

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

適用於行動式全球互通微波存取通訊協定

之 2.37Gb/s LDPC-CC編解碼器設計

A 2.37Gb/s Rate-Compatible LDPC-CC Codec Design

for Mobile WiMAX Applications

研 究 生：林玉祥

指導教授：張錫嘉 教授

中 華 民 國 一 百 年 八 月

適用於行動式全球互通微波存取通訊協定

之 2.37Gb/s LDPC-CC編解碼器設計

A 2.37Gb/s Rate-Compatible LDPC-CC Codec Design

for Mobile WiMAX Applications

研 究 生：林玉祥 Student：Yu-Hsiang Lin

指導教授：張錫嘉 博士 Advisor：Dr. Hsie-Chia Chang

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

A Thesis

Submitted to Department of Electronics Engineering

& Institute of Electronics

College of Electrical Engineering and Computer Science

National Chiao-Tung University

In partial Fulfillment of the Requirements

For the Degree of Master

In

Electronics Engineering

Aug. 2011

Hsinchu, Taiwan, Republic of China

中 華 民 國 一 百 年 八 月

適用於行動式全球互通微波存取通訊協定

之 2.37Gb/s LDPC-CC編解碼器設計

學生：林玉祥 指導教授：張錫嘉 教授

國立交通大學

電子工程學系 電子研究所碩士班

摘 要

行動通訊系統中，通道編解碼模組往往扮演關鍵角色，不僅要達到高吞吐量的傳輸

需求，也必須降低伴隨而來的功率消耗，以提供具有技術競爭力的解決方案。低密度奇

偶校驗區塊碼(LDPC block codes，簡稱 LDPC-BCs)因具有優越的錯誤更正能力與適合平

行運算之架構而廣受矚目，然而，此解碼器在實作時面臨高繞線複雜度的困難，在設計

支援多碼率之 LDPC-BCs也面臨許多挑戰。低密度奇偶校驗迴旋碼（LDPC convolutional

codes，簡稱 LDPC-CCs）於 1999年提出，此碼可對任意長度的資料區塊做編解碼，且

易於經由穿孔(puncturing)機制提供彈性的碼率。相較於傳統 LDPC-BCs，LDPC-CCs具

有簡單的編碼電路及較低的繞線複雜度，相較於渦輪碼(Turbo codes)，更易於實現高速

解碼器架構並且降低功率消耗。

近來，IEEE制定新一代無線寬頻技術標準 802.16m，又稱為行動式全球互通微波存

取通訊協定(Mobile WiMAX)，提供更高的資料傳輸速率和較低的延遲以滿足下世代行

動通訊，雖然 LDPC-CCs具有符合未來傳輸需求的潛力，但目前卻因解碼延遲過高、解

碼吞吐量偏低、功率消耗過高等困難而尚未被通訊標準採用。據此，本作品提出演算法、

節點、位元等三個層級的最佳化架構來提升吞吐量、減少硬體花費及降低解碼延遲時

間，並藉由混合分割式 FIFO架構來降低功率消耗。此論文使用 Panasonic針對 802.16m

標準所提出之提案中的規格來實作，一個碼率相容 (rate compatible)週期為 3 之

LDPC-CC。演算法層級最佳化使用即時變數節點激活並隱藏通道值之解碼排程

(on-demand variable node activation scheduling with concealing channel values)可加快一倍

的解碼收斂速度，並省去 17%的暫存器使用量，節點層級最佳化使用暫存器摺疊法

(Folding architecture)可將平行度提高到 12，並同時降低解碼延遲 12倍，經由時序重排

(Retiming)進一步減少所需位元儲存量，最後使用混合分割式 FIFO (Hybrid-partitioned

FIFO)來實現同時具有高吞吐量且低功率消耗之解碼器架構。

經由 UMC 90 nm製程下線，在 1.2V電壓下晶片實際量測到 198 MHz，資料吞吐量

高達 2.37 Gbps，解碼器共包含 5個處理器，在整體晶片面積 2.7mm
2中僅佔 2.24 mm

2，

功率消耗為 284mW，能源效率為 0.024 nJ/bit/proc。所提出的解碼器在各方面都具有極

高的競爭力，相當適合於未來使用手持行動裝置的高速網路傳輸需求。

A 2.37Gb/s Rate-Compatible LDPC-CC Codec

Design for Mobile WiMAX Applications

Student: Yu-Hsiang Lin Advisor: Hsie-Chia Chang

Department of Electronics Engineering

Institute of Electronics

National Chiao Tung University

Abstract

In mobile communication system, channel coding modules play an important role. To

provide a highly competitive solution, both high data-transmission rate and low power

consumption are required. LDPC block codes (LDPC-BCs) has attracted great interest

recently due to its capacity-approaching performance and inherent parallel architecture.

However, the problem of high routing complexity becomes a design challenge in decoder

implementations. The complexity of designing multiple code-rates LDPC-BCs is increased

because of different parity-check matrices are needed to be jointly considered. Low-density

parity-check convolutional codes (LDPC-CCs) were introduced in 1999, which are not only

capable of handling variable length of data frame but also possess flexible code-rates.

Compared with LDPC-BCs, LDPC-CCs enjoy the advantages of simple encoding circuitry as

well as low routing complexity. Compared to the Turbo decoder, the LDPC-CC decoder is

more suitable for highly-parallel implementation and low-power architecture.

Recently, IEEE 802.16m standards, also known as Mobile WiMAX Release 2.0, are

developed in order to provide higher data rates and lower latency for next generation mobile

communication systems. Although the LDPC-CC has the potential to meet the high-speed

requirements for the next generation communication systems, it rarely appear in system

specification for its bottlenecks of the long decoding latency, high power consumption, and

low-to-moderate decoding throughput. Therefore, our work proposed three level optimization

techniques, including algorithm-level, node-level and bit-level, to increase decoding

throughput, lessen hardware costs, and reduce decoding latency. In particular, a

hybrid-partitioned FIFO structure is presented to further reduce power consumption. We

adopted the specification of rate-compatible (491, 3, 6) LDPC-CC with period of 3 proposed

by Panasonic for the IEEE 802.16m standards. The on-demand variable node activation

scheduling with concealing channel values is proposed for algorithm-level optimization. This

technique not only allows twice faster decoding convergence speed than the standard

decoding schedule, but also saves 17% message storage requirements. The node-level

optimization enables the parallelism of 12, thus the throughput becomes twelve multiplying

with clock frequency. In the meantime, the decoding latency is reduced by approximately 12

times. Also, the bit level optimization is utilized to retime the variable nodes in order to

achieve higher clock frequency and around a 20% storage reduction.

Fabricated in UMC 90nm 1P9M CMOS process, the proposed LDPC-CC decoder chip

could achieve maximum 2.37 Gb/s under 198MHz operating frequency. The decoder

containing 5 processors only occupies an area of 2.24 mm 2 within the core area of total

2.37×1.14 mm
2
. It draws 284mW of power with an energy efficiency of 0.024nJ/bit/proc.

Besides, the power can be scaled down to 90.2mW at 0.8V supply with 1.58Gb/s information

throughput. In conclusions, our proposed LDPC-CC decoder outperforms state-of-the-art

designs and is suitable for the high-speed requirements of next-generation handheld mobile

devices.

誌 謝

研究所是收穫豐富的兩年，首先要非常謝謝錫嘉老師，總是非常用心地幫我們解決

研究上遇到的困難，在生活各方面也都能適時給予協助，感謝老師提供這麼好的研究環

境以及一路上的照顧與包容，讓我在知識和態度上都學習了許多也成長許多。謝謝

OASIS 實驗室和 OCEAN 的每一位夥伴，有了你們的一起 meeting、聊天、吃飯、煮火

鍋使得我的生活充滿歡樂，在未來的某天如果回想起來我一定會十分懷念的。特別要謝

謝的是陳志龍學長，從做專題到研究所這段期間受到學長的照顧太多了，不管什麼困難

都可以找學長討論，很高興也覺得非常幸運有個這麼好的直屬學長，如果沒有學長的幫

忙和指導，我想我無法順利地完成這篇論文。感謝博班學長小肥、義閔、修齊、國光、

佳龍、欣儒、其橫、振揚和渠的幫忙，謝謝學弟妹祐子、雞皮、奕勳、皮皮，跟你們相

處的生活真的太有趣了，感謝 98一起奮鬥 6年的夥伴小朱哥、許智翔、vfo、印度、士

家和大姊頭，特別是受傷時候對我的幫忙與照顧，以及無法在這邊一一感謝的人，你們

都在我生命中扮演了重要的角色。

 最後要很真心的感謝我們家人，謝謝爸媽的一路辛苦栽培，讓我可以順利地完成學

業，你們的支持是我往前努力的最大動力，謝謝你們讓我有如此甜蜜的回憶。

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Organization . 2

2 Background 4

2.1 Low-Density Parity-Check Block Codes . 4

2.2 Iterative Decoding Algorithm . 5

3 Low-Density Parity-Check Convolutional Codes 9

3.1 Definition and Code Constructions . 9

3.2 LDPC Convolutional Codes for Mobile WiMAX 11

3.3 Encoding of LDPC Convolutional Codes 13

3.4 Decoding of LDPC Convolutional Codes 15

4 Proposed Techniques for LDPC Convolutional Codes 18

4.1 Algorithm-Level Optimization . 19

4.1.1 Flooding Scheduling . 19

4.1.2 On-Demand Variable Node Activation (OVA) Scheduling 22

4.1.3 OVA Scheduling with Concealing Channel Values 26

4.2 Node-Level Optimization . 29

4.2.1 Folding Architecture . 29

4.3 Bit-Level Optimization . 34

4.3.1 Retiming Technique . 34

4.4 Hybrid-Partitioned FIFO . 36

i

5 Implementation Result 40

5.1 Testing Consideration . 41

5.2 Chip Measurement Results . 43

5.3 Summary and Comparison . 44

6 Conclusion and Future Work 49

6.1 Conclusion . 49

6.2 Future Work . 50

A Termination of LDPC Convolutional Codes 51

B Tail-Biting LDPC Convolutional Codes 54

Bibliography 61

ii

List of Figures

1.1 Block diagram of channel coding procedure in the IEEE 802.16m transmit

chain [1]. 2

2.1 The Tanner graph of the parity check matrix given in (2.1). 5

2.2 Message passing of check node. 7

2.3 Message passing of variable node. 8

3.1 A rate 1/2 systematic LDPC convolutional code encoder. 15

3.2 Trellis diagram and the illustration of pipeline decoding. 17

4.1 Conventional decoder architecture. 20

4.2 Simulation results under different number of iterations. 20

4.3 The dependence of the BER on the number of processors I at different SNRs. 21

4.4 BER performance under different code-rates with 50 iterations using flood-

ing schedule. 21

4.5 Processor architecture of on-demand variable node activation scheduling. . 22

4.6 The illustration of on-demand variable node activation scheduling. 23

4.7 BER performance of on-demand variable node activation scheduling. . . . 24

4.8 The dependence of the BER on the number of processors I at different

SNRs using on-demand variable node activation schedule. 25

4.9 BER performance under different code-rates using on-demand variable node

activation schedule. 25

4.10 The illustration of on-demand variable node activation scheduling with

concealing channel values. 26

4.11 Processor architecture of on-demand variable node activation scheduling

with concealing channel values. 26

iii

4.12 Fixed-point simulation results using OVA scheduling with 5 iterations. . . 28

4.13 BER performance of log-BP algorithm (floating-point) and our proposed

scheduling in normalized min-sum algorithm with scaling factor 0.875 (fixed-

point (6,2)) under AWGN channel. 28

4.14 Folding technique (only information part in shown). 30

4.15 Parity-check matrix of (14, 3, 6) LDPC convolutional code. 31

4.16 Performance of the (491, 3, 6) LDPC convolutional code and the associated

LDPC convolutional codes with different folding factors. 33

4.17 Retiming of sub-VNUs. 34

4.18 Processor architecture with retimed sub-VNUs. 35

4.19 Finding longest continuous sectors in each FIFO. 36

4.20 Processor architecture after merging sectors into memories. 37

5.1 Block diagram of test chip. 41

5.2 Testing circuits of proposed decoder. 43

5.3 Measurement results under different supply voltages. 44

5.4 Shmoo plot of test chip. 44

5.5 Chip micrograph. 46

5.6 Gate-count profile. 46

5.7 Comparison of throughput and energy efficiency with other LDPC convo-

lutional code decoders. 47

iv

List of Tables

3.1 Puncturing patterns for (491,3,6) LDPC convolutional code. 13

4.1 Comparison of hardware cost and decoding latency with different folding

factors based on the conventional decoder architecture. 31

4.2 Comparison of the storage requirements with different techniques. 36

4.3 The size of memory banks in each processor. 38

4.4 Comparison of clock tree loading. 39

5.1 Chip summary. 45

5.2 Comparison of post-layout results and measurement results. 47

5.3 Comparison with state-of-the-art. 48

A.1 Simulation results of the (491,3,6) LDPC convolutional code using all-phase

termination. 53

v

Chapter 1

Introduction

1.1 Motivation

Due to high demands on error-correcting performance and the decoding throughput,

low-density parity-check block codes (LDPC-BCs) have attracted great research interests.

