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Abstract

In this thesis, we study the problem of power control and time allocation in
cooperative cognitive radio networks” (CCRNs) from..a game theoretic approach.
Particularly, we consider a CCRN. with multiple primary users (PUs) and multiple
secondary users (SUs), where all players exploit cooperative communication. In the game,
the spectrum is licensed for PUs, through leasing the spectrum to SUs for a fraction of
time in exchange for improving transmission rates. On the other hand, SUs have
opportunities to access the spectrum due to assist primary transmission. We apply the
coalitional game to model the cooperative interactions among players and we formulate
the problem as an optimization problem and achieve the core under certain conditions.
We mainly focus on two cases, which the first case only considers power control and the
other one considers power control and time allocation problems. We analyze players’
cooperative interactions in the two cases and we propose a novel algorithm to solve the
second case. The proposed algorithm is guaranteed convexity and achieves the
equilibrium in the core. According to the definition of the core, all the players in the
system will form grand coalition. In the simulations, we compare the proposed approach
with other approaches and numerically study the players’ payoffs in the coalitional game.

Furthermore, we also show that proposed algorithm converges to the core, which
ii



guarantees that the payoff allocation is stable in the system.
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Chapter 1

Introduction

1.1 Motivation

Recently, the demand for wireless communication services has grown significantly. The
spectrum is a scare resource under unbalanced utilization. The recent FCC report [1] in-
dicated that some frequency:bands-are unoccupied most of the time, whereas others are
heavily used. To improve the spectrum utilization, the concept of cognitive radio has
been proposed [2] [3]. Cognitive radio [4]is-a novel technique which allows unlicensed
users to access unoccupied frequency bands. In the CR network, licensed users are called
primary users (PUs) and unlicensed users are called secondary users (SUs). Exploiting
CR technique, the spectrum efficiency is improved significantly. On the other hand, a
new paradigm of CR network is proposed in [5], terncedperative cognitive radio net-

work (CCRN). The idea of cooperation has been applied in many disciplines, such as
economics and political science. Whereas, in wireless communication area, the concept
of cooperative communication is applied in the CR network. In the CCRN scenario, PUs
and SUs may increase their interests from cooperation. Therefore, cooperative CR is a
promising technology which not only can improve the spectrum efficiency, but also can

increase users’ interests in the system.



1.2 Why Coalitional Game?

Traditional Media Access Control (MAC) theory is based on optimization operation to
optimize the system utility. Although some problems can be decomposed into optimizing
network utility and user’s utility separately by dual-prime method [6], the solution of the
problem does not always satisfy each user’s utility.

In contrast to optimization method, game theory is a mathematical tool to analyze each
user’s utility. Game theory is much effective to analyze each user’s behavior. Although
the network utility may not be optimized, the solution lets each user’s utility optimized
individually. On the other hand, a coalitional game is a branch of game theory. A coali-
tional game is a powerful tool to analyze user’s cooperative behavior. Also, the considered
problem formulation is about users’ cooperative interactions. Hence, a coalitional game

is a powerful tool to model the problem.

1.3 Related Work and Our Approach

The idea of cooperative communication-was first proposed by [5]. According to the
property-right model in [5], the spectrum is leased to. SUs in exchange for remunera-
tion. In other words, PUs involve SUs as cooperative relays, so PUs’ transmission rates
are improved. Hence, PUs are willingto lease spectrum to SUs for a fraction of time. [7]
also applys the idea of cooperative transmission, and terms the scenario as cooperative
cognitive radio networks (CCRNSs). The other two works [8] [9] are similar, also ap-
plying cooperative spectrum leasing in the CR network. And [5] [7] [8] [9] all adopt

a Stackelberg game to model the problem. However, a Stackelberg game is called as a
leader-follower game, which implies that PUs make decisions first, then SUs. Hence, a
Stackelberg game can not let PUs and SUs make decision at the same time. [10] is the
first work to apply a coalitional game in CCRNs and [11] is an extended version. The
rationale behind this is that coalitional game is more effective to analyze users’ coopera-
tive interactions. The other contribution of [11] is that the authors considtiple PUs
andmultiple SUs in the system. Whereas, [5] and [7] only consider one PU and multiple

SUs. [12] also considers multiple PUs and multiple SUs with multiple subchannels avail-
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able in a sub time slot and allocates optimal fractions of time to sub time slots in order to
maximize system utility.

In our approach, we consider multiple PUs and SUs in the CCRN. Under the coopera-
tive scenario, PUs involve SUs as relays to improve transmission rates. In return, SUs are
licensed a fraction of time for accessing the spectrum. Our work considers two problems,
l.e. power control and time allocation. Channel allocation in the scenario is specially
designed to ensure that each SU can access multiple channels. We propose a novel algo-
rithm to tackle the problem iteratively in two steps, each step only considering one issue.
The rationale behind this is that proposed algorithm is guaranteed convexity by solving
the problem in two steps. As a result, the algorithm can achieve the solution in the core,

which is a basic solution concept in a coalitional game.

1.4 Contributions of the.Research

Dealing with power control and time-allocation problems in the CCRN, we propose an
algorithm to solve the problem iteratively in two steps. First, we allocate fractions of time
for sub time slots. Given thetime allocation coefficients; we optimize SU’s power levels
for relaying and accessing. Then, we repeat the two steps iteratively until we achieve the
maximum utility. The algorithm can obtain the-optimal power levels and time coefficients
to achieve the solution in the core. Detailed description is introduced in the following
section. On the other hand, special design of channel allocation ensures that each user
can access multiple channels in a sub time slot. With the special channel allocation, it is
more beneficial for SUs to stay in the CCRN. In the simulations, we compare proposed
algorithm with other approaches and show that proposed algorithm converges to the core.
As a final remark, we emphasize that our work considers power control and time
allocation two problems. Other works often consider one probéeg|7] and [11] only
consider time allocation. In the related works, we only see one work [5] considering
time allocation and power control problems. However, [5] is modeled as a Stackelberg
game. Our work is the first one applying a coalitional game on power control and time

allocation problems. We also proof that the considered problem has a nhonempty core,



which ensures the stability of the system. In the simulations, we also show that proposed

algorithm converges to the core.



Chapter 2

Cognitive Radio and Game Theory

Preliminary

2.1 Cognitive Radio

Cognitive radio (CR) was first proposed by Joseph Mitola in 2000’s doctoral disserta-
tion [4]. Itis a software-defined wireless communication system that is capable of achiev-
ing highly reliable communication by adjusting-its transmission parameters according to
the radio environment it senses..CR is called “cognitive”, because its structure supporting
a cognition cycle consisting of Observe, Qrient, Plan, Decide, and Act phases as shown
in Fig. 2.2. The figure has been widely used to understand the cognitive radio or analyze
the performance of cognitive networks. Recently, the unbalanced utilization of spectrum
urges the need for intelligent spectrum management technique. For realistic implemen-
tation, CR is built on software based radio and wide-band RF front end to achieve the
functionality. There are some prototypes of CR already built, such as the first prototype
CR1 by Mitola [4], and CR and networking by Virginia tech [13].
Although the original purpose of cognitive radio is not utilized to improve the spec-

trum efficiency, now it is viewed as a novel technique to tackle the problem of spectrum

under-utilization. CR can be used to detect the spectrum holes or actively negotiate with

1This figure is adapted from Mitola, "Cognitive Radio: An Integrated Agent Architecture for Soft-ware
Defined Radio”, Ph.D. dissertation, Royal Inst. Technol. (KTH), pp. 48, 2000
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Figure 2.1: Simplified cognition cycle.

primary users to access the.spectrum. In recent years, there are lots of researches on

CR-related topics. These researches canbe classified into three fundamental tasks [3]:

1. Radio-scene analysis, which'includes estimation of interference of the radio envi-

ronment and detection of spectrum-holes.

