over the image. 

Although they segment the image into thousands of regions, their boundaries might be 

a little displaced from the actual places. With the help of temporal knowledge, we 

want to preserve the precise boundaries in the initial segmentation. Since the 

watershed segmentation is based on image gradients, we make some modification 

over the image gradients to adjust the segmentation result. In our statistical images ((b) 

and (d) in Figure 3-9), we see the contours of the occluding objects. Taking gradient 

to each single one would yield some false boundaries. Hence, we take gradients to 

both of them and find their intersection. We get the image with a large value at the 

pixels on the boundaries. We add this result to the original gradient and then do the 

watershed segmentation. The gradient images and the segmentation results are shown 

in Figure 3-14 and Figure 3-15. From the segmentation images we can see that the 

watershed segmentation does better on detecting the boundaries of occluding objects. 
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Figure 3-14 The gradient result combining the original gradient result and the gradient 

of temporal statistical images 

  

Figure 3-15  The comparison of the initial segmentation with and without using the 

temporal knowledge. 

 

Having this initial segmentation, we want to get the boundary likelihoods. Beside 

the cues used in Hoiem‟s algorithm, we add in the temporal cues. First we get the 

statistics of each small region. The statistics include the existent part and the shorter 

part. After that, we get the boundary likelihoods between nearby regions by checking 
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whether the shorter part in one region is in the existent part of another region. The 

boundary likelihood is positively related to the counting numbers and is negatively 

related to the region sizes. The equation can be written as below. Function p(x,y,k) 

returns 1 when the segment label of pixel (x,y) is k; otherwise, it returns 0. ,a bL is the 

estimated likelihood of two nearby regions a and b. iSk means the i-th object bottom 

height statistics of region k. iFk  means the i-th occluded object bottom height 

statistics of region k. The function g adjusts the region size weight. 

                  
,

( , , ) ( , )i i

x y

Sk p x y k S x y            Eq.3-10 

,

( , , ) ( , )i i

x y

Fk p x y k F x y            Eq.3-11 

             
480

,

1

, ,

( ( , , )) ( ( , , ))

i i i i
a b

i

x y x y

Sa Fb Sb Fa
L

g p x y a g p x y b




 
    Eq.3-12 

We calculate the likelihoods and add them to the original likelihoods to make the 

boundaries more likely to be preserved. When regions merge, instead of calculating 

the boundary likelihoods by using the composed edges, we calculate the statistics of 

the new region by combing the statistics of the composed small regions and then 

compute the boundary likelihood of nearby regions. This can prevent the situation that 

the occluding and occluded regions merge across weak edges. Figure 3-16 shows an 

example to show how the temporal knowledge works. 
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Figure 3-16 (a) Initial segmentation. (b) Boundary likelihoods from single-image 

features. (c) Boundary likelihoods from temporal cues. (d) Boundary likelihoods using 

both single image cues and temporal cues. 

Using the temporal cues, boundaries where objects often pass can be preserved. 

Sometimes, however, occluded regions near the occluding objects have wrong surface 

labels and may yield wrong segments if their color difference with respect to the 

occluding objects is not big enough or their region size is too small. We check this 

problem in Hoiem‟s algorithm and find there are two main reasons. One is due to the 

wrong initial segmentation of the surface layout algorithm and the other is due to the 

wrong spatial support in multiple segmentations. 

In their surface layout algorithm, they start with superpixel segmentation and 

yield hundred of regions. This segmentation is fast but not very accurate. Sometimes, 

it merges different label regions into one single region. This would cause wrong 

surface labels. Although the segmentation method used in their occlusion boundary 

algorithm is more precise, it doesn‟t work well in the surface layout algorithm. This 

might due to the randomness of multiple segmentation method used in the surface 

layout algorithm. Moreover, it‟s hard to make adjustment in the superpixel 

segmentation algorithm, which makes decision to merge regions by checking whether 
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the color difference between the mean of nearby regions is smaller than the variability 

in each single region. Hence, we only make adjustment in the original background 

image over which we add some value in the occluding object regions to force the 

separation of the occluding and occluded regions. 

 The wrong spatial support is caused by the merging of different label regions in 

their multiple segmentation process. Usually this happens at those small occluded 

regions that merge with occluding objects. We find that in these small regions, the 

single region surface layout estimation often does better prediction than the value of 

multiple segmentation result. Hence, we increase the weighting of the single region 

surface layout estimation in those regions near the occluding objects.  