Although LDPC block codes have capacity-approaching performance and inherent par-

allel architecture, the problem of high routing complexity becomes a design challenge in

decoder implementations. Besides, the parity-check matrices of different block lengths are

needed for LDPC block codes to encode and decode arbitrary lengths of data. The con-

volutional version of LDPC codes, namely the LDPC convolutional codes were proposed

in 1999. As compared with LDPC block codes, LDPC convolutional codes possess many

advantages. LDPC convolutional codes are capable of handling variable lengths of data

frame. With simpler encoding circuitry, they can provide flexible code-rates easily through

puncturing. The pipeline decoder architecture of LDPC convolutional codes can simplify

the problem of routing congestion in the VLSI implementation. Compared with convo-

lutional turbo codes (CTC), interleavers are not necessary in the LDPC convolutional

codes encoder. Although the Turbo codes have excellent performance, the complexity of

employing highly parallel turbo decoders will significantly increase. The decoder archi-

tecture of LDPC convolutional codes is suitable for parallel decoding process comparing

to the turbo decoders. Moveover, LDPC convolutional codes can perform near Shannon

limit performance as the same as LDPC block codes and turbo codes.

Based on the above discussions, LDPC convolutional codes have the potential to meet

1

Figure 1.1: Block diagram of channel coding procedure in the IEEE 802.16m transmit

chain [1].

the high-speed requirements in the next generation communication systems. However,

LDPC convolutional codes rarely appear in system specification for its bottlenecks of the

long decoding latency, high power consumption, and low-to-moderate decoding through-

put. The maximum measured throughput in previous literatures was only 600Mb/s and

difficult to compete with LDPC block codes. Therefore, these issues motivate the ad-

vances of the decoder architecture. Recently, IEEE 802.16m standards are developed in

order to provide higher data rates and lower latency for next generation high-speed mobile

communications. Figure. 1.1 shows the channel coding and modulation procedures in the

IEEE 802.16m transmit chain [1]. Channel coding modules are indispensable to improve

the performance and reliability of the overall systems. In this thesis, we adopted the

specification proposed by Panasonic for the IEEE 802.16m standards [2]. To achieve high

throughput, the parallel architecture for the encoder and decoder will be addressed. An

improvement on the decoding schedule to reduce the decoding latency as well as hardware

costs will be presented. Finally, we will propose a low-power decoder implementation with

good error-correcting performance.

1.2 Thesis Organization

This thesis is organized as follows. In Chapter 2, we review the concept of low-density

parity-check block codes and the iterative decoding algorithm. Chapter 3 gives the intro-

duction of low-density parity-check convolutional codes. The code construction methods

and the architectures of encoder and decoder are also provided in the chapter. In Chap-

ter 4, the proposed techniques including algorithm-level, node-level, bit-level optimization

and hybrid partitioned FIFO structure are described in detail. Chapter 5 gives the im-

plementation results and summaries the architecture of the test chip. Comparisons with

2

the state-of-the-art designs are also provided. Conclusions and future works are given in

Chapter 6.

3

Chapter 2

Background

In this chapter, we introduce the concept of low-density parity-check codes and Tanner

graph representation. We also present the well-known iterative decoding algorithm and

decoding procedure of low-density parity-check codes.

2.1 Low-Density Parity-Check Block Codes

Low-density parity-check (LDPC) block codes were first introduced by Gallager in

1960s [3]. However, these codes did not receive great interest at that time due to large

computational complexity and difficulties in VLSI implementations. Rediscovered by

MacKay and Neal [4], low-density parity-check codes were shown to have near Shannon

limit bit error rate performance. Moreover, the structural regularity of low-density parity-

check codes allows a highly-parallel decoder realization compared to the turbo decoder.

As a consequence, low-density parity-check codes have attracted considerable attentions

recently and have been widely adopted in many practical communication systems.

A binary low-density parity-check code is defined by a sparse parity-check matrix H,

which contains a relatively low number of ones. For a regular (N, J,K) low-density parity-

check block code, the block length is N and its parity-check matrix has exactly J ones in

each column and K ones in each row. The parity-check matrix can be represented by a

Tanner graph, or called a bipartite graph. We give the parity-check matrix of a (6, 2, 3)

regular LDPC block code as an example in (2.1). Each row of the matrix corresponds to

a check node in the Tanner graph, and each column is mapped to a variable node. As the

4

example shown in Figure. 2.1 , the corresponding Tanner graph has 4 check nodes and 6

variable nodes, the number of variable nodes which are connected to the same check node

is referred to the check node degree, and the number of check nodes which are connected

to the same variable node is referred to the variable node degree. The one in the parity-

check matrix is equal to an edge in the Tanner graph.

H =

1 0 1 0 1 0

0 1 0 1 0 1

1 1 0 1 0 0

0 0 1 0 1 1

 (2.1)

Figure 2.1: The Tanner graph of the parity check matrix given in (2.1).

Since the low-density parity-check codes are linear block codes, the encoding procedure

is just like traditional linear block codes, we can use the generator matrix G to encode

LDPC codes. Generally, the generator matrix G could be found by Gaussian elimination

of the parity-check matrix H. For practical encoder realization, systematic encoding is

often used to reduce encoding and decoding complexity. Therefore, the generator matrix

can be simply represented as G = [P |I], where I is the identity matrix. Since GHT = 0,

the parity-check matrix is H = [I|P T]. For any valid codeword v, vHT should be 0, and

this property can be used for syndrome check in iterative decoding.

2.2 Iterative Decoding Algorithm

With the help of iterative message-passing decoding algorithm, low-density parity-

check codes are capable of achieving near capacity performance. The best known iterative

5

decoding algorithm is belief propagation (BP) or called sum-product decoding algorithm.

Simplified decoding algorithm such as min-sum algorithm and normalized min-sum algo-

rithm reduce the decoder complexity with acceptable performance loss.

In iterative decoding, we are interested in the probability of the received symbol.

These probabilities are usually represented in terms of log likelihood ratios (LLRs). We

assume that the log likelihood ratio of bit n is

Ln = ln
P (x = 0)

P (x = 1)
.

The operation of iterative decoding can be described clearly using the Tanner graph.

Figure. 2.2 and Figure. 2.3 show the Tanner graph and the notations we used in the

following description. On the Tanner graph, the check nodes and variable nodes exchange

messages along the edges iteratively. We illustrate the message passing operation of check

node in Figure. 2.2, the outgoing message of the check node is computed from the other

incoming messages. For variable node update shown in Figure. 2.3, the channel values

are also participated in the outgoing message calculation. Let ϵ
(i)
mn be the message sent

from check node m to variable node n, and let z
(i)
mn denote the message sent from the

variable node n to check node m. The a posterior LLR of bit n is denoted by z
(i)
n . The

number of iterations is represented by i, and we also set the maximum iteration number

as IMax. The iterative decoding procedure of LDPC codes is described as follows.

1. Initialization

Set i = 1 and maximum number of iterations to IMax. For each m,n, set z
(0)
mn = Ln

2. Horizontal Step

check node to variable node update, for 1 ≤ m ≤ M and each n ∈ N(m), where

N(m) represents the neighborhood of the m-th check node. For belief propagation

(BP) decoding algorithm, compute

ϵ(i)mn = 2 tanh−1(
∏

n′∈N(m)\n

tanh(
z
(i−1)
mn′

2
)) (2.2)

Otherwise, for min-sum algorithm, compute

ϵ(i)mn ≈ (
∏

n′∈N(m)\n

sgn(z
(i−1)
mn′)) · min

n′∈N(m)\n
(|z(i−1)

mn′ |) (2.3)

6

3. Vertical Step

variable node to check node update, for 1 ≤ n ≤ N and each m ∈ M(n), where

M(n) denote the set of neighbors of the n-th variable node, compute

z(i)mn = Ln +
∑

m′∈M(n)\m

ϵ
(i)
m′n (2.4)

4. Decision Step and Stopping Criterion Test

Let x̂n be the n-th bit of decoded codeword.

z(i)n = Ln +
∑

m′∈M(n)

ϵ
(i)
m′n (2.5)

x̂n =

 0, if z
(i)
n ≥ 0

1, if z
(i)
n < 0

(2.6)

If H · x̂T
n = 0 or the maximum iteration number IMax is reached, the decoder stops

the decoding process and outputs the decoded codeword. Otherwise, set i = i + 1

and the decoder repeats the decoding steps.

Figure 2.2: Message passing of check node.

7

Figure 2.3: Message passing of variable node.

8

Chapter 3

Low-Density Parity-Check

Convolutional Codes

Low-density parity-check convolutional codes were first proposed in 1999 [5], which

are convolutional codes defined by sparse parity-check matrices and can be decoded using

the iterative message-passing algorithm. Due to the properties of convolutional codes,

LDPC convolutional codes can encode and decode variable length of data frame. It has

been shown that these codes are suitable for certain applications such as streaming video

and packet-switching networks [6].

In this chapter, the overview of LDPC convolutional codes is given. In the following

sections, firstly, some important parameters of LDPC convolutional codes are defined,

and then the methods for code construction in the literature are described. Moreover,

the encoding procedure and encoder architecture are introduced. Finally, the pipeline

decoder architecture and the corresponding Tanner graph of LDPC convolutional codes

are also presented.

3.1 Definition and Code Constructions

A binary LDPC convolutional code is defined by a transposed semi-infinite parity-

check matrix, or referred to the syndrome former HT . For a rate R = b/c (b < c) LDPC

convolutional code, the syndrome former can be described by the following form

9

HT =

.

HT
0 (t−ms) . . . HT

ms
(t)

. . .
...

. . .

HT
0 (t) . . . HT

ms
(t+ms)

.

. (3.1)

The sub-matrices HT
i (t) at time instant t given in (3.2), i = 0, 1, . . . ,ms, are size of

c× (c− b). In particular, the sub-matrix HT
0 (t) are chosen to be full rank, this condition

can make encoding easier and allow a register-based encoder implementation.

Hi(t) =

h
(1,1)
i (t) . . . h

(1,c)
i (t)

...
...

h
(c−b,1)
i (t) . . . h

(c−b,c)
i (t)

 (3.2)

The parameter ms is called the syndrome former memory or the code memory of LDPC

convolutional codes, and v = c · (ms +1) is defined as the constraint length. The number

of ones in each row and each column in the syndrome former determine the variable

node degree J and check node degree K respectively. For a regular (ms, J,K) LDPC

convolutional code, there are exactly J ones in each row and K ones in each column in

the syndrome former; otherwise, it is an irregular code. If there exists a period T such

that HT
i (t) = HT

i (t+T), the code is periodically time-varying. For the period T equals 1,

it is said to be a time-invariant LDPC convolutional code. We give an example of (5, 3, 6)

LDPC convolutional code with period T = 4 in (3.3). It can be seen easily from (3.3)

that the syndrome former has 3 ones in each row and 6 ones in each column.

