
國立交通大學

電子工程學系 電子研究所碩士班

碩 士 論 文

應用於光通訊的受限選擇軟性 RS 解碼器

A Decision-Confined Soft Reed-Solomon Decoder for

Optical Communication Systems

學生：許智翔

指導教授：李鎮宜教授

中華民國一 OO 年八月

應用於光通訊的受限選擇軟性 RS 解碼器

A Decision-Confined Soft Reed-Solomon Decoder for

Optical Communication Systems

研 究 生：許智翔 Student：Chih-Hsiang Hsu

指導教授：李鎮宜教授 Advisor：Chen-Yi Lee

國 立 交 通 大 學

電子工程學系 電子研究所 碩士班

碩 士 論 文

A Thesis
Submitted to Department of Electronics Engineering & Institute Electronics

College of Electrical and Computer Engineering
National Chiao Tung University

In Partial Fulfillment of the Requirements
for the Degree of
Master of Science

in

Electronics Engineering
September 2011

Hsinchu, Taiwan, Republic of China

中華民國一 OO 年八月

應用於光通訊的受限選擇軟性 RS 解碼器

學生：許智翔 指導教授：李鎮宜 教授

國立交通大學

電子工程學系 電子研究所碩士班

摘 要

在光通訊系統中，因為更加快速的傳輸速度而增加的訊號不穩定性，錯誤更正裝

置需要提供更加有力的錯誤更正能力。相較於傳統硬性RS解碼器，軟性解碼器

可以提供更好的錯誤更正能力，但也需要高出許多的硬體複雜度。本論文提出了

一種受限選擇軟性演算法不但可以增加錯誤更正能力並且保有面積效益。創新的

重點在於，不是將許多可能的傳輸訊息解碼再從中挑選出最有可能的一組，而是

將錯誤位置數學式Λ(x)設下限制導致只有解碼其中一組。根據RS(255,239)的模擬

結果，在10−4 CER時可比硬性RS解碼器多達0.4 dB傳輸效益。實驗結果顯示我們

提出的軟性解碼器在CMOS 90奈米製程下可達到2.56 Gb/s吞吐量並且只需花費

與硬性解碼器相似的硬體複雜度。此軟性解碼器可以適用於利用16套解碼器的

10-40 Gb/s光纖系統以及2.5 Gb/s GPON等應用。

A Decision-Confined Soft Reed-Solomon Decoder for

Optical Communication Systems

Student：Chih-Hsiang Hsu Advisor：Dr. Chen-Yi Lee

Department of Electronics Engineering

Institute of Electronics
National Chiao Tung University

ABSTRACT

Due to the increasing uncertainty of data for higher transmission rate, the Forward
Error Correction (FEC) devices need to provide more powerful error correcting
capability for optical communication systems. As compared with traditional hard RS
decoders, the soft RS decoders can perform substantial coding gain but require much
higher hardware complexity. In this thesis, a decision-confined algorithm is proposed
to enhance the error correcting performance with an area-efficient architecture.
The novelty is that, instead of decoding numerous possible transmitted codewords and
choosing the most likely one, only one candidate sequence will be decoded after
confining the degree of error-locator polynomial Λ(x). For RS (255,239) codes,
simulation results confirm that our approach provides 0.4 dB performance gain at 10−4

CER over the hard RS decoders. The experimental result reveals that our soft decoder
can achieve 2.56 Gb/s throughput in standard CMOS 90 nm technology while having
similar complexity as a hard decoder. It can fit well for 10-40 Gb/s with 16 RS
decoders in optical fiber systems and 2.5 Gb/s GPON applications.

A Decision-Confined Soft Reed-Solomon Decoder

for Optical Communication Systems

Student: Chih-Hsiang Hsu

Advisor: Dr. Chen-Yi Lee

Department of Electronics Engineering and Institute of Electronics

National Chiao Tung University

Contents

1 Introduction 1

1.1 Research Motivation . 1

1.2 Thesis Organization . 3

2 Principle of Reed-Solomon Code 4

2.1 Basic Concepts of Finite Fields . 4

2.2 RS Code . 5

2.2.1 Encoding of RS Code . 5

2.2.2 Decoding of RS Code . 6

2.3 Soft Decoding Algorithm for Reed-Solomon Code 10

2.3.1 Generalized-Minimum-Distance Algorithm 11

2.3.2 Chase Algorithm . 12

2.3.3 Guruswami-Sudan Algorithm . 13

2.3.4 Koetter-Vardy Algorithm . 16

2.3.5 Low Complexity Chase Algorithm . 20

3 Decision-Confined Soft Decoding Algorithm 23

3.1 Decision-Confined Soft Decoding Algorithm 23

3.2 Performance Analysis . 27

vii

4 Decision-Confined Soft Reed-Solomon (255,239) Decoder 29

4.1 Decoding Scheme . 30

4.2 Proposed VLSI Architecture . 32

4.2.1 Syndrome Calculator and Reliability Evaluator 32

4.2.2 Syndrome Updater . 32

4.2.3 Half-iteration Key Equation Solver 34

4.2.4 Chien Search and Error Value Evaluator 41

4.3 Implementation Result . 43

4.3.1 Hardware Analysis . 43

4.3.2 Chip Specification . 45

5 Conclusion and Future Works 48

5.1 Conclusion . 48

5.2 Future Works . 49

viii

List of Figures

1.1 Block diagram of a digital communication system 1

1.2 The limited transport distance for different bit rate 2

2.1 The systemic RS encoder . 6

2.2 The decoding flow of RS decoder . 7

2.3 Block diagram of Chase-type soft RS decoder 13

2.4 Comparison for BD and list decoding . 14

2.5 Kotter-Vardy decoding process . 17

2.6 Re-encoding technique . 18

2.7 Simplified Kotter-Vardy decoding process . 21

2.8 The factorization-free LCC decoder . 22

3.1 Simulation results of Chase and simplified Chase algorithm 24

3.2 Proposed soft decoding flow . 25

3.3 Performance of the proposed soft decoding algorithm 27

4.1 Block diagram of a submarine system which use a FEC function 30

4.2 FEC decoder architecture of optical communication systems 30

4.3 Decoding scheme of the proposed soft RS decoder 31

4.4 Syndrome calculator . 32

4.5 Reliability evaluator . 33

ix

4.6 Merge sorter . 33

4.7 Gray code example . 34

4.8 Syndrome updater . 34

4.9 The updating criterion for half iteration BM algorithm 36

4.10 The processing element (H-PE) of half-iteration RiBM 38

4.11 The homogeneous architecture of half-iteration RiBM 39

4.12 The regular architecture of half-iteration RiBM without the calculation of Ω(x) 41

4.13 Parallel-2 Chien search architecture . 42

4.14 BP-based error value evaluator . 44

4.15 Microphoto of soft RS (255,239) chip . 46

4.16 Shmoo plot of proposed decoder chip . 47

x

List of Tables

2.1 Representation of the elements in GF (24) . 5

3.1 Percentage of degree of Λ(x) equals to 8 (105 test patterns) 25

3.2 Comparison of Computational Complexity with Soft RS Decoder 28

4.1 Comparison of Time and Hardware Complexity 43

4.2 Comparison of Time and Hardware Complexity with Soft RS Decoder 45

4.3 Measurement Result of Decision-confined Soft RS (255,239) Decoder 46

4.4 Comparison of Time and Hardware Complexity with Hard Decision RS Decoder 47

xi

Chapter 1

Introduction

1.1 Research Motivation

A communication system transmits an information source to a destination through an un-

known channel. The typical block diagram of traditional digital communication system is

shown in Fig. 1.1. Generally, the communication system can be divided into three component

parts which consists of transmitter, receiver, and channel.

Information

source

Source

encoder

Channel

encoder
Modulator

Information

destination

Source

decoder

Channel

decoder
Demodulator

Channel

Figure 1.1: Block diagram of a digital communication system

The transmitter mainly includes source encoder, channel encoder, and modulator, which

transforms the information into a form that can resist the interference of noise effectively.

1

Then the receiver will reverse the transformed signal by demodulator, channel decoder, and

source decoder. Since the signal may be distorted by the effects such as noise, interference

and distortion as it passes the channel, the channel encoder is incorporate to the system to

overcome the transmission errors by adding certain redundancy message to the source code-

word. These redundant messages can be used for detecting and correcting the errors. Thus,

the channel coding resists the effects of noise and provides better performance compared

with a simple uncoded communication system.

Reed-Solomon (RS) codes are widely used in various communications and digital data

storage systems due to the advantage of overcoming the burst errors [1] [2]. According

to International Telecommunication Union (ITU-T) recommendation, RS (255,239) is stan-

dardized in high speed optical fiber systems and gigabit passive optical network (GPON)

applications [3] [4], which demand 2.5 Gb/s throughput for achieving 2.5, 10 and 40 Gb/s

with 16 RS decoders (STM-16, STM-64 and STM-256) or satisfying the maximum up and

Figure 1.2: The limited transport distance for different bit rate

2

down link requirement. However, because of the increasing uncertainty of data, the trans-

mission distance is restricted to the higher transmission rate. From [5], Fig 1.2 shows the

limited transport distance for different data rate for optical communication systems. It’s

obvious that the limited transmission distance is decreased as the data rate is increased. As

a result, the forward error correction (FEC) devices need to provide more powerful error

correcting capability for optical communication systems to support longer transmission dis-

tance. As compared with traditional hard RS decoders, the soft RS decoders can perform

substantial coding gain but require much higher hardware complexity. So how to enhance

performance while maintaining area efficiency is our design goal. In this thesis, a novel

decoding algorithm and its area-efficient architecture for soft RS codes are proposed.

1.2 Thesis Organization

This thesis consists of five chapters. In chapter 2, the fundamental knowledge of finite-field

arithmetic for RS codes and the procedure of encoding and decoding are introduced. The

concepts of several soft decoding algorithms of RS codes will also be discussed. Chapter 3 will

characterize the proposed decision-confined algorithm. According to our proposed method,

the low complexity VLSI architectures and the corresponding implementation results of the

soft RS decoder will be illustrated in chapter 4. Finally, the conclusion is given in chapter 5.

3

Chapter 2

Principle of Reed-Solomon Code

Reed-Solomon (RS) codes were invented in 1960 by Irving S. Reed and Gustave Solomon [6]

and have been widely employed in digital communication systems. The codewords of RS

codes consist of non-binary symbol therefore RS codes are suitable for correcting burst errors.

