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以聯盟賽局理論之合作式感知無線網路功率控制及

時間分配 
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摘要 

在本篇論文，我們以賽局理論的角度來研究合作式感知無線網路功率控制及時

間分配。我們考慮一個由多主要服務者(primary service)和多次要服務者(secondary 

service)所構成的感知無線網路。在此無線網路架構下，主要服務者和次要服務者採

取合作式通訊，主要服務者是此賽局的頻譜擁有者，透過主動租借頻帶給次要服務

者使用，藉以獲取通訊品質提升；次要服務者藉由協助主要服務者傳輸，換取租借

頻帶的時間，得到頻帶使用權。我們以聯盟賽局理論的模型來分析每個玩家之間合

作的行為，並轉化為系統的最佳化問題，在符合條件下求得核心解(core)。主要考慮

兩種情況，首先是只考慮功率控制，其次是同時考慮功率控制跟時間分配，並分別

在兩種情況下對玩家的合作行為做分析。此外，我們在第二種情況下提出演算法，

保證可以求得最佳解，而此最佳解符合聯盟賽局中核心解定義，所有玩家會合作形

成大聯盟。在模擬中，也比較我們的作法和前人的作法，並在玩家的利益上探討賽

局的收斂行為。另外，也分析系統架構下，我們提出的演算法會收斂到核心解，而
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在此平衡點，對所有玩家都是有利的，所以保證整體系統配置穩定。 
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Abstract 

 

In this thesis, we study the problem of power control and time allocation in 

cooperative cognitive radio networks (CCRNs) from a game theoretic approach. 

Particularly, we consider a CCRN with multiple primary users (PUs) and multiple 

secondary users (SUs), where all players exploit cooperative communication. In the game, 

the spectrum is licensed for PUs, through leasing the spectrum to SUs for a fraction of 

time in exchange for improving transmission rates. On the other hand, SUs have 

opportunities to access the spectrum due to assist primary transmission. We apply the 

coalitional game to model the cooperative interactions among players and we formulate 

the problem as an optimization problem and achieve the core under certain conditions. 

We mainly focus on two cases, which the first case only considers power control and the 

other one considers power control and time allocation problems. We analyze players’ 

cooperative interactions in the two cases and we propose a novel algorithm to solve the 

second case. The proposed algorithm is guaranteed convexity and achieves the 

equilibrium in the core. According to the definition of the core, all the players in the 

system will form grand coalition. In the simulations, we compare the proposed approach 

with other approaches and numerically study the players’ payoffs in the coalitional game. 

Furthermore, we also show that proposed algorithm converges to the core, which 
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guarantees that the payoff allocation is stable in the system. 
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Chapter 1

Introduction

1.1 Motivation

Recently, the demand for wireless communication services has grown significantly. The

spectrum is a scare resource under unbalanced utilization. The recent FCC report [1] in-

dicated that some frequency bands are unoccupied most of the time, whereas others are

heavily used. To improve the spectrum utilization, the concept of cognitive radio has

been proposed [2] [3]. Cognitive radio [4] is a novel technique which allows unlicensed

users to access unoccupied frequency bands. In the CR network, licensed users are called

primary users (PUs) and unlicensed users are called secondary users (SUs). Exploiting

CR technique, the spectrum efficiency is improved significantly. On the other hand, a

new paradigm of CR network is proposed in [5], termedcooperative cognitive radio net-

work (CCRN). The idea of cooperation has been applied in many disciplines, such as

economics and political science. Whereas, in wireless communication area, the concept

of cooperative communication is applied in the CR network. In the CCRN scenario, PUs

and SUs may increase their interests from cooperation. Therefore, cooperative CR is a

promising technology which not only can improve the spectrum efficiency, but also can

increase users’ interests in the system.
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1.2 Why Coalitional Game?

Traditional Media Access Control (MAC) theory is based on optimization operation to

optimize the system utility. Although some problems can be decomposed into optimizing

network utility and user’s utility separately by dual-prime method [6], the solution of the

problem does not always satisfy each user’s utility.

In contrast to optimization method, game theory is a mathematical tool to analyze each

user’s utility. Game theory is much effective to analyze each user’s behavior. Although

the network utility may not be optimized, the solution lets each user’s utility optimized

individually. On the other hand, a coalitional game is a branch of game theory. A coali-

tional game is a powerful tool to analyze user’s cooperative behavior. Also, the considered

problem formulation is about users’ cooperative interactions. Hence, a coalitional game

is a powerful tool to model the problem.

1.3 Related Work and Our Approach

The idea of cooperative communication was first proposed by [5]. According to the

property-right model in [5], the spectrum is leased to SUs in exchange for remunera-

tion. In other words, PUs involve SUs as cooperative relays, so PUs’ transmission rates

are improved. Hence, PUs are willing to lease spectrum to SUs for a fraction of time. [7]

also applys the idea of cooperative transmission, and terms the scenario as cooperative

cognitive radio networks (CCRNs). The other two works [8] [9] are similar, also ap-

plying cooperative spectrum leasing in the CR network. And [5] [7] [8] [9] all adopt

a Stackelberg game to model the problem. However, a Stackelberg game is called as a

leader-follower game, which implies that PUs make decisions first, then SUs. Hence, a

Stackelberg game can not let PUs and SUs make decision at the same time. [10] is the

first work to apply a coalitional game in CCRNs and [11] is an extended version. The

rationale behind this is that coalitional game is more effective to analyze users’ coopera-

tive interactions. The other contribution of [11] is that the authors considermultiplePUs

andmultipleSUs in the system. Whereas, [5] and [7] only consider one PU and multiple

SUs. [12] also considers multiple PUs and multiple SUs with multiple subchannels avail-

2



able in a sub time slot and allocates optimal fractions of time to sub time slots in order to

maximize system utility.

In our approach, we consider multiple PUs and SUs in the CCRN. Under the coopera-

tive scenario, PUs involve SUs as relays to improve transmission rates. In return, SUs are

licensed a fraction of time for accessing the spectrum. Our work considers two problems,

i.e. power control and time allocation. Channel allocation in the scenario is specially

designed to ensure that each SU can access multiple channels. We propose a novel algo-

rithm to tackle the problem iteratively in two steps, each step only considering one issue.

The rationale behind this is that proposed algorithm is guaranteed convexity by solving

the problem in two steps. As a result, the algorithm can achieve the solution in the core,

which is a basic solution concept in a coalitional game.

1.4 Contributions of the Research

Dealing with power control and time allocation problems in the CCRN, we propose an

algorithm to solve the problem iteratively in two steps. First, we allocate fractions of time

for sub time slots. Given the time allocation coefficients, we optimize SU’s power levels

for relaying and accessing. Then, we repeat the two steps iteratively until we achieve the

maximum utility. The algorithm can obtain the optimal power levels and time coefficients

to achieve the solution in the core. Detailed description is introduced in the following

section. On the other hand, special design of channel allocation ensures that each user

can access multiple channels in a sub time slot. With the special channel allocation, it is

more beneficial for SUs to stay in the CCRN. In the simulations, we compare proposed

algorithm with other approaches and show that proposed algorithm converges to the core.

As a final remark, we emphasize that our work considers power control and time

allocation two problems. Other works often consider one problem,e.g.[7] and [11] only

consider time allocation. In the related works, we only see one work [5] considering

time allocation and power control problems. However, [5] is modeled as a Stackelberg

game. Our work is the first one applying a coalitional game on power control and time

allocation problems. We also proof that the considered problem has a nonempty core,

3



which ensures the stability of the system. In the simulations, we also show that proposed

algorithm converges to the core.
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Chapter 2

Cognitive Radio and Game Theory

Preliminary

2.1 Cognitive Radio

Cognitive radio (CR) was first proposed by Joseph Mitola in 2000’s doctoral disserta-

tion [4]. It is a software-defined wireless communication system that is capable of achiev-

ing highly reliable communication by adjusting its transmission parameters according to

the radio environment it senses. CR is called “cognitive”, because its structure supporting

a cognition cycle consisting of Observe, Orient, Plan, Decide, and Act phases as shown

in Fig. 2.11. The figure has been widely used to understand the cognitive radio or analyze

the performance of cognitive networks. Recently, the unbalanced utilization of spectrum

urges the need for intelligent spectrum management technique. For realistic implemen-

tation, CR is built on software based radio and wide-band RF front end to achieve the

functionality. There are some prototypes of CR already built, such as the first prototype

CR1 by Mitola [4], and CR and networking by Virginia tech [13].

