i F AP e A 2 (9216,8195)F 7 4 i

RERHPBREBIZBT

A (9216,8195) LDPC Decoder based on Latin Square for

NAND Flash Memory

g2 0L
th e RHE K

“’i‘t%@—ﬁﬁig 1

i F AR e 2 (9216,8195)4 7 3 i

MERFBRRBEHE

A (9216,8195) LDPC Decoder based on Latin Square for

NAND Flash Memory

g4

\L.

Te Student : Shih-Jia Zeng
£

to gt k4 E L Advisor : Hsie-Chia Chang

A Thesis
Submitted to Department of Electronics Engineering & Institute Electronics
College of Electrical and Computer Engineering
National Chiao Tung University
In Partial Fulfillment of the Requirements
for the Degree of
Master of Science
in
Electronics Engineering
Dec 2011
Hsinchu, Taiwan, Republic of China

PEAR-FEL D

i F AR e 2 (9216,8195)4 7 3 i

KRR+ BRRBIEEE

Fa 817 R RS E B

=

BCHE%TﬂéEE@E"#ﬁ?h# pE AR %«%H;‘@?}% Kz P o R AP
2o lRil 4 3L A2 B AR JRo B R - ff.f‘uﬁx;“@?] & FUNPRIE Y - A G
B4 e i A g~ $BOHAR g L I i 4 R ot enfTes o s A
W & TR e Bk Aueni R R F 1 125 75 (Low Density Parity Check,
fj #-LDPC Codes) * # f275 B H > 11 = i«:f‘uﬁiﬂi@?} ~ 2_LDPC Codes# & % 40 ¢
Yol K T BCHAS { 43 4R B AT 4 o

A o ooy Bk 0 s & % 0.8941(9216,8195) LDPC Codes »
I 41 * Area-Efficient Column Shuffle Decoding 7 1 & "% Al #4F 2 & » 215 B 42
P T s S B REEL L X360 F - BEES e LB 4B)
o ROFREAARK LSRRI ARG L - B PR E TS
FALE e R IOgRR G R]S g 2 BT ekt (Signal to
Noise Ratio) 5.00B 4% T » 5 i #74% 41 ¢9LDPC Code = = 4 385 5 107° > &
24 T3 F LA 4 PBCHRE bt R T ehie A4S 2107 @ % UMC
QONM A2 » #73& I chifs B B4R B 5 605.3K » A4z i 248 % B
T o wiE T 1.58Gh/s Bt E o

A (9216,8195) LDPC Decoder based on Latin Square for

NAND Flash Memory

Student : Shih-Jia Zeng Advisor : Dr. Hsie-Chia Chang

Department of Electronics Engineering
Institute of Electronics

National Chiao Tung University

Abstract

BCH code is mainly adopted'in NAND flash memory system because of
its simple hardware architecture for hard input requirement. Although soft
input can be considered to improve the correcting capability, BCH code has
little improvement when soft input is provided. In this thesis, a 2-bit soft input
LDPC decoder is presented to outperform BCH code under same code rate.

The (9216, 8195) LDPC code with code rate 0.89 is constructed from
Latin square algorithm. An Area-Efficient Column Shuffled decoding
architecture is proposed to reduce hardware complexity. Columns in
parity-check matrix are divided into 36 groups, and all the rows of each column
group are divided into 4 subgroups. Following this architecture, a check node
update unit can be simplified as a 3-to-2 sorter. In addition, the concept of
weighted mean is applied to optimize 2-bit soft input quantization. At signal to
noise ratio (SNR) of 5.0dB, bit error rate (BER) of our proposed LDPC code is
10 ? whereas BCH code that can correct 73 errors is 10 2. Using 90nm CMOS
technology, our design with 605.3k equivalent gates can achieve the maximum
throughput 1.58 Gb/s under 4 decoding iterations.

s Al mig g AALE S

AABRARIVETI R X E > AND iRg R
B gy B RS R R A Y L g
B o Gt d neT g 4 B hE - 2L A 250

£ k& B3 Ocean £2 Oasis 135 L i > =< ﬁ;’r& {%HF AP Bem B FLS BA A i

’l:E'r’:&
_ﬁ.‘ p/lgjsﬁv’

IR M R L5 R
P PAE £ AT

I“’G?g—g\' ’ :E':Eﬁ
§ At 5 3 R g §

Bl B R B RL R A ek > F ARA L P~ LR A SRR IE B F_ A
NGRS > B S Apdite B

P cPRAg < Fov BE 0 AR F

Contents

1 Introduction
1.1 Motivation

1.2 Thesis Organization

2 NAND Flash Memory
2.1 Introduction of NAND Flash Memory
2.1.1 Flash Memory System
2.1.2 NAND Flash Cell Program . . s
2.1.3 NAND Flash Cell Erase| . . . 0 o 0. o .o oo oo
2.1.4 NAND Flash Cell' Read . . .t .0l o 000000
2.2 Reliability of NAND Flash Memory (e o oo 0 L0 0oL
2.2.1 Program Disturb o bt A
2.2.2 Read Disturb . . @ 0p el L
2.2.3 NAND Flash Multi-level Cell

3 Construction of Low Density Parity Check Codes

3.1 Code Construction
3.1.1 General Construction of QC-LDPC Codes
3.1.2 Product QC-LDPC codes
3.1.3 Latin Square QC-LDPC codes
3.1.4 Comparison between Product and Latin Square QC-LDPC codes
3.1.5 Parameters in Code Construction

3.2 Performance-Related Parameters
3.2.1 Cycles in Tanner Graph
3.2.2 Column Degree

v

3.3 Proposed (9216,8195) QC-LDPC code

LDPC Decoder Architecture

4.1 Decoding Algorithm
4.1.1 Standard BP Algorithm
4.1.2 Column Shuffled Decoding Algorithm

4.2 Area-Efficient Column Shuffled Decoding Architecture.

4.3 Check Node Unit
4.3.1 Accumulative Sorter L
4.3.2 Optimization Strategy

4.4 Variable Node Unit

4.5 Shifting Networko

Simulation and Implementation Results

5.1 Optimized Quantization
5.2 Performance Evaluation .o il oo
5.3 Synthesis Results . . @ vt L 0 0 0 e
5.4 Implementation Results ' w0 o v o0 000 oL

Conclusion and Future Work
6.1 Conclusion AT

6.2 Future Work A,

23
23
23
25
28
31
31
32
35
36

38
38
42
44
45

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3
4.4
4.5

Floating gate memory cell its schematic symbol [1] 3
NAND string 4
Program operation in a NAND string D
Erase operation in a NAND cell 6
Read operation in a NAND string 7
Program disturb in a NAND string, 8
Read disturb in a NAND string 9
Threshold voltage distribution-of a 2bits/cell NAND flash cell 10
Circulant Permutation.Matrices with-size'd . .o 12
[ustration of Product-QC-LDPC codes 13
[lustration of Latin Square QC-LDPC-codes /. v 14
Base matrix of Product ‘QC-LDPC codes without mod operation 15

Performance comparison between Product and Latin Square QC-LDPC codes 16

An example of a tanner graph with cycle-4 18
Demonstration of cycle-4 in base matrix W and parity-check matrix H. . . 19
A base matrix W withpxp 19
Performance of LDPC code with different column degree. 21
Performance of Proposed (9216,8195) QC-LDPC codes 22
[Mustration of standard BP. 24
Mlustration of VSS 27
Division on thenodeso 29
Proposed architecture and scheduling 30
Accumulative sorters with different numbers of stored z\h 32

vi

4.6
4.7
4.8
4.9
4.10

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

Accumulative sorters with different replacing rules 33

Performance for accumulative sorter with different replacing rules 34
VNU architecture 35
[ustration of networks between CNUs and VNUs 37
Equivalent base matrices Wy and Woo 37
2 bits (4 levels) non-linear quantization. 38
Received channel value distribution for (9216,8179) LDPC code 39
Code performance with different (f, Viuin, Vinae), floating 0 .. . 40
Code performance with different (f, Vinin, Vinaz), Q4,2) 41
Converge Speed Comparison at SNR 4.4 42
Code performance 43
Code performance simulated by FPGA 43
BPSK Emulation using FPGA: Xilinx Virtex-5 LX330 with FF1760 package 46
Chip Layout in Place and Route. spmpo . - o o o o 0 o 0 00000 47

vil

List of Tables

3.1
3.2

5.1
5.2
5.3
5.4

Comparison between Product and Latin Square QC-LDPC codes 15
Codes from Product QC-LDPC codes 17
Early Termination Simulation at different SNR, 10% codewords 44
Synthesis Results with technology UMC90. 44
Summary of implementation results (Place and Route). 45
Comparison with BCH codes 46

viii

Chapter 1

Introduction

1.1 Motivation

Modern NAND Flash momory system adopts error correction codes to improve device
reliability [1] [2]. BCH code [3] [4] is mainly used in single level cell (SLC) NAND flash
memory system because of its simple hardware architecture and hard input requirement.
The area occupation of Multi-level céll-(NLC) is only half compare with SLC. However,
MLC also leads to degradation of‘reliability. More powerful error corrections codes for
next generation NAND flash memory, system is needed.