In this chapter, the encoding and decoding procedure of a conventional RS system will be

introduced in detail following the basic concepts of finite fields. Then we will further talk

about the soft decoding algorithms for RS codes in the later part of this chapter.

2.1 Basic Concepts of Finite Fields

A finite field, or Galois field (GF), is defined as a set of finite number of elements in which

the arithmetic including addition, subtraction, multiplication, and division can be operated

without leaving the set. A GF (p) can be constructed based on the modulo p arithmetic

and has the elements {0, 1, . . . , p − 1}, where p is usually a prime number. To extend the

field GF (p), GF (pm) for any positive integer m can also be built with pm elements based on

the modulo primitive polynomial f(x) operation. Notice that f(x) must be an irreducible

m-th degree polynomial over GF (p). In a finite field GF (pm), a nonzero element α is said to

be primitive if the powers of α generate all the nonzero elements of GF (pm), and then the

4

pm elements with m-tuple of the field can be constructed as {0, 1, α, . . . , αpm−1}. Since that

only the binary arithmetic calculation is required when p = 2, the fields based on GF (2m)

are attractive for applications. Table 2.1 shows an example of GF (24) which is an extension

filed of GF (2) and is built with the primitive polynomial f(x) = x4 + x+ 1. The primitive

element α is a root of f(x) and therefore f(α) = α4 + α + 1 = 0. In Table 2.1, we can find

that the power representation is useful for multiplication, while the polynomial or 4-tuple

format is more practical for addition.

Table 2.1: Representation of the elements in GF (24)

Power Polynomial 4-tuple

0 0 0 0 0 0

1 1 0 0 0 1

α α 0 0 1 0

α2 α2 0 1 0 0

α3 α3 1 0 0 0

α4 α + 1 0 0 1 1

α5 α2 + α 0 1 1 0

α6 α3 + α2 1 1 0 0

α7 α3 + α + 1 1 0 1 1

α8 α2 + 1 0 1 0 1

α9 α3 + α 1 0 1 0

α10 α2 + α + 1 0 1 1 1

α11 α3 + α2 + α 1 1 1 0

α12 α3 + α2 + α + 1 1 1 1 0

α13 α3 + α2 + 1 1 1 0 1

α14 α3 + 1 1 0 0 1

2.2 RS Code

2.2.1 Encoding of RS Code

An (n, k) RS code over GF (2m) with block length of n symbols and information length of

k symbols, where each symbol consists of m bits, can correct up to t =
⌊

n−k
2

⌋
errors. The

5

generator polynomial G(x) of a RS code can be constructed by the minimum polynomials

of α, α2, · · · , α2t, where α is a primitive element. Let (M0,M1, . . . ,Mk−1) denote k message

symbols, the systematic encoding process is described in terms of the message polynomial

M(x) = M0 + M1x + · · · + Mk−1x
k−1 being transformed into a codeword polynomial C(x)

with the message symbols followed by parity-check symbols r(x).

G(x) = (x− α)(x− α2) · · · (x− α2t) (2.1)

r(x) = M(x) · x2t mod G(x) (2.2)

C(x) = M(x) · x2t + r(x) (2.3)

•••

M(x)

C(x)

Figure 2.1: The systemic RS encoder

Fig 2.1 is the conventional systemic RS encoder with linear feedback shift register (LFSR)

architecture. The combinational logic is depending on G(x) and the feedback loop can be

viewed as the module G(x) operation in (2.2).

2.2.2 Decoding of RS Code

The conventional hard RS decoder, which is shown in Fig. 2.2, contains three major blocks :

syndrome calculator, key equation solver and Chien search & error value evaluator. The

received data R(x) is firstly fed into syndrome calculator to generate syndrome polynomial

S(x). Then the key equation solver (KES) evaluates the error-locator polynomial Λ(x) and

6

the error evaluator polynomial Ω(x). Finally, these polynomials are sent to Chien search

and error value evaluator to find the error locations and calculate the corresponding error

values.

Syndrome

Calculator

Key

Equation

Solver

Chien Search

&

Error Value

Evaluator

Received

Data

Output

Ω(x)

Λ(x)

Received Data Memory

S(x)

e(x)

Figure 2.2: The decoding flow of RS decoder

Syndrome Calculator

Since 2t consecutive power of α are roots of generator polynomial G(x) and codeword poly-

nomial C(x) is a multiple of the G(x), it follows that

C(αi) = 0, for 1 ≤ i ≤ 2t (2.4)

for all codeword polynomials C(x). Let R(x) denote the received polynomial which can be

viewed as the transmitted codeword polynomial C(x) corrupted by error polynomial E(x);

that is R(x) = C(x) + E(x) and E(x) can be written as

E(x) = e1x
i1 + e2x

i2 + · · · + evx
iv (2.5)

when v error values e1, e2, . . ., ev have occurred at the error locators X1 = αi1 , X2 = αi2 ,

. . ., Xv = αiv . The syndrome polynomial S(x) of R(x) then is defined to be

S(x) = S1 + S2x+ · · · + S2tx
2t−1 (2.6)

where

Si = R(αi) = C(αi) + E(αi) =
v∑

j=1

ejX
i
j. (2.7)

7

Key Equation Solver

After calculating the syndrome polynomial, the error-locator polynomial Λ(x) and the error

evaluator polynomial Ω(x) are determined by solving the key equation

Ω(x) = S(x) × Λ(x) mod x2t (2.8)

where Λ(x) is defined as

Λ(x) =
v∏

j=1

(1 −Xjx) = Λ0 + Λ1x+ · · · + Λvx
v. (2.9)

According to the Newton’s identities, the relation between syndrome and error-locator

polynomial can be written as




S1 S2 · · · Sv

S2 S3 · · · Sv+1

...
...

. . .
...

Sv Sv+1 · · · S2v−1







Λv

Λv−1

...

Λ1




=




Sv+1

Sv+2

...

S2v




(2.10)

Solving the key equation to find the error locator and error evaluator polynomials is the

most critical part in the design of RS decoders. Berleykamp-Massey (BM) algorithm [7] is

one of the well-known methods by iteratively modifying the minimal polynomial Λ(x) to

fit the sequences of syndrome The BM algorithm is described by the pseudocode shown in

Algorithm 1. After the 2t cycles of computation, the minimal polynomial result will be the

Λ(x) that fulfills all the syndrome equations. Based on the BM algorithm, the inversionless

BM (iBM) algorithm [8] is proposed to replace the divisions with multiplications, leading to

smaller critical path delay. In 2001, the reformulated inversionless BM (RiBM) algorithm [9]

provided an extremely efficient procedure to calculate Λ(x) with a regular architecture and

a half critical path compared with the iBM algorithm.

From another approach, the modified Euclidean algorithm [10], which takes the point of

view that Ω(x) is the Greatest Common Divisor (GCD) of x2t and S(x), also provides an

8

Algorithm 1. : BM Algorithm

Initialization :

L(0) = 0, γ(0) = 1,Λ0(0) = B0(0) = 1,Λi(0) = Bi(0) = 0, (i = 0, 1, ..., t)

Input : Si, (i = 1, 2, ..., 2t)

for k = 0 to 2t− 1 do

begin

Step 1. ∆k = Λ0Sk+1 + Λ1Sk + · · · + ΛtSk−t+1

Λi(k + 1) = Λi(k) − ∆k

γ(k)
·Bi−1(k), (i = 0, 1, ..., t)

Step 2. if ∆k 6= 0 and 2L(k) < (k + 1)

begin

Bi(k + 1) = Λi+1(k), (i = 0, 1, ..., t)

γ(k + 1) = ∆k

L(k + 1) = k + 1 − L(k)

end

else

begin

Bi(k + 1) = Bi−1(k), (i = 0, 1, ..., t)

γ(k + 1) = γ(k)

L(k + 1) = L(k)

end

end

for i = 0 to t− 1 do

begin

Step 4. Ωi(2t) = Λ0(2t) · Si + Λ1(2t) · Si−1 + · · · + Λi(2t) · S0

end

Output : Λi(2t), (i = 0, 1, ..., t), Ωi(2t), (i = 0, 1, ..., t− 1).

efficient way to solve the key equation. After the first appearance of ME algorithm, lots of

methods are proposed to improve both the hardware cost and calculation time [11] [12]. The

brief procedure of ME algorithm is shown as following description.

• Initial conditions:

Ω(−1)(x) = x2t, Ω(0)(x) = S(x)

Λ(−1)(x) = 0, Λ(0)(x) = 1

• Iterations from i = 1:

9

Ω(i)(x) = Q(i)Ω(i−1)(x) + Ω(i−2)(x)

Λ(i)(x) = Q(i)Λ(i−1)(x) + Λ(i−2)(x)

• Iteration terminated:

deg(Λ(x)) > deg(Ω(x)).

Chien Search

Once the error-locator polynomial Λ(x) is known, the Chien search is applied to find the

error locators Xi [13]. For instance, if α−i, the inverse of error locator Xi, is a root of Λ(x),

one of the error locators is assumed at the i-th position. Note that in the decoding process,

a successful decoding is defined that the number of roots found by Chien search is equal to

the degree of Λ(x). Otherwise, if the number of roots is less than the degree of Λ(x) or Λ(x)

have repeated roots or illegal roots, the received codeword R(x) is uncorrectable.

Error Value Evaluator

The final step of RS decoding is to calculate the error values for error correction. Conven-

tionally, if Xi is one of the error locators, the decoder can calculate the error value ei to be

subtracted from i-th symbol of R(x), Ri, via Forney’s error value formula

ei =
Ω(X−1

i)

Λ(1)(X−1
i)

(2.11)

where Λ(1)(x) = Λ1 + Λ3x
2 + · · · denotes the formal derivative of Λ(x).

2.3 Soft Decoding Algorithm for Reed-Solomon Code

Since the initial appearance of RS decoders, much research has been performed for extend-

ing the error correction capability. The soft decoding algorithms have been developed by

10

incorporating the reliability information from the channel. In the rest of this chapter, we

will briefly introduce several soft decoding algorithms.

2.3.1 Generalized-Minimum-Distance Algorithm

The Generalized-Minimum-Distance (GMD) algorithm was devised by Forney in 1966 [14].

