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Motion Estimation Design for
H.264/MPEG4-AVC Video Coding and Its

Scalable Extension

Student : Ko-Chia Tsao  Advisors : Dr. Tian-Sheuan Chang

Department of Electronics Engineering
Institute of Electronics

National Chiao Tung University

Abstract

Motion estimation is (ME) is the most complex part and the bottle neck of a real time
video encoder. The adoption of inter-layer prediction (IL prediction) in H.264/AVC
SVC extension even increases the computing time and memory bandwidth of ME.
Thus, we adopted the previous data efficient inter-layer prediction algorithm [4] to
save the memory bandwidth. In this thesis, we propose the corresponding hardware
architecture for inter-layer prediction which can process INTER mode and different
inter-layer prediction modes in parallel to save the computing time and memory
bandwidth. Furthermore, in order to reduce the high complexity and computation of
FME, we adopt the Single-Pass Fractional Motion Estimation (SPFME) as our fast FME
algorithm in our FME process. We then propose the corresponding FME hardware
architecture for SPFME according to the previous architecture of FME design [3].
Compared with the previous architecture, our proposed architecture can speed up to
four times faster. There are many prediction modes due to the adoption of inter-layer

prediction and different block types. Thus, to further reduce the complexity and

vi



computing time of FME, we adopt the pre-selection algorithm of Li’s to eliminate
some prediction modes from FME process. However, the Parallel Multi-Resolution
Motion Estimation (PMRME) algorithm [1] is adopted in our IME process. Hence, we
further propose a multi-level mode filtering scheme to select 3 prediction modes
from 3 different search levels. Finally, we integrate the adopted IL prediction, mode
filtering, and the SPFME algorithm. The simulation results shows that the proposed
function flow with mode filtering can achieve average 3.542% of bit-rate increment
and 0.106dB of PSNR degradation in CIF sequence for 2 spatial layers. The
implementation results of the whole ME architecture is also shown. It can support

CIF+480p+1080p video @60 fps under 135MHz.
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Chapter 1. Introduction

1.1. Overview of SVC

In these years, video coding has been developed rapidly in order to satisfy a
variety of applications range from mobile device display to high-definition TV. As a
result, many video coding standards have been standardized to increase
compatibility among different video applications. One of the state-of-the-art video
coding standards called H.264/AVC, which was standardized by Joint Video Team
(JVT), can achieve amazing compression ratio compared with traditional video coding
standards thanks to the adoption of many different optimization techniques.

However, to further satisfy the requirement of end user heterogeneity, an
advanced video coding standard called Scalable Video Coding (SVC) [1], as an
extension of H.264/AVC, has been standardized:

SVC supports three scalabilities, which are temporal, spatial, and quality scalability.
Temporal scalability supports different frame rate by using hierarchical B structure.
Quality scalability is achieved by Fine-Grain Scalability (FGS), Coarse-Grain Scalability
(CGS) or Medium-Grain Scalability. Spatial scalability is supported by varying frame

resolutions.
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Fig. 1 Structure of SVC encoder

The basic structure of SVC encoder with two ‘spatial layers is shown in Fig. 1. The
intra-layer prediction mode is used both_in_base layer (BL) and enhancement layer
(EL). However, for the high correlation between BL and EL, the inter-layer prediction
mode is also supported in EL process by reusing the coding information from BL.

In the first step of SVC encoding process, the original input sequence is
down-sampled N times to fit the size of BL input. Then the BL sequence is encoded
by typical H.264/AVC encoding process. After BL is encoded, the EL takes the
up-sampled encoded information from BL as reference to do the inter-layer

prediction.



1.2. Organization of this thesis

The organization of this thesis is as follows: In chapter 2, we introduce the related
works of this thesis. Afterwards, we proposed a fast mode filtering algorithm for our
IME architecture with the adopted pre-selection algorithm of LI’s work[7]. In chapter
4, we propose our architecture of the adopted efficient inter-layer prediction
algorithm as well as the architecture of the adopted fast algorithm of FME. Then, in
chapter 5, we list several simulation results to demonstrate our proposed mode
filtering algorithm. Some hardware implementation results of our motion estimation

are also listed in chapter5. In the end, a conclusion is given in chapter 6.






Chapter 2. Related work overview
2.1. Parallel multi-resolution motion estimation

(PMRME)[1]
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Fig. 2 illustration of parallel' multi-resolution motion estimation

Parallel multi-resolution motion estimation (PMRME) includes three independent
levels for search, as illustrated in Fig. 2.

Level 2 is the coarsest level. It has the largest SR, [-128,124], and its search center
is located on the original point (0, 0) to enable regular data reuse between successive
MB processing. This level uses the 16:1 sampling for its ratio, thus, the only mode in
level 2 is 16x16.

Level O is the finest level, which has SR for [-8, 7]. We choose the motion vector
predictor (MVP) as its center because it has high probability to be the final MV. In this
level, we do not subsample data, thus, there would be variable block size modes in

level 0. We here take the MVP of the top left block as the MVP_INTER of whole



macro block to simplify the process and compensate the motion vectors of all blocks
after motion estimation is over.

Level 1 has the SR between level 0 and level 2, which is [-32, 30].The search center
of level 1 is also set to be on (0, 0) for the same reason of level 2. This level uses 4:1
sampling and thus will have 16x16, 16x8, 8x16, 8x8 modes to choose from.

These three levels have different characteristics and can properly complement to
each other. Level 0 can find the best matching block of those with low motion. Level
2, on the contrary, is suitable for high motion block but with the coarsest accuracy.
The characteristics of level 1 is among level 0 and level 2, which has smaller SR than
level 2 but more accuracy than level 2.

In level 0, after searching all positions, there will be a motion vector difference
(mvd) which indicates the difference between the final MV and the MVP_INTER.
Thus, we only have to transmit the:MVP_INTER and mvd after the encoding is over so
that the decoder can get the final MV position. As for level 1 and level 2, the final MV
is the mvd relative to zero (0, 0) position.

The advantages of PMRME is that level 1 and level 2 can enhance data reusing by
setting search center on (0, 0).Moreover, level 1 and level 2 have larger search range
and thus can compensate the drawback of level 0 whose search range is too small
to find the best matching block with high motion. With these two large search levels,
the motion vectors can rapidly converge to a proper position thus can compensate

the effects from level 0 MVP, as illustrated in Fig. 3.
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2.2. Data efficient Inter-layer prediction algorithm

Inter-layer (IL) prediction is adopted in SVC to reduce the redundancy existed
between spatial layers. However, L prediction also causes additional memory
bandwidth and computational requirements. We adopt our data efficient IL
prediction algorithm to reduce the data access requirement. IL prediction includes
inter-layer residual (ILR), inter-layer motion (ILM) and inter-BL (IBL) mode and the

combination of them, as illustrated in Fig. 4.
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Fig. 4 different modes of the Inter-Layer prediction (IL prediction)

In our IL prediction algorithm, ILR can be achieved by only additionally subtracting
the up-sampled base layer residual from current coding pixels after current coding

pixels subtracts the reference data, as illustrated in Fig. 5(a)(b).
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| IME \
L L
v

Fig. 5 (a)the SAD calculation of INTER (b) the SAD calculation of ILR

The concept of ILM is to use the up-sampled motion vectors from base layer as the
motion vector predictors (MVPs) of enhancement layer, which is based on the
assumption that the motion vector of base layer could be quite approximate to the

one of enhancement layer.
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Fig. 6 adopted inter-layer motion prediction algorithm for every block in a macro block. The threshold
is set to be 8. The MVP_ILM is based on a 4x4 block, thus, a macro block has sixteen MVP_ILMs.
Our adopted ILM scheme is illustrated in Fig. 6. It takes advantage of the

characteristic that the difference. between, motion vector predictors of ILM

(MVP_ILM) and motion vector predictors’of INTER (MVP_INTER) is highly possible to

be small, so we can apply the search area centered on MVP_INTER to find out best

MV of both INTER mode and ILM mode. Moreover, a simulation was conducted to

find out the most suitable search range so that the MV_ILM would be highly possible

to be within the search range of INTER mode. In this way, INTER mode and ILM mode
can share the same search data to reduce the data access requirement.

According to the results of our previous simulation, we set the search range to be
[-8, 7]. And the condition for the execution of the ILM process is that the difference
between MVP_ILM and MVP_INTER has to be smaller than 8 to assure the final MV
of ILM would be inside the search area of INTER mode. In addition, since the search
range is only [-8, 7], we can further save the computing time and reduce power

consumption.
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Fig. 7 the function:flow of inter-BL mode(IBL)

The IBL scheme is illustrated in Fig. 7. It takes the up-sampled partition from base
layer and uses the same MVP as ILM. Since the IBL mode has high probability to be
selected as best mode in enhancement layer, it doesn’t skip IBL mode to avoid great
performance degradation, instead, it fetches external memory to load reference
search data when the difference between MVP_INTER and MVP_ILM is too large.
Otherwise, IBL reuses the reference search data from INTER prediction to reduce the
data access requirement.