2. Channel state information and predictive channel modeling, which encompasses

estimation of channel-state information (CSI) and prediction of channel capacity

for the use by the transmitter.

3. Transmitter power control and dynamic spectrum management.

Our work is based on the transmitter power control and dynamic spectrum manage-

ment. We apply cooperative CR technique to tackle the problem.

2.1.1 Cooperative Cognitive Radio Network

The idea of cooperative communication was first proposed by [5] in 2008, which intro-

duced a property-right model of cognitive radio, also called as spectrum leasing. PUs are
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Figure 2.2: System model for cooperative cognitive radio networks

aware of the existence of SUs and actively lease the spectrum for a fraction of time to
SUs by charging at a certain price. In the scenario, PUs can gain additional revenue by
spectrum leasing. Motivated by the idea of spectrum leasing, some recent works [5] [7]
incorporated cooperative communication into CR networks, which is termeaogera-
tive cognitive radio networkCCRN).

A typical CCRN scenario is'shown in Fig. 2.2n Fig. 2.2(a), PUs transmit signals
to SUs through primary transmission. Then, in Fig. 2.2(b), both SUs and PUs transmit
signals to primary access point (PAP). In this sub time slot, SUs are served as relays to
assist primary transmission. In the last sub time slot, SUs can access the spectrum for
its own traffic. Hence, under the cooperative scenario, PU’s rate can be improved by
exploiting cooperative diversity. In return, SUs gain opportunities to access the spectrum
for a fraction of time, in which SUs can transmit its own traffic to secondary access
point (SAP). Hence, both PUs and SUs can increase their interests in the CCRN scenario,
achieving a “win-win” situation.

The scenario of CCRN is a new cognitive radio paradigm. SUs are served as coop-

erative relays for primary transmission, so PU’s transmission rate increases significantly

2This figure is adapted from Y. Yi, et al., "Cooperative Communication-Aware Spectrum Leasing in
Cognitive Radio Networks”, in IEEE Proc. DySPAN, pp. 1-11, 2010



by exploiting cooperative diversity. The received SNR terms can be summed up by the
technique of maximum ratio combining (MRC). For secondary systems, SUs are licensed

a fraction of time to access the spare spectrum. Hence, both PUs and SUs can ben-
efit from the cooperative scenario. However, for some PUs, when the required traffic
demands are satisfied, primary systems are not interested to increase their transmission
rates. They want to gain some certain beneditg,payment, which is more interesting to

PUs. Hence, there are many researches discussing about cooperative interactions between

PUs and SUs. We adopt a game theoretic approach to formulate the problem.

2.2 Game Theory

Game theory is a mathematical tool to predict the result of rational decision makers. Pre-
dicting the decisions made by players has great merit in many field, such as card game,
gambling, economics, politics, diplomatics, and also wireless communication. Although,
sometimes the explicit model.is difficult to be definedg( politics) or too complex to
derive the winning stratege(g-chess game). Game theory is still a powerful tool to pro-
vide a solution to simplified praoblems. ‘For wireless communication network, applying
game theory to predict and further to regulate the players’ behavior are anticipated since
the increasing complexity of the wireless-network results in significant interference and
foreseeable dynamics of users in cognitive radio network.

In this section, we introduce some basic knowledge of noncooperative game for un-
derstanding game theory more easily, while interested readers can refer to [14] or [15] for

detail description.

2.2.1 Basic Definitions of Game Theory

A game in essence is that multiple players and each player possess its own strategy, which
it can freely adjust and the objective function, which depends on its and other players’

strategy. From a mathematical viewpoint, a game is defined as



Definition 1 A gamel  is

D= (N {Audven, {thoew). @D

whereN = {1,2,---, N} is the set of players4, is the set of actions available for player
x, and we denote the available actions for all playersdas- A; x Ay x - - - x Ay. An
action, a.k.a. strategy, taken by players a, € A,, and the action profile of all players
is denoted by = a1 x as X - - - X ay € A. For notational simplicity, we denote_, as
the action profile taken by all players except playeru, is utility function of playerz,

which is a function of, anda_,.

We introduce some assumptions in game theory. First, each player is rational and
selfish, so each player aims to maximize its own utility. We should mind that “selfish”
does not mean “malicious”. A selfish player.cares about its own utility, while a malicious
player may harm other players._Itis also assumed that all players know the rules of the
game. In other words, each player knows all players’ action set and utilities, so the action
profile is perfectly observed by all players. Actually, the scenario is too ideal due to these
assumptions, so other kinds-of game models are developed to make the scenario more
practical,e.g. coalitional game, which we apply in this thesis. A coalitional game is
one kind of the cooperative games. The. characteristic property of cooperative game is
that players may cooperate to maximize their own utilities. The players in a coalitional
game cooperate to form cooperative groupes, coalitions, which are the basic units in
a coalitional game. The details of a coalitional game are introduced in the latter section.

We still go on the basics of game theory.

Definition 2 The best responsg(a_, ) of playerz to the action profilea_, is an action

a, such at:
by.(a_,) =arg max Ug(ayz,a_g). (2.2)
az €Az

Since best response is the best action for playptayerz would like to stick to it. We

know that each player would take the best response, so the result of the game is the action



profile that is the best response for all players, if it exists. This mutual best response point
is well-known as Nash Equilibrium (NE), which was found by the John Forbes Nash. NE
is an equilibrium point, because every player would stick to it. The formal definition of

NE is given as

Definition 3 The pure strategy profile* constitutes a Nash Equilibrium (NE), if for each

playerzx:

ug(ar,a* ) > uy(a,,a* ), Va, € A, (2.3)

NE is viewed as aolution concepti.e. the rule how the game will be played, of
a static game with complete information. However, the existence of NE needs to satisfy
certain conditions and theorems and detailed explanation can be found in [15]. It's notable
that there are different solution concepts for different kinds of gamegsthe corefor a

coalitional game.

2.2.2 Coalitional Game

In general, game theory can be divided into two branches: noncooperative and cooperative
games [16]. The main branch of cooperative games describes the formation of cooperative
groups of players, called as coalitions. In the section, we focus on the coalitional game,
because we applies a coalitional game to solve the problem in the thesis. A coalitional
game focuses on how the players cooperate with each other in the system, in which a
coalition is the basic unit. Players in the same coalition have some agreements about
forming cooperative group. Hence, the notable issue is how to choose the players to
cooperate with. Whereas, the value of a coalition is quantified by the coalition value,
which is generated by all the players in the coalition. The players in the system have
incentives to join the coalition that increases their own utilities. The assumptions in a
coalitional game are different from the basic game described in previous section, so we

introduce the coalitional game formulation in the following section.

