
i

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

適用於H.264/MPEG4-AVC及其可調式視訊編碼

之移動估測設計

Motion Estimation Design for H.264/MPEG4-AVC Video

Coding and Its Scalable Extension

研 究 生：曹克嘉

指導教授：張添烜教授

中 華 民 國 一百 年 十一 月

ii

iii

適用於 H.264/MPEG4-AVC 及其可調式視訊編碼之移動估測

設計

Motion Estimation Design for H.264/MPEG4-AVC Video Coding

and Its Scalable Extension

研 究 生: 曹克嘉 Student: Ko-Chia Tsao

指導教授: 張添烜 博士 Advisor: Tian-Sheuan Chang

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical and Computer Engineering

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of Master

In

Electronics Engineering

January 2010

Hsinchu, Taiwan, Republic of China

中華民國 一百年 十一月

iv

v

適用於 H.264/MPEG4-AVC 及其可調式視訊編

碼之移動估測設計

研究生：曹克嘉 指導教授： 張添烜 博士

國 立 交 通 大 學

電機學院 電子工程學系 電子研究所

摘 要

移動估測在視訊編碼的過程中，具有非常高的複雜度，因此成為即時影像編碼的

瓶頸，在高壓縮律規格(H.264/AVC)的可調式視訊編碼中，由於其額外引用的層

間預測編碼，使得原本整數點移動估計之高頻寬存取所帶來的問題更加嚴重。因

此，本論文引用一能有效改善層間預測高頻寬存取的演算法並提出相對應的硬體

架構，此硬體架構使得整數點移動估測和層間預測能併行運算並共用運算時所需

的資料。此外，為了改善分數點移動估測的高複雜度和高計算量，本論文引用了

一分數點快速演算法並提出相對應的硬體架構，此提出之架構與先前架構相比運

算速度可增加三倍。由於多種移動向量和來自於層間預測的多種編碼方式，使得

分數點移動估測的運算量和運算時間大為增加，為了更進一步減少分數點移動估

測的運算時間和運算量，本論文引用了一能有效篩選欲執行分數點移動估測的編

碼方式之演算法，並且將其延伸與多層解析度移動估測演算法之結果一併考慮，

進而提出一種能從不同層解析度編碼方式之中有效篩選欲執行分數點移動估測

的編碼方式之演算法，經過此演算法，相較於原先的最多 20 種編碼方式，此演

算法篩選至僅僅 3 種編碼方式須要被執行分數點移動估測，此演算法相較於先前

無篩選的做法訊雜比下降了 0.106dB 而位元率增加了 3.542%。

vi

Motion Estimation Design for

H.264/MPEG4-AVC Video Coding and Its

Scalable Extension

Student：Ko-Chia Tsao Advisors：Dr. Tian-Sheuan Chang

Department of Electronics Engineering

 Institute of Electronics

National Chiao Tung University

Abstract

Motion estimation is (ME) is the most complex part and the bottle neck of a real time

video encoder. The adoption of inter-layer prediction (IL prediction) in H.264/AVC

SVC extension even increases the computing time and memory bandwidth of ME.

Thus, we adopted the previous data efficient inter-layer prediction algorithm [4] to

save the memory bandwidth. In this thesis, we propose the corresponding hardware

architecture for inter-layer prediction which can process INTER mode and different

inter-layer prediction modes in parallel to save the computing time and memory

bandwidth. Furthermore, in order to reduce the high complexity and computation of

FME, we adopt the Single-Pass Fractional Motion Estimation (SPFME) as our fast FME

algorithm in our FME process. We then propose the corresponding FME hardware

architecture for SPFME according to the previous architecture of FME design [3].

Compared with the previous architecture, our proposed architecture can speed up to

four times faster. There are many prediction modes due to the adoption of inter-layer

prediction and different block types. Thus, to further reduce the complexity and

vii

computing time of FME, we adopt the pre-selection algorithm of Li’s to eliminate

some prediction modes from FME process. However, the Parallel Multi-Resolution

Motion Estimation (PMRME) algorithm [1] is adopted in our IME process. Hence, we

further propose a multi-level mode filtering scheme to select 3 prediction modes

from 3 different search levels. Finally, we integrate the adopted IL prediction, mode

filtering, and the SPFME algorithm. The simulation results shows that the proposed

function flow with mode filtering can achieve average 3.542% of bit-rate increment

and 0.106dB of PSNR degradation in CIF sequence for 2 spatial layers. The

implementation results of the whole ME architecture is also shown. It can support

CIF+480p+1080p video @60 fps under 135MHz.

viii

ix

致 謝

首先，我要感謝我的指導教授-張添烜博士，老師不厭其煩的指導使我在研

究的道路上獲益良多，每每遇到挫折時老師也會給予我適時的協助和關心，而平

時討論和解決研究的問題時，老師也給予我極大的空間去發揮和思考，讓我在學

習的過程中發現更多無限的可能，因此，我對張教授的感激之情溢於言表。此外，

也謝謝百忙之中抽空來指導我的口試委員們-交大電子李鎮宜教授和清大電機陳

永昌教授，你們寶貴的意見更加彌補了我論文的不足。

 感謝 VSP 實驗室的各位學長姐和學弟妹，尤其是帶領我進入視訊編碼領域的

李國龍學長，謝謝你總是帶給實驗室許多歡樂氣氛，每當有問題請教時你也總是

很有耐心的引導我找到答案，也謝謝你總是教我許多有用的研究技巧和方法，讓

我得以順利完成此篇論文。同時也謝謝曾宇晟、王國振學長、陳易群學長在我研

究的生活中帶給我許多寶貴的意見和經驗，和你們聊天總是使我覺得很充實又開

心。謝謝學弟妹輔仁、兆傑、珊榕、碩文，你們總是在我需要幫助時伸出援手，

讓我在最後寫論文的這段期間得以順利進行；也謝謝效瑜、沛澤、炫谷、奕晴，

你們認真的研究態度也使我深夜在實驗室寫論文得以不孤單。謝謝亮齊、孟勳、

英佑兩年來的陪伴，你們不管在我修課或研究都帶給我許多幫助，很懷念和你們

忙裡偷閒去唱歌的時光，這些都讓我的碩班生涯增色不少。

 謝謝我的女友，謝謝妳一直以來的支持，在妳自己也忙於研究所考試之餘還

要不停鼓勵我，因為妳的鼓勵和陪伴讓我得以順利完成我的論文。也謝謝美國影

集越獄風雲，因為有你的陪伴讓我在最後寫論文的其間不枯燥乏味，使我在回到

家時得以放鬆心情。當然也要謝謝默默支持我的家人。

 最後，把本論文獻給所有愛我及所有我愛的人。

x

Contents

Chapter 1. Introduction ..1

1.1. Overview of SVC ... 1

Chapter 2. Related work overview ..5

2.1. Parallel multi-resolution motion estimation (PMRME)[1]......................... 5

2.2. Data efficient Inter-layer prediction algorithm ... 7

2.3. Fast FME algorithm- Single-pass Fractional Motion Estimation (SPFME) .. 11

Chapter 3. Mode filtering for IME ... 14

3.1. The Matching Criteria ... 14

3.2. Motivation of mode filtering .. 14

3.3. Efficient pre-selection algorithm for fractional motion estimation in

H.264/AVC scalable video extension ... 18

3.3.1. Observation and analysis .. 18

3.3.2. The pre-selection algorithm for inter-layer prediction 20

3.4. Proposed mode filtering algorithm for multi-level 22

3.5. Mode filtering by IBL and IBLR mode .. 23

Chapter 4. Hardware architecture design .. 26

4.1. Design Spec ... 26

4.2. Architecture design of IME ... 28

4.2.1. Overview of PMRME architecture design .. 28

4.2.2. Proposed architecture design for inter-layer prediction 34

4.2.3. Search scheduling of IME .. 41

4.3. Architecture design of FME .. 45

4.3.1. Overview of previous FME architecture design ... 46

4.3.2. Proposed FME design .. 50

4.3.2.1. Overall architecture and primary modules 50

4.3.2.2. FME luma module .. 52

4.3.2.3. The parallel processing architecture of interpolation unit ... 53

4.3.2.4. The skip IBL mode for FME .. 55

4.4. Reference SRAMs ... 57

4.4.1. Level 0 and FME SRAM .. 57

4.4.2. SRAMs of level 1 and level2 .. 58

xi

4.5. Memory schedule .. 60

Chapter 5. Simulation and Implementation results ... 63

5.1. Simulation results .. 63

5.2. Hardware implementation results .. 68

Chapter 6. Conclusion and future work .. 74

Reference .. 75

xii

List of Figures

Fig. 1 Structure of SVC encoder ... 2

Fig. 2 illustration of parallel multi-resolution motion estimation.................. 5

Fig. 3 the concept of PMRME... 7

Fig. 4 different modes of the Inter-Layer prediction (IL prediction) 8

Fig. 5 (a)the SAD calculation of INTER (b) the SAD calculation of ILR 8

Fig. 6 adopted inter-layer motion prediction algorithm for every block in a

macro block .. 9

Fig. 7 the function flow of inter-BL mode(IBL) ... 10

Fig. 8 Different search patterns are shown ... 12

Fig. 9 mode selection process of H.264 ... 15

Fig. 10 mode selection for SVC .. 16

Fig. 11 mode selection for H.264/AVC ... 17

Fig. 12 mode pre-selection for H.264/AVC .. 17

Fig. 13 the Type 1 mode pre-selection algorithm .. 20

Fig. 14 the Type 1 mode pre-selection algorithm .. 21

Fig. 15 the function of mode filtering between multi-levels 22

Fig. 16 the function flow of mode filtering by IBL mode 23

Fig. 17 the three spatial layers for our spec ... 26

Fig. 18 the pipelined architecture of our H.264/AVC scalable video encoder

.. 27

Fig. 19 the PMRME architecture .. 28

Fig. 20 level 1 reference data allocation for “Level 1 SAD modules” 29

Fig. 21 level 2 reference data allocation for “Level 2 SAD modules” 29

Fig. 22 the primitive module .. 30

Fig. 23 “Level 0 Row ME module” .. 30

Fig. 24 “Level 1 Row ME module” .. 31

Fig. 25 “Level 2 Row ME module” .. 32

Fig. 26 “4x4 SAD tree for level 0” ... 33

Fig. 27 the “8x8 SAD tree for level 1”... 33

Fig. 28 the proposed inter-layer prediction architecture 34

Fig. 29 the primitive module with inter-layer residual mode 35

Fig. 30 the architecture of Inter-BL .. 37

Fig. 31 Architecture of interpolation unit ... 38

Fig. 32 (a) 4x4 block PU (b) IBL processing order of 4x4 blocks 39

Fig. 33 the proposed PMRME architecture with inter-layer prediction 41

Fig. 34 the reference control of level 0 .. 42

xiii

Fig. 35 parallel data reuse in level 0 ... 43

Fig. 36 the pipelined search schedule oh level 0 ... 43

Fig. 37 the search flow of level 1 ... 44

Fig. 38 parallel data reuse in level 1 ... 44

Fig. 39 the reference control of level 1 .. 44

Fig. 40 the search flow of level 2 ... 45

Fig. 41 the reference control of level 2 .. 45

Fig. 42 function flow of previous FME stage .. 46

Fig. 43 the previous FME architecture design.. 47

Fig. 44 the architecture of FME luma module ... 48

Fig. 45 the new FME function flow .. 50

Fig. 46 the architecture of proposed FME architecture 51

Fig. 47 the proposed FME luma hardware ... 52

Fig. 48 the interpolation unit architecture ... 54

Fig. 49 (a) the new flow of FME luma path without IBL mode (b) the new

flow of FME luma path with IBL or IBLR mode 56

Fig. 50 previous IME level 0 SRAM and its bank .. 57

Fig. 51 the proposed SRAM for FME and level 0 in IME 58

Fig. 52 (a) the SRAM of level 1 (b) the SRAM of level 2 59

Fig. 53 the block diagram of IME and FME .. 60

Fig. 54 the ping-pong buffer concept of level 0 SRAMs 61

Fig. 55 the performance of our mode filtering for akiyo_cif 66

Fig. 56 the performance of our mode filtering for coastguard_cif 66

Fig. 57 the performance of our mode filtering for football_cif 66

Fig. 58 the performance of our mode filtering for foreman_cif 67

Fig. 59 the performance of our mode filtering for mobile_cif 67

Fig. 60 the performance of our mode filtering for news_cif 67

xiv

xv

List of Table

Table 1 cycles for interpolation of different block types 55

Table 2. simulation settings .. 63

Table 3. mode selection performance after pre-selection algorithm without

PMRME for CIF as EL and QCIF as BL ... 64

Table 4 the RD performance of the final mode filtering with IL prediction

and PMRME ... 65

Table 5. synthesis result of the PMRME in UMC90 68

Table 6 the comparison of different IME architectures 69

Table 7. synthesis result of the FME_luma module in UMC90 70

Table 8. synthesis result of the FME top module in UMC90 70

Table 9. comparison between different FME design 71

Table 10. the overall synthesis result of ME .. 72

xvi

1

Chapter 1. Introduction

1.1. Overview of SVC

 In these years, video coding has been developed rapidly in order to satisfy a

variety of applications range from mobile device display to high-definition TV. As a

result, many video coding standards have been standardized to increase

compatibility among different video applications. One of the state-of-the-art video

coding standards called H.264/AVC, which was standardized by Joint Video Team

(JVT), can achieve amazing compression ratio compared with traditional video coding

standards thanks to the adoption of many different optimization techniques.

However, to further satisfy the requirement of end user heterogeneity, an

advanced video coding standard called Scalable Video Coding (SVC) [1], as an

extension of H.264/AVC, has been standardized.

 SVC supports three scalabilities, which are temporal, spatial, and quality scalability.

Temporal scalability supports different frame rate by using hierarchical B structure.

Quality scalability is achieved by Fine-Grain Scalability (FGS), Coarse-Grain Scalability

(CGS) or Medium-Grain Scalability. Spatial scalability is supported by varying frame

resolutions.

