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摘   要 

 

BCH碼因為硬體架構非常簡單而且只需要硬式輸入來解碼，目前是應用在快

閃記憶體系統上錯誤更正碼的主流。雖然二位元軟式輸入被提出以加強錯誤更正

能力。但二位元軟輸入對於BCH碼的錯誤更正能力並沒有很大的幫助。因此，本

論文提出適用於快閃記憶體系統的低密度奇偶校驗碼（Low Density Parity Check, 

簡稱LDPC Codes）及其解碼器架構，以二位元軟輸入之LDPC Codes提供在相同

編碼率下比BCH碼更好的錯誤更正能力。 

我們使用拉丁方陣演算法建構出編碼率為0.89的(9216,8195) LDPC Codes，

並利用Area-Efficient Column Shuffle Decoding架構來降低硬體複雜度，解碼過程

中從行的方向把奇偶校驗矩陣分割成36組，每一組再從列的方向分割為4個小

組，這樣的架構能夠使檢查節點運算元被簡化為一個三對二的排序器。另外，我

們利用加權平均數的概念來達到二位元軟輸入之最佳化，在信噪比(Signal to 

Noise Ratio) 5.0dB的情況下，我們所提出的LDPC Code位元錯誤率為10
−9，然而

具有73個錯誤更正能力的BCH碼在此情況下的位元錯誤率為10
−2。使用UMC 

90nm製程，所提出的解碼器邏輯閘數約為605.3k，在4次遞代解碼次數的情況

下，可達到 1.58Gb/s 吞吐量。 
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Abstract 

 

 BCH code is mainly adopted in NAND flash memory system because of 

its simple hardware architecture for hard input requirement. Although soft 

input can be considered to improve the correcting capability, BCH code has 

little improvement when soft input is provided. In this thesis, a 2-bit soft input 

LDPC decoder is presented to outperform BCH code under same code rate. 

    The (9216, 8195) LDPC code with code rate 0.89 is constructed from 

Latin square algorithm. An Area-Efficient Column Shuffled decoding 

architecture is proposed to reduce hardware complexity. Columns in 

parity-check matrix are divided into 36 groups, and all the rows of each column 

group are divided into 4 subgroups. Following this architecture, a check node 

update unit can be simplified as a 3-to-2 sorter. In addition, the concept of 

weighted mean is applied to optimize 2-bit soft input quantization. At signal to 

noise ratio (SNR) of 5.0dB, bit error rate (BER) of our proposed LDPC code is 

10
−9

 whereas BCH code that can correct 73 errors is 10
−2

. Using 90nm CMOS 

technology, our design with 605.3k equivalent gates can achieve the maximum 

throughput 1.58 Gb/s under 4 decoding iterations. 
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Chapter 1

Introduction

1.1 Motivation

Modern NAND Flash momory system adopts error correction codes to improve device

reliability [1] [2]. BCH code [3] [4] is mainly used in single level cell (SLC) NAND flash

memory system because of its simple hardware architecture and hard input requirement.

The area occupation of Multi-level cell (MLC) is only half compare with SLC. However,

MLC also leads to degradation of reliability. More powerful error corrections codes for

next generation NAND flash memory system is needed.

Soft-input is provided to improve the correcting capability of error correction code.

However, BCH code has only little improvement when soft input is provided [5] [6]. LDPC

code is a good candidate for its powerful correcting capability. 2-bit soft LDPC code can

outperform BCH code with same code rate.

Low Density Parity Check (LDPC) codes were first discovered by Gallager in 1962 [7]

and were rediscovered and generalized by MacKay in 1999 [8]. Well designed LDPC

codes decoded with iterative decoding using belief propagation (BP) algorithm, achieve

performance close to the Shannon limit [9]. Consequently, LDPC codes were widely

adopted for error control in many communication and digital storage systems.

High code rate is a necessary condition for error correction code applied on NAND flash

memory system. A high code rate LDPC code introduces high row degree. This makes

implementation difficult due to the large number of inputs to sorter and the increased

routing complexity. Column shuffled decoding [10] is a good solution to this problem.

1



Variable nodes are divided into 36 groups. Only 1st, 2nd min are stored to reduce the

storage cost. With row divided into 4 groups, VNU can be simplified to a 2-input adder

and a 2-input subtractor. Shifting networks are applied between CNUs and memories.

The maximum throughput can achieve 1.581 Gbps with 4 iterations, using 90nm CMOS

technology. The proposed LDPC code decoder has a better performance than BCH code

with the same code rate when 2-bit soft input is provided.

1.2 Thesis Organization

The rest of this thesis is organized as follows. Chapter II gives the introduction of

NAND flash memory. Chapter III introduces the column shuffled decoding algorithm and

the code construction. In Chapter IV, decoder architecture is detailed explained. The

simulation result is given in Chapter V and conclusion in Chapter VI.
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Chapter 2

NAND Flash Memory

2.1 Introduction of NAND Flash Memory

2.1.1 Flash Memory System

Flash memory was invented by Dr. Fujio Masuoka of Toshiba Corp. in 1984. NAND

Flash is employed for data storage in a variety of portable and mobile applications. Since

flash memory is non-volatile, no power is needed to maintain the information stored.

Flash memory cell is based on the Floating Gate (FG) illustrated in Fig. 2.1. The isolated

gate constitutes an excellent ‘trap’ for electrons. The operations performed to inject and

remove electrons from the isolated gate are called program and erase. More details of

these operations will be presented in next section.

Figure 2.1: Floating gate memory cell its schematic symbol [1]

The memory cells are packed to form a matrix in order to optimize silicon area oc-

cupation. In the NAND string, the cells are connected in series, in groups of 32 or 64,

3



as shown in Fig. 2.2. Two selection transistors are placed at the edges of the string, to

ensure the connections to the source line and to the bit line. Each NAND string shares

the bit line contact with another string. Control gates are connected through word lines.

��� �����

	
��
�����


������
�
��������
�


������
�
��������
�



���� �����

Figure 2.2: NAND string

A NAND memory is divided in pages and blocks. A block is the smallest erasable unit.

Each block contains multiple pages. The number of pages within a block is typically a

multiple of 16. A page is the smallest addressable unit for reading and writing. Each

page is composed of main area and spare area. Main area can range from 4 to 8 kB or

even 16 kB. Spare area can be used for ECC.
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2.1.2 NAND Flash Cell Program

Programming of NAND memories exploits the quantum-effect of electron tunneling in

the presence of a strong electric field. In order to trigger the injection of electrons into the

floating gate, the following voltages are applied, as shown in Fig. 2.3. VPGM(20− 25V ) is

applied on the selected gate to be programmed, and VPASS,P (8− 10V ) on the unselected

gates. VDD on the gate of the drain