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摘  要 

移動估測在視訊編碼的過程中，具有非常高的複雜度，因此成為即時影像編碼的

瓶頸，在高壓縮律規格(H.264/AVC)的可調式視訊編碼中，由於其額外引用的層

間預測編碼，使得原本整數點移動估計之高頻寬存取所帶來的問題更加嚴重。因

此，本論文引用一能有效改善層間預測高頻寬存取的演算法並提出相對應的硬體

架構，此硬體架構使得整數點移動估測和層間預測能併行運算並共用運算時所需

的資料。此外，為了改善分數點移動估測的高複雜度和高計算量，本論文引用了

一分數點快速演算法並提出相對應的硬體架構，此提出之架構與先前架構相比運

算速度可增加三倍。由於多種移動向量和來自於層間預測的多種編碼方式，使得

分數點移動估測的運算量和運算時間大為增加，為了更進一步減少分數點移動估

測的運算時間和運算量，本論文引用了一能有效篩選欲執行分數點移動估測的編

碼方式之演算法，並且將其延伸與多層解析度移動估測演算法之結果一併考慮，

進而提出一種能從不同層解析度編碼方式之中有效篩選欲執行分數點移動估測

的編碼方式之演算法，經過此演算法，相較於原先的最多 20 種編碼方式，此演

算法篩選至僅僅 3 種編碼方式須要被執行分數點移動估測，此演算法相較於先前

無篩選的做法訊雜比下降了 0.106dB 而位元率增加了 3.542%。 
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Abstract 

Motion estimation is (ME) is the most complex part and the bottle neck of a real time 

video encoder. The adoption of inter-layer prediction (IL prediction) in H.264/AVC 

SVC extension even increases the computing time and memory bandwidth of ME. 

Thus, we adopted the previous data efficient inter-layer prediction algorithm [4] to 

save the memory bandwidth. In this thesis, we propose the corresponding hardware 

architecture for inter-layer prediction which can process INTER mode and different 

inter-layer prediction modes in parallel to save the computing time and memory 

bandwidth. Furthermore, in order to reduce the high complexity and computation of 

FME, we adopt the Single-Pass Fractional Motion Estimation (SPFME) as our fast FME 

algorithm in our FME process. We then propose the corresponding FME hardware 

architecture for SPFME according to the previous architecture of FME design [3]. 

Compared with the previous architecture, our proposed architecture can speed up to 

four times faster. There are many prediction modes due to the adoption of inter-layer 

prediction and different block types. Thus, to further reduce the complexity and 
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computing time of FME, we adopt the pre-selection algorithm of Li’s to eliminate 

some prediction modes from FME process. However, the Parallel Multi-Resolution 

Motion Estimation (PMRME) algorithm [1] is adopted in our IME process. Hence, we 

further propose a multi-level mode filtering scheme to select 3 prediction modes 

from 3 different search levels. Finally, we integrate the adopted IL prediction, mode 

filtering, and the SPFME algorithm. The simulation results shows that the proposed 

function flow with mode filtering can achieve average 3.542% of bit-rate increment 

and 0.106dB of PSNR degradation in CIF sequence for 2 spatial layers. The 

implementation results of the whole ME architecture is also shown. It can support 

CIF+480p+1080p video @60 fps under 135MHz. 
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Chapter 1. Introduction 

1.1. Overview of SVC 

  In these years, video coding has been developed rapidly in order to satisfy a 

variety of applications range from mobile device display to high-definition TV. As a 

result, many video coding standards have been standardized to increase 

compatibility among different video applications. One of the state-of-the-art video 

coding standards called H.264/AVC, which was standardized by Joint Video Team 

(JVT), can achieve amazing compression ratio compared with traditional video coding 

standards thanks to the adoption of many different optimization techniques.  

However, to further satisfy the requirement of end user heterogeneity, an 

advanced video coding standard called Scalable Video Coding (SVC) [1], as an 

extension of H.264/AVC, has been standardized. 

  SVC supports three scalabilities, which are temporal, spatial, and quality scalability. 

Temporal scalability supports different frame rate by using hierarchical B structure. 

Quality scalability is achieved by Fine-Grain Scalability (FGS), Coarse-Grain Scalability 

(CGS) or Medium-Grain Scalability. Spatial scalability is supported by varying frame 

resolutions. 
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Fig. 1 Structure of SVC encoder 

The basic structure of SVC encoder with two spatial layers is shown in Fig. 1. The 

intra-layer prediction mode is used both in base layer (BL) and enhancement layer 

(EL). However, for the high correlation between BL and EL, the inter-layer prediction 

mode is also supported in EL process by reusing the coding information from BL. 

  In the first step of SVC encoding process, the original input sequence is 

down-sampled N times to fit the size of BL input. Then the BL sequence is encoded 

by typical H.264/AVC encoding process. After BL is encoded, the EL takes the 

up-sampled encoded information from BL as reference to do the inter-layer 

prediction.  
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1.2. Organization of this thesis 

The organization of this thesis is as follows: In chapter 2, we introduce the related 

works of this thesis. Afterwards, we proposed a fast mode filtering algorithm for our 

IME architecture with the adopted pre-selection algorithm of LI’s work[7]. In chapter 

4, we propose our architecture of the adopted efficient inter-layer prediction 

algorithm as well as the architecture of the adopted fast algorithm of FME. Then, in 

chapter 5, we list several simulation results to demonstrate our proposed mode 

filtering algorithm. Some hardware implementation results of our motion estimation 

are also listed in chapter5. In the end, a conclusion is given in chapter 6. 
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Chapter 2. Related work overview 

2.1. Parallel multi-resolution motion estimation 

(PMRME)[1] 

 
Fig. 2 illustration of parallel multi-resolution motion estimation 

Parallel multi-resolution motion estimation (PMRME) includes three independent 

levels for search, as illustrated in Fig. 2.  

Level 2 is the coarsest level. It has the largest SR, [-128,124], and its search center 

is located on the original point (0, 0) to enable regular data reuse between successive 

MB processing. This level uses the 16:1 sampling for its ratio, thus, the only mode in 

level 2 is 16x16. 

Level 0 is the finest level, which has SR for [-8, 7]. We choose the motion vector 

predictor (MVP) as its center because it has high probability to be the final MV. In this 

level, we do not subsample data, thus, there would be variable block size modes in 

level 0. We here take the MVP of the top left block as the MVP_INTER of whole 
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macro block to simplify the process and compensate the motion vectors of all blocks 

after motion estimation is over.  

Level 1 has the SR between level 0 and level 2, which is [-32, 30].The search center 

of level 1 is also set to be on (0, 0) for the same reason of level 2. This level uses 4:1 

sampling and thus will have 16x16, 16x8, 8x16, 8x8 modes to choose from. 

These three levels have different characteristics and can properly complement to 

each other. Level 0 can find the best matching block of those with low motion. Level 

2, on the contrary, is suitable for high motion block but with the coarsest accuracy. 

The characteristics of level 1 is among level 0 and level 2, which has smaller SR than 

level 2 but more accuracy than level 2. 

In level 0, after searching all positions, there will be a motion vector difference 

(mvd) which indicates the difference between the final MV and the MVP_INTER. 

Thus, we only have to transmit the MVP_INTER and mvd after the encoding is over so 

that the decoder can get the final MV position. As for level 1 and level 2, the final MV 

is the mvd relative to zero (0, 0) position. 

The advantages of PMRME is that level 1 and level 2 can enhance data reusing by 

setting search center on (0, 0).Moreover, level 1 and level 2 have larger search range 

and thus can compensate the drawback of level 0 whose search range is too small  

to find the best matching block with high motion. With these two large search levels, 

the motion vectors can rapidly converge to a proper position thus can compensate 

the effects from level 0 MVP, as illustrated in Fig. 3. 
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Fig. 3 the concept of PMRME (the MV can be rapidly converged.) 

2.2. Data efficient Inter-layer prediction algorithm 

  Inter-layer (IL) prediction is adopted in SVC to reduce the redundancy existed 

between spatial layers. However, IL prediction also causes additional memory 

bandwidth and computational requirements. We adopt our data efficient IL 

prediction algorithm to reduce the data access requirement. IL prediction includes 

inter-layer residual (ILR), inter-layer motion (ILM) and inter-BL (IBL) mode and the 

combination of them, as illustrated in Fig. 4. 
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Fig. 4 different modes of the Inter-Layer prediction (IL prediction)  

In our IL prediction algorithm, ILR can be achieved by only additionally subtracting 

the up-sampled base layer residual from current coding pixels after current coding 

pixels subtracts the reference data, as illustrated in Fig. 5(a)(b).  
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+
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Fig. 5 (a)the SAD calculation of INTER (b) the SAD calculation of ILR 

The concept of ILM is to use the up-sampled motion vectors from base layer as the 

motion vector predictors (MVPs) of enhancement layer, which is based on the 

assumption that the motion vector of base layer could be quite approximate to the 

one of enhancement layer.  
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Fig. 6 adopted inter-layer motion prediction algorithm for every block in a macro block. The threshold 

is set to be 8. The MVP_ILM is based on a 4x4 block, thus, a macro block has sixteen MVP_ILMs. 