10



Game Formulation

A coalitional gamd™ can be formulated as follows

I'= <N, {v(8)}sen, {Uz‘}z‘e/\/>, (2.4)

whereN = {1,2,---, N} is the set of players;(S) is the coalition value of coalition
S, andu; is the utility function of player. In a coalitional game, the coalition value is
the most important element, which is generated by the players in the coalition. Coalition
value can be defined in different forms.g. rate, power, or payment, according to the
game formulation.u; defines the utility of playei and coalition value is generated by
the players’ utilities in the coalition. Hence, the coalition valié) is highly related to
utility function u,;. The player’s utility received in the coalition is callpdyoft

In a coalitional game, a coalition is the basic unit and how to divide the players into
coalitions is the crucial issue. In this thesis, we consider a special class of coalitional
games that all the players would form-one coalitioe, grand coalition. In the grand
coalition, all the players will cooperate with each other with certain agreements, so the
whole system is stable. Another assumption of the coalitional game that we are concerned
is transferrable utility (TU) [17]. TU property-implies that the total utility represented as
a real number can be divided in any-manner between the coalition members. The utility
that a player received from the division of(S) constitutes the player’s payoff denoted
asz;. Whether the payoff allocation is stable or not, we can examine it by the solution

concept introduced in the following section.

Solution Concept

In the coalitional game theory [16] [18], the most renowned solution concept of a coali-
tional game is theore The relationship between the core and a coalitional game is
similar to Nash Equilibrium and a noncooperative game. The core is directly related to
the stability of grand coalition. In other words, the existence of the core implies that the
whole system is stable. Due to the superadditivity property, players have incentives to

form grand coalitionV, consisting of all players. The definition of superadditivity is as

11



follows

Definition 4 The two coalitions have the property of superadditivity iind Z are dis-
joint coalitionsS (N Z = 0, thenv(S) + v(2) < v(S|YZ). If two disjoint coalitions

satisfy the above equation, they are called superadditive.

Hence, if two coalitions are superadditive, they will merge together to form a new
coalition. If we discover that all the coalitions in the system are superadditive, all the
players will join to form grand coalition. Also, players can increase their payoffs in the
grand coalition, so players have no incentive to leave the grand coalition. In other words,

the grand coalition is stabilized. The formal definition of the core is given as

Definition 5 A payoff vectorr is stable in a coalitionS if Y . _.z; > v(S), i.e. the

€S
playeri has an incentive for the proposed payeff The set of stable payoff allocation,

i.e. the core is defined as:

C:{xERN: in:U(N)andeiZU(S), VSQN}. (2.5)

1eEN €S

We can see that from the definition of the core, which needs to satisfy two conditions.
The first condition is called as group.rational, which the total sum of players’ payoffs is
equal to the coalition value of grand coalitidn. The second condition is related to the
individually rational. A payoff vector is individually rational if every player can obtain a
benefit no less than acting alone, z; > v(i), Vi € N. Hence, the second condition can
be viewed as the sum payoff at least the same with the coalition vafije

With the definition of the core, we can examine whether the payoff allocation is stable
or not. As mentioned above, the core is directly related to the stability of the system.
However, the core is not always guaranteed to exist in a coalitional game. Actually, the
core set is empty in many coalitional games, so the grand coalition cannot be guaranteed
stabilized. In these situations, we may consider alternative solution concepts, but they
are not the main topic in this thesis. Interested readers can refer to [16] [18] for detailed

description. In the next chapter, we focus on applying a coalitional game in CCRN.

12



Chapter 3

Coalitional Game in Cooperative

Cognitive Radio Networks

3.1 Problem Setup

We consider a CDMA based‘cooperative cognitive radio network (CCRN) consisting of
N, PUs andN; SUs, whereN, = {1,2,.- < N,} and N, = {1,2,-- -, N,}. Itis an

uplink transmission scenario; Which PUs aim-to-transmit signals to primary base station
(PBS) whereas SUs want to access the spectrum to transmit data to secondary access
point (SAP). There aréV, available channels licensed to PUs in the system, whgre
{1,2,---, N,}. There is an example of CCRN withi, = 2, N, = 2, andN, = 2 as shown

in Fig. 3.1. The channels are licensed to PUs, so only PUs have the legal rights to use
the channels. If SUs want to access the channels, they need to cooperate with PUs or
give payment for channels’ accessing. We apply the ide@operative communication

in the CCRN. SUs are served as cooperative relays for primary transmission, so PUSs’
transmission rates are improved by exploiting cooperative diversity. In return, SUs gain
the opportunities to access spare channels. SUs are licensed fractions of time to transmit
their own traffic. Hence, both PUs and SUs can benefit from the cooperative scenario. By
the assistance of SUs, the transmission rates of PUs increase by exploiting the technique
of maximum ratio combining (MRC) at the receiver.

For the time scheduling of channels, we consider a time slot setvdwsch is divided

13
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Figure 3.1: The CCRN network witV,= 2 and N,= 2: (a) primary transmission (b)

cooperative transmission (c) secondary transmission

into three sub time slots. The first sub time slot used by PUs is $étas)t and the other

sub time slots are set 88 and(«— (3)t for SU’s relaying and SU'’s accessing, respectively.

For notational simplicity, we normalize theses sub time slots by the fractions of time

for sub time slots aré — «, B;-a — Byrespectively. ForPU’s channel allocation, each

channel is licensed for one P¥.,g. PU 1 can only uses channel 1 for transmission. In

the first sub time slot, PUs transmit their traffic to-SUs and PBS simultaneously using the

broadcast nature of wireless communication. Then, SUs help to relay the traffic received

from PUs to PBS in the second sub time slot, which is for SU’s relaying. In the last sub

time slot, each SU can access multiple channels for its own transmission. The reason why

each SU can access multiple channels in a sub time slot is explained in the next section.
In the channels allocation of SUs, we exploit a special design to enable that each SU

can access multiple channels in a sub time slot. In the relay mode, each SU selects the

channel with the best channel quality to assist PUs’ transmission. In other words, each

PU’s traffic is relayed by SU’s best channel to increase capacity. Each SU helps to relay

the traffic from PUs in the coalition, so it is reasonable that each SU can access available

channels in the coalition. On the other hand, the system assigns unique spreading code

to each SU in order to differentiate SUs when accessing the same channel. In the next

section, we introduce the coalitional game formulation in the CCRN.
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3.2 Coalitional Game Formulation

In this section, we describe the general coalitional game formulation. The complete prob-
lem formulation for power control is introduced in latter section. We formulate the coop-

erative cognitive radio network as a coalitional game

I'= <N> {U(S>}SQN> {ui}i€N7 {$i}z‘e/\f>> (3.1)

where N £ N, |J N, is the set of players wittV, = {1,2,- - -, N,} being the set of all

PUs andN, = {1,2,- - -, N,} being the set of all SUs,(S) is the coalitional value of
coalition S with S C N/, v, is playeri’s utility function, andz; is the payoff of player

i. Coalition value is generated by the PUs and SUs in the coalition. The player’s payoff
is characterized by the utility functian, so the last three elements in a coalitional game
are mutually dependent.

The formal definition of a coalitionin CCRN"isgiven as

Definition 6 A coalition S is a set of players(e.g: PUs and SUs) that cooperate with
each other. For a coalitiors,.we denote the set of PUs and SUs in the coalitfoas
S, and S;, respectively. LeS, represent the available channels in the coalitiSn The

grand coalition is denoted a¥), | J Ny;.consisting of all PUs and SUs.