2

Reconstructed

Picture

Reference

Picture

Current

Picture

ME MC

Intra Prediction

M
U

X

+

+
+

-

Original

Picture

N

+

TQ

IT &

IQ

Entropy

Encoding

Reconstructed

Picture

Reference

Picture

Current

Picture

ME MC

Intra Prediction

M
U

X

+

+
+

-

+

TQ

IT &

IQ

Entropy

Encoding

N
N

N

+

-

+

M
u

lt
ip

le
x
e

r

SVC

bitstream

+

Spatial layer 0

Spatial layer 1

Fig. 1 Structure of SVC encoder

The basic structure of SVC encoder with two spatial layers is shown in Fig. 1. The

intra-layer prediction mode is used both in base layer (BL) and enhancement layer

(EL). However, for the high correlation between BL and EL, the inter-layer prediction

mode is also supported in EL process by reusing the coding information from BL.

 In the first step of SVC encoding process, the original input sequence is

down-sampled N times to fit the size of BL input. Then the BL sequence is encoded

by typical H.264/AVC encoding process. After BL is encoded, the EL takes the

up-sampled encoded information from BL as reference to do the inter-layer

prediction.

3

1.2. Organization of this thesis

The organization of this thesis is as follows: In chapter 2, we introduce the related

works of this thesis. Afterwards, we proposed a fast mode filtering algorithm for our

IME architecture with the adopted pre-selection algorithm of LI’s work[7]. In chapter

4, we propose our architecture of the adopted efficient inter-layer prediction

algorithm as well as the architecture of the adopted fast algorithm of FME. Then, in

chapter 5, we list several simulation results to demonstrate our proposed mode

filtering algorithm. Some hardware implementation results of our motion estimation

are also listed in chapter5. In the end, a conclusion is given in chapter 6.

4

5

Chapter 2. Related work overview

2.1. Parallel multi-resolution motion estimation

(PMRME)[1]

Fig. 2 illustration of parallel multi-resolution motion estimation

Parallel multi-resolution motion estimation (PMRME) includes three independent

levels for search, as illustrated in Fig. 2.

Level 2 is the coarsest level. It has the largest SR, [-128,124], and its search center

is located on the original point (0, 0) to enable regular data reuse between successive

MB processing. This level uses the 16:1 sampling for its ratio, thus, the only mode in

level 2 is 16x16.

Level 0 is the finest level, which has SR for [-8, 7]. We choose the motion vector

predictor (MVP) as its center because it has high probability to be the final MV. In this

level, we do not subsample data, thus, there would be variable block size modes in

level 0. We here take the MVP of the top left block as the MVP_INTER of whole

6

macro block to simplify the process and compensate the motion vectors of all blocks

after motion estimation is over.

Level 1 has the SR between level 0 and level 2, which is [-32, 30].The search center

of level 1 is also set to be on (0, 0) for the same reason of level 2. This level uses 4:1

sampling and thus will have 16x16, 16x8, 8x16, 8x8 modes to choose from.

These three levels have different characteristics and can properly complement to

each other. Level 0 can find the best matching block of those with low motion. Level

2, on the contrary, is suitable for high motion block but with the coarsest accuracy.

The characteristics of level 1 is among level 0 and level 2, which has smaller SR than

level 2 but more accuracy than level 2.

In level 0, after searching all positions, there will be a motion vector difference

(mvd) which indicates the difference between the final MV and the MVP_INTER.

Thus, we only have to transmit the MVP_INTER and mvd after the encoding is over so

that the decoder can get the final MV position. As for level 1 and level 2, the final MV

is the mvd relative to zero (0, 0) position.

The advantages of PMRME is that level 1 and level 2 can enhance data reusing by

setting search center on (0, 0).Moreover, level 1 and level 2 have larger search range

and thus can compensate the drawback of level 0 whose search range is too small

to find the best matching block with high motion. With these two large search levels,

the motion vectors can rapidly converge to a proper position thus can compensate

the effects from level 0 MVP, as illustrated in Fig. 3.

7

(0,0)

M
V

P

Level 0

Level 1

Level 2

M
V

(0,0)

M
VP

Level 0

Level 1

Level 2

M
V

Current block i

Current block i+1

Fig. 3 the concept of PMRME (the MV can be rapidly converged.)

2.2. Data efficient Inter-layer prediction algorithm

 Inter-layer (IL) prediction is adopted in SVC to reduce the redundancy existed

between spatial layers. However, IL prediction also causes additional memory

bandwidth and computational requirements. We adopt our data efficient IL

prediction algorithm to reduce the data access requirement. IL prediction includes

inter-layer residual (ILR), inter-layer motion (ILM) and inter-BL (IBL) mode and the

combination of them, as illustrated in Fig. 4.

8

Reference frame

Current frame

+

+

+

+

+

+

+

Inter

prediction

Base

layer

texture

Base layer

motion

vector

Base

layer

residual

Base

layer MB

type

-

-

-

-

-

Inter-Layer

Motion

Inter-Layer

Motion

Residual

Inter-Layer

Residual

Inter-Layer

Inter-BL

Residual

Inter-Layer

Inter-BL

Inter-Layer

Intra-BL

Fig. 4 different modes of the Inter-Layer prediction (IL prediction)

In our IL prediction algorithm, ILR can be achieved by only additionally subtracting

the up-sampled base layer residual from current coding pixels after current coding

pixels subtracts the reference data, as illustrated in Fig. 5(a)(b).

Search range

MB

Current MB pixels

Reference MB pixels

+

IME

module

SAD_INTER

-

Search range

MB

Current MB pixels

Reference MB pixels

+

IME

module

SAD_ILR

-

Reference

layer

residual

+
-

Fig. 5 (a)the SAD calculation of INTER (b) the SAD calculation of ILR

The concept of ILM is to use the up-sampled motion vectors from base layer as the

motion vector predictors (MVPs) of enhancement layer, which is based on the

assumption that the motion vector of base layer could be quite approximate to the

one of enhancement layer.

9

Derive the MVP_ILM

Mvp_diff<threshold

Reuse reference data

of INTER prediction for

ILM with SR [-8,+7]

Use MVP_ILM to

compensate the Rdcost

for ILM

Start

Derive the

MVP_INTER

Load the

reference data

Rdcost of ILM

Y
N

Skip ILM

mode

Fig. 6 adopted inter-layer motion prediction algorithm for every block in a macro block. The threshold

is set to be 8. The MVP_ILM is based on a 4x4 block, thus, a macro block has sixteen MVP_ILMs.

Our adopted ILM scheme is illustrated in Fig. 6. It takes advantage of the

characteristic that the difference between motion vector predictors of ILM

(MVP_ILM) and motion vector predictors of INTER (MVP_INTER) is highly possible to

be small, so we can apply the search area centered on MVP_INTER to find out best

MV of both INTER mode and ILM mode. Moreover, a simulation was conducted to

find out the most suitable search range so that the MV_ILM would be highly possible

to be within the search range of INTER mode. In this way, INTER mode and ILM mode

can share the same search data to reduce the data access requirement.

According to the results of our previous simulation, we set the search range to be

[-8, 7]. And the condition for the execution of the ILM process is that the difference

between MVP_ILM and MVP_INTER has to be smaller than 8 to assure the final MV

of ILM would be inside the search area of INTER mode. In addition, since the search

range is only [-8, 7], we can further save the computing time and reduce power

consumption.

10

Derive

MB_partition,n=0

n<MB_partition

Derive mvd_IBL for

partition n; mvd_IBLn

Diff(MVP_INTER,mvd_IBLn)

<threshold

Reuse reference data of

INTER prediction for IBL

Obtain the RDcost for

partition n

Accumulate the

RDcost

Loaded

reference data

from external

memory

n=n+1

Start

Derive the

MVP_INTER

Load the reference

data

Rdcost of IBL

Y

N

Y

N

Fig. 7 the function flow of inter-BL mode(IBL)

The IBL scheme is illustrated in Fig. 7. It takes the up-sampled partition from base

layer and uses the same MVP as ILM. Since the IBL mode has high probability to be

selected as best mode in enhancement layer, it doesn’t skip IBL mode to avoid great

performance degradation, instead, it fetches external memory to load reference

search data when the difference between MVP_INTER and MVP_ILM is too large.

Otherwise, IBL reuses the reference search data from INTER prediction to reduce the

data access requirement.

 The ILR, ILM, IBL mode can be combined together to further reduce redundancy

between spatial layers. Thus, in this thesis, we will have INTER, ILR, ILM, ILMR, IBL

and IBLR mode after different modes combined together, as illustrated in Fig. 2.4.

The corresponding architecture of our IL prediction will be discussed in detail in

11

chapter 4.

2.3. Fast FME algorithm- Single-pass Fractional Motion

Estimation (SPFME)

 SPFME is a one-iteration search method which is used as a fast fractional motion

estimation. SPFME uses the MVP position and the zero (0, 0) position to set a

ten–points search pattern.

The SPFME needs a MVP position to locate the search point of the predicted

fractional motion vector (pred frac mv) and the other four points around it. The way

we adopt to produce the pred frac mv is the same as the way adopted in [5]. In

H.264/AVC, the predicted motion vector (pred mv) is defined as the median of three

neighboring motion vectors. The pred frac mv is extracted from pred mv and the best

integer motion vector (mv),

MVP position=pred frac mv = (pred mv - mv) modulo β (2.1)

where modulo β operation is applied to obtain the fractional component by

removing the integer part. The number “β” is decided by the precision, β=4 in 1/4

pel case and β=8 in 1/8 pel case. The basic idea of obtaining the pred frac mv

according to the equation (1) is based on the assumption that most of the best

fractional motion vectors (best frac mv’s) lies on either pred frac mv or its four

neighbors (top, down, left and right).

12

 (a) (b)

Fig. 8 Different search patterns are shown. Circle, diamond and triangle denote integer point, search

center and quarter-pel location. (a) is SIFME, proposed by our early algorithm, searches zero position,

MVP position and its four neighbors (up, down, right and left) (b) is SPFME, denoting Kyung’s

algorithm, with four more points around the zero position (up left, up right, down left, and down right)

than (a).

 SPFME has a ten-points search pattern, as illustrated in Fig. 8. The pattern includes

the zero (0, 0) position with its four neighbors (up left, up right, down left and down

right) around it, and the MVP position with its four neighbors (top, down, left and

right).

 SPFME improves SIFME[3] by adding more points around the zero position and

thus increase hit rate of the best MV, as illustrated in Fig., . Furthermore, it can be

easily implemented by our previous architecture of SIFME algorithm without

increasing computing time because of the parallel calculation between different

search points. The proposed architecture design of SPFME will be discussed in detail

in chapter 4.

13

14

Chapter 3. Mode filtering for IME

3.1. The Matching Criteria

In this section, we use RDcost to decide the final prediction mode. The function of

RDcost is listed as follow:

J = D +λ ˙R (3.1)

Where J denotes RDcost, λ represents Lagrangian parameter, D is the distortion

between current and reference data, and R refers to rate derived by computing the

difference between selected motion vector (MV) and motion vector predictor (MVP).

In the following section, the ”λ ˙R” will be simply called ”MVcost”. Thus, the

function of RDcost can be shorten to:

J = D + MVcost (3.2)

The D term is acquired by calculating sum of absolute differences (SAD) in IME and

sum of absolute transformed differences (SATD) in FME.

3.2. Motivation of mode filtering

 In H.264 video coding standard, variable block size (16x16, 16x8, 8x16, 8x8, 8x4,

4x8 and 4x4) motion estimation is supported and every block of every partition size

goes through integer motion estimation (IME) and fractional motion estimation (FME)

processing, as illustrated in Fig. 9. Thus, 41 blocks would go through IME and FME

processing to derive best partition and best motion vectors of a macro block.

Furthermore, the computational complexity is even increased due to the adoption of

15

inter-layer prediction in scalable video coding (SVC), including ILR, ILM and ILMR.

Therefore, there are overall 41x4=164 blocks that would have to be examined by IME

and FME process, as illustrated in Fig. 10.

16x16

16x8

8x16

16x8

8x16

8x8 8x4

4x8 4x4

IME INTER mode

FME INTER mode

Best mode selection

Best mode

Fig. 9 mode selection process of H.264

16

16x16

16x8

8x16

16x8

8x16

8x8 8x4

4x8 4x4

IME INTER mode

FME INTER mode

IME inter-layer residual

mode

FME inter-layer

residual mode

IME inter-layer motion

mode

FME inter-layer motion

mode

IME inter-layer motion

residual mode

FME inter-layer motion

residual mode

Best mode selection

Best mode

Fig. 10 mode selection for SVC

 To reduce the complexity, partition beyond 8x8 is simplified into submode after

IME stage in H.264/AVC, which is derived from 4x4, 4x8, 8x4 and 8x8 mode, as

illustrated in Fig. 11. Thus, there are only 16x16, 16x8, 8x16, and submode to be

examined in FME stage, namely, 21x4=84 blocks at most and 9x4=36 blocks at least

to examined in FME stage.

17

16x16

16x8

8x16

16x8

8x16

IME INTER mode

FME INTER mode

Best mode selection

Best mode

submode

Fig. 11 mode selection for H.264/AVC

16x16

16x8

8x16

16x8

8x16

IME INTER mode

FME INTER mode

Best mode selection

Best mode

submode

Mode filtering fro FME

Fig. 12 mode pre-selection for H.264/AVC

Some works [10],[11],[12] have been proposed to speed up the FME process;

however, to further reduce the complexity and computing time of FME processing,

instead of checking all modes from IME, we think of pre-filtering modes from IME to

reduce the number of modes examined in FME. There are some researches [8],[9] on

18

mode-filtering for H.264/AVC, as illustrated in Fig. 12. Nevertheless, those

mode-filtering schemes are only for INETR prediction. Since the inter-layer prediction

is adopted in our IME process, we adopt the mode pre-selection scheme for

inter-layer prediction from the previous work [7] to reduce the numbers of modes in

FME stage.