Our adopted ILM scheme is illustrated in Fig. 6. It takes advantage of the 

characteristic that the difference between motion vector predictors of ILM 

(MVP_ILM) and motion vector predictors of INTER (MVP_INTER) is highly possible to 

be small, so we can apply the search area centered on MVP_INTER to find out best 

MV of both INTER mode and ILM mode. Moreover, a simulation was conducted to 

find out the most suitable search range so that the MV_ILM would be highly possible 

to be within the search range of INTER mode. In this way, INTER mode and ILM mode 

can share the same search data to reduce the data access requirement.  

According to the results of our previous simulation, we set the search range to be 

[-8, 7]. And the condition for the execution of the ILM process is that the difference 

between MVP_ILM and MVP_INTER has to be smaller than 8 to assure the final MV 

of ILM would be inside the search area of INTER mode. In addition, since the search 

range is only [-8, 7], we can further save the computing time and reduce power 

consumption.  
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Fig. 7 the function flow of inter-BL mode(IBL) 

The IBL scheme is illustrated in Fig. 7. It takes the up-sampled partition from base 

layer and uses the same MVP as ILM. Since the IBL mode has high probability to be 

selected as best mode in enhancement layer, it doesn’t skip IBL mode to avoid great 

performance degradation, instead, it fetches external memory to load reference 

search data when the difference between MVP_INTER and MVP_ILM is too large. 

Otherwise, IBL reuses the reference search data from INTER prediction to reduce the 

data access requirement.  

  The ILR, ILM, IBL mode can be combined together to further reduce redundancy 

between spatial layers. Thus, in this thesis, we will have INTER, ILR, ILM, ILMR, IBL 

and IBLR mode after different modes combined together, as illustrated in Fig. 2.4. 

The corresponding architecture of our IL prediction will be discussed in detail in 
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chapter 4. 

2.3. Fast FME algorithm- Single-pass Fractional Motion 

Estimation (SPFME) 

  SPFME is a one-iteration search method which is used as a fast fractional motion 

estimation. SPFME uses the MVP position and the zero (0, 0) position to set a 

ten–points search pattern.  

The SPFME needs a MVP position to locate the search point of the predicted 

fractional motion vector (pred frac mv) and the other four points around it. The way 

we adopt to produce the pred frac mv is the same as the way adopted in [5]. In 

H.264/AVC, the predicted motion vector (pred mv) is defined as the median of three 

neighboring motion vectors. The pred frac mv is extracted from pred mv and the best 

integer motion vector (mv), 

MVP position=pred frac mv = (pred mv - mv) modulo β        (2.1) 

where modulo β operation is applied to obtain the fractional component by 

removing the integer part. The number “β” is decided by the precision, β=4 in 1/4 

pel case and β=8 in 1/8 pel case. The basic idea of obtaining the pred frac mv 

according to the equation (1) is based on the assumption that most of the best 

fractional motion vectors (best frac mv’s) lies on either pred frac mv or its four 

neighbors (top, down, left and right). 
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           (a)                        (b) 

Fig. 8 Different search patterns are shown. Circle, diamond and triangle denote integer point, search 

center and quarter-pel location. (a) is SIFME, proposed by our early algorithm, searches zero position, 

MVP position and its four neighbors (up, down, right and left) (b) is SPFME, denoting Kyung’s 

algorithm, with four more points around the zero position (up left, up right, down left, and down right) 

than (a). 

  SPFME has a ten-points search pattern, as illustrated in Fig. 8. The pattern includes 

the zero (0, 0) position with its four neighbors (up left, up right, down left and down 

right) around it, and the MVP position with its four neighbors (top, down, left and 

right). 

  SPFME improves SIFME[3] by adding more points around the zero position and 

thus increase hit rate of the best MV, as illustrated in Fig., . Furthermore, it can be 

easily implemented by our previous architecture of SIFME algorithm without 

increasing computing time because of the parallel calculation between different 

search points. The proposed architecture design of SPFME will be discussed in detail 

in chapter 4. 
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Chapter 3. Mode filtering for IME 

3.1. The Matching Criteria 

In this section, we use RDcost to decide the final prediction mode. The function of 

RDcost is listed as follow: 

J = D +λ ˙R                     (3.1) 

Where J denotes RDcost, λ represents Lagrangian parameter, D is the distortion 

between current and reference data, and R refers to rate derived by computing the 

difference between selected motion vector (MV) and motion vector predictor (MVP). 

In the following section, the ”λ ˙R” will be simply called ”MVcost”. Thus, the 

function of RDcost can be shorten to: 

J = D + MVcost                     (3.2) 

The D term is acquired by calculating sum of absolute differences (SAD) in IME and 

sum of absolute transformed differences (SATD) in FME. 

3.2. Motivation of mode filtering 

  In H.264 video coding standard, variable block size (16x16, 16x8, 8x16, 8x8, 8x4, 

4x8 and 4x4) motion estimation is supported and every block of every partition size 

goes through integer motion estimation (IME) and fractional motion estimation (FME) 

processing, as illustrated in Fig. 9. Thus, 41 blocks would go through IME and FME 

processing to derive best partition and best motion vectors of a macro block. 

Furthermore, the computational complexity is even increased due to the adoption of 
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inter-layer prediction in scalable video coding (SVC), including ILR, ILM and ILMR. 

Therefore, there are overall 41x4=164 blocks that would have to be examined by IME 

and FME process, as illustrated in Fig. 10. 
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8x16
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4x8 4x4

IME INTER mode

FME INTER mode

Best mode selection
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Fig. 9 mode selection process of H.264 
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Fig. 10 mode selection for SVC 

  To reduce the complexity, partition beyond 8x8 is simplified into submode after 

IME stage in H.264/AVC, which is derived from 4x4, 4x8, 8x4 and 8x8 mode, as 

illustrated in Fig. 11. Thus, there are only 16x16, 16x8, 8x16, and submode to be 

examined in FME stage, namely, 21x4=84 blocks at most and 9x4=36 blocks at least 

to examined in FME stage.  
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Fig. 11 mode selection for H.264/AVC  
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Fig. 12 mode pre-selection for H.264/AVC 

Some works [10],[11],[12] have been proposed to speed up the FME process; 

however, to further reduce the complexity and computing time of FME processing, 

instead of checking all modes from IME, we think of pre-filtering modes from IME to 

reduce the number of modes examined in FME. There are some researches [8],[9] on 
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mode-filtering for H.264/AVC, as illustrated in Fig. 12. Nevertheless, those 

mode-filtering schemes are only for INETR prediction. Since the inter-layer prediction 

is adopted in our IME process, we adopt the mode pre-selection scheme for 

inter-layer prediction from the previous work [7] to reduce the numbers of modes in 

FME stage. 

Although we can reduce the numbers of modes from IME by Li’s work, we still 

have nearly 8 modes left after the pre-selection process in our IME stage. To further 

reduce the computing time of FME as well as considering the hardware 

implementation of FME, we try to reduce modes for FME to only 3 modes. Thus, 

after introducing the adopted Li’s mode pre-selection algorithm, we still need to 

handle the remaining modes of inter-layer prediction and the other two modes from 

level 1 and level 2 in IME stage before entering into FME stage. 

The rest of this chapter will be as follows. In 3.2, we introduce the mode 

pre-selection algorithm by Li. Afterwards, we propose an algorithm to deal with the 

rest of IME modes in 3.3 so that there will be only 3 modes left entering into FME 

stage. In 3.4, we further take advantage of the characteristics of inter-BL (IBL) and 

inter-BL residual (IBLR) mode to reduce the number of mode from IME. Simulation 

results of the overall mode filtering algorithm will be shown in Chapter 5 to 

demonstrate the efficiency of the whole mode filtering flow.  

3.3. Efficient pre-selection algorithm for fractional 

motion estimation in H.264/AVC scalable video 

extension 

3.3.1. Observation and analysis 
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The pre-selection algorithm [7] is based on the observation of the RDcost between 

IME and FME of different prediction modes. Li divided these prediction modes into 

four types to compare the RDcost of them. They are “INTER versus Inter-layer motion 

(Type 1)”, “Inter-layer residual versus Inter-layer motion residual (Type 2)”, “INTER 

versus Inter-layer residual (Type 3)”, and “Inter-layer motion versus Inter-layer motion 

residual (Type 2)”.Here we only consider the Type 1 and Type 2 algorithm for 

convenience. Thus, we will only introduce the Type 1 and Type 2 algorithm in next 

section. 