For RS decoders, a received symbol can be erased when the receiver declares it is interfered or

ambiguous. With this method, it’s possible to correct more error values since the most likely

error locators have been already found, which can be viewed as translating error detecting

capability into error correction capability. Accordingly, if ρ symbols are erased, the error-

and-erasure decoder with almost the same algorithm can correct t errors in unerased locations

in addition to ρ erasures on the condition that

2t+ ρ < dmin (2.12)

where dmin is the corresponding minimum distance. The GMD algorithm erases 2i least

reliable symbols as i-th candidate sequence, where i = 0, 1, ..., t, and applies t+ 1 error-and-

erasure decoders to generate all the candidate sequences. After decoding all the candidate

sequences, the decision making unit (DMU) will determine the most probable one as the

output codeword which is with the smallest Euclidean distance between the soft received

sequence R. The brief decoding process of GMD algorithm is illustrated as following de-

scription.

• LRPs determination:

Determine dmin − 1 least reliable symbols.

• Candidate codewords generation:

for i = 0 to t by 1 : Erase 2i least reliable symbols and send it to error-and-erasure

decoder.

11

• Output codeword selection:

Output the decoded codeword with the minimum Euclidean distance between soft

received sequence R.

2.3.2 Chase Algorithm

Chase algorithm [15] can be viewed as the generalization of the GMD algorithm. There

are three types of Chase algorithm, referred as Chase-1, Chase-2, and Chase-3. Chase-1

algorithm flips all dmin−1 least reliable positions (LRPs) [16] and generates at most CN

⌊ dmin
2

⌋
candidate codewords. Chase-3 algorithm does similar operations as the GMD algorithm,

except the erasure operation in the GMD is being replaced by flipping the least reliable

symbols. For binary codes, Chase-3 algorithm achieves the same error performance as GMD

and require same computational complexity.

Chase-2 algorithm can be viewed as an improvement of Chase-3 algorithm, which flips η

LRPs to generate 2η candidate sequences and sends them to the error-only hard RS decoders,

where η can be up to dmin. Hence totally 2η error-only hard RS decoders are employed to solve

each candidate sequence. After decoding all the candidate sequences, the output codeword

will be chosen by the DMU. As considered both error correcting ability and computation

complexity, Chase-2 algorithm is the most popular one. Based on the GMD and Chase

algorithm, Chase-GMD [17] and successive error-and-ersure decoding (SED) [18] have been

proposed to provide additional trade-off between error performance and decoding complexity.

Fig. 2.3 is the block diagram of Chase-2 soft RS decoder. The brief decoding procedure of

Chase-2 algorithm is illustrated as following description.

• LRPs determination:

Determine η least reliable positions.

• Candidate codewords generation:

12

for j = 1 to 2η by 1 : Modify the LRPs by complementing one combination of LRPs

and send it to hard RS decoder.

• Output codeword selection:

Output the decoded codeword with the minimum Euclidean distance between soft

received sequence R.

Candidate

Sequence

Generator

HD RS Decoder

HD RS Decoder

HD RS Decoder

Decision

Making

Unit

Sorter

Output

Codeword

Channel

Information

Figure 2.3: Block diagram of Chase-type soft RS decoder

2.3.3 Guruswami-Sudan Algorithm

Unlike GMD and Chase algorithms, Guruswami-Sudan (GS) algorithm [19] provides list

decoding method to enhance the performance by stretching the error correction ability and

finding out all the probable codewords within its extended decoding sphere. From Fig. 2.4,

compared with the original bounded distance (BD) decoding, the list decoding can correct

up to
⌈
n−

√
nk − 1

⌉
errors, which is able to solve some received messages that would

be uncorrectable for BD decoding. For GS algorithm, the encoder is different from the

typical RS encoder which constructs the codeword C by the evaluation mapping method;

that is C = (C0, C1, . . . , Cn−1) = (M(1),M(α), . . . ,M(αn−1)), where M(x) is the message

polynomial. In addition, an adjustable integer parameter, multiplicity m′, must be given

before decoding to build the corresponding designed decoding radius tm′ . Thus the GS(m′)

13

C1 dmin

C4

C3

C2

C1 dmin

C4

C3

C2

R R

BD decoding List decoding

Figure 2.4: Comparison for BD and list decoding

decoder will return a list which includes all codewords within Hamming distance tm′ from

the received vector R. The GS decoding procedure can be mainly separated into two steps:

interpolation and factorization. The following paragraphs will briefly introduce these two

steps.

Interpolation

An interpolation-based decoding takes the point of view that the codeword polynomial is

the interpolation result from each point of the set (xi, Ci), i = 0, 1, . . . , n− 1, where xi = αi.

Because the received data may be interfered with noise, the decoder tries to use polynomial

interpolation to reconstruct the transmitted codeword polynomial. Several non-zero bivariate

candidate polynomials are constructed by interpolating each point (xi, yi), i = 0, 1, . . . , n−1,

and the minimum-degree polynomial is chosen as Q(x, y) with the following form

Q(x, y) =
C∑

j=0

ajφj(x, y) (2.13)

C = n · (m′ + 1)!

2!(m′ − 1)!
(2.14)

where φj(x, y) is of the form xpyq. Larger multiplicity m′ will increases the error correction

ability. However, the computation complexity would be highly raised, which has a time

14

complexity of O(n2m′4). In 2002, Koetter’s algorithm [20] provided an efficient interpolation

method, which is described in Algorithm 2.

Algorithm 2. : Koetter’s Interpolation Algorithm

Input :

Points : (xi, yi), i = 0, 1 . . . , n− 1;

Interpolation order m′
i;

L = maximum list number.

Initialization :

gj = yj for j = 0 ∼ L.

for i = 0 to n− 1

for (r, s) = (0, 0) to (m′
i−1, 0) by (m′

i−1, 1) lex order

for j = 0 to L

∆j = Dr,sgj(xi, yi)

end (for j)

J = {j : ∆j 6= 0}
if (J 6= NULL)

j∗ = argmin{gj : j ∈ J}
f = gj∗

∆ = ∆j∗

for (j ∈ J)

if (j 6= j∗)

gj = ∆gj + ∆jf

else if (j = j∗)

gj = (x− xi)f

end (if)

end (for j)

end (for J)

end (for (r, s))

Output : Q(x, y) = minj{gj(x, y)}

Factorization

After the interpolation procedure, Q(x, y) will contain some factors polynomial of the form

y− p(x) with degree of p(x), deg(p(x)), less than k, and p(x) is one of the decoded result in

the list. Thus factorization is exploited to identify all the factors of p(x) and the output of

15

the algorithm is a list of the codewords that correspond to these factors. The factorization

step based on Roth-Ruckenstein algorithm [21] is illustrated in Algorithm 3.

Algorithm 3. : Roth-Ruckenstein Algorithm

Initialization :

p(x) = 0, u = deg(p) = −1, D = maximum degree of p(x), v = 0.

Call Rothrucktree (Q(x, y), u, p)

Input :

Q(x, y).

Function Rothrucktree (Q(x, y), u, p) :

v = v + 1

if (Q(x, 0) = 0)

add p(x) into output list

else if (u < D)

R = list of roots of Q(0, y)

for each α ∈ R

begin

Qnew(x, y) = Q(x, xy + α)

pu+1 = α

Call Rothrucktree (Qnew(x, y), u+ 1, p)

end

else

output list = NULL

Output : List of polynomials p(x) of degree ≤ D such that (y − p(x))|Q(x, y)

2.3.4 Koetter-Vardy Algorithm

Based on the GS algorithm, Kotter and Vardy presented an algebraic soft decoding algo-

rithm, referred to Koetter-Vardy (KV) algorithm, by extending the GS algorithm to include

a method for translating soft information into algebraic conditions [22].

By applying those soft information, KV algorithm provides a multiplicity assignment to

offer every point its own multiplicity according to the relatively reliabilities of all possible

transmitted/received symbol pairs and hence a variable number of constraints for each point.

For an (n,k) RS code over GF (2m), a (2m − 1)×n reliability matrix Π can be built as the a

16

posteriori probability (APB) with complexity constraints s while each entry πi,j represents

the reliability of a point (xj, yi). Therefore the multiplicity matrix M can be calculated from

Π. Fig. 2.5 is the decoding process of the KV algorithm.

Algorithm 4. : Multiplicity Assignment Algorithm

Initialization :

Choose a desired value for
2m−1∑
i=0

n−1∑
j=0

m′
i,j

Π∗ = Π, M = 0

While s > 0 do

Find the position (i, j) of the largest entry πi,j in Π∗

π∗
i,j =

πi,j

θi,j+2

m′
i,j = m′

i,j + 1

s = s− 1

Output :

Multiplicities M

In the KV algorithm, the most computationally demanding step is bivariate polynomial

interpolation. The re-encoder technique [23], which is shown in Fig. 2.6, can be applied to

reduce the number of interpolation points which can be viewed as an erasure only decoder.

The received message is the summation of codeword and error polynomial after transmitting

the codeword through a noisy channel, that is R = C+E. The received symbols in R can be

separated into two sets: n− k symbols in IU (“unreliable”) and k symbols in IR (“reliable”)

based on the reliability matrix where IR includes k most reliable symbols and the rest of

them are in IU . Thus, a re-encoded codeword ψ can be constructed by a systematic encoder

Multiplicity

Assignment
Interpolation Factorization

Decision

Making

Unit

KV Algorithm

Front End
Modified GS Algorithm

Soft

Information

Decoded

Codeword

Figure 2.5: Kotter-Vardy decoding process

17

with k most reliability symbol in IR. The difference between R and ψ is

R′ = R− ψ

= (C + E) − ψ

= (C − ψ) + E

= C ′ + E. (2.15)

Since both C and ψ are codewords, C ′ will also be a legal codeword and R′ can be regarded as

a codeword influenced by the same error vector as R. Due to the property of the systematic

encoder, R′ will have k zero symbols in the IR locations, which means that there are k

interpolation points with a zero y-component:

V = {(αi, 0)}, i ∈ IR. (2.16)

C

E

R
Systematic

Encoder
R

Figure 2.6: Re-encoding technique

As a result, an interpolation polynomial for these k points in V with the same multiplicity

m is v(x)m, where v(x) can be calculated through a simple univariate interpolation:

v(x) =
∏

i∈IR

(x− αi). (2.17)

Since most of the points are zero points after the re-encoding process, the computation of

Koetter’s interpolation can be considerably reduced due to only few number of the remainder

points.