Although we can reduce the numbers of modes from IME by Li’s work, we still

have nearly 8 modes left after the pre-selection process in our IME stage. To further

reduce the computing time of FME as well as considering the hardware

implementation of FME, we try to reduce modes for FME to only 3 modes. Thus,

after introducing the adopted Li’s mode pre-selection algorithm, we still need to

handle the remaining modes of inter-layer prediction and the other two modes from

level 1 and level 2 in IME stage before entering into FME stage.

The rest of this chapter will be as follows. In 3.2, we introduce the mode

pre-selection algorithm by Li. Afterwards, we propose an algorithm to deal with the

rest of IME modes in 3.3 so that there will be only 3 modes left entering into FME

stage. In 3.4, we further take advantage of the characteristics of inter-BL (IBL) and

inter-BL residual (IBLR) mode to reduce the number of mode from IME. Simulation

results of the overall mode filtering algorithm will be shown in Chapter 5 to

demonstrate the efficiency of the whole mode filtering flow.

3.3. Efficient pre-selection algorithm for fractional

motion estimation in H.264/AVC scalable video

extension

3.3.1. Observation and analysis

19

The pre-selection algorithm [7] is based on the observation of the RDcost between

IME and FME of different prediction modes. Li divided these prediction modes into

four types to compare the RDcost of them. They are “INTER versus Inter-layer motion

(Type 1)”, “Inter-layer residual versus Inter-layer motion residual (Type 2)”, “INTER

versus Inter-layer residual (Type 3)”, and “Inter-layer motion versus Inter-layer motion

residual (Type 2)”.Here we only consider the Type 1 and Type 2 algorithm for

convenience. Thus, we will only introduce the Type 1 and Type 2 algorithm in next

section.

Li define the term called “spatial locality” to indicate that if a macro block whose

RDcost of IME is very close to the RDcost of FME. That is, the RDcost won’t change a

lot after the FME process. Li found that most of macro blocks have high spatial

locality for block size of 16x16, 16x8, and 8x16. Thus, for example, if the IME RDcost

of INTER mode is sufficiently larger than IME RDcost of ILM mode for block size of

16x16, it has high probability that the FME RDcost of INTER mode is larger than the

FME RDcost of ILM mode for block size of 16x16, which can be illustrated as follows:

 (3.3)

As for submode, it should be treated individually since the spatial locality of it isn’t

obvious. The Type 1 and Type 2 mode pre-selection algorithms are described in the

following section.

20

3.3.2. The pre-selection algorithm for inter-layer prediction

IME(I)16x16+ω1

<=IME(M)16x16

IME(M)16x16+ω1

<=IME(I)16x16

Compute ω1

and ω2

Set all θij=true

NOθILM16x16=

false

θINTER16x16=

false

NO

IME(I)16x8+ω1

<=IME(M)16x8

θILM16x8=

false
NO

YES

YES

YES

IME(M)16x8+ω1

<=IME(I)16x8

θINTER16x8=

false
NO

YES

IME(I)8x16+ω1

<=IME(M)8x16

NO θILM8x16=

false

YES

IME(M)8x16+ω1

<=IME(I)8x16

NO θINTER8x16=

false

YES

IME(I)submode+ω2

<=IME(M)submode

NO θILM_submode=

false

YES

IME(M)submode+ω2

<=IME(I)submode

NO θINTER_submode=

false

YES

Type 1 mode pre-selection

Fig. 13 the Type 1 mode pre-selection algorithm. The term “I”, and “M” refers to INTER, and ILM mode,

respectively. IME(I)16x16, IME(I)16x8, IME(I)8x16, and IME(I)submode, are 16x16 RDcost, 16x8 RDcost,

8x16 RDcost, and submode RDcost of IME for INTER mode. IME(M)16x16, IME(M)16x8, IME(M)8x16,

and IME(M)submode, are 16x16 RDcost, 16x8 RDcost, 8x16 RDcost, and submode RDcost of IME for

ILM mode. is the threshold for block size of 16x16, 16x8 and 8x16 ; is the threshold for

submode.

The Type 1 mode pre-selection algorithm is as illustrated in Fig. 13. ij indicates

the “mode_flags” of different prediction modes and different block types. The term

“i” refers to the prediction mode and the term “j” represents the block types. In Fig,

the thresholds are calculated as follows:

 (3.4)

where the is the threshold for block size of 16x16, 16x8 and 8x16 because of the

21

spatial locality of them. In the begging of the algorithm, we first set ij (mode_flag)

true for all i and j. After the Type 1 algorithm, some of the mode_flags would become

false.

IME(R)16x16+ω1

<=IME(MR)16x16

IME(MR)16x16+ω1

<=IME(R)16x16

Compute ω1

and ω2

Set all θij=true

NOθILMR16x16=

false

θILR16x16=

false

NO

IME(R)16x8+ω1

<=IME(MR)16x8

θILMR16x8=

false
NO

YES

YES

YES

IME(MR)16x8+ω1

<=IME(R)16x8

θILR16x8=

false
NO

YES

IME(R)8x16+ω1

<=IME(MR)8x16

NO θILMR8x16=

false

YES

IME(MR)8x16+ω1

<=IME(R)8x16

NO θILR8x16=

false

YES

IME(R)submode+ω2

<=IME(MR)submode

NO θILMR_submode=

false

YES

IME(MR)submode+ω2

<=IME(R)submode

NO θILR_submode=

false

YES

Type 2 mode pre-selection

Fig. 14 the Type 1 mode pre-selection algorithm, the term “R”, and “MR” refers to ILR, and ILMR mode,

respectively. IME(R)16x16, IME(R)16x8, IME(R)8x16, and IME(R)submode, are 16x16 RDcost, 16x8

RDcost, 8x16 RDcost, and submode RDcost of IME for ILR mode. IME(MR)16x16, IME(MR)16x8,

IME(MR)8x16, and IME(MR)submode, are 16x16 RDcost, 16x8 RDcost, 8x16 RDcost, and submode

RDcost of IME for ILMR mode. is the threshold for block size of 16x16, 16x8 and 8x16 ; is the

threshold for submode.

The Type 2 mode pre-selection algorithm is as illustrated in Fig. 14. The thresholds

here are calculated as follows:

 (3.5)

22

After the Type 1 algorithm and Type 2 algorithm, we can skip modes with false

mode_flags, which are more unlikely to be the best mode after FME stage. Thus, we

can reduce the computing time of FME.

3.4. Proposed mode filtering algorithm for multi-level

After going through Li’s mode pre-selection algorithm, there are still nearly 8

modes left in average for level 0 in IME. Except for the rest of level 0 modes, level 1

and level 2 have their own prediction modes, too. Thus, in this section, we focus on

how to process the rest of modes.

 To assure that the mode filtering would be accurate enough, we deal with level 0

modes and level1, level 2 modes separately. For level 0, we choose three best modes

from the modes left according to RDcosts performance. Afterwards, we will have 3

modes from level 0, one mode from level 1, and one mode from level 2. To further

reduce the number of modes to only 3, we propose a fast algorithm to select 3

modes among these 5 modes. The way we select the 3 best modes is illustrated in Fig.

15.

Compare

Level 2Level 1
Level 0

3rd mode
Level 0

2nd mode
Level 0

1st mode

Mode 0 Mode 2Mode 1

Fig. 15 the function of mode filtering between multi-levels

In the algorithm, we set the modes with the smallest RDcost and the second small

RDcost from level 0 as the first and the second candidate for the final modes. As for

the third candidate for final mode, we compare the RDcost of the third mode of level

0, level 1 RDcost, and level 2 RDcost to determine the best as the third candidate for

23

the final mode. The reason we keep 2 candidates from level 0 is due to its high

prediction accuracy compared with the other two levels, since the other two levels

use sub-sampled data to calculate RDcosts. In this way, we can quickly decide the

candidates for the final modes in FME as well as make sure that the candidates from

IME are accurate enough.

3.5. Mode filtering by IBL and IBLR mode

IBL mode and IBLR mode are two special modes in inter-layer prediction since they

directly take the up-sampled MVP_ILMs as their final MVs. In this way, IBL and IBLR

will load data according to the final MVs and produce the RDcost without searching.

Moreover, since the MVP_ILMs are in 1/4-pels unit, the RDcosts of IBL and IBLR after

IME stage will be the same as the RDcosts after FME stage. Hence, we don’t need to

put IBL and IBLR modes into FME if either of them is in the modes left after IME stage.

Namely, we can skip IBL or IBLR mode when they are in the last 3 modes from IME,

as illustrated in Fig. 16.

FME

Compare Rdcost of the 3

modes

Best mode

Check IBL

Mode 0=INTER,

Mode 1=ILR,

Mode2=IBL

RDcost of

mode1

RDcost of

mode0

RDcost of

mode2(IBL)

Fig. 16 the function flow of mode filtering by IBL mode

In Fig. 16, mode 2 is IBL mode while the other two is not, thus, we skip mode2 and

directly send the RDcost of mode 2 to the compare block. That is, in this case, we

24

only have to process 2 modes in FME. Moreover, if IBL and IBLR are both in the 3

modes from IME, we can further reduce the number of modes to only 1. With this

IBL skip mechanism, we will have at most 3 modes and at least 1 mode to process in

FME stage.

25

26

Chapter 4. Hardware architecture design

4.1. Design Spec

The desired system specification is described as follows: an SVC encoder works

under 135 MHz clock frequency with 3 quality layers, 3 spatial layers (CIF, SD 480p,

and HD 1080p), and frame rate is set to be 60fps. To achieve this tough specification,

we encode two frames at the same time, thus, two MBs from different frames will be

encoded in parallel.

HD 1080p

8,160 MBs

SD 480p

1,350 MBs

CIF

396 MBs

352

288

720

480

1920

1080

Fig. 17 the three spatial layers for our spec

 According to the spec and Fig. 17, we can deduce the needed cycle time as

calculated below:

 (4.1)

Since we encode two frames simultaneously with 60fps, and the frequency is 135

MHz, the cycles for encoding a MB will be:

 .. (4.2)

According the spec, our design is implemented through pipelined stages as shown

in Fig. 18. The time of one pipelined stage is 450 cycles. We have two sets of IME,

inter-layer prediction, mode filtering, FME, intra prediction, Deblocking, and Entropy

coding modules to process two MBs of different frames at the same time. As for the

other modules, we only have one set of them since they are able to process two MBs’

data in time.

27

The first stage is the IME process with the IL prediction. Mode filtering is also in

the first stage after the IME and IL prediction. After stage 1 finishes, it pass the best 3

prediction modes and their MVs to the second stage. FME and intra prediction are in

the second stage with the transform, quantization, inverse transform, and inverse

quantization modules. After the second stage, best residuals, best mode, and best

MVs are sent into the third stage. CGS, reconstruction, and deblocking are processed

in the third stage. Finally, in the fourth stage, entropy coding would be processed to

get the final output.

IME 1

M
o

d
e

 filte
rin

g
 2

B
e

s
t M

o
tio

n
 V

e
c
to

rs

Intra prediction 1

Intra prediction 2

FME 1

FME 2

B
e

s
t M

o
d

e
 &

 M
o

tio
n

 V
e

c
to

rs
R

e
s
id

u
a

lsT
ra

n
s
fo

rm
/Q

u
a

n
tiz

a
tio

n

In
v
e

rs
e

 T
ra

n
s
fo

rm

In
v
e

rs
e

 Q
u

a
n

tiz
a

tio
n

CGS

Reconstruction

Deblocking 1

Deblocking 2

B
e

s
t M

o
d

e
 &

 M
o

tio
n

 V
e

c
to

rs
R

e
s
id

u
a

ls

Entropy

coding 1

Entropy

coding 2

Stage 1 Stage 3Stage 2 Stage 4

Inter-layer

prediction 1

IME 2

M
o

d
e

 filte
rin

g
 2

Inter-layer

prediction 2

Fig. 18 the pipelined architecture of our H.264/AVC scalable video encoder

28

4.2. Architecture design of IME

4.2.1. Overview of PMRME architecture design
C

u
rr

e
n

t
M

B

1
:1

 s
u

b
-

s
a

m
p

le

L
e

v
e

l
0

re
fe

re
n

c
e

fr
a

m
e

4
:1

 s
u

b
-

s
a

m
p

le

L
e

v
e

l
1

re
fe

re
n

c
e

fr
a

m
e

1
6

:1

s
u

b
-

s
a

m
p

le

L
e

v
e

l
2

re
fe

re
n

c
e

fr
a

m
e

m
u

x
m

u
x

m
u

x

31

67

16

11

19

16

8

4

Level 0 SAD module 0

Level 1 SAD module 0

Level 1 SAD module 1

Level 1 SAD module 2

Level 1 SAD module 3

Level 2 SAD module 0

Level 2 SAD module 1

Level 2 SAD module 15

..
.

4x4 SAD tree 0

8x8 SAD tree 0

8x8 SAD tree 1

8x8 SAD tree 2

8x8 SAD tree 3

m
in

im
u

m
m

in
im

u
m..

.

<<2

<<4

S
e

le
c
t
2

 m
o

d
e

s

39

Fig. 19 the PMRME architecture(the number on the line is the number of pixels)

Fig. 19 shows the PMRME [1] architecture and one 16x16 current block data is

shared for the three levels with different sample ratios. After the reference selection

module, “Level X (0, 1 or 2) ME module” calculates distortion then output the

outcome to the “Level X tree module”. The “Level X tree module” is in charge of

summing up SADs to further generate the SADs of different block sizes as well as add

MVCOST to distortion to form RDcost. After costs from three levels are produced, the

best two candidates will be selected to enter into FME process.

The reference selection modules for different levels have different bandwidths due

29

to two factors, different search ranges and parallelism of SAD calculation. Level 0

searches one position at a time. Thus, level 0 reference data inputs 16 pixels to “Level

0 ME module” and allocate the whole 16 pixels to a “Level 0 SAD module”.

Level 1 searches four positions at a time to speed up the processing. Thus, level 1

reference data inputs 8+3=11 pixels to “Level 1 ME module” and allocate to four

“Level 1 SAD modules”, each one has 8 pixels input, as illustrated in Fig. 20.