In addition, here we introduce some major techniques for the construction of LDPC

convolutional codes in the literature. In these years, most LDPC convolutional codes are

derived from the parity-check matrices of LDPC block codes. In [5], the authors firstly

proposed the unwrapping procedure to obtain a time-varying periodical parity-check ma-

trix of an LDPC convolutional code from a randomly constructed LDPC block code.

In [7] and [8], the algebraically structured quasi-cyclic LDPC (QC LDPC) block codes

were also applied to derive both time-invariant and time-varying LDPC convolutional

codes. In addition, a construction method to design LDPC convolutional codes based on

10

protographs are proposed in [9]. The protograph-based LDPC convolutional codes enjoy

several advantages, such as an effective pipeline decoding and thresholds close to capacity.

However, there are few researches on the constructions of low-density parity-check

convolutional codes from the convolutional codes point of view. Until [10], a newly con-

struction method based on the parity check polynomials of the convolutional codes was

proposed. The parity check polynomials of the convolutional codes are generated ran-

domly with predefined constraints. The simulation results in [10] have shown that the

constructed time-varying LDPC convolutional codes with time period of 3 can provide

good BER performances.

HT =

1 1 0 1 0 0

1 0 0 1 0 1

1 1 1 0 0 0

1 0 0 1 0 1

1 0 1 0 1 0

1 0 0 1 0 1

1 1 1 0 0 0

1 0 0 1 0 1

1 1 0 1 0 0

1 0 0 1 0 1

1 1 1 0 0 0

1 0 0 1 0 1
.

. (3.3)

3.2 LDPC Convolutional Codes for Mobile WiMAX

In this thesis, we adopt the specification proposed for the IEEE 802.16m standards

by Panasonic [2], a rate compatible (491, 3, 6) LDPC convolutional codes with time pe-

riod of 3. IEEE 802.16 defines the air interface for fixed and mobile broadband wireless

access systems. In order to meet the requirements of next generation mobile communi-

cations, IEEE 802.16m is developed to provide higher data rates and lower latency than

802.16e standards. IEEE 802.16m system, also known as Mobile WiMAX Release 2.0,

11

incorporates many innovative communication technologies with significant performance

improvements than order releases [1]. Although LDPC block codes have been adopted

in many communication standards, such as DVB-S2, IEEE 802.3an and IEEE 802.16e,

current 802.16e LDPC block codes does not support IR type HARQ [2]. The proposed

rate-compatible LDPC convolutional code is able to support IR type HARQ for the 16m

FEC. In particular, LDPC convolutional codes are more suitable for parallel implemen-

tation than convolutional turbo codes (CTC). Compared with LDPC block codes, LDPC

convolutional codes enjoys the advantages of encoder complexity as well as decoding la-

tency. Therefore, the proposed LDPC convolutional code has the potential to be one

candidate for next-generation communication systems.

The equations in (3.4), which are constructed based on the parity check polynomials

define the time-varying convolutional encoder, where u(D) and v(D) represent the infor-

mation polynomial and parity polynomial respectively. Due to the time period is only 3,

this property leads to significantly reduced hardware implementation complexity. Besides,

the proposed LDPC convolutional code could support 5 code rates through puncturing.

The puncturing patterns are shown in Table 3.1, the value 1 indicate that bit will be

transmitted. In the other hand, the value 0 indicates that bit will be discarded every

Lpunc bits. Note that the LLRs of punctured bits are assumed to 0 at the receiver and

the decoding algorithm remains the same. Simulation results in [2] show that the BER

performances are comparable to 16e Turbo decoder under AWGN channel for all code

rates.

(D373 +D56 + 1)u(D) + (D406 +D218 + 1)v(D) = 0 (3.4a)

(D457 +D197 + 1)u(D) + (D491 +D22 + 1)v(D) = 0 (3.4b)

(D485 +D70 + 1)u(D) + (D236 +D181 + 1)v(D) = 0 (3.4c)

12

Table 3.1: Puncturing patterns for (491,3,6) LDPC convolutional code.

Code Rate
Puncture Pattern

Puncture Length (Lpunc)
Information Parity

1/2 1 1 1

2/3 110100 111111 6

3/4 010111 111010 6

4/5 1011 0110 4

5/6 1110001110 0100110111 10

3.3 Encoding of LDPC Convolutional Codes

The encoding procedure of a rate R = b/c (b < c) LDPC convolutional code is

described as follows. Let

u = (u0,u1, . . . ,ut−1) (3.5)

be an information sequence, where ui = (u
(1)
i , u

(2)
i , . . . , u

(b)
i). And assume that the coded

sequence after encoding is

v = (v0,v1, . . . ,vt−1), (3.6)

where vi = (v
(1)
i , v

(2)
i , . . . , v

(c)
i). The coded sequence v satisfies the constraint vHT = 0.

This equation could be further decomposed into equation (3.7) and directly used for

encoding. Once all sub-matrices HT
0 (t) have full rank, the encoder can be realized as a

shift-register based encoder. This property is called the fast encoding property, which

guarantees that the constructed codes can be encoded continuously in real time [11].

vtH
T
0 (t) + vt−1H

T
1 (t) + . . .+ vt−msH

T
ms

(t) = 0 (3.7)

Low-density parity-check convolutional codes are commonly expressed in terms of the

polynomial representation. The transposed polynomial parity-check matrix HT (D) of the

convolutional code can be rewritten as

HT (D) = HT
0 +HT

1 D +HT
2 D

2 + . . .+HT
MDM . (3.8)

We give an example of R = 3/8 time-invariant LDPC convolutional code with code

memory ms = 203 [12] in (3.9) to illustrate the encoding process. As long as HT
0 (t) satisfy

the full rank condition, the encoding equations can be easily derived from equation (3.7).

13

H(D) =

1 +D194 D158 D166 D144 0 D65 0 0

D97 D49 0 D203 D65 D37 1 0

0 D106 D83 D138 D48 +D132 1 0 0

0 0 1 0 0 0 D20 1

0 0 0 0 0 0 1 +D76 1

(3.9)

Let vt = (v
(0)
t , v

(1)
t , v

(2)
t , v

(3)
t , v

(4)
t , v

(5)
t , v

(6)
t , v

(7)
t) be the coded bits and ut = (u

(0)
t , u

(1)
t , u

(2)
t)

be the information bits. Given that v
(1)
t = u

(0)
t , v

(3)
t = u

(1)
t and v

(4)
t = u

(2)
t . The parity

bits shown in (3.10) can be determined by solving (3.7).

v
(0)
t = v

(0)
t−194 ⊕ v

(1)
t−158 ⊕ v

(2)
t−166 ⊕ v

(3)
t−144 ⊕ v

(5)
t−65 (3.10a)

v
(2)
t = v

(6)
t−20 ⊕ v

(7)
t (3.10b)

v
(5)
t = v

(1)
t−106 ⊕ v

(2)
t−83 ⊕ v

(3)
t−138 ⊕ v

(4)
t−48 ⊕ v

(4)
t−132 (3.10c)

v
(6)
t = v

(0)
t−97 ⊕ v

(1)
t−49 ⊕ v

(3)
t−203 ⊕ v

(4)
t−65 ⊕ v

(5)
t−37 (3.10d)

v
(7)
t = v

(6)
t ⊕ v

(6)
t−76 (3.10e)

A systematic encoder can be obtained if we let the bottom (c − b) rows of the sub-

matrices HT
0 (t) are identity matrix of size (c − b) × (c − b). For this special case, the

encoding equations can be simply summarized as follows.

v
(j)
t = u

(j)
t , j = 1, . . . , b, (3.11)

v
(j)
t =

b∑
k=1

v
(k)
t h

(j−b,k)
0 (t) +

ms∑
i=1

c∑
k=1

v
(k)
t−ih

(j−b,k)
i (t), j = b+ 1, . . . , c. (3.12)

The encoding circuitry of an LDPC convolutional code is simple, analogous to the

conventional convolutional code feedback encoder. The encoder can be implemented using

multiplexers, XOR gates and c length (ms + 1) shift-registers. If the constructed code is

time-invariant, the encoder connection is fixed. For the time-varying case which we are

usually interested in, the encoder connections change periodically according to the check

equations. It is worth to note that the encoding complexity of LDPC convolutional code

is independent of the codeword length. Consequently, the encoder of LDPC convolutional

14

code enjoys the advantage of simple circuitry comparing to the traditional LDPC block

code encoder. In addition, the ability to support arbitrary length of data frame provides

more flexibility than LDPC block codes in many communication scenarios. The block

diagram of a R = 1/2 systematic encoder for LDPC convolutional code is given in Figure.

3.1. The weight controller configures the encoder connections according to the parity-

check polynomials. For low-cost implementation, the partial-syndrome former realization

can be found in [13].

Figure 3.1: A rate 1/2 systematic LDPC convolutional code encoder.

3.4 Decoding of LDPC Convolutional Codes

The LDPC convolutional codes employ the same iterative message-passing algorithm

as the decoding of LDPC block codes. Different from the LDPC block codes, the corre-

sponding Tanner graph of an LDPC convolutional cods is infinite. Therefore, a pipeline

decoder architecture is proposed as a finite sliding window to perform variable node and

check node updates on the Tanner graph. Since the distance between two variable nodes

that are connected to the same check node is at least (ms + 1) time instants apart, the

decoding of two variable nodes can be performed independently. This concept allows

the pipeline decoder to perform simultaneous decoding on different regions of the Tan-

ner graph. The sliding window decoding on the Tanner graph is implemented by using

a serial concatenation of I independent identical processors. The number of identical

15

processors corresponds to the number of iterative decoding iterations. Hence, the more

processors are used, the more decoding performance increases. Studies have shown that

LDPC convolutional codes could achieve the same near-Shannon-limit error performance

as LDPC block codes. Recently, a comparison of LDPC block and LDPC convolutional

codes indicates that, for the same decoding performance, the LDPC convolutional codes

require less hardware costs than their corresponding block codes [14]. In addition, a detail

investigation on several implementation issues such as stopping rules, decoding schedules,

and several improvements to pipeline decoder architecture can be found in [15].

We give a R = 1/2 time-invariant (14, 3, 6) LDPC convolutional code in (3.13) as an

example to illustrate the operation of the pipeline decoder on the Tanner graph. Figure.

3.2 shows the corresponding trellis diagram and the illustration of pipeline decoding. Since

we add additional stage of register for pipelining, the length of sliding window in Figure.

3.2 is (ms + 2) instead of (ms + 1).

(1 +D5 +D11)u(D) + (1 +D7 +D14)v(D) = 0 (3.13)

For a R = b/c (b < c) LDPC convolutional code decoder, it consists I identical processors

operating in parallel, and each processor consists (J + 1)× c× (ms + 1) first-in first-out

(FIFO) shift registers, (c − b) check node units and c variable node units. In particu-

lar, this regular architecture insures low routing complexity comparing to the traditional

LDPC block code. The decoding procedure is described in the following steps. Initially,

all the shift registers in the pipeline decoder are filled with infinite ∞ because of the

dummy zeros are the initial values in the encoder. As a new channel LLR is received, it is

shifted in all the (J+1) shift registers. Note that the LLR stored in the first shift register

indicates the intrinsic value in the message-passing decoding. The next step is to operate

the check node computations and then update the corresponding symbols which are con-

nected to the same check node unit. Here we use the decoding algorithms such as belief

propagation (BP) algorithm or normalized min-sum (NMS) algorithm in the bit-error-

rate simulations. For the preceding (I − 1) processors, the variable node operations are

performed just before the LLRs leave the processor. The last processor performs the hard

decision for the information LLRs. Thus, the decoding procedure successively repeats the

shifting step and appropriate node updates. As long as the initial decoding delay has

elapsed, a total of I × (ms + 1) time units, the pipeline decoder outputs a decoded data

16

stream continuously.

Figure 3.2: Trellis diagram and the illustration of pipeline decoding.

17

Chapter 4

Proposed Techniques for LDPC

Convolutional Codes

In previous chapter, we have introduced many important properties of LDPC convo-

lutonal codes, including near Shannon limit performance, variable length of data frame,

flexible code-rate through puncturing, simple encoding circuitry, and low routing com-

plexity in the decoder architecture. However, LDPC convolutional codes rarely appear in

system specification due to its bottlenecks of the long decoding latency, high power con-

sumption, and low-to-moderate decoding throughput. The maximum measured through-

put in previous literatures was only 600Mb/s and difficult to compete with LDPC block

codes [16] [17].