Soft-input is provided to improve the correcting capability of error correction code.
However, BCH code has only little improvement-when soft input is provided [5] [6]. LDPC
code is a good candidate for its powerful correcting capability. 2-bit soft LDPC code can
outperform BCH code with same code rate.

Low Density Parity Check (LDPC) codes were first discovered by Gallager in 1962 [7]
and were rediscovered and generalized by MacKay in 1999 [8]. Well designed LDPC
codes decoded with iterative decoding using belief propagation (BP) algorithm, achieve
performance close to the Shannon limit [9]. Consequently, LDPC codes were widely
adopted for error control in many communication and digital storage systems.

High code rate is a necessary condition for error correction code applied on NAND flash
memory system. A high code rate LDPC code introduces high row degree. This makes
implementation difficult due to the large number of inputs to sorter and the increased

routing complexity. Column shuffled decoding [10] is a good solution to this problem.

Variable nodes are divided into 36 groups. Only 1st, 2nd min are stored to reduce the
storage cost. With row divided into 4 groups, VNU can be simplified to a 2-input adder
and a 2-input subtractor. Shifting networks are applied between CNUs and memories.
The maximum throughput can achieve 1.581 Gbps with 4 iterations, using 90nm CMOS
technology. The proposed LDPC code decoder has a better performance than BCH code

with the same code rate when 2-bit soft input is provided.

1.2 Thesis Organization

The rest of this thesis is organized as follows. Chapter II gives the introduction of
NAND flash memory. Chapter III introduces the column shuffled decoding algorithm and
the code construction. In Chapter IV, decoder architecture is detailed explained. The

simulation result is given in Chapter V and conclusion in Chapter VI.

Chapter 2

NAND Flash Memory

2.1 Introduction of NAND Flash Memory

2.1.1 Flash Memory System

Flash memory was invented by Dz Fujio-Masuoka of Toshiba Corp. in 1984. NAND
Flash is employed for data storage in a variety-of portable and mobile applications. Since
flash memory is non-volatile, o power is-needed:to maintain the information stored.
Flash memory cell is based on the Floating Gate (FG) illustrated in Fig. 2.1. The isolated
gate constitutes an excellent ‘trap’ for electrons. The operations performed to inject and
remove electrons from the isolated gate are called program and erase. More details of

these operations will be presented in next section.

floating gate (FG) control gate (CG)

Drain (D) Source (S)

o

substrate

electrons

Figure 2.1: Floating gate memory cell its schematic symbol [1]

The memory cells are packed to form a matrix in order to optimize silicon area oc-

cupation. In the NAND string, the cells are connected in series, in groups of 32 or 64,

as shown in Fig. 2.2. Two selection transistors are placed at the edges of the string, to
ensure the connections to the source line and to the bit line. Each NAND string shares

the bit line contact with another string. Control gates are connected through word lines.

Bit Lines J J J

Selection
Transistor

g

Word
Lines <

Selection
Transistor

Source Lines —l —| —|

Figure 2.2: NAND string

A NAND memory is divided in pages and blocks. A block is the smallest erasable unit.
Each block contains multiple pages. The number of pages within a block is typically a
multiple of 16. A page is the smallest addressable unit for reading and writing. Each
page is composed of main area and spare area. Main area can range from 4 to 8 kB or

even 16 kB. Spare area can be used for ECC.

2.1.2 NAND Flash Cell Program

Programming of NAND memories exploits the quantum-effect of electron tunneling in
the presence of a strong electric field. In order to trigger the injection of electrons into the
floating gate, the following voltages are applied, as shown in Fig. 2.3. Vpg (20 — 25V) is
applied on the selected gate to be programmed, and Vpass p(8 — 10V') on the unselected
gates. Vpp on the gate of the drain selector, and GND on the gate of the source selector.
GND on the bit line to be programmed, and Vpp on other bit lines. When the bit lines
are driven to Vpp, drain transistors are diode-connected and the corresponding bit lines
are floating. Vpags p is applied to the unselected word lines to inhibit the tunneling

phenomena.

Vop GND Vop

Bit Lines _I J _|

VDD

|
T_]ljl

Addressed cell ﬁ .

Unselected: WL Vpassp

...

Selected WL Vpeum i ‘
Unselected WL Vpagsr
GND

Source Lines _l —| —I

Figure 2.3: Program operation in a NAND string

2.1.3 NAND Flash Cell Erase

Erasing of NAND memories is the inverse process of programming. When NAND flash
Cell is earsed, 0V is applied to the Source, Drain and Gate. And high voltage V is applied
to the Substrate. Electrons in Floating Gate are attracted to the Substrate and no more

electrons are left in Floating Gate. Fig. 2.4 is a simple illustration for this operation.

Drain
floating

Control gat Ei E
on gifga §_4|
\Y

Source
floating

Figure 2.4: Erase operation in a NAND cell

2.1.4 NAND Flash Cell Read

A Single Level Cell (SLC) means-that only 1 bit\data is stored per cell. Therefore,
the threshold voltage region ofia SEC is divided into two levels. Fig. 2.5(a) shows the
threshold voltage distribution of SLC and wewill use Fig..2.5(a) to explain read operation.

When we read a cell in Fig. 2.5(a), its gateis-driven at Vzrgap(0V') , while the other
cells are biased at Vpags r(4 — 5V) ¢ so that they ¢an act as pass-transistors. In fact, an
erased SLC has a Vyy smaller than 0 V; vice versa, a written SLC has a positive Vg
smaller than 4 V. In this example, biasing the gate of the selected cell with a voltage

equal to 0 V| the series of all the cells will conduct current if the addressed cell is erased.

Bit Lines VBIAS

Vrassr
Unselected WL Vpassr I I I
Selected WL Vggap | |
i]]] i
3 Unselected WL Vpss r
|
Vry distributions :]]]
™ |
i
| Veassr
|
0 ! >
Veero Wses W Source Lines 0V —| —| —|
(a) Threshold voltage distribution of a Signle (b) NAND string biasing during read

Level Cell

Figure 2.5: Read operation in a NAND string

2.2 Reliability of NAND Flash Memory

2.2.1 Program Disturb

Program operation in a NAND string described in 2.1.2 will cause disturb in other
unselected cells. We use Fig. 2.6 to explain program disturb and pass disturb.

Cell A is the cell to be programmed. Cell B will suffer from the program disturb. The
effective programming voltage for cells B is Vpgay — Vop. Vep is the equivalent potential
in the channel. To lower the effective programming voltage, a high Vpags p is applied
in other cells. Pass disturb occurs in the cell C. It’s effective programming voltage is
Vpass,p. Therefore, the program disturb can be reduced by increasing Vpagss p at the

expense of an increased pass disturb.

Vop GND Vop

Bit Lines J J J

VDD

Unselected WL Vpassp l | |

l_! I_!I_!

Addressed cell : A" .
RS S

Selected WL Veew § |
Unselected WL Vpsgsr 3
GND

Source Lines —| —| —|

Figure 2.6: Program disturb in a NAND string

2.2.2 Read Disturb

Read disturbs are the most frequent source of disturbs in NAND architectures. This
kind of disturb may occur when reading many times the same cell without any erase
operation. Unselected cells in Fig. 2.7 will suffer from read disturb due to the Vi = 4.5V

applied in unselected cells.

Bit Lines VBIAS J J J
4.5V
Unselected WL 4.5V | | |

Selected WL, 0V |

Unselected WL 4.5V

4.5V

Source Lines 0V _I l—| —|

Figure 2.7: Read disturb in a NAND string

2.2.3 NAND Flash Multi-level Cell

Fig. 2.8 shows a 2bits/cell NAND flash cell. The obvious advantage of a 2 bit/cell
implementation (MLC) with respect to a 1 bit/cell device (SLC) is that the area occupa-
tion of the matrix is half as much. On the other hand, the area of the periphery circuits
increases. Threshold voltage region is divided into 4 levels and region for each level is nar-
rower. Therefore, the probability of threshold voltage shifting to other level is increased

and led to degradation of reliability.