Although the original purpose of cognitive radio is not utilized to improve the spec-

trum efficiency, now it is viewed as a novel technique to tackle the problem of spectrum

under-utilization. CR can be used to detect the spectrum holes or actively negotiate with

1This figure is adapted from Mitola, ”Cognitive Radio: An Integrated Agent Architecture for Soft-ware

Defined Radio”, Ph.D. dissertation, Royal Inst. Technol. (KTH), pp. 48, 2000
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Figure 2.1: Simplified cognition cycle.

primary users to access the spectrum. In recent years, there are lots of researches on

CR-related topics. These researches can be classified into three fundamental tasks [3]:

1. Radio-scene analysis, which includes estimation of interference of the radio envi-

ronment and detection of spectrum holes.

2. Channel state information and predictive channel modeling, which encompasses

estimation of channel-state information (CSI) and prediction of channel capacity

for the use by the transmitter.

3. Transmitter power control and dynamic spectrum management.

Our work is based on the transmitter power control and dynamic spectrum manage-

ment. We apply cooperative CR technique to tackle the problem.

2.1.1 Cooperative Cognitive Radio Network

The idea of cooperative communication was first proposed by [5] in 2008, which intro-

duced a property-right model of cognitive radio, also called as spectrum leasing. PUs are

6



Figure 2.2: System model for cooperative cognitive radio networks

aware of the existence of SUs and actively lease the spectrum for a fraction of time to

SUs by charging at a certain price. In the scenario, PUs can gain additional revenue by

spectrum leasing. Motivated by the idea of spectrum leasing, some recent works [5] [7]

incorporated cooperative communication into CR networks, which is termed ascoopera-

tive cognitive radio network(CCRN).

A typical CCRN scenario is shown in Fig. 2.22. In Fig. 2.2(a), PUs transmit signals

to SUs through primary transmission. Then, in Fig. 2.2(b), both SUs and PUs transmit

signals to primary access point (PAP). In this sub time slot, SUs are served as relays to

assist primary transmission. In the last sub time slot, SUs can access the spectrum for

its own traffic. Hence, under the cooperative scenario, PU’s rate can be improved by

exploiting cooperative diversity. In return, SUs gain opportunities to access the spectrum

for a fraction of time, in which SUs can transmit its own traffic to secondary access

point (SAP). Hence, both PUs and SUs can increase their interests in the CCRN scenario,

achieving a “win-win” situation.

The scenario of CCRN is a new cognitive radio paradigm. SUs are served as coop-

erative relays for primary transmission, so PU’s transmission rate increases significantly

2This figure is adapted from Y. Yi, et al., ”Cooperative Communication-Aware Spectrum Leasing in

Cognitive Radio Networks”, in IEEE Proc. DySPAN, pp. 1–11, 2010
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by exploiting cooperative diversity. The received SNR terms can be summed up by the

technique of maximum ratio combining (MRC). For secondary systems, SUs are licensed

a fraction of time to access the spare spectrum. Hence, both PUs and SUs can ben-

efit from the cooperative scenario. However, for some PUs, when the required traffic

demands are satisfied, primary systems are not interested to increase their transmission

rates. They want to gain some certain benefits,e.g.payment, which is more interesting to

PUs. Hence, there are many researches discussing about cooperative interactions between

PUs and SUs. We adopt a game theoretic approach to formulate the problem.

2.2 Game Theory

Game theory is a mathematical tool to predict the result of rational decision makers. Pre-

dicting the decisions made by players has great merit in many field, such as card game,

gambling, economics, politics, diplomatics, and also wireless communication. Although,

sometimes the explicit model is difficult to be defined (e.g. politics) or too complex to

derive the winning strategy (e.g.chess game). Game theory is still a powerful tool to pro-

vide a solution to simplified problems. For wireless communication network, applying

game theory to predict and further to regulate the players’ behavior are anticipated since

the increasing complexity of the wireless network results in significant interference and

foreseeable dynamics of users in cognitive radio network.

In this section, we introduce some basic knowledge of noncooperative game for un-

derstanding game theory more easily, while interested readers can refer to [14] or [15] for

detail description.

2.2.1 Basic Definitions of Game Theory

A game in essence is that multiple players and each player possess its own strategy, which

it can freely adjust and the objective function, which depends on its and other players’

strategy. From a mathematical viewpoint, a game is defined as

8



Definition 1 A gameΓ is

Γ =
〈

N , {Ax}x∈N , {ux}x∈N

〉

, (2.1)

whereN ≡ {1, 2, · · ·, N} is the set of players,Ax is the set of actions available for player

x, and we denote the available actions for all players asA = A1 × A2 × · · · × AN . An

action, a.k.a. strategy, taken by playerx is ax ∈ Ax, and the action profile of all players

is denoted bya = a1 × a2 × · · · × aN ∈ A. For notational simplicity, we denotea−x as

the action profile taken by all players except playerx. ux is utility function of playerx,

which is a function ofax anda−x.

We introduce some assumptions in game theory. First, each player is rational and

selfish, so each player aims to maximize its own utility. We should mind that “selfish”

does not mean “malicious”. A selfish player cares about its own utility, while a malicious

player may harm other players. It is also assumed that all players know the rules of the

game. In other words, each player knows all players’ action set and utilities, so the action

profile is perfectly observed by all players. Actually, the scenario is too ideal due to these

assumptions, so other kinds of game models are developed to make the scenario more

practical,e.g. coalitional game, which we apply in this thesis. A coalitional game is

one kind of the cooperative games. The characteristic property of cooperative game is

that players may cooperate to maximize their own utilities. The players in a coalitional

game cooperate to form cooperative groups,i.e. coalitions, which are the basic units in

a coalitional game. The details of a coalitional game are introduced in the latter section.

We still go on the basics of game theory.

Definition 2 The best responsebx(a−x) of playerx to the action profilea−x is an action

ax such at:

bx(a−x) = arg max
ax∈Ax

ux(ax, a−x). (2.2)

Since best response is the best action for playerx, playerx would like to stick to it. We

know that each player would take the best response, so the result of the game is the action

9



profile that is the best response for all players, if it exists. This mutual best response point

is well-known as Nash Equilibrium (NE), which was found by the John Forbes Nash. NE

is an equilibrium point, because every player would stick to it. The formal definition of

NE is given as

Definition 3 The pure strategy profilea∗ constitutes a Nash Equilibrium (NE), if for each

playerx:

ux(a
∗
x, a

∗
−x) ≥ ux(ax, a

∗
−x), ∀ax ∈ Ax (2.3)

NE is viewed as asolution concept, i.e. the rule how the game will be played, of

a static game with complete information. However, the existence of NE needs to satisfy

certain conditions and theorems and detailed explanation can be found in [15]. It’s notable

that there are different solution concepts for different kinds of games,e.g. thecore for a

coalitional game.

2.2.2 Coalitional Game

In general, game theory can be divided into two branches: noncooperative and cooperative

games [16]. The main branch of cooperative games describes the formation of cooperative

groups of players, called as coalitions. In the section, we focus on the coalitional game,

because we applies a coalitional game to solve the problem in the thesis. A coalitional

game focuses on how the players cooperate with each other in the system, in which a

coalition is the basic unit. Players in the same coalition have some agreements about

forming cooperative group. Hence, the notable issue is how to choose the players to

cooperate with. Whereas, the value of a coalition is quantified by the coalition value,

which is generated by all the players in the coalition. The players in the system have

incentives to join the coalition that increases their own utilities. The assumptions in a

coalitional game are different from the basic game described in previous section, so we

introduce the coalitional game formulation in the following section.
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Game Formulation

A coalitional gameΓ can be formulated as follows

Γ =
〈

N , {v(S)}S⊆N , {ui}i∈N

〉

, (2.4)

whereN ≡ {1, 2, · · ·, N} is the set of players,v(S) is the coalition value of coalition

S, andui is the utility function of playeri. In a coalitional game, the coalition value is

the most important element, which is generated by the players in the coalition. Coalition

value can be defined in different forms,e.g. rate, power, or payment, according to the

game formulation.ui defines the utility of playeri and coalition value is generated by

the players’ utilities in the coalition. Hence, the coalition valuev(S) is highly related to

utility function ui. The player’s utility received in the coalition is calledpayoff.