In the coalition, PUs and SUs can exploit cooperative communication. In this scenario,
SUs serve as cooperative relays to assist PUs’ transmission, in exchange for opportunities
to access the spare channels. Hence, both PUs and SUs can benefit from the cooperative
scenario. From the channel allocation aspect, a channel owned byd2d be used by
SUKk only if they are in the same coalition. Whereas, a SU can assist a PU’s transmission
when they stay in the same coalition. In the next section, we introduce the problem

formulation considering power control.
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3.3 Problem Formulation for Power Control Case

3.3.1 Utility Model

In this section, we only consider the problem with power control whereas the time coeffi-
cients are set fixed at = 0.5 ands = 0.25. We assume that no PU uses the same channel
with other PUs in a sub time slot, so each PU is assigned only one chamnethan-

nel 1 licensed for PU 1. The power control problem that we consider here is to allocate
SU’s power levels for relaying and accessing. On the other hand, PU’s transmit power is
set fixed. The noise variance is denotedrasassuming that all receivers have the same
noise level for simplicity. The direct transmission rate of Ritan be represented by

Tm = log, (1 + W) where P,  is the transmit power of Pth, andh,,, is the
channel gain from PUn to PBS. For the relay strategy, we employ decode-and-forward
(DF) [19] for cooperative communication in the CCRN. According to the DF strategy,
PU’s transmission rate is determined by two stagesPU to SUs and SUs to PBS. For
SU’s relaying, SUs receive the traffic from PUs in the first sub time slot and in the second
sub time slot, SUs decode the data and forward to PBS.

The channel gains of link pairs among PUs, SUs, the PBS, and the SAP are modeled
as independent and identically distributed (i.1.d.) .complex Gaussian random variables.
The channels are assumed to be invariant within each sub time slot, but varying over
sub time slots. We use the following notation to denote the instantaneous channel gains:
hy,..s, denotes the channel gain between mnd SUk; hgﬂp denotes the channel gain
between Sk and PBS using chann,'elhgi) denotes the channel gain between ISahd
its receiver SAP using channglfor anym € N, k € N, andj € N;.

Due to consider power control, the transmit power can be adjusted in order to improve

system utility. We denot, as the power of SW for relaying PUm's traffic andP;,

kD
as the power of SW for accessing. Hence, the power control focuses on how to allocate
the SU’s power for relaying and accessing. We assume that each SU allocates the same
power to relay every PU's traffic. For example, SU 1's power for relaying PU 1's and PU
2's traffic is the same.

Suppose that each SU can assist PUs’ transmission using multiple channels in a sub
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time slot. In other words, there are multiple channels licensed for each SU in a sub time
slot. According to the DF strategy, PU’s data rate is determined by PU to SUs and SUs to
PBS two stages. In order to detect the signals frormiPid SUs, the transmission rate is

dominated by the worst channél, , | in the subset; € S, represented by

Tpm,s = o+ 1089

2
where% is fraction of time for PU’s transmission. As shown in (3.2), the transmission

o2

P mi ho |2
(1 + Bom MiNges, (Np,,, k| ) ,m e S, (3.2)

rate from PUmto SUs is dominated by the worst channel, so that all the data transmitted
by the PU can be decoded correctly. In the second sub time slot, SUs will decode and
relay the data received from PUs to PBS. At the PBS, it also decodes the data received
from PUs in the first sub time slot and sums up the received SNR with the technique
of maximum ratio combining (MRC). At the receiver, the data transmitted from PU and
SUs is the same, so that we can sum up the received SNR. Hence, the received SNR is
enhanced by the assistance of.SUs. The transmission rate from SUs to PBS for assisting

PUmis represented by

4 o o2
keSs

Ts,pm = 1 - log, (1 + _Ppm|h5pm|2 + Z Lsy py MAXjes, ‘hgjx;)va) 7 (3.3)
wherei is the fraction of time for SU’s relaying-In(3.3), the first term is obtained by PU
m's transmission to PBS through direct link, and the second term is the sum SNR achieved
by each SU’s best channel to relay Rt$ traffic. The SNR terms are summed up with
the technique of MRC. Therefore, PU’s transmission rate is improved by the assistance of
SUs.

Hence, according to DF cooperative strategy, the overall transmission rate wf PU

can be achieved by

rp'm = mln {Tp7rL757 TS,Pm} ) m E Sp' (3'4)

In order to decode the data from a PU, the transmission rate is dominated by the
minimum rate in the two stages. Under the cooperative scenario, each SU helps to relay

the traffic from PUs in the coalition, so each SU gains the opportunities to access spare
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channels in the coalition. Based on CDMA network, the system assigns each SU an

unique spreading code. Then, the total access rate & &ld be represented by

hs
Zlog2 (1+ A ),k:eSs, (3.5)

JESK

Wherei is the fraction of time for SU’s accessing. Each SU is licensed for multiple
channels, and it can transmit different signals on the each channel. Hence, from (3.5), we
can see that SU’s access rate is achieved by the sum rate of multiple channels. If a SU
does not join any coalition, they cannot access any channel. Hence, a SU is beneficial to
join the coalition for accessing multiple channels. Also, this is a novel design for SUs to
access multiple channels in the CCRN. Therefore, the total relaying energy consumption
of SUk s

k= Gy Z buspin R €55, (3.6)

meS,
wherei is the fraction of time for SU’s relaying and is SU’s cost per relaying energy;
the summation of power levels for relaying PUS’ traffic. We assume that the power of each
SU for assisting every PU is the same. Due to consider power control, it is reasonable to
define SU’s cost as relaying energy consumption.

To summarize player’s payoff allocated in the coalition,fAgenerates data rate gain
of F'(r,,,), whereF () is a concave increasing function. For example, utility function can
be linear,.e. F(r,,) = r,,, . Payoff is the player’s utility received in the coalition and
it is a division of the coalition value(S). Therefore, PUn's payoff in the coalition is

represented as

F(Tpm)
On the other hand, SWcan be evaluated by utility functiof(r;, ), whereG(-) is a

concave increasing function. Hence, 88payoff in the coalition is represented as

G<T3k) - Ck
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The utility function ensures the concavity of player's payoff. In the optimization
problem, the problem’s concave property is notable. The concave property of the util-
ity function can help us to achieve the solution concept, which is introduced detailed in
the following section. After defining the utility model, we continue to formulate the power

control problem in the CCRN.

3.3.2 Optimization Problem Formulation

In this section, we model the power control problem as a transferable utility (TU) game.
The TU property implies that the total utility specified by a real number can be divided in
any manner between the coalition members. The TU game is fully defined once the set
of coalitions and the coalition valug-) are specified. In the TU game, coalition value
is a real number that can be distributed arbitrarily [20]. We defii#® in the CCRN as
the maximum utility generated by PUs and SUs in the coalifioifhe other assumption
is that the coalition value does*not depend-on the actions of the PUs or SUs outside the
coalition.

According to the utility model and the power constraints on SUs, the coalitional game

in the CCRN can be formulated as follows:

v(S) £ Maximize | N F(in )+ Y (G(ry,) — G)

mesS, kESs
Subject to: (3.7)
(1) Py, p + P, < Prgw, m€ Sy, k €S,
(2) Ps, s Ps, >0, me S, seS;.

The objective function is the coalition valu€sS), which is the summation of all
players’ payoffs in the coalition. Constraint (1) sets SU’s power level no more than the
upper boundP,,... We can see that SU’s transmit power is the summation of relaying
power and accessing power. Note that each SU’s power for assisting every PU is the
same. Constraint (2) ensures that the power levels are inside feasible region. In (3.7),
F(-)andG(-) are concave functions, so itis a concave problem. Then, we want to achieve

maximum in a concave problem. However, how to solve the problem formulation with
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the core is a crucial issue. Hence, we introduce the solution concept detailed in the next

section.