100000
Data= 11 10 01 00
£ 10000 - /'\ -\
8 \ I\ (
w— 1000 § { H
5] £ f 3
- f &A H i
S 100 £ i H i
£ i R
5./ o
I
| *
1 : ; : A .
1 2 3 5 6 7

4
Cell Threshold Voltage in Volts
Figure 2.8: Threshold voltage distribution of a 2bits/cell NAND flash cell

Advanced technology scale down and more bits of data stored per NAND flash cell will
cause the degradation of reliability. More parity bits are required to improve the correcting
capability of BCH code. The increase of spare area (area for parity bits storage) greatly
degrades the data storage capacity and is infeasible to commerical product. To overcome
this problem, NAND flash memory system will provide more information (soft input) in
the next generation standard and mueh powerful error correcting code can be adopted.
BCH code is feasible for its simplehardwarearchitecture and only hard input requirement.
However, BCH code has only little improvement when soft input is provided. LDPC code
is probability-based and soft information can be well-used. Therefore, LDPC code is a
good candidate for the next gerneration NAND-flash memory system. Providing soft input
will inrease reading latency in flash’ memory system< This is a trade-off between correcting
capability and system latency. This thesis shows that only 2-bits soft input LDPC code

can outperform BCH code under same code rate.

10

Chapter 3

Construction of Low Density Parity

Check Codes

Low Density Parity Check (LDPC) codes were first discovered by Gallager in 1962 [7]
and were rediscovered and generalized by MacKay in 1999 [8]. Based on the methods of
construction, LDPC codes can be elassified into-random-like codes and structured codes
[11]. Well designed LDPC codes'decoded with iterative:decoding using belief propagation
(BP) algorithm, achieve performance ¢lose to the Shannon limit. Consequently, LDPC
codes were widely adopted forerror control'in many communication and digital storage
systems.

In this chapter, structured codefconstruction - methods will be introduced. Code pa-

rameters related to performance and implementation complexity will be discussed.

3.1 Code Construction

3.1.1 General Construction of QC-LDPC Codes

We start code construction from a base matrix W with size d, X d.. d, represents
column degree and d. represents row degree. w; ; means the element located in i-th row
and j-th column in W. w;; could be a numeral value or an element in finite field. The
algebra to determine w; ; is diverse and make constructed QC-LDPC codes have different

performance and characteristic.

11

Wo,0 Wo,1 ce Wo,d.—1

wi,0 W21 T W1,d.—1

Wd,-1,0 Wd,-1,1 " Wdy,—1,d.—1
Let P be a circulant permutation matrix(CPM) with size p. It’s top row is given by
the p-tuple (0 100 --- 0). P consists of p-tuple first row and its p — 1 right cyclic shifts
as other rows. P!, the product of P with itself 7 times, is also a CPM whose top row has

a single 1-component at the position . Fig. 3.1 is a demonstration for CPMs with size 4.

0
0
1
0

e — N —)
S —— R R
S = o @
S = o @

0 1 0 0 1 0 0 0 0 1
1 0 1 0 0 1 1 0 0 O
0 0 0 0O 0 0 0o 1 0 0
0 0 0 1 0 0 0 0 1 0

= — N R

P’=p* P! P’ P’
Figure 3.1: Circulant-Permutation, Matrices with size 4

Replacing elements in the-base matrix W with \CPMs will derive the parity-check
matrix H. The correspondencerbetween elements in the base matrix W and CPMs also

diverse. We will introduce two kinds of algorithm-te construct QC-LDPC codes.

3.1.2 Product QC-LDPC codes

The base matrix W of product QC-LDPC codes [11] is constructed in a prime field.
Assume a prime number p is chosen, w; ; will be (i x 7 mod p) for 0 < i, 5 < p. Maximum

size of the base matrix W will be p x p.

0 1 .- 1
W= J
0 i=1 - (i—=1)x(j—1)

After column degree d, and row degree d. is determined, we can select a sub-matrix

with size d, x d. from the base matrix W. Denoting the sub-matrix as Wy, Wsup i j

12

represents the element located in i-th row and j-th column in W,;,. The CPM size of
product QC-LDPC codes is p. Let P be a CPM with size p, elements in selected sub-
matrix will be replaced by P%sw i for 0 <1 < d,,0 < 7 < d.. Fig. 3.2 illustrates a base

matrix and its correspondent parity-check matrix.

10 0::1 0 0::1 0 o\
010,010,010
10 0::0 1 0::0 01
0 0 0 010,001,100,
P’ p° p° 10 0 111 0 010 1 0]
0 M 00001010}
P P P 0 105100001
0 2 1 0 2 1 = Il Il
P° P° P 0 0 100 1 0)1 0 0
(a) Base matrix (b) Correspondent parity-check matrix H
W forp=3

Figure 3.2: Hlustration of Product QC-LDPC codes

13

3.1.3 Latin Square QC-LDPC codes

The base matrix W of Latin square QC-LDPC codes [12] is constructed in a galois
field GF(2™). Maximum size of the base matrix W is 2™ x 2™ and size of the CPM is

2m 1) x (2™ —1). w;;is (a'n —ad) for 0<i,7 < 2™ o’ =1, a™>® = 1.
7]

a’n —al a'n — ot a'n — =
aln —al aln — ot aln — o=
W =
a>p—a’ a>®p—al - a"®n—a >

n is an element in GF(2™). Choosing different 7 only permutes the rows in W. We
can also select a sub-matrix with size d, x d. from the base matrix W. However, the
sub-matrix W, should be chosen carefully without element o™, wgy ;. represents the
element located in i-th row and j-th column in Wy,,. Assume wgyp 4 ; is o, elements in
Ww will be replaced by P*. a~! may exist in Wy, but the CPM P~! is not defined.
Fig. 3.3 illustrates a base matrix and a CPM of Latin Square QC-LDPC codes.

a' @ o 51] &b ot dla’
(13 a-l (14 (10 (12 (16 aS (ll
o a'd ddddd
(11 (10 (15 a-l (16 a2 (14 (13
(15 (12 (11 (16 a-l (10 a3 a4
dadddadd
daadad ddad
a() (ll (12 (13 (14 aS a6 a-l
(a) Base matrix W for m = 3,7 = o° (b) CPM with size (2™ — 1) x

(27— 1)

Figure 3.3: Hlustration of Latin Square QC-LDPC codes

14

3.1.4 Comparison between Product and Latin Square QC-LDPC
codes
In 3.1.2 and 3.1.3, the algebra of product and Latin square QC-LDPC codes were

introduced. Comparison between product and Latin square QC-LDPC codes were showed

in table 3.1.

Table 3.1: Comparison between Product and Latin Square QC-LDPC codes
Product Latin Square

w; j (i x 7 mod p) (a'n —af)

size of the CPM prime number p (2m —1)

dependent rows in H less more

performance good excellent

The algebra of product QC-LDPC codes generates the base matrix W with the same
column offsets in each row. Fig. 3.4 shows that the,offsets between i-th column and 7 — 1-
th column are the same in each xow. Regular offsets.in the base matrix can reduce the
complexity of the shifter in the decoder.—Besides, product QC-LDPC codes is constructed
in a prime field, but Latin square QC-LDPC codes should be constructed in a galois field
GF(2™). Product QC-LDPC codes is more flexible than Latin square QC-LDPC codes.

offset
00000 0
0| 1|2 |3 |4 1
0 24|68 2
0 (3|6 |9 |12 3
04| 8 12|16 4

Figure 3.4: Base matrix of Product QC-LDPC codes without mod operation

Dependent rows in parity-check matrix H will affect the code rate. With the same d,,
d., and CPM size, code rate of Latin square QC-LDPC codes is higher than product QC-

15

LDPC codes. Let d, = 4, d. = 36, CPM size = 127, a (4572,4067) product QC-LDPC
code with code rate 0.8895 is constructed, and a (4572,4081) Latin square QC-LDPC
code with code rate 0.8926 is constructed. Code rate is also a important requirement for
NAND flash memory.

Performance comparison between product and Latin square QC-LDPC codes is showed
in Fig. 3.5. They have the same (p,d,, d.) and approximately the same (N,K). At SNR
4.3, the BER of Latin square LDPC codes is 2.2 x 10~7 whereas the BER of product
LDPC code is about 1.5 x 1075,

) (p,dv,dc) = (127,4,36), soft input, floating, iteration 20
10 ¢ ‘

T E
—6—Product (N,K)=(4572,4067) rate=0.889| 1
—6—Latin (N,K)=(4572,4081) rate=0.893|]
10 “k E

-5

10 ¢ 3

-7

10 1 |
' Eb/No(db)

Figure 3.5: Performance comparison between Product and Latin Square QC-LDPC codes

16

3.1.5 Parameters in Code Construction

For a (N, K) QC-LDPC code, N is the codeword length and K is the information
length. Denote M as the numbers of check equations in H. Consider a base matrix W

with size d, x d. and CPMs with size p X p, equation (3.1) shows the relationship between
(N, K, M) and (p,d,,d.). Code rate is mainly decided by d, and d, (3.2).