To further reduce the computation complexity, the coordinate transformation based tech-

nique was provided by Koetter and Vardy in [24]. After choosing the maximum possible

18

multiplicity m = dy and using the re-encoding method, the bivariate polynomial Q(x, y) can

be reduced to

Q(x, y) =

dy∑

j=0

ωj(x)v(x)
m−jyj

= v(x)m

dy∑

j=0

ωj(x)

(
y

v(x)

)j

, (2.18)

which reveals that a large requirement of memories is applying to store the common term

v(x). Because the purpose of factorization is only to find the factor of the form y − p(x)

from Q(x, y), the term v(x)m can be removed and a reduced interpolation polynomial can be

defined as:

Q̃(x, ỹ) =

dy∑

j=0

ωj(x)ỹ
j, (2.19)

where ỹ = y
v(x)

. In addition, a message polynomial u(x) corresponding to the estimated

transformed codeword C ′ will be a linear y-root of Q(x, y) for a successful decoding with

re-encoding method. Therefore u(x)
v(x)

is linear ỹ-root of Q̃(x, ỹ):

Q̃(x, ỹ) =

(
ỹ − u(x)

v(x)

)
A(x, ỹ). (2.20)

It’s obvious that the degree of u(x)
v(x)

is much smaller than k, which leads to significant sim-

plification of calculation for Roth-Ruckenstein algorithm. Moreover, as mentioned before,R′

has k zero symbols in the IR locations, which means the error values ei occurred in the k

most reliable positions can be evaluated with the following method

u(αi) = ei, i ∈ IR (2.21)

and (x − αi) will be a root u(x) in all the error-free locations in IR. Therefore, a reduced

19

factorization polynomial s(x) can be constructed with the following form

s(x) =
u(x)

v(x)

=

∏
i∈IR,ei=0

(x− αi)Ω(x)

∏
i∈IR

(x− αi)

=
Ω(x)∏

i∈IR,ei 6=0

(x− αi)
(2.22)

=
Ω(x)

Λ(x)
. (2.23)

The Λ(x) and Ω(x) can be regarded as an error locator polynomial for the positions in IR and

the corresponding error evaluator polynomial respectively. Like traditional RS decoder, Λ(x)

and Ω(x) can be figured out with syndrome polynomial s(x) based on the Berlekamp-Massey

algorithm. Chien search is also applied to find the error locations and the corresponding

error values will be determined by the Forney’s algorithm:

ei = u(αi)

=
Ω(αi)v(αi)

Λ(αi)

=
Ω(αi)v(1)(αi)

Λ(1)(αi)
, (2.24)

where v(1)(x) and Λ(1)(x) are the formal derivatives of v(x) and Λ(x) respectively. Accord-

ingly, Fig 2.7 is the decoding process of the simplified KV algorithm. The latest information

about KV algorithm can be found in [25].

2.3.5 Low Complexity Chase Algorithm

By translating soft information from channel, KV algorithm enables the back-end GS de-

coder to perform better correction ability with less complexity. However, the calculation

complexity of interpolation with high multiplicity m′ is still too high for practical imple-

mentation. In 2006, Low complexity Chase (LCC) algorithm [26] is presented, which is a

20

Multiplicity

Assignment

Simplified

Interpolation

Simplified

Factorization

Decision

Making

Unit

Soft

Information

Decoded

Codeword

Re-

encoder

Erasure

Decoder

R R

êChien Search

& Forney s

Algorithm

s(x)

Berlekamp-

Massey

Algorithm

Figure 2.7: Simplified Kotter-Vardy decoding process

Chase-type decoding method cooperating with KV algorithm with multiplicity m′ = 1. Ac-

cording to the received reliability matrix Π, the most and second probable symbol pairs of

each received point will be defined as hard-decision (xi, y
HD
i) and secondary hard-decision

(xi, y
2HD
i) respectively for i = 0 ∼ n − 1. Then the probability γi which represents the

reliability of each point is given as

γi =
p(ci = y2HD

i |γi)

p(ci = yHD
i |γi)

≤ 1. (2.25)

If γi is close to 1, it’s highly possible that the hard-decision is wrong and the secondary

hard-decision is correct.

For LCC decoding, η least reliability symbols with maximum γi will be found out and

form the unreliable position set I = {i1, i2, . . . , iη}. Then the n-point candidate sequence is

defined as

(xi, yi) =
{

{(xi,y
HD
i)} if i/∈I

{(xi,yHD
i ,(xi,y2HD

i)} if i∈I
(2.26)

Note that there are two possible symbols for each position in I, the total number of can-

didate sequences is 2η. Since there are n − η common points in these candidate sequences,

interpolation results of these points will be the same for 2η candidate sequences by taking

advantage of that each point is interpolated individually. Hence only η data has to be inter-

polated repeatedly. In 2009, further improvement about LCC for area efficiency is proposed

in [27]. Since the multiplicity m′ = 1, the maximum y-degree of the interpolation output is

21

one. Thus Q(x, y) can be expressed as

Q(x, y) = q0(x) + q1(x)y. (2.27)

Hence the factorization step can be removed. After using re-encoding and coordinate trans-

formation methods, the reduced factorization polynomial s(x) can be created as

s(x) =
q0(x)

q1(x)
. (2.28)

As mentioned in the procedure of KV algorithm, the error values can be evaluated with the

following process.

ei = u(x)|x=αi

= s(x)v(x)|x=αi

=
q0(α

i)v(αi)

q1(αi)

=
q0(α

i)v(1)(αi)

q
(1)
1 (αi)

. (2.29)

Based on the above technique, the factorization-free LCC decoding process is shown in

Fig 2.8.

Multiplicity

Assignment
Interpolation

Chien Search

& Forney s

Algorithm

Decision

Making

Unit

Soft

Information

Decoded

Codeword

Re-

encoder

Erasure

Decoder

R R

ê

Figure 2.8: The factorization-free LCC decoder

22

Chapter 3

Decision-Confined Soft Decoding

Algorithm

In the previous section, we have introduced some well-developed soft decoding algorithms.

However, because of high computational complexity, these methods are still unsuitable for

practical implementation. In order to make use of soft information from channel to enhance

the correction capability and maintain area efficiency, a decision-confined soft decoding al-

gorithm is presented in this chapter.

In this chapter, we will present the detail description of our proposed method. Then

some simulation results and the comparison between other different design will be shown.

3.1 Decision-Confined Soft Decoding Algorithm

In the Chase-2 (Chase) algorithm, the DMU consumes high hardware cost due to the com-

plex calculation of the Euclidean distance. However, the effect of the DMU on the error

performance is not clear. Fig. 3.1 shows the simulation results of the conventional Chase

and the simplified Chase algorithm. From Fig. 3.1, the performance loss without the DMU

is very slight. As a result, the hardware complexity can be significantly reduced by removing

23

the DMU without leading to obvious loss of error correction capability. The decoding flow

of simplified Chase algorithm is illustrated as the following description.

• LRPs determination:

Determine η least reliable positions.

• Candidate codewords generation:

for j = 1 to 2η by 1 : Modify the LRPs by complementing one combination of LRPs

and send it to hard RS decoder.

• Output codeword:

If the number of error of decoded sequence is no more than t, output the decoded

codeword and terminate the decoding procedure.

5.5 6 6.5 7 7.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

RS(255,239)

Eb/No(db)

C
E

R

HD

Chase (without DMU), η=3

Chase (without DMU), η=4

Chase η=3

Chase η=4

Figure 3.1: Simulation results of Chase and simplified Chase algorithm

As mentioned in Section 2.2.2, a successful RS decoding is defined that the number of

roots found by Chien search is equal to the degree of error-locator polynomial Λ(x). However,

24

from our simulation results, when a received data has more than t errors, it’s highly possible

for Chien search to find less than t roots for a degree-t Λ(x), which leads to an unsuccessful

decoding and might introduce some extra errors.

Table 3.1: Percentage of degree of Λ(x) equals to 8 (105

test patterns)

Error number 9 10 11 12 13 14
Percentage % 99.5 99.5 99.6 99.6 99.5 99.5

Table 3.1 is the simulation result of RS (255,239), t = 8, and there is over 99.5% probility

for Chien search to find a degree-8 Λ(x) when the number of errors exceeds 8. According

to this characteristic, we propose a decision-confined algorithm to enhance the decoding

efficiency by confining the degree of Λ(x), leading to only one candidate will be sent to

Chien search.

Reliability Evaluator

&

Syndrome Calculator

Gray Code based

Bit Flipping

Syndrome Updater

&

Key Equation Solver

Chien Search

&

Error Value Evaluator

Check if

deg(Λ
(i+1)
(x)) < t

No

Yes

End

Received

signal

S(x) LRP

Λ
(i+1)
(x)

Figure 3.2: Proposed soft decoding flow

Fig. 3.2 shows our proposed soft decoding flow. First of all, based on the received soft

information, η least reliable positions (LRPs), [l0, l1, ..., lη−1], are defined and S(x) is calcu-

25

lated simultaneously. The candidate sequences are generated according to Gray code based

bit-flipping method, leading to only one bit of these LRPs flipped between each succes-

sive candidate. As a result, S(i+1)(x) for the (i + 1)-th candidate can be updated with the

following method.

S
(i+1)
j = S

(i)
j + e′k × αlk×j, 1 ≤ j ≤ 2t. (3.1)

S
(i+1)
j is the j-th coefficient of S(i+1)(x) and e′k × αlk×j is the compensation value, which

can be viewed as the error pattern induced by the bit-flipping operation of k-th LRP. For

example, if the flipped LRP is the 4th bit in 25th symbol of the received data, the values

Algorithm 5. : Decision-Confined Algorithm

Input : R(x) and η-bit integers γ = γ′ = 0.

step 1.

Calculate syndrome S(x).

Evaluate η LRPs, L = [l0, l1, ..., lj−1], and

corresponding error values, E ′ = [e′1, e
′
2 . . . , e

′
η].

step 2.

for i = 0, i < 2η − 1, i = i+ 1 :

γ′ = γ, γ = i⊕ (i >> 1) (Gray code)

Find the bit different between γ and γ′, k-th bit

Update syndrome S(i+1)(x) :

S
(i+1)
j = S

(i)
j + e′k × αlk×j, 1 ≤ j ≤ 2t.