Li define the term called “spatial locality” to indicate that if a macro block whose 

RDcost of IME is very close to the RDcost of FME. That is, the RDcost won’t change a 

lot after the FME process. Li found that most of macro blocks have high spatial 

locality for block size of 16x16, 16x8, and 8x16. Thus, for example, if the IME RDcost 

of INTER mode is sufficiently larger than IME RDcost of ILM mode for block size of 

16x16, it has high probability that the FME RDcost of INTER mode is larger than the 

FME RDcost of ILM mode for block size of 16x16, which can be illustrated as follows: 

                                                          

                                                        (3.3) 

As for submode, it should be treated individually since the spatial locality of it isn’t 

obvious. The Type 1 and Type 2 mode pre-selection algorithms are described in the 

following section. 
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3.3.2. The pre-selection algorithm for inter-layer prediction 
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Fig. 13 the Type 1 mode pre-selection algorithm. The term “I”, and “M” refers to INTER, and ILM mode, 

respectively. IME(I)16x16, IME(I)16x8, IME(I)8x16, and IME(I)submode, are 16x16 RDcost, 16x8 RDcost, 

8x16 RDcost, and submode RDcost of IME for INTER mode. IME(M)16x16, IME(M)16x8, IME(M)8x16, 

and IME(M)submode, are 16x16 RDcost, 16x8 RDcost, 8x16 RDcost, and submode RDcost of IME for 

ILM mode.    is the threshold for block size of 16x16, 16x8 and 8x16 ;    is the threshold for 

submode. 

The Type 1 mode pre-selection algorithm is as illustrated in Fig. 13.  ij indicates 

the “mode_flags” of different prediction modes and different block types. The term 

“i” refers to the prediction mode and the term “j” represents the block types. In Fig, 

the thresholds           are calculated as follows:  

   
    

 

 
                                                           

                   
          (3.4) 

where the    is the threshold for block size of 16x16, 16x8 and 8x16 because of the 
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spatial locality of them. In the begging of the algorithm, we first set  ij (mode_flag) 

true for all i and j. After the Type 1 algorithm, some of the mode_flags would become 

false.  
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Fig. 14 the Type 1 mode pre-selection algorithm, the term “R”, and “MR” refers to ILR, and ILMR mode, 

respectively. IME(R)16x16, IME(R)16x8, IME(R)8x16, and IME(R)submode, are 16x16 RDcost, 16x8 

RDcost, 8x16 RDcost, and submode RDcost of IME for ILR mode. IME(MR)16x16, IME(MR)16x8, 

IME(MR)8x16, and IME(MR)submode, are 16x16 RDcost, 16x8 RDcost, 8x16 RDcost, and submode 

RDcost of IME for ILMR mode.    is the threshold for block size of 16x16, 16x8 and 8x16 ;    is the 

threshold for submode.  

The Type 2 mode pre-selection algorithm is as illustrated in Fig. 14. The thresholds 

here are calculated as follows:  

   
    

 

 
                                                            

                   
         (3.5) 
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After the Type 1 algorithm and Type 2 algorithm, we can skip modes with false 

mode_flags, which are more unlikely to be the best mode after FME stage. Thus, we 

can reduce the computing time of FME. 

3.4. Proposed mode filtering algorithm for multi-level 

After going through Li’s mode pre-selection algorithm, there are still nearly 8 

modes left in average for level 0 in IME. Except for the rest of level 0 modes, level 1 

and level 2 have their own prediction modes, too. Thus, in this section, we focus on 

how to process the rest of modes. 

  To assure that the mode filtering would be accurate enough, we deal with level 0 

modes and level1, level 2 modes separately. For level 0, we choose three best modes 

from the modes left according to RDcosts performance. Afterwards, we will have 3 

modes from level 0, one mode from level 1, and one mode from level 2. To further 

reduce the number of modes to only 3, we propose a fast algorithm to select 3 

modes among these 5 modes. The way we select the 3 best modes is illustrated in Fig. 

15. 

Compare

Level 2Level 1
Level 0 

3rd mode
Level 0 

2nd mode
Level 0 

1st mode

Mode 0 Mode 2Mode 1

 
Fig. 15 the function of mode filtering between multi-levels 

In the algorithm, we set the modes with the smallest RDcost and the second small 

RDcost from level 0 as the first and the second candidate for the final modes. As for 

the third candidate for final mode, we compare the RDcost of the third mode of level 

0, level 1 RDcost, and level 2 RDcost to determine the best as the third candidate for 
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the final mode. The reason we keep 2 candidates from level 0 is due to its high 

prediction accuracy compared with the other two levels, since the other two levels 

use sub-sampled data to calculate RDcosts. In this way, we can quickly decide the 

candidates for the final modes in FME as well as make sure that the candidates from 

IME are accurate enough. 

3.5. Mode filtering by IBL and IBLR mode 

IBL mode and IBLR mode are two special modes in inter-layer prediction since they 

directly take the up-sampled MVP_ILMs as their final MVs. In this way, IBL and IBLR 

will load data according to the final MVs and produce the RDcost without searching. 

Moreover, since the MVP_ILMs are in 1/4-pels unit, the RDcosts of IBL and IBLR after 

IME stage will be the same as the RDcosts after FME stage. Hence, we don’t need to 

put IBL and IBLR modes into FME if either of them is in the modes left after IME stage. 

Namely, we can skip IBL or IBLR mode when they are in the last 3 modes from IME, 

as illustrated in Fig. 16. 

FME
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Best mode
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Mode 0=INTER, 
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mode1
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mode0
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Fig. 16 the function flow of mode filtering by IBL mode 

In Fig. 16, mode 2 is IBL mode while the other two is not, thus, we skip mode2 and 

directly send the RDcost of mode 2 to the compare block. That is, in this case, we 
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only have to process 2 modes in FME. Moreover, if IBL and IBLR are both in the 3 

modes from IME, we can further reduce the number of modes to only 1. With this 

IBL skip mechanism, we will have at most 3 modes and at least 1 mode to process in 

FME stage.  
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Chapter 4. Hardware architecture design 

4.1. Design Spec 

The desired system specification is described as follows: an SVC encoder works 

under 135 MHz clock frequency with 3 quality layers, 3 spatial layers (CIF, SD 480p, 

and HD 1080p), and frame rate is set to be 60fps. To achieve this tough specification, 

we encode two frames at the same time, thus, two MBs from different frames will be 

encoded in parallel. 

HD 1080p

8,160 MBs

SD 480p

1,350 MBs

CIF

396 MBs

352

288

720

480

1920

1080

 

Fig. 17 the three spatial layers for our spec 

  According to the spec and Fig. 17, we can deduce the needed cycle time as 

calculated below: 

                                             (4.1) 

Since we encode two frames simultaneously with 60fps, and the frequency is 135 

MHz, the cycles for encoding a MB will be: 

                                    ..        (4.2) 

According the spec, our design is implemented through pipelined stages as shown 

in Fig. 18. The time of one pipelined stage is 450 cycles. We have two sets of IME, 

inter-layer prediction, mode filtering, FME, intra prediction, Deblocking, and Entropy 

coding modules to process two MBs of different frames at the same time. As for the 

other modules, we only have one set of them since they are able to process two MBs’ 

data in time.  
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The first stage is the IME process with the IL prediction. Mode filtering is also in 

the first stage after the IME and IL prediction. After stage 1 finishes, it pass the best 3 

prediction modes and their MVs to the second stage. FME and intra prediction are in 

the second stage with the transform, quantization, inverse transform, and inverse 

quantization modules. After the second stage, best residuals, best mode, and best 

MVs are sent into the third stage. CGS, reconstruction, and deblocking are processed 

in the third stage. Finally, in the fourth stage, entropy coding would be processed to 

get the final output. 
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Fig. 18 the pipelined architecture of our H.264/AVC scalable video encoder 
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4.2. Architecture design of IME 

4.2.1. Overview of PMRME architecture design 
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Fig. 19 the PMRME architecture(the number on the line is the number of pixels) 

Fig. 19 shows the PMRME [1] architecture and one 16x16 current block data is 

shared for the three levels with different sample ratios. After the reference selection 

module, “Level X (0, 1 or 2) ME module” calculates distortion then output the 

outcome to the “Level X tree module”. The “Level X tree module” is in charge of 

summing up SADs to further generate the SADs of different block sizes as well as add 

MVCOST to distortion to form RDcost. After costs from three levels are produced, the 

best two candidates will be selected to enter into FME process.  

The reference selection modules for different levels have different bandwidths due 
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to two factors, different search ranges and parallelism of SAD calculation. Level 0 

searches one position at a time. Thus, level 0 reference data inputs 16 pixels to “Level 

0 ME module” and allocate the whole 16 pixels to a “Level 0 SAD module”. 

Level 1 searches four positions at a time to speed up the processing. Thus, level 1 

reference data inputs 8+3=11 pixels to “Level 1 ME module” and allocate to four 

“Level 1 SAD modules”, each one has 8 pixels input, as illustrated in Fig. 20.  