In a coalitional game, a coalition is the basic unit and how to divide the players into

coalitions is the crucial issue. In this thesis, we consider a special class of coalitional

games that all the players would form one coalition,i.e. grand coalition. In the grand

coalition, all the players will cooperate with each other with certain agreements, so the

whole system is stable. Another assumption of the coalitional game that we are concerned

is transferrable utility (TU) [17]. TU property implies that the total utility represented as

a real number can be divided in any manner between the coalition members. The utility

that a playeri received from the division ofv(S) constitutes the player’s payoff denoted

asxi. Whether the payoff allocation is stable or not, we can examine it by the solution

concept introduced in the following section.

Solution Concept

In the coalitional game theory [16] [18], the most renowned solution concept of a coali-

tional game is thecore. The relationship between the core and a coalitional game is

similar to Nash Equilibrium and a noncooperative game. The core is directly related to

the stability of grand coalition. In other words, the existence of the core implies that the

whole system is stable. Due to the superadditivity property, players have incentives to

form grand coalitionN , consisting of all players. The definition of superadditivity is as

11



follows

Definition 4 The two coalitions have the property of superadditivity ifS andZ are dis-

joint coalitionsS
⋂

Z = ∅, thenv(S) + v(Z) ≤ v(S
⋃

Z). If two disjoint coalitions

satisfy the above equation, they are called superadditive.

Hence, if two coalitions are superadditive, they will merge together to form a new

coalition. If we discover that all the coalitions in the system are superadditive, all the

players will join to form grand coalition. Also, players can increase their payoffs in the

grand coalition, so players have no incentive to leave the grand coalition. In other words,

the grand coalition is stabilized. The formal definition of the core is given as

Definition 5 A payoff vectorx is stable in a coalitionS if
∑

i∈S xi ≥ v(S), i.e. the

player i has an incentive for the proposed payoffxi. The set of stable payoff allocation,

i.e. the core is defined as:

C =

{

x ∈ R|N | :
∑

i∈N

xi = v(N ) and
∑

i∈S

xi ≥ v(S), ∀S ⊆ N

}

. (2.5)

We can see that from the definition of the core, which needs to satisfy two conditions.

The first condition is called as group rational, which the total sum of players’ payoffs is

equal to the coalition value of grand coalitionN . The second condition is related to the

individually rational. A payoff vector is individually rational if every player can obtain a

benefit no less than acting alone,i.e. xi ≥ v(i), ∀i ∈ N . Hence, the second condition can

be viewed as the sum payoff at least the same with the coalition valuev(S).

With the definition of the core, we can examine whether the payoff allocation is stable

or not. As mentioned above, the core is directly related to the stability of the system.

However, the core is not always guaranteed to exist in a coalitional game. Actually, the

core set is empty in many coalitional games, so the grand coalition cannot be guaranteed

stabilized. In these situations, we may consider alternative solution concepts, but they

are not the main topic in this thesis. Interested readers can refer to [16] [18] for detailed

description. In the next chapter, we focus on applying a coalitional game in CCRN.
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Chapter 3

Coalitional Game in Cooperative

Cognitive Radio Networks

3.1 Problem Setup

We consider a CDMA based cooperative cognitive radio network (CCRN) consisting of

Np PUs andNs SUs, whereNp = {1, 2, · · ·, Np} andNs = {1, 2, · · ·, Ns}. It is an

uplink transmission scenario, which PUs aim to transmit signals to primary base station

(PBS) whereas SUs want to access the spectrum to transmit data to secondary access

point (SAP). There areNb available channels licensed to PUs in the system, whereNb =

{1, 2, · · ·, Nb}. There is an example of CCRN withNp = 2,Ns = 2, andNb = 2 as shown

in Fig. 3.1. The channels are licensed to PUs, so only PUs have the legal rights to use

the channels. If SUs want to access the channels, they need to cooperate with PUs or

give payment for channels’ accessing. We apply the idea ofcooperative communication

in the CCRN. SUs are served as cooperative relays for primary transmission, so PUs’

transmission rates are improved by exploiting cooperative diversity. In return, SUs gain

the opportunities to access spare channels. SUs are licensed fractions of time to transmit

their own traffic. Hence, both PUs and SUs can benefit from the cooperative scenario. By

the assistance of SUs, the transmission rates of PUs increase by exploiting the technique

of maximum ratio combining (MRC) at the receiver.

For the time scheduling of channels, we consider a time slot set ast, which is divided
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Figure 3.1: The CCRN network withNp= 2 andNs= 2: (a) primary transmission (b)

cooperative transmission (c) secondary transmission

into three sub time slots. The first sub time slot used by PUs is set as(1−α)t and the other

sub time slots are set asβt and(α−β)t for SU’s relaying and SU’s accessing, respectively.

For notational simplicity, we normalize theses sub time slots byt, so the fractions of time

for sub time slots are1 − α, β, α − β, respectively. For PU’s channel allocation, each

channel is licensed for one PU,e.g. PU 1 can only uses channel 1 for transmission. In

the first sub time slot, PUs transmit their traffic to SUs and PBS simultaneously using the

broadcast nature of wireless communication. Then, SUs help to relay the traffic received

from PUs to PBS in the second sub time slot, which is for SU’s relaying. In the last sub

time slot, each SU can access multiple channels for its own transmission. The reason why

each SU can access multiple channels in a sub time slot is explained in the next section.

In the channels allocation of SUs, we exploit a special design to enable that each SU

can access multiple channels in a sub time slot. In the relay mode, each SU selects the

channel with the best channel quality to assist PUs’ transmission. In other words, each

PU’s traffic is relayed by SU’s best channel to increase capacity. Each SU helps to relay

the traffic from PUs in the coalition, so it is reasonable that each SU can access available

channels in the coalition. On the other hand, the system assigns unique spreading code

to each SU in order to differentiate SUs when accessing the same channel. In the next

section, we introduce the coalitional game formulation in the CCRN.
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3.2 Coalitional Game Formulation

In this section, we describe the general coalitional game formulation. The complete prob-

lem formulation for power control is introduced in latter section. We formulate the coop-

erative cognitive radio network as a coalitional game

Γ =
〈

N , {v(S)}S⊆N , {ui}i∈N , {xi}i∈N

〉

, (3.1)

whereN , Np

⋃

Ns is the set of players withNp = {1, 2, · · ·, Np} being the set of all

PUs andNs = {1, 2, · · ·, Ns} being the set of all SUs,v(S) is the coalitional value of

coalitionS with S ⊆ N , ui is playeri’s utility function, andxi is the payoff of player

i. Coalition value is generated by the PUs and SUs in the coalition. The player’s payoff

is characterized by the utility functionui, so the last three elements in a coalitional game

are mutually dependent.

The formal definition of a coalition in CCRN is given as

Definition 6 A coalitionS is a set of players (e.g. PUs and SUs) that cooperate with

each other. For a coalitionS, we denote the set of PUs and SUs in the coalitionS as

Sp andSs, respectively. LetSb represent the available channels in the coalitionS. The

grand coalition is denoted asNp

⋃

Ns, consisting of all PUs and SUs.