The ground likelihood prediction comparison is shown in Figure 3-17. Picture (a) 

shows the ground likelihood prediction of Hoiem‟s algorithm. Picture (b) shows the 

ground likelihood prediction after our adjustment. The likelihoods of regions between 

the trees after adjustment are more accurate. Hence, they would not be mistakenly 

classified as vertical regions in the final result. 

 

Figure 3-17  The ground likelihood comparison 

After a repetition of merging process, we get the final segmentation result. We 

need to assign the depth to each region. For those unconnected vertical regions which 

are occluded by the same region, we calculate their similarity. If they are similar 
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enough, we think they are the same object and we calculate their depth simultaneously. 

This process is due to the fact that some vertical occluded regions are separated by 

some occluding objects. If we calculate their depth separately, they might get different 

depth values due to the displacement of contact point with the ground. By combining 

them together, the result looks more accurate.  

To know the depth range in each region, besides the figure/ground relationship 

used in Hoiem‟s algorithm, we have obtained the maximal and minimal depths 

information in some regions by using the temporal statistics. The maximal depth is 

gotten from the minimal appearance height of the shorter part in each region. The 

minimal depth is get from the maximal appearance height of the existent part in each 

region. We use these features to constrain the depth range of some objects and to get 

better object depth estimation. 

One example of background depth estimation is shown in Figure 3-18. We get 

the segmentation result in (a) and estimate the depth in (b). The result of Hoiem‟s 

algorithm which uses only single-image features is shown in (c) and (d). In this 

picture, we get some wrong estimation results mainly on the leaves. This is due to the 

fact that the upper part of the training video usually has deeper depth. Hence, it‟s still 

difficult to get accurate depth estimation result in this kind of scene. However, since 

we have obtained some useful depth information over some regions, such as the trunk 

of the trees, based on the temporal knowledge, we can do better depth estimation over 

those regions. 
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Figure 3-18  Comparison of background depth estimation 

3.3. DEPTH OF VIDEO CONTENTS 

After we have gotten the depth of the background image, we aim to estimate the 

depth of the video contents. The video used here can be the same or different from the 

video we used to collect temporal knowledge. We want to fast find the moving objects 

and assign them the correct depth. Hence, we use the background subtraction method 

to identify the moving objects and assign them the appropriate relative depth. 

To assign the right depth to moving objects, we need to know the rough positions 

of them. After doing background subtraction, we apply morphology processes to clear 

noisy results and to merge nearby pixels. Here we get the foreground regions and find 

the bottom point of each object. However, we can‟t directly treat the bottom point as 

the contact point on the ground. This is because the moving object may be occluded 

by some other occluding objects, as shown in Figure 3-19. Even if the moving object 

is not occluded, the instability of the background subtraction method may also cause 

the bottom point to be different from the actual contact point. Hence, we need to do 

some tracking to better estimate the depth of the moving object. 
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Figure 3-19  Object’s bottom point is not always equal to the contact point on the 

ground 

For each moving object, we know it is occluded or not by checking whether 

there are vertical regions near its bottom point. Besides, we can find whether there are 

objects appear around the position in the previous frame. If the object is not occluded 

and we have found its depth in the previous frame, we estimate its depth based on its 

bottom point and its previously estimated depth. If the object is occluded and we have 

found its depth in the previous frame, we estimate its depth based on the previously 

estimated depth. If the object is not occluded and we cannot find its depth in the 

previous frame, we estimate its depth based on the bottom point. If the object is 

occluded and we cannot find its depth in the previous frame but only know its 

maximal and minimal depths. In this case, we estimate its depth by averaging the 

depth of the moving objects that have passed through this region. This is because 

objects usually have similar paths. Hence, we can record the depth of each pixel in 

advance and propagate the recorded depth information to those objects with unknown 

depth. 

In our method, we do tracking by recording the bottom height, top height, and 

the location on the x-axis in the image. We do not record the properties of the object 
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like shape or color. When an object is occluded by an occluding object, using the 

bottom height may make some mistakes. Hence, we relax the bottom height 

restriction. In our tracking data, we clear the data when the object doesn‟t appear for a 

period of time. This happens when some objects get fully occluded for a short time 

and then appear again.  

Some situations which can‟t be solved in background subtraction could affect our 

result. One problem is the inter-occlusion among moving objects. In background 

subtraction method, the algorithm identifies which pixels are static and which pixels 

are non-static. The algorithm doesn‟t separate pixels of different objects. Hence, in 

our algorithm, it is possible that different moving objects are grouped into a single 

object. In this situation, the depth of the object on the back would be underestimated. 