Level 2 searches sixteen positions at a time to speed up the processing. Thus, level 

2 reference data inputs 4+15=19 pixels to “Level 2 ME module” and allocate to 

sixteen “Level 2 SAD modules”, each one has 4 pixels input, as illustrated in Fig. 21. 

 

Fig. 20 level 1 reference data allocation for “Level 1 SAD modules” 

 

Fig. 21 level 2 reference data allocation for “Level 2 SAD modules” 

  Every level has its own “ME module”. The hierarchy of ME module is: ”ME module” 

>”SAD module” >”Row ME module”> ”Primitive module.” In this way, the “SAD 

module” and “row ME module” of each level can be shown below. The primitive 

module is shown in Fig. 22. 



30 
 

 

primitive module

SAD

SAD

Curr0  4

Ref0 4 Ref1  4

SAD

Ref2  4

SAD

Ref3  4

Curr1  4

Curr2  4

Curr3  4

R
e

g

R
e

g

R
e

g

R
e

g

Reference 

selection

module

RefB  4

RefA  4

 

Fig. 22 the primitive module. RefA and RefB are input for reference data, Cur0~Cur3 is the input for 

current block data (the number on the line means the number of pixels) 
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Fig. 23 “Level 0 Row ME module” (left) and “Level 0 SAD module” (right) 

“Level 0 ME module” is shown in Fig. 23. It has one “Level 0 SAD module”, and the 

“Level 0 SAD module” has four “level 0 Row ME modules”. Every “level 0 Row ME 
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module” has four “primitive modules” and every “primitive module” can process a 

4x4 block data. Thus, a “level 0 ME module” has 16 “primitive modules” in total. 
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Fig. 24 “Level 1 Row ME module” (left) and “Level 1 SAD module” (right) 

“Level 1 ME module” is shown in Fig. 24. It has four “Level 1 SAD modules” to 

process four points searching in parallel. And every “Level 1 SAD module” has two 

“level 1 Row ME modules”. Every “level 1 Row ME module” has two “primitive 

modules” and every “primitive module” can process a 4x4 block data. Thus, a “level 1 

ME module” has sixteen “primitive modules” in total. 

 



32 
 

SAD

SAD

Curr0  4

SAD

SAD

Curr4  4

Curr8  4

Curr12  4

R
e

g

R
e

g

R
e

g

R
e

g

Reference Selection

Level 2 Row ME module
L

e
v

e
l 2

 S
A

D
 m

o
d

u
le

Level 2 Row ME module

 RefB  4

 RefA  4

 
Fig. 25 “Level 2 Row ME module” (left) and “Level 2 ME module” (right) 

“Level 2 ME module” has sixteen “Level 2 SAD modules” to process sixteen points 

searching in parallel, and every “Level 2 SAD module” has one “level 2 Row ME 

module”. Every “level 2 Row ME module” has one “primitive module” and every 

“primitive module” can process a 4x4 block data. Thus, a “Level 2 ME module” has 

sixteen “primitive modules” in total. 

  The SAD tree for level 0 is a “4x4 SAD tree” since level 0 has various combinations 

of seven kinds block types and needs the basic unit to compose SADs for all 

partitions. As for level 1, a ”8x8 SAD tree” is used because level 1 only has block 

types with sizes beyond 8x8 due to the sampling ratio. Since level 2 only has block 

type of 16x16, it doesn’t need a SAD tree to calculate RDcosts for different block sizes. 

The architecture of “4x4 SAD tree” and “8x8 SAD tree” are shown Fig. 26 and Fig. 27. 
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Fig. 26 “4x4 SAD tree for level 0” 
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Fig. 27 the “8x8 SAD tree for level 1” 
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4.2.2. Proposed architecture design for inter-layer prediction 
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Fig. 28 the proposed inter-layer prediction architecture 

Fig. 28 shows the proposed inter-layer (IL) prediction architecture design based on 

our data efficient inter-layer prediction algorithm. The IL architecture is implemented 

in level 0 since the data during RDcost calculation of level 1 and level 2 are already 

sub-sampled. Thus, the reference data of IL prediction is loaded from level 0 

reference frame and the current MB data is loaded from 1:1 sub-sample module. 

  First, to meet our spec, we duplicate a “Level 0 SAD module” to simultaneously 

process SAD calculations of two positions. Therefore, we will have two modules, 

“Level 0 SAD module 0” and “Level 0 SAD module 1” during the SAD calculation stage 
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in level 0. 

  Moreover, since the only difference between INTER mode and inter-layer residual 

(ILR) mode is that ILR needs to additionally subtract up-sampled residual from 

current MB data, we input up-sampled residual from base layer into “Level 0 ME 

module” and allocates it to both “Level 0 SAD module 0” and “Level 0 SAD module 1” 

to additionally get SADs of ILR mode. In this way, a “Level 0 SAD module” can 

produce four 4x4 SADs of ILR and four 4x4 SADs of INTER for two position every four 

cycles, as illustrated in Fig. 29. In Fig. 29, the upBR represent the up-sampled residual 

from base layer and the Curr refers to current MB data. The “RefA” and “RefB” 

indicate the reference data of different banks from level 0 SRAM. The SAD module 

will calculate both (curr-ref) and (curr-ref-upBR) in the same time. 
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Fig. 29 the primitive module with inter-layer residual mode. The output will be 4x4 SAD of INTER 

mode and 4x4 SAD of inter-layer residual mode. 
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  After the SADs are produced by “Level 0 ME module”, there will be SAD_0, 

SAD_0_R, SAD_1 and SAD_1_R which indicate SAD of first position, SAD of first 

position for ILR mode, SAD of second position and SAD of second position for ILR 

mode, respectively, and each of them contains four 4x4 SADs. 

  To implement INTER, ILR, ILM and ILMR, we duplicate three more “4x4 SAD trees” 

as mentioned before. Thus, there are four “Level 0 tree modules” and each of them 

is responsible for producing 16x16, 16x8, 8x16 and submode block type RDcosts of 

its prediction mode.  

Furthermore, to compare costs of two different positions at a time, we duplicate a 

“4x4 SAD tree” to process RDcosts of two different positions at the same time. Thus, 

two search positions as well as different prediction modes (INTER, ILR, ILM or ILMR) 

can be processed simultaneously.  

While the SAD tree is forming SADs of different block types, the RDcost of different 

block types are also formed. RDcosts of two positions of a block are compared so 

that the better position and its RDcost would be saved. The best position and its 

RDcost would be change until better RDcost of a position formed. 

After the process of “Level 0 tree module” is over, there will be sixteen RDcosts 

including of 16x16, 16x8, 8x16 and submode of INTER, ILR, ILM and ILMR prediction 

mode. Accompanied with inter-BL mode, inter-BL residual mode, INTER mode of 

level 1 and INTER mode of level 2, the twenty modes would be filtered and selected 

by a pre-selection module. Before enter into FME process, there are only three 

modes left to be processed. The architecture of pre-selection process will be 

discussed in detailed in latter section. 

  As for the inter-BL prediction (IBL), instead of searching for best position, it simply 

uses the MVPs of ILM as its final motion vectors. Thus, it has a quite different 

architecture from other prediction modes, as illustrated in Fig. 30. In the following 
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section, we simply call the MVPs of ILM as “mvd_IBLs” since they are the final MV of 

IBL mode.  

Inter-BL Interpolation Unit

Level 0 

reference data mvd_IBLs

PU 0 PU 1 PU 2 PU 3

Control

Up-sampled 

base layer 

residual

Current 

MB data

SATD buffer

SATD_0 SATD_1 SATD_2 SATD_3

SATD_R_0 SATD_R_1 SATD_R_2 SATD_R_3

IBLR costIBL cost
 

Fig. 30 the architecture of Inter-BL 

The architecture of IBL mode includes three parts, Interpolation, PU and SATD 

buffer. Since mvd_IBLs are in 1/4 unit, we have to interpolate the reference data 

accessed from memory to produce fractional-pels . After interpolation, each PU 

calculates its satd and passes to SATD Buffer. SATD buffer then sums them up to 

acquire the final cost of IBL. 
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Fig. 31  Architecture of interpolation unit. FIR is the 6 tap 1D filter. 

The interpolation unit is shown in Fig. 31. It loads the a row of reference data cycle 

by cycle, which contains 10 adjacent integer points, and immediately interpolates 

horizontal half pixels by the five FIR filters. Thus, there will be 11 points being shifted 

cycle by cycle in the interpolation buffer. We use the same way to interpolate the 

vertical half pixels. After 7 cycles, all the half pixels we need are already ready, then 

we can choose two rows from them, each contains a 4x1 row half pixels, and use the 

two candidates to interpolate the quarter pixels according to the mvd_IBLs.  
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Fig. 32 (a) 4x4 block PU, a PE calculates the difference between reference and Current MB data of one 

pixel. (b) IBL processing order of 4x4 blocks, same rows would be process in the same time 

The architecture of PU is shown in Fig. 32(a). It contains four processing elements 

(PE), 2-D Hadamard transform decomposed by two 1-D Hadamard transform and a 

transpose register array, which can continually process four pixels in each cycle 

without any latency.  