In the coalition, PUs and SUs can exploit cooperative communication. In this scenario,

SUs serve as cooperative relays to assist PUs’ transmission, in exchange for opportunities

to access the spare channels. Hence, both PUs and SUs can benefit from the cooperative

scenario. From the channel allocation aspect, a channel owned by PUm can be used by

SUk only if they are in the same coalition. Whereas, a SU can assist a PU’s transmission

when they stay in the same coalition. In the next section, we introduce the problem

formulation considering power control.
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3.3 Problem Formulation for Power Control Case

3.3.1 Utility Model

In this section, we only consider the problem with power control whereas the time coeffi-

cients are set fixed atα = 0.5 andβ = 0.25. We assume that no PU uses the same channel

with other PUs in a sub time slot, so each PU is assigned only one channel,e.g. chan-

nel 1 licensed for PU 1. The power control problem that we consider here is to allocate

SU’s power levels for relaying and accessing. On the other hand, PU’s transmit power is

set fixed. The noise variance is denoted asσ2, assuming that all receivers have the same

noise level for simplicity. The direct transmission rate of PUm can be represented by

rm = log2

(

1 + Ppm |hpm |2

σ2

)

, wherePpm
is the transmit power of PUm, andhpm

is the

channel gain from PUm to PBS. For the relay strategy, we employ decode-and-forward

(DF) [19] for cooperative communication in the CCRN. According to the DF strategy,

PU’s transmission rate is determined by two stages,i.e. PU to SUs and SUs to PBS. For

SU’s relaying, SUs receive the traffic from PUs in the first sub time slot and in the second

sub time slot, SUs decode the data and forward to PBS.

The channel gains of link pairs among PUs, SUs, the PBS, and the SAP are modeled

as independent and identically distributed (i.i.d.) complex Gaussian random variables.

The channels are assumed to be invariant within each sub time slot, but varying over

sub time slots. We use the following notation to denote the instantaneous channel gains:

hpm,sk
denotes the channel gain between PUm and SUk; h

(j)
sk,p denotes the channel gain

between SUk and PBS using channelj; h
(j)
sk denotes the channel gain between SUk and

its receiver SAP using channelj, for anym ∈ Np, k ∈ Ns, andj ∈ Nb.

Due to consider power control, the transmit power can be adjusted in order to improve

system utility. We denotePsk,pm
as the power of SUk for relaying PUm’s traffic andPsk

as the power of SUk for accessing. Hence, the power control focuses on how to allocate

the SU’s power for relaying and accessing. We assume that each SU allocates the same

power to relay every PU’s traffic. For example, SU 1’s power for relaying PU 1’s and PU

2’s traffic is the same.

Suppose that each SU can assist PUs’ transmission using multiple channels in a sub
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time slot. In other words, there are multiple channels licensed for each SU in a sub time

slot. According to the DF strategy, PU’s data rate is determined by PU to SUs and SUs to

PBS two stages. In order to detect the signals from PUm to SUs, the transmission rate is

dominated by the worst channel|hpm,sk
| in the subsetsk ∈ Ss represented by

rpm,s =
1

2
· log2

(

1 +
Ppm

mink∈Ss
|hpm,sk

|2

σ2

)

, m ∈ Sp, (3.2)

where 1
2

is fraction of time for PU’s transmission. As shown in (3.2), the transmission

rate from PUm to SUs is dominated by the worst channel, so that all the data transmitted

by the PU can be decoded correctly. In the second sub time slot, SUs will decode and

relay the data received from PUs to PBS. At the PBS, it also decodes the data received

from PUs in the first sub time slot and sums up the received SNR with the technique

of maximum ratio combining (MRC). At the receiver, the data transmitted from PU and

SUs is the same, so that we can sum up the received SNR. Hence, the received SNR is

enhanced by the assistance of SUs. The transmission rate from SUs to PBS for assisting

PU m is represented by

rs,pm
=

1

4
· log2

(

1 +
Ppm

|hpm
|2

σ2
+
∑

k∈Ss

Psk,pm
maxj∈Sb

|h(j)
sk,p|2

σ2

)

, (3.3)

where1
4

is the fraction of time for SU’s relaying. In (3.3), the first term is obtained by PU

m’s transmission to PBS through direct link, and the second term is the sum SNR achieved

by each SU’s best channel to relay PUm’s traffic. The SNR terms are summed up with

the technique of MRC. Therefore, PU’s transmission rate is improved by the assistance of

SUs.

Hence, according to DF cooperative strategy, the overall transmission rate of PUm

can be achieved by

rpm
= min {rpm,s, rs,pm

} , m ∈ Sp. (3.4)

In order to decode the data from a PU, the transmission rate is dominated by the

minimum rate in the two stages. Under the cooperative scenario, each SU helps to relay

the traffic from PUs in the coalition, so each SU gains the opportunities to access spare
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channels in the coalition. Based on CDMA network, the system assigns each SU an

unique spreading code. Then, the total access rate of SUk can be represented by

rsk
=

1

4
·
∑

j∈Sb

log2

(

1 +
Psk

|h(j)
sk
|2

σ2

)

, k ∈ Ss, (3.5)

where 1
4

is the fraction of time for SU’s accessing. Each SU is licensed for multiple

channels, and it can transmit different signals on the each channel. Hence, from (3.5), we

can see that SU’s access rate is achieved by the sum rate of multiple channels. If a SU

does not join any coalition, they cannot access any channel. Hence, a SU is beneficial to

join the coalition for accessing multiple channels. Also, this is a novel design for SUs to

access multiple channels in the CCRN. Therefore, the total relaying energy consumption

of SU k is

ζk = cs ·
1

4
·
∑

m∈Sp

Psk,pm
, k ∈ Ss, (3.6)

where1
4

is the fraction of time for SU’s relaying andcs is SU’s cost per relaying energy;

the summation of power levels for relaying PUs’ traffic. We assume that the power of each

SU for assisting every PU is the same. Due to consider power control, it is reasonable to

define SU’s cost as relaying energy consumption.

To summarize player’s payoff allocated in the coalition, PUmgenerates data rate gain

of F (rpm
), whereF (·) is a concave increasing function. For example, utility function can

be linear,i.e. F (rpm
) = rpm

. Payoff is the player’s utility received in the coalition and

it is a division of the coalition valuev(S). Therefore, PUm’s payoff in the coalition is

represented as

F (rpm
)

On the other hand, SUk can be evaluated by utility functionG(rsk
), whereG(·) is a

concave increasing function. Hence, SUk’s payoff in the coalition is represented as

G(rsk
) − ζk
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The utility function ensures the concavity of player’s payoff. In the optimization

problem, the problem’s concave property is notable. The concave property of the util-

ity function can help us to achieve the solution concept, which is introduced detailed in

the following section. After defining the utility model, we continue to formulate the power

control problem in the CCRN.

3.3.2 Optimization Problem Formulation

In this section, we model the power control problem as a transferable utility (TU) game.

The TU property implies that the total utility specified by a real number can be divided in

any manner between the coalition members. The TU game is fully defined once the set

of coalitions and the coalition valuev(·) are specified. In the TU game, coalition value

is a real number that can be distributed arbitrarily [20]. We definev(S) in the CCRN as

the maximum utility generated by PUs and SUs in the coalitionS. The other assumption

is that the coalition value does not depend on the actions of the PUs or SUs outside the

coalition.

According to the utility model and the power constraints on SUs, the coalitional game

in the CCRN can be formulated as follows:

v(S) , Maximize :
∑

m∈Sp

F (rpm
) +

∑

k∈Ss

(G(rsk
) − ζk)

Subject to :

(1) Psk,pm
+ Psk

≤ Pmax, m ∈ Sp, k ∈ Ss,

(2) Psk,pm
, Psk

≥ 0, m ∈ Sp, s ∈ Ss.

(3.7)

The objective function is the coalition valuev(S), which is the summation of all

players’ payoffs in the coalition. Constraint (1) sets SU’s power level no more than the

upper boundPmax. We can see that SU’s transmit power is the summation of relaying

power and accessing power. Note that each SU’s power for assisting every PU is the

same. Constraint (2) ensures that the power levels are inside feasible region. In (3.7),

F (·) andG(·) are concave functions, so it is a concave problem. Then, we want to achieve

maximum in a concave problem. However, how to solve the problem formulation with
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the core is a crucial issue. Hence, we introduce the solution concept detailed in the next

section.