The ILR, ILM, IBL mode can be combined together to further reduce redundancy
between spatial layers. Thus, in this thesis, we will have INTER, ILR, ILM, ILMR, IBL
and IBLR mode after different modes combined together, as illustrated in Fig. 2.4.

The corresponding architecture of our IL prediction will be discussed in detail in
10



chapter 4.

2.3. Fast FME algorithm- Single-pass Fractional Motion

Estimation (SPFME)

SPFME is a one-iteration search method which is used as a fast fractional motion
estimation. SPFME uses the MVP position and the zero (0, 0) position to set a
ten—points search pattern.

The SPFME needs a MVP position to locate the search point of the predicted
fractional motion vector (pred frac mv) and the other four points around it. The way
we adopt to produce the pred frac mv is the same as the way adopted in [5]. In
H.264/AVC, the predicted motion vector (pred mv) is defined as the median of three
neighboring motion vectors. The pred frac mv is extracted from pred mv and the best

integer motion vector (mv),
MVP position=pred frac mv = (pred mv - mv) modulo B (2.1)

where modulo B operation is applied to obtain the fractional component by
removing the integer part. The number “B” is decided by the precision, =4 in 1/4
pel case and B=8 in 1/8 pel case. The basic idea of obtaining the pred frac mv
according to the equation (1) is based on the assumption that most of the best
fractional motion vectors (best frac mv’s) lies on either pred frac mv or its four

neighbors (top, down, left and right).

11
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Fig. 8 Different search patterns are shown. Circle, diamond and triangle denote integer point, search
center and quarter-pel location. (a) is SIFME, proposed by our early algorithm, searches zero position,
MVP position and its four neighbors (up, down, right and left) (b) is SPFME, denoting Kyung’s
algorithm, with four more points around the zero position (up left, up right, down left, and down right)
than (a).

SPFME has a ten-points search pattern, as illustrated in Fig. 8. The pattern includes
the zero (0, 0) position with its four neighbors (up left, up right, down left and down
right) around it, and the MVP position with its four neighbors (top, down, left and
right).

SPFME improves SIFME([3] by adding more points around the zero position and
thus increase hit rate of the best MV, as illustrated in Fig., . Furthermore, it can be
easily implemented by our previous architecture of SIFME algorithm without
increasing computing time because of the parallel calculation between different

search points. The proposed architecture design of SPFME will be discussed in detail

in chapter 4.
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Chapter 3. Mode filtering for IME

3.1. The Matching Criteria

In this section, we use RDcost to decide the final prediction mode. The function of

RDcost is listed as follow:
J=D+A R (3.1)

Where J denotes RDcost, A represents Lagrangian parameter, D is the distortion
between current and reference data, and R refers to rate derived by computing the
difference between selected motion vector (MV) and motion vector predictor (MVP).
In the following section, the "A e R” 'will'be simply called "MVcost”. Thus, the

function of RDcost can be shorten-to:
J =D + MVcost (3.2)

The D term is acquired by calculating sum of absolute differences (SAD) in IME and

sum of absolute transformed differences (SATD) in FME.

3.2. Motivation of mode filtering

In H.264 video coding standard, variable block size (16x16, 16x8, 8x16, 8x8, 8x4,
4x8 and 4x4) motion estimation is supported and every block of every partition size
goes through integer motion estimation (IME) and fractional motion estimation (FME)
processing, as illustrated in Fig. 9. Thus, 41 blocks would go through IME and FME
processing to derive best partition and best motion vectors of a macro block.

Furthermore, the computational complexity is even increased due to the adoption of

14



inter-layer prediction in scalable video coding (SVC), including ILR, ILM and ILMR.
Therefore, there are overall 41x4=164 blocks that would have to be examined by IME

and FME process, as illustrated in Fig. 10.

- 8x8 8x4

16x8
16x16 8x16 | 8x16
16x8 N

IME INTER mode

FME INTER mode

Best mode selection

i

Best mode

4x8 4x4

Fig. 9 mode selection process of H.264
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16x8
8x16
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8x16

4x8

4x4

J

IME INTER mode

IME inter-layer residual
mode

IME inter-layer motion
mode

IME inter-layer motion
residual mode

FME inter-layer

FME inter-layer motion

FME inter-layer motion

FME INTER mode

residual mode

residual mode mode

Best mode selection

i

Best mode

Fig. 10 mode selection for SVC

To reduce the complexity, partition-beyond 8x8 is simplified into submode after
IME stage in H.264/AVC, which is derived from 4x4, 4x8, 8x4 and 8x8 mode, as
illustrated in Fig. 11. Thus, there are only 16x16, 16x8, 8x16, and submode to be
examined in FME stage, namely, 21x4=84 blocks at most and 9x4=36 blocks at least

to examined in FME stage.
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Fig. 11 mode selection for H.264/AVC
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Mode filtering fro FME

L

FME INTER mode

2y

Best mode selection

Best mode

Fig. 12 mode pre-selection for H.264/AVC

Some works [10],[11],[12] have been proposed to speed up the FME process;
however, to further reduce the complexity and computing time of FME processing,
instead of checking all modes from IME, we think of pre-filtering modes from IME to

reduce the number of modes examined in FME. There are some researches [8],[9] on
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mode-filtering for H.264/AVC, as illustrated in Fig. 12. Nevertheless, those
mode-filtering schemes are only for INETR prediction. Since the inter-layer prediction
is adopted in our IME process, we adopt the mode pre-selection scheme for
inter-layer prediction from the previous work [7] to reduce the numbers of modes in
FME stage.

Although we can reduce the numbers of modes from IME by Li’s work, we still
have nearly 8 modes left after the pre-selection process in our IME stage. To further
reduce the computing time of FME as well as considering the hardware
implementation of FME, we try to reduce modes for FME to only 3 modes. Thus,
after introducing the adopted Li's mode pre-selection algorithm, we still need to
handle the remaining modes of inter-layer prediction and the other two modes from
level 1 and level 2 in IME stage before entering into FME stage.

The rest of this chapter will -be as follows. In 3.2, we introduce the mode
pre-selection algorithm by Li. Afterwards, we propose an algorithm to deal with the
rest of IME modes in 3.3 so that there will be only 3 modes left entering into FME
stage. In 3.4, we further take advantage of the characteristics of inter-BL (IBL) and
inter-BL residual (IBLR) mode to reduce the number of mode from IME. Simulation
results of the overall mode filtering algorithm will be shown in Chapter 5 to

demonstrate the efficiency of the whole mode filtering flow.

3.3. Efficient pre-selection algorithm for fractional
motion estimation in H.264/AVC scalable video

extension

3.3.1. Observation and analysis

18



The pre-selection algorithm [7] is based on the observation of the RDcost between
IME and FME of different prediction modes. Li divided these prediction modes into
four types to compare the RDcost of them. They are “INTER versus Inter-layer motion
(Type 1)”, “Inter-layer residual versus Inter-layer motion residual (Type 2)”, “INTER
versus Inter-layer residual (Type 3)”, and “Inter-layer motion versus Inter-layer motion
residual (Type 2)”.Here we only consider the Type 1 and Type 2 algorithm for
convenience. Thus, we will only introduce the Type 1 and Type 2 algorithm in next
section.

Li define the term called “spatial locality” to indicate that if a macro block whose
RDcost of IME is very close to the RDcost of FME. That is, the RDcost won’t change a
lot after the FME process. Li found that most of macro blocks have high spatial
locality for block size of 16x16, 16x8,.and 8x16. Thus, for example, if the IME RDcost
of INTER mode is sufficiently larger than IME RDcost of ILM mode for block size of
16x16, it has high probability that the FME RDcost of INTER mode is larger than the

FME RDcost of ILM mode for block size of 16x16, which can be illustrated as follows:

if(RDCOStIME (INTER14x16) + threshold < RDCOStIME(ILMléle))

=> RDCOStFME(INTERlexle) < RDCOStFME(ILM16X16) (33)

As for submode, it should be treated individually since the spatial locality of it isn’t
obvious. The Type 1 and Type 2 mode pre-selection algorithms are described in the

following section.
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3.3.2. The pre-selection algorithm for inter-layer prediction

Set all Bij=true
Type 1 mode pre-selection
Compute wl
and w2
Y Y
YES | IME(I)16x16+wl IME(1)8x16+w1 YES
<=IME(M)16x16 <=IME(M)8x16
BiLM16x16= NO NO BiLmsx16=
false A A\ false
YES

IME(M)16x16+w1 IME(M)8x16-+w1
<=IME(1)16x16 <=IME(1)8x16

YES

6 ~ NO NO OINTERSx16=
Y ' falsex
IME(1)16x8+w1 IME(l)submode+w2 | YES
<=IME(M)16x8 <=IME(M)submode
' NO Nov
alse
IME(M)16x8+wl IME(M)submode+w2 | YES

<=IME(1)16x8 <=IME(l)submode

NO
NO BINTER_submode=
false

Fig. 13 the Type 1 mode pre-selection algorithm. Theterm “I”, and “M” refers to INTER, and ILM mode,
respectively. IME(1)16x16, IME(1)16x8, IME(1)8x16, and IME(l)submode, are 16x16 RDcost, 16x8 RDcost,
8x16 RDcost, and submode RDcost of IME for INTER mode. IME(M)16x16, IME(M)16x8, IME(M)8x16,
and IME(M)submode, are 16x16 RDcost, 16x8 RDcost, 8x16 RDcost, and submode RDcost of IME for
ILM mode. w1l is the threshold for block size of 16x16, 16x8 and 8x16 ; w2 is the threshold for

submode.