To speed up, we use four 4x4 interpolation units to produce four 4x1 row data, 

each row for different 4x4 blocks. The order of processing for different 4x4 blocks is 

illustrated in Fig. 32(b). We first interpolate the fractional pixels of the first row of 

block 0, block 1, block 2 and block 3 simultaneously. While PUs calculating the SATD 

of block 0, block 1, block 2 and block 3, the interpolation unit keeps interpolating the 

fractional pixels of block 4, block 5, block 6 and block 7. In this way, SATD buffer can 

add only four times and get the cost of IBL and IBLR.     

To further reduce the complexity of hardware design, we simplify the mechanism 

of IBL when the reference data cannot be found in the local memory. Instead of 

fetching memory from external memory, we skip IBL mode when some specific 
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conditions meet. The conditions are as follows: 

(((mvdx_IBL[0] - MVPx_INTER)<=threshold)  && 

((mvdx_IBL[1] - MVPx_INTER)<=threshold)  && 

 

((mvdx_IBL[15] - MVPx_INTER)<=threshold)  && 

((mvdy_IBL[0] - MVPy_INTER)<=threshold)  && 

((mvdy_IBL[1] - MVPy_INTER)<=threshold)  && 

 

((mvdy_IBL[15] - MVPy_INTER)<=threshold)  ) = 1             (4.3) 

Where mvdx[i] for i = 0~15 is the vertical elements of mvd_IBLs and mvdy[i] for i = 

0~15 is the horizontal elements of mvd_IBLs. 

Therefore, all the elements of the differences between mvd_IBLs and MVP_INTER 

should be below threshold, otherwise, we skip IBL mode. Thus, in our design, we 

check if the conditions mentioned above hold. If the conditions hold, we set the final 

cost of IBL extremely large so it won’t be chosen. 

Fig. 33 shows the proposed overall architecture design for IME. In level 0, we have 

INTER, ILR, ILM, and ILMR mode, and each one has RDcosts of 4 different block type. 

With the IBL and IBLR mode, there will be 18 modes from level 0 in IME. We first do 

the mode pre-selection of LI’s to eliminate some modes from the 18 modes. And 

then, we directly reduce the number of modes to 3 by comparing the RDcosts of the 

modes left. Afterwards, we use our proposed fast multi-level mode filtering 

algorithm to select 3 best modes from different levels. By the whole mode filtering 

process, there will be only 3 modes as the IME output in the end of IME stage.  
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Fig. 33 the proposed PMRME architecture with inter-layer prediction 

4.2.3. Search scheduling of IME 

  The search scheduling is adapted from the previous work [1]. Fig. 34 shows the 

search flow in level 0. For the current MB, we separate it into 16 row packages; while 

the reference data are cut into many overlapped row packages (17x31, 17 is because 

of the search range [-8, 7] and we search 2 positions in the same time, 0~15 for the 

first position and 1~16 for second position. 31 comes from the data of the search 

range need, that is 16+8+7=31.). The SRAM will be discussed in 4.5. 

  Fig. 36 shows the pipelined search schedule of level 0. The pipeline only takes 143 
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cycles to read all row packages needed during the level 0 searching. In Fig, C0~C15 

represent the sixteen 16-pixels current MB rows. R(-8,-8)~R(7,7) indicate the 

17-pixels rows from the SRAM according to the search position. Different from 

previous work, we search two positions in the same time, thus, the R(-8,-8) row 

package also includes the row of (-7,-8) position; that is, the row package of R(-8,-8) 

contain the 16-pixels row packages of R’(-8,-8) and R’(-7,-8), where R’(X,Y) represents 

a 16-pixels row package of position (X,Y). The row package is shared as illustrated in 

Fig. 35. 

  In the first cycle, we will get the SAD of [C0, R’(-8,-8)] by “level 0 SAD module 0” 

and the SAD of [C0, R’(-7,-8)] by “level 0 SAD module 1”. In the following cycle, we 

will get the SAD of [C0, R’(-8,-7)] and {[C1, R’(-8,-7)]+ [C0, R’(-8,-8)]} by “level 0 SAD 

module 0”, [C0, R’(-7,-7)] and { [C1, R’(-7,-7)] + [C0, R’(-7,-8)]} by “level 0 SAD module 

1” , and so forth. Until the 4th cycle, we can have the SADs of 4x4_00 block, 4x4_01 

block, 4x4_02 block, and 4x4_03 block as mentioned in the 4x4 SAD tree in Fig. 26 of 

search position (-8,-8) and (-7,-8). Moreover, since the search is fully pipelined, we 

can acquire result of every search point in every cycle after the 4th cycle. 
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Fig. 34 the reference control of level 0 
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Fig. 35 parallel data reuse in level 0. A row package is shared between 2 search points 
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Fig. 36 the pipelined search schedule oh level 0 

Fig. 37 shows the search scheduling of level 1. Since level 1 has quite larger search 

range and, it’s adapted from previous work [1] to accelerate the processing. We 

speed up the level 1 searching process by the parallel calculations of different search 

positions like we mentioned before. Instead of searching 2 positions at a time, we 

here search 8 positions in parallel in level 1. For example, [C0,R(-32,-32)] are capable 

of dealing with the partial SAD of search points (-32,-32), (-30,-32), (-28,-32), 

(-26,-32), (-24,-32), (-22,-32), (-20,-32), and (-18,-32) at the same time, as illustrated 

inFig. 38. Fig. 39 shows the pipelined search schedule of level 1. The whole pipeline 

can be done in 131 cycles  
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Fig. 37 the search flow of level 1 
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Fig. 38 parallel data reuse in level 1 
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Fig. 39 the reference control of level 1 

 

As for level 2, the pipelined search schedule and search flow is quite like level 1. 

However, the search range for level 2 is even larger, thus, we have to use 32 times 

parallelism to speed up the searching. As a result, we set the row package of level2 

as a 35 pixels (4+31) row so that every row package can acquire 32 SAD from 

different search points. The search scheduling of level 2 is shown in Fig. 40 and the 

pipelined search schedule is shown in Fig. 41. In this degree of parallelism, it only 
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takes 134 cycles to finish the pipeline of level 2. 
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Fig. 40 the search flow of level 2 

R
e

f A

C0

C4

C8

C12

R
e

f B

R
(-1

2
8
,-1

2
8

)

R
(-1

2
8

,-1
2

4
)

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

0 1 2 3 4 5 6 7 8cycle

...

6

3

6

2

6

5

6

4

6

7

6

6

6

9

6

8

7

1

7

0... ...

1

2

7

1

2

6

1

2

9

1

2

8

1

3

0

R
(-1

2
8

,-1
2

0
)

R
(-1

2
8

,-1
1

6
)

R
(-1

2
8

,-1
1

2
)

R
(-1

2
8

,-1
0

8
)

R
(-1

2
8

,-1
0

4
)

R
(-1

2
8

,-1
0

0
)

R
(-1

2
8

,-9
6
)

R
(-1

2
8
,-1

2
8

)

R
(-1

2
8

,-1
2

4
)

R
(0

,-1
2

0
)

R
(0

,-1
1

6
)

R
(0

,-1
1

2
)

R
(0

,-1
0

8
)

R
(0

,-1
0

4
)

R
(0

,-1
0

0
)

R
(0

,- 9
6

)

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

...

A

A

A

A

A

A

A

A

R
(-1

2
8

,1
2

0
)

R
(-1

2
8

,1
2

4
)

B

B

BB

B

B

R
(-1

2
8

,1
2

8
)

R
(-1

2
8

,1
3

2
)

R
(-1

2
8

,1
3

6
)

A

A

A

A

A

A

A

A

R
(0

,1
2

0
)

R
(0

,1
2

4
)

B

B

BB

B

B

R
(0

,1
2

8
)

R
(0

,1
3

2
)

R
(0

,1
3

6
)

...

7

2

 
Fig. 41 the reference control of level 2 

Thanks to the parallelism we use in all levels, the pipelined search schedules of all 

three levels can finish the in 142 cycles. The corresponding SRAMs of level 0, level 1, 

and level 2 will be discussed in 4.5.  

4.3. Architecture design of FME  

  In this chapter, we propose a new FME architecture design according to the fast 
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algorithm of SPFME [5] as mentioned in previous chapter. Since the only difference 

between SPFME and our early fast algorithm is that SPFME searches four more 

position around the zero (0, 0) position in 1/4-pel unit, the architecture design of 

SPFME could be similar to the one of SIFME. Furthermore, we had proposed an 

architecture design for SIFME before. Thus, the architecture of SPFME can be easily 

implemented from the design of SIFME.   

  In the following section, the overview of FME architecture design for SIFME would 

be introduced in 4.3.1. In 4.3.2, the proposed SPFME architecture design would be 

discussed in detailed. 