3.3.3 The Core

The power control problem satisfies ttime-sharingcondition in [21]. In our problem,
the time coefficients are set fixed. Whereas, the objective functionin (3.7) is concave with

respect toP, and P,, and the constraints are linear, which satisfies the time-sharing

k>Pm
condition’s two assumptions. As proven in [21], the problem’s solution guarantees to exist
and the duality gap is zero, which means that the problem can be solved in dual domain
and achieve the same optimal value as in prime domain. This property is very effective
to achieve the equilibrium point. Hence, we introduce a solution concept in a coalitional
game known as theore The core is the most renowned solution concept in coalitional
games. The core implies that the payoff allocation is incentive for all the players in the
system, so the grand coalition is.stable. In-other words, if a subset of PUs or SUs separates
from the grand coalition, at least one player’s payoff is worse off. The formal definition

of the core is given as

Definition 7 The core of a coalitional.game inthe CCRN is the set of feasible payoff al-

location

C :{{L' € R'NPH‘NS‘ : Z Tp,, + Z Tsy, = 'U(NPUNS)v

mENp kEN

Z Tp,, + Z xs, > v(S), VS C (NPUNS)},

mESp kess

(3.8)

wherez,, andz,, are PUm's payoff and Slk’s payoff in the coalition, respectively and

| - | denotes the cardinality of a setg. |V,,| means the number of elementsif). The
definition of the core in CCRN is similar to the general fornbiefinition 5. Nevertheless,

we adjust the definition to fit the power control problem. The first condition in the core
means that the total payoff equals to the coalition value of grand coalition. Then, the
second condition represents that sum payoff received in grand coalition is at least the

same with the coalition value(S). This means that the players in the grand coalition
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benefit most, so players have incentives to stay in the grand coalition. The definition
also implies no player’s payoff in a coalitigh C (N, |J NV,) to makey,,, > z,,. forall

m € S, orys, >z, forall k € Ss. In other words, no subgroup of players will separate
from the grand coalition. Hence, the core ensures the stability of the grand coalition. We
have discussed the problem with power control, but the time coefficients are set fixed in
this case. However, time allocation for players is significant to improve the system utility.
Therefore, we introduce the problem considering power control and time allocation in the

following section.

3.4 Problem Formulation for Power Control and Time

Allocation Case

3.4.1 Utility Model

In this section, we consider power control and time allocation problems. The problem
setup is the same with the problem of power control case. A PU is licensed for only one
channel,e.g. channel 1 for PU 1. With the special design of channel allocation, each
SU is licensed for multiple channels for accessing: The noise variance is denetéd as
assuming that all receivers have the same noise level. The power control is to allocate
SU’s power levels for relaying and accessing. On the other hand, the time allocation
problem is to allocate the fractions of time for PU’s transmission, SU’s relaying, and
SU’s accessing. Whereas, the relay strategy is DF and channel gain’s notation is the same
with that in the power control case.

Applying the second derivative test [22] with respect to power levels and time co-
efficients, we discover that the second derivative test’s result is zero, so the problem’s
optimal solution is not guaranteed to exist. Due to the result of the test, we cannot solve
the problem directly, so we propose a novel algorithm to tackle the problem iteratively in
two steps. In the first step, we allocate the fraction of time to each sub time slot. Then,
we only consider power control in the second step to maximize the system utility with the

allocated time coefficients. After solving the problem iteratively in two steps, the problem
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is guaranteed to achieve the equilibrium in the core. Therefore, we can solve the problem
formulation with the proposed algorithm.

In the power control and time allocation problem, we modify the utility models as
follows. The transmission rate from Pk to SUs is dominant by the worst channel

|hp,. .| FEpresented as

Py, mingeg,

o2

hy o |?
Tpms = (1 — @) - logy (1 + ] ) ,meE S, (3.9)

where ( — «) the fraction of time for PU’s transmission. In the first sub time slot, PUs
transmit to SUs and PBS using broadcast nature of wireless communication, so in order
to detect the signals correctly, the transmission rate frormP0 SUs is dominated by

the worst channel. Then, in the second sub time slot, SUs relay the traffic received from
PUs to PBS. With the special design of channel allocation, each SU can access multiple
channels in the coaltiion, so the received SNRis enhanced. The transmission rate from

SUs to PBS for assisting Pidis achieved by

P, |h, |? P, max; hgj ) 12
,r,s’pm — /8 . 10g2 <1 + Pm|0’217m + Z k>Pm szesb | k7p| 7 (3.10)
ke S,

where 3 is the fraction of time for SU’s relaying: In (3.10), the first term is received

from PUmto PBS through direct link and the second term is the sum SNR achieved by

each SU’s best channel to relay s traffic. These SNR terms are summed up with the

technigue of MRC. Hence, PU's rate is improved by the assistance of SUs in the coalition.
Hence, the overall transmission rate of Rlis achieved by

=min{r,,, s Tspm}, M E Sp. (3.11)

Tp

m

This equation is the same as (3.4) according to the DF strategy. In the cooperative
scenario, each SU relays the traffic from PUs in the coalition, so each SU has opportunities
to access available channels in the coalition. Therefore, the total access rat& cA8U

be represented as
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A
Tsk = (O{ - 6) : Z 10g2 1 + 2 9 k € Ssu (312)

. g

JESh
where(a — (3) is the fraction of time for SU’s accessing ahﬁ) is the channel gain of
SU k using channej for its own traffic. Each SU has opportunities to access multiple
channels and it transmits different signals on each channel. Hence, the total access rate
of SU k is the sum rate achieved by multiple channels. Then, the total cost ¢&fiSU

represented as

Ge=cs- - Z Py pm + W05 - (a _ﬁ)v ke S, (3.13)

meSy

wherec, is SU’s cost per relaying energy and is SU’s cost per access timey ¢ ()

is SU’s access time. We assume that the power of each SU for assisting every PU is the
same. The first term in (3.13) is SU’s relaying energy consumption and the second term
is SU’s access time cost. The'second term can be viewed as SU’s payment for spectrum
accessing. The rationale behind SU’s cost is that we consider power control and time
allocation problems. To explain in detail, the energy consumption is the cost for power
control and the access time cost is due to time allocation.

To sum up, PUn's payoff in the coalition i (1, ) and SUK's payoff is represented
asG(rs,)—Cx, WwhereF(-) andG(-) are concave increasing functions. The utility function
design ensures the payoff’s concavity, which can help us to achieve the equilibrium in the
core. The optimization problem formulation for power control and time allocation is

introduced in the following section.

3.4.2 Optimization Problem Formulation

We model the CCRN considering power control and time allocation as a TU game. The
problem formulation is similar to the power control case, but we also consider time al-
location here. As the TU game’s definition in [20], the coalition value is a real number,

which can be divided in any manner between coalition members. We define coalition

valuewv(S) as the maximum utility achieved by PUs and SUs in the coalition.
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According to the modified utility model and constraints on power control and time

allocation, the coalitional game can be formulated as:

v(8) £ Maximize : Y F(ry,)+ > _ (G(ry,) — G)

meSp keS,

Subject to:

(H0<pB<a<l, (3.14)

(2) Py, pr + Ps,, < Prigw, m €Sy, k€S,
(3) Psy s Ps. >0, me S, seSs.
The objective function of the problem formulation is the total payoff of all the players

in the coalition according to the definition ofS). For time coefficientsy is the pa-
rameter to adjust the fraction of time for PUs’ transmission. Tlieis,the parameter to
allocate the fraction of time for SU’s relaying. In constraint (1), we confinextlaad 3
within 0 and 1 to ensure feasibility. The reason whis no less tham is to ensure SU’s
access time nonnegative. Constrain(2) sets the upper.b@undo SU’s power control
and constraint (3) ensures the power levels are feasible. We assume that the power of
each SU for assisting every PU is the same. From the problem formulation in (3.14), we
can see that it is a problem considering power control-and time allocation. However, ac-
cording to the second derivative test, the problem is not guaranteed to achieve an optimal
solution. In other words, we need to search for alternative methods to solve the problem.
In the next section, we propose a novel algorithm to solve the problem, which guarantees

to converge to the core.