Level 2 searches sixteen positions at a time to speed up the processing. Thus, level

2 reference data inputs 4+15=19 pixels to “Level 2 ME module” and allocate to

sixteen “Level 2 SAD modules”, each one has 4 pixels input, as illustrated in Fig. 21.

Fig. 20 level 1 reference data allocation for “Level 1 SAD modules”

Fig. 21 level 2 reference data allocation for “Level 2 SAD modules”

 Every level has its own “ME module”. The hierarchy of ME module is: ”ME module”

>”SAD module” >”Row ME module”> ”Primitive module.” In this way, the “SAD

module” and “row ME module” of each level can be shown below. The primitive

module is shown in Fig. 22.

30

primitive module

SAD

SAD

Curr0 4

Ref0 4 Ref1 4

SAD

Ref2 4

SAD

Ref3 4

Curr1 4

Curr2 4

Curr3 4

R
e

g

R
e

g

R
e

g

R
e

g

Reference

selection

module

RefB 4

RefA 4

Fig. 22 the primitive module. RefA and RefB are input for reference data, Cur0~Cur3 is the input for

current block data (the number on the line means the number of pixels)

SAD

SAD

Curr0 16

SAD

SAD

Curr1 16

Curr2 16

Curr3 16

R
e

g

R
e

g

R
e

g

R
e

g

SAD

SAD

SAD

SAD

R
e

g

R
e

g

R
e

g

R
e

g

SAD

SAD

SAD

SAD

R
e

g

R
e

g

R
e

g

R
e

g

SAD

SAD

SAD

SAD

R
e

g

R
e

g

R
e

g

R
e

g

Level 0 Row ME module

Level 0 Row ME module 0

 Level 0 Row ME module 1

 Level 0 Row ME module 2

 Level 0 Row ME module 3

L
e

v
e

l 0
 S

A
D

 m
o

d
u

le

Reference Selection

RefB 16

RefA 16

Fig. 23 “Level 0 Row ME module” (left) and “Level 0 SAD module” (right)

“Level 0 ME module” is shown in Fig. 23. It has one “Level 0 SAD module”, and the

“Level 0 SAD module” has four “level 0 Row ME modules”. Every “level 0 Row ME

31

module” has four “primitive modules” and every “primitive module” can process a

4x4 block data. Thus, a “level 0 ME module” has 16 “primitive modules” in total.

SAD

SAD

Curr0 8

SAD

SAD

Curr2 8

Curr4 8

Curr6 8

R
e

g

R
e

g

R
e

g

R
e

g

SAD

SAD

SAD

SAD

R

e
g

R
e

g

R
e

g

R
e

g

Level 1 Row ME module 0

Level 1 Row ME module 1

L
e

v
e

l 1
 S

A
D

 m
o

d
u

le

Level 1 Row ME module

Reference Selection

 RefB 8

 RefA 8

Fig. 24 “Level 1 Row ME module” (left) and “Level 1 SAD module” (right)

“Level 1 ME module” is shown in Fig. 24. It has four “Level 1 SAD modules” to

process four points searching in parallel. And every “Level 1 SAD module” has two

“level 1 Row ME modules”. Every “level 1 Row ME module” has two “primitive

modules” and every “primitive module” can process a 4x4 block data. Thus, a “level 1

ME module” has sixteen “primitive modules” in total.

32

SAD

SAD

Curr0 4

SAD

SAD

Curr4 4

Curr8 4

Curr12 4

R
e

g

R
e

g

R
e

g

R
e

g

Reference Selection

Level 2 Row ME module
L

e
v

e
l 2

 S
A

D
 m

o
d

u
le

Level 2 Row ME module

 RefB 4

 RefA 4

Fig. 25 “Level 2 Row ME module” (left) and “Level 2 ME module” (right)

“Level 2 ME module” has sixteen “Level 2 SAD modules” to process sixteen points

searching in parallel, and every “Level 2 SAD module” has one “level 2 Row ME

module”. Every “level 2 Row ME module” has one “primitive module” and every

“primitive module” can process a 4x4 block data. Thus, a “Level 2 ME module” has

sixteen “primitive modules” in total.

 The SAD tree for level 0 is a “4x4 SAD tree” since level 0 has various combinations

of seven kinds block types and needs the basic unit to compose SADs for all

partitions. As for level 1, a ”8x8 SAD tree” is used because level 1 only has block

types with sizes beyond 8x8 due to the sampling ratio. Since level 2 only has block

type of 16x16, it doesn’t need a SAD tree to calculate RDcosts for different block sizes.

The architecture of “4x4 SAD tree” and “8x8 SAD tree” are shown Fig. 26 and Fig. 27.

33

4x4_

00

4x4_

01

4x4_

10

4x4_

11

4x4_

02

4x4_

03

4x4_

12

4x4_

13

4x4_

20

4x4_

21

4x4_

30

4x4_

31

4x4_

22

4x4_

23

4x4_

32

4x4_

33

Sum 4x4 00 Sum 4x4 01 Sum 4x4 10 Sum 4x4 11

8x4_

00

8x4_

10

4x8_

00

4x8_

01

8x4_

01

8x4_

11

4x8_

02

4x8_

03

8x4_

20

8x4_

30

4x8_

10

4x8_

11

8x4_

21

8x4_

31

4x8_

22

4x8_

33

Sum 8x4 00 Sum 8x4 01 Sum 8x4 10 Sum 8x4 11Sum 4x8 00 Sum 4x8 01 Sum 4x8 10 Sum 4x8 11

dly

4

dly

4

dly

4

dly

4

dly

4

dly

4

dly

4

dly

4

8x8_

00

8x8_

01

8x8_

10

8x8_

11

dly

8

dly

8

16x8

_0

16x8

_1

8x16

_0

8x16

_1

Sum 16x8 Sum 8x16

16x1

6

Sum 16x16

4x4 SAD tree

Fig. 26 “4x4 SAD tree for level 0”

8x8_

00

8x8_

01

8x8_

10

8x8_

11

dly

4

dly

4

16x8

_0

16x8

_1

8x16

_0

8x16

_1

Sum 16x8 Sum 8x16

16x1

6

Sum 16x16

8x8 SAD tree

Sum 8x8

Fig. 27 the “8x8 SAD tree for level 1”

34

4.2.2. Proposed architecture design for inter-layer prediction

Inter-BL

reference data

MVP of inter-

layer motion
Up-sampled base

layer residual
Current MB

Level 0

reference data

1:1 sub-sample mux

31

1716

Level 0 SAD module 1 Level 0 SAD module 0

256x8(bits)

Inter-BL module

4
x
4

 S
A

D
 tre

e
 m

o
d

u
le

4
x
4

 S
A

D
 tre

e
 m

o
d

u
le

4
x
4

 S
A

D
 tre

e
 m

o
d

u
le

4
x
4

 S
A

D
 tre

e
 m

o
d

u
le

ILMR ILM ILR INTER

Level 0 tree module 0 Level 0 tree module 1 Level 0 tree module 2 Level 0 tree module 3

Level 0 ME moudle

SAD_0SAD_0_RSAD_1SAD_1_R

16x16

16x8

8x16

submode

16x16

16x8

8x16

submode

16x16

16x8

8x16

submode

16x16

16x8

8x16

submode

Mode filtering

IBL costIBLR cost

Best 3 modes

Fig. 28 the proposed inter-layer prediction architecture

Fig. 28 shows the proposed inter-layer (IL) prediction architecture design based on

our data efficient inter-layer prediction algorithm. The IL architecture is implemented

in level 0 since the data during RDcost calculation of level 1 and level 2 are already

sub-sampled. Thus, the reference data of IL prediction is loaded from level 0

reference frame and the current MB data is loaded from 1:1 sub-sample module.

 First, to meet our spec, we duplicate a “Level 0 SAD module” to simultaneously

process SAD calculations of two positions. Therefore, we will have two modules,

“Level 0 SAD module 0” and “Level 0 SAD module 1” during the SAD calculation stage

35

in level 0.

 Moreover, since the only difference between INTER mode and inter-layer residual

(ILR) mode is that ILR needs to additionally subtract up-sampled residual from

current MB data, we input up-sampled residual from base layer into “Level 0 ME

module” and allocates it to both “Level 0 SAD module 0” and “Level 0 SAD module 1”

to additionally get SADs of ILR mode. In this way, a “Level 0 SAD module” can

produce four 4x4 SADs of ILR and four 4x4 SADs of INTER for two position every four

cycles, as illustrated in Fig. 29. In Fig. 29, the upBR represent the up-sampled residual

from base layer and the Curr refers to current MB data. The “RefA” and “RefB”

indicate the reference data of different banks from level 0 SRAM. The SAD module

will calculate both (curr-ref) and (curr-ref-upBR) in the same time.

primitive module

SAD

SAD

Curr0 4

Ref0 4 Ref1 4

SAD

Ref2 4

SAD

Ref3 4

Curr1 4

Curr2 4

Curr3 4

R
e

g

R
e

g

R
e

g

R
e

g

Reference

selection

module

RefB 4

RefA 4

upBR0 4

upBR2 4

upBR3 4

upBR1 4

4x4 SAD_INTER

4x4 SAD_ILR

R
e

g

R
e

g

R
e

g

R
e

g

Fig. 29 the primitive module with inter-layer residual mode. The output will be 4x4 SAD of INTER

mode and 4x4 SAD of inter-layer residual mode.

36

 After the SADs are produced by “Level 0 ME module”, there will be SAD_0,

SAD_0_R, SAD_1 and SAD_1_R which indicate SAD of first position, SAD of first

position for ILR mode, SAD of second position and SAD of second position for ILR

mode, respectively, and each of them contains four 4x4 SADs.

 To implement INTER, ILR, ILM and ILMR, we duplicate three more “4x4 SAD trees”

as mentioned before. Thus, there are four “Level 0 tree modules” and each of them

is responsible for producing 16x16, 16x8, 8x16 and submode block type RDcosts of

its prediction mode.

Furthermore, to compare costs of two different positions at a time, we duplicate a

“4x4 SAD tree” to process RDcosts of two different positions at the same time. Thus,

two search positions as well as different prediction modes (INTER, ILR, ILM or ILMR)

can be processed simultaneously.

While the SAD tree is forming SADs of different block types, the RDcost of different

block types are also formed. RDcosts of two positions of a block are compared so

that the better position and its RDcost would be saved. The best position and its

RDcost would be change until better RDcost of a position formed.

After the process of “Level 0 tree module” is over, there will be sixteen RDcosts

including of 16x16, 16x8, 8x16 and submode of INTER, ILR, ILM and ILMR prediction

mode. Accompanied with inter-BL mode, inter-BL residual mode, INTER mode of

level 1 and INTER mode of level 2, the twenty modes would be filtered and selected

by a pre-selection module. Before enter into FME process, there are only three

modes left to be processed. The architecture of pre-selection process will be

discussed in detailed in latter section.

 As for the inter-BL prediction (IBL), instead of searching for best position, it simply

uses the MVPs of ILM as its final motion vectors. Thus, it has a quite different

architecture from other prediction modes, as illustrated in Fig. 30. In the following

37

section, we simply call the MVPs of ILM as “mvd_IBLs” since they are the final MV of

IBL mode.

Inter-BL Interpolation Unit

Level 0

reference data mvd_IBLs

PU 0 PU 1 PU 2 PU 3

Control

Up-sampled

base layer

residual

Current

MB data

SATD buffer

SATD_0 SATD_1 SATD_2 SATD_3

SATD_R_0 SATD_R_1 SATD_R_2 SATD_R_3

IBLR costIBL cost

Fig. 30 the architecture of Inter-BL

The architecture of IBL mode includes three parts, Interpolation, PU and SATD

buffer. Since mvd_IBLs are in 1/4 unit, we have to interpolate the reference data

accessed from memory to produce fractional-pels . After interpolation, each PU

calculates its satd and passes to SATD Buffer. SATD buffer then sums them up to

acquire the final cost of IBL.

38

-3 -2 -1 0 1 2 3 4 5 6

0 0 0 0 0 0

-1 -1 -1 -1 -1 -1

FIR FIR FIR FIR FIR

FIR

Integer buffer

Horizontal half pixel buffer

Vertical half pixel buffer

-2 -2 -2 -2 -2 -2

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

Horizontal

FIR X 5

Vertical

FIR X 11

Pixels needed

Fig. 31 Architecture of interpolation unit. FIR is the 6 tap 1D filter.

The interpolation unit is shown in Fig. 31. It loads the a row of reference data cycle

by cycle, which contains 10 adjacent integer points, and immediately interpolates

horizontal half pixels by the five FIR filters. Thus, there will be 11 points being shifted

cycle by cycle in the interpolation buffer. We use the same way to interpolate the

vertical half pixels. After 7 cycles, all the half pixels we need are already ready, then

we can choose two rows from them, each contains a 4x1 row half pixels, and use the

two candidates to interpolate the quarter pixels according to the mvd_IBLs.

39

PE PEPEPE

1 D Hadamard transform

Calculate SAD

for 4 pixels

1
 D

 H
a
d

a
m

a
rd

 t
ra

n
s
fo

rm+

+

+
blk0 blk1 blk2 blk3

blk4 blk5 blk6 blk7

blk8 blk9 blk10 blk11

blk12 blk13 blk14 blk15

(a) (b)

Fig. 32 (a) 4x4 block PU, a PE calculates the difference between reference and Current MB data of one

pixel. (b) IBL processing order of 4x4 blocks, same rows would be process in the same time

The architecture of PU is shown in Fig. 32(a). It contains four processing elements

(PE), 2-D Hadamard transform decomposed by two 1-D Hadamard transform and a

transpose register array, which can continually process four pixels in each cycle

without any latency.