The Type 1 mode pre-selection algorithm is as illustrated in Fig. 13. 6ij indicates
the “mode_flags” of different prediction modes and different block types. The term
“i” refers to the prediction mode and the term “j” represents the block types. In Fig,
the thresholds w1 and w2 are calculated as follows:

1
w= {wl = gZme{mx16,16><8,8><16}|1ME(1)m - IME(M)m|Modee{16x16,16><8,8x16} (34)
w, =0, Mode € {Submode}

where the w1 is the threshold for block size of 16x16, 16x8 and 8x16 because of the
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spatial locality of them. In the begging of the algorithm, we first set 0ij (mode_flag)

true for all i and j. After the Type 1 algorithm, some of the mode_flags would become

false.

Set all Bij=true

Compute wl

and w2

YES

DILR16x16= O
false Y
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Y
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<=IME(R)16x16

IME(R)16x8+w1
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BILMR16x8=
false

NO

A

IME(MR)16x8+w1
<=IME(R)16x8

OiLR16x8=
false

NO

IME(MR)8x16+wl
<=IME(R)8x16

NO DILMR8x16=
A\ false
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NO

OiLrsx16=
false

’J

IME(R)submode+w?2 | YES

<=IME(MR)submode

Ly

NO ILMR_submode=
A\ false

IME(MR)submode+w?2 |YES

<=IME(R)submode

o

NO

OILR_submode=
false

Fig. 14 the Type 1 mode pre-selection algorithm, the term “R”, and “MR” refers to ILR, and ILMR mode,

respectively. IME(R)16x16, IME(R)16x8, IME(R)8x16, and IME(R)submode, are 16x16 RDcost, 16x8
RDcost, 8x16 RDcost, and submode RDcost of IME for ILR mode. IME(MR)16x16, IME(MR)16x8,

IME(MR)8x16, and IME(MR)submode, are 16x16 RDcost, 16x8 RDcost, 8x16 RDcost, and submode

RDcost of IME for ILMR mode. w1 is the threshold for block size of 16x16, 16x8 and 8x16; w2 isthe

threshold for submode.

The Type 2 mode pre-selection algorithm is as illustrated in Fig. 14. The thresholds

here are calculated as follows:

|

)

1
= gZme{16x16.16x8,8><16}|1ME(R)m - IME(MR)m|
0, Mode € {Submode}
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After the Type 1 algorithm and Type 2 algorithm, we can skip modes with false
mode_flags, which are more unlikely to be the best mode after FME stage. Thus, we

can reduce the computing time of FME.

3.4. Proposed mode filtering algorithm for multi-level

After going through Li's mode pre-selection algorithm, there are still nearly 8
modes left in average for level 0 in IME. Except for the rest of level 0 modes, level 1
and level 2 have their own prediction modes, too. Thus, in this section, we focus on
how to process the rest of modes.

To assure that the mode filtering would be accurate enough, we deal with level 0
modes and levell, level 2 modes separately. For level 0, we choose three best modes
from the modes left according to RDcosts performance. Afterwards, we will have 3
modes from level 0, one mode from level 1, and one mode from level 2. To further
reduce the number of modes to only 3, we propose a fast algorithm to select 3
modes among these 5 modes. The way we select the 3 best modes is illustrated in Fig.

15.

Level 0 Level 0  Level 0
Istmode 2nd mode 3rd mode Level 1 Level 2

Compare

Mode 0 Mode 1 Mode 2

Fig. 15 the function of mode filtering between multi-levels

In the algorithm, we set the modes with the smallest RDcost and the second small
RDcost from level 0 as the first and the second candidate for the final modes. As for
the third candidate for final mode, we compare the RDcost of the third mode of level

0, level 1 RDcost, and level 2 RDcost to determine the best as the third candidate for
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the final mode. The reason we keep 2 candidates from level 0 is due to its high
prediction accuracy compared with the other two levels, since the other two levels
use sub-sampled data to calculate RDcosts. In this way, we can quickly decide the
candidates for the final modes in FME as well as make sure that the candidates from

IME are accurate enough.

3.5. Mode filtering by IBL and IBLR mode

IBL mode and IBLR mode are two special modes in inter-layer prediction since they
directly take the up-sampled MVP_ILMs as their final MVs. In this way, IBL and IBLR
will load data according to the final MVs and produce the RDcost without searching.
Moreover, since the MVP_ILMs are in 1/4-pels unit, the RDcosts of IBL and IBLR after
IME stage will be the same as the RDcosts after FME stage. Hence, we don’t need to
put IBL and IBLR modes into FME if either of them is in the modes left after IME stage.
Namely, we can skip IBL or IBLR mode when they are in the last 3 modes from IME,

as illustrated in Fig. 16.

Mode 0=INTER,
Mode 1=ILR,
Mode2=IBL

Check IBL

RDcast of RDcost of RDcost of

mode0 model mode2(IBL)
A A
Compare Rdcost of the 3

modes
I

Best mode
Fig. 16 the function flow of mode filtering by IBL mode
In Fig. 16, mode 2 is IBL mode while the other two is not, thus, we skip mode2 and

directly send the RDcost of mode 2 to the compare block. That is, in this case, we

23



only have to process 2 modes in FME. Moreover, if IBL and IBLR are both in the 3
modes from IME, we can further reduce the number of modes to only 1. With this
IBL skip mechanism, we will have at most 3 modes and at least 1 mode to process in

FME stage.
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Chapter 4. Hardware architecture design

4.1. Design Spec

The desired system specification is described as follows: an SVC encoder works
under 135 MHz clock frequency with 3 quality layers, 3 spatial layers (CIF, SD 480p,
and HD 1080p), and frame rate is set to be 60fps. To achieve this tough specification,
we encode two frames at the same time, thus, two MBs from different frames will be

encoded in parallel.

cIF |288

396 MBs 480
352

SD 480p 1080
1,350 MBs

720

HD 1080p
8,160 MBs

1920

Fig. 17 the three spatial layers for our spec

According to the spec and Fig. 17, we can deduce the needed cycle time as

calculated below:
396 + 1,350 + 8,160 = 9906 MBs (4.1)

Since we encode two frames simultaneously with 60fps, and the frequency is 135

MHz, the cycles for encoding a MB will be:
135M + ((9906 + 2) X 60) = 454 cycles . (4.2)

According the spec, our design is implemented through pipelined stages as shown
in Fig. 18. The time of one pipelined stage is 450 cycles. We have two sets of IME,
inter-layer prediction, mode filtering, FME, intra prediction, Deblocking, and Entropy
coding modules to process two MBs of different frames at the same time. As for the
other modules, we only have one set of them since they are able to process two MBs’

data in time.
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The first stage is the IME process with the IL prediction. Mode filtering is also in
the first stage after the IME and IL prediction. After stage 1 finishes, it pass the best 3
prediction modes and their MVs to the second stage. FME and intra prediction are in
the second stage with the transform, quantization, inverse transform, and inverse
guantization modules. After the second stage, best residuals, best mode, and best
MVs are sent into the third stage. CGS, reconstruction, and deblocking are processed
in the third stage. Finally, in the fourth stage, entropy coding would be processed to
get the final output.
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= Intra prediction 1 21— CGS 2.
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Fig. 18 the pipelined architecture of our H.264/AVC scalable video encoder
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4.2. Architecture design of IME

4.2.1. Overview of PMRME architecture design
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Fig. 19 the PMRME architecture(the number on the line is the number of pixels)

Fig. 19 shows the PMRME [1] architecture and one 16x16 current block data is
shared for the three levels with different sample ratios. After the reference selection
module, “Level X (0, 1 or 2) ME module” calculates distortion then output the
outcome to the “Level X tree module”. The “Level X tree module” is in charge of
summing up SADs to further generate the SADs of different block sizes as well as add
MVCOST to distortion to form RDcost. After costs from three levels are produced, the
best two candidates will be selected to enter into FME process.