N=d.xp

K =N — (M — numbers of dependent rows in H)

K (d.—dy) N (numbers of dependent rows in H) (3.2)
N d (de % p) '

Given N around 9200 and code rate around 0.9, we take product QC-LDPC codes as

an example. First, decide column degree d, and use equation (3.2) to calculate the d,.
that meets the code rate requirement. Once d. is determined, use equation (3.1) to find

possible p. Table 3.2 lists some possible‘codes thatameet the requirements.

Table 3.2: Codes from Product QC-LDPC codes
dy | do| p N K

3 30 30719210:| 8291
4440, 229 | 91608247
6
8

60 |“1517[79060 | 8159
81 | 113 | 9153 | 8256

17

3.2 Performance-Related Parameters

3.2.1 Cycles in Tanner Graph

A cycle in a graph of vertices and edges is defined as a sequence of connected edges
which starts from a vertex and ends at the same vertex, and satisfies the condition that
no vertex (except the initial and the final vertex) appears more than once. The number
of edges on a cycle is called the length of the cycle. Fig. 3.6 illustrates a Tanner Graph
with cycle-4 cycles and its corresponding parity check matrix. The length of the shortest
cycle in a graph is called the girth of the graph.

= @ ~1~0@0 0

011001

(a) A tanner graph with cycle-4 (b) Correspondent parity-check matrix H

Figure 3.6: An example of a tanner-graph with cycle-4

While decoding a LDPC code with BP algorithm, these short cycles, especially cycles
of length 4, make some variable‘nodes highly correlated and hence severely limit the
decoding performance. Therefore, it is important to design codes without short cycles in
their Tanner graphs, especially cycles of length 4. Because the parity-check matrix H is
constructed from the base matrix W with CPMs, we can use base matrix W instead of
parity-check matrix H to compute cycles in LDPC codes.

Fig. 3.7 illustrates cycle-4 produced from base matrix W. Note that the 1st row in
W and the 2nd row in W produce the same check equations labeled with the same color
in H. The value of the 2nd row in W is just the value of the 1st row in W added by 1.
Due to the characteristic of CPM, adding a fixed value in a row in W will not change the
check equations produced by the row.

We use Fig. 3.8 to prove that if the difference between the cyclic shift amount in one
sub-matrix row is equal to the difference between the cyclic shift amount in other sub-

matrix row, cycle-4 is formed. w,, s represents the shift value in m-th row, s-th column.

18

I I
(1 0 0 010 1.0 0lo 0 1 0))
(0 1.0 0,0 0 0,0 0 0(1)
(o0 1 0lo o 111 0 0 o)
0 0 1,1 00 0,0 1 0 0

=
I

<(1) ; §> H=- ‘(g" ““““““ (?) “““ 0 (1)

<

S| |[@| -
S| O |-
S| = ||
S| = || @
N I
S| O |-
S| = ||

<

<

N/

Figure 3.7: Demonstration of cycle-4 in base matrix W and parity-check matrix H.

Subtract the value in m-th row by A and subtract the value in n-th row by C'. Now,
Wyps = Wy s = 0, Wy = (B—A), w, = (D —C). If the equation (3.3) is satisfied, cycle-4
exist in correspondent sub-blocks produced by these 4 shift value. Equation (3.3) can be

rewrite as equation (3.4).

0 .. s t ... p-l
0
m A B
n C D
p-1

Figure 3.8: A base matrix W with p x p

(B—A)=(D—-C) modp (3.3)

(B—A+C—-D) modp=0 (3.4)

19

For product QC-LDPC codes, the shift value of w; ; is ¢ X j mod p. Substitute this
equation w; ; into equation (3.4) we can derive equation (3.6).
(B—A)=mx(t—s) modp

(3.5)
(C—D)=nx(s—t) modp

(B—A+C—-D)=(m—-n)x(t—s) modp=20 (3.6)

Since p is a prime number and 0 < m <n < (p—1), 0 < s <t < (p — 1), equation
(3.6) will not be satisfied for product QC-LDPC codes.

For Latin square QC-LDPC codes, w; ; is defined as (a'n — af). Assume w;; = oF,
the shift value is k. We can not directly substitute the equation w; ; into equation (3.4),
because the numeral value of k is decided by 7,5 and 7. It’s trivial that if A = C' and
B = D, cycle-4 exists in the QC-LDPC code. Add the shift value in m-th row by ¢ and
add the value in n-th row by [. Equation (3.7) is the new value of w,, s, Wy, 1, Wy, s and
wy,¢. Equation (3.8) is the condition for wy, s = wy, s, Wit = Wy 4.

Win,s = (@7 — @), Wiy = @50 —)

(3.7)
Wy s = ozl(a"n —) Wit = al(a"n —a')

(@™ — a")x(a' = a*) =0 (3.8)

Since 0 <m <n < (p—1), 0<s<t < (p— 1) equation (3.8) will not be satisfied
for Latin square QC-LDPC codes.

3.2.2 Column Degree

Column degree d, is defined as the numbers of check nodes connected to a variable
node. From equation (4.3), a variable node with higher d, receives more message from
different check nodes. For LDPC code, we call the performance degradation in water fall
region, the error floor. A LDPC code with higher column degree has better performance
in water fall region. It means that it can suppress the error floor in lower bit error rate
region. Fig. 3.9 shows the performance of LDPC codes with different column degree. s
represents scaling factor in this thesis.

A QC-LDPC codes with high column degree has good performance in water fall region.

In low SNR region, messages passed between check nodes and variable nodes will suffer

20

Product Code, AWGN, iteration = 50 ,NMS

10 ¢ \ T T I I I E
——(N,K)=(9210,8291) rate=0.900 s=0.8 (p,dv,dc)=(307,3,30)
t ——(N,K)=(9060,8159) rate=0.901 s=0.6 (p,dv,dc)=(151,6,60)| 1
_2’ —©—(N,K)=(9153,8256) rate=0.902 s=0.5 (p,dv,dc)=(113,8,81) |
10 "¢ : E
10° E i
v
w 10 4; 3
@
10° E B
10_6 E E|
107”7 i i i i i i i
3.4 3.6 3.8 4.4 4.6 4.8 5

4.2
Eb/No(db)

Figure 3.9: Performance of LDPC code with different column degree.

from more disturbance. In Fig. 3.9,(9210,8291) is a-product QC-LDPC code, with column
degree 3. It has poor performance at waterfall region due to its low column degree. LDPC
code with column degree 6 and 8 has better performance at waterfall region. But, we can
still find that the bit error rate (BER) difference between-SNR 4.8 and SNR 4.6 in LDPC
code with column 8 is large than_the BER differen¢e between SNR 4.5 and SNR 4.3 in
LDPC code with column 6.

3.3 Proposed (9216,8195) QC-LDPC code

The requirement for codes applied in NAND flash memory includes information length
K >= 8192, code rate > 0.9, and no performance degradation down to bit error rate near
107*2. For good performance, we use Latin square algebra to construct the LDPC code.
Although a LDPC code with higher column degree has better performance in water fall
region, it also implies more hardware cost in variable node update units (VNUSs). The
selection of the column degree is a trade off between code performance and hardware
cost. At first, a (9180,8179) Latin square QC-LDPC code with (d,,d.,p) = (4, 36,255)

is proposed. However, it’s information length is less than 8192. In order to increase the

21

information length, we enlarge the size of CPM to 256 according to the equation (3.2).
Hence, the constructed (9216,8195) code is not a traditional Latin square QC-LDPC code.
The equation (3.6) helps us to find the code without cycle-4.

AWGN, iteration = 20, s=0.75, Normalized Min—Sum

-1

10 F T T T T T F T T T B

: : —6—(9216,8195), soft input , floating|

F —¥—(9216,8195), 2 bits soft input, Q(4,2) | -

_2' (9153,8179), soft input , floating| |

10 'k g : * (9153,8179), 2 bits soft input, Q(4,2) |

i % 1
107
o i
L L
m I
107
10_55

10_6 I I I | | I I I

3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4
Eb/No(db)

Figure 3.10: Performance of Proposed«(9216,8195) QC-LDPC codes

Fig. 3.10 shows the performance/of (9216,8195) and (9180,8179) LDPC codes. The
lines with o (circle) are the performance with soft-input and no quantization in the de-
coder. The lines with * (star) are the performance with 2 bits soft-input and 4 bits

quantization in the decoder. Their performance are very close. Hence, the decoder archi-

tecture is designed for the (9216,8195) Latin square QC-LDPC code.

22

Chapter 4

LDPC Decoder Architecture

4.1 Decoding Algorithm

4.1.1 Standard BP Algorithm

The log-likelihood ratio (LLR) of intrinsie-information of n-th variable node is denoted
by P,. The message from n-th variable node tosm-th check node is denoted by z,,,. The
message from m-th check node'to n-th-variable node is denoted by ¢,,,,,. The a posteriori
LLR of n-th bit is denoted by z,. The standard BP is carried out as followed.

1. Initialization: Set ¢ = I maximum number of/iterations to Is.,. For each m, n,

set zﬁ,% =P,

2. Iterative Decoding:

(a) Check node to variable node update step, for 1 <n < N and each m € M(n),

process
d 2 1
I =2tanh™! :
e anh™' (] tanh(Zmn . ny) (4.1)
n’e€N(m)\n

(b) variable node to check node update step, for 1 <n < N and each m € M(n),

process
S D (4.2)
m/e€M (n)\m
=P+ > iV (4.3)
meM(n)

23

3. Hard Decision: Let X,, be the n-th bit of decoded codeword. If 20 >0, X, =0,
else if 2V < 0, X, = 1. If H(z®)* = 0 or I, is reached, stop and output the code

word. Otherwise,set ¢ =7 + 1 and go to Iterative Decoding.

The iterative decoding processes for one iteration of standard BP is illustrated below.
The messages are updated in parallel way between check nodes and variable nodes. The
process are shown in Fig. 4.1(a) and 4.1(b). The arrows with purple color represent check
node to variable node update message. The arrows with blue color represent variable node

to check node update message.

R

(b) variable nod to check node update

Figure 4.1: Hlustration of standard BP.

Because of the numeral characteristic of tanh function, the absolute value of equation

(4.1) will be dominated by min(

zﬁ,i;,l) ’) We can approximate (4.1) as following equation.

This is so called min-sum algorithm [13].

mn’

(5] (4.4)

O ~([sign(:E .
3 ~ stgn\z, ., X min
mn (9 (mn)) W EN(mM\n
n’€N(m)\n

The normalized min-sum (NMS) algorithm [14] applies a scaling factor 5 to compen-

sate for the approximation error. Our LDPC decoder adopt the NMS algorithm, because

24

it reduces the computational complexity in check node to variable node update step.

(Z(i_/l)

(1)~ | | ’ (i-1) :
£ ~ n / X min
mn (stg (Zmn)) n’EN(lm)\n
n’€N(m)\n

) % 3 (4.5)

4.1.2 Column Shuffled Decoding Algorithm

From the equation (4.5), check node to variable node update step can be implemented
by sorters and the number of inputs to sorters is determined by row degree. However, high
code rate Quasi-Cyclic (QC) LDPC code constructed by Circulant Permutation Matrices
introduce high row degree. The hardware cost and critical path of Check Node Unit
(CNU) is greatly increased. Column shuffled decoding algorithm [10] divides received
codeword into G groups and processes check node update step in G cycles. Thus, the
number of inputs will be reduced.

In column shuffled decoding algorithm, the initialization, stopping criterion test, and
output steps remain the same as the standard BP algorithm. The only difference between
two algorithms lies in the updating procedure. < Assume the N bits of a codeword are
divided into G groups, so each group-contains N/G"=_.N; bits. The messages are only
exchanged between one group eof variable nodes and check nodes which are connected the
group of variable nodes at a time. In addition; each group-of messages is updated in order.
Furthermore, it count one iteration when all groups have been updated. For G = 1, the

column shuffled decoding becomes standard BP.
1. Initialization: zﬁrOLZL =P,
2. Tterative Decoding: For 0 < g < G — 1, perform the following two steps.

(a) Check node to variable node update step, for g- Ng <n < (¢9+1)- Ng—1 and

each m € M(n), process

e H sign(2\)) x H sign(zt—1)

n'€N(m)\n n'€N(m)\n
n'<g-Ng—1 n’'>g-Ng
X min min { zx)n, }, min {‘27(2;/1)’} x B (4.6)
n'€N(m)\n n’€N(m)\n
n'<g-Ng—1 n'>g-Ng

25

(b) variable node to check node update step, for g- Ng <n < (g+ 1) - Ng — 1,

process

D =Py Y LY (4.7)

m/eM (n)\m
_pe Y el (48)
meM(n)

3. Hard Decision: Let X,, be the n-th bit of decoded codeword. If zg) >0, X, =0,
else if 28 < 0, X, =1

The decoding processes for one iteration of column shuffled decoding is illustrated in
Fig. 4.2 with G = 3 as example. The arrows with purple color represent check node to
variable node messages to be updated. The arrows with blue color represent variable node
to check node messages to be updated. On the other hand, gray arrows represent that

messages are not updated.

26

(b) Update second group

(a) Update first group

(¢) Update third group

Figure 4.2: Hlustration of VSS

27

4.2 Area-Efficient Column Shuffled Decoding Archi-
tecture

Details of Column Shuffled decoding algorithm is introduced in previous chapter.
Hardware architecture for the proposed (9216,8195) LDPC code will be fully explained in
this section. Our design is focused on the hardware cost. Therefore, the decoder depicted
in Fig. 4.4(a) is composed of partial-parallel CNUs and partial-parallel VNUs. Fig. 4.3 is
proposed base matrix with d, = 4, d. = 36. Variable nodes are divided into 36 groups (G
= 36). There are 256 Check Node Units (CNUs) and 256 Variable Node Units (VNUs).
Let ozf]i) denotes the sorted messages sent from variable nodes in the g-th group to one
specific check node at i-th iteration, which is:
al) = min {‘z(i),

g n’€N(m)\n
g-Na<n’<(g+1)-Ng—1

} (4.9)

Then the magnitude part of check node. tor variable node message in (4.6) could be com-

puted by the following equation:

\a;?n\:min{{a;“} gl fal=") } (4.10)
71<9 k>g

Fig. 4.4(b) demonstrates the timing diagram-of proposed decoder. There are G ini-
tialization cycles required to calculate 042 for 0 <.g < G — 1. Since only one subgroup
of the message 29 s updated in g-th‘cycle of one iteration, the main operation of CNU
could be simplified. Calculate aéi) (local sorting) in each cycle and then perform global
sorting like equation (4.10).

To reduce the hardware cost, we choose G = d. = 36, so the process of local sorting
in equation (4.9) can be omitted. Furthermore, traditional column shuffled decoding

completes a full variable node computation in 1 cycle. We divide the computation into

d., 4 cycles. Fig. 4.3 illustrate that how we divide the check nodes and variable nodes.

28

Gy |G| G| G3 | Gy | Gs | Gg
Ry |50 | 88 141| 62 |150 | 70 | 226

R, |174| 51 | 89 |142| 63 | 151 71

Ry, | 2 [175) 52 | 90 |143 64 152

R; 233 3 |176 | 53 | 91 | 144 65

Figure 4.3: Division on the nodes

In the propose architecture, only messages ag) and £\, are sorted. The sorted results

could be represented by 1st min value, 2nd min value, and the index of 1st and 2nd value
in NMS algorithm. Therefore, the proposed decoder only latches 2 values, 2 index, and
sign part of messages in each subgroup, while the variable node to check node message
29 s on-the-fly calculated. The area-efficient column shuffled decoding architecture is

feasible because the CNU could be updated;immediately after VNU’s operations.

29

Output Buffer

Input Buffer
CNU 1 —* VNU1 "
1% 2% minidx | ” 7 7
ot
v —>
: £ | |8 SVNuZE
g CNU 2 5 2
st And __- - (9]
2 1% ,2" min,idx 2 4
o0 =) =3 .
£ : £ g :
AR A
& 72 §
» CNU 256 —*» VNU256 —»
1% 2" min,idx > g
(a) LDPC decoder architecture
Go Gy G,
CLK
AN ,\4 L —
Suhstr?.tor Substractor J/Suhstractor Substract7r Substractor
v v | v
S%rter A/ S(}pté' ‘ Sorter ‘ Sortel* Sorter
v v | v
/Shlf}é A/ Shifter ‘ Shifter ‘ Shifteli\ Shifter
v v_| v
‘Mem&Reg Mem & Reg | Mem & Reg Mem&Re% /‘\’lf‘l/éReg Mem&Reg Mem & Reg Mem&Re% Mem & Reg
v v v v\l v v\l
‘ Adder Adder Adder Adder Adder Adder Adder Adder Adder
Ry R R, R; Ry R, R, R; Ry

(b) Area-efficient Column Shuffled decoding scheduling

Figure 4.4: Proposed architecture and scheduling

30

4.3 Check Node Unit

This section presents detail CNU architecture based on column shuffled decoding. The
CNU architecture is further optimized to reduce storage requirement and the numbers of
inputs to sorters. Different CNU architectures will affect the convergence speed and per-
formance which will be discussed in the next chapter. The messages sent from VNU are
converted from two’s complement format to sign-magnitude format for efficient compu-
tation of CNU. Therefore, the operation of check node to variable node update could be

divided into magnitude part and sign part.