To speed up, we use four 4x4 interpolation units to produce four 4x1 row data,

each row for different 4x4 blocks. The order of processing for different 4x4 blocks is

illustrated in Fig. 32(b). We first interpolate the fractional pixels of the first row of

block 0, block 1, block 2 and block 3 simultaneously. While PUs calculating the SATD

of block 0, block 1, block 2 and block 3, the interpolation unit keeps interpolating the

fractional pixels of block 4, block 5, block 6 and block 7. In this way, SATD buffer can

add only four times and get the cost of IBL and IBLR.

To further reduce the complexity of hardware design, we simplify the mechanism

of IBL when the reference data cannot be found in the local memory. Instead of

fetching memory from external memory, we skip IBL mode when some specific

40

conditions meet. The conditions are as follows:

(((mvdx_IBL[0] - MVPx_INTER)<=threshold) &&

((mvdx_IBL[1] - MVPx_INTER)<=threshold) &&

((mvdx_IBL[15] - MVPx_INTER)<=threshold) &&

((mvdy_IBL[0] - MVPy_INTER)<=threshold) &&

((mvdy_IBL[1] - MVPy_INTER)<=threshold) &&

((mvdy_IBL[15] - MVPy_INTER)<=threshold)) = 1 (4.3)

Where mvdx[i] for i = 0~15 is the vertical elements of mvd_IBLs and mvdy[i] for i =

0~15 is the horizontal elements of mvd_IBLs.

Therefore, all the elements of the differences between mvd_IBLs and MVP_INTER

should be below threshold, otherwise, we skip IBL mode. Thus, in our design, we

check if the conditions mentioned above hold. If the conditions hold, we set the final

cost of IBL extremely large so it won’t be chosen.

Fig. 33 shows the proposed overall architecture design for IME. In level 0, we have

INTER, ILR, ILM, and ILMR mode, and each one has RDcosts of 4 different block type.

With the IBL and IBLR mode, there will be 18 modes from level 0 in IME. We first do

the mode pre-selection of LI’s to eliminate some modes from the 18 modes. And

then, we directly reduce the number of modes to 3 by comparing the RDcosts of the

modes left. Afterwards, we use our proposed fast multi-level mode filtering

algorithm to select 3 best modes from different levels. By the whole mode filtering

process, there will be only 3 modes as the IME output in the end of IME stage.

41

Current MB

1:1 sub-

sample

Level 0 reference

frame

4:1 sub-

sample

Level 1 reference

frame

16:1 sub-

sample

Level 2 reference

frame

mux mux mux

3
1 6
7

1
6

1
5

3
5

1
6 8 4

L
e

v
e

l 0
 S

A
D

 m
o

d
u

le
 0

L
e

v
e

l 1
 S

A
D

 m
o

d
u

le
 0

L
e

v
e

l 1
 S

A
D

 m
o

d
u

le
 1

L
e

v
e

l 1
 S

A
D

 m
o

d
u

le
 7

L
e

v
e

l 2
 S

A
D

 m
o

d
u

le
 0

L
e

v
e

l 2
 S

A
D

 m
o

d
u

le
 1

L
e

v
e

l 2
 S

A
D

 m
o

d
u

le
 3

1

...

L
e

v
e

l 0
 tre

e

m
o

d
u

le

8
x
8

 S
A

D
 tre

e
 0

8
x
8

 S
A

D
 tre

e
 1

8
x
8

 S
A

D
 tre

e
 7

minimum minimum

...

<
<

2

<
<

4

Select 3 modes

39

...

...

...

L
e

v
e

l 0
 S

A
D

 m
o

d
u

le
 1

L
e

v
e

l 0
 tre

e

m
o

d
u

le

L
e

v
e

l 0
 tre

e

m
o

d
u

le

L
e

v
e

l 0
 tre

e

m
o

d
u

le

R I R I

INTER ILR ILM ILMR

Mode pre-selection

1
6

m
o

d
e

s

Up-

sampled

base layer

residual

256x8bits

Inter-BL

module

MVP_ILM

IBL RDcost
IBLR RDcost

IBL

reference

data

Level 0

reference frame

3

m
o

d
e

s

Mode 0 Mode 1 Mode 2

Fig. 33 the proposed PMRME architecture with inter-layer prediction

4.2.3. Search scheduling of IME

 The search scheduling is adapted from the previous work [1]. Fig. 34 shows the

search flow in level 0. For the current MB, we separate it into 16 row packages; while

the reference data are cut into many overlapped row packages (17x31, 17 is because

of the search range [-8, 7] and we search 2 positions in the same time, 0~15 for the

first position and 1~16 for second position. 31 comes from the data of the search

range need, that is 16+8+7=31.). The SRAM will be discussed in 4.5.

 Fig. 36 shows the pipelined search schedule of level 0. The pipeline only takes 143

42

cycles to read all row packages needed during the level 0 searching. In Fig, C0~C15

represent the sixteen 16-pixels current MB rows. R(-8,-8)~R(7,7) indicate the

17-pixels rows from the SRAM according to the search position. Different from

previous work, we search two positions in the same time, thus, the R(-8,-8) row

package also includes the row of (-7,-8) position; that is, the row package of R(-8,-8)

contain the 16-pixels row packages of R’(-8,-8) and R’(-7,-8), where R’(X,Y) represents

a 16-pixels row package of position (X,Y). The row package is shared as illustrated in

Fig. 35.

 In the first cycle, we will get the SAD of [C0, R’(-8,-8)] by “level 0 SAD module 0”

and the SAD of [C0, R’(-7,-8)] by “level 0 SAD module 1”. In the following cycle, we

will get the SAD of [C0, R’(-8,-7)] and {[C1, R’(-8,-7)]+ [C0, R’(-8,-8)]} by “level 0 SAD

module 0”, [C0, R’(-7,-7)] and { [C1, R’(-7,-7)] + [C0, R’(-7,-8)]} by “level 0 SAD module

1” , and so forth. Until the 4th cycle, we can have the SADs of 4x4_00 block, 4x4_01

block, 4x4_02 block, and 4x4_03 block as mentioned in the 4x4 SAD tree in Fig. 26 of

search position (-8,-8) and (-7,-8). Moreover, since the search is fully pipelined, we

can acquire result of every search point in every cycle after the 4th cycle.

Level 0 1:1

resolution

1
6
 p

ix
els

C0

C1

C15

16 pixels

Curr MB

R(-8,-8)

R(-8,-7)

R(-8,7)

R(-8,8)

R(-8,22)

17

3
1

p
ix

els

Search range (-8,-8)~(-8,7)

31

pixels

R(-6,-8)

R(-6,-7)

R(-6,7)

R(-6,8)

R(-6,22)

Search range (-6,-8)~(-6,7)

17

pixels

2

R(6,-8)

R(6,-7)

R(6,7)

R(6,8)

R(6,22)

Search range (6,-8)~(6,7)

17

pixels

...

Fig. 34 the reference control of level 0

43

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C0 C0

Level 0

Fig. 35 parallel data reuse in level 0. A row package is shared between 2 search points

R
e

f A

C0

C1

C2

C3

C4

C5

C6

C7

C8

C10

C11

C12

C13

C14

C15

R
e

f B

R
(-8

,-4
)

R
(-8

,-3
)

R
(-8

,-2
)

R
(-8

,-1
)

R
(-8

,0
)

R
(-8

,1
)

R
(-8

,2
)

R
(-8

,3
)

R
(-8

,-8
)

R
(-8

,-7
)

R
(-8

,-6
)

R
(-8

,-5
)

R
(-8

,4
)

R
(-8

,5
)

R
(-8

,6
)

R
(-8

,7
)

R
(-6

,-4
)

R
(-6

,-3
)

R
(-6

,-2
)

R
(-6

,-1
)

R
(-6

,0
)

R
(-6

,1
)

R
(-6

,2
)

R
(-6

,3
)

R
(-6

,-8
)

R
(-6

,-7
)

R
(-6

,-6
)

R
(-6

,-5
)

R
(-6

,4
)

R
(-6

,5
)

R
(-6

,6
)

R
(-6

,7
)

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

C9

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

B

B

B

B

B

B

B

B

B

B B

B

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

AA

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

AA

A

A

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B B

B

B

B

B

B

B

B

B

B B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B B

R
(6

,-4
)

R
(6

,-3
)

R
(6

,-2
)

R
(6

,-1
)

R
(6

,0
)

R
(6

,1
)

R
(6

,2
)

R
(6

,3
)

R
(6

,-8
)

R
(6

,-7
)

R
(6

,-6
)

R
(6

,-5
)

R
(6

,4
)

R
(6

,5
)

R
(6

,6
)

R
(6

,7
)

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

B

B

B

B

B

B

B

B

B

B B

B

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

AA

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

AA

A

A

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B B

B

B

B

B

B

B

B

B

B B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B B

B

B

B

B

B

B

B

B

B

B B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B B

B

B

B

B

B

B

B

B

B B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B B

R
(-8

,8
)

R
(-8

,9
)

R
(-8

,1
0

)

R
(-8

,1
1

)

R
(-8

,1
2

)

R
(-8

,1
3

)

R
(-8

,1
4

)

R
(-8

,1
5

)

R
(-8

,1
6

)

R
(-8

,1
7

)

R
(-8

,1
8

)

R
(-8

,1
9

)

R
(-8

,2
0

)

R
(-8

,2
1

)

R
(-8

,2
2

)

R
(6

,8
)

R
(6

,9
)

R
(6

,1
0

)

R
(6

,1
1

)

R
(6

,1
2

)

R
(6

,1
3

)

R
(6

,1
4

)

R
(6

,1
5

)

R
(6

,1
6

)

R
(6

,1
7

)

R
(6

,1
8

)

R
(6

,1
9

)

R
(6

,2
0

)

R
(6

,2
1

)

R
(6

,2
2

)

R
(4

,8
)

R
(4

,9
)

R
(4

,1
0

)

R
(4

,1
1

)

R
(4

,1
2

)

R
(4

,1
3

)

R
(4

,1
4

)

R
(4

,1
5

)

R
(4

,1
6

)

R
(4

,1
7

)

R
(4

,1
8

)

R
(4

,1
9

)

R
(4

,2
0

)

R
(4

,2
1

)

R
(4

,2
2

)
1

2

70 1 2 3 4 5 6 7 8 9
1

0

1

1

1

2

1

3

1

4

1

5

1

2

8

1

2

9

1

3

0

1

3

1

1

3

2

1

3

3

1

3

4

1

3

5

1

3

6

1

3

7

1

3

8

1

3

9

1

4

0

1

4

1

1

4

2cycle

Fig. 36 the pipelined search schedule oh level 0

Fig. 37 shows the search scheduling of level 1. Since level 1 has quite larger search

range and, it’s adapted from previous work [1] to accelerate the processing. We

speed up the level 1 searching process by the parallel calculations of different search

positions like we mentioned before. Instead of searching 2 positions at a time, we

here search 8 positions in parallel in level 1. For example, [C0,R(-32,-32)] are capable

of dealing with the partial SAD of search points (-32,-32), (-30,-32), (-28,-32),

(-26,-32), (-24,-32), (-22,-32), (-20,-32), and (-18,-32) at the same time, as illustrated

inFig. 38. Fig. 39 shows the pipelined search schedule of level 1. The whole pipeline

can be done in 131 cycles

44

Level 1 2:1

subsample 8 times

parallelism

8
 p

ix
e

ls

C0

C2

C14

8 pixels

Curr MB

R(-32,-32)

R(-32,-30)

R(-32,30)

R(-32,32)

R(-32,44)

15

pixels

3
9

 p
ix

e
ls

Search range (-32,-32)~(-32,30)

39 pixels

R(-16,-32)

R(-16,-30)

R(-16,30)

R(-16,32)

R(-16,44)

Search range (-2,-32)~(-2,30)

15

pixels

16 pixels

R(16,-32)

R(16,-30)

R(16,30)

R(16,32)

R(16,44)

15

pixels

...

Search range (-30,-32)~(-30,30)

Search range (-28,-32)~(-28,30)

Search range (-26,-32)~(-26,30)

Search range (-24,-32)~(-24,30)

Search range (-22,-32)~(-22,30)

Search range (-20,-32)~(-20,30)

Search range (-18,-32)~(-18,30)

Search range (-16,-32)~(-16,30)

...

Search range (16,-32)~(16,30)

...
Search range (30,-32)~(30,30)

Fig. 37 the search flow of level 1

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C0 C0C0C0C0 C0C0 C0

Level1

Fig. 38 parallel data reuse in level 1

R
e

f A

C0

C2

C4

C6

C8

C10

C12

C14

R
e

f B

R
(-3

2
,-2

4
)

R
(-3

2
,-2

2
)

R
(-3

2
,-2

0
)

R
(-3

2
,-1

8
)

R
(-3

2
,-1

6
)

R
(-3

2
,-3

2
)

R
(-3

2
,-3

0
)

R
(-3

2
,-2

8
)

R
(-3

2
,-2

6
)

R
(-3

2
,2

8
)

R
(-3

2
,3

0
)

R
(-1

6
,-3

2
)

R
(-1

6
,-2

2
)

R
(-1

6
,-2

0
)

R
(-1

6
,-1

8
)

R
(-1

6
,-3

0
)

R
(-1

6
,-2

8
)

R
(-1

6
,-2

6
)

R
(-1

6
,-2

4
)

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B B

0 1 2 3 4 5 6 7 8cycle

R
(-3

2
,3

6
)

R
(-3

2
,3

8
)

R
(-3

2
,4

0
)

R
(-3

2
,4

2
)

R
(-3

2
,4

4
)

R
(-3

2
,3

2
)

R
(-3

2
,3

4
)

... ...

R
(0

,2
8

)

R
(0

,3
0
)

R
(1

6
,-3

2
)

R
(1

6
,-2

2
)

R
(1

6
,-2

0
)

R
(1

6
,-1

8
)

R
(1

6
,-3

0
)

R
(1

6
,-2

8
)

R
(1

6
,-2

6
)

R
(1

6
,-2

4
)

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B B

R
(0

,3
6

)

R
(0

,3
8

)

R
(0

,4
0

)

R
(0

,4
2

)

R
(0

,4
4

)

R
(0

,3
2

)

R
(0

,3
4

)

...