The reference selection modules for different levels have different bandwidths due
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to two factors, different search ranges and parallelism of SAD calculation. Level 0
searches one position at a time. Thus, level O reference data inputs 16 pixels to “Level
0 ME module” and allocate the whole 16 pixels to a “Level 0 SAD module”.

Level 1 searches four positions at a time to speed up the processing. Thus, level 1
reference data inputs 8+3=11 pixels to “Level 1 ME module” and allocate to four
“Level 1 SAD modules”, each one has 8 pixels input, as illustrated in Fig. 20.

Level 2 searches sixteen positions at a time to speed up the processing. Thus, level
2 reference data inputs 4+15=19 pixels to “Level 2 ME module” and allocate to

sixteen “Level 2 SAD modules”, each one has 4 pixels input, as illustrated in Fig. 21.

11 pizels

B o 10 Lewvel 1 reference pixels
- “ | after mx

o

4‘5

?‘8
|
1

Level 1 S4D modile O

I | Level L SAD module |

I I Level 1 SAD maodile 2

I | Level 1 SAD module 3

Fig. 20 level 1 reference data allocation for “Level 1 SAD modules”
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F—————— Level 2 $AD module 0 Level 2 reference

pixels after mux
F——————— Level2 SAD module 1
F————————— Level? 34D module 2

Level 2 SaD module 15 fb—m——— ]
Fig. 21 level 2 reference data allocation for “Level 2 SAD modules”
Every level has its own “ME module”. The hierarchy of ME module is: “ME module”
>”SAD module” >”Row ME module”> ”“Primitive module.” In this way, the “SAD
module” and “row ME module” of each level can be shown below. The primitive

module is shown in Fig. 22.
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Fig. 22 the primitive module. RefA and RefB are input for reference data, Cur0~Cur3 is the input for

current block data (the number-on the line'means the number of pixels)
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Fig. 23 “Level 0 Row ME module” (left) and “Level 0 SAD module” (right)

“Level 0 ME module” is shown in Fig. 23. It has one “Level 0 SAD module”, and the

“Level 0 SAD module” has four “level 0 Row ME modules”. Every “level 0 Row ME

30




module” has four “primitive modules” and every “primitive module” can process a

4x4 block data. Thus, a “level 0 ME module” has 16 “primitive modules” in total.
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Y ¥ Y Y Yy Yy Y ¥ Yy Yy Y ¥
A Y
Curr0 8—» SA;‘ 4>EAD
g g =
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" 3
Curr2 g——— SAD A——» SAD =
v
5 B >
¥ o
3
curag—— 4 SAD =
=
o

Curré

Level 1 Row ME module |
i i A l A\

Fig. 24 “Level 1 Row ME module” (left) and “Level 1 SAD module” (right)

\ Y

“Level 1 ME module” is shown-in Fig. 24. It has four “Level 1 SAD modules” to
process four points searching in parallel.“And every “Level 1 SAD module” has two
“level 1 Row ME modules”. Every “level-1 " Row ME module” has two “primitive
modules” and every “primitive module” can process a 4x4 block data. Thus, a “level 1

ME module” has sixteen “primitive modules” in total.
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Fig. 25 “Level 2 Row ME module” (left) and “Level 2 ME module” (right)

“Level 2 ME module” has sixteen “Level 2°SAD modules” to process sixteen points
searching in parallel, and every “Level 2 SAD module” has one “level 2 Row ME
module”. Every “level 2 Row ME ‘module” has one “primitive module” and every
“primitive module” can process a 4x4 block data. Thus, a “Level 2 ME module” has
sixteen “primitive modules” in total.

The SAD tree for level 0 is a “4x4 SAD tree” since level 0 has various combinations
of seven kinds block types and needs the basic unit to compose SADs for all
partitions. As for level 1, a "8x8 SAD tree” is used because level 1 only has block
types with sizes beyond 8x8 due to the sampling ratio. Since level 2 only has block
type of 16x16, it doesn’t need a SAD tree to calculate RDcosts for different block sizes.

The architecture of “4x4 SAD tree” and “8x8 SAD tree” are shown Fig. 26 and Fig. 27.
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Fig. 26 “4x4 SAD tree for level 0”
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Fig. 27 the “8x8 SAD tree for level 1”
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4.2.2. Proposed architecture design for inter-layer prediction
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Fig. 28 shows the proposed inter-layer (IL) prediction architecture design based on
our data efficient inter-layer prediction algorithm. The IL architecture is implemented
in level 0 since the data during RDcost calculation of level 1 and level 2 are already

sub-sampled. Thus, the reference data of IL prediction is loaded from level O

l

|

Best 3 modes

Fig. 28 the proposed inter-layer prediction architecture

reference frame and the current MB data is loaded from 1:1 sub-sample module.

First, to meet our spec, we duplicate a “Level 0 SAD module” to simultaneously
process SAD calculations of two positions. Therefore, we will have two modules,

“Level 0 SAD module 0” and “Level 0 SAD module 1” during the SAD calculation stage
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in level 0.

Moreover, since the only difference between INTER mode and inter-layer residual
(ILR) mode is that ILR needs to additionally subtract up-sampled residual from
current MB data, we input up-sampled residual from base layer into “Level 0 ME
module” and allocates it to both “Level 0 SAD module 0” and “Level 0 SAD module 1”
to additionally get SADs of ILR mode. In this way, a “Level 0 SAD module” can
produce four 4x4 SADs of ILR and four 4x4 SADs of INTER for two position every four
cycles, as illustrated in Fig. 29. In Fig. 29, the upBR represent the up-sampled residual
from base layer and the Curr refers to current MB data. The “RefA” and “RefB”
indicate the reference data of different banks from level 0 SRAM. The SAD module

will calculate both (curr-ref) and (curr-ref-upBR) in the same time.

RefA 4
RefB 4
Reference || v v -vv wvvy -—yvy |
! | \ B Yy A BN vy
selection |
module | | ‘l % $ % ¥
Ref0 4 Refl 4 Ref2 4 Ref3 4
Curr0 4 » SAD
upBRO 4 - E
7 y
Currl 4 SAD
upBR1 4 > l
l Y
Curr2 4 » SAD
upBR2 4 » E
p Y
Curr3 4 » SAD
A |
UPBRS 4 > [F-»> 4x4 SAD_INTER
primitive module |

4x4 SAD_ILR

Fig. 29 the primitive module with inter-layer residual mode. The output will be 4x4 SAD of INTER

mode and 4x4 SAD of inter-layer residual mode.
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After the SADs are produced by “Level 0 ME module”, there will be SAD_O,
SAD_0_R, SAD_1 and SAD_1_R which indicate SAD of first position, SAD of first
position for ILR mode, SAD of second position and SAD of second position for ILR
mode, respectively, and each of them contains four 4x4 SADs.

To implement INTER, ILR, ILM and ILMR, we duplicate three more “4x4 SAD trees”
as mentioned before. Thus, there are four “Level 0 tree modules” and each of them
is responsible for producing 16x16, 16x8, 8x16 and submode block type RDcosts of
its prediction mode.

Furthermore, to compare costs of two different positions at a time, we duplicate a
“4x4 SAD tree” to process RDcosts of two different positions at the same time. Thus,
two search positions as well as different prediction modes (INTER, ILR, ILM or ILMR)
can be processed simultaneously.

While the SAD tree is forming SADs of different block types, the RDcost of different
block types are also formed. RDcosts of two positions of a block are compared so
that the better position and its RDcost would be saved. The best position and its
RDcost would be change until better RDcost of a position formed.

After the process of “Level 0 tree module” is over, there will be sixteen RDcosts
including of 16x16, 16x8, 8x16 and submode of INTER, ILR, ILM and ILMR prediction
mode. Accompanied with inter-BL mode, inter-BL residual mode, INTER mode of
level 1 and INTER mode of level 2, the twenty modes would be filtered and selected
by a pre-selection module. Before enter into FME process, there are only three
modes left to be processed. The architecture of pre-selection process will be
discussed in detailed in latter section.