Calculate Λ(i+1)(x) from KES with S(i+1)(x).

if (deg(Λ(i+1)(x)) < t)

go to step 4.

else if (i = 2η − 2 and deg(Λ(i+1)(x)) = t)

go to step 3.

end for

step 3.

Calculate Λ(x) with S(x).

step 4.

Find error locations and

evaluate error values to obtain e(x).

Output : Ĉ(x) = R(x) ⊕ e(x).

End

26

of e′k and αlk will be α4 and α25 respectively. After updating the syndrome S(i+1)(x) and

calculating the corresponding Λ(i+1)(x), we set a condition that only the Λ(i+1)(x) with

degree less than t will be sent to Chien search to find the error locations because it’s highly

possible for the Λ(i+1)(x) to be in the limit of correction capability. If the condition is met,

the candidate sequence will be decoded as the output message and the decoding procedure

will be terminated. Otherwise, next candidate will be generated to repeat above-mentioned

steps. If no one meets the condition among all 2η − 1 candidates, the received signal will be

decoded without the condition, and the error correction capability as hard RS decoders is

guaranteed. Algorithm 5. is the detail illustration of our proposed method.

3.2 Performance Analysis

Fig. 3.3 shows the RS (255,239) simulation results for our proposed algorithm with different

η under BPSK modulation and AWGN channel. The performance gain at 10−4 CER is 0.4

dB with η = 5 over the hard decoding. From Fig. 3.3, our proposed method with η = 5 can

5.5 6 6.5 7 7.5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

RS(255,239)

Eb/No(db)

C
E

R

HD
Proposed, η=3
Proposed, η=4
Proposed, η=5
Chase, η=3
GMD
KV, m

max
 = 4

Figure 3.3: Performance of the proposed soft decoding algorithm

27

provide better error performance than GMD and KV algorithm with mmax = 4, and achieve

competitive coding gain as Chase algorithm with η = 3.

Table 3.2: Comparison of Computational Complexity with Soft RS
Decoder

Proposed Algorithm Chase Algorithm
η = 5 η = 3

Eb/N0 6.0 6.5 7.0 6.0 6.5 7.0
Syndrome Calculator 5.22 1.30 1.07 8 8 8

KES 5.22 1.30 1.07 8 8 8
Chien Search 1 1 1 8 8 8

Error Value Evaluator 1 1 1 8 8 8

Although it needs to flip more LRPs, the average computational complexity of our pro-

posal is much less than Chase algorithm. Table 3.2 is the comparison of computational

complexity with Chase algorithm. For instance, at Eb/N0 = 7, according to our approach

with η = 5, the average computation times of syndrome updater, KES, Chien search and

error value evaluator are 1.07, 1.07, 1 and 1 respectively. However, the Chase algorithm with

η = 3 consumes 23 calculation for all the decoding blocks.

28

Chapter 4

Decision-Confined Soft Reed-Solomon

(255,239) Decoder

For the optical fiber systems and GPON applications [3] [4], RS (255,239) is standardized

with demand for 2.5 Gb/s throughput to achieve 2.5, 10 and 40 Gb/s (STM-16, STM-64

and STM-256) with 16 RS decoders or satisfy the maximum up and down link requirement.

Fig 4.1 illustrates the block diagram of a submarine system which use a FEC function to

benefit the overall system. Fig 4.2 shows the frame structure of the FEC decoder for optical

communication systems.

Due to the parallel decoder architecture in optical fiber systems and large amount of users

for GPON, the hardware cost is also an important issue. According to our proposed algo-

rithm, an area-efficient decision-confined soft Reed-Solomon (255,239) decoder is presented

to support longer transmission distance for high data rate optical communication systems.

In the beginning of this chapter, we will introduce the overall decoding scheme. Then the

detail VLSI architecture of each component will be shown. In the end of this chapter, we

will reveal the implementation result of our soft decoder chip.

29

Optical

Receiver

Optical

Receiver

FEC

encoder

FEC

encoder

Transmit

TTE

(interleaver)

STM-16

STM-16

Optical

section

Optical

Transmitter

Optical

Transmitter

FEC

decoder

FEC

decoder

Receive

TTE

(De-

interleaver)

STM-16

STM-16

Noise

Figure 4.1: Block diagram of a submarine system which use a FEC function

1/16

1/8

1/8

1/8

8/1

8/1

8/1

RS(255,239)

decoder #1

RS(255,239)

decoder #2

RS(255,239)

decoder #16

16/1

Demultiplexer Multiplexer

subframe 1

subframe (8x16)

8

8

8

8

8

8

Framing structure

(extracton)

FEC frame
STM-16

at 2.5 Gb/s

Figure 4.2: FEC decoder architecture of optical communication systems

4.1 Decoding Scheme

For the 2.5 Gb/s requirement of the optical communication systems, a soft RS (255,239)

decoder with three pipelined stages based on our decision-confined decoding algorithm is

presented and the decoding scheme is shown in Fig. 4.3. At the first stage, the reliabil-

30

Received

signal

Output

Syndrome

Updater

Half-

iteration

RiBM

Chien

Search

Error

Value

Evaluator

Memory

Reliability

Evaluator

Syndrome

Calculator

LRP

S(x)

S
(i+1)

(x) Λ
(i+1)

(x)

e(x)

Check if

deg(Λ
(i+1)

(x)) < t

No

Yes

1
st

2
nd

3
rd

Figure 4.3: Decoding scheme of the proposed soft RS decoder

ity evaluator computes 5 LRPs and the syndrome calculator counts the syndrome S(x) in

the meanwhile. The syndrome updater then iteratively modifies the syndromes S(i+1)(x)

according to the LRPs with Gray code based bit-flipping method and the KES solves the

corresponding Λ(i+1)(x) at the second stage as illustrated in step 2. of Algorithm 4. The

candidate sequence with the degree of Λ(i+1)(x) less than t will be sent to a parallel-2 Chien

search to find the error locations and calculate the error values with Björck-Pereyra based

method [28] at the last stage. Since the received message for the decoders is serial input and

there are totally 255 symbols for a RS (255,239) codeword, the computation cycle for each

pipelined stage is usually 255. However, according to our timing schedule, each pipelined

stage has been slightly enlarged from 255 to 259 clock cycles due to the 3-pipeline-staged

reliability evaluator, which will be described more specifically in the following paragraph.

The rest of the sections will show the VLSI architecture of each component of our proposal

in detail.

31

4.2 Proposed VLSI Architecture

4.2.1 Syndrome Calculator and Reliability Evaluator

1

1

2

2

8

8

9

9

10

10

16

16

R(x)

Figure 4.4: Syndrome calculator

At the first stage, the syndrome polynomial is calculated based on (2.7) with the archi-

tecture shown in Fig. 4.4. In addition, with the advantage of divide-and-conquer leading to

fewer comparing times, we choose the merge sort concept [29] as the reliability evaluator to

find 5 LRPs to reduce critical path. The reliability evaluator is formed with 3-stage pipeline

design which is shown in Fig. 4.5. The first and second stages calculate the 5 LRPs of the

serial input while the third stage decides the new temporary candidate LRPs among the

output of last stage and the last temporary candidate. Fig. 4.6 shows the small components

of the reliability evaluator. Due to the delay of pipelined design of the reliability evaluator,

the latency of each pipelined stage has been enlarged from 255 to 259 clock cycles.

4.2.2 Syndrome Updater

Since the Gray code based bit-flipping method is applied, leading to only one bit of these

LRPs flipped between each successive candidate. Fig. 4.7 is an example of Gray code based

32

Merge Sort 2

IN1 IN2

2

Merge Sort 2

IN3 IN4

2

Merge Sort 4

Merge Sort 2

IN5 IN6

2

Merge Sort 2

IN7 IN8

2

Merge Sort 4

4

REG

4

4

REG

4

Merge Sort 8

5

5 LRPs

5

REG

5

REG

5

Merge Sort 10

5

Figure 4.5: Reliability evaluator

Comparator
IN1

IN2

OUT1

OUT2

IN1

IN2

IN1'

IN2'

Merge

Sorter

2

Merge

Sorter

2

Merge

Sorter

2

OUT1

OUT2

OUT3

OUT4

Merge Sorter 2 Merge Sorter 4

Figure 4.6: Merge sorter

bit-flipping method. Thus the candidate syndrome S(i+1)(x) can be updated from S(i)(x)

cccording to (3.1) by utilizing a look-up table (LUT) instead of recalculating it with syndrome

calculator as (2.7) for further cost efficiency.

Note that there are at most 25 candidates for each received message and 259 computa-

tional cycles for each pipelined stage. Thus it has 8 computational cycles for every S(i+1)(x)

and Λ(i+1)(x). As a result, the finite field multipliers (FFMs) and the squares can be shared

to compute 16 compensation values for further hardware reduction. In our design, it only

33

costs 4 FFMs and 2 squares for the calculation of all compensation values as shown in

Fig. 4.8.

111101

100 110

011001

000 010

0: Unchanged

1: Bit-Flipping

Figure 4.7: Gray code example

Reliability

Evaluator
LUT1LUT2

e kα
lk

LRP

Controller

square square

LRP

Figure 4.8: Syndrome updater

4.2.3 Half-iteration Key Equation Solver

The conventional key equation solver (KES) needs 2t iterations to solve the key equation

: Ω(x) = S(x) × Λ(x) mod x2t. For RS (255,239), it will cost 16 cycles to calculate Λ(x).

Instead of using two KES to meet 8 cycles timing constraint, which results in high complexity

and difficult signal controlling, we propose a half-iteration RiBM algorithm on the basis

34

of [9] and [30] to shorten the latency of KES. Combining the advantages of homogeneous

architecture and half computation latency, half-iteration RiBM can fully match our desire

for KES.

Based on the method in step 1. of Algorithm 1, the discrepancy ∆(k, x) is exactly the

coefficients of xk in the polynomial product of syndrome and error-locator polynomial

∆(k, x) = Λ(k, x) · S(x)

= δ0(k)+δ1(k)·x+· · ·+δk(k)·xk + · · · . (4.1)

Notice that the discrepancy δi+k(i+ k) can not be changed by δi(k) and θi(k) for any i < k,

so the RiBM algorithm utilizes the following updating equation to calculate Λ(x) and Ω(x)

in 2t iterations [9].