3

1

3

0

3

3

3

2

3

5

3

4

3

7

3

6

3

9

3

8... ...
9

5

9

4

9

7

9

6

9

9

9

8

1

0

1

1

0

0

1

0

3

1

0

2
...

R
(1

6
,2

8
)

R
(1

6
,3

0
)

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B B

R
(1

6
,3

6
)

R
(1

6
,3

8
)

R
(1

6
,4

0
)

R
(1

6
,4

2
)

R
(1

6
,4

4
)

R
(1

6
,3

2
)

R
(1

6
,3

4
)

1

2

7

1

2

6

1

2

9

1

2

8

1

3

1

1

3

0

1

3

3

1

3

2

1

3

4

Fig. 39 the reference control of level 1

As for level 2, the pipelined search schedule and search flow is quite like level 1.

However, the search range for level 2 is even larger, thus, we have to use 32 times

parallelism to speed up the searching. As a result, we set the row package of level2

as a 35 pixels (4+31) row so that every row package can acquire 32 SAD from

different search points. The search scheduling of level 2 is shown in Fig. 40 and the

pipelined search schedule is shown in Fig. 41. In this degree of parallelism, it only

45

takes 134 cycles to finish the pipeline of level 2.

Level 2 4:1

subsample 32 times

parallelism

C0

C4

C8

4 pixels

Curr MB

R(-128,-128)

R(-128,-124)

R(-128,124)

R(-128,128)

R(-128,136)

35

pixels

6
7

 p
ix

e
ls

Search range (-128,-128)~(-128,124)

67 pixels

R(0,-128)

R(0,-124)

R(0,124)

R(0,128)

R(0,136)

Search range (124,-128)~(124,124)

35

pixels

32 pixels

Search range (-4,-128)~(-4,124)

Search range (0,-128)~(0,124)

...

4
 p

ix
e

ls

C12

...

Fig. 40 the search flow of level 2

R
e

f A

C0

C4

C8

C12

R
e

f B

R
(-1

2
8
,-1

2
8

)

R
(-1

2
8

,-1
2

4
)

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

0 1 2 3 4 5 6 7 8cycle

...

6

3

6

2

6

5

6

4

6

7

6

6

6

9

6

8

7

1

7

0... ...

1

2

7

1

2

6

1

2

9

1

2

8

1

3

0

R
(-1

2
8

,-1
2

0
)

R
(-1

2
8

,-1
1

6
)

R
(-1

2
8

,-1
1

2
)

R
(-1

2
8

,-1
0

8
)

R
(-1

2
8

,-1
0

4
)

R
(-1

2
8

,-1
0

0
)

R
(-1

2
8

,-9
6
)

R
(-1

2
8
,-1

2
8

)

R
(-1

2
8

,-1
2

4
)

R
(0

,-1
2

0
)

R
(0

,-1
1

6
)

R
(0

,-1
1

2
)

R
(0

,-1
0

8
)

R
(0

,-1
0

4
)

R
(0

,-1
0

0
)

R
(0

,- 9
6

)

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

...

A

A

A

A

A

A

A

A

R
(-1

2
8

,1
2

0
)

R
(-1

2
8

,1
2

4
)

B

B

BB

B

B

R
(-1

2
8

,1
2

8
)

R
(-1

2
8

,1
3

2
)

R
(-1

2
8

,1
3

6
)

A

A

A

A

A

A

A

A

R
(0

,1
2

0
)

R
(0

,1
2

4
)

B

B

BB

B

B

R
(0

,1
2

8
)

R
(0

,1
3

2
)

R
(0

,1
3

6
)

...

7

2

Fig. 41 the reference control of level 2

Thanks to the parallelism we use in all levels, the pipelined search schedules of all

three levels can finish the in 142 cycles. The corresponding SRAMs of level 0, level 1,

and level 2 will be discussed in 4.5.

4.3. Architecture design of FME

 In this chapter, we propose a new FME architecture design according to the fast

46

algorithm of SPFME [5] as mentioned in previous chapter. Since the only difference

between SPFME and our early fast algorithm is that SPFME searches four more

position around the zero (0, 0) position in 1/4-pel unit, the architecture design of

SPFME could be similar to the one of SIFME. Furthermore, we had proposed an

architecture design for SIFME before. Thus, the architecture of SPFME can be easily

implemented from the design of SIFME.

 In the following section, the overview of FME architecture design for SIFME would

be introduced in 4.3.1. In 4.3.2, the proposed SPFME architecture design would be

discussed in detailed.

4.3.1. Overview of previous FME architecture design

Decide the best candidate for Mode 0

Decide the best candidate for Mode 1

Mode decision (mode 0 & mode 1)

Refine luma

residual

L
u

m
a

p
a

th

L
u

m
a

p
a

th

L
u

m
a

p
a

th

8x8/4x4 DCT 4x4 DCT

Refine Chroma

residual

C
h

ro
m

a

p
a

th

C
h

ro
m

a

p
a

th

L
u

m
a

p
a

th

Fig. 42 function flow of previous FME stage

 Fig. 42 shows our previous FME function flow. It is based on our previous fast

algorithm for FME, which is the SIFME as mentioned before. It can be divided into

two paths: luma path and chroma path. The luma path includes three parts:

candidate decision, mode decision and luma residual generation. Since the previous

47

version of our IME would pass two best modes to FME after the mode filtering

technique, FME only has to calculates two modes, mode0 and mode1 in the luma

path. The chroma path only includes the refinement process to generate chroma

residuals.

FME luma

Mode 0

SRAM

Mode 1

SRAM

MV & mode

buffer

int_mv / final_mv +

fra_mv

final mv

RDcost

residual

Ref. pixels

8x8/4x4

DCT

Ref. pixels

buffer

Residual

buffer

Intra Ref. pixels

Intra residual

Mode

decision

Intra RDcost

Final

residual &

Ref. pixels

Chroma

Ref.

SRAM

.

.

.

External

Memory

FME chroma

Chroma

residual

4x4

DCT

Chroma

Residual

buffer

Chroma

Ref. pixels

Ref. pixels

buffer

Current

MB luma

data

IME

External

Memory

Current

MB

chroma

data

IME

Fig. 43 the previous FME architecture design

 Fig. 43 shows the previous architecture design of FME. The luma path consists of

Mode 0 Reference SRAM, Mode 1 Reference SRAM, the “FME luma” module and the

“8x8/4x4 DCT” module. The chroma path includes the Chroma Reference SRAM, the

“FME chroma” module and the “4x4 DCT” module.

 The luma path contains two reference SRAM. This is because of the previous

subsample strategy from IME stage. In early IME process, there would be two modes

passed to FME after the mode filtering process. In the mode filtering process, the

48

first mode must be the best mode from level 0. The second mode is selected from

the second mode of level 0, the level 1 mode and level 2 mode. Thus, one SRAM

stores luma reference pixels coming from IME stage and the other holds pixels from

external memory.

Fig. 44 the architecture of FME luma module

 Fig. 44 shows the architecture of “FME luma” module. The “FME luma” module

includes “Interpolation unit” module, “PU” module, “Compare” module, “SB_buffer”

module, ”MV COST” module, and “Control” module. The “Interpolation unit” is

responsible for interpolate fractional pixels, including 1/2 pixels and 1/4 pixels.

The “FME luma” module has six PUs due to the six search positions in SIFME. Each

of them is capable of processing a 4x4 block SATD. The SATDs of all six candidates are

sent to the “Compare” module and each of them would be added by its rate (MVcost)

to become RDcost. The “Compare” module compares all six RDcosts and decides the

best candidate. After the best candidate of each mode is chosen, “SB_buffer”

module would compare the RDcost of the two modes and decides the best one to

49

send out. In the end, the refinement step is carried out to get the final residual

according to the outcome of “SB_buffer” module.

The overall flow of FME process is as follows: First, the “MV buffer” buffers the

motion vectors from IME and pass them to “FME luma” module in the same time.

“FME luma“ module calculates SATD of six candidates and selects the best one of all

blocktypes of a mode. After RDcosts of two modes are generated, “FME luma” would

decide the best mode to recalculate residual and reference pixels of the best

candidates of the best mode. The residual is then passed to “8x8/4x4 DCT” module

to do the DCT transform. In the same time, we load reference chroma data to

“Chroma Ref. SRAM” according to the best motion vectors from luma path and

calculate chroma residual and chroma interpolated reference pixels in the “FME

chroma” module.

 In the end of FME stage, the RDcost of FME is compared with the RDcost of intra

mode in “mode decision” module to decide whether current macro block is coded in

INTRA mode or INTER mode.

50

4.3.2. Proposed FME design

4.3.2.1. Overall architecture and primary modules

Decide the best

candidate of Mode 0

Luma path

Decide the best

candidate of Mode 1

Luma path

Decide the best

candidate of Mode 2

Luma path Chroma path

Refine luma residual

Luma path

8x8/4x4 DCT

Refine chroma

residual

Chroma path

4x4 DCT

Fig. 45 the new FME function flow

The new flow is shown in Fig. 45 . The differences between the new flow the

previous one are that the luma path of new flow processes 3 modes and each mode

could be in inter-layer prediction mode. As for the chroma path, the function flow is

the same as the previous one.

 The proposed FME design has some different characteristics from previous one.

First, there are four more points to search than the SIFME algorithm. Thus, we have

to add more “PU” modules to process these ten points in parallel. Moreover, since

we adopt IL prediction in our IME stage, we have to consider features of IL mode in

our FME design, including inter-layer residual mode (ILR), inter-layer motion mode

(ILM), inter-layer motion residual mode (ILMR), and inter-BL mode (IBL).

51

FME luma

Mode 0 and

Mode1

SRAM

Mode 2

SRAM

MV & mode

& IBL_flag &

Motion_flag

& ILR_flag

buffer
int_mv / final_mv +

fra_mv

final mv

RDcost

residual

Ref. pixels

8x8/4x4

DCT

Ref. pixels

buffer

Residual

buffer

Intra Ref. pixels

Intra residual

Mode

decision

Intra RDcost

Final

residual &

Ref. pixels

Chroma

Ref.

SRAM

.

.

.

External

Memory

FME chroma

Chroma

residual

4x4

DCT

Chroma

Residual

buffer

Chroma

Ref. pixels

Ref. pixels

buffer

Current MB

luma data

IME

External

Memory

Current

MB

chroma

data

IME

Up-sampled

residual

MVP_ILM

Fig. 46 the architecture of proposed FME architecture. To process IL mode from IME, we additionally

input MVP_ILMs and up-sampled residual into FME luma module, motion_flag and IBL_flag into the

MV buffer

 Fig. 46 showed the proposed architecture. The difference between the original

one and the new one are few. However, to process the IL mode, we input MVP_ILMs

and up-sampled residual into the new “FME luma” module to calculate RDcosts of

ILM mode, ILR mode, and ILMR mode. Moreover, the MV buffer now buffers motion

vectors of three modes from IME as well as their motion_flags, ILR flags, and IBL flags

to indicate the prediction type of each mode.

 There are two SRAM for FME architecture. One is for mode0 and mode1 since we

choose the best two modes from IME in level 0. The third mode is selected from the

third mode in level 0, level 1 mode, and level 2 mode to as mentioned in chapter 3.

Thus, the “mode 0 and mode 1 SRAM” load pixels from IME stage and the “mode 2

52

SRAM” holds pixels from external memory.

4.3.2.2. FME luma module

Interpolation Unit

4x4

block

PU

4x4

block

PU

4x4

block

PU

4x4

block

PU

4x4

block

PU

4x4

block

PU

4x4

block

PU

4x4

block

PU

4x4

block

PU

4x4

block

PU

Compare

SB buffer

Control

MV_COST

Final

residual

Final

predicted

pixels

Ref frame data Original

MB data

Best

candidate
Best

fractional

MV

Up-sampled

residual

MVP_INTER IMV

MVP_INTER

IBL_flag

MUX

0

ILR_flag MVP_ILM

ILM_flag

Fig. 47 the proposed FME luma hardware

 The SPFME is implemented in our proposed “FME luma” module. Fig. 47 shows

the architecture of the “FME luma” module of SPFME. We add up-sampled residual,

MVP_ILM, “ILR_flag”, ”ILM_flag”, and “IBL_flag” as inputs of “FME luma” module to

process different modes from IME. Moreover, we add four more PUs to respectively

calculate the up left, up right, down left and down right position around zero (0, 0).

These ten PUs will calculate the SATDs of different position, and each SATD will be

combined with its own MVcost to get the RDcosts in the “Compare” module.

The up-sampled residual is input of the PU module through a multiplexer. The

“ILR_flag” indicates that whether the processing mode is ILR mode or not. If the

“ILR_flag” is 1, the processing mode is ILR mode, otherwise, the processing mode is

53

INTER mode. Thus, the multiplexer will output up-sampled residual to PUs if

“ILR_flag” is 1. Otherwise, the multiplexer will output zero so that the SATD of PU

equals the SATD of INTER mode.

The MVP_ILM and MVP_ILM are used to calculate the RDcost when the present

mode is inter-layer motion (ILM) or inter-layer motion residual (ILMR) mode. The

“Control” module will decide whether the ILM mode should be processed. If ILM_flag

equals 1, the “Compare” module will combine the SATD as well as MVcost derived

from MVP_ILM and fractional mvd to get the RDcost. Otherwise, the MVcost will be

derived from MVP_INTER and fractional mvd so that we will have different RDcost.

4.3.2.3. The parallel processing architecture of interpolation unit

Our interpolation unit is adapted from previous work [3]. However, in order to

meet our spec, we have to further increase the speed of interpolation process. Thus,

we need to make interpolation unit capable of processing four times the data than

before.