As for the inter-BL prediction (IBL), instead of searching for best position, it simply
uses the MVPs of ILM as its final motion vectors. Thus, it has a quite different

architecture from other prediction modes, as illustrated in Fig. 30. In the following
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section, we simply call the MVPs of ILM as “mvd_IBLs” since they are the final MV of

IBL mode.
Level O
reference data ~ mvd_IBLs
Control Current
MB data
Up-sampled
. . base layer
Inter-BL Interpolation Unit residual
PUO PU1 PU 2 PU 3
SATD| 0 SATD_1 SATD_2 SATD_3
SATD|R_0 SATD_R_1 | SATD_R 2| SATD_R 3
SATD buffer

g, |

IBL cost« IBLR cost

Fig. 30'the architecture of Inter-BL

The architecture of IBL mode includes three parts, Interpolation, PU and SATD
buffer. Since mvd_IBLs are in 1/4 unit, we have to interpolate the reference data
accessed from memory to produce fractional-pels . After interpolation, each PU
calculates its satd and passes to SATD Buffer. SATD buffer then sums them up to

acquire the final cost of IBL.
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Fig. 31 Architecture of interpolation unit. FIR is the 6 tap 1D filter.

The interpolation unit is shown in Fig. 31. It loads the a row of reference data cycle
by cycle, which contains 10 adjacent integer points, and immediately interpolates
horizontal half pixels by the five FIR filters. Thus, there will be 11 points being shifted
cycle by cycle in the interpolation buffer..We-use the same way to interpolate the
vertical half pixels. After 7 cycles, all the half pixels we need are already ready, then
we can choose two rows from them, each contains a 4x1 row half pixels, and use the

two candidates to interpolate the quarter pixels according to the mvd_IBLs.
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Fig. 32 (a) 4x4 block PU, a PE calculates the difference between reference and Current MB data of one
pixel. (b) IBL processing order of 4x4 blocks, same rows would be process in the same time

The architecture of PU is shown in Fig. 32(a).- It contains four processing elements
(PE), 2-D Hadamard transform decomposed by two 1-D Hadamard transform and a
transpose register array, which can.continually process four pixels in each cycle
without any latency.

To speed up, we use four 4x4 interpolation units to produce four 4x1 row data,
each row for different 4x4 blocks. The order of processing for different 4x4 blocks is
illustrated in Fig. 32(b). We first interpolate the fractional pixels of the first row of
block 0, block 1, block 2 and block 3 simultaneously. While PUs calculating the SATD
of block 0, block 1, block 2 and block 3, the interpolation unit keeps interpolating the
fractional pixels of block 4, block 5, block 6 and block 7. In this way, SATD buffer can
add only four times and get the cost of IBL and IBLR.

To further reduce the complexity of hardware design, we simplify the mechanism
of IBL when the reference data cannot be found in the local memory. Instead of

fetching memory from external memory, we skip IBL mode when some specific
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conditions meet. The conditions are as follows:

(((mvdx_IBL[O] - MVPx_INTER)<=threshold) &&

((mvdx_IBL[1] - MVPx_INTER)<=threshold) &&

((mvdx_IBL[15] - MVPx_INTER)<=threshold) &&
((mvdy_IBL[O] - MVPy INTER)<=threshold) &&

((mvdy_IBL[1] - MVPy_INTER)<=threshold) &&

((mvdy_IBL[15] - MVPy_INTER)<=threshold) ) = 1 (4.3)

Where mvdx[i] for i = 0~15 is the vertical elements of mvd_IBLs and mvdy[i] for i =
0~15 is the horizontal elements of mvd_IBLs.

Therefore, all the elements of the differences between mvd_IBLs and MVP_INTER
should be below threshold, otherwise, we skip IBL mode. Thus, in our design, we
check if the conditions mentioned above hold. If the conditions hold, we set the final
cost of IBL extremely large so it won’t be chosen.

Fig. 33 shows the proposed overall architecture design for IME. In level 0, we have
INTER, ILR, ILM, and ILMR mode, and each one has RDcosts of 4 different block type.
With the IBL and IBLR mode, there will be 18 modes from level 0 in IME. We first do
the mode pre-selection of LI’s to eliminate some modes from the 18 modes. And
then, we directly reduce the number of modes to 3 by comparing the RDcosts of the
modes left. Afterwards, we use our proposed fast multi-level mode filtering
algorithm to select 3 best modes from different levels. By the whole mode filtering

process, there will be only 3 modes as the IME output in the end of IME stage.
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Fig. 33 the proposed PMRME architecture with inter-layer prediction

4.2.3. Search scheduling of IME

The search scheduling is adapted from the previous work [1]. Fig. 34 shows the

search flow in level 0. For the current MB, we separate it into 16 row packages; while

the reference data are cut into many overlapped row packages (17x31, 17 is because

of the search range [-8, 7] and we search 2 positions in the same time, 0~15 for the

first position and 1~16 for second position. 31 comes from the data of the search

range need, that is 16+8+7=31.). The SRAM will be discussed in 4.5.

Fig. 36 shows the pipelined search schedule of level 0. The pipeline only takes 143




cycles to read all row packages needed during the level 0 searching. In Fig, CO~C15
represent the sixteen 16-pixels current MB rows. R(-8,-8)~R(7,7) indicate the
17-pixels rows from the SRAM according to the search position. Different from
previous work, we search two positions in the same time, thus, the R(-8,-8) row
package also includes the row of (-7,-8) position; that is, the row package of R(-8,-8)
contain the 16-pixels row packages of R’(-8,-8) and R’(-7,-8), where R’(X,Y) represents
a 16-pixels row package of position (X,Y). The row package is shared as illustrated in
Fig. 35.

In the first cycle, we will get the SAD of [CO, R’(-8,-8)] by “level 0 SAD module 0”
and the SAD of [CO, R’(-7,-8)] by “level 0 SAD module 1”. In the following cycle, we
will get the SAD of [CO, R’(-8,-7)] and {[C1, R(-8,-7)]+ [CO, R’(-8,-8)]} by “level O SAD
module 0”, [CO, R'(-7,-7)] and { [C1, R’(7,-7)]'+.[CO, R’(-7,-8)]} by “level 0 SAD module
1” , and so forth. Until the 4™ cycle, we can have the SADs of 4x4_00 block, 4x4_01
block, 4x4_02 block, and 4x4_03 block as mentioned in the 4x4 SAD tree in Fig. 26 of
search position (-8,-8) and (-7,-8). Moreover, since the search is fully pipelined, we

can acquire result of every search point in every cycle after the 4t cycle.
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Fig. 34 the reference control of level 0
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Fig. 35 parallel data reuse in level 0. A row package is shared between 2 search points
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Fig. 36 the pipelined search schedule oh level 0

Fig. 37 shows the search scheduling of level 1. Since level 1 has quite larger search

range and, it’s adapted from previous work:[1] to accelerate the processing. We

speed up the level 1 searching process by the parallel calculations of different search

positions like we mentioned before. Instead of searching 2 positions at a time, we

here search 8 positions in parallel in level 1. For example, [CO,R(-32,-32)] are capable

of dealing with the partial SAD of search points (-32,-32), (-30,-32), (-28,-32),

(-26,-32), (-24,-32), (-22,-32), (-20,-32), and (-18,-32) at the same time, as illustrated

inFig. 38. Fig. 39 shows the pipelined search schedule of level 1. The whole pipeline

can be done in 131 cycles
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. 39 the reference control of level 1
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As for level 2, the pipelined search schedule and search flow is quite like level 1.
However, the search range for level 2 is even larger, thus, we have to use 32 times
parallelism to speed up the searching. As a result, we set the row package of level2
as a 35 pixels (4+31) row so that every row package can acquire 32 SAD from
different search points. The search scheduling of level 2 is shown in Fig. 40 and the

pipelined search schedule is shown in Fig. 41. In this degree of parallelism, it only
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takes 134 cycles to finish the pipeline of level 2.
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Thanks to the parallelism we use in all levels, the pipelined search schedules of all
three levels can finish the in 142 cycles. The corresponding SRAMs of level 0, level 1,

and level 2 will be discussed in 4.5.

4.3. Architecture design of FME

In this chapter, we propose a new FME architecture design according to the fast
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algorithm of SPFME [5] as mentioned in previous chapter. Since the only difference
between SPFME and our early fast algorithm is that SPFME searches four more
position around the zero (0, 0) position in 1/4-pel unit, the architecture design of
SPFME could be similar to the one of SIFME. Furthermore, we had proposed an
architecture design for SIFME before. Thus, the architecture of SPFME can be easily
implemented from the design of SIFME.

In the following section, the overview of FME architecture design for SIFME would
be introduced in 4.3.1. In 4.3.2, the proposed SPFME architecture design would be

discussed in detailed.