In this thesis, we focus on the following three critical issues to design a high per-

formance LDPC convlutional code decoder. Firstly, more processor numbers can obtain

better decoding performance but extend longer latency with similar throughput. Sec-

ondly, high node-level parallelism can achieve higher throughput but cause larger message

bandwidth and severe memory conflict in memory-based FIFO architecture. Thirdly, a

register-based FIFO architecture can support unlimited bandwidth but yield expensive

power and area costs. To overcome these three issues, this thesis propose a new design

approach which combines algorithm-level, node-level, bit-level optimization, and a hybrid-

partitioned FIFO to achieve over 2Gb/s throughput with competitive power consumption

and chip area.

18

4.1 Algorithm-Level Optimization

4.1.1 Flooding Scheduling

The message passing schedule is the order of propagating messages between check

nodes and variable nodes over the Tanner graph. For decoding LDPC codes, the standard

message-passing decoding schedule is the flooding schedule. According to the flooding

schedule, the messages are passed in parallel between nodes. In each iteration, all the check

nodes are updated simultaneously using the variable-to-check messages. Then, followed

by updating all the variable nodes using the check-to-variable messages. Although the

flooding scheduling is suited for parallel implementation, it is inefficient due to its low

decoding convergence speed. Figure. 4.1 shows the conventional decoder architecture of

(14, 3, 6) LDPC convolutional code given in (3.13). We can see that the variable nodes

are performed until the messages are all transferred into the check-to-variable messages

in the decoder.

We plot the floating point simulation results of (491, 3, 6) LDPC convolutional code

with flooding schedule in the following figures. Figure. 4.2 depicts the BER performance

under different decoding iterations at R = 1/2. We also compare the performance using

different decoding algorithms such as log-BP algorithm, min-sum algorithm, and normal-

ized min-sum algorithm. In Figure. 4.3, the dependence of the BER on the number of

processors I at different SNRs using flooding schedule is shown. The results are simulated

using the NMS algorithm with scaling factor 0.75. In Figure. 4.4, we present the BER

performance under different code-rates through puncturing with 50 iterations. Compar-

isons of log-BP algorithm and normalized min-sum algorithm with scaling factor 0.75 are

also given.

19

Figure 4.1: Conventional decoder architecture.

1 1.5 2 2.5 3 3.5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No(db)

B
E

R

Uncoded
I = 10, Min−Sum
I = 10, NMS with scaling factor 0.75
I = 10, NMS with scaling factor 0.875
I = 30, Min−Sum,
I = 30, NMS with scaling factor 0.75
I = 30, NMS with scaling factor 0.875
I = 50, Min−Sum,
I = 50, NMS with scaling factor 0.75
I = 50, NMS with scaling factor 0.875
I = 50, Log−BP

Figure 4.2: Simulation results under different number of iterations.

20

0 20 40 60 80 100 120 140 160

10
−5

10
−4

10
−3

10
−2

10
−1

Number of processors

B
E

R

SNR = 1.2
SNR = 1.3
SNR = 1.4
SNR = 1.5

Figure 4.3: The dependence of the BER on the number of processors I at different SNRs.

1 2 3 4 5 6
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No(db)

B
E

R

R = 1/2, Log−BP
R = 2/3, Log−BP
R = 3/4, Log−BP
R = 4/5, Log−BP
R = 5/6, Log−BP
R = 1/2, NMS
R = 2/3, NMS
R = 3/4, NMS
R = 4/5, NMS
R = 5/6, NMS

Figure 4.4: BER performance under different code-rates with 50 iterations using flooding

schedule.

21

4.1.2 On-Demand Variable Node Activation (OVA) Scheduling

Studies have shown that the message-passing schedule affects the rate of decoding

convergence and computational complexity. If we observe the standard decoding schedule,

namely, the flooding scheduling, the variable node units are activated only once before the

values leave the processor. Most messages are shifting while few messages are updating

in a processor. Thus, this scheduling is inefficient without utilizing the recent updated

information. For increasing the convergence speed, sequential scheduling are introduced

in decoding LDPC block codes. Recently, an on-demand variable node activation schedule

is proposed in [18] to accelerate the decoding convergence speed for LDPC convolutional

code. The main idea is to change the variable node activation location leaving from the

processor to the position right before each check node input. This on-demand variable

node activation scheduling is very similar to the layered decoding in LDPC block codes

[19] [20] that check nodes could access the most recent messages. We use the same example

given in (3.13) to demonstrate the algorithm-level optimization by using the on-demand

variable node activation scheduling technique. Although this example is a time-invariant

code, the on-demand scheduling can be applied directly to the case of time-varying codes.

Figure 4.5: Processor architecture of on-demand variable node activation scheduling.

It can be seen from Figure. 4.5, a variable node unit (VNU) can be disassembled into

J sub-VNUs (SVNUs) and distributed within a processor. Before each check node unit is

activated, the sub-VNU calculates single variable-to-check message instead of calculating

J variable-to-check messages in parallel. Therefore, the check-to-variable messages could

22

be obtained by the partial computation of the variable nodes, and then these updated

messages could be used to compute the remaining variable-to-check messages. The major

difference from the standard decoding schedule is the order of updating procedures, and

it is worth to note that the both computational complexity is the same.

To be more specific, in Figure. 4.6, n1 is a variable-to-check message which is obtained

by the summation of the intrinsic channel value u and two check-to-variable messages m2

and m3. Then this recently generated n1 is accessed by the check node unit immediately

to compute new check-to-variable message m
′
1. Also, the message m

′
1 is available for next

sub-VNU to calculate a new variable-to-check message n2 for further check node updating

within the same iteration. It is clear that the frequency of message passing between check

node and variable node is significantly increased. Using this scheduling, the messages can

flow faster through the Tanner graph.

Figure 4.6: The illustration of on-demand variable node activation scheduling.

In Figure. 4.7, we show the floating point BER performance comparisons of stan-

dard schedule versus on-demand schedule for a (491, 3, 6) time-varying LDPC convolu-

tional code. It can be seen that the performance which uses on-demand schedule with

25 iterations is almost identical to the performance that uses standard schedule with 50

iterations. This indicates that the on-demand schedule converges twice faster than the

standard schedule due to making use of the most recent information. In other words,

the on-demand variable node activation scheduling allows the decoder to improve per-

formance and achieve a lower BER for the same number of iterations. Therefore, for

a given BER, once on-demand scheduling is employed, the required processor numbers

23

and initial decoding delay are reduced nearly by half comparing to the standard schedul-

ing. Figure. 4.8 shows that on-demand variable node activation schedule has a faster

convergence speed than flooding schedule for all iterations. Figure. 4.9 gives the BER

performance of NMS algorithm with scaling factor 0.75 using on-demand variable node

activation schedule with the rates ranging from 1/2 to 5/6.

1 1.2 1.4 1.6 1.8 2 2.2 2.4

10
−5

10
−4

10
−3

10
−2

10
−1

Eb/No(db)

B
E

R

Uncoded
I = 25, flooding schedule
I = 50, flooding schedule
I = 25, on−demand variable node activation
I = 50, on−demand variable node activation

Figure 4.7: BER performance of on-demand variable node activation scheduling.

24

0 20 40 60 80 100 120 140 160

10
−5

10
−4

10
−3

10
−2

10
−1

Number of processors

B
E

R

SNR = 1.2, flooding
SNR = 1.3, flooding
SNR = 1.4, flooding
SNR = 1.5, flooding
SNR = 1.2, OVA
SNR = 1.3, OVA
SNR = 1.4, OVA
SNR = 1.5, OVA

Figure 4.8: The dependence of the BER on the number of processors I at different SNRs

using on-demand variable node activation schedule.

1 2 3 4 5 6 7
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No(db)

B
E

R

R = 1/2, I = 50, flooding
R = 2/3, I = 50, flooding
R = 3/4, I = 50, flooding
R = 4/5, I = 50, flooding
R = 5/6, I = 50, flooding
R = 1/2, I = 25, OVA
R = 2/3, I = 25, OVA
R = 3/4, I = 25, OVA
R = 4/5, I = 25, OVA
R = 5/6, I = 25, OVA
R = 1/2, I = 50, OVA
R = 2/3, I = 50, OVA
R = 3/4, I = 50, OVA
R = 4/5, I = 50, OVA
R = 5/6, I = 50, OVA

Figure 4.9: BER performance under different code-rates using on-demand variable node

activation schedule.

25

4.1.3 OVA Scheduling with Concealing Channel Values

Since the equations in Figure. 4.6 of these two variable-to-check messages n1 and n2

have common terms u, we may calculate n2 from n1 by deductingm2 and addingm
′
1. Each

sub-VNU can be further disassembled into a pre-SVNU and a post-SVNU. The pre-SVNU

performs the subtraction operation, and the post-SVNU performs the addition operation.

Consequently, the channel values are concealed in variable-to-check messages. We named

this newly proposed technique the on-demand variable node activation scheduling with

concealing channel values. Figure. 4.10 illustrates the procedure to conceal the channel

values and the corresponding pipeline decoder architecture is presented in Figure. 4.11.

Figure 4.10: The illustration of on-demand variable node activation scheduling with con-

cealing channel values.

Figure 4.11: Processor architecture of on-demand variable node activation scheduling with

concealing channel values.

The original processor architecture requires c × (J + 1) × (ms + 2) shift registers.

With the help of this technique, the number of required shift registers is reduced to

26

c × J × (ms + 2). Assume that the quantization of messages is chosen as 6 bits and J

equals 3 in the decoder implementation. The storage requirement of original processor

architecture is

6 bits× 8 rows× (ms + 2) = 48× (ms + 2) bits.

For example, in Figure. 4.11, the register in red requires 6 bits and the register in blue

requires 8 bits. The storage requirement of our proposed processor architecture is

(6 bits× 4 rows+ 8 bits× 2 rows)× (ms + 2) = 40× (ms + 2) bits.

Thus, the storage space of channel values can be removed from processors to save 17%

memory. Although the channel values are concealed, the decoding results are identical to

the scheduling without concealing channel values. Moreover, with our proposed concealing

channel values technique, the storage requirements of the decoder are further reduced.

Figure. 4.12 shows the fixed point simulation of the (491, 3, 6) LDPC convolutional

code with 5 iterations using normalized min-sum algorithm with scaling factor 0.75. We

can see that the quantization (6, 2) for the LLRs, namely 4-bit for integer part and 2-bit

for fraction part, has the minimum costs but with acceptable performance loss. Finally,

we implemented 5 processors in our decoder chip. Figure. 4.13 is the BER performance

of the rate-compatible (491, 3, 6) time-varying LDPC convolutional code under AWGN

channel. In contrast to log-BP algorithm with 10 processors, the proposed algorithm

with 5 processors can achieve similar or even better performance in all code-rates. There-

fore, only half number of processors are required under the same performance, leading to

half decoding latency reduction as well.

27

1 1.5 2 2.5 3 3.5

10
−5

10
−4

10
−3

10
−2

10
−1

Eb/No(db)

B
E

R

floating point
fixed point (5, 2)
fixed point (5, 3)
fixed point (6, 2)
fixed point (6, 3)
fixed point (7, 3)
fixed point (7, 4)

Figure 4.12: Fixed-point simulation results using OVA scheduling with 5 iterations.

Figure 4.13: BER performance of log-BP algorithm (floating-point) and our proposed

scheduling in normalized min-sum algorithm with scaling factor 0.875 (fixed-point (6,2))

under AWGN channel.

28

4.2 Node-Level Optimization

4.2.1 Folding Architecture

In the original pipeline decoder architecture, a number of processors are concatenated

together to decode on different regions over the Tanner graph simultaneously, thus the

decoding is parallel in the iteration dimension. Assume the decoder can operate at fclk

MHz clock frequency, since the decoder can only decode one bit in one cycle, the infor-

mation throughput will be limited to only fclk Mb/s. For high-speed applications, the

parallelization for LDPC convolutional code encoder and decoder is desirable. In the

literatures, the concepts of node level parallelization are proposed in [21]. However, their

decoder architecture requires the shuffle networks to overcome the problem of memory

misalignments. Furthermore, the parallelism over a hundred is necessary to achieve the

decoding throughput of 1 Gbps.