3.3.3 The Core

The power control problem satisfies thetime-sharingcondition in [21]. In our problem,

the time coefficients are set fixed. Whereas, the objective function in (3.7) is concave with

respect toPsk,pm
andPsk

and the constraints are linear, which satisfies the time-sharing

condition’s two assumptions. As proven in [21], the problem’s solution guarantees to exist

and the duality gap is zero, which means that the problem can be solved in dual domain

and achieve the same optimal value as in prime domain. This property is very effective

to achieve the equilibrium point. Hence, we introduce a solution concept in a coalitional

game known as thecore. The core is the most renowned solution concept in coalitional

games. The core implies that the payoff allocation is incentive for all the players in the

system, so the grand coalition is stable. In other words, if a subset of PUs or SUs separates

from the grand coalition, at least one player’s payoff is worse off. The formal definition

of the core is given as

Definition 7 The core of a coalitional game in the CCRN is the set of feasible payoff al-

location

C =

{

x ∈ R|Np|+|Ns| :
∑

m∈Np

xpm
+
∑

k∈Ns

xsk
= v(Np

⋃

Ns),

∑

m∈Sp

xpm
+
∑

k∈Ss

xsk
≥ v(S), ∀S ⊆ (Np

⋃

Ns)

}

,

(3.8)

wherexpm
andxsk

are PUm’s payoff and SUk’s payoff in the coalition, respectively and

| · | denotes the cardinality of a set,e.g. |Np| means the number of elements inNp. The

definition of the core in CCRN is similar to the general form inDefinition 5. Nevertheless,

we adjust the definition to fit the power control problem. The first condition in the core

means that the total payoff equals to the coalition value of grand coalition. Then, the

second condition represents that sum payoff received in grand coalition is at least the

same with the coalition valuev(S). This means that the players in the grand coalition
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benefit most, so players have incentives to stay in the grand coalition. The definition

also implies no player’s payoff in a coalitionS ⊆ (Np

⋃

Ns) to makeypm
> xpm

for all

m ∈ Sp or ysk
> xsk

for all k ∈ Ss. In other words, no subgroup of players will separate

from the grand coalition. Hence, the core ensures the stability of the grand coalition. We

have discussed the problem with power control, but the time coefficients are set fixed in

this case. However, time allocation for players is significant to improve the system utility.

Therefore, we introduce the problem considering power control and time allocation in the

following section.

3.4 Problem Formulation for Power Control and Time

Allocation Case

3.4.1 Utility Model

In this section, we consider power control and time allocation problems. The problem

setup is the same with the problem of power control case. A PU is licensed for only one

channel,e.g. channel 1 for PU 1. With the special design of channel allocation, each

SU is licensed for multiple channels for accessing. The noise variance is denoted asσ2,

assuming that all receivers have the same noise level. The power control is to allocate

SU’s power levels for relaying and accessing. On the other hand, the time allocation

problem is to allocate the fractions of time for PU’s transmission, SU’s relaying, and

SU’s accessing. Whereas, the relay strategy is DF and channel gain’s notation is the same

with that in the power control case.

Applying the second derivative test [22] with respect to power levels and time co-

efficients, we discover that the second derivative test’s result is zero, so the problem’s

optimal solution is not guaranteed to exist. Due to the result of the test, we cannot solve

the problem directly, so we propose a novel algorithm to tackle the problem iteratively in

two steps. In the first step, we allocate the fraction of time to each sub time slot. Then,

we only consider power control in the second step to maximize the system utility with the

allocated time coefficients. After solving the problem iteratively in two steps, the problem
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is guaranteed to achieve the equilibrium in the core. Therefore, we can solve the problem

formulation with the proposed algorithm.

In the power control and time allocation problem, we modify the utility models as

follows. The transmission rate from PUm to SUs is dominant by the worst channel

|hpm,sk
| represented as

rpm,s = (1 − α) · log2

(

1 +
Ppm

mink∈Ss
|hpm,sk

|2

σ2

)

, m ∈ Sp, (3.9)

where (1 − α) the fraction of time for PU’s transmission. In the first sub time slot, PUs

transmit to SUs and PBS using broadcast nature of wireless communication, so in order

to detect the signals correctly, the transmission rate from PUm to SUs is dominated by

the worst channel. Then, in the second sub time slot, SUs relay the traffic received from

PUs to PBS. With the special design of channel allocation, each SU can access multiple

channels in the coaltiion, so the received SNR is enhanced. The transmission rate from

SUs to PBS for assisting PUm is achieved by

rs,pm
= β · log2

(

1 +
Ppm

|hpm
|2

σ2
+
∑

k∈Ss

Psk,pm
maxj∈Sb

|h(j)
sk,p|2

σ2

)

, (3.10)

whereβ is the fraction of time for SU’s relaying. In (3.10), the first term is received

from PUm to PBS through direct link and the second term is the sum SNR achieved by

each SU’s best channel to relay PUm’s traffic. These SNR terms are summed up with the

technique of MRC. Hence, PU’s rate is improved by the assistance of SUs in the coalition.

Hence, the overall transmission rate of PUm is achieved by

rpm
= min {rpm,s, rs,pm

} , m ∈ Sp. (3.11)

This equation is the same as (3.4) according to the DF strategy. In the cooperative

scenario, each SU relays the traffic from PUs in the coalition, so each SU has opportunities

to access available channels in the coalition. Therefore, the total access rate of SUk can

be represented as
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rsk
= (α − β) ·

∑

j∈Sb

log2

(

1 +
Psk

|h(j)
sk |

2

σ2

)

, k ∈ Ss, (3.12)

where(α − β) is the fraction of time for SU’s accessing andh
(j)
sk is the channel gain of

SU k using channelj for its own traffic. Each SU has opportunities to access multiple

channels and it transmits different signals on each channel. Hence, the total access rate

of SU k is the sum rate achieved by multiple channels. Then, the total cost of SUk is

represented as

ζk = cs · β ·
∑

m∈Sp

Psk,pm
+ ws · (α − β), k ∈ Ss, (3.13)

wherecs is SU’s cost per relaying energy andws is SU’s cost per access time; (α − β)

is SU’s access time. We assume that the power of each SU for assisting every PU is the

same. The first term in (3.13) is SU’s relaying energy consumption and the second term

is SU’s access time cost. The second term can be viewed as SU’s payment for spectrum

accessing. The rationale behind SU’s cost is that we consider power control and time

allocation problems. To explain in detail, the energy consumption is the cost for power

control and the access time cost is due to time allocation.

To sum up, PUm’s payoff in the coalition isF (rpm
) and SUk’s payoff is represented

asG(rsk
)−ζk, whereF (·) andG(·) are concave increasing functions. The utility function

design ensures the payoff’s concavity, which can help us to achieve the equilibrium in the

core. The optimization problem formulation for power control and time allocation is

introduced in the following section.

3.4.2 Optimization Problem Formulation

We model the CCRN considering power control and time allocation as a TU game. The

problem formulation is similar to the power control case, but we also consider time al-

location here. As the TU game’s definition in [20], the coalition value is a real number,

which can be divided in any manner between coalition members. We define coalition

valuev(S) as the maximum utility achieved by PUs and SUs in the coalition.
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According to the modified utility model and constraints on power control and time

allocation, the coalitional game can be formulated as:

v(S) , Maximize :
∑

m∈Sp

F (rpm
) +

∑

k∈Ss

(G(rsk
) − ζk)

Subject to :

(1) 0 ≤ β ≤ α ≤ 1,

(2) Psk,pm
+ Psk

≤ Pmax, m ∈ Sp, k ∈ Ss,

(3) Psk,pm
, Psk

≥ 0, m ∈ Sp, s ∈ Ss.

(3.14)

The objective function of the problem formulation is the total payoff of all the players

in the coalition according to the definition ofv(S). For time coefficients,α is the pa-

rameter to adjust the fraction of time for PUs’ transmission. Then,β is the parameter to

allocate the fraction of time for SU’s relaying. In constraint (1), we confine theα andβ

within 0 and 1 to ensure feasibility. The reason whyα is no less thanβ is to ensure SU’s

access time nonnegative. Constrain (2) sets the upper boundPmax to SU’s power control

and constraint (3) ensures the power levels are feasible. We assume that the power of

each SU for assisting every PU is the same. From the problem formulation in (3.14), we

can see that it is a problem considering power control and time allocation. However, ac-

cording to the second derivative test, the problem is not guaranteed to achieve an optimal

solution. In other words, we need to search for alternative methods to solve the problem.

In the next section, we propose a novel algorithm to solve the problem, which guarantees

to converge to the core.