4.3.1. Overview of previous FME architecture design
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Fig. 42 function flow of previous FME stage

Fig. 42 shows our previous FME function flow. It is based on our previous fast
algorithm for FME, which is the SIFME as mentioned before. It can be divided into
two paths: luma path and chroma path. The luma path includes three parts:

candidate decision, mode decision and luma residual generation. Since the previous
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version of our IME would pass two best modes to FME after the mode filtering

technique, FME only has to calculates two modes, mode0O and model in the luma

path. The chroma path only includes the refinement process to generate chroma

residuals.
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Fig. 43 the previous FME architecture design
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Fig. 43 shows the previous architecture design of FME. The luma path consists of

Mode 0 Reference SRAM, Mode 1 Reference SRAM, the “FME luma” module and the

“8x8/4x4 DCT” module. The chroma path includes the Chroma Reference SRAM, the

“FME chroma” module and the “4x4 DCT” module.

The luma path contains two reference SRAM. This is because of the previous

subsample strategy from IME stage. In early IME process, there would be two modes

passed to FME after the mode filtering process. In the mode filtering process, the
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first mode must be the best mode from level 0. The second mode is selected from
the second mode of level O, the level 1 mode and level 2 mode. Thus, one SRAM
stores luma reference pixels coming from IME stage and the other holds pixels from

external memory.

MVP IMV Mode Ref frame Original MB
data data
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COST Control [

= Interpolation Unit
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Block || Block | [ Block || Block || Block | | Block
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Fig. 44 the architecture of FME luma module

Fig. 44 shows the architecture of “FME luma” module. The “FME luma” module
includes “Interpolation unit” module, “PU” module, “Compare” module, “SB_buffer”
module, "MV COST” module, and “Control” module. The “Interpolation unit” is
responsible for interpolate fractional pixels, including 1/2 pixels and 1/4 pixels.

The “FME luma” module has six PUs due to the six search positions in SIFME. Each
of them is capable of processing a 4x4 block SATD. The SATDs of all six candidates are
sent to the “Compare” module and each of them would be added by its rate (MVcost)
to become RDcost. The “Compare” module compares all six RDcosts and decides the
best candidate. After the best candidate of each mode is chosen, “SB_buffer”

module would compare the RDcost of the two modes and decides the best one to
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send out. In the end, the refinement step is carried out to get the final residual
according to the outcome of “SB_buffer” module.

The overall flow of FME process is as follows: First, the “MV buffer” buffers the
motion vectors from IME and pass them to “FME luma” module in the same time.
“FME luma“ module calculates SATD of six candidates and selects the best one of all
blocktypes of a mode. After RDcosts of two modes are generated, “FME luma” would
decide the best mode to recalculate residual and reference pixels of the best
candidates of the best mode. The residual is then passed to “8x8/4x4 DCT” module
to do the DCT transform. In the same time, we load reference chroma data to
“Chroma Ref. SRAM” according to the best motion vectors from luma path and
calculate chroma residual and chroma interpolated reference pixels in the “FME
chroma” module.

In the end of FME stage, the RDcost of EME is compared with the RDcost of intra
mode in “mode decision” module to decide whether current macro block is coded in

INTRA mode or INTER mode.
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4.3.2. Proposed FME design

4.3.2.1. Overall architecture and primary modules

Decide the best
candidate of Mode 0

Luma path

Decide the best
candidate of Mode 1

Luma path

Decide the best
candidate of Mode 2

Luma

Refine chroma

Refine luma residual :
residual

Luma path Chroma| path

8x8/4x4 DCT ‘ 4x4 DCT

Fig. 45 the new FME function flow

The new flow is shown in Fig. 45 . The differences between the new flow the
previous one are that the luma path of new flow processes 3 modes and each mode
could be in inter-layer prediction mode. As for the chroma path, the function flow is
the same as the previous one.

The proposed FME design has some different characteristics from previous one.
First, there are four more points to search than the SIFME algorithm. Thus, we have
to add more “PU” modules to process these ten points in parallel. Moreover, since
we adopt IL prediction in our IME stage, we have to consider features of IL mode in
our FME design, including inter-layer residual mode (ILR), inter-layer motion mode

(ILM), inter-layer motion residual mode (ILMR), and inter-BL mode (IBL).
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Fig. 46 the architecture of proposed FME architecture. To process IL mode from IME, we additionally
input MVP_ILMs and up-sampled residual into'FME“luma ‘module, motion_flag and IBL_flag into the
MV buffer

Fig. 46 showed the proposed architecture. The difference between the original
one and the new one are few. However, to process the IL mode, we input MVP_ILMs
and up-sampled residual into the new “FME luma” module to calculate RDcosts of
ILM mode, ILR mode, and ILMR mode. Moreover, the MV buffer now buffers motion
vectors of three modes from IME as well as their motion_flags, ILR flags, and IBL flags
to indicate the prediction type of each mode.

There are two SRAM for FME architecture. One is for mode0 and model since we
choose the best two modes from IME in level 0. The third mode is selected from the
third mode in level 0O, level 1 mode, and level 2 mode to as mentioned in chapter 3.

Thus, the “mode 0 and mode 1 SRAM” load pixels from IME stage and the “mode 2
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SRAM” holds pixels from external memory.

4.3.2.2. FME luma module
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Fig. 47 the proposed FME luma hardware

The SPFME is implemented in our proposed “FME luma” module. Fig. 47 shows
the architecture of the “FME luma” module of SPFME. We add up-sampled residual,
MVP_ILM, “ILR_flag”, ”ILM_flag”, and “IBL_flag” as inputs of “FME luma” module to
process different modes from IME. Moreover, we add four more PUs to respectively
calculate the up left, up right, down left and down right position around zero (0, 0).
These ten PUs will calculate the SATDs of different position, and each SATD will be
combined with its own MVcost to get the RDcosts in the “Compare” module.

The up-sampled residual is input of the PU module through a multiplexer. The
“ILR_flag” indicates that whether the processing mode is ILR mode or not. If the

“ILR_flag” is 1, the processing mode is ILR mode, otherwise, the processing mode is
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INTER mode. Thus, the multiplexer will output up-sampled residual to PUs if
“ILR_flag” is 1. Otherwise, the multiplexer will output zero so that the SATD of PU
equals the SATD of INTER mode.

The MVP_ILM and MVP_ILM are used to calculate the RDcost when the present
mode is inter-layer motion (ILM) or inter-layer motion residual (ILMR) mode. The
“Control” module will decide whether the ILM mode should be processed. If ILM_flag
equals 1, the “Compare” module will combine the SATD as well as MVcost derived
from MVP_ILM and fractional mvd to get the RDcost. Otherwise, the MVcost will be

derived from MVP_INTER and fractional mvd so that we will have different RDcost.

4.3.2.3. The parallel processing architecture of interpolation unit

Our interpolation unit is adapted from previous work [3]. However, in order to
meet our spec, we have to furtherincrease the speed of interpolation process. Thus,
we need to make interpolation unit.capable of processing four times the data than
before.

Fig. 48 shows the architecture of our interpolation unit. Since we add more buffers
in the interpolation unit, the interpolation unit now can buffer four 10-pixel rows
data every cycle. First, we interpolate the horizontal half pixels of each row by five
1-D FIR filters from 10 adjacent integer points. Thus, after the first cycle, there will be
four integer pixel rows and four horizontal half pixel rows in the buffers. Until all the
buffers are full, we can decide the two candidates to interpolate the quarter pixels

according to pred frac mv and the zero (0, 0) position through bilinear filters.
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Fig. 48 the interpolation unit architecture

To interpolate four rows pixels cycle by cycle, we have five 1-D vertical FIR filters in
every column to calculate the vertical half pixels. Therefore, there are total
5x4(row)=20 horizontal FIR filters and 5x11(column)=55 vertical FIR filters in the
interpolation unit.

With the pipeline, our interpolation unit can interpolate four rows data cycle by
cycle. Since the interpolation is designed in 4x4 block unit, the cycle time to
interpolate a block data is associated with the height of block. For example, a 4x4
block need (10/4) + 1=3 cycles for interpolation because it needs 3 cycles to buffer all
the 10 rows pixels, which are a 4x4 block interpolation needs. The cycle time for

interpolation of other blocktype is listed in Table 1.
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Table 1 cycles for interpolation of different block types

Blocktype | 16x16 16x8 8x16 8x8 8x4 4x8 4x4

Cycles 6x4=24 | 4x4x2=32 | 6x2x2=24 | 4x2=8 3x2=6 4 3

4.3.2.4. The skip IBL mode for FME

When one of the processing modes is IBL or IBLR (inter-BL residual) mode, we skip
the processing of it because of the fact that the IBL mode takes the MVP_ILMs as
mvd_IBLs. And the MVP_ILMs are in 1/4 unit already. Thus, IBL mode doesn’t have to
go through the FME process again.