3.4.3 Algorithm for Solving Problem Formulation

The problem considering power control and time allocation cannot be solved directly, so
we propose a novel algorithm to tackle the problem. The proposed algorithm solves the
problem iteratively in two steps summarizedAfgorithm 1.

The proposed algorithm solves the problem iteratively in two steps. At each iteration,
the algorithm conducts two steps. In the first step, we allocate values on fractions of time

« and . Then, with the allocated time coefficients, SU’s relaying and access power is
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Algorithm 1 Iterative algorithm for power control and time allocation

0: Define Objective function in (3.14) at iteratiamis denoted by(S)™).
Maximum at iteratiom is denoted by,

- Initialize : Initialize oV, 50, andQ™ .

andP;,

Condition 1: Check whether™, and3™ are feasible.

: Repeat Initialize P,

kPm

Repeat OptimizeP,, ,,., P., to achievey(S)™

kyPm >
Condition 2: Check whethé¥;, ,, ; andP;, are feasible.

End repeat

If (S)™ > Q=1

Q) = 4(S)m),

N o g R w0 N R

Else

8: End if
9: Updaten™) = o + ¢ (1(8)® — QD)
gt = pn) 4 () (U(S)(") _ Q(n—l))_
10: End repeat until 2 converges
11: We obtain the optimal system utilify*, and the parameters
o, B% Py, s andpPy
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determined in the second step. The two steps are performed iteratively until the optimal
solution is achieved. On the other hand, we update the values ford 3 with the
subgradient method. The main purpose of updating time coefficients is to achieve the
optimal point. As explained in the following section, a subgradient method is guaranteed
to converge to the optimal point. Hence, the fractions of tumand 5 are updated as

follows:

At = o) 4 ¢ (y(8)™M — QD) | (3.15)
Bt — g 4 4 (U(S)(") _ Q(n_l)) ’ (3.16)

wheren is the iteration number and(S)™ is the coalition value obtained at iteration

n; Q=1 is the maximum at the iteratiom1. The above subgradient update method is
guaranteed to converge to the optimaland3* as long ag/™ andt™ are chosen to be
sufficiently small [23]. When the norm-of the subgradient is bounded, the choices that
q¢™ = u/n andt™ = §/n for some constantg andJs are guaranteed to converge to the
optimalQ2*.

The reason why our proposed algorithm can solve the problem is that the algorithm
solves the problem iteratively.in two steps. In the first step, we allocate time coefficients,
so the problem can be viewed as alinear combination of time coefficients without con-
sidering power control. Then, in the second step, we can solve the power optimization
problem with the time coefficients allocated in the first step. The power optimization
problem guarantees to be solved due to the time-sharing condition [21], which is intro-
duced detailed in the next section. The two steps avoid the multiplicative terms of time
and power parameters, so the problem is guaranteed to be solved in each iteration. As a
result, the proposed algorithm converges to the core. In the next section, we proof that
our proposed game has a nonempty core.

The complexity of proposed algorithm depends on two faciasno. of iterations
denoted a$A v | and the complexity of power optimization. At each iteration, we conduct
power optimization to allocate SU’s power levels for relaying and accessing. We denote
the power optimization’s complexity &3,, so the overall complexity of the algorithm can

be represented 484 | * O,). In the next section, we show that the proposed algorithm
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converges to the core.

3.5 Algorithm Converges to the Core

The problem formulation in (3.14) is not convex. That is, the problem cannot be guaran-
teed to achieve the optimal solution. Hence, we proposedldrithm 1 to tackle the
problem iteratively in two steps. In the first step, we only consider the problem of allocat-
ing fractions of time forx and3. Then, in the second step, we substitute these allocated
andg values into (3.14) to find SUs’ optimal cooperative and access power. Since the ob-
jective function of the problem formulation in each step is concave, constraints are linear,
so the duality gap is zero [21]. In other words, the problem can be solved in dual domain
and achieve the same optimal value as in the prime domain. Therefore, the algorithm
converges to the optimal time coefficients and power levels.

Since the algorithm is guaranteedto converge, we proof that the game has a nonempty
core in the following. Firstly, we define the Lagrangian.dual functions as

fulm) = max| () * ., )

Tpm >0, MES)

gr(v,7) = 20 SN, (G(Tsk) = G Yers, + Tk:Ck:)

Then, the dual problem is formulated as follows:

Minimize : Z <fm(7r) + Am> + Z <gk(%7) + Zﬁj)

meSy keSs JESH

Subject to:
(3.17)

Yoo T > 0, k€5,
n; >0, 7 € 5,
Tmy, Am > 0, m € 5,.
We formulate the dual problem by appropriately defining vectars, v, 7, and .
DenoteD as the set of optimal solutions of the dual problem. Then, we define the core in

the dual problem as
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@) :{X* e RINoIHIN:I
Ty = f(T) + A, mE N,

.T:k = gk(f}/*?T*) + ZU;; ke NS7

JESH
for some(7*, \*,v*, 7%, ") € D}.

OnceO has been constructed in dual problem, the core of the coalitional game in prime
domain is nonempty. And) C C.

Proof: Since the seO is the subset of the s, and the seD is nonempty. Thus,
the setO is nonempty. We show that for an arbitraty € O, thenx* € C. We consider
an arbitraryx* € O corresponding td=*, \*, v*, 7*,n*) € D. Then,ZmeNp xy
> _ren, T3, 1S the optimal value of the objective function of the dual problem. Due to that
F(-) andG(-) are concave functions, thus.the objective function of the prime problem
is a concave function in each step of the algorithm’s iteration. Also, the constraints of
the prime problem are linear..Then, the duality gap is.zero as proven in [21]. Thus, we
concludethad .\ z; +> pen, @, = v(N, U Ns). According to the definition of the
core, we only need to show thal, s > hes, @5, = 0(S) foreachs € (N, J Ny).

By strong dualityp(S) equals to the optimal value of the objective function of the dual
problem. The sub vectofss, \s, V54 Ts;ns)-consisting of the components @f*, \*, v*, 7%, n*)
inS. Then}_, s @+ es, T, isthe value of the objective function of the dual prob-
lem with such variables. The optimal value of the objective function of the dual problem

is alowerboundod_, o x; 43,5 ;. Thus, we can conclude that € C.
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Chapter 4

Simulations

4.1 Simulation Setup

The problem formulation in Section«3.3 and Section 3.4 are simulated in this section.
In the first section, we consider the power.control case. Then, in the second section,
we consider the power control and time allocation case and solve the problem with the
proposed algorithm. In the third section, we compare the proposed algorithm with other
approaches and show that proposed algorithm converges to the core in the last section.
We consider the scenario with, = 3, N, = 4, andN, = 3. The noise variances at the
receivers are the same and setto="10"2. The channel gain between any two nodes is
modeled as an i.i.d. complex Gaussian viiK(0,1)distribution. Let the utility functions
be linear,i.e. F(r,,) = 10-r, andG(rs,) = us - rs,, Whereu, is SU’s access rate
gain factor. The SU’s cost per relaying energy is set.as8 and SU’s cost per accessing
time is set asv, = 8. The total power constraint for SUs is setfas,, = 2. The updating
sizes of time coefficients are setas= 0.009 and) = 0.003. The optimization problem
is simulated with thevxtool [22]. Note that some parameters may change and will be

specified in each simulation scenario.
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4.2 Numerical Results

4.2.1 Power Control Case

In this section, we simulate the coalitional game in the CCRN considering power control.
The access rate gain parameter is set,as8. In the power control case, the time coeffi-
cients are set fixed at = 0.5 ands = 0.25 as defined in Section. 3.3, so the optimization
problem only allocates SU’s power levels for relaying and accessing. We show that the
player’s payoff in the grand coalition in Fig. 4.1. On the other hand, we also adjust the
value of SU’s access rate gain factqrto see its influence on the player’s payoff in Fig.
4.3.