3.4.3 Algorithm for Solving Problem Formulation

The problem considering power control and time allocation cannot be solved directly, so

we propose a novel algorithm to tackle the problem. The proposed algorithm solves the

problem iteratively in two steps summarized inAlgorithm 1 .

The proposed algorithm solves the problem iteratively in two steps. At each iteration,

the algorithm conducts two steps. In the first step, we allocate values on fractions of time

α andβ. Then, with the allocated time coefficients, SU’s relaying and access power is
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Algorithm 1 Iterative algorithm for power control and time allocation

0: Define: Objective function in (3.14) at iterationn is denoted byv(S)(n).

Maximum at iterationn is denoted byΩ(n).

1: Initialize : Initialize α(1), β(1), andΩ(1).

2: Repeat: Initialize Psk,pm
andPsk

3: Condition 1: Check whetherα(n), andβ(n) are feasible.

4: Repeat: OptimizePsk,pm
, Psk

to achievev(S)(n)

5: Condition 2: Check whetherPsk,pm
, andPsk

are feasible.

6: End repeat

7: If v(S)(n) ≥ Ω(n−1),

Ω(n) = v(S)(n),

Else

Ω(n) = Ω(n−1),

8: End if

9: Updateα(n+1) = α(n) + q(n)
(

v(S)(n) − Ω(n−1)
)

,

β(n+1) = β(n) + t(n)
(

v(S)(n) − Ω(n−1)
)

.

10: End repeat until Ω converges

11: We obtain the optimal system utilityΩ∗, and the parameters

α∗, β∗, P ∗
sk,pm

, andP ∗
sk

.
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determined in the second step. The two steps are performed iteratively until the optimal

solution is achieved. On the other hand, we update the values forα and β with the

subgradient method. The main purpose of updating time coefficients is to achieve the

optimal point. As explained in the following section, a subgradient method is guaranteed

to converge to the optimal point. Hence, the fractions of timeα andβ are updated as

follows:

α(n+1) = α(n) + q(n)
(

v(S)(n) − Ω(n−1)
)

, (3.15)

β(n+1) = β(n) + t(n)
(

v(S)(n) − Ω(n−1)
)

, (3.16)

wheren is the iteration number andv(S)(n) is the coalition value obtained at iteration

n; Ω(n−1) is the maximum at the iterationn-1. The above subgradient update method is

guaranteed to converge to the optimalα∗ andβ∗ as long asq(n) andt(n) are chosen to be

sufficiently small [23]. When the norm of the subgradient is bounded, the choices that

q(n) = µ/n andt(n) = δ/n for some constantsµ andδ are guaranteed to converge to the

optimalΩ∗.

The reason why our proposed algorithm can solve the problem is that the algorithm

solves the problem iteratively in two steps. In the first step, we allocate time coefficients,

so the problem can be viewed as a linear combination of time coefficients without con-

sidering power control. Then, in the second step, we can solve the power optimization

problem with the time coefficients allocated in the first step. The power optimization

problem guarantees to be solved due to the time-sharing condition [21], which is intro-

duced detailed in the next section. The two steps avoid the multiplicative terms of time

and power parameters, so the problem is guaranteed to be solved in each iteration. As a

result, the proposed algorithm converges to the core. In the next section, we proof that

our proposed game has a nonempty core.

The complexity of proposed algorithm depends on two factors,i.e. no. of iterations

denoted as|AN | and the complexity of power optimization. At each iteration, we conduct

power optimization to allocate SU’s power levels for relaying and accessing. We denote

the power optimization’s complexity asΘp, so the overall complexity of the algorithm can

be represented as(|AN | ∗ Θp). In the next section, we show that the proposed algorithm
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converges to the core.

3.5 Algorithm Converges to the Core

The problem formulation in (3.14) is not convex. That is, the problem cannot be guaran-

teed to achieve the optimal solution. Hence, we proposed theAlgorithm 1 to tackle the

problem iteratively in two steps. In the first step, we only consider the problem of allocat-

ing fractions of time forα andβ. Then, in the second step, we substitute these allocatedα

andβ values into (3.14) to find SUs’ optimal cooperative and access power. Since the ob-

jective function of the problem formulation in each step is concave, constraints are linear,

so the duality gap is zero [21]. In other words, the problem can be solved in dual domain

and achieve the same optimal value as in the prime domain. Therefore, the algorithm

converges to the optimal time coefficients and power levels.

Since the algorithm is guaranteed to converge, we proof that the game has a nonempty

core in the following. Firstly, we define the Lagrangian dual functions as

fm(π) = max
rpm≥0, m∈Sp

(

F (rpm
) + πmrpm

)

gk(γ, τ) = max
rsk

≥0, ζk≥0, k∈Ss

(

G(rsk
) − ζk + γkrsk

+ τkζk

)

Then, the dual problem is formulated as follows:

Minimize :
∑

m∈Sp

(

fm(π) + λm

)

+
∑

k∈Ss

(

gk(γ, τ) +
∑

j∈Sb

ηj

)

Subject to :

γk, τk ≥ 0, k ∈ Ss,

ηj ≥ 0, j ∈ Sb,

πm, λm ≥ 0, m ∈ Sp.

(3.17)

We formulate the dual problem by appropriately defining vectorsπ, λ, γ, τ, and η.

DenoteD as the set of optimal solutions of the dual problem. Then, we define the core in

the dual problem as
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O =
{

x
∗ ∈ R|Np|+|Ns| :

x∗
pm

= fm(π∗) + λ∗
m, m ∈ Np,

x∗
sk

= gk(γ
∗, τ ∗) +

∑

j∈Sb

η∗
j , k ∈ Ns,

for some(π∗, λ∗, γ∗, τ ∗, η∗) ∈ D
}

.

OnceO has been constructed in dual problem, the core of the coalitional game in prime

domain is nonempty. And,O ⊆ C.

Proof: Since the setO is the subset of the setD, and the setD is nonempty. Thus,

the setO is nonempty. We show that for an arbitraryx
∗ ∈ O, thenx

∗ ∈ C. We consider

an arbitraryx∗ ∈ O corresponding to(π∗, λ∗, γ∗, τ ∗, η∗) ∈ D. Then,
∑

m∈Np
x∗

pm
+

∑

k∈Ns
x∗

sk
is the optimal value of the objective function of the dual problem. Due to that

F (·) andG(·) are concave functions, thus the objective function of the prime problem

is a concave function in each step of the algorithm’s iteration. Also, the constraints of

the prime problem are linear. Then, the duality gap is zero as proven in [21]. Thus, we

conclude that
∑

m∈Np
x∗

pm
+
∑

k∈Ns
x∗

sk
= v(Np

⋃

Ns). According to the definition of the

core, we only need to show that
∑

m∈Sp
xpm

+
∑

k∈Ss
xsk

≥ v(S) for eachS ∈ (Np

⋃

Ns).

By strong duality,v(S) equals to the optimal value of the objective function of the dual

problem. The sub vectors(πS, λS, γS, τS, ηS) consisting of the components of(π∗, λ∗, γ∗, τ ∗, η∗)

in S. Then,
∑

m∈Sp
x∗

pm
+
∑

k∈Ss
x∗

sk
is the value of the objective function of the dual prob-

lem with such variables. The optimal value of the objective function of the dual problem

is a lower bound of
∑

m∈Sp
x∗

pm
+
∑

k∈Ss
x∗

sk
. Thus, we can conclude thatx

∗ ∈ C.
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Chapter 4

Simulations

4.1 Simulation Setup

The problem formulation in Section 3.3 and Section 3.4 are simulated in this section.

In the first section, we consider the power control case. Then, in the second section,

we consider the power control and time allocation case and solve the problem with the

proposed algorithm. In the third section, we compare the proposed algorithm with other

approaches and show that proposed algorithm converges to the core in the last section.

We consider the scenario withNp = 3,Ns = 4, andNb = 3. The noise variances at the

receivers are the same and set toσ2 = 10−2. The channel gain between any two nodes is

modeled as an i.i.d. complex Gaussian withCN(0,1)distribution. Let the utility functions

be linear,i.e. F (rpm
) = 10 · rpm

andG(rsk
) = us · rsk

, whereus is SU’s access rate

gain factor. The SU’s cost per relaying energy is set ascs = 8 and SU’s cost per accessing

time is set asws = 8. The total power constraint for SUs is set asPmax = 2. The updating

sizes of time coefficients are set asµ = 0.009 andδ = 0.003. The optimization problem

is simulated with thecvx tool [22]. Note that some parameters may change and will be

specified in each simulation scenario.
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4.2 Numerical Results

4.2.1 Power Control Case

In this section, we simulate the coalitional game in the CCRN considering power control.