However, the original design sets the number of modes in FME process to be a
constant value two. Hence, we re-design-the “Control” module to process uncertain
number of modes. Fig. 49(a) shows the proposed function flow of FME without IBL or
IBLR mode and proposed function flow of FME with IBL or IBLR mode is shown in Fig.
49(b). In Fig. 49(b),“Fst_IBL”, “Sec_IBL”, and “Thd_IBL” represent IBL flag of the first
mode, the second mode, and the third mode from IME, respectively. There could be
many situations of the processing number of modes, 1 mode at least and 3 modes at

most since that there are at most two inter-BL mode, which are IBL and IBLR.

55




Fst_IBL==0

Decide the best -
candidate of Mode 0 Y

Sec_IBL==0
Luma path
N
De-_C|de the best Mode 1
candidate of Mode 1 processing

b4
Luma path
Thd_IBL==0

Decide the best N
candidate of Mode 2 %
Mode 2
Luma path processing
Refine best mode Refine best
mode
(@) (b)

Fig. 49 (a) the new flow of FME luma path without IBL mode (b) the new flow of FME luma path with
IBL or IBLR mode

Though we skip FME when the mode'isIBL or IBLR, we still need their information
in the refine stage. Thus, if the RDcost of IBL mode or ILR mode is the smallest, we
directly take the MVP_ILMs as the final MVs and do the refine to get residual and

predicted pixels.
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4.4. Reference SRAMs

4.4.1. Level 0 and FME SRAM
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Reference A

8 Bank 0 Bank 1 Bank 2 I
- X ©
JD. —
3 31 s
pixels

Reference B

R
—

Bank 0 Bank 1 Bank 2

18
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For FME Pixei

Fig. 50 previous' IME level 0 SRAM and its bank

The reference SRAM of level 0 in IME is the-same as the SRAM of FME. To meet the
needs of processing four rows of FME at a time, we adapt the reference SRAM from
previous work [1]. Fig. 50 shows the previous reference SRAM for level 0. It is cut into
two parts, reference A and reference B, and each part contains three banks. The
reason that the SRAM is cut into two parts is to realize fully pipelined data flow for
motion estimation as illustrated in Fig. 36. Each part has width of 37(pixels) x 8(bits)
= 296 (bits). Reference A has height of 19 words and reference B has height of 18

words. Thus, the whole memory size is 37x37=1369 bytes.
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Fig. 51 the proposed SRAM for FME and level 0 in IME

To meet the needs of FME, we divide the original SRAM into four banks. We divide

the SRAM according to their address. The way we divide banks is as follows:

Bank 0= { {i modulo 4=0,:i=0~18},{ (i-19) modulo 4=0, i=19~36} };
Bank 1= { {i modulo 4=1, i=0~18},{ (i-19) modulo 4=1, i=19~36} };
Bank 2= { {i modulo 4=2, i=0~18},{ (i-19) modulo 4=2, i=19~36} };

Bank 3= { {i modulo 4=3, i=0~18},{ (i-19) modulo 4=3, i=19~36} };

where i refers to the index of word in the SRAM. When i=19, we write the row to
both reference A and reference B so that the pipeline can be achieved. In this way,

we can load successive four rows data from the SRAM without confliction.

4.4.2. SRAMs of level 1 and level2

The SRAM of level 1 and level 2 are the same as the previous work [1], as

illustrated in Fig. 52(a) and Fig. 52(b). In Fig. 52(a), we can see that level 1 SRAM has
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39 pixels in height and 40 pixels in width. The reason for the width to be 40 pixels is
that it can be divided into 5 banks and each of them has 8 pixels in width. Moreover,
8 pixels is the width of a macro block for level 1, thus, we only have to refresh one
bank to process the next macro block and the other four banks can be reused. Level
2 SRAM has 67 pixels in height and 68 pixels in width with 17 banks. The reason for
the width to be 68 pixels is the same as level 1. Alike level 1, we only have to update
one bank for the searching of every macro block.

The only difference from the previous one is that we access longer row package
from both the SRAM of level 1 and level 2. For level 1 we access 15 (8+7) pixels at a
time to do 8 times parallelism of search. For level 2, we load 35 (4+31) pixel to search

32 positions at the same time.
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g. 52 (a) the SRAM of level 1 (b) the SRAM of level 2
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4.5. Memory schedule
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Fig. 53 the block diagram of IME and FME

The memory schedule of IME and FME is the same as the previous work [1], as
illustrated in Fig. 53. The difference is that the level 0 SRAM is changed into more

banks as mentioned in previous section.
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Fig. 54 the ping-pong buffer concept of level 0 SRAMs. Stage time here is 450 cycles.

There are 3 identical level0 SRAMs to enable the ping-pong buffer concept. The
change of memory state is shown in Fig. 54. When the first MB finishes IME process,
the SRAM for the first MB read by IME process is now changed to be read by FME
process. In the same time, the original FME SRAM is now changed to load the third
MB data from external memory. As for the SRAM which were loading the second MB
data from external memory is now changed to read by IME process.

In case that the FME stage will have to load'to many data from external memory
and cause too much data loading traffic, the author of the previous work set the first
mode from IME to be inside the search range centered on MVP_INTER, while the
other mode might be outside the search range. By our mode filtering algorithm and
acceleration of FME hardware, although we now have 3 modes from the IME stage,
the external memory loading traffic can still be little. Moreover, the adoption of our
efficient algorithm for inter-layer prediction can further prevent the loading traffic of

external memory caused by inter-layer prediction.
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Chapter 5. Simulation

results

5.1. Simulation results

and Implementation

In this section, we list several simulation results to demonstrate the performance

of our whole mode filtering process. Since we adopt Li’s algorithm in the C model of

[4], we simply use our previous C model of [4] without mode filtering as the

reference software. The simulation setting is summarize in Table 2

Table 2. simulation settings

Reference software Ref[4]

Qp 18,28,38

Frame size in spatial base layer QCIF

Frame size in spatial enhancementlayer, | CIF

Frames to be encoded 150 for Table 3,100 for Table 4
Frame rate 30

Adaptive inter-layer prediction ON

Multi-resolution Table 3:Off Table 4:0n
Search range size 18

GOP 8

Reference frame number 2

Test sequence

Akiyo, Coastguard, Football, Foreman, Mobile, News

Table 3 shows performance of different selected number of candidates from IME

after pre-selection scheme [7] without PMRME for CIF as EL and QCIF as BL. When

choosing 3 modes from IME, the RD performance is 4.617% in bit-rate increase and

0.031 dB in PSNR degradation.
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Table 3. mode selection performance after pre-selection algorithm without PMRME for CIF as EL and

QCIF as BL
Sequence QP 3 modes | 4 modes 5modes 6modes
Akiyo 18 | PSNR(dB) -0.0872 -0.0695 -0.0713 -0.066
Bit-rate(%) 4.222 3.778 3.556 2.889
28 | PSNR(dB) -0.0457 -0.0225 -0.0144 -0.0113
Bit-rate(%) | 10.256 10.256 10.256 9.402
38 | PSNR(dB) -0.0472 -0.0584 -0.0401 -0.0462
Bit-rate(%) | 18.421 15.789 15.789 15.789
Coastguard | 18 | PSNR(dB) -0.0078 -0.003 -0.0023 -0.0057
Bit-rate(%) 1.394 1.016 0.784 0.580
28 | PSNR(dB) -0.0203 -0.0115 -0.0046 -0.003
Bit-rate(%) 1.229 0.850 0.567 0.567
38 | PSNR(dB) -0.0245 -0.0228 -0.019 -0.0166
Bit-rate(%) 3.306 3.719 3.719 3.305
Football 18 | PSNR(dB) -0.0106 -0.0068 -0.0048 -0.0042
Bit-rate(%) 0.391 0:335 0.307 0.279
28 | PSNR(dB) -0.0486 -0.0452 -0.0439 -0.042
Bit-rate(%) 0.493 0.352 0.352 0.352
38 | PSNR(dB) -0.022 -0.0202 -0.0266 -0.0274
Bit-rate(%) 1.727 1.727 1.535 1.535
Foreman 18 | PSNR(dB) -0.0202 -0.0084 0.0028 0.0064
Bit-rate(%) 2.065 1.630 1.25 1.086
28 | PSNR(dB) -0.0513 -0.0391 -0.0362 -0.028
Bit-rate(%) 2.515 2.096 1.886 1.886
38 | PSNR(dB) -0.0351 -0.0494 -0.0462 -0.0479
Bit-rate(%) | 10.666 10 9.333 9.333
Mobile 18 | PSNR(dB) -0.0232 -0.016 -0.0125 -0.0126
Bit-rate(%) 2.049 1.627 1.085 0.844
28 | PSNR(dB) -0.0295 -0.0188 -0.0076 -0.0037
Bit-rate(%) 2.900 2.235 1.631 1.389
38 | PSNR(dB) -0.0591 -0.0341 -0.0174 -0.0095
Bit-rate(%) 3.611 3.333 2.777 2.777
News 18 | PSNR(dB) 0.0265 0.0339 0.0312 0.0382
Bit-rate(%) 2.358 1.768 1.650 1.415
28 | PSNR(dB) -0.0615 -0.0433 -0.0364 -0.0396
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Bit-rate(%) | 5.158 5.158 4.761 4.365
38 | PSNR(dB) | 0.0123 | 0.0119 0.015 0.0009
Bit-rate(%) | 10.344 10.344 9.195 9.195
Average 18 | PSNR(dB) | -0.020 -0.011 -0.009 -0.007
Bit-rate(%) | 2.080 1.692 1.438 1.182
28 | PSNR(dB) | -0.042 -0.030 -0.023 -0.021
Bit-rate(%) | 3.758 3.491 3.242 2.993