4.3.1. Overview of previous FME architecture design 
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Fig. 42 function flow of previous FME stage 

  Fig. 42 shows our previous FME function flow. It is based on our previous fast 

algorithm for FME, which is the SIFME as mentioned before. It can be divided into 

two paths: luma path and chroma path. The luma path includes three parts: 

candidate decision, mode decision and luma residual generation. Since the previous 
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version of our IME would pass two best modes to FME after the mode filtering 

technique, FME only has to calculates two modes, mode0 and mode1 in the luma 

path. The chroma path only includes the refinement process to generate chroma 

residuals.  
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Fig. 43 the previous FME architecture design 

  Fig. 43 shows the previous architecture design of FME. The luma path consists of 

Mode 0 Reference SRAM, Mode 1 Reference SRAM, the “FME luma” module and the 

“8x8/4x4 DCT” module. The chroma path includes the Chroma Reference SRAM, the 

“FME chroma” module and the “4x4 DCT” module. 

  The luma path contains two reference SRAM. This is because of the previous 

subsample strategy from IME stage. In early IME process, there would be two modes 

passed to FME after the mode filtering process. In the mode filtering process, the 
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first mode must be the best mode from level 0. The second mode is selected from 

the second mode of level 0, the level 1 mode and level 2 mode. Thus, one SRAM 

stores luma reference pixels coming from IME stage and the other holds pixels from 

external memory. 

 

Fig. 44 the architecture of FME luma module 

  Fig. 44 shows the architecture of “FME luma” module. The “FME luma” module 

includes “Interpolation unit” module, “PU” module, “Compare” module, “SB_buffer” 

module, ”MV COST” module, and “Control” module. The “Interpolation unit” is 

responsible for interpolate fractional pixels, including 1/2 pixels and 1/4 pixels. 

The “FME luma” module has six PUs due to the six search positions in SIFME. Each 

of them is capable of processing a 4x4 block SATD. The SATDs of all six candidates are 

sent to the “Compare” module and each of them would be added by its rate (MVcost) 

to become RDcost. The “Compare” module compares all six RDcosts and decides the 

best candidate. After the best candidate of each mode is chosen, “SB_buffer” 

module would compare the RDcost of the two modes and decides the best one to 



49 
 

send out. In the end, the refinement step is carried out to get the final residual 

according to the outcome of “SB_buffer” module. 

The overall flow of FME process is as follows: First, the “MV buffer” buffers the 

motion vectors from IME and pass them to “FME luma” module in the same time. 

“FME luma“ module calculates SATD of six candidates and selects the best one of all 

blocktypes of a mode. After RDcosts of two modes are generated, “FME luma” would 

decide the best mode to recalculate residual and reference pixels of the best 

candidates of the best mode. The residual is then passed to “8x8/4x4 DCT” module 

to do the DCT transform. In the same time, we load reference chroma data to 

“Chroma Ref. SRAM” according to the best motion vectors from luma path and 

calculate chroma residual and chroma interpolated reference pixels in the “FME 

chroma” module. 

  In the end of FME stage, the RDcost of FME is compared with the RDcost of intra 

mode in “mode decision” module to decide whether current macro block is coded in 

INTRA mode or INTER mode. 
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4.3.2. Proposed FME design  

4.3.2.1. Overall architecture and primary modules 
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Fig. 45 the new FME function flow 

The new flow is shown in Fig. 45 . The differences between the new flow the 

previous one are that the luma path of new flow processes 3 modes and each mode 

could be in inter-layer prediction mode. As for the chroma path, the function flow is 

the same as the previous one.   

  The proposed FME design has some different characteristics from previous one. 

First, there are four more points to search than the SIFME algorithm. Thus, we have 

to add more “PU” modules to process these ten points in parallel. Moreover, since 

we adopt IL prediction in our IME stage, we have to consider features of IL mode in 

our FME design, including inter-layer residual mode (ILR), inter-layer motion mode 

(ILM), inter-layer motion residual mode (ILMR), and inter-BL mode (IBL). 
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Fig. 46 the architecture of proposed FME architecture. To process IL mode from IME, we additionally 

input MVP_ILMs and up-sampled residual into FME luma module, motion_flag and IBL_flag into the 

MV buffer  

  Fig. 46 showed the proposed architecture. The difference between the original 

one and the new one are few. However, to process the IL mode, we input MVP_ILMs 

and up-sampled residual into the new “FME luma” module to calculate RDcosts of 

ILM mode, ILR mode, and ILMR mode. Moreover, the MV buffer now buffers motion 

vectors of three modes from IME as well as their motion_flags, ILR flags, and IBL flags 

to indicate the prediction type of each mode. 

  There are two SRAM for FME architecture. One is for mode0 and mode1 since we 

choose the best two modes from IME in level 0. The third mode is selected from the 

third mode in level 0, level 1 mode, and level 2 mode to as mentioned in chapter 3. 

Thus, the “mode 0 and mode 1 SRAM” load pixels from IME stage and the “mode 2 
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SRAM” holds pixels from external memory.  

4.3.2.2. FME luma module 
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Fig. 47 the proposed FME luma hardware 

  The SPFME is implemented in our proposed “FME luma” module. Fig. 47 shows 

the architecture of the “FME luma” module of SPFME. We add up-sampled residual, 

MVP_ILM, “ILR_flag”, ”ILM_flag”, and “IBL_flag” as inputs of “FME luma” module to 

process different modes from IME. Moreover, we add four more PUs to respectively 

calculate the up left, up right, down left and down right position around zero (0, 0).  

These ten PUs will calculate the SATDs of different position, and each SATD will be 

combined with its own MVcost to get the RDcosts in the “Compare” module. 

The up-sampled residual is input of the PU module through a multiplexer. The 

“ILR_flag” indicates that whether the processing mode is ILR mode or not. If the 

“ILR_flag” is 1, the processing mode is ILR mode, otherwise, the processing mode is 
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INTER mode. Thus, the multiplexer will output up-sampled residual to PUs if 

“ILR_flag” is 1. Otherwise, the multiplexer will output zero so that the SATD of PU 

equals the SATD of INTER mode.  

The MVP_ILM and MVP_ILM are used to calculate the RDcost when the present 

mode is inter-layer motion (ILM) or inter-layer motion residual (ILMR) mode. The 

“Control” module will decide whether the ILM mode should be processed. If ILM_flag 

equals 1, the “Compare” module will combine the SATD as well as MVcost derived 

from MVP_ILM and fractional mvd to get the RDcost. Otherwise, the MVcost will be 

derived from MVP_INTER and fractional mvd so that we will have different RDcost. 

4.3.2.3. The parallel processing architecture of interpolation unit 

Our interpolation unit is adapted from previous work [3]. However, in order to 

meet our spec, we have to further increase the speed of interpolation process. Thus, 

we need to make interpolation unit capable of processing four times the data than 

before.  

Fig. 48 shows the architecture of our interpolation unit. Since we add more buffers 

in the interpolation unit, the interpolation unit now can buffer four 10-pixel rows 

data every cycle. First, we interpolate the horizontal half pixels of each row by five 

1-D FIR filters from 10 adjacent integer points. Thus, after the first cycle, there will be 

four integer pixel rows and four horizontal half pixel rows in the buffers. Until all the 

buffers are full, we can decide the two candidates to interpolate the quarter pixels 

according to pred frac mv and the zero (0, 0) position through bilinear filters. 
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Fig. 48 the interpolation unit architecture 

To interpolate four rows pixels cycle by cycle, we have five 1-D vertical FIR filters in 

every column to calculate the vertical half pixels. Therefore, there are total 

5x4(row)=20 horizontal FIR filters and 5x11(column)=55 vertical FIR filters in the 

interpolation unit.  

 With the pipeline, our interpolation unit can interpolate four rows data cycle by 

cycle. Since the interpolation is designed in 4x4 block unit, the cycle time to 

interpolate a block data is associated with the height of block. For example, a 4x4 

block need (10/4) + 1=3 cycles for interpolation because it needs 3 cycles to buffer all 

the 10 rows pixels, which are a 4x4 block interpolation needs. The cycle time for 

interpolation of other blocktype is listed in Table 1. 
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Table 1 cycles for interpolation of different block types 

Blocktype 16x16 16x8 8x16 8x8 8x4 4x8 4x4 

Cycles 6x4=24 4x4x2=32 6x2x2=24 4x2=8 3x2=6 4 3 

 

4.3.2.4. The skip IBL mode for FME 

  When one of the processing modes is IBL or IBLR (inter-BL residual) mode, we skip 

the processing of it because of the fact that the IBL mode takes the MVP_ILMs as 

mvd_IBLs. And the MVP_ILMs are in 1/4 unit already. Thus, IBL mode doesn’t have to 

go through the FME process again.  

However, the original design sets the number of modes in FME process to be a 

constant value two. Hence, we re-design the “Control” module to process uncertain 

number of modes. Fig. 49(a) shows the proposed function flow of FME without IBL or 

IBLR mode and proposed function flow of FME with IBL or IBLR mode is shown in Fig. 