In Fig. 4.1, we can see the payoffs of PUs and SUs in the power control case. Fig.
4.1(a) shows that the payoff of PU 1 is the most beneficial among PUs due to the channel
condition is better. For PUs, without the cooperation with SUs, the payoffs of direct
transmission of PU 1, PU 2, and PU 3 are 14.28, 12.87, and 11.44, respectively; after
joining the grand coalition, the payoffsincrease to 23.78, 18.00, 20.44, respectively. Thus,
we can see clearly that it is beneficial for PUs to join the.grand coalition. For SUs, before
joining any coalition, the payoffs of SUs are zero; after joining the grand coalition, the
payoff of SU 1, SU 2, SU 3, and'SU 4'increase to 20.77, 16.62, 18.07, 23.57, respectively.
Therefore, it is beneficial for all the PUs and SUs to form grand coalition. The payoffs
obtained from grand coalition lie in the core.

In Fig. 4.2, with total power constrain®,,,. = 2, we can see the optimal power
allocation. For SUs, SU 3 allocates more power on relaying and less power on accessing.
This results in the cost of SU 3 are the highest as shown in Fig. 4.1. The power allocation
is influential to SU’s payoff, so how to allocate the power levels to maximize the system
utility is an important issue.

Fig. 4.3 show that we adjust the access rate gain factto see its influence on the
data rate gain. As the, increases, the total data rate gain of SUs also increases. On the
other hand, the total data rate gain of PUs decreases, because SUs allocate less power on
relaying PUs’ traffic. With the increasing af, SUs allocate more power on accessing,

so that the system can achieve better system utility. Whereas, SUs allocate less power on
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relaying, so the total data rate gain of PUs decreases, At8, the data rate gain of SUs
is higher than that of PUs, so increasing.gfis more beneficial to SUs.

In the Fig. 4.4, we set the access rate gain factar,as12. Compare the result with
the Fig. 4.1 withu, = 8. PU’s payoff in this figure is lower than that in the = 8 figure.
The rationale behind is that SUs allocate less power on relaying, so the PUs’ transmission
rates decrease. For SUs, the payoffs of SU 1, SU 2, SU 3, and SU 4 are 31.30, 25.08,
25.36, and 35.51, respectively, which are about 1.5 times than those1in th@ figure.
There are two reasons behind this result. First, the increase of access rate gain factor is
the most influential. Second, SUs allocate more power on accessing in this figure. With

these two reasons, the payoffs of SUs increase dramatically in the CCRN.

4.2.2 Power Control and Time Allocation Case

In this section, we simulate the problem formulation in (3.14) considering power control
and time allocation. The payoffallocationis-achieved by the proposed algorithm. In Fig.
4.5, we show the player’s payoff obtained from grand coalition. The payoff allocation
achieved by the proposed algorithm lies in‘the core.

Fig. 4.5 shows players’ payoffs obtained from grand coalition. Comparing with Fig.
4.1, PU’s payoff is lower in this'figure. The main reason is that the fractions of time
allocated for PU’s transmission and SU’s relaying decrease. The optimal time coefficients
area = 0.642 ands = 0.217; the time coefficients in Fig. 4.1 are setaas 0.5 and
G = 0.25. On the other hand, players can adjust the time coefficients to maximize the
system utility in this case. SU’s data rate gain is higher than that in the power control
case, because SUs allocate more fraction of time on accessing. Also, SU 3’s cost is 4.29,
the highest among SUs due to allocate more power on relaying. The payoff allocation
is achieved by the proposed algorithm. Therefore, the figure shows the stable payoff
allocation obtained by the proposed approach.

Fig. 4.6 shows the impact af, in the power control and time allocation case. We
set the time coefficients are fixed at the optimal point witk 0.642 and3 = 0.217.
Comparing with Fig. 4.3, total data rate gain of all SUs is higher in this @ageat u, =

6, increase of 70.86% comparing with the power control case. The main reason is that the
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fraction of time allocated for SU’s accessing increases. The total data rate gain of all SUs
is higher than that of all PUs at, = 4, whereas in power control case, thevalue is 8.
Therefore, SUs can obtain higher payoffs in this case, which is more beneficial to them.

In Fig. 4.7, we can see that the SU’s power allocation in the power control and time
allocation case. The time coefficients are set the same with the Fig. 4.5. Each SU allocates
most of the power on accessing and less power on relaying. SU 3 allocates more power on
relaying, so its cost is the highest as shown in Fig. 4.5. Therefore, SU’s power allocation
effects SU’s cost dramatically. Then, the system utility can be improved significantly by
the power control.

In the Fig. 4.8, we can see the impact of fraction of timeith 3 fixed at a specific
value. Asa increases, the sum payoff also rises up. The reason is thatwittbreas-
ing, the fraction of time allocated for SU’s accessing increases. Therefore, SU’s payoff
increases, so that the sum payoff rises.up.However, this does not imply that the payoff
allocation is stable. For example, whgns fixed at 0.2 andv is 0.6, the payoff of each
player is better than acting alone, so-the proposed payoffs are incentive for players. How-
ever, whernn = 0.7, the payoffs of PU 1, PU 2, and PU3 are 14.27, 13.11, and 12.26,
respectively; while acting alone, their payoffs are 14.28, 12.87, and 11.44, respectively.
PU 1's payoff is worse than acting alone. Hence, PU 1 has no incentive to join the grand
coalition, so the payoff allocation is not stable. Therefore, proposed algorithm updates the
time coefficientsy and to achieve an equilibrium in the core, which not only considers
the sum payoff, but also let players benefit most in the grand coalition.

Fig. 4.9 shows that the impact of fraction of timewith 3 variation. Thes value
changes withy value and the difference between them is fixed. Clearly, the maximum
sum payoff of different curves occur at different time points. For example, on the curve
of 3 =« - 0.4, the maximum 161.06 occursat 0.6 and3 = 0.2. Except achieving the
maximum sum payoff, we also need to examine whether the payoff allocation is stable.
At o = 0.7 andg = 0.3, PU 1's payoff is 14.27, whereas its payoff is 14.28 when acting
alone. Thus, PU 1's payoff is worse off than acting alone. Hence, PU 1 has no incentive
for the proposed payoff, so the equilibrium will not occur at this time point. Therefore,

we can know more clear about how to achieve the equilibrium from this figure.
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4.2.3 Comparison between Different Approaches

In the Fig. 4.10 withu, = 8, we compare the performance between proposed approach

and other approaches, which are specified as follows:

1. No cooperation approach each PU only uses direct link to transmit signals to

PBS without SU’s help. Hence, SUs have no opportunity to access the channels.

2. Equal Power approach there is no power control in the scenario, both PUs and

SUs transmit with fixed power level.

3. Proposed algorithm: proposed algorithm based on coalitional game with consid-

ering power control and time allocation problems.