Fig. 48 shows the architecture of our interpolation unit. Since we add more buffers

in the interpolation unit, the interpolation unit now can buffer four 10-pixel rows

data every cycle. First, we interpolate the horizontal half pixels of each row by five

1-D FIR filters from 10 adjacent integer points. Thus, after the first cycle, there will be

four integer pixel rows and four horizontal half pixel rows in the buffers. Until all the

buffers are full, we can decide the two candidates to interpolate the quarter pixels

according to pred frac mv and the zero (0, 0) position through bilinear filters.

54

-3 -2 -1 0 1 2 3 4 5 6

8 8 8 8 8 8

7 7 7 7 7 7

6 6 6 6 6 6

5 5 5 5 5 5

4 4 4 4 4 4

3 3 3 3 3 3

2 2 2 2 2 2

1 1 1 1 1 1

0 0 0 0 0 0

-1 -1 -1 -1 -1 -1

-2 -2 -2 -2 -2 -2

-3 -3 -3 -3 -3 -3

FIR FIR FIR FIR FIR

Row 3

Row 2

Row 1

Row 0

FIR

FIR

FIR

FIR

FIR

Integer buffer

Horizontal half pixel buffer

Vertical half pixel buffer

X 4

Fig. 48 the interpolation unit architecture

To interpolate four rows pixels cycle by cycle, we have five 1-D vertical FIR filters in

every column to calculate the vertical half pixels. Therefore, there are total

5x4(row)=20 horizontal FIR filters and 5x11(column)=55 vertical FIR filters in the

interpolation unit.

 With the pipeline, our interpolation unit can interpolate four rows data cycle by

cycle. Since the interpolation is designed in 4x4 block unit, the cycle time to

interpolate a block data is associated with the height of block. For example, a 4x4

block need (10/4) + 1=3 cycles for interpolation because it needs 3 cycles to buffer all

the 10 rows pixels, which are a 4x4 block interpolation needs. The cycle time for

interpolation of other blocktype is listed in Table 1.

55

Table 1 cycles for interpolation of different block types

Blocktype 16x16 16x8 8x16 8x8 8x4 4x8 4x4

Cycles 6x4=24 4x4x2=32 6x2x2=24 4x2=8 3x2=6 4 3

4.3.2.4. The skip IBL mode for FME

 When one of the processing modes is IBL or IBLR (inter-BL residual) mode, we skip

the processing of it because of the fact that the IBL mode takes the MVP_ILMs as

mvd_IBLs. And the MVP_ILMs are in 1/4 unit already. Thus, IBL mode doesn’t have to

go through the FME process again.

However, the original design sets the number of modes in FME process to be a

constant value two. Hence, we re-design the “Control” module to process uncertain

number of modes. Fig. 49(a) shows the proposed function flow of FME without IBL or

IBLR mode and proposed function flow of FME with IBL or IBLR mode is shown in Fig.

49(b). In Fig. 49(b),“Fst_IBL”, “Sec_IBL”, and “Thd_IBL” represent IBL flag of the first

mode, the second mode, and the third mode from IME, respectively. There could be

many situations of the processing number of modes, 1 mode at least and 3 modes at

most since that there are at most two inter-BL mode, which are IBL and IBLR.

56

Decide the best

candidate of Mode 0

Luma path

Decide the best

candidate of Mode 1

Luma path

Decide the best

candidate of Mode 2

Luma path

Refine best mode

Fst_IBL==0

Mode 0

processing

Y

N

Sec_IBL==0

Mode 1

processing

Y

N

Thd_IBL==0

Mode 2

processing

Y

N

Refine best

mode

(a) (b)

Fig. 49 (a) the new flow of FME luma path without IBL mode (b) the new flow of FME luma path with

IBL or IBLR mode

Though we skip FME when the mode is IBL or IBLR, we still need their information

in the refine stage. Thus, if the RDcost of IBL mode or ILR mode is the smallest, we

directly take the MVP_ILMs as the final MVs and do the refine to get residual and

predicted pixels.

57

4.4. Reference SRAMs

4.4.1. Level 0 and FME SRAM

16 pixels 7

1
9

p
ix

e
ls

3 3
31

pixels

Reference A

16 pixels

Bank 0 Bank 1 Bank 2

1
8

p
ix

e
ls

3 3
31

pixels

Reference B

Bank 0 Bank 1 Bank 2

1
6

1
5

For FME
Fig. 50 previous IME level 0 SRAM and its bank

The reference SRAM of level 0 in IME is the same as the SRAM of FME. To meet the

needs of processing four rows of FME at a time, we adapt the reference SRAM from

previous work [1]. Fig. 50 shows the previous reference SRAM for level 0. It is cut into

two parts, reference A and reference B, and each part contains three banks. The

reason that the SRAM is cut into two parts is to realize fully pipelined data flow for

motion estimation as illustrated in Fig. 36. Each part has width of 37(pixels) x 8(bits)

= 296 (bits). Reference A has height of 19 words and reference B has height of 18

words. Thus, the whole memory size is 37x37=1369 bytes.

58

0

4

8

12

16

1

5

9

13

17

2

6

10

14

18

3

7

11

15

19(useless)

19

23

27

31

35

20

24

28

32

36

21

25

29

33

37(useless)

22

26

30

34

38(useless)

37 pels 37 pels 37 pels 37 pels

Bank 0 Bank 1 Bank 2 Bank 3

5
 p

ix
e

ls
5

 p
ix

e
ls

Fig. 51 the proposed SRAM for FME and level 0 in IME

 To meet the needs of FME, we divide the original SRAM into four banks. We divide

the SRAM according to their address. The way we divide banks is as follows:

 Bank 0= { {i modulo 4=0, i=0~18},{ (i-19) modulo 4=0, i=19~36} };

Bank 1= { {i modulo 4=1, i=0~18},{ (i-19) modulo 4=1, i=19~36} };

Bank 2= { {i modulo 4=2, i=0~18},{ (i-19) modulo 4=2, i=19~36} };

Bank 3= { {i modulo 4=3, i=0~18},{ (i-19) modulo 4=3, i=19~36} };

where i refers to the index of word in the SRAM. When i=19, we write the row to

both reference A and reference B so that the pipeline can be achieved. In this way,

we can load successive four rows data from the SRAM without confliction.

4.4.2. SRAMs of level 1 and level2

The SRAM of level 1 and level 2 are the same as the previous work [1], as

illustrated in Fig. 52(a) and Fig. 52(b). In Fig. 52(a), we can see that level 1 SRAM has

59

39 pixels in height and 40 pixels in width. The reason for the width to be 40 pixels is

that it can be divided into 5 banks and each of them has 8 pixels in width. Moreover,

8 pixels is the width of a macro block for level 1, thus, we only have to refresh one

bank to process the next macro block and the other four banks can be reused. Level

2 SRAM has 67 pixels in height and 68 pixels in width with 17 banks. The reason for

the width to be 68 pixels is the same as level 1. Alike level 1, we only have to update

one bank for the searching of every macro block.

The only difference from the previous one is that we access longer row package

from both the SRAM of level 1 and level 2. For level 1 we access 15 (8+7) pixels at a

time to do 8 times parallelism of search. For level 2, we load 35 (4+31) pixel to search

32 positions at the same time.

B
a
n
k
 0

B
a
n

k
 1

B
a
n

k
 2

B
a
n

k
 3

B
a
n

k
 4

Reference A

3
2
 p

ix
els

40 pixels (5 banks)

B
a

n
k
 0

B
a
n

k
 1

B
a
n

k
 2

B
a
n

k
 3

B
a
n

k
 4

7

p
ix

els

Reference B

B
a

n
k
 0

B
a

n
k
 2

B
a

n
k
 3

B
a

n
k
 1

6

B
a

n
k
 1 …

0 2 3
1

6
1 …

3

4 4 4 4 4

6
4

 p
ix

els

Reference A

68 pixels (17 banks)

Reference B

(a) (b)

Fig. 52 (a) the SRAM of level 1 (b) the SRAM of level 2

60

4.5. Memory schedule

Memory control

P
ip

e
lin

e
 re

g
is

te
r

Level 0

reference

memory 1

Level 0

reference

memory 0

Level 0

reference

memory 2

W
rite

FME

R
ead

 fo
r IM

E

R
ead

 fo
r F

M
E

Current MB dataCurrent MB data

IME

Level 1

reference

memory

Level 2

reference

memory

R
ead

/w
rite co

n
tro

l

R
ead

/w
rite co

n
tro

l
3 modes

External

bus

Fig. 53 the block diagram of IME and FME

The memory schedule of IME and FME is the same as the previous work [1], as

illustrated in Fig. 53. The difference is that the level 0 SRAM is changed into more

banks as mentioned in previous section.

61

Stage

time

SRAM 0

SRAM 1

SRAM 2

E I F

E

E

I F

I

E I F

E I

F E

0 1 2 3 4 5 ...

...

NN-1N-2N-3

E I FF

E I F

I F

E: load from external memory

I: read by IME

F: read by FME

N: the last cycle of ME process,

depends on the frame size

MB 0

MB 1

MB 2 ... Last MB

Fig. 54 the ping-pong buffer concept of level 0 SRAMs. Stage time here is 450 cycles.

There are 3 identical level0 SRAMs to enable the ping-pong buffer concept. The

change of memory state is shown in Fig. 54. When the first MB finishes IME process,

the SRAM for the first MB read by IME process is now changed to be read by FME

process. In the same time, the original FME SRAM is now changed to load the third

MB data from external memory. As for the SRAM which were loading the second MB

data from external memory is now changed to read by IME process.

In case that the FME stage will have to load to many data from external memory

and cause too much data loading traffic, the author of the previous work set the first

mode from IME to be inside the search range centered on MVP_INTER, while the

other mode might be outside the search range. By our mode filtering algorithm and

acceleration of FME hardware, although we now have 3 modes from the IME stage,

the external memory loading traffic can still be little. Moreover, the adoption of our

efficient algorithm for inter-layer prediction can further prevent the loading traffic of

external memory caused by inter-layer prediction.

62

63

Chapter 5. Simulation and Implementation

results

5.1. Simulation results

In this section, we list several simulation results to demonstrate the performance

of our whole mode filtering process. Since we adopt Li’s algorithm in the C model of

[4], we simply use our previous C model of [4] without mode filtering as the

reference software. The simulation setting is summarize in Table 2

Table 2. simulation settings

Reference software Ref[4]

QP 18,28,38

Frame size in spatial base layer QCIF

Frame size in spatial enhancement layer CIF

Frames to be encoded 150 for Table 3,100 for Table 4

Frame rate 30

Adaptive inter-layer prediction ON

Multi-resolution Table 3:Off Table 4:On

Search range size ±8

GOP 8

Reference frame number 2

Test sequence Akiyo, Coastguard, Football, Foreman, Mobile, News

Table 3 shows performance of different selected number of candidates from IME

after pre-selection scheme [7] without PMRME for CIF as EL and QCIF as BL. When

choosing 3 modes from IME, the RD performance is 4.617% in bit-rate increase and

0.031 dB in PSNR degradation.

64

Table 3. mode selection performance after pre-selection algorithm without PMRME for CIF as EL and

QCIF as BL

Sequence QP 3 modes 4 modes 5modes 6modes

Akiyo 18 PSNR(dB) -0.0872 -0.0695 -0.0713 -0.066

Bit-rate(%) 4.222 3.778 3.556 2.889

28 PSNR(dB) -0.0457 -0.0225 -0.0144 -0.0113

Bit-rate(%) 10.256 10.256 10.256 9.402

38 PSNR(dB) -0.0472 -0.0584 -0.0401 -0.0462

Bit-rate(%) 18.421 15.789 15.789 15.789

Coastguard 18 PSNR(dB) -0.0078 -0.003 -0.0023 -0.0057

Bit-rate(%) 1.394 1.016 0.784 0.580

28 PSNR(dB) -0.0203 -0.0115 -0.0046 -0.003

Bit-rate(%) 1.229 0.850 0.567 0.567

38 PSNR(dB) -0.0245 -0.0228 -0.019 -0.0166

Bit-rate(%) 3.306 3.719 3.719 3.305

Football 18 PSNR(dB) -0.0106 -0.0068 -0.0048 -0.0042

Bit-rate(%) 0.391 0.335 0.307 0.279

28 PSNR(dB) -0.0486 -0.0452 -0.0439 -0.042

Bit-rate(%) 0.493 0.352 0.352 0.352

38 PSNR(dB) -0.022 -0.0202 -0.0266 -0.0274

Bit-rate(%) 1.727 1.727 1.535 1.535

Foreman 18 PSNR(dB) -0.0202 -0.0084 0.0028 0.0064

Bit-rate(%) 2.065 1.630 1.25 1.086

28 PSNR(dB) -0.0513 -0.0391 -0.0362 -0.028

Bit-rate(%) 2.515 2.096 1.886 1.886

38 PSNR(dB) -0.0351 -0.0494 -0.0462 -0.0479

Bit-rate(%) 10.666 10 9.333 9.333

Mobile 18 PSNR(dB) -0.0232 -0.016 -0.0125 -0.0126

Bit-rate(%) 2.049 1.627 1.085 0.844

28 PSNR(dB) -0.0295 -0.0188 -0.0076 -0.0037

Bit-rate(%) 2.900 2.235 1.631 1.389

38 PSNR(dB) -0.0591 -0.0341 -0.0174 -0.0095

Bit-rate(%) 3.611 3.333 2.777 2.777

News 18 PSNR(dB) 0.0265 0.0339 0.0312 0.0382

Bit-rate(%) 2.358 1.768 1.650 1.415

28 PSNR(dB) -0.0615 -0.0433 -0.0364 -0.0396

65

Bit-rate(%) 5.158 5.158 4.761 4.365

38 PSNR(dB) 0.0123 0.0119 0.015 0.0009

Bit-rate(%) 10.344 10.344 9.195 9.195

Average 18 PSNR(dB) -0.020 -0.011 -0.009 -0.007

Bit-rate(%) 2.080 1.692 1.438 1.182

28 PSNR(dB) -0.042 -0.030 -0.023 -0.021

Bit-rate(%) 3.758 3.491 3.242 2.993

38 PSNR(dB) -0.029 -0.028 -0.022 -0.024

Bit-rate(%) 8.012 7.485 7.058 6.989

PSNR(dB) -0.031 -0.023 -0.019 -0.018

Bit-rate(%) 4.617 4.223 3.913 3.721

In Table 4, we list the RD performance of the final mode filtering scheme. The

reference software is the previous work [4] with IL prediction and PMRME without

mode filtering. The average PSNR degradation is 0.106dB and increase of bit-rate is

3.542%. In Fig. 55-Fig. 60 are the R-D curves of different sequences for 100 frames

with QP=18, 28, 38.