4.3.1 Accumulative Sorter

For our proposed QC-LDPC codes with d. = 36, The column shuffled with G = 36
could divide 36 inputs of the CNU into 36 parts. Thus, a CNU receives only 1 input in g-
th group update according to equation (4.9). In NMS algorithm, to implement operation
in the equation (4.10) perfectly needs o store d. 1 zy(,fb)n, these d. — 1 2, will be sorted
with ag). The sorted 1st, 2nd min value will begent-as \%, in equation (4.2).

However, due to the large storage-cost; to store d.— 1 zy(ﬁ)n for the sorted 1st,2nd

min value is impractical. Only.2 2\, are stored in our CNU architecture. The inputs of

the sorter are 2 2, and 1 aéi). It’s a simple 3 to-2 accumulative sorter. Proposed CNU
architecture reduces large storage costrand hardware cost. But, it suffer from performance
loss, because it may lead to wrong results in sorted 1st, 2nd min value while reducing the
numbers of stored 2.

Fig. 4.5 is an example for the operation of accumulative sorters. In this example, we
assume row degree = 5 and G = 5. Follow the operation in the equation (4.10), the sorted
1st, 2nd min result in 1-th group in iteration 2 should be 0.75 and 0.75. Fig. 4.5(a) shows

the sorted results with 2 2\, stored. We get wrong sorted results in 1st, 2nd min value.

Fig. 4.5(b) shows the sorted results with 3 2\, stored. The 1st min value is correct, but
2nd min value is still wrong. The problem resulted from the conflict between index of

input value and the index of stored 1st, 2nd min value.

31

initialize | iteation 1 | iteation 2

Group | 0 1 2 3 4 0 1 2 3 4 0 1 2

input | 0.25| 0.5 [0.75| 1.0 |0.75]0.25| 0.5 |0.75| 1.0 |0.75|1.25 | 1.5 | 1.75

1% min | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.5 | 1.25 | 1.25

2™ min| o0 | 050505]05|0505|05]|05)|05]|1.25 15| 15

(a) Reserve 2 z,(,?n

initialize | iteation 1 | iteation 2
!

Group | 0 1 2 3 4 0 1 2 3 4 0 1 2

input [0.25| 0.5 | 0.75| 1.0 |0.75|0.25| 0.5 (0.75| 1.0 | 0.75|1.25| 1.5 | 1.75

1* min | 0.25 | 0.25 [0.25 | 0.25 | 0.25| 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.5 | 0.75 | 0.75

2™ min| o0 [0505 05|05/|05|05 050505075125 1.25

3 min| o0 | o0 |0.75|0.75|0.75 [0.75 | 0.75| 0.75 | 0.75 [0.75 | 1.25 | 1.5 | 1.5

(b) Reserve 3 z,(fl)n

Figure 4.5: Accumulative‘sorters with different numbers of stored 20,

4.3.2 Optimization Strategy

Increase the number of stored 2\, can‘teduce the index conflict problem at the cost of
more storage and gate count. In propoesed CNU-architecture, the sorter is a very simple
3 to 2 accumulative sorter. The rules in-replacing 1st, 2nd min should be considered
carefully in order to reduce the conflict problem. The main idea is to reserve the latest
index if the sorted value are the same. Equation (4.11) and (4.12) will lead to different

sorted results which are demonstrated in Fig. 4.6.

input < 1st min , input < 2nd min (4.11)

input < 1st min , input < 2nd min (4.12)

The correct sorted 1st,2nd min in 1-th group in iteration 2 should be 0.25 and 0.75.
The sorted 1st, 2nd min following the equation (4.11) is 1.25 and 1.5. The sorted 1st, 2nd
min following the equation (4.12) is 0.25 and 1.5. It’s obvious that equation (4.12) is close

to the correct 1st, 2nd min.

32

initialize | iteation 1 | iteation 2

Group | 0 1 2 3 4 0 1 2 3 4 0 1 2

input | 0.25|0.25|0.75|0.25 | 0.75 | 0.25 | 0.25 | 0.75 | 0.25 | 0.75 [1.25 | 1.5 | 1.75

1" min | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 1.25 | 1.25

2™ min| 0.75|0.25 | 0.25|0.25 | 0.25 | 0.75 | 0.25 | 0.25 | 0.25 | 0.25 | 1.25 | 1.5 | 1.5

(a) Equation (4.11)

initialize | iteation 1 , iteation 2
| |

Group | 0 1 2 3 4 0 1 2 3 4 0 1 2

input | 0.25|0.25|0.75|0.25 | 0.75 | 0.25 | 0.25 | 0.75 | 0.25 | 0.75 | 1.25 | 1.5 | 1.75

1 min | 0.25 | 0.25 | 0.25 | 0.25 [0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25

2" min| 0.75 | 0.25 | 0.25 | 0.25 | 0.25 | 0.75 | 0.25 | 0.25 | 0.25 | 0.25|0.25 | 1.5 | 1.5

(b) Equation (4.12)

Figure 4.6: Accumulative sorters with different replacing rules

The two different replacing rules result in different, performance. In Fig. 4.7, red line
shows the BER using equation (4.12) and green line shows the BER using equation (4.11).

Using equation (4.12) can achieve better performance.

33

(9216,8195), AWGN, 2bit soft-input, Q(4,2), iteration = 20, s=0.75

10 T T T T T T T T T
‘ ’ —#— 1st,2nd min, proposed 1
1st,2nd min, index conflict| |

BER

| | | | | |
4 4.05 4.1 4.15 4.2 4.25 4.3 4.35 4.4 4.45 4.5
Eb/No(db)

| 1 1

10

Figure 4.7: Performance for accumulative sorter with different replacing rules

34

4.4 Variable Node Unit

Fig. 4.8 shows the VNU architecture, where SM to TC represents sign-magnitude
to two’s-complement conversion, and TC to SM represent two’s-complement to sign-
magnitude conversion. Since column degree is 4, the adder takes 4 cycles to compute
the posteriori LLR 2 in g-th group.) used in the adder should be stored to calculate
the 2\, sent to (g + 1)-th group.

The bit width of messages passing between CNU and VNU is 4. Scaling factor 0.75 in
NMS algorithm (4.5) is applied in our architecture. Small value 0.25 will not be multiplied
by scaling factor in order to reserve its information. 2 bits channel value is mapped to
4 bits value by non-linear quantization. More details of non-linear quantization will be

discussed in next chapter.

Addsr out {7)
N Subtractor
1* or 2™ min, for Add Subtractor out (4)
initial yale (4) er &S
Arb caler
Old min=(4)
7 4 4

E |) 6 Scale &

AN A‘. -*’
*»4 T) *»4 T ?* Truncate TCtoSM
SM to TC SMto TC

Figure 4.8: VNU architecture

35

4.5 Shifting Network

High compexity of routing network between Check Node Units (CNU) and Varible
Node Units (VNU), is the main difficulty for hardware implementation of LDPC code.
Shifting Network [15] [16] has been proposed to reduce the routing complexity. There
are two routing networks between CNUs and VNUs. One is the direction from CNUs to
VNUs, while another one is the direction form VNUs to CNUs.

Due to the quasi-cyclic character in Latin square QC-LDPC code, the shifting network
can be simplified. The value computed by CNUs will be stored to memories. Operations
of VNUs start with fetching the value from memories. The routing networks from mem-
ories to VNUs are fixed. Therefore, shifting networks between CNUs and memories are
needed. The idea is illustrated in Fig. 4.9. Green lines represent the routing networks
from memories to VNUs. Purple lines represent shifting networks between CNUs and
memories.

The shifting network in Fig. 4.9(b) in Gorean be ignored, because the sub-matrix in
Gy are two identity matrices. From previous discussion 3.2.1, adding a fixed value in a
row in base matrix W will not change the check equations produced by the row. W; in
Fig. 4.10 is the original base matrix proposed. W5 is the equivalent base matrix to Wy
with four identity matrices in Gy. Thus, the shifting network on the initial cycle in Gg
can be ignored.

However, the difference between ¢ycliershift amount of each group is a not constant.
A table is constructed to record the difference between cyclic shift amount of each group.

The shifting network in our design is a traditional Barrel shifter.

36

Go G1 Gz
| |
710 0 0lo 10 0lo 0o 1 0)
0100:0010:0001
00 1 0lo o 0o 111 0 0 o
He 0001:1000:0100
1.0 0 0lo 0 1 0lo o0 o0 1
0100:0001:1000
0 0 1. 01l1 0 0 0l0 1 0 0
\0001:0100:0010/
| |

(a) A QC-LDPC code divided into 3 groups

(O] C, C; Cy Cs Ce Cs Cs

A 4 A 4 A 4 Y \ 4 A 4 A 4 Y

(O] C, C; Cy Cs Ce Gy Cs

W@ ®

Ci G Cs Cy Cs Cs C; Cs

S S

Cy G C, C; C; Csg Cs Cs

ONOEOND

(b) Shifting network for correspondent code

Figure 4.9: Hlustration of networks between CNUs and VNUs

Go |Gy |Gy | G3 |Gy | Gs | Gg eee Go | Gy |Gy | Gy | Gy | Gs | Gg

Ry |50 | 88 141 | 62 150 | 70 | 226 Ry| 0 | 38|91 |12 |100| 20 | 176

R, |174| 51 | 89 |142| 63 |151| 71 R;| 0 | 133171224 145|233 |153

Ry | 2 [175| 52 | 90 | 143 | 64 | 152 Ry | 0 [173] 50 | 88 | 141 | 62 | 150

R; (233 3 (176 | 53 | 91 | 144| 65 Ry | 0 |26 199 76 | 114|167 | 65
W, W,

Figure 4.10: Equivalent base matrices W; and W,

37

Chapter 5

Simulation and Implementation

Results

5.1 Optimized Quantization

Belief Propagation (BP) is a prebability-based message passing algorithm. When soft
input is available, LDPC code can provide powerful .correcting ability. LDPC code with 2-
bits soft input can outperform BCH code under same ¢ode rate. Additive White Gaussian
Noise (AWGN) channel with Binary Phase Shift Keying Modulation (BPSK) are used for
demonstration and simulation. “We ‘assume that bit ‘0’ is mapped to ‘1’ and bit ‘1’ is
mapped to ‘—1’. 2-bits quantization cai represents 4 levels. We select a threshold f to
divide received channel value into 4 levels as shown in Fig. 5.1. A bit with channel value
near 0 has a high probability to be an error bit. Therefore, a non-linear quantization is

preferred.

'Vm in Vmin Vmax

Figure 5.1: 2 bits (4 levels) non-linear quantization.

38

The value of f, V,,;, and V,,,, will affect the code performance severely. We use Fig.
5.2 to explain how to derive appropriate parameters for 2-bits quantization. Once the f
is determined, received channel value is divided into 4 regions. The main idea is to find
the value that can mostly represent all the value in the region. Therefore, the concept of

weighted mean is applied.

D wy
= S
In Fig. 5.2, given f = 0.35, SNR= 4.0, (Visin, Vinae) = (0.2390,1.0813) can be derived

(5.1)

Ty

from equation (5.1).

0.9

0.8

= =
o~
T I

N t
T T

o 9 o o
N oW

Probability Density Function

Figure 5.2: Received channelwalue.distribution for (9216,8179) LDPC code

39

Fig. 5.3 shows the performance with different (f, Viuin, Vinaz). The bit width of input
LLR after non-linear quantization and messages passing between CNUs and VNUs in de-
coder is floating. Decoding algorithm is Normalized Min-Sum algorithm. (f, Viuin, Vinae) =
(0.35,0.25,0.75) and (f, Vinin, Vinaz) = (0.35,0.5,1.5) have the same performance, because
they have the same (V,,4z/Vinin) ratio. However, the parameters from equation (5.1) can
appropriately represent the value in the divided region, it is not ensured that the param-
eters provide the best decoding performance. The bit width and the algorithm used in
the decoder will affect the final result, but the (V,,4./Vimin) ratio is still a good reference
for us. In Fig. 5.3, (Vinaz, Vinin) With (Vinae/Vinin) ratio near the derived (Viaz, Vinin) have

good performance.

(9216,8195), 2 hits soft inputs, floating, NMS, iteration = 20

T

[n g
|
m
| | —6—=0.35 vmin=0.25 vmax=1.00
107k —+ f=0.35 vmin=0.25 vmax=0.75
F| —=—f=0.35 vmin=0.25 vmax=1.25
[|—6—f=0.35 vmin=0.50 vmax=1.25
| —#%—f=0.35 vmin=0.50 vmax=1.50
[| —8—f=0.35 vmin=0.50 vmax=1.75
| —©—=0.35 vmin=0.2390 vmax=1.0813
5 f=0.40 vmin=0.2700 vrqax=l.0950 ‘ ‘ ‘
10 4 4.05 4.1 4.15 4.2 4.25 4.3

Eb/No(db)

Figure 5.3: Code performance with different (f, Viin, Vinaz), floating

40

Fig. 5.4 also shows the performance with different (f, Vi,in, Vinaz), but the bit width of
input LLR after non-linear quantization and messages passing between CNUs and VNUs
in decoder is 4. (f, Vinin, Vinaz) = (0.35,0.25,0.75) and (f, Vinins Vinaz) = (0.35,0.5,1.5),
which have the same performance in Fig. 5.3, now have 0.15dB performance difference
at BER 1073, Assume two sets of (Vyaes Vinin) With the same (Va2 /Vinin) ratio, larger
(Vinazs Vinin) provides better performance. Hence, (f, Vinin, Vinae) = (0.35,0.5,1.75) is

chosen.
" (9216,8195), 2 hits soft inputs, floating, NMS, iteration = 20, f=0.35
10
‘ ‘ ‘ ‘ ‘ —©— (vmin,vmax)=(0.25,1.00) ratio 4.0
~—*— (vmin,vmax)=(0.25,0.75) ratio 3.0
—&— (vmin,vmax)=(0.25,1.25) ratio 5.0
—6— (vmin,vmax)=(0.50,1.25) ratio 2.5
1073k —#— (vmin,vmax)=(0.50,1.50) ratio 3.0
F —&— (vmin,vmax)=(0.50,1.75) ratio 3.5
—©— (vmin,vmax)=(0.24,1.05) ratio 4.4
f=0.40 (vmin,vmax)=(0.27,1.06)
x o
w10 p 4]
o i
10°F]
10’6 i i i i i i i i
4 4.05 4.1 4.15 4.2 4.25 4.3 4.35 4.4 4.45 4.5
Eb/No(db)

Figure 5.4: Code performance‘with different (f, Viin, Vinae), Q(4,2)

41

5.2 Performance Evaluation

Fig. 5.5 shows that the BER performance of proposed Area-Efficient Column Shuffle
decoding algorithm converges faster than and NMS algorithm and the CNU with index

conflict cases.

(9216,8195), AWGN, s=0.75, SRN=4.4, 3.9336*10° bits

10 F A T T T T T T T
F —6— 2 bit soft, Q(4,2), NMS]
[—&— 2 bit soft, Q(4,2), index conflict| |
r —e—2 bit soft, Q(4,2), proposed 1
-3
10 3
107
@ i
LL] L
m I
10_5?
10_6?
10‘7 i i i i i i i
0 5 10 15 20 25 30 35 40

Iteration

Figure 5.5: Converge Speed: Comparison at SNR 4.4

In Fig. 5.6, there is 1.3d B performance gain of 2-bit non-linear soft input LDPC code
over BCH code at BER 10~*. 2-bit non-linear soft input LDPC code has a great potential
to replace BCH code for NAND flash memory system. The simulation parameters of
LDPC code are 4-bit quantization (2-bit integer and 2-bit decimal fraction), with scaling
factor 0.75. The bit width of messages passing between CNU and VNU is 4. Area-Efficient
Column Shuffle decoding architecture with 36 group partition, 4 row partition reduce the
amount of CNUs and VNUs, inputs to CNUs, and inputs to VNUs. Since the converge
speed of proposed algorithm is faster than the converge speed of NMS algorithm. With
20 iterations, the performance of proposed algorithm is better than NMS algorithm.

Unfortunately, Fig. 5.7 shows that error floor appears at BER 107, The performance
degradation may result from low column degree or information loss from soft input to

2-bit input.

42

BER

BER

10°°L - 2 bits soft, Q(4,2), proposed !
F 2 hits soft, Q(4,2), index conflict {
—o—hard input, Q(4,2), NMS I
Sl | | —6—(9214,8192), BCH , t=73
10 ‘ :
3.5 4 4.5 5 55
Eb/No(db)
Figure5.6: Gode performance
B (9216,8195), AWGN, s=0.75, iteration=20
10 " ¢ T T
—e—soft input, floating, NMS
24 —6— 2 bits soft, floating, NMS
10 "% —— 2 bits soft, Q(4,2), NMS
& 2 bits soft, Q(4,2), proposed]
107 7 2 bits soft, Q(4,2), proposed, FPGA 7
107 L
10° L
10° &
107 &
10°° E
10_9 E
-10[‘ ‘
1055 45
Eb/No(db)

(9216,8195), AWGN, s=0.75, iter=20

T T T

—6—soft input, floating, NMS
—6— 2 bits soft, floating, NMS
—— 2 hits soft, Q(4,2), NMS

Figure 5.7: Code performance simulated by FPGA

43

5.3 Synthesis Results

The critical path of CNUs + Shifters + VNUs is bns. We assume that the critical path

of control circuit is 1ns. Therefore the clock cycle after synthesis is 6ns. Clock period in

Place and Route is 9ns.

According to the simulation result from Table 5.1, 4 decoding iteration is sufficient to

decode most codewords in high SNR region.

Table 5.1: Early Termination Simulation at different SNR, 10° codewords
SNR 45 | 475 | 5.0 | 5.25

Average decoding iterations | 4.137 | 3.323 | 2.853 | 2.426

Th hout In formationlength
roughput =
g Cycles per iteration - Numbers of iteration - C'ycle period
8195
= ———— = 1.581Gbps:
36.4.4.9 581Gbps

Synthesis results is listed in Table.-5.2. Total gate count is 605.35k whereas the shifter
accounts for 105.2k, 17.38% of-total design.

Table 5.2: Synthesis Results -with technology UMC90.

Gate count

VNU (Adder,Substractor) 90.49k

Combinational circuits CNU (Sorter) 69.12k
Shifter 105.20k

Channel value 80.80k

Memory Hard decision 40.40k
Sign Bits 66.60k

1st, 2nd min, idx 147.40k

Register

Old sign, min 32.77k
Estimated result 632.78k
Final result 605.35k

44

5.4 Implementation Results

Table. 5.3 shows the postlayout results. Gate count after synthesis is 605.35k and
Core area is 3.74mm? without IO pad. Using 90nm CMOS technology, the maximum
throughput is 1.581 Gbps under clock period 9ns with 4 iterations.

Table 5.3: Summary of implementation results (Place and Route).

Proposed LDPC Decoder
Technology UMC 90nm 1P9M
Code Spec (9216,8195)
Code Rate 0.889
Column Degree 36
Row Degree 4
Algorithm Area-efficient Column Shuffle Decoding
Area 3.74mm? (Without 10 Pad)
Gate Count 605.35k
Iteration 20
Input Quantization 2 bits
Clock Period 9ns
Maximum Throughput 1581 Gbps

The core density in this design is 69.83 %, but its density distribution is quite unbal-
anced. The 256 bits Barrel Shifter results in serious congestion problems. Clock period
must be increased to solve the congestion problems. The clock period after synthesis is
6ns. Clock period in Place and Route is 9ns.

In Table. 5.4, the gate count of our proposed design is approximate 3 times of the

(9214,8192) BCH code design.

45

Table 5.4: Comparison with BCH codes

Proposed LDPC Code | BCH Code
Code Spec (9216,8195) (9214,8192)
Code Rate 0.89 0.89
Column Degree 4 t="73
Throughput 1.581 Gb/s 2.41 Gb/s
Gate Count(No I/O Buffer) 484.2k 166.4k

Figure 5.8: BPSK Emulation using FPGA: Xilinx Virtex-5 LX330 with FF1760 package

46

i

S DT AEINRTE U W Y s T o {11 it]!!.‘

Sl

Figure 5.9: Chip Layout in Place and Route

47

Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis proposes a (9216, 8195) LDPC code with code rate 0.89 for NAND flash
memory system. (9216, 8195) LDPC code is constructed from the base matrix produced
by Latin square algebra, with colummn degree 4, tow.degree 36. The size of CPM differ-
ent from original Latin square is applied in order to make information length > 8192.
Parameters for 2 bits quantization'is calculated based on.the concept of weighted mean.
Simulations show that LDPC cede with 2-bit soft.input ean outperform BCH code under
same code rate. Therefore, LDPC code is a good candidate to replace BCH code in the
next generation standard. High code rate-LDPC ¢ode introduces high row degree. This
makes implementation difficult due to the large number of inputs to sorter and the in-
creased routing complexity. Area-efficient Column Shuffled decoding algorithm is a good
solution to this problem. Variable nodes are divided into 36 groups. Check node update
procedures are processed in 36 cycles, reducing the number of inputs to sorter. Only
1st, 2nd min are reserved to reduce the storage cost. Replacing rules in the accumulative
sorter is further optimized for performance. With row divided into 4 subgroups, VNU can
be simplified to a 2-inputs adder and a 2-input subtractor. Shifting networks are applied
between CNUs and memories. The gate count of our design is 605.35k. The maximum

throughput can achieve 1.581 Gbps with 4 iterations, using 90nm CMOS technology.

48

6.2 Future Work

The gate count of shifters account for 17.38% of total design. If we can further
simplified the shifters, critical path and gate count of our design can be lowered, and
the throughput can also be promoted. The study in the regulation of the base matrix
may be a solution to this problem.

FPGA simulation shows that error floor appears at BER 107°. Error correcting code
applied on NAND flash memory system requires no performance degradation down to
BER near 107!2. The most probable reason resulting in performance degradation is that
only 1st,2nd min are stored. Wrong sorted results will propagate in iterative decoding
process. The replacing rules in accumulative sorter should be modified to make the sorted
result more accurately.

There is no standard flash memory channel for any simulation. Therefore, a standard
flash memory channel is desired if we want to compare performances of different error
correcting code on flash memory. We may use. the unsymmetrical AWGN channel for

more accurate simulation.

49

Bibliography

1]
2]

[6]

[10]

A. M. R. Micheloni, L. Crippa, Inside NAND Flash Memories. Springer, 2010.

A. F. D. M. Greg Atwood and B. Reaves, “Intel strataflashtm memory technology
overview,” Intel Technology Journal, pp. 1-8, 4th Quarter 1997.

R.C.Bose and D.K.Ray-Chaudhuri, “On a class of error-correcting binary group
codes,” Inform. and Contr, no. 3, pp. 68-79, March 1986.

A. Hocquenghem, “Codes correcterus derreurs,” Chiffres, no. 2, pp. 117-156, Septem-
ber 1959.

I. Reid, W.J., L. Joiner, and.J. Komo, “Soft decision decoding of bch codes using
error magnitudes,” IEEEInt. Symp. onInfo. Theory, p. 303, June 1997.

Y. M. Lin, C. L. Chen, H.«C.\Chang, and C./Y> Lee, “A 26.9 k 314.5 mb/s soft
(32400,32208) bch decoder chip® forr dvb-s2 system,” [EEE Journal of Solid-State
Clircuits, vol. 45, no. 11, pp. 2330-2340, Nov. 2010.

R. G. Gallager, Low-Density Parity-Check Codes. —Cambridge, MA: MIT Press,
1963.

D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE

Trans. Inform. Theory, vol. 45, no. 2, pp. 399-431, Mar. 1999.

D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density
parity check codes,” Electron. Lett., vol. 33, no. 6, pp. 457-458, Mar. 1997.

J. Zhang and M. Fossorier, “Shuffied iterative decoding,” IEEE Transactions on
Communications, vol. 53, no. 2, pp. 209-213, Feb. 2005.

50

[11]

[12]

[13]

[14]

[15]

[16]

M. Fossorier, “Quasicyclic low-density parity-check codes from circulant permutation
matrices,” IEEFE Transactions on Information Theory, vol. 50, no. 8, pp. 1788-1793,
aug. 2004.

L. Zhang, Q. Huang, S. Lin, K. Abdel-Ghaffar, and I. Blake, “Quasi-cyclic ldpc
codes: An algebraic construction, rank analysis, and codes on latin squares,” IEEFE

Transactions on Communications, vol. 58, no. 11, pp. 3126-3139, Nov. 2010.

M. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity iterative decoding of
low-density parity check codes based on belief propagation,” IEEE Transactions on

Communications, vol. 47, no. 5, pp. 673-680, may 1999.

J. Chen and M. Fossorier, “Near optimum universal belief propagation based de-
coding of low-density parity check codes,” IEFE Transactions on Communications,

vol. 50, no. 3, pp. 406-414, mar 2002.

H. C. C. C. H. Liu, C. C. Lin and C: ¥.-Lee, “Multi-mode message passing switch

2

networks applied for qc-ldpe decodery” dEEE Internatinal Symposium on Clircuits

and Systems, vol. 18, no. 13 pp. 8594, Jan. 2010.

D. Oh and K. Parhi, “Area efficient-controller design of barrel shifters for reconfig-
urable ldpc decoders,” ITEFE Internatinal Symposium on Circuits and Systems, pp.
240-243, May 2008.

51

	01_封面
	ttbk
	02_書名頁
	06_中文摘要_LIN
	07_英文摘要
	08_誌謝
	tt