38 | PSNR(dB) | -0.029 -0.028 -0.022 -0.024
Bit-rate(%) | 8.012 7.485 7.058 6.989
PSNR(dB) -0.031 -0.023 -0.019 -0.018
Bit-rate(%) 4.617 4.223 3.913 3.721

In Table 4, we list the RD performance of the final mode filtering scheme. The
reference software is the previous work [4] with IL prediction and PMRME without
mode filtering. The average PSNR degradation is 0.106dB and increase of bit-rate is
3.542%. In Fig. 55-Fig. 60 are the R-D curves of different sequences for 100 frames
with QP=18, 28, 38.

Table 4 the RD performance of the finalmode filtering with IL prediction and PMRME

QP Akiyo Coastguard | Football Foreman Mobile News Average
18 | PSNR(B) | 00609 |-0.010 |-0.098--1-0.024 |-0.014 |-0.001 |-0.034
Bit-rate(%) | 4 416 0.294 -1.454 2.075 2.662 2.280 1.712
28 | PSNR(dB) | 0,000 -0.019  |-0.069 | 0.042 -0.036 [-0.022 |-0.017
Bit-rate(%) | 0.000 -0.679 |-1.091 |1.823 3.211 4.117 1.230
38 | PSNR(dB) 1 -0.447 | 0063 |-0.028 |-0322 [-0035 |-0.701 | -0.266
Bit-rate(%) | 22.222  [-2.395 | 0.259 8.490 3.734 13.793 | 7.683

Ave. | PSNR(dB) -0.106

Bit-rate(%) 3.542
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5.2. Hardware implementation results

The proposed architecture is implemented by Verilog and synthesis in UMC 90nm

technology at 142MHz.

Table 5. synthesis result of the PMRME in UMC90

Unit Gate Count in 142 MHz
Level_O 166,085

Level_1 138,350

Level 2 112,558

Others 19,114

Total 436,107

Table 5 lists the synthesis result of IME in.our design. It’s almost double the area of
the previous work [2] due to the adoption of IL prediction and the increase of
parallelism for searching. Table 6 shows- the comparison between different IME
architecture. Our design includes the IL prediction and multi-resolution while the
gate count is still acceptable. Moreover, our design can achieve
CIF+480p+1080p@60fps since we have double IME hardware to process two MBs at
the same time. The cycle time of our design is also quite short due to the adopted
PMRME design and the parallel calculations of different search points.

The design of [13](a) and [13](b) both have small local SRAM. However, their areas
are both extremely large. In comparison, although the design of [14] has larger
search range, it also needs larger area cost and bigger local memory. Though the
design of [15] has larger search range and smaller gate count, it only has one
reference frame and the encoding block types only include block size over 8x8.

Furthermore, the cycle times of [15] is relatively long compared with ours.
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Table 6 the comparison of different IME architectures
[13](a) [13](b) [14] [15] Proposed
technology TSMC .18um TSMC .18um TSMC .18um TSMC .18um UMC 90nm
Max. Supporting 1080p@30fps 1080p@30fps 1080p@30fps 1080p@30fps CIF+480p+1080p@60fps
Resolution
# of reference 2 1 2 1 2
frame
Search algorithm Full search Full search Multi-resolution Sub-sampling Multi-resolution + IL
prediction
Block sizes all all 16x16,16x8, 16x16,16x8, 16x16,16x8, 8x16,
8x16, 8x8 8x16, 8x8 submode
IL prediction N/A N/A N/A N/A Vv
Max Search H:+64 H:+128 H:+256 H:+192 H:+128
Range V:+64 V:+64 V:+192 V:+128 V:+128
Gate count(K) 1449 1511 460x2 486 436.1x2
Local 2.97 1.61 96x2 40 (dual port) 30.384
memory(KB)
Frequency(MHz) 130 130 200 200 142
Latancy(cycles) N/A N/A 756 960 128~332(B-frame+IBL)

The implementation results of FME _luma are listed in Table 7. It shows that the

ten PUs occupy the largest area and the IE occupies second largest area due to the

parallelism of 4 successive rows processing.
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Table 7. synthesis result of the FME_luma module in UMC90

Unit Gate Count in 142 MHz
Control 582
MV_COST 6,560

Interpolation unit(IE) | 85,126

4x4 Block PU(*10) 102,560

Compare unit(COMP) | 4,011

SB_buffer 10,687
Others 3,695
Total 213,221

The implementation results of FME top are listed in Table 8. It shows that the

FME_luma occupies the largest area:

Table 8. synthesis result.of the FME top module in UMC90

Unit Gate Count.in-142 MHz

FME_luma 21,3221

luma_ctrl 16,624

chroma 2,030

Chroma ctrl 1,700

MV_buf 10,507

MC_buf 15,788

8x8/4x4 DCT | 13,309

DCT_buf 31,492
others 5,478
Total 310,194
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Table 9 shows the comparison between different FME designs. Our FME design
holds the best frame rate due to double hardware policy. It is also capable of dealing
with two reference frames to enhance the encoding performance. While the gate
count is smaller in the design of [16], it can only deal with block sizes over 8x8.
Moreover, since [16] deal all the block sizes over 8x8, the latency will be fixed as 256
while ours is flexible. As for [17], its latency is too long compared with ours since we

accelerate the FME by process 4 rows in parallel.

Table 9. comparison between different FME design

[16] [17] Proposed
technology TSMC .13um Chartard .18 um UMC 90nm
standard
CMOS1P5M
Max. Supporting 1080p@30fps,; 1080p@30fps CIF+480p+1080p@60fps
Resolution QFHD@24fps
# of reference 1 N/A 2
frame
Search algorithm SPFME Full search SPFME
Max Search Range H:+64 H:+128 H:+128
V:+64 V:+64 V:+128
Block sizes 16x16, 16x8, all all
8x16, 8x8
Gate count(K) 134 412 310.2x2
Local memory(KB) N/A 9.1 5.92
Frequency(MHz) 250 200 142
Latancy(cycles/MB) 256 862 Worst:384 /Best:96

Table 10 lists the overall synthesis results of our ME design. The gate count is

847.3%2 (K) because of the double hardware policy we adopt.
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Table 10. the overall synthesis result of ME

PMRME 436,107

FME_top 310,194

MEM_top 85,462

Curr_buf 15,585
Total 847,348
In design 847,348*2 (for 2 MBs at the same time)
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Chapter 6. Conclusion and future work

The major contributions of this thesis are summarized into following three parts:

First, in Chapter 3, we adopt the pre-selection algorithm by Li’s [7] and propose a
mode filtering scheme for our IME with IL prediction and PMRME concept. The
number of prediction modes is reduced to only 3 by our mode filtering scheme. The
RD performance compared with reference software [4] is 3.542% in bit-rate increase
and 0.106 dB in PSNR degradation.

Second, we propose the hardware architecture for the adopted efficient IL
prediction algorithm [4]. The proposed IL architecture has three advantages: first, the
reference data can be shared between INTER and IL prediction, thus, we can save the
high memory bandwidth caused by..different prediction modes. Second, the
inter-layer residual (ILR), inter-layer motion (ILM), and inter-layer motion residual
(ILMR) mode from IL prediction can be processed with INTER in parallel due to the
data sharing scheme. Hence, we can reduce the computing time of IME stage. Last,
the ME module of INTER mode can be shared with IL prediction due to the data
sharing scheme, thus, possible gate count from different prediction modes can be
saved.

Third, in Chapter 4, we propose the architecture for the adopted fast FME
algorithm SPFME according to the previous work [3]. The new architecture is four
times faster than the previous one due to the parallelism of interpolations of
different row data, thus, it can process 3 candidates from IME. To achieve the speed
up of FME, we further cut the SRAM of FME into 4 banks to fetch data from
successive 4 rows.

In the future work, the area of hardware is still an issue. Each element of our ME

design can still be optimized to get smaller area.
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