A possible way to solve this problem is to perform more accurate tracking. On the 

opposite, we may get broken foreground detection result when the color of the object 

is similar to that of the background. In this case, our algorithm doesn‟t perform well.  

When we estimate the depth of each moving object, we need to check whether it 

is deeper than its background which is an impossible case. Hence, we use the mean 

background depth in this region as the upper limit. Moreover, we find that there could 

be tiny holes between the occluding objects and moving objects when some moving 

objects pass through the back of occluding objects. To solve this problem, after we 

have gotten the depth of the moving objects, we perform some morphology processes 

over these vertical background regions with shallower depth to get a proper depth 

estimation. 



 

37 

 

Chapter 4.  

EXPERIMENTAL RESULTS 

In this chapter, we will show and discuss our experimental results. In our 

experiments, the first stage is to capture the video. To show the assistance of temporal 

knowledge in our algorithm, we chose the scenes that have some occluding objects 

that block moving objects behind them. To avoid some situations that might decrease 

the background subtraction performance, we chose the scenes that do not have huge 

luminance change and dramatically shaking trees. We took some videos in the campus. 

The background images of two videos are shown in Figure 4-1. In each scene, we 

took the video for about four minutes. There are about 25 objects pass through within 

the period. The occluding objects in the first scene are the trees near the road. Moving 

objects mainly move on the road or on the sidewalk. The occluding objects in the 

second scene are the tree, the streetlamp, and the car. Moving objects move on the 

road or on the two sidewalks of the road. The camera is the DCR-TRV60 digital video 

camera with the frame rate of 29 frames per seconds. 

 

Figure 4-1   The background images of our demo videos 
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Over the video, we perform background subtraction. Here, we use the ViBe 

program proposed in [11]. We choose the default parameter setting to run the program. 

It takes about five and half minutes to run the background subtraction algorithm over 

the 4-min videos. In the result, there are some holes in the moving object regions and 

there are some false alarms over the leave regions. Examples of the background 

subtraction results are shown in Figure 4-2. 

  

Figure 4-2  Some background subtraction results 

Having the background subtraction result, we do the morphology processes and 

collect the temporal knowledge. This step spends a lot of time because we have 

thousands of frames. Even only performing the opening and closing operations would 

takes a few minutes. After that, we combine the temporal knowledge with Hoiem‟s 

algorithm to get the depth estimation of the background image. Here, we use a 

rule-based approach to adjust the boundary likelihood. The results are shown in 

Figure 4-3.  
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Figure 4-3 Background depth estimation result 

With the background image depth estimation, we assign depth to the moving 

objects and then get the relative depth of the video contents. We compare our results 

with the original single-image estimation results. Here we use Hoiem‟s algorithm to 

estimate the depth of each image separately. The results are shown in Figure 4-4. 

Compared with the results using Hoiem‟s method, our algorithm does better at a 

few places. First, the boundaries with objects passing are more likely to be preserved. 

For example, the trunks of trees in the first video have occluded some moving objects. 

Their depths are better estimated. Second, we can avoid the depth discontinuity on the 

background, which can be shown is the second video. The groves in the image are 

separated by some occluding objects. Using our algorithm, we can treat them as 

continuous objects that have continuous depth. Third, the depths of moving objects 

are better estimated. In fact, using Hoiem‟s method to estimate the depth of each 

frame is very inefficient. Their estimation results are usually inconsistent from frame 
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to frame.  

 

 

Figure 4-4  Video depth estimation result 

There are some restrictions in our system. First, if there is no occluding object 

that occludes some moving objects in the video, we cannot obtain some useful 

temporal information for depth estimation. Second, our system is based on the result 

of background subtraction. Hence, it won‟t perform well if the background 

subtraction result is poor. Moreover, in our method, we do not use specific object 

knowledge and we do not use complicated tracking technique. It would be better if we 

can take into account more object knowledge and adopt more advanced tracking 

techniques in the future. 
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Chapter 5.  

CONCLUSIONS 

In this thesis, we proposed a method to estimate the depth of videos taken from 

static cameras. We accomplish this by first estimating the depth of background image 

and then assigning the depth to moving objects to get the final depth estimation of the 

video contents. Compared with single-image depth estimation, we concern the 

temporal information offered by the moving objects and the obstacles that might 

occlude the moving objects. Our algorithm can provide useful information to other 

processes, like video surveillance and video synthesis. For surveillance systems, we 

can know whether a moving object is occluded by the obstacle and use the 

information as prior knowledge. For video synthesis, we can add some synthesized 

moving objects into the video and know whether some part of the moving object 

should be occluded by some occluding objects in the scene.  
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