The access rate gain parameter is set asus = 8. In the power control case, the time coeffi-

cients are set fixed atα = 0.5 andβ = 0.25 as defined in Section. 3.3, so the optimization

problem only allocates SU’s power levels for relaying and accessing. We show that the

player’s payoff in the grand coalition in Fig. 4.1. On the other hand, we also adjust the

value of SU’s access rate gain factorus to see its influence on the player’s payoff in Fig.

4.3.

In Fig. 4.1, we can see the payoffs of PUs and SUs in the power control case. Fig.

4.1(a) shows that the payoff of PU 1 is the most beneficial among PUs due to the channel

condition is better. For PUs, without the cooperation with SUs, the payoffs of direct

transmission of PU 1, PU 2, and PU 3 are 14.28, 12.87, and 11.44, respectively; after

joining the grand coalition, the payoffs increase to 23.78, 18.00, 20.44, respectively. Thus,

we can see clearly that it is beneficial for PUs to join the grand coalition. For SUs, before

joining any coalition, the payoffs of SUs are zero; after joining the grand coalition, the

payoff of SU 1, SU 2, SU 3, and SU 4 increase to 20.77, 16.62, 18.07, 23.57, respectively.

Therefore, it is beneficial for all the PUs and SUs to form grand coalition. The payoffs

obtained from grand coalition lie in the core.

In Fig. 4.2, with total power constraintPmax = 2, we can see the optimal power

allocation. For SUs, SU 3 allocates more power on relaying and less power on accessing.

This results in the cost of SU 3 are the highest as shown in Fig. 4.1. The power allocation

is influential to SU’s payoff, so how to allocate the power levels to maximize the system

utility is an important issue.

Fig. 4.3 show that we adjust the access rate gain factorus to see its influence on the

data rate gain. As theus increases, the total data rate gain of SUs also increases. On the

other hand, the total data rate gain of PUs decreases, because SUs allocate less power on

relaying PUs’ traffic. With the increasing ofus, SUs allocate more power on accessing,

so that the system can achieve better system utility. Whereas, SUs allocate less power on
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Figure 4.1: The performance of CCRN in power control case,us = 8: (a) The payoff of

PUs (b) The payoff of SUs.

31



SU 1 SU 2 SU 3 SU 4
0

0.5

1

1.5

2

2.5

SU’s ID

P
ow

er

 

 
SU’s relaying power
SU’s accessing power

Figure 4.2: SU’s power allocation in power control case.

2 4 6 8 10 12 14 16
0

20

40

60

80

100

120

140

160

180

Access rate gain factor (u
s
)

D
at

 r
at

e 
ga

in

 

 
Total data rate of all PUs
Total data rate of all SUs

Figure 4.3: The impact of access gain factor (us) in power control case.
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Figure 4.4: The performance of CCRN in power control case,us = 12: (a) The payoff of

PUs (b) The payoff of SUs.
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relaying, so the total data rate gain of PUs decreases. Atus = 8, the data rate gain of SUs

is higher than that of PUs, so increasing ofus is more beneficial to SUs.

In the Fig. 4.4, we set the access rate gain factor asus = 12. Compare the result with

the Fig. 4.1 withus = 8. PU’s payoff in this figure is lower than that in theus = 8 figure.

The rationale behind is that SUs allocate less power on relaying, so the PUs’ transmission

rates decrease. For SUs, the payoffs of SU 1, SU 2, SU 3, and SU 4 are 31.30, 25.08,

25.36, and 35.51, respectively, which are about 1.5 times than those in theus = 8 figure.

There are two reasons behind this result. First, the increase of access rate gain factor is

the most influential. Second, SUs allocate more power on accessing in this figure. With

these two reasons, the payoffs of SUs increase dramatically in the CCRN.

4.2.2 Power Control and Time Allocation Case

In this section, we simulate the problem formulation in (3.14) considering power control

and time allocation. The payoff allocation is achieved by the proposed algorithm. In Fig.

4.5, we show the player’s payoff obtained from grand coalition. The payoff allocation

achieved by the proposed algorithm lies in the core.

Fig. 4.5 shows players’ payoffs obtained from grand coalition. Comparing with Fig.

4.1, PU’s payoff is lower in this figure. The main reason is that the fractions of time

allocated for PU’s transmission and SU’s relaying decrease. The optimal time coefficients

areα = 0.642 andβ = 0.217; the time coefficients in Fig. 4.1 are set asα = 0.5 and

β = 0.25. On the other hand, players can adjust the time coefficients to maximize the

system utility in this case. SU’s data rate gain is higher than that in the power control

case, because SUs allocate more fraction of time on accessing. Also, SU 3’s cost is 4.29,

the highest among SUs due to allocate more power on relaying. The payoff allocation

is achieved by the proposed algorithm. Therefore, the figure shows the stable payoff

allocation obtained by the proposed approach.

Fig. 4.6 shows the impact ofus in the power control and time allocation case. We

set the time coefficients are fixed at the optimal point withα = 0.642 andβ = 0.217.

Comparing with Fig. 4.3, total data rate gain of all SUs is higher in this case,e.g.atus =

6, increase of 70.86% comparing with the power control case. The main reason is that the
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Figure 4.5: The performance of CCRN in power control and time allocation case,us = 8:

(a) The payoff of PUs (b) The payoff of SUs.
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Figure 4.6: The impact of access gain factor (us) in power control and time allocation

case withα = 0.642,β = 0.217.
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fraction of time allocated for SU’s accessing increases. The total data rate gain of all SUs

is higher than that of all PUs atus = 4, whereas in power control case, theus value is 8.

Therefore, SUs can obtain higher payoffs in this case, which is more beneficial to them.

In Fig. 4.7, we can see that the SU’s power allocation in the power control and time

allocation case. The time coefficients are set the same with the Fig. 4.5. Each SU allocates

most of the power on accessing and less power on relaying. SU 3 allocates more power on

relaying, so its cost is the highest as shown in Fig. 4.5. Therefore, SU’s power allocation

effects SU’s cost dramatically. Then, the system utility can be improved significantly by

the power control.

In the Fig. 4.8, we can see the impact of fraction of timeα with β fixed at a specific

value. Asα increases, the sum payoff also rises up. The reason is that withα increas-

ing, the fraction of time allocated for SU’s accessing increases. Therefore, SU’s payoff

increases, so that the sum payoff rises up. However, this does not imply that the payoff

allocation is stable. For example, whenβ is fixed at 0.2 andα is 0.6, the payoff of each

player is better than acting alone, so the proposed payoffs are incentive for players. How-

ever, whenα = 0.7, the payoffs of PU 1, PU 2, and PU 3 are 14.27, 13.11, and 12.26,

respectively; while acting alone, their payoffs are 14.28, 12.87, and 11.44, respectively.

PU 1’s payoff is worse than acting alone. Hence, PU 1 has no incentive to join the grand

coalition, so the payoff allocation is not stable. Therefore, proposed algorithm updates the

time coefficientsα andβ to achieve an equilibrium in the core, which not only considers

the sum payoff, but also let players benefit most in the grand coalition.

Fig. 4.9 shows that the impact of fraction of timeα with β variation. Theβ value

changes withα value and the difference between them is fixed. Clearly, the maximum

sum payoff of different curves occur at different time points. For example, on the curve

of β = α - 0.4, the maximum 161.06 occurs atα = 0.6 andβ = 0.2. Except achieving the

maximum sum payoff, we also need to examine whether the payoff allocation is stable.