In order to provide a solution with lower complexity, we propose the folding technique

for node level parallelization to design high throughput LDPC convolutional code encoder

and decoder. The idea of folding technique is to look ahead the bits that are going to

participate in the encoding or decoding operations. For parallel encoder using folding

technique, total ρ information bits can be encode at the same time instant, where ρ is

defined as the folding factor or the parallelization factor. The length of delay lines in the

encoder are folded by a factor of ρ. And the XOR gate for encoding operation have to

duplicate to ρ units. Although the similar parallel encoder architecture has been proposed

in [22], the parallel encoder architecture they proposed requires large multiplexers for

phase selection. For our folding technique, the parallelism is chosen as the multiple of

time period. This allows the original time-varying encoding connections to transfer to

fixed time-invariant connections. Thus, the multiplexers are no longer required in our

encoder architecture, which is the major difference from [22].

Figure. 4.14 shows the parallel decoder architecture using folding technique. It can

be seen that each FIFO delay line in the conventional processor is folded to ρ FIFO delay

lines. In other words, each FIFO delay line is segmented by ρ factor to support required

bandwidth. With this modified FIFO structure, sufficient input data could be provided

for operation units. For instance, in Figure. 4.14, given that the folding factor ρ = 3, each

29

shift register of length 16 is replaced by 3 shift registers of length 6. Namely, the decoding

delay is reduced from 16 clock cycles to 6 clock cycles for a unit processor. Also, both

check node units and variable node units are duplicated to ρ units. Using this approach,

the decoder throughput becomes (ρ×fclk) Mb/s. However, the maximum value of folding

factor is restricted by the code structure. Generally, the larger constraint length LDPC

convolutional codes with careful code constructions would allow higher folding factor. To

be mentioned that folding technique primarily duplicates the combinational logic while

the sequential circuits are only slightly increased. It is evident that the folding technique

not only increases the decoder throughput, but also reduces the decoding delay by a factor

of ρ at the same time.

Figure 4.14: Folding technique (only information part in shown).

Based on the conventional decoder architecture, Table. 4.1 presents a comparison

of storage requirements and decoding latency for a unit processor with different fold-

ing factors. It can be seen easily that folding technique not only directly duplicates the

throughput, but also significantly reduces the decoding latency. Moreover, this technique

only slightly increases the hardware costs. In particular, the overhead of the duplication

of check node units and variable node units is minor comparing to the overall cost of a

processor. We apply the folding technique to the time-varying (491, 3, 6) LDPC convolu-

tional code with period of 3. Since the shortest distance of adjacent check node accessing

positions is 70− 56 = 14, the maximum folding factor of this code is 12. Therefore, a 12

times decoding throughput increase while the decoding delay is reduced from 493 clock

cycles to 43 clock cycles for single processor.

30

Table 4.1: Comparison of hardware cost and decoding latency with different folding factors

based on the conventional decoder architecture.

Folding factor ρ 1 3 12

Required bits for storage 23664 23904 24768

Number of CNUs 1 3 12

Number of VNUs 1 3 12

Throughput fclk 3× fclk 12× fclk

Decoding latency for a unit processor (cycles) 493 166 43

In addition, the concepts of parallelization can be described mathematically. Figure.

4.15 shows the parity-check matrix of (14, 3, 6) LDPC convolutional code given in (3.13).

Given that folding factor ρ = 3, every 3 rows in the parity-check matrix can be grouped

to form a rate R = 3/6 LDPC convolutional code with syndrome former memory ms = 5.

Figure 4.15: Parity-check matrix of (14, 3, 6) LDPC convolutional code.

From the graph illustration in Figure. 4.15, we can see that the polynomial parity-check

matrix becomes

H(D) =

1 1 D2 +D4 D5 0 D3

0 D2 1 1 D2 +D4 D5

D +D3 D4 0 D2 1 1

 . (4.1)

The same result can be derived from the parity check polynomials of the LDPC convo-

lutional code. Using the parity check polynomial representation, the parity-check matrix

can be described as

(D2 +D7 +D13)u0(D) + (D2 +D9 +D16)v0(D) = 0 (4.2a)

(D +D6 +D12)u1(D) + (D +D8 +D15)v1(D) = 0 (4.2b)

(1 +D5 +D11)u2(D) + (1 +D7 +D14)v2(D) = 0. (4.2c)

31

Let X = D3, we can rewrite these equations as

(D2 +X2 ·D +X4 ·D)u0(D) + (D2 +X3 +X5 ·D)v0(D) = 0 (4.3a)

(D +X2 +X4)u1(D) + (D +X2 ·D2 +X5)v1(D) = 0 (4.3b)

(1 +X ·D2 +X3 ·D2)u2(D) + (1 +X2 ·D +X4 ·D2)v2(D) = 0. (4.3c)

Given in (4.4), the polynomial parity-check matrix is the same as (4.1) if X is replaced

by D.

H(X) =

1 1 X2 +X4 X5 0 X3

0 X2 1 1 X2 +X4 X5

X +X3 X4 0 X2 1 1

 . (4.4)

We apply this procedure on the time-varying (491, 3, 6) LDPC convolutional code with

period of 3. Let folding factor ρ = 3, the corresponding parity-check polynomials are listed

in (4.5).

(D2 +D58 +D375)u0(D) + (D2 +D220 +D408)v0(D) = 0 (4.5a)

(D +D198 +D458)u1(D) + (D +D23 +D492)v1(D) = 0 (4.5b)

(1 +D70 +D485)u2(D) + (1 +D181 +D236)v2(D) = 0 (4.5c)

With X = D3, we can rewrite the equations as

(D2 +X19 ·D +X125)u0(D) + (D2 +X73 ·D +X136)v0(D) = 0 (4.6a)

(D +X66 +X152 ·D2)u1(D) + (D +X7 ·D2 +X164)v1(D) = 0 (4.6b)

(1 +X23 ·D +X161 ·D2)u2(D) + (1 +X60 ·D +X78 ·D2)v2(D) = 0. (4.6c)

Finally, we can obtain a rate R = 3/6 time-invariant (164, 3, 6) LDPC convolutional

code, whose polynomial parity-check matrix is shown in (4.7). The columns of the parity-

check matrix are rearranged to ensure systematic encoding. If the folding factor is chosen

as a multiple of time period , the folding technique allows the original time-varying code

to transform into a time-invariant code. Thus, the multiplexers for the configuration

of time-varying connection are saved. Moreover, if the time-invariant code has quasi-

cyclic symmetries, the encoder complexity of tail-biting LDPC convolutional codes may

be reduced. We simulate the performance of a family of LDPC convolutional codes derived

from (491,3,6) LDPC convolutional code with folding factors 3, 6, 9 and 12. The BER

32

performance of these codes is shown in Figure. 4.16. We can see that these codes perform

very similarly even if the syndrome former memories vary greatly. Also given in (4.8) is

the parity-check matrix of the R = 12/24 (41, 3, 6) LDPC convolutional code.

H(D) =

1 D19 D125 1 D73 D136

D152 1 D66 D7 1 D164

D161 D23 1 D78 D60 1

 (4.7)

H(D)=

1 0 0 0 D5 0 0 0 0 0 0 D32 1 0 D34 0 0 0 0 0 0 0 D19 0
D38 1 0 0 0 0 0 0 D17 0 0 0 0 1 D41 D2 0 0 0 0 0 0 0 0
0 0 1 0 D6 0 0 0 0 D41 0 0 0 D15 1 0 0 0 D20 0 0 0 0 0
0 0 D31 1 0 0 0 D5 0 0 0 0 0 D18 0 1 0 D34 0 0 0 0 0 0
0 0 0 D38 1 0 0 0 0 0 0 D17 0 0 0 0 1 D41 D2 0 0 0 0 0

D40 0 0 0 0 1 0 D6 0 0 0 0 0 0 0 0 D15 1 0 0 0 D20 0 0
0 0 0 0 0 D31 1 0 0 0 D5 0 0 0 0 0 D18 0 1 0 D34 0 0 0
0 0 D16 0 0 0 D38 1 0 0 0 0 0 0 0 0 0 0 0 1 D41 D2 0 0
0 0 0 D40 0 0 0 0 1 0 D6 0 D19 0 0 0 0 0 0 D15 1 0 0 0
0 D4 0 0 0 0 0 0 D31 1 0 0 0 0 0 0 0 0 0 D18 0 1 0 D34

0 0 0 0 0 D16 0 0 0 D38 1 0 D 0 0 0 0 0 0 0 0 0 1 D41

0 D5 0 0 0 0 D40 0 0 0 0 1 0 0 0 D19 0 0 0 0 0 0 D15 1

(4.8)

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

10
−5

10
−4

10
−3

10
−2

10
−1

Eb/No(db)

B
E

R

m = 491, b = 1, c = 2, time−varying
m = 164, b = 3, c = 6, time−invariant
m = 82, b = 6, c = 12, time−invariant
m = 55, b = 9, c = 18, time−invariant
m = 41, b = 12, c = 24, time−invariant

Figure 4.16: Performance of the (491, 3, 6) LDPC convolutional code and the associated

LDPC convolutional codes with different folding factors.

33

4.3 Bit-Level Optimization

4.3.1 Retiming Technique

According to the previous mentioned on-demand variable node activation scheduling

with concealing channel values, the channel values are concealed in the variable-to-check

messages. When the channel values are concealed within the summation values, the bit-

width of each message should be adjusted to avoid truncation error. In the situation of w-

bit channel value, the summation of one channel value and two check-to-variable messages

needs (w + 2)-bit. Since the operations of pre-SVNU and post-SVNU are independent,

they can be re-timed such that the messages between them only need (w + 1)-bit. From

the illustration in Figure. 4.17, we observed that, as long as the computation of sub-VNU

is completed before the check node accesses the messages, the result is identical to the

original operation. In order to achieve a maximum saving in hardware cost, we let the

computation of post-SVNU to perform at the position just before check node accessing

the messages.

Figure 4.17: Retiming of sub-VNUs.

Figure. 4.18 depicts the bit-level optimized processor architecture, the message output

from the check node unit is w-bit. The message between the subtraction and addition

needs (w+1)-bit. And the message output from the post-SVNU which concealed channel

values requires (w + 2)-bit. In particular, the critical path of the conventional processor

is dominant by the check node unit due to large sorters are required. Although the on-

demand variable node activation scheduling with concealing channel values can accelerate

the decoding convergence speed, it induces one more adder delay and results to a longer

34

critical path. With the retiming technique for sub-VNUs, the critical path from check

node unit to post-SVNU could be diminished by one adder delay. As a consequence,

the retiming of sub-VNUs causes that the critical path of a unit processor remains the

same while reducing memory requirements. This technique is especially useful to large

constraint length LDPC convolutional codes for the long distance between two check node

inputs.

Figure 4.18: Processor architecture with retimed sub-VNUs.

In Table. 4.2, we give a comparison of the storage requirements of three techniques

which have been introduced so far. Assume that the quantization of LLRs is 6 bits, the

required numbers of 6-bit, 7-bit and 8-bit registers for the (491, 3, 6) LDPC convolutional

code with folding factor ρ = 12 are compared. When the OVA schedule with concealing

channel values is adopted, the storage requirements is reduced by around 17%. With

retimed sub-VNUs, the required number of 8-bit registers is minimized, a 20% storage

reduction is reached.

35

Table 4.2: Comparison of the storage requirements with different techniques.