Table 4 the RD performance of the final mode filtering with IL prediction and PMRME

QP Akiyo Coastguard Football Foreman Mobile News Average

18 PSNR(dB) -0.0609 -0.010 -0.098 -0.024 -0.014 -0.001 -0.034

Bit-rate(%) 4.416 0.294 -1.454 2.075 2.662 2.280 1.712

28 PSNR(dB) 0.000 -0.019 -0.069 0.042 -0.036 -0.022 -0.017

Bit-rate(%) 0.000 -0.679 -1.091 1.823 3.211 4.117 1.230

38 PSNR(dB) -0.447 -0.063 -0.028 -0.322 -0.035 -0.701 -0.266

Bit-rate(%) 22.222 -2.395 0.259 8.490 3.734 13.793 7.683

Ave. PSNR(dB) -0.106

Bit-rate(%) 3.542

66

Fig. 55 the performance of our mode filtering for akiyo_cif

Fig. 56 the performance of our mode filtering for coastguard_cif

Fig. 57 the performance of our mode filtering for football_cif

0

10

20

30

40

50

0 1000 2000 3000

P
SN

R

bit rate

Akiyo

PMRME_without
_MF

PMRME_with_M
F

0

20

40

60

0 1000 2000 3000

P
SN

R

bit rate

Coastguard

PMRME_without
_MF

PMRME_with_M
F

0

10

20

30

40

50

0 1000 2000 3000

P
SN

R

bit rate

Football

PMRME_without
_MF

PMRME_with_M
F

67

Fig. 58 the performance of our mode filtering for foreman_cif

Fig. 59 the performance of our mode filtering for mobile_cif

Fig. 60 the performance of our mode filtering for news_cif

0

10

20

30

40

50

0 500 1000 1500

P
SN

R

bit rate

Foreman

PMRME_without
_MF

PMRME_with_M
F

0

10

20

30

40

50

0 2000 4000

P
SN

R

bit rate

Mobile

PMRME_without
_MF

PMRME_with_M
F

0

10

20

30

40

50

0 200 400 600 800

P
SN

R

bit rate

News

PMRME_without
_MF

PMRME_with_MF

68

5.2. Hardware implementation results

The proposed architecture is implemented by Verilog and synthesis in UMC 90nm

technology at 142MHz.

Table 5. synthesis result of the PMRME in UMC90

Unit Gate Count in 142 MHz

Level_0 166,085

Level_1 138,350

Level_2 112,558

Others 19,114

Total 436,107

Table 5 lists the synthesis result of IME in our design. It’s almost double the area of

the previous work [2] due to the adoption of IL prediction and the increase of

parallelism for searching. Table 6 shows the comparison between different IME

architecture. Our design includes the IL prediction and multi-resolution while the

gate count is still acceptable. Moreover, our design can achieve

CIF+480p+1080p@60fps since we have double IME hardware to process two MBs at

the same time. The cycle time of our design is also quite short due to the adopted

PMRME design and the parallel calculations of different search points.

The design of [13](a) and [13](b) both have small local SRAM. However, their areas

are both extremely large. In comparison, although the design of [14] has larger

search range, it also needs larger area cost and bigger local memory. Though the

design of [15] has larger search range and smaller gate count, it only has one

reference frame and the encoding block types only include block size over 8x8.

Furthermore, the cycle times of [15] is relatively long compared with ours.

69

Table 6 the comparison of different IME architectures

 [13](a) [13](b) [14] [15] Proposed

technology TSMC .18µm TSMC .18µm TSMC .18µm TSMC .18µm UMC 90nm

Max. Supporting

Resolution

1080p@30fps 1080p@30fps 1080p@30fps 1080p@30fps CIF+480p+1080p@60fps

of reference

frame

2 1 2 1 2

Search algorithm Full search Full search Multi-resolution Sub-sampling Multi-resolution + IL

prediction

Block sizes all all 16x16,16x8,

8x16, 8x8

16x16,16x8,

8x16, 8x8

16x16,16x8, 8x16,

submode

IL prediction N/A N/A N/A N/A

Max Search

Range

H: 64

V: 64

H: 128

V: 64

H: 256

V: 192

H: 192

V: 128

H: 128

V: 128

Gate count(K) 1449 1511 460x2 486 436.1x2

Local

memory(KB)

2.97 1.61 96x2 40 (dual port) 30.384

Frequency(MHz) 130 130 200 200 142

Latancy(cycles) N/A N/A 756 960 128~332(B-frame+IBL)

The implementation results of FME_luma are listed in Table 7. It shows that the

ten PUs occupy the largest area and the IE occupies second largest area due to the

parallelism of 4 successive rows processing.

70

Table 7. synthesis result of the FME_luma module in UMC90

Unit Gate Count in 142 MHz

Control 582

MV_COST 6,560

Interpolation unit(IE) 85,126

4x4 Block PU(*10) 102,560

Compare unit(COMP) 4,011

SB_buffer 10,687

Others 3,695

Total 213,221

The implementation results of FME top are listed in Table 8. It shows that the

FME_luma occupies the largest area.

Table 8. synthesis result of the FME top module in UMC90

Unit Gate Count in 142 MHz

FME_luma 21,3221

luma_ctrl 16,624

chroma 2,030

Chroma ctrl 1,700

MV_buf 10,507

MC_buf 15,788

8x8/4x4 DCT 13,309

DCT_buf 31,492

others 5,478

Total 310,194

71

Table 9 shows the comparison between different FME designs. Our FME design

holds the best frame rate due to double hardware policy. It is also capable of dealing

with two reference frames to enhance the encoding performance. While the gate

count is smaller in the design of [16], it can only deal with block sizes over 8x8.

Moreover, since [16] deal all the block sizes over 8x8, the latency will be fixed as 256

while ours is flexible. As for [17], its latency is too long compared with ours since we

accelerate the FME by process 4 rows in parallel.

Table 9. comparison between different FME design

 [16] [17] Proposed

technology TSMC .13µm Chartard .18 µm

standard

CMOS1P5M

UMC 90nm

Max. Supporting

Resolution

1080p@30fps ,

QFHD@24fps

1080p@30fps CIF+480p+1080p@60fps

of reference

frame

1 N/A 2

Search algorithm SPFME Full search SPFME

Max Search Range H: 64

V: 64

H: 128

V: 64

H: 128

V: 128

Block sizes 16x16, 16x8,

8x16, 8x8

all all

Gate count(K) 134 412 310.2x2

Local memory(KB) N/A 9.1 5.92

Frequency(MHz) 250 200 142

Latancy(cycles/MB) 256 862 Worst:384 /Best:96

Table 10 lists the overall synthesis results of our ME design. The gate count is

847.3 2 (K) because of the double hardware policy we adopt.

72

Table 10. the overall synthesis result of ME

PMRME 436,107

FME_top 310,194

MEM_top 85,462

Curr_buf 15,585

Total 847,348

In design 847,348*2 (for 2 MBs at the same time)

73

74

Chapter 6. Conclusion and future work

The major contributions of this thesis are summarized into following three parts:

First, in Chapter 3, we adopt the pre-selection algorithm by Li’s [7] and propose a

mode filtering scheme for our IME with IL prediction and PMRME concept. The

number of prediction modes is reduced to only 3 by our mode filtering scheme. The

RD performance compared with reference software [4] is 3.542% in bit-rate increase

and 0.106 dB in PSNR degradation.

Second, we propose the hardware architecture for the adopted efficient IL

prediction algorithm [4]. The proposed IL architecture has three advantages: first, the

reference data can be shared between INTER and IL prediction, thus, we can save the

high memory bandwidth caused by different prediction modes. Second, the

inter-layer residual (ILR), inter-layer motion (ILM), and inter-layer motion residual

(ILMR) mode from IL prediction can be processed with INTER in parallel due to the

data sharing scheme. Hence, we can reduce the computing time of IME stage. Last,

the ME module of INTER mode can be shared with IL prediction due to the data

sharing scheme, thus, possible gate count from different prediction modes can be

saved.

Third, in Chapter 4, we propose the architecture for the adopted fast FME

algorithm SPFME according to the previous work [3]. The new architecture is four

times faster than the previous one due to the parallelism of interpolations of

different row data, thus, it can process 3 candidates from IME. To achieve the speed

up of FME, we further cut the SRAM of FME into 4 banks to fetch data from

successive 4 rows.

 In the future work, the area of hardware is still an issue. Each element of our ME

design can still be optimized to get smaller area.

75

Reference

[1] T. Wiegand, G. Sullivan, J. Reichel, H. Schwarz and M. Wien, ISO/IEC

JTC1/SC29/WG11 and ITU-T SG16 Q.6: JVT-X201 ‘Joint Draft ITU-T Rec. H.264 |

ISO/IEC 14496-10/Amd.3 Scalable video coding,’ 24th Meeting, Geneva,

Switzerland, Jun.29-Jul.5, 2007.

[2] C.-C. Lin, Y.-K. Lin and T.-S. Chang, “PMRME: A parallel multi-resolution motion

estimation algorithm and architecture for HDTV sized H.264 video coding,”

Proceedings of IEEE International Conference on Acoustics, Speech and Signal

Proceeding, vol.2, pp.II-385-II-388, April 2007.

[3] Tzu-Yun Kuo, Yu-Kun Lin, and Tian-Sheuan Chang, “SIFME: A single iteration

fractional-pel motion estimation algorithm and architecture for HDTV sized

H.264 video coding,” IEEE Int. Conf. Acout., Speech, Signal Process, vol. 1, pp.

1185–1188, 2007.

[4] Hsiao-Shan Huang, Gwo-Long Li, and Tian-Sheuan Chang, “Low Memory

Bandwidth Prediction Method for H.264/AVC Scalable Video Extension,”

Proceeding of APSIPA Annual Summit and Conference, pp. 294-298, Oct. 2009.

[5] Giwon Kim, Jaemoon Kim, Student Member, IEEE, Chong-Min Kyung, Fellow,

IEEE, “A single-pass fractional motion estimation architecture for H.264 video

codec,” Proceeding of IEEE International Conference on Multimedia and Expo,

pp. 661-666, July 2010

[6] ISO/IEC International Standard 14496-10, Information technology – Coding of

audio-visual objects – Part 10: Advanced Video Coding, third edition, Dec. 2005,

corrected version, March 2006.

[7] Gwo-Long Li and Tian-Sheuan Chang, “An Efficient Mode Pre-Selection

Algorithm for H.264/AVC Scalable Video Extension Fractional Motion Estimation,”

76

IEEE International Conference on Digital Signal Processing, Corfu, Greece, July

2011.

[8] C.-C. Yang, K.-J. Tan, Y.-C. Yang, and J.-I. Guo, "Low complexity fractional motion

estimation with adaptive mode selection for H.264/AVC," Proceeding of IEEE

International Conference on Multimedia and Expo, pp.673-678, July 2010.

[9] C.-C. Lin, Y.-K. Lin, and T.-S. Chang, "A fast algorithm and its architecture for

motion estimation in MPEG-4 AVC/H.264," in Proceeding of Asia Pacific

Conference on Circuits and Systems, pp.1250-1253, December 2006.

[10] H. Nisar and T.-S. Choi, "Fast and efficient fractional pixel motion estimation for

H.264/AVC video coding," in Proceeding of IEEE International Conference on

Image Processing, pp.1561-1564, October 2008.

[11] C.-Y. Kao, C.-L. Wu, and Y.-L. Lin, "A high-performance three-engine architecture

for H.264/AVC fractional motion estimation," IEEE Transactions on Very Large

Scale Integration System, vol.18, no.4, pp.662-666, April 2010

[12] Y.-J. Wang, C.-C. Cheng, and T.-S. Chang, "A fast algorithm and its VLSI

architecture for fractional motion estimation for H.264/MPEG-4/AVC video

coding," IEEE Transactions on Circuits and Systems for Video Technology, vol.17,

no.5, pp.578–583, May 2007.

[13] Chao-Yang Kao and Youn-Long Lin, Senior Member, “A memory-efficient and

highly parallel architecture for variable block Size integer motion estimation in

H.264/AVC,” IEEE Very Large Scale Integration (VLSI) Systems, vol.18, issue.5, pp.

866–874, June 2010.

[14] Xianghu Ji, Chuang Zhu, Huizhu Jia, Xiaodong Xie, Haibin Yin, “A

hardware-efficient architecture for multi-resolution motion estimation using

fully reconfigurable processing element array,” 2011 IEEE International

Conference Multimedia and Expo (ICME),pp. 1–6 , 11-15 July 2011.

77

[15] Z.Y. Liu, Y. Song, M. Shao, S. Li, L.F. Li, Ishiwata, S., Nakagawa, M., Goto, S.,

Ikenaga T., “HDTV 1080P H.264/AVC encoder chip design and performance

analysis,” IEEE J. Solid-State Circuits, vol. 44, no. 2, 816 pp. 594–608, Feb. 2009.

[16] Giwon Kim, Jaemoon Kim, Chong-Min Kyung, “A low cost single-pass fractional

motion estimation architecture using bit clipping for H.264 video codec,” 2010

IEEE International Conference Multimedia and Expo (ICME), pp. 661–666, 19-23

July 2010

[17] Nam Thang Ta, Jim Rim Choi, Jae Hoon Kim, Seon Cheol Hwang, Shi Hye Kim,

“Fully parallel fractional motion estimation for H.264/AVC encoder,” 2009

Intelligent Computing and Intelligent Systems (ICIS) conference, vol. 4, pp.

306–309, 20-22 Nov. 2009