Fig. 4.10 shows performance in different approaches. First, we can see that SUs’
payoffs are zero in the no cooperation approach. This is due to no channel for SU’s
accessing in this approach. Therefore, each PU only uses direct link to transmit signals
to PBS without SU’s assistance. The payoffs of PU 1, PU 2, and PU 3 in this approach
are 14.28, 12.87, and 11.44, respectively. On the other hand, players can obtain higher
payoffs in the equal power approach. Each player’s payoff in the equal power approach is
better than acting aloneg. no cooperation approach. Hence, the payoff allocation in the
equal power approach is incentive for‘players, which implies that players have incentives
to join the coalition.

Clearly, each SU’s payoff is improved significantly in the proposed algorithm. The
rationale behind this is that SUs allocate more power on accessing, so SUs’ payoffs in-
crease dramatically. However, PU 2’s payoff is 18.63 in the equal power approach better
than 14.67 in the proposed algorithm. The reason is that PU 2’s rate is determined by the
SUs to PBS part, while proposed algorithm allocates less power on SU'’s relaying. Hence,
PU 2’s rate is reduced in the proposed algorithm. Nevertheless, the coalition value is
improved significantly by the proposed algorithm, so players are more incentive for the
proposed algorithm. The coalition value is 170.30, whereas in the equal power approach,
the coalition value is 122.49. Therefore, the payoff allocation of the proposed algorithm

is stable.
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Fig. 4.11 shows the comparison of the sum payoff between different approaches,
where No. 1 is the no cooperation approach and No. 2 is the equal power approach; No. 3
is the proposed algorithm. The:sum payoff of No. 1, No. 2, and No. 3 are 38.59, 122.49,
and 170.30, respectively. The sum payoff is the lowest in the no cooperation approach
among approaches, because each PU only uses direct link to transmit signals to PBS
without SUs’ help. Whereas, SUs have no chance to access channels to transmit their own
traffic. Hence, both PUs and SUs perform poor inthe no cooperation approach. For other
two approaches, the sum payoff is also called as coalition value. In theses two approaches,
all the players form the grand coalition. According to the definition of ¢h8), the
coalition value is the summation of players’ payoffs in the coalition. However, the sum
payoff in the no cooperation approach cannot be called as coalition value, because players
just act alone and they do not form any coalition. The coalition value in the proposed
algorithm increases 39.03% comparing with the equal power approach. The main reason
is that SUs allocate more power on accessing, so SUs’ payoffs improve significantly in
the proposed algorithm. While, the equal power approach sets the same power levels to
SU’s relaying and SU'’s accessing. Hence, SUs are beneficial in the proposed algorithm.

As a result, proposed algorithm can increase the coalition value dramatically.
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4.2.4 Algorithm Converges to the Core

Fig. 4.12 illustrates that the algorithm-converges to the core in the aspect of time allo-
cation. At first, the time coefficients are initialized(at, (3)=(0.06, 0.03). Then, at each
allocated time point, we conduct optimal power control'to maximize system utility. The
time coefficients oflx and 5 are updated iteratively according to (3.15) and (3.16), re-
spectively. In the figure, we can see that as the-iteration increases, the updating step size
decreases. Eventually, the algorithm converges to the equilibrium at (0.642, 0.217) with
maximum coalition value 170.30. Then, we examine the payoff allocation obtained at this
equilibrium with the definition of the core, which has two conditions. The first condition

is guaranteed by the optimization problem’s objective function, so we only need to exam-
ine the second condition of the definition. In the second condition, we have to show that
players benefit most in the grand coalition. For example, if PU 1 acts alone, the payoff is
14.28; after joining the coalition with SU 1, the payoff increases to 17.01. Whereas, SU
1's payoff is zero before joining any coalition; after joining the coalition with PU 1, SU

1's payoff increases to 0.44. If PU 2 joins the coalition with PU 1 and SU 1, PU 2’s payoff
increases to 14.28. The more PUs joining the coalition, SUs can access the more chan-

nels, so SUs’ payoffs increase. Also, the more SUs in the coalition, PUs’ transmission
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can be assisted by the more SUs. After comparing with different coalitions, we discover
that player’s payoff in the grand coalition is the most beneficial. Therefore, the payoff

allocation achieved by the algorithm lies in the core. This implies that all the players have
incentives for the proposed payoff allocation. As a result, proposed algorithm converges

to the core.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

We have applied a coalitional game:to model the problem in the CCRN scenario. We
consider the problem formulation in two cases,power control, and power control and

time allocation case. In the power control case, the main purpose is to allocate the SU’s
power levels for relaying and-accessing in order to maximize the system utility. On the
other hand, in the power control and time allocation case, the problem is not guaranteed to
be convex, so we proposed a novel.algorithm to solve the problem iteratively in two steps.
In the first step, we allocate the time coefficients and then, we conduct power control
optimization int the second step. The proposed algorithm guarantees the problem solved
in convex procedure. In addition, we have studied the convergence of the algorithm and
the solution achieved by the algorithm lies in the core. Our problem formulation satisfies
the time-sharing condition, which guarantees the problem’s zero duality gap. We apply
the time-sharing condition to proof that the core is nonempty. In the simulations, we
have shown that the PUs’ and SUs’ payoffs lie in the core. We also discuss the relation-
ship between time coefficients and coalition value. While, comparing between different
approaches, our proposed algorithm can achieve a stable payoff allocation. Finally, the

proposed algorithm converges to the equilibrium in the core.
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5.2 Future Work

In this thesis, we have solved the problem considering power control and time allocation
in CCRN scenario. We adopt a coalitional game to analyze the cooperative behavior of
players. The proposed algorithm can solve the problem considering power control and
time allocation iteratively in two steps. In the first step, we allocate the the time co-
efficients and the problem can be simplified as a power optimization problem. Hence,
each step of the proposed algorithm is guaranteed to be convex. The time coefficients are
updated with the subgradient method, which guarantees to converge to an equilibrium.
However, there are still other methods to update time coefficients, which can be consid-
ered in the future work. Alternative methods for updating time coefficients can speed up
the convergence of the algorithm.

In the network scenario, we consider multiple PUs and SUs based on CDMA network.
When there are multiple users in the same channel, we use spreading codes to differentiate
them. Whereas, the recent protocasy. LTE, are all related to the OFDMA network.
Hence, the future work can apply. OFDMA network to-the CCRN scenario. The most
important part is the channel’s scheduling for PU’s and SU’s usage. As in [24], the system
model is CCRN based on OFDMA and authors also propose an algorithm to allocate the
multi-channel cooperation. While, authors adopt @ Nash Bargaining Game to model the
problem in [24]. We have not seen any work applying OFDMA network to the CCRN with
a coalitional game. Therefore, applying OFDMA network to the CCRN in a coalitional
game approach is a practical direction for future work.

Another aspect for future work is to analyze the solution concept. The solution con-
cepts of a coalitional game have been proposed in many years. However, few works
discuss about the convergence region of the solution concept. In this thesis, we show that
proposed algorithm converges to an equilibrium and examine that the equilibrium lies in
the core. Future work can analyze the region of convergence (ROC) of the core. While,
we have seen [25] discussion about the ROC of the core in a linear programming game.
However, in our work, many parameters influence the ROC of the core. Hence, we can

set the power levels fixed and analyze the ROC of the core in time coefficients domain.
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If we can find the ROC of the core, this helps us a lot to achieve the optimal point inside
the ROC. As a result, we can analyze the solution concepts of a coalitional game in many

perspectives. This can helps us know more properties about the solution concepts.
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