At α = 0.7 andβ = 0.3, PU 1’s payoff is 14.27, whereas its payoff is 14.28 when acting

alone. Thus, PU 1’s payoff is worse off than acting alone. Hence, PU 1 has no incentive

for the proposed payoff, so the equilibrium will not occur at this time point. Therefore,

we can know more clear about how to achieve the equilibrium from this figure.
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4.2.3 Comparison between Different Approaches

In the Fig. 4.10 withus = 8, we compare the performance between proposed approach

and other approaches, which are specified as follows:

1. No cooperation approach: each PU only uses direct link to transmit signals to

PBS without SU’s help. Hence, SUs have no opportunity to access the channels.

2. Equal Power approach: there is no power control in the scenario, both PUs and

SUs transmit with fixed power level.

3. Proposed algorithm: proposed algorithm based on coalitional game with consid-

ering power control and time allocation problems.

Fig. 4.10 shows performance in different approaches. First, we can see that SUs’

payoffs are zero in the no cooperation approach. This is due to no channel for SU’s

accessing in this approach. Therefore, each PU only uses direct link to transmit signals

to PBS without SU’s assistance. The payoffs of PU 1, PU 2, and PU 3 in this approach

are 14.28, 12.87, and 11.44, respectively. On the other hand, players can obtain higher

payoffs in the equal power approach. Each player’s payoff in the equal power approach is

better than acting alone,i.e. no cooperation approach. Hence, the payoff allocation in the

equal power approach is incentive for players, which implies that players have incentives

to join the coalition.

Clearly, each SU’s payoff is improved significantly in the proposed algorithm. The

rationale behind this is that SUs allocate more power on accessing, so SUs’ payoffs in-

crease dramatically. However, PU 2’s payoff is 18.63 in the equal power approach better

than 14.67 in the proposed algorithm. The reason is that PU 2’s rate is determined by the

SUs to PBS part, while proposed algorithm allocates less power on SU’s relaying. Hence,

PU 2’s rate is reduced in the proposed algorithm. Nevertheless, the coalition value is

improved significantly by the proposed algorithm, so players are more incentive for the

proposed algorithm. The coalition value is 170.30, whereas in the equal power approach,

the coalition value is 122.49. Therefore, the payoff allocation of the proposed algorithm

is stable.
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Figure 4.10: Comparison the performance between different approaches: (a) The payoff

of PUs (b) The payoff of SUs.
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Fig. 4.11 shows the comparison of the sum payoff between different approaches,

where No. 1 is the no cooperation approach and No. 2 is the equal power approach; No. 3

is the proposed algorithm. The sum payoff of No. 1, No. 2, and No. 3 are 38.59, 122.49,

and 170.30, respectively. The sum payoff is the lowest in the no cooperation approach

among approaches, because each PU only uses direct link to transmit signals to PBS

without SUs’ help. Whereas, SUs have no chance to access channels to transmit their own

traffic. Hence, both PUs and SUs perform poor in the no cooperation approach. For other

two approaches, the sum payoff is also called as coalition value. In theses two approaches,

all the players form the grand coalition. According to the definition of thev(S), the

coalition value is the summation of players’ payoffs in the coalition. However, the sum

payoff in the no cooperation approach cannot be called as coalition value, because players

just act alone and they do not form any coalition. The coalition value in the proposed

algorithm increases 39.03% comparing with the equal power approach. The main reason

is that SUs allocate more power on accessing, so SUs’ payoffs improve significantly in

the proposed algorithm. While, the equal power approach sets the same power levels to

SU’s relaying and SU’s accessing. Hence, SUs are beneficial in the proposed algorithm.

As a result, proposed algorithm can increase the coalition value dramatically.
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4.2.4 Algorithm Converges to the Core

Fig. 4.12 illustrates that the algorithm converges to the core in the aspect of time allo-

cation. At first, the time coefficients are initialized at(α, β)=(0.06, 0.03). Then, at each

allocated time point, we conduct optimal power control to maximize system utility. The

time coefficients ofα andβ are updated iteratively according to (3.15) and (3.16), re-

spectively. In the figure, we can see that as the iteration increases, the updating step size

decreases. Eventually, the algorithm converges to the equilibrium at (0.642, 0.217) with

maximum coalition value 170.30. Then, we examine the payoff allocation obtained at this

equilibrium with the definition of the core, which has two conditions. The first condition

is guaranteed by the optimization problem’s objective function, so we only need to exam-

ine the second condition of the definition. In the second condition, we have to show that

players benefit most in the grand coalition. For example, if PU 1 acts alone, the payoff is

14.28; after joining the coalition with SU 1, the payoff increases to 17.01. Whereas, SU

1’s payoff is zero before joining any coalition; after joining the coalition with PU 1, SU

1’s payoff increases to 0.44. If PU 2 joins the coalition with PU 1 and SU 1, PU 2’s payoff

increases to 14.28. The more PUs joining the coalition, SUs can access the more chan-

nels, so SUs’ payoffs increase. Also, the more SUs in the coalition, PUs’ transmission
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can be assisted by the more SUs. After comparing with different coalitions, we discover

that player’s payoff in the grand coalition is the most beneficial. Therefore, the payoff

allocation achieved by the algorithm lies in the core. This implies that all the players have

incentives for the proposed payoff allocation. As a result, proposed algorithm converges

to the core.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

We have applied a coalitional game to model the problem in the CCRN scenario. We

consider the problem formulation in two cases,i.e. power control, and power control and

time allocation case. In the power control case, the main purpose is to allocate the SU’s

power levels for relaying and accessing in order to maximize the system utility. On the

other hand, in the power control and time allocation case, the problem is not guaranteed to

be convex, so we proposed a novel algorithm to solve the problem iteratively in two steps.

In the first step, we allocate the time coefficients and then, we conduct power control

optimization int the second step. The proposed algorithm guarantees the problem solved

in convex procedure. In addition, we have studied the convergence of the algorithm and

the solution achieved by the algorithm lies in the core. Our problem formulation satisfies

the time-sharing condition, which guarantees the problem’s zero duality gap. We apply

the time-sharing condition to proof that the core is nonempty. In the simulations, we

have shown that the PUs’ and SUs’ payoffs lie in the core. We also discuss the relation-

ship between time coefficients and coalition value. While, comparing between different

approaches, our proposed algorithm can achieve a stable payoff allocation. Finally, the

proposed algorithm converges to the equilibrium in the core.
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5.2 Future Work

In this thesis, we have solved the problem considering power control and time allocation

in CCRN scenario. We adopt a coalitional game to analyze the cooperative behavior of

players. The proposed algorithm can solve the problem considering power control and

time allocation iteratively in two steps. In the first step, we allocate the the time co-

efficients and the problem can be simplified as a power optimization problem. Hence,

each step of the proposed algorithm is guaranteed to be convex. The time coefficients are

updated with the subgradient method, which guarantees to converge to an equilibrium.

However, there are still other methods to update time coefficients, which can be consid-

ered in the future work. Alternative methods for updating time coefficients can speed up

the convergence of the algorithm.

In the network scenario, we consider multiple PUs and SUs based on CDMA network.

When there are multiple users in the same channel, we use spreading codes to differentiate

them. Whereas, the recent protocols,e.g. LTE, are all related to the OFDMA network.

Hence, the future work can apply OFDMA network to the CCRN scenario. The most

important part is the channel’s scheduling for PU’s and SU’s usage. As in [24], the system

model is CCRN based on OFDMA and authors also propose an algorithm to allocate the

multi-channel cooperation. While, authors adopt a Nash Bargaining Game to model the

problem in [24]. We have not seen any work applying OFDMA network to the CCRN with

a coalitional game. Therefore, applying OFDMA network to the CCRN in a coalitional

game approach is a practical direction for future work.

Another aspect for future work is to analyze the solution concept. The solution con-

cepts of a coalitional game have been proposed in many years. However, few works

discuss about the convergence region of the solution concept. In this thesis, we show that

proposed algorithm converges to an equilibrium and examine that the equilibrium lies in

the core. Future work can analyze the region of convergence (ROC) of the core. While,

we have seen [25] discussion about the ROC of the core in a linear programming game.

However, in our work, many parameters influence the ROC of the core. Hence, we can

set the power levels fixed and analyze the ROC of the core in time coefficients domain.
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If we can find the ROC of the core, this helps us a lot to achieve the optimal point inside

the ROC. As a result, we can analyze the solution concepts of a coalitional game in many

perspectives. This can helps us know more properties about the solution concepts.
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