δ̂i(k + 1) = γ(k) · δ̂i+1(k) − δ̂0(k) · θ̂i(k) (4.2)

To halve the computation iteration of KES, Raghupathy and Liu found that the control

signal L, which is normally considered to be the degree of Λ(x) in the BM algorithm, can be

increased only once in any two successive iterations, the updating iterations of key equation

can be separated into odd and even iterations [30]. Based on the discrepancy of the odd

iteration ∆2k−1 and the discrepancy predicted for the even iteration ε2k, where

∆2k−1 =

Lk−1∑

j=0

Λ
(2k−2)
j S2k−1−j (4.3)

ε2k =

Lk−1∑

j=0

Λ
(2k−2)
j S2k−j (4.4)

the updating equation can be modified into five cases as shown in Fig. 4.9. Λ(x) then is

calculated as

Λ
(2k)
i = Λ

(2k−2)
i + g1Λ

(2k−2)
i−1 + g2B

(2k−2)
i−1 + g3B

(2k−2)
i−2 (4.5)

where gj (j = 1 ∼ 3) are the updating factors based on the different cases. Λ(x) will be then

completed in only t iterations.

35

2 1
0

k−∆ =

2 1
0

k−∆ ≠

2
0

k
ε =

2
0

k
ε ≠

2 1
2 2 1

k
L k− ≤ −

2 1
2 2 1

k
L k− > −

2 2
2 2 2

k
L k− ≤ −

2 2
2 2 2

k
L k− > −

Figure 4.9: The updating criterion for half iteration BM algorithm

In comparison with the RiBM algorithm, the method of [30] can halve the computation

iteration. However, due to the adder tree discrepancy calculation, it requires a critical path

delay longer than 3 · (Tmult + Tadd), where Tmult and Tadd are the delay time of finite field

multiplier (FFM) and finite field adder (FFA) respectively. Thus, we try to improve the

critical path and provide the advantage of regularity by making use of the property of RiBM

algorithm. Notice that ∆2k−1 and ε2k are exactly the coefficients of x2k−2 and x2k−1 in

(4.1). Therefore, we define δ̂i(k) = δi+2k−2(k) and θ̂i(k) = θi+2k−2(k) and the polynomial

coefficients can be updated with the equation (4.6).

δ̂i(k + 1) = δi+2k(k + 1)

= g0 · δi+2k(k) + g1 · δi+2k−1(k)

+ g2 · θi+2k−1(k) + g3 · θi+2k−2(k)

= g0 · δ̂i+2(k) + g1 · δ̂i+1(k)

+ g2 · θ̂i+1(k) + g3 · θ̂i(k). (4.6)

To reduce the critical path, βk+1 can be updated with the similar manner of δ̂i(k + 1)

36

Algorithm 6. : Half-iteration RiBM Algorithm

Initialization : L0 = 0, α0 = S1, c0 = 1

δ̂i(0) = θ̂i(0) = 0, (i = 0, ..., 3t− 1)

δ̂3t(0) = θ̂3t(0) = 1

Input : δ̂i(0) = θ̂i(0) = Si+1, (i = 0, ..., 2t− 1)

β0 = S2 − S2
1

for k = 1 to t do

begin

Step 1.

Case 1: δ̂0(k − 1) = 0 and δ̂1(k − 1) = 0

g0 = ck−1, g1 = g2 = g3 = 0, θ̂i(k) = θ̂i(k − 1)

Lk = Lk−1, αk = αk−1, ck = ck−1

Case 2: δ̂0(k − 1) = 0 and δ̂1(k − 1) 6= 0 and Lk−1 > k − 1

g0 = ck−1, g1 = g2 = 0

g3 = δ̂1(k − 1), θ̂i(k) = θ̂i(k − 1)

Lk = Lk−1, αk = αk−1, ck = ck−1

Case 3: δ̂0(k − 1) = 0 and δ̂1(k − 1) 6= 0 and Lk−1 ≤ k − 1

g0 = ck−1, g1 = g2 = 0

g3 = δ̂1(k − 1), θ̂i(k) = δ̂i+2(k − 1)

Lk = 2k − Lk−1, αk = δ̂2(k − 1), ck = δ̂1(k − 1)

Case 4: δ̂0(k − 1) 6= 0 and Lk−1 ≤ k − 1

g0 = ck−1 · δ̂0(k − 1), g1 = βk−1, g2 = δ̂2
0(k − 1),

g3 = 0, θ̂i(k) = δ̂i+1(k − 1)

Lk = 2k − 1 − Lk−1, αk = δ̂1(k − 1), ck = δ̂0(k − 1)

Case 5: δ̂0(k − 1) 6= 0 and Lk−1 > k − 1

g0 = c2k−1, g1 = 0, g2 = ck−1 · δ̂0(k − 1)

g3 = βk−1, θ̂i(k) = θ̂i(k − 1)

Lk = Lk−1, αk = αk−1, ck = ck−1

Step 2.

δ̂i(k) = g0 · δ̂i+2(k − 1) + g1 · δ̂i+1(k − 1)

+g2 · θ̂i+1(k − 1) + g3 · θ̂i(k − 1)

βk = g0(αk · δ̂2(k − 1) + ck · δ̂3(k − 1))

+g1(αk · δ̂1(k − 1) + ck · δ̂2(k − 1))

+g2(αk · θ̂1(k − 1) + ck · θ̂2(k − 1))

+g3(αk · θ̂0(k − 1) + ck · θ̂1(k − 1))

end

Output: Ωi(t+ 1) = δ̂i(t+ 1), (i = 0, 1, ..., t− 1).

Λi(t+ 1) = δ̂t+i(t+ 1), (i = 0, 1, ..., t).

37

with δ̂0(k) and δ̂1(k)

βk = δ̂1(k) · ck − δ̂0(k) · αk

= g0(αk · δ̂2(k − 1) + ck · δ̂3(k − 1))

+ g1(αk · δ̂1(k − 1) + ck · δ̂2(k − 1))

+ g2(αk · θ̂1(k − 1) + ck · θ̂2(k − 1))

+ g3(αk · θ̂0(k − 1) + ck · θ̂1(k − 1)). (4.7)

The structure of H-PE is depicted in Fig. 4.10 and the half-iteration RiBM algorithm

can be implemented with 3t + 1 H-PEs as illustrated in Fig. 4.11. At the beginning of the

process, Λ0 is initialized to 1 and stored into H-PE3t. As the computation cycle k grows,

Λ0 is calculated and stored into H-PE3t−2k. After t cycles of computation, the iterative

algorithm will be completed. The coefficients of Ω(x) and Λ(x) are stored in the H-PEi

(i = 0 ∼ t − 1) and H-PEt+i (i = 0 ∼ t) respectively. Notice that the discrepancies ∆2k−1

and ε2k will be always in the first and second H-PE (δ̂0(k) and δ̂1(k)). The critical path

passes through only two FFMs, two FFAs and one mux because the updating factor βk for

the next iteration is already available at the beginning of the next clock cycle. Algorithm

6. is the clear description of the half-iteration RiBM algorithm. From Algorithm 6, there is

only one control signal among g1 and g3 not zero at each updating iteration, we can share

0

0

1 3/g g

2g

1 3/g g

2g

1
ˆ ()i kθ +

0g

2
ˆ ()i kδ +

1
ˆ ()i kδ +

ˆ ()i kδ

ˆ ()i kδ

2
ˆ ()i kδ +

0g

ˆ ()i kθ

1 3/g g

2g

1 3/g g

2g

0g 0g

ˆ ()i kθ

2
ˆ ()i kδ +

ˆ ()i kδ

ˆ ()i kδ

2
ˆ ()i kδ +

1
ˆ ()i kδ +

1
ˆ ()i kθ +

Figure 4.10: The processing element (H-PE) of half-iteration RiBM

38

H-PE2t-1

S2t

S2t

H-PE1H-PE0

S2S1

S1 S2

CONTROL

H-PEt

St+1

St+1

٠٠٠

٠٠٠

٠٠٠

٠٠٠

٠٠٠

٠٠٠

Ω0(k) Ω1(k) Λt-2(k)

H-PE3tH-PE3t-1

٠٠٠

٠٠٠

٠٠٠

٠٠٠

٠٠٠

٠٠٠

10

0 1

H-PE2t

0

0

0

0

0

H-PE2t+1

0

0

g0

g2

g1 / g3

Λt(k)

Λt-1(k)

Figure 4.11: The homogeneous architecture of half-iteration RiBM

the same multiplier without affecting the correctness of the computation as well as reducing

hardware complexity.

Furthermore, to only compute Λ(x) with half-iteration RiBM architecture, the t H-PEs

in Fig. 4.11 with the initial values 0 in the registers are removed. Based on Algorithm 6,

the value of δ̂i in the H-PEi only depends on the values of δ̂i+1, δ̂i+2, θ̂i and θ̂i+1. Therefore,

the discrepancy will not be changed after removing the original t H-PEs and maintain the

initial values of first 2t − 1 H-PEs. At the beginning of the process, Λ0 is initialized to 1

and stored into H-PE2t. As the computation cycle k grows, Λ0 is calculated and stored into

H-PE2t−2k. Algorithm 7. illustrates the half-iteration RiBM without the calculation of Ω(x)

in detail and the corresponding architecture is shown in Fig. 4.12.

39

Algorithm 7. : Half iteration RiBM Algorithm (without Ω(x))

Initialization : L0 = 0, α0 = S1, c0 = 1, β0 = S2 − S2
1

δ̂i(0) = θ̂i(0) = Si+1, (i = 0, ..., 2t− 1)

δ̂2t(0) = θ̂2t(0) = 1

for k = 1 to t do

begin

Step 1.