6-bit reg. 7-bit reg. 8-bit reg. Total required bits

Standard schedule 4128 0 0 24768

OVA scheduling with concealing channel values 2064 0 1032 20640

Retiming the sub-VNUs 2064 960 72 19680

4.4 Hybrid-Partitioned FIFO

There are two kinds of architectures for implementation of the LDPC convolutional

code decoder in the literature, register-based and memory-based architecture. The register-

based architecture enjoys the advantage of bandwidth flexibility, thus higher throughput

can be easily achieved using folding technique. However, the large numbers of required

registers would cause large hardware cost and high power consumption. The first ASIC

realization using register-based decoder architecture is proposed in [23]. Although the

memory-based architecture saves the power consumption and silicon area, the problem of

memory access collisions is serious when high node parallelization is used. In the mean-

time, folding technique could increase throughput, however it will divide the FIFOs into

more pieces and make it difficult to use memory-based decoder architecture. In [24], the

memory-base decoder architecture are used for FPGA implementations.

For time-varying LDPC convolutional codes with large folding factor, neither register-

based FIFO nor memory-based FIFO is suitable. Therefore, we present a hybrid-partitioned

FIFO structure to support large bandwidth requirement and also minimize the power con-

sumption.

Figure 4.19: Finding longest continuous sectors in each FIFO.

36

Figure 4.20: Processor architecture after merging sectors into memories.

Figure. 4.19 shows the illustration of the hybrid-partitioned FIFO structure. The first

step of this technique is to calculate the length of the longest continuous sectors of every

folded row. We only consider the continuous section of shift registers without messages

accesses. Then the sectors are to be merged into one memory bank together, where the

depth of the memory bank is the minimum value of the sector lengths. If the original

sector is larger than the memory depth, the excess part is still stored in registers. This

procedure continues to merge sectors until the memory depth is less than a pre-defined

parameter. As shown in Figure. 4.20, the longest lengths of continuous sectors within

the information part of the processor are 5, 4 and 4. Hence, the depth of the memory is

4 because of the minimum length of these 3 sectors is 4.

Note that this simple example is only for illustration. For the LDPC convolutional

code with larger constraint length, the lengths of continuous sector within a processor

will be longer. Large amounts of data are saved in the memory banks instead of registers,

thus leads to a significant saving in power consumption. Besides, if large folding factor is

employed, the number of continuous sectors in a processor will increase, and the lengths

of continuous sectors will shorten. However, these continuous sectors can still be merged

into several memory banks. This merge operation allows that the segmented and shorten

sectors being integrate to a unified memory bank. The memory bank is implemented as

37

a circular buffer whose positions for read and write operations are tracked by address

pointers. We use two-port memories such that read and write operation can perform in

the same clock cycle. When a new message is received, this newest message is written

into a proper position of the circular buffer and then the circular buffer outputs the oldest

message. Therefore, the shifting operations in the FIFOs no longer exist to achieve a

low-power implementation.

In our work of the (491, 3, 6) time-varying LDPC convolutional code decoder with

parallelism of 12, about 50% of messages in a unit processor are partitioned into 3 two-

port memories. The sizes of these 3 two-port memories are listed in Table. 4.3 and the

total storage space is

(36× 144) + (20× 144) + (32× 76) = 10.5 Kbits.

For chip design, sink is the number of registers which are connected in the end of the clock

tree. The less the sink number is, the less power the chip consumes. In Table. 4.4, we give

the comparisons of clock tree loading using register-based FIFO and hybrid-partitioned

FIFO. It can be seen that, in the situation of similar single processor area, the hybrid-

partitioned FIFO structure can reduce the numbers of clock buffers and sinks efficiently.

The effects of reducing the number of clock buffers and sinks can greatly minimize the

clock tree loading during the physical design stage. This improvement can be translated

into reduced power consumption. Moreover, the power reduction of merging the continu-

ous sectors to several memory banks is more than merging sectors to single large memory

bank. Table. 4.4 shows that, compared to register-based FIFO, the hybrid-partitioned

FIFO structure using 3 memory banks achieves a 54% reduction of clock buffers.

Table 4.3: The size of memory banks in each processor.

Memory size

Memory 1 20 words × 144 bits

Memory 2 32 words × 76 bits

Memory 3 36 words × 144 bits

38

Table 4.4: Comparison of clock tree loading.

Folding factor (ρ) 12 12 12

Number of processors 1 1 1

Number of memories 0 1 3

Clock buffer 359 278 194

Sink 17968 13676 9068

Area (um2) 750× 520 750× 520 750× 540

39

Chapter 5

Implementation Result

Our proposed rate-compatible time-varying (491, 3, 6) LDPC convolutional code de-

coder chip integrates the fallowing techniques. For algorithm-level optimization, the on-

demand variable node activation scheduling with concealed channel values is presented to

improve decoding performance and reduce storage requirements. For node-level optimiza-

tion, the folding technique significantly increases the decoding throughput and reduces the

decoding latency at the same time. For bit-level optimization, the retiming technique is

applied to SVNU, and this approach can reduce the critical path of a unit processor while

further reducing the memory requirements. Finally, hybrid-partitioned FIFO structure is

employed to save power consumption.

The test chip was implemented in a UMC 90nm 1P9M CMOS process and measured

using the Agilent 93000 SOC Series provided by CIC. The test chip includes the proposed

encoder, proposed decoder with 5 processors, random number generators, and additive

white Gaussian noise (AWGN) engines. In section 5.1, we show the architecture of the

test chip that enables high-speed on-chip testing. Chip measurement results of power

consumption and operating frequency are given in section 5.2. And then the key features

of test chip are summarized in section 5.3. We compare our design in this section with

the state-of-the-art decoder implementations.

40

5.1 Testing Consideration

The block diagram of proposed test chip is shown in Figure. 5.1. This test chip

comprises the random number generators, the encoder with folding factor of 3, the de-

coder with folding factor of 12, additive white Gaussian noise (AWGN) channel module,

puncture and de-puncture modules, SRAM for data buffering, and control module for per-

forming a number of testing operations. For chip measurement consideration, the random

number generators and AWGN engines are embedded in the test chip for built-in-self-test

(BIST). Consequently, the random number generator can provide sufficient test patterns

on-chip for real-time decoding. The output signals can be used to verify the functionality

of the test chip. Here we use two identical random number generators to avoid using large

FIFO for data buffering. Besides, the puncture and de-puncture block allows the LDPC

convolutional code to support 5 different code-rates. In order to handle chip failures when

unexpected errors occurred in any module, we designed several testing modes to identify

the error location. Once the error location is identified, the control circuit will bypass the

error module during chip measurement.

Figure 5.1: Block diagram of test chip.

Our test chip contains the following testing modes.

• Normal function operation

In this mode, we can simulate the error correcting performance and measure the

41

power consumption of proposed LDPC convolutional codec using 5 processors under

different signal-to-noise ratios. In addition, the error correcting performance with

different code-rates can be also obtained.

• Normal function without noise

This operation bypasses the AWGN engine for functionality debugging. The en-

coded data will be transmitted directly to the decoder, if there is no failure in any

one of encoder and decoder, the encoded data will be correctly decoded.

• Uncoded

In this mode, the encoder and decoder are bypassed. We can simulate the uncoded

BER performance and measure the power consumption when LDPC convolutional

codec is disable.

• Normal function but bypass FIFO

Since the decoder is composed by a number of concatenated processors, a failure

occurs in any one of them would cause a complete failure of the decoder. To solve

this problem, Figure. 5.2 shows our proposed test circuits for the decoder. If

a processor failure occurs, the BYPASS signals will control the configuration of

processors, and FINAL signals will determine the location of the last processor to

perform hard decision operation. Thus, the measurements can still work successfully

when malfunction happened in the processor.

• Testing mode

The test patterns are generated on-chip by random number generator. In addition,

we designed a testing mode to feed test patterns from the input pins of the test chip

to de-puncture module for decoding.

• External control

Since the control module plays an important role in improving design testability,

any defect occurs in the controller will lead to a catastrophic error. With this testing

mode, the control signals of the system operations can be configured from the input

pins of the test chip.

• Repeat mode

42

For accurate power measurements, the decoder is required to run long periods of

time to obtain average power dissipation. This mode allows the decoder to run and

repeat the decoding procedure. Hence, the operation time of decoding is extended,

a accurate power measurement can be achieved.

Figure 5.2: Testing circuits of proposed decoder.

5.2 Chip Measurement Results

The measurement result of the decoder operating at an SNR of 2.5 dB under different

supply voltages is shown Figure. 5.3. It is clear that the information throughput increases

as the supply voltage increases. The result shows that the decoder draws 284 mW under

1.2V supply voltage while running at 198 MHz. Since the folding factor equals 12, the

information throughput of proposed decoder achieves 0.198 × 12 = 2.37 Gb/s. When

supply voltage is scaled down to 0.8V, the power is reduced to 90.2 mW with an energy

efficiency of 0.0114 nJ/bit/proc. Besides, the Shmoo plot is shown in Figure. 5.4. We

choose the SNR of 2.5 dB which can achieve a BER of 10−5 to simulate the valid range of

operating frequency and supply voltage. The simulated frequencies range from 120 MHz

to 220 MHz with a step of 2 MHz. And the supply voltages range from 0.8V to 1.2V with

a step of 0.01V. The green blocks in the Shmoo plot indicate that the decoder is capable

of decoding the encoded patterns correctly. As shown in Figure. 5.4, the measured max-

imum operating frequency of the decoder is 198 MHz, hence the information throughput

can reach 2.37 Gb/s.

43

Figure 5.3: Measurement results under different supply voltages.

Figure 5.4: Shmoo plot of test chip.

5.3 Summary and Comparison

Table. 5.1 presents a brief summary of the proposed (491, 3, 6) time-varying LDPC

convolutional code test chip. Implemented in UMC 90nm process, the chip area including

testing circuits is 2.37 × 1.14 = 2.7mm2. With an 87.8% chip utilization, the decoder

chip only occupies 2.24 mm2 area. In addition, the proposed decoder can support 5 code-

44

rates from 1/2 to 5/6 through puncturing technique. The messages for iterative decoding

are quantized to 6 bits. We implemented 5 processors in the decoder, and each processor

contains 3 two-port memories. Therefore, the test chip totally contains 15 memory banks,

and the size of these memories is 52.5 Kb. The chip micrograph is shown in Fig. 5.5.

Figure. 5.6 lists the gate-count profile of the test chip. Test chip totally contains 867K

gate counts, and each processor contains 145K gate counts. The AWGN modules and

decoder are 8% and 84% of the total gate counts respectively. A comparison of post-

layout results and measurement results of the proposed decoder chip is given in Table.

5.2, and the corresponding illustration is shown in Figure. 5.7.

Table 5.1: Chip summary.

Process UMC 90nm 1P9M

Code (491, 3, 6) LDPC-CC with T=3

Code Rate 1/2, 2/3, 3/4, 4/5, 5/6

Constraint Length 984

Input Quantization 6 bits

Chip Utilization 87.8%

Parallelization Factor 12

Gate Count 867 K

Processor Number 5 1

Memory 52.5 Kb 10.5 Kb

Decoder Area 2.24 mm2 0.448 mm2

Max. Clock Frequency () 198 MHz 207 MHz

Max. Data Rate (1) 2.37 Gb/s 2.48 Gb/s

Decoder Power (1) 284 mW -

Energy Efficiency (1) 0.024 nJ/bit/proc.

(1) measured at BER=10−5 without early-termination at 1.2V supply for R = 1/2

A comparison with state-of-the-art designs is given in Table. 5.3. We compare the

throughput of our decoder with other LDPC convolutional code decoders. In [16], the

measured operating frequency is 600 Mb/s. Since the parallelism of this implementation

45

Figure 5.5: Chip micrograph.

Figure 5.6: Gate-count profile.

is 1, the maximum throughput is 0.6 Gb/s. In [17], the parallelism is 8. Synthesis results

show that the decoder achieves 2.0 Gb/s throughput at 250 MHz clock frequency. For our

design, the measured maximum operating frequency is 198 MHz. With a parallelism of 12,

the maximum throughput reaches 2.37 Gb/s. To compare the area of a unit processor with

other designs, the silicon area occupied by 3 processors in [16] is 1.507 mm2. Thus, the

area of a unit processor is 0.502 mm2. In [17], the area of a unit processor is 0.924 mm2.

Although the constraint length of our implemented code is larger than other designs,

each processor only takes 0.448 mm2. Therefore, this work provides higher throughput,

less area, and better energy efficiency when compared with previously reported LDPC

convolutional code decoders.

46

Compared with the LDPC block code decoder in [25], this work has similar energy

efficiency. For a fair comparison, the LDPC block code decoder area is normalized to

2.68 mm2 due to different CMOS technologies are used. Our decoder has a 17% less

normalized area with higher chip utilization. Compared with the Turbo decoder in [26],

this work achieves much higher throughput with lower power and less die area.

Table 5.2: Comparison of post-layout results and measurement results.

Post-Layout Measurement

Max. Clock Frequency (MHz) 284 198 132

Max. Data Rate (Gb/s) 3.40 2.37 1.58

Decoder Power (mW) 371 284 90.2

Energy Efficiency (nJ/bit/proc.) 0.021 0.024 0.011

Supply (V) 0.9 1.2 0.8

Figure 5.7: Comparison of throughput and energy efficiency with other LDPC convolu-

tional code decoders.

47

Table 5.3: Comparison with state-of-the-art.

This work [16] [17] [25] [26]

FEC Type LDPC-CC LDPC-CC LDPC-CC LDPC-BC Turbo Code

Constraint Length / Block Size 984 258 960 672 3200

Code-Rate
1/2, 2/3,

1/2 1/2
1/2, 5/8,

1/3

3/4, 4/5, 5/6 3/4, 7/8

CMOS Technology (nm) 90 90 90 65 130

Input Quantization (bit) 6 8 6 6 -

Processor / Iteration 5 3 1 5 5.5

Memory (kb) 52.5 - 23.04 0 129

Chip Utilization (%) 87.8 - - 73.3 -

Decoder Area (mm2) 2.24 1.5 0.924 1.4 3.57

Max. Frequency (MHz) 198 (b) 600 250 197 (c) 302

Max. Data Rate (Gb/s) 2.37 (b) 0.6 2.0 3.57 (c) 0.39

Power (mW) 284 (b) 368.7 - 469.7 (c) 788.9

Energy Efficiency (nJ/bit/proc) 0.024 (b) 0.2048 0.064 0.0263 (a)(c) 0.37 (a)

Measurement Measurement Synthesis Measurement Measurement

(a) this unit is nJ/bit/iter in LDPC-BC and Turbo code
(b) measured at BER=10−5 without early-termination under 1.2V supply voltage for code-rate 1/2
(c) measured at BER=10−6 without early-termination for code-rate 1/2

48

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we proposed a rate-compatible (491, 3, 6) time-varying LDPC convolu-

tional code chip design. With algorithm optimized, the on-demand variable node activa-

tion scheduling with concealing channel values is used to achieve twice faster decoding

convergence speed than the standard decoding schedule. Moreover, this technique also

saves 17% message storage requirements. For the node level optimization, the folding

technique is employed to reach a 12 times throughput increase while reducing the decod-

ing latency by approximately 12 times at the same time. Also, the bit level optimization

is utilized to retime the variable nodes in order to achieve higher clock frequency and

less chip area. In particular, a hybrid-partitioned FIFO is introduced into the decoder

implementation to avoid memory access collisions and lower power consumption.

Integrated with these schemes, the test chip of the proposed (491, 3, 6) LDPC con-

volutional code decoder is implemented in a UMC 90nm CMOS process. The decoder

part occupies 2.24 mm2 within the core area of total 2.37 × 1.14 mm2. Measurement

results show that the decoder can provide a maximum throughput of 2.37 Gb/s under

1.2V supply voltage with a 0.024 nJ/bit/proc energy efficiency. It consumes 284mW of

power for a 1.2V supply while running at 198 MHz. The power can be scaled down to

90.2mW at 0.8V supply with 1.58 Gb/s information throughput. Compared with previ-

ous LDPC convolutional code decoders, this work outperforms state-of-the-art designs in

both throughput and energy efficiency. In conclusion, our proposed LDPC convolutional

49

code decoder has the potential to be one candidate for next-generation communication

systems.

6.2 Future Work

In this implementation, the maximum folding factor of the (491, 3, 6) LDPC convo-

lutional code is only 12. Because the maximum folding factor is limited by the code

structure, developing a new code construction algorithm for LDPC convolutional code is

necessary. According to the simulations, the (491, 3, 6) LDPC convolutional code can-

not be terminated. Although tail-biting can be applied to this specification, it cannot

be applied to the corresponding LDPC convolutional codes derived from the (491, 3, 6)

LDPC convolutional code using multiple of period as folding factors. Therefore, a con-

struction algorithm that jointly considers the node parallelization, decoding performance,

termination and tail-biting problem can be investigated. In particular, how to construct

a code which is capable of exploiting high node parallelization while maintaining good

error-correcting performance is a problem for future studies. A efficient high-speed im-

plementation of the tail-biting LDPC convolutional code encoder and decoder which can

handle data frames of variable length is also a research topic.

In addition, it is known that many factors affect the performance of the LDPC codes,

such as the cycle in the Tanner graph, girth, trapping sets and minimum or free distance.

Therefore, further research includes the study of the relationship between these factors

and the performance of LDPC convolutional codes.

50

Appendix A

Termination of LDPC Convolutional

Codes

In many communication systems and standards, the data bits are transmitted as pack-

ets with finite frame lengths. In order to ensure good error correcting performance near

the end of the data frame, termination of LDPC convolutional code encoder is required

to provide equal protection for each transmitted data bit. Termination is achieved by

appending termination sequence, this sequence allows the encoder to return to the ini-

tial state, usually the all-zero state. For conventional feedforward convolutional code

encoder, the encoder can be driven to all-zero state through all-zero sequence. Finding

termination sequence of LDPC convolutional code is more complex than traditional con-

volutional codes due to its feedback encoder architecture. The method for termination of

LDPC convolutional codes is proposed in [27]. However, the implementation in [27] can

only terminate the encoder from a specific phase. Padding is required when the encoder

stops at a different phase. All-phase termination for LDPC convolutional code is proposed

in [28]. This new approach could terminate the encoder from all possible states of any

phase. Termination will induce code rate loss, in particular, this problem will be serious

for short data frame length. Furthermore, the encoder complexity is also increased.

The procedure of finding termination sequence is described as follows. For more detail

description, please refer to [28]. Consider a R = 1/2 systematic LDPC convolutional code.

Let v be the encoded frame and x be the encoded termination sequence. Assume that

the length of data frame is n and the termination length is L. The following equation

51

must be satisfied.

[v1×2n,x1×2L,01×2ms]H
T
[(0,n+L+ms−1] = 01×(n+L+ms) (A.1)

Then the syndrome former HT can be partitioned into several sub-matrices.

[v1×2n,x1×2L,01×2ms]

AT

2n×n BT
2n×(L+ms)

02L×n DT
2L×(L+ms)

02ms×n FT
2ms×(L+ms)

 = 01×(n+L+ms) (A.2)

From above equation, we can obtain v1×2nA
T
2n×n = 01×n and

x1×2LD
T
2L×(L+ms) = v1×2nB

T
2n×(L+ms). (A.3)

Since only the last 2ms bits of v are participated in the computation, we can let vBT =

sPT, where s represents the ending state vector of the encoder and PT comprises the

last ms row of BT. The sub-matrices DT and PT relate to the starting phase ϕ of the

termination sequence and the termination length L. After taking the tranpose, the above

equation can be rewritten as

Dϕ,Lx
T = Pϕ,Ls

T . (A.4)

Therefore, the termination sequence can be derived by solving the linear equations. As

long as Dϕ,L is full rank, this equation will have one or more solutions. The matrix

Fϕ,L = D−1
ϕ,LPϕ,L is defined as the termination matrix.

xT = D−1
ϕ,LPϕ,Ls

T = Fϕ,Ls
T (A.5)

We summarize the procedure of generating termination connections of the encoder [28].

1. Determine the Termination Length

(a) Initialize L: L = ms.

(b) Obtain D0,L, D1,L, . . . ,DTs−1,L from HT . Check the rank of these matrices.

If all of them have rank L + ms (full rank), stop the search and choose the

current value of L. Otherwise, go to (c).

(c) Increase L by 1. Then, go to (b).

2. Find Termination Matrices for All the Phases

52

(a) Find the inverse of Dϕ,L using Gaussian-Jordan elimination.

(b) Obtain Pϕ,L for all phases from HT .

(c) Get the termination matrix by multiplication. Fϕ,L = D−1
ϕ,LPϕ,L.

3. Generate the Termination Connections

(a) The first row of each termination matrix is taken and combined to form the

all-phase termination matrix F .

Once the all-phase termination matrix F is determined, it needs to be stored and used in

the implementation. The matrix F determines the connections of the termination circuit.

Using this approach, the termination bits can be generated on demand with termination

circuit embedded in the encoder. When all the termination bits have been sent to the

encoder, the encoder will reach a partial-zero state. Then b ·ms zeros are needed to flush

the encoder to the all-zero state.

We simulated the time-varying (491, 3, 6) LDPC convolutional code with termination

length from 491 to 2608. The results in Table. A.1 show that the termination sequence

cannot be found because the matrices Dϕ,L are not full rank for all phases. For the cases

we simulated, we observed that the difference between the rank of matrix D0,L and the

full rank condition (L + ms) is always 33. Therefore, we conclude that the (491, 3, 6)

LDPC convolutional code cannot be terminated.

Table A.1: Simulation results of the (491,3,6) LDPC convolutional code using all-phase

termination.

Termination Length (L) Rank of D0,L Full rank condition (L+ms)

491 949 982

492 950 983

493 951 984
...

...
...

2606 3064 3097

2607 3065 3098

2608 3066 3099

53

Appendix B

Tail-Biting LDPC Convolutional

Codes

Tail-biting could convert a convolutional code into a block code. Using tail-biting,

the starting state of the encoder is forced to be the same state as its ending state. The

beginning state of the encoder does not need to start in the all-zero state, it is determined

from the information sequence. Compared to the encoder termination, tail-biting avoids

code-rate loss due to tail bits are not needed. The tail-biting version of the LDPC con-

volutional code is proposed in [29], which is obtained by wrapping the last (c − b) · ms

columns of the syndrome former after t = N time instant. The wrapped syndrome for-

mer H̃T
[0,N−1] is shown in (B.1). This operation results in a circular Tanner graph. The

encoding of tail-biting LDPC convolutional code can be achieved using a matrix multi-

plication circuitry, which is similar to the encoding of the LDPC block codes. However,

the complexity of this encoder implementation is dependent of N2.

H̃T
[0,N−1] =

HT
0 (0) HT

1 (1) ... HT
ms

(ms) 0 ... 0

0 HT
0 (1) ... HT

ms−1(ms) HT
ms

(ms+1) 0 ... 0

...
HT

ms
(N) 0 ... 0 HT

0 (N−ms) ... HT
ms−1(N−1)

HT
ms−1(N) HT

ms
(N+1) 0

...
... 0 HT

0 (N−2) HT
1 (N−1)

HT
1 (N) HT

2 (N+1) ... HT
ms

(N+ms−1) 0 ... 0 HT
0 (N−1)

(B.1)

Another implementation for encoding the tail-biting LDPC convolutional code is proposed

in [30]. The state-space variables are used to calculate the initial state of the encoder.

54

This technique originally comes from [31], which presented the encoding of tail-biting

codes with feedback encoder. Let St denote the state vector at time instant t. Let ut

be the information sequence and vt be the code bits. To simplify the situation, here we

consider the case of systematic encoding, where the submatrices H0(t) = (H̃0(t), I(c−b)).

The correct initial state can be calculated from the following relationship

St+1 = A(t) · St +B(t) · uT
t (B.2a)

vT
t = C(t) · St +D(t) · uT

t (B.2b)

where A(t) is the state matrix with size of (ms + b) × (ms + b), B(t) denotes the input

matrix with size of (msc+ b)× b, C(t)is the output matrix with size of c× (msc+ b), and

D(t) denotes the feedforward matrix with size of c × b. Note that the variables in the

above equations are functions of time due to time-varying are considered. These matrices

A(t), B(t), C(t) and D(t) can be determined from the state transitions of the syndrome

former encoder.