49(b). In Fig. 49(b),“Fst_IBL”, “Sec_IBL”, and “Thd_IBL” represent IBL flag of the first 

mode, the second mode, and the third mode from IME, respectively. There could be 

many situations of the processing number of modes, 1 mode at least and 3 modes at 

most since that there are at most two inter-BL mode, which are IBL and IBLR.  
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Fig. 49 (a) the new flow of FME luma path without IBL mode (b) the new flow of FME luma path with 

IBL or IBLR mode  

Though we skip FME when the mode is IBL or IBLR, we still need their information 

in the refine stage. Thus, if the RDcost of IBL mode or ILR mode is the smallest, we 

directly take the MVP_ILMs as the final MVs and do the refine to get residual and 

predicted pixels.   
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4.4. Reference SRAMs 

4.4.1. Level 0 and FME SRAM 
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Fig. 50 previous IME level 0 SRAM and its bank 

The reference SRAM of level 0 in IME is the same as the SRAM of FME. To meet the 

needs of processing four rows of FME at a time, we adapt the reference SRAM from 

previous work [1]. Fig. 50 shows the previous reference SRAM for level 0. It is cut into 

two parts, reference A and reference B, and each part contains three banks. The 

reason that the SRAM is cut into two parts is to realize fully pipelined data flow for 

motion estimation as illustrated in Fig. 36. Each part has width of 37(pixels) x 8(bits) 

= 296 (bits). Reference A has height of 19 words and reference B has height of 18 

words. Thus, the whole memory size is 37x37=1369 bytes. 
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Fig. 51 the proposed SRAM for FME and level 0 in IME 

  To meet the needs of FME, we divide the original SRAM into four banks. We divide 

the SRAM according to their address. The way we divide banks is as follows: 

 

            Bank 0= { {i modulo 4=0, i=0~18},{ (i-19) modulo 4=0, i=19~36} }; 

Bank 1= { {i modulo 4=1, i=0~18},{ (i-19) modulo 4=1, i=19~36} }; 

Bank 2= { {i modulo 4=2, i=0~18},{ (i-19) modulo 4=2, i=19~36} }; 

Bank 3= { {i modulo 4=3, i=0~18},{ (i-19) modulo 4=3, i=19~36} }; 

 

where i refers to the index of word in the SRAM. When i=19, we write the row to 

both reference A and reference B so that the pipeline can be achieved. In this way, 

we can load successive four rows data from the SRAM without confliction.  

4.4.2. SRAMs of level 1 and level2 

The SRAM of level 1 and level 2 are the same as the previous work [1], as 

illustrated in Fig. 52(a) and Fig. 52(b). In Fig. 52(a), we can see that level 1 SRAM has 
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39 pixels in height and 40 pixels in width. The reason for the width to be 40 pixels is 

that it can be divided into 5 banks and each of them has 8 pixels in width. Moreover, 

8 pixels is the width of a macro block for level 1, thus, we only have to refresh one 

bank to process the next macro block and the other four banks can be reused. Level 

2 SRAM has 67 pixels in height and 68 pixels in width with 17 banks. The reason for 

the width to be 68 pixels is the same as level 1. Alike level 1, we only have to update 

one bank for the searching of every macro block. 

The only difference from the previous one is that we access longer row package 

from both the SRAM of level 1 and level 2. For level 1 we access 15 (8+7) pixels at a 

time to do 8 times parallelism of search. For level 2, we load 35 (4+31) pixel to search 

32 positions at the same time.   
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Fig. 52 (a) the SRAM of level 1 (b) the SRAM of level 2 
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4.5. Memory schedule 
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Fig. 53 the block diagram of IME and FME 

The memory schedule of IME and FME is the same as the previous work [1], as 

illustrated in Fig. 53. The difference is that the level 0 SRAM is changed into more 

banks as mentioned in previous section.  
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Fig. 54 the ping-pong buffer concept of level 0 SRAMs. Stage time here is 450 cycles. 

There are 3 identical level0 SRAMs to enable the ping-pong buffer concept. The 

change of memory state is shown in Fig. 54. When the first MB finishes IME process, 

the SRAM for the first MB read by IME process is now changed to be read by FME 

process. In the same time, the original FME SRAM is now changed to load the third 

MB data from external memory. As for the SRAM which were loading the second MB 

data from external memory is now changed to read by IME process. 

In case that the FME stage will have to load to many data from external memory 

and cause too much data loading traffic, the author of the previous work set the first 

mode from IME to be inside the search range centered on MVP_INTER, while the 

other mode might be outside the search range. By our mode filtering algorithm and 

acceleration of FME hardware, although we now have 3 modes from the IME stage, 

the external memory loading traffic can still be little. Moreover, the adoption of our 

efficient algorithm for inter-layer prediction can further prevent the loading traffic of 

external memory caused by inter-layer prediction.  
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Chapter 5. Simulation and Implementation 

results 

5.1. Simulation results 

In this section, we list several simulation results to demonstrate the performance 

of our whole mode filtering process. Since we adopt Li’s algorithm in the C model of 

[4], we simply use our previous C model of [4] without mode filtering as the 

reference software. The simulation setting is summarize in Table 2 

Table 2. simulation settings 

Reference software Ref[4] 

QP  18,28,38 

Frame size in spatial base layer QCIF 

Frame size in spatial enhancement layer CIF 

Frames to be encoded 150 for Table 3,100 for Table 4 

Frame rate 30 

Adaptive inter-layer prediction ON 

Multi-resolution  Table 3:Off Table 4:On 

Search range size ±8 

GOP 8 

Reference frame number 2 

Test sequence Akiyo, Coastguard, Football, Foreman, Mobile, News 

 

Table 3 shows performance of different selected number of candidates from IME 

after pre-selection scheme [7] without PMRME for CIF as EL and QCIF as BL. When 

choosing 3 modes from IME, the RD performance is 4.617% in bit-rate increase and 

0.031 dB in PSNR degradation. 
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Table 3. mode selection performance after pre-selection algorithm without PMRME for CIF as EL and 

QCIF as BL 

Sequence QP  3 modes 4 modes 5modes 6modes 

Akiyo 18 PSNR(dB) -0.0872 -0.0695 -0.0713 -0.066 

Bit-rate(%) 4.222 3.778 3.556 2.889 

28 PSNR(dB) -0.0457 -0.0225 -0.0144 -0.0113 

Bit-rate(%) 10.256 10.256 10.256 9.402 

38 PSNR(dB) -0.0472 -0.0584 -0.0401 -0.0462 

Bit-rate(%) 18.421 15.789 15.789 15.789 

Coastguard 18 PSNR(dB) -0.0078 -0.003 -0.0023 -0.0057 

Bit-rate(%) 1.394 1.016 0.784 0.580 

28 PSNR(dB) -0.0203 -0.0115 -0.0046 -0.003 

Bit-rate(%) 1.229 0.850 0.567 0.567 

38 PSNR(dB) -0.0245 -0.0228 -0.019 -0.0166 

Bit-rate(%) 3.306 3.719 3.719 3.305 

Football 18 PSNR(dB) -0.0106 -0.0068 -0.0048 -0.0042 

Bit-rate(%) 0.391 0.335 0.307 0.279 

28 PSNR(dB) -0.0486 -0.0452 -0.0439 -0.042 

Bit-rate(%) 0.493 0.352 0.352 0.352 

38 PSNR(dB) -0.022 -0.0202 -0.0266 -0.0274 

Bit-rate(%) 1.727 1.727 1.535 1.535 

Foreman 18 PSNR(dB) -0.0202 -0.0084 0.0028 0.0064 

Bit-rate(%) 2.065 1.630 1.25 1.086 

28 PSNR(dB) -0.0513 -0.0391 -0.0362 -0.028 

Bit-rate(%) 2.515 2.096 1.886 1.886 

38 PSNR(dB) -0.0351 -0.0494 -0.0462 -0.0479 

Bit-rate(%) 10.666 10 9.333 9.333 

Mobile 18 PSNR(dB) -0.0232 -0.016 -0.0125 -0.0126 

Bit-rate(%) 2.049 1.627 1.085 0.844 

28 PSNR(dB) -0.0295 -0.0188 -0.0076 -0.0037 

Bit-rate(%) 2.900 2.235 1.631 1.389 

38 PSNR(dB) -0.0591 -0.0341 -0.0174 -0.0095 

Bit-rate(%) 3.611 3.333 2.777 2.777 

News 18 PSNR(dB) 0.0265 0.0339 0.0312 0.0382 

Bit-rate(%) 2.358 1.768 1.650 1.415 

28 PSNR(dB) -0.0615 -0.0433 -0.0364 -0.0396 
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Bit-rate(%) 5.158 5.158 4.761 4.365 

38 PSNR(dB) 0.0123 0.0119 0.015 0.0009 

Bit-rate(%) 10.344 10.344 9.195 9.195 

Average 18 PSNR(dB) -0.020 -0.011 -0.009 -0.007 

Bit-rate(%) 2.080 1.692 1.438 1.182 

28 PSNR(dB) -0.042 -0.030 -0.023 -0.021 

Bit-rate(%) 3.758 3.491 3.242 2.993 

38 PSNR(dB) -0.029 -0.028 -0.022 -0.024 

Bit-rate(%) 8.012 7.485 7.058 6.989 

PSNR(dB) -0.031 -0.023 -0.019 -0.018 

Bit-rate(%) 4.617 4.223 3.913 3.721 

In Table 4, we list the RD performance of the final mode filtering scheme. The 

reference software is the previous work [4] with IL prediction and PMRME without 

mode filtering. The average PSNR degradation is 0.106dB and increase of bit-rate is 

3.542%. In Fig. 55-Fig. 60 are the R-D curves of different sequences for 100 frames 

with QP=18, 28, 38.  