Case 1: δ̂0(k − 1) = 0 and δ̂1(k − 1) = 0

g0 = ck−1, g1 = g2 = g3 = 0

θ̂i(k) = θ̂i(k − 1), θ̂2t−2k(k) = θ̂2t−2k+1(k) = 0

Lk = Lk−1, αk = αk−1, ck = ck−1

Case 2: δ̂0(k − 1) = 0 and δ̂1(k − 1) 6= 0 and Lk−1 > k − 1

g0 = ck−1, g1 = g2 = 0, g3 = δ̂1(k − 1)

θ̂i(k) = θ̂i(k − 1), θ̂2t−2k(k) = θ̂2t−2k+1(k) = 0

Lk = Lk−1, αk = αk−1, ck = ck−1

Case 3: δ̂0(k − 1) = 0 and δ̂1(k − 1) 6= 0 and Lk−1 ≤ k − 1

g0 = ck−1, g1 = g2 = 0, g3 = δ̂1(k − 1)

θ̂i(k) = δ̂i+2(k − 1)

Lk = 2k − Lk−1, αk = δ̂2(k − 1), ck = δ̂1(k − 1)

Case 4: δ̂0(k − 1) 6= 0 and Lk−1 ≤ k − 1

g0 = ck−1 · δ̂0(k − 1), g1 = βk−1, g2 = δ̂2
0(k − 1),

g3 = 0, θ̂i(k) = δ̂i+1(k − 1), θ̂2t−2k(k) = 0

Lk = 2k − 1 − Lk−1, αk = δ̂1(k − 1), ck = δ̂0(k − 1)

Case 5: δ̂0(k − 1) 6= 0 and Lk−1 > k − 1

g0 = c2k−1, g1 = 0, g2 = ck−1 · δ̂0(k − 1), g3 = βk−1

θ̂i(k) = θ̂i(k − 1), θ̂2t−2k(k) = θ̂2t−2k+1(k) = 0

Lk = Lk−1, αk = αk−1, ck = ck−1

Step 2.

δ̂i(k) = g0 · δ̂i+2(k − 1) + g1 · δ̂i+1(k − 1)

+g2 · θ̂i+1(k − 1) + g3 · θ̂i(k − 1)

βk = g0(αk · δ̂2(k − 1) + ck · δ̂3(k − 1))

+g1(αk · δ̂1(k − 1) + ck · δ̂2(k − 1))

+g2(αk · θ̂1(k − 1) + ck · θ̂2(k − 1))

+g3(αk · θ̂0(k − 1) + ck · θ̂1(k − 1))

end

Output : Λi(t+ 1) = δ̂i(t+ 1), (i = 0, 1, ..., t).

40

H-PE2tH-PE2t-1

٠٠٠

٠٠٠

٠٠٠

٠٠٠

٠٠٠

٠٠٠

1S2t

S2t 1

H-PE1H-PE0

S2S1

S1 S2

0

0

0

CONTROL

H-PEt

St+1

St+1

٠٠٠

٠٠٠

٠٠٠

٠٠٠

٠٠٠

٠٠٠

Λ0(k) Λ1(k) Λt(k)

g0

g2

g1 / g3

Figure 4.12: The regular architecture of half-iteration RiBM without the calculation of Ω(x)

4.2.4 Chien Search and Error Value Evaluator

Once KES calculates Λ(x), Chien search will be applied to find the error locators Xi. Con-

ventionally, after Chien search evaluates the error locators, the corresponding error values

ei’s can be calculated with Λ(x) and Ω(x) based on the Forney’s algorithm (2.11).

From another approach, the Björck-Pereyra (BP) based method [28] can compute the

error values by solving the Vandermonde relation between the syndrome Si’s and error

locators Xi’s as (4.8).




X1 X2 · · · X8

X2
1 X2

2 · · · X2
8

...
...

. . .
...

X8
1 X8

2 · · · X8
8







e1

e2

...

e8




=




S1

S2

...

S8




(4.8)

Algorithm 8. is the illustration of BP-based method. Each calculation of the syndrome

represents a row operation in (4.8). To update each Si value, the control logic settles the

calculation order of the Si and Xi. After computation, Si will be the i-th error value.

Table (4.1) is the comparison of time and hardware complexity between different methods

including KES, Chien search and error value evaluator. In the lower rows of the table for

total hardware requirement, the estimate is given for RS (255, 239) over GF (28). The

41

Algorithm 8. : Björck-Pereyra Algorithm

Input : Si and Xi, i = 1 ∼ t

step 1.

for k = 1 to t− 1, k = k + 1 :

for i = t to k + 1, i = i− 1 :

Si = Si −XkSi−1

step 2.

for k = t− 1 to 1, k = k − 1 :

for i = k + 1 to t, i = i+ 1 :

Si = Si

Xi−Xi−k

Si−1 = Si−1 − Si

step 3.

for k = 1 to t, k = k + 1 :

Sk = Sk

Xk

Output : Yi = Si, i = 1 ∼ t

estimate for the latency is for each pipelined stage, where Chien search and error value

evaluator are in the same stage. The difference between Forney’s algorithm (1) and (2) is

that method (1) calculates error values after the operation of Chien search; however, method

(2) applies Chien search and evaluates error values in the meantime. From Table (4.1), since

the Forney’s algorithm and BP-based method consume nearly the same hardware costs, the

hardware cost can be reduced distinctly by removing the calculation of Ω(x).

As a result, parallel-2 Chien search architecture, which is shown in Fig. 4.13, is employed

for the timing constraint of our three pipeline design. After determining the error locators,

MUX

1 2

...

...

...

...
t

1

1

MUX MUX

2

2

t

t

i+2

i+1

Figure 4.13: Parallel-2 Chien search architecture

42

Table 4.1: Comparison of Time and Hardware Complexity

Constant Variable
FFA

Reg. Mux ROM
Latency

FFM FFM (bytes) (bytes) (bytes)

Method 1.
Half-iteration RiBM (with Ω(x)) 0 9t+ 11 6t+ 5 6t+ 5 9t+ 10 0 t

Forney’s Algorithm (1) 0 2 2 t 2 n (t+ 1)2

Chien Search parallel-2 2t 0 2t t t 0 n/2

Total
2t 9t+ 13 8t+ 7 8t+ 5 10t+ 12 n (t+ 1)2 + n/2
16 85 71 69 92 255 209

Method 2.
Half-iteration RiBM (with Ω(x)) 0 9t+ 11 6t+ 5 6t+ 5 9t+ 10 0 t

Forney’s Algorithm (2) t 0 t t t n n
Chien Search t 0 t t t 0 n

Total
2t 9t+ 11 8t+ 5 8t+ 5 11t+ 10 n n
16 83 69 69 98 255 255

Method 3.
Half-iteration RiBM (without Ω(x)) 0 6t+ 11 4t+ 5 4t+ 5 6t+ 10 0 t

BP Algorithm 0 2 2 t 8t n 3
2
t2 − t

2

Parallel-2 Chien Search 2t 0 2t t t 0 n/2

Total
2t 6t+ 13 6t+ 7 6t+ 5 15t+ 10 n 3

2
t2 − t

2
+ n/2

16 61 55 53 130 255 220

the error value evaluator based on the BP method will solve the error values which can be

implemented with the architecture as shown in Fig. 4.14. The number of total computation

cycle of the third pipelined stage is 128 + 92 = 220, which meets our timing schedule of 259

cycles for each stage.

4.3 Implementation Result

Based on the architecture described above, we proposed a 2.56 Gb/s soft RS (255,239)

decoder chip for optical communication systems. Following paragraphs will illustrate the

implementation and measurement results of our chip. The comparison between other soft

and hard RS decoders will also be shown in this section.

4.3.1 Hardware Analysis

Table (4.2) shows the detail hardware requirement of our three pipelined decision-confined

decoder and the four pipelined LCC-based decoder [27], which both methods can provide

0.4 dB coding gain at 10−4 CER. The first stage pipelined of our design includes syndrome

43

X1

X2

X7

Xi-Xi-k

S1

S2

S7

S8

÷

·
·
·

X8

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

Si-XkSi-1

XkSi-1

Si

Xi-Xi-k
or

Sk

Xk

Figure 4.14: BP-based error value evaluator

calculator and reliability evaluator. The syndrome updater and KES based on half-iteration

RiBM algorithm compose the second stage. The final stage consists of Chien Search and

error value evaluator. In LCC-based decoder, re-encoder and interpolation are the first and

second pipelined stages respectively. The third stage includes polynomial selection, Chien

search and Forney’s algorithm. The erasure decoder then composes the final stage of the

decoder.

To normalize the area cost with composite field arithmetic, each GF (28) constant mul-

tiplier consists 20 XOR gates and each GF (28) variable multiplier requires 100 XOR gates.

Each GF (28) adder occupies 8 XOR gates, each Mux or memory cell has the same area as an

XOR, and each register needs about three times of the area of an XOR. Accordingly, with

only half latency for each pipeline and less pipelined stages, our design consumes around

22534 XOR gates while the LCC-based decoder occupies about 38671 XOR gates, which

achieves more than 40% area reduction. Note that the assumption is even not including the

cost of decision making unit consumed in [27].

44

Table 4.2: Comparison of Time and Hardware Complexity with Soft RS Decoder

GF (28) GF (28)
GF (28) Mux ROM RAM Reg.

Latency
Constant Variable

Adder (bits) (bytes) (bytes) (bits)
(each stage)

Multiplier Multiplier (# of clock cycle)

Decision-confined
(η = 5)

Syndrome Calculator 16 0 16 128 0 0 128 256
Reliability Evaluator 0 0 0 200 0 0 90 259
Syndrome Updater 0 4 16 288 8+256 0 128 8×32
Half-iteration RiBM 0 62 37 464 0 0 296 8×32

Chien Search 16 0 16 64 0 0 64 128
Error Value Evaluator 0 2 2 448 256 0 128 92

Pipelined Memory 0 0 0 0 0 256×3 0 -
Total 32 68 87 1592 520 256×3 834 259

LCC [27]
(η = 3)

Re-encoder 0 21 39 448 512 0 600 528
Interpolation 0 14 12 87 0 68 166 525

Polynomial Selection 0 8 8 139 0 0 264 23
Chien Search 8 0 8 0 0 0 128 239

Forney’s Algorithm 0 2 2 136 256 0 24 152
Erasure Decoder 0 21 39 299 256 0 424 528

Total 8 66 108 1109 1024 68+256×8 1606 528

4.3.2 Chip Specification

Fig. 4.15 shows our decoder chip and Table (4.3) is the description of the measurement

result. With 90-nm standard CMOS process, the total gate count is 45.3 K excluding the

FIFO memory, which is used as a buffer for soft input signal. The core size is 465×465

µm2. Fig. 4.16 is the shmoo plot of our chip. The operating frequency can achieve up to

320 MHz and the maximum throughput is 2.56 Gb/s which can fit well for 10-40 Gb/s with

16 RS decoders in optical fiber systems and 2.5 Gb/s GPON applications. Furthermore,

the average chip power consumption operated at 320 MHz is 19.6 mW with 1.0 V supply

voltage.

Since our proposal, in our understanding, is the first soft RS decoder chip, Table (4.4)

illustrates the implementation results of our soft RS decoder with other hard RS decoders.

Implemented in 90nm CMOS process, our chip with 45.3K gates is comparable with a con-

ventional hard decoder. Moreover, it can meet the throughput requirement of optical com-

munication systems and provide 0.4 dB coding gain over hard decoders at 10−4 CER.

45

Memory

Syndrome

Calculator

Key Equation

Solver

Error Value

Evaluator

Chien

Search
Relibility

Evaluator

Syndrome Updator

Figure 4.15: Microphoto of soft RS (255,239) chip

Table 4.3: Measurement Result of

Decision-confined Soft RS (255,239)

Decoder

Technology 90 nm

Total # of Gate Count 45.3 K

Core Size (µm2) 465×465

Clock Rate (MHz) 320

Throughput (Gb/s) 2.56

Power (mW) 19.6

46

Figure 4.16: Shmoo plot of proposed decoder chip

Table 4.4: Comparison of Time and Hardware Complexity with Hard Decision RS Decoder

Proposed pRiBM [31] pDCME [12] DCME [11]

Code Type Soft RS (255, 239) Hard RS (255, 239) Hard RS (255, 239) Hard RS (255, 239)

Technology 90nm 90nm 0.13µm 0.25µm

Operation Frequency 320MHz (Measurement) 690MHz (Synthesis) 660MHz (Synthesis) 200MHz (Synthesis)

Gate Count 45.3 K 43.6 K 53.2 K 42.2 K

Throughput 2.56 Gb/s 5.52 Gb/s 5.28 Gb/s 1.6 Gb/s

Coding Gain 0.4 dB @ 10−4 CER - - -

47

Chapter 5

Conclusion and Future Works

5.1 Conclusion

To provide an area efficient and more powerful error correcting capability for optical com-

munication systems, this thesis proposes a novel decision-confined decoding algorithm and

its area-efficient architecture for soft RS codes. By confining the degree of error-locator

polynomial, our approach determines the more likely candidate sequence which leads to only

one candidate sequence being decoded. From our simulation, our method, for RS (255,239)

codes, can achieve 0.4 dB coding gain at 104 CER over hard decoders.

Unlike Chase-type methods using several hard RS decoders and determining the most

probable candidate, our proposal only demands one, leading to significant hardware complex-

ity reduction. By using Gray code based bit-flipping method, which leads to only one bit of

these LRPs flipped between each successive candidate, the syndrome for the next candidate

can be updated with much more efficient method without recalculating it. In order to meet

our timing schedule, we combine the advantage of half-iteration BM and RiBM algorithm

and proposed a half-iteration RiBM algorithm and its homogeneous architecture. Moreover,

by removing the calculation of error evaluator polynomial and applying BP-based method

to compute the error values, the hardware cost can be further reduced. According to the

48

measurement results, the proposed soft RS decoder can achieve 2.56 Gb/s throughput with

45.3 K gate. As a result, our proposal can fully meet the criterion of optical communica-

tions applications and provide more powerful correcting ability with a high-speed and area

efficient solution to support longer transmission distance.

5.2 Future Works

Although our proposal can provide an area-efficient RS decoder with better performance

gain over traditional hard RS decoders, we still have some design challenge for improvement.

Compared with Chase-type methods, our design needs to flip more LRPs to achieve the

competitive coding gain, leading to double operations of KES. Therefore the critical path

will also be doubled over hard decoders. In the future, we will investigate new approaches to

find more efficient methods for determining the characteristic of out of correction. If it can

be done, the number of flipped bits, or the number of candidate sequence will be reduced

while maintaining the error performance. Moreover, the throughput and the hardware cost

can also be enhanced.

49

Bibliography

[1] H. C. Chang, C. B. Shung, and C. Y. Lee, “A Reed-Solomon Product-code (RS-PC)

Decoder Chip for DVD Applications,” IEEE J. Solid-State Circuits, vol. 36, no. 2, pp.

229–238, Feb. 2001.

[2] S. B. Wicker and V. K. Bhargava, “Reed-Solomon Codes and Their Applications,” New

York: IEEE Press, 1994.

[3] Forward Error Correction for Submarine Systems, ITU-T Std. G.975, 1996.

[4] Gigabit-capable Passive Optical Networks (G-PON): Transmission convergence layer

specification, ITU-T Std. G.984.3, 2008.

[5] Q. Mao, “Development Progress of 40 Gb/s (STM-256) SDH Optical System in China,”

China Communications, Feature Articles, Dec. 2005.

[6] I. Reed and G. Solomon, “Polynomial codes over certain finite fields,” J. Soc. Indust.

and Appl. Math, vol. 8, no. 2, pp. 300–304, June 1960.

[7] E. R. Berlekamp, “Algebraic coding theory. new york: Mcgraw-hill,” 1968.

[8] I. S. Reed, M. T. Shih, and T. K. Truong, “VLSI Design of Inverse-Free Berlekamp-

Massey Algorithm,” Proc. Inst. Elect. Eng, vol. 138, pp. 295–298, Sept. 1991.

[9] D. Sarwate and N. Shanbhag, “High-speed architectures for Reed-Solomon decoders,”

IEEE Trans. VLSI Syst., vol. 9, no. 5, pp. 641–655, Oct. 2001.

50

[10] H. Lee, “High-speed VLSI Architecture for Parallel Reed-Solomon Decoder,” IEEE

Trans. VLSI Syst., vol. 11, no. 2, pp. 288–294, 2003.

[11] J. Baek and M. Sunwoo, “New Degree Computationless Modified Euclid Algorithm and

Architecture for Reed-Solomon Decoder,” IEEE Trans. VLSI Syst., vol. 14, no. 8, pp.

915–920, 2006.

[12] S. Lee, H. Lee, J. Shin, and J.-S. Ko, “A High-Speed Pipelined Degree-Computationless

Modified Euclidean Algorithm Architecture for Reed-Solomon Decoders,” IEEE Int.

Symp. on Circuits and Systems (ISCAS)., pp. 901–904, May 2007.

[13] R. Chien, “Cyclic decoding procedure for the Bose-Chaudhuri-Hocquenghem codes,”

IEEE Trans. Inform. Theory, vol. IT-10, pp. 357–363, Oct. 1964.

[14] G. D. Forney, “Generalized Minimum Distance Decoding,” IEEE Trans. Inform. The-

ory, vol. 12, pp. 125–131, Apr. 1966.

[15] D. Chase, “A Class of algorithms for decoding block codes with channel measurement

information,” IEEE Trans. Inform. Theory, vol. 18, no. 1, pp. 170–182, Jan. 1972.

[16] M. Lalam, K. Amis, and D.Leroux, “On the use of Reed-Solomon codes in space-

time coding,” IEEE International Symposium on Personal, Indoor and Mobile Radio

Communications, PIMRC, pp. 31–35, Sept. 2005.

[17] H. Tang, Y. Liu, M. Fossorier, and S. Lin, “On combining chase-2 and GMD decoding

algorithms for nonbinary block codes,” IEEE Communications Letters, vol. 5, no. 5, pp.

209–211, May 2001.

[18] S. W. Lee and B. V. K. V. Kumar, “Soft-Decision Decoding of Reed-Solomon Codes

Using Successive Error-and-Ersure Decoding,” IEEE GLOBECOM 2008, pp. 1–5, 2008.

51

[19] V. Guruswami and M. Sudan, “Improved decoding of Reed-Solomon and algebraic-

geometry codes,” IEEE Trans. Inform. Theory, vol. 45, pp. 1757–1767, 1999.

[20] W. Gross, F. Kschischang, R. Koetter, and R. Gulak, “A VLSI architecture for interpo-

lation in soft-decision list decoding of Reed-Solomon codes,” IEEE Workshop on Signal

Processing Systems (SIPS), pp. 39–44, Oct. 2002.

[21] R. Roth and G. Ruckenstein, “Efficient Decoding of Reed-Solomon Codes beyond Half

the Minimum Distance,” IEEE Trans. Inform. Theory, vol. 46, no. 1, pp. 264–257, Jan.

2000.

[22] R. Koetter and A. Vardy, “Algebraic Soft-Decision Decoding of Reed-Solomon Codes,”

IEEE Trans. Inform. Theory, vol. 49, no. 11, pp. 2809–2825, 2003.

[23] J. Zhu and X. Zhang, “High-speed re-encoder design for algebraic soft-decision Reed-

Solomon decoding,” Proc. IEEE International Symposium on Circuits and Systems,

May 2010.

[24] A. V. R. Koetter, J. Ma and A. Ahmed, “Efficient interpolation and factorization in alge-

braic soft-decision decoding of Reed-Solomon codes,” IEEE Int. Symp. Inform. Theory,

July 2003.

[25] A. Ahmed, R. Koetter, and N. Shanbhag, “VLSI Architectures for Soft-Decision Decod-

ing of Reed-Solomon Codes,” IEEE Trans. Inform. Theory, vol. 57, no. 2, pp. 648–667,

Feb. 2011.

[26] J. Bellorado and A. Kavcic, “A low-complexity method for Chase-type decoding of

Reed-Solomon codes,” Proc. ISIT, pp. 2037–2041, Jul. 2003.

52

[27] X. Zhang, “High-speed VLSI architecture for low-complexity Chase soft-decision Reed-

Solomon decoding,” IEEE Inform. Theory and Application Workshop, pp. 422–430, Feb

2009.

[28] A. Björck and V. Pereyra, “Solution of Vandermonde Systems of Equations,” Math.

Computation, vol. 24, pp. 893–903, Oct. 1970.

[29] D. Knuth, “The Art of Computer Programming, Vol. 3 - Sorting and Searching.” 1973.

[30] A. Raghupathy and K. J. R. Liu, “Algorithm-Based Low-Power/High-Speed Reed-

Solomon Decoder Design,” IEEE Trans. on Circuits and Systems-II: Analog and Digital

Signal Processing, vol. 47, no. 11, pp. 1254–1270, Nov. 2000.

[31] J.-I. Park, K. Lee, C.-S. Choi, and H. Lee, “High-speed low-complexity Reed-solomon

decoder using pipelined berlekamp-massey algorithm,” IEEE Int. SoC Design Confer-

ence (ISOCC), pp. 452–455, 2009.

53

	封面_ch.pdf
	書名頁_ch
	中文摘要_ch
	英文摘要_ch
	Thesis_chhsu_V9