A(t) =

H1(t) H2(t) H3(t) . . . Hms−2(t) Hms−1(t) Hms(t) 0(c−b)×b

0b×c 0b×c 0b×c . . . 0b×c 0b×c 0b×c 0b×b

Ic 0c×c 0c×c . . . 0c×c 0c×c 0c×c 0(c−b)×b

0c×c Ic 0c×c . . . 0c×c 0c×c 0c×c 0(c−b)×b

...
...

...
...

...
...

...

0c×c 0c×c 0c×c . . . 0c×c Ic 0c×c 0(c−b)×b

0b×c 0b×c 0b×c . . . 0b×c 0b×c (Ib, 0b×c(c−b)) 0b×b

(B.3)

B(t) =

H̃0(t)

Ib

0((ms−1)c+b)×b

 (B.4)

C(t) =

 0b×c 0b×c . . . 0b×c 0b×c 0b×b

H1(t) H2(t) . . . Hms−1(t) Hms(t) 0(c−b)×b

 (B.5)

D(t) =

 Ib

H̃0(t)

 (B.6)

55

The complete solution of (B.2) is given by the superposition of the zero-input solution

S
[zi]
N and the zero-state solution S

[zs]
N .

SN = S
[zi]
N + S

[zs]
N (B.7)

We can derive the zero-input solution and the zero-state solution by applying (B.2) re-

cursively. The zero-input solution S
[zi]
N is the state achieved after t time instants if the

encoding started in an arbitrary state S0 and all input bits are zero.

S
[zi]
N =

(
N−1∏
i=0

A(N − i)

)
· S0 (B.8)

The zero-state solution S
[zs]
N denotes the state achieved after t time instants if the encoding

started in the all-zero state S0 = 0 and input is the information sequence u.

S
[zz]
N =

N−1∑
j=0

[(
N−j−2∏
i=0

A(N − i)

)
·B(j + 1) · uT

j

]
(B.9)

Then we let the state at time t = N is equal to the initial state S0, we can obtain

(
I+

N−1∏
i=0

A(N − i)

)
· S0 = S

[zs]
N , (B.10)

where I denotes the (msc+ b)× (msc+ b) identity matrix. Therefore, the initial state of

the encoder is

S0 =

(
I+

N−1∏
i=0

A(N − i)

)−1

· S[zs]
N . (B.11)

Given the matrix in (B.11) is invertible, the encoding procedure for tail-biting LDPC

convolutional code can be summarized as the following steps [30].

1. Determine the Zero-State Response

Determine the zero-state solution S
[zs]
N by encoding the information sequence u with

the encoder starting from the zero-state S0 = 0. At this step, the sequence obtained

at the output of the encoder is ignored.

2. Calculate the Initial State

Calculate S0 using (B.11) and initialize the encoder accordingly.

56

3. Perform the Actual Encoding

With S0 correctly set, perform the actual encoding for u. In this case, the sequence

obtained at the output of the encoder is the valid code sequence v.

Using this technique, the inverse matrices need to be stored for different block lengths.

Moreover, the same encoder can be used to encode the tail-biting codes with different

block lengths. In [29] and [30], a circular pipeline decoder architecture for the decoding

of the tail-biting LDPC convolutional code is proposed. For more detail description,

please refer to [29] and [30]. Then we applied this technique to the (491, 3, 6) LDPC

convolutional code. The simulated block lengths range from N = 491 to N = 6401.

There are 1454 samples satisfy the tail-biting constraint, namely, the matrix in (B.11) is

invertible. However, when we applied this technique to the R = 3/6 (164, 3, 6), R = 6/12

(82, 3, 6), R = 9/18 (55, 3, 6), and R = 12/24 (41, 3, 6) LDPC convolutional code shown

in Figure. 4.16. Unfortunately, the tail-biting constraint cannot be satisfied for all the

block lengths we simulated.

57

Bibliography

[1] IEEE 802.16m System Description Document (SDD), IEEE Std. 802.16m-09/0034r4,

2010.

[2] Amendment Text Proposal on Rate Compatible LDPC-Convolutional Codes, IEEE

Std. C802.16m-09/0339, 2009.

[3] R.G.Gallager, “Low-Density Parity-Check Codes,” in MA: MIT Press, 1963.

[4] D. MacKay and R. Neal, “Near Shannon limit performance of low density parity

check codes,” Electron. Lett., vol. 33, no. 6, pp. 457–458, March 1997.

[5] A. Jimenez Felstrom and K. Zigangirov, “Time-varying periodic convolutional codes

with low-density parity-check matrix,” IEEE Trans. Inform. Theory, vol. 45, no. 6,

pp. 2181 –2191, Sep. 1999.

[6] Z. Chen, S. Bates, and X. Dong, “Low-density parity-check convolutional codes ap-

plied to packet based communication systems,” in Proc. IEEE Global Telecommun.

Conf., vol. 3, Nov. 2005, pp. 1250–1254.

[7] R. Tanner, D. Sridhara, A. Sridharan, T. Fuja, and J. Costello, D.J., “LDPC block

and convolutional codes based on circulant matrices,” IEEE Trans. Inform. Theory,

vol. 50, no. 12, pp. 2966 – 2984, Dec. 2004.

[8] A. E. Pusane, R. Smarandache, P. O. Vontobel, and D. J. Costello, “On deriving

good LDPC convolutional codes from QC LDPC block codes,” in Proc. IEEE Int.

Symp. Inf. Theory, Jun. 2007, pp. 1221 –1225.

58

[9] G. Richter, M. Kaupper, and R. Zigangirov, “Irregular low-density parity-check con-

volutional codes based on protographs,” in Proc. IEEE Int. Symp. Inf. Theory, Jul.

2006, pp. 1633 –1637.

[10] Y. Murakami, S. Okamura, S. Okasaka, T. Kishigami, and M. Orihashi, “LDPC

convolutional codes based on parity check polynomials with a time period of 3,”

IEICE Trans. Fundamentals of Electronics Communications and Computer Sciences,

vol. E92-A, no. 10, pp. 2479–2483, Oct. 2009.

[11] A. Pusane, K. Zigangirov, and D. Costello, “Construction of irregular LDPC convo-

lutional codes with fast encoding,” in Proc. IEEE Int. Conf. Commun., vol. 3, Jun.

2006, pp. 1160 –1165.

[12] J.-J. Weng, C.-C. Lai, and C.-H. Wang, “Decoding of LDPC convolutional codes with

rational parity-check matrices from a new graphical perspective,” in Proc. IEEE Int.

Symp. Inf. Theory, Jun. 2010, pp. 789 –793.

[13] Z. Chen, R. Swamy, and S. Bates, “A new encoder implementation for low-density

parity-check convolutional codes,” in Proc. IEEE Midwest Symp. Circuits Syst., Aug.

2007, pp. 883 –886.

[14] D. J. Costello, A. E. Pusane, S. Bates, and K. S. Zigangirov, “A comparison between

LDPC block and convolutional codes,” in Proc. Inf. Theory Appl. Workshop, San

Diego, CA, Feb. 2006.

[15] A. Pusane, A. Feltstrom, A. Sridharan, M. Lentmaier, K. Zigangirov, and D. Costello,

“Implementation aspects of LDPC convolutional codes,” IEEE Trans. Commun.,

vol. 56, no. 7, pp. 1060 –1069, Jul. 2008.

[16] T. Brandon, J. Koob, L. van den Berg, Z. Chen, A. Alimohammad, R. Swamy,

J. Klaus, S. Bates, V. Gaudet, B. Cockburn, and D. Elliott, “A compact 1.1-Gb/s

encoder and a memory-based 600-Mb/s decoder for LDPC convolutional codes,”

IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 56, no. 5, pp. 1017 –1029, May 2009.

[17] Z. Chen, T. Brandon, D. Elliott, S. Bates, W. Krzymien, and B. Cockburn, “Jointly

designed architecture-aware LDPC convolutional codes and high-throughput parallel

59

encoders/decoders,” IEEE Trans. Circuits and Syst. I, Reg. Papers, vol. 57, no. 4,

pp. 836 –849, Apr. 2010.

[18] A. Pusane, M. Lentmaier, K. Zigangirov, and J. Costello, D.J., “Reduced complexity

decoding strategies for LDPC convolutional codes,” in Proc. IEEE Intl. Symposium

on Inform. Theory, 2004, p. 490.

[19] D. Hocevar, “A reduced complexity decoder architecture via layered decoding of

LDPC codes,” in Proc. SIPS, Oct. 2004, pp. 107 – 112.

[20] J. Zhang and M. Fossorier, “Shuffled iterative decoding,” IEEE Trans. Commun.,

vol. 53, no. 2, pp. 209 – 213, Feb. 2005.

[21] E. Matus, M. Tavares, M. Bimberg, and G. Fettweis, “Towards a Gbit/s pro-

grammable decoder for LDPC convolutional codes,” in Proc. IEEE International

Symposium on Circuits and Systems (ISCAS), May 2007, pp. 1657 –1660.

[22] S. Bates and R. Swamy, “Parallel encoders for low-density parity-check convolutional

codes,” in Proc. IEEE Int. Symp. Circuits Syst.(ISCAS), May 2006.

[23] R. Swamy, S. Bates, and T. Brandon, “Architectures for ASIC implementations of

low-density parity-check convolutional encoders and decoders,” in Proc. IEEE Int.

Symp. Circuits and Systems (ISCAS), May 2005, pp. 4513 – 4516.

[24] S. Bates and G. Block, “A memory-based architecture for FPGA implementations of

low-density parity-check convolutional decoders,” in Proceedings of IEEE Symposium

on Circuits and Systems (ISCAS), May 2005.

[25] S.-Y. Hung, S.-W. Yen, C.-L. Chen, H.-C. Chang, S.-J. Jou, and C.-Y. Lee, “A

5.7Gb/s row-based layered scheduling LDPC decoder for IEEE 802.15.3c applica-

tions,” in IEEE Asian Solid-State Circuits Conference (ASSCC), Nov. 2010.

[26] C. Studer, C. Benkeser, S. Belfanti, and Q. Huang, “A 390Mb/s 3.57mm2 3GPP-LTE

turbo decoder ASIC in 0.13µm CMOS,” in IEEE International Solid-State Circuits

Conference Digest of Technical Papers (ISSCC), 2010.

60

[27] S. Bates, D. Elliott, and R. Swamy, “Termination sequence generation circuits for

low-density parity-check convolutional codes,” IEEE Trans. Circuits Syst. I, Reg.

Papers, vol. 53, no. 9, pp. 1909 –1917, Sep. 2006.

[28] Z. Chen, T. Brandon, S. Bates, D. Elliott, and B. Cockburn, “Efficient implemen-

tation of low-density parity-check convolutional code encoders with built-in termi-

nation,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 11, pp. 3628 –3640,

Dec. 2008.

[29] M. B. Tavares, K. S. Zigangirov, and G. P. Fettweis, “Tail-biting LDPC convolutional

codes,” in Proc. IEEE Int. Symp. Inf. Theory, Jun. 2007, pp. 2341 –2345.

[30] M. B. Tavares, On Low-Density Parity-Check Convolutional Codes: Constructions,

Analysis and VLSI Implementation. Jorg Vogt Verlag, 2010.

[31] C. Weiss, C. Bettstetter, and S. Riedel, “Code construction and decoding of parallel

concatenated tail-biting codes,” IEEE Trans. Inform. Theory, vol. 47, no. 1, pp. 366

–386, Jan. 2001.

61

作 者 簡 歷

姓 名 : 林玉祥

出 生 地 : 台灣 台北市

出生日期 : 1987.06.25

學歷:

1993.9 ~ 1999.6 雲林縣 麥寮鄉 橋頭國小

1999.9 ~ 2002.6 雲林縣 正心中學 國中部

2002.9 ~ 2005.6 雲林縣 正心中學 高中部

2005.9 ~ 2009.6 國立交通大學 電子工程學系 學士

2009.9 ~ 2011.8 國立交通大學 電子研究所 系統組 碩士

	01_封面
	02_書名
	中文摘要
	英文摘要
	誌謝
	THESIS_Hsiang
	生平