Table 4 the RD performance of the final mode filtering with IL prediction and PMRME 

QP  Akiyo Coastguard Football Foreman Mobile News Average 

18 PSNR(dB) -0.0609 -0.010 -0.098 -0.024 -0.014 -0.001 -0.034 

Bit-rate(%) 4.416 0.294 -1.454 2.075 2.662 2.280 1.712 

28 PSNR(dB) 0.000 -0.019 -0.069 0.042 -0.036 -0.022 -0.017 

Bit-rate(%) 0.000 -0.679 -1.091 1.823 3.211 4.117 1.230 

38 PSNR(dB) -0.447 -0.063 -0.028 -0.322 -0.035 -0.701 -0.266 

Bit-rate(%) 22.222 -2.395 0.259 8.490 3.734 13.793 7.683 

Ave. PSNR(dB) -0.106 

Bit-rate(%) 3.542 
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Fig. 55 the performance of our mode filtering for akiyo_cif 

 

Fig. 56 the performance of our mode filtering for coastguard_cif 

  

 

Fig. 57 the performance of our mode filtering for football_cif  
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Fig. 58 the performance of our mode filtering for foreman_cif 

 

Fig. 59 the performance of our mode filtering for mobile_cif 

 

 

Fig. 60 the performance of our mode filtering for news_cif 
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5.2. Hardware implementation results 

The proposed architecture is implemented by Verilog and synthesis in UMC 90nm 

technology at 142MHz. 

Table 5. synthesis result of the PMRME in UMC90 

Unit Gate Count in 142 MHz 

Level_0 166,085 

Level_1 138,350 

Level_2 112,558 

Others 19,114 

Total 436,107 

Table 5 lists the synthesis result of IME in our design. It’s almost double the area of 

the previous work [2] due to the adoption of IL prediction and the increase of 

parallelism for searching. Table 6 shows the comparison between different IME 

architecture. Our design includes the IL prediction and multi-resolution while the 

gate count is still acceptable. Moreover, our design can achieve 

CIF+480p+1080p@60fps since we have double IME hardware to process two MBs at 

the same time. The cycle time of our design is also quite short due to the adopted 

PMRME design and the parallel calculations of different search points.  

The design of [13](a) and [13](b) both have small local SRAM. However, their areas 

are both extremely large. In comparison, although the design of [14] has larger 

search range, it also needs larger area cost and bigger local memory. Though the 

design of [15] has larger search range and smaller gate count, it only has one 

reference frame and the encoding block types only include block size over 8x8. 

Furthermore, the cycle times of [15] is relatively long compared with ours. 
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Table 6 the comparison of different IME architectures  

 [13](a) [13](b) [14] [15] Proposed 

technology TSMC .18µm TSMC .18µm TSMC .18µm TSMC .18µm UMC 90nm 

Max. Supporting 

Resolution 

1080p@30fps 1080p@30fps 1080p@30fps 1080p@30fps CIF+480p+1080p@60fps 

# of reference 

frame 

2 1 2 1 2 

Search algorithm Full search Full search Multi-resolution Sub-sampling Multi-resolution + IL 

prediction 

Block sizes all all 16x16,16x8, 

8x16, 8x8 

16x16,16x8, 

8x16, 8x8 

16x16,16x8, 8x16, 

submode 

IL prediction N/A N/A N/A N/A   

Max Search 

Range 

H: 64 

V: 64 

H: 128 

V: 64 

H: 256 

V: 192 

H: 192 

V: 128 

H: 128 

V: 128 

Gate count(K) 1449 1511 460x2 486 436.1x2 

Local 

memory(KB) 

2.97 1.61 96x2 40 (dual port) 30.384 

Frequency(MHz) 130 130 200 200 142  

Latancy(cycles) N/A N/A 756 960 128~332(B-frame+IBL) 

The implementation results of FME_luma are listed in Table 7. It shows that the 

ten PUs occupy the largest area and the IE occupies second largest area due to the 

parallelism of 4 successive rows processing. 
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Table 7. synthesis result of the FME_luma module in UMC90 

Unit Gate Count in 142 MHz 

Control 582 

MV_COST 6,560 

Interpolation unit(IE) 85,126 

4x4 Block PU(*10) 102,560 

Compare unit(COMP) 4,011 

SB_buffer 10,687 

Others 3,695 

Total 213,221 

The implementation results of FME top are listed in Table 8. It shows that the 

FME_luma occupies the largest area. 

Table 8. synthesis result of the FME top module in UMC90 

Unit Gate Count in 142 MHz 

FME_luma 21,3221 

luma_ctrl 16,624 

chroma 2,030 

Chroma ctrl 1,700 

MV_buf 10,507 

MC_buf 15,788 

8x8/4x4 DCT 13,309 

DCT_buf 31,492 

others 5,478 

Total 310,194 
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Table 9 shows the comparison between different FME designs. Our FME design 

holds the best frame rate due to double hardware policy. It is also capable of dealing 

with two reference frames to enhance the encoding performance. While the gate 

count is smaller in the design of [16], it can only deal with block sizes over 8x8. 

Moreover, since [16] deal all the block sizes over 8x8, the latency will be fixed as 256 

while ours is flexible. As for [17], its latency is too long compared with ours since we 

accelerate the FME by process 4 rows in parallel. 

Table 9. comparison between different FME design 

 [16] [17] Proposed 

technology TSMC .13µm Chartard .18 µm 

standard  

CMOS1P5M 

UMC 90nm 

Max. Supporting 

Resolution 

1080p@30fps , 

QFHD@24fps  

1080p@30fps CIF+480p+1080p@60fps 

# of reference 

frame 

1 N/A 2 

Search algorithm SPFME Full search SPFME 

Max Search Range H: 64 

V: 64 

H: 128 

V: 64 

H: 128 

V: 128 

Block sizes 16x16, 16x8, 

8x16, 8x8 

all all 

Gate count(K) 134 412 310.2x2 

Local memory(KB) N/A 9.1 5.92 

Frequency(MHz) 250 200 142  

Latancy(cycles/MB) 256 862 Worst:384 /Best:96 

Table 10 lists the overall synthesis results of our ME design. The gate count is 

847.3 2 (K) because of the double hardware policy we adopt. 
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Table 10. the overall synthesis result of ME 

PMRME 436,107 

FME_top 310,194 

MEM_top 85,462 

Curr_buf 15,585 

Total 847,348 

In design 847,348*2 (for 2 MBs at the same time) 
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Chapter 6. Conclusion and future work 

The major contributions of this thesis are summarized into following three parts:  

First, in Chapter 3, we adopt the pre-selection algorithm by Li’s [7] and propose a 

mode filtering scheme for our IME with IL prediction and PMRME concept. The 

number of prediction modes is reduced to only 3 by our mode filtering scheme. The 

RD performance compared with reference software [4] is 3.542% in bit-rate increase 

and 0.106 dB in PSNR degradation. 

Second, we propose the hardware architecture for the adopted efficient IL 

prediction algorithm [4]. The proposed IL architecture has three advantages: first, the 

reference data can be shared between INTER and IL prediction, thus, we can save the 

high memory bandwidth caused by different prediction modes. Second, the 

inter-layer residual (ILR), inter-layer motion (ILM), and inter-layer motion residual 

(ILMR) mode from IL prediction can be processed with INTER in parallel due to the 

data sharing scheme. Hence, we can reduce the computing time of IME stage. Last, 

the ME module of INTER mode can be shared with IL prediction due to the data 

sharing scheme, thus, possible gate count from different prediction modes can be 

saved. 

Third, in Chapter 4, we propose the architecture for the adopted fast FME 

algorithm SPFME according to the previous work [3]. The new architecture is four 

times faster than the previous one due to the parallelism of interpolations of 

different row data, thus, it can process 3 candidates from IME. To achieve the speed 

up of FME, we further cut the SRAM of FME into 4 banks to fetch data from 

successive 4 rows. 

  In the future work, the area of hardware is still an issue. Each element of our ME 

design can still be optimized to get smaller area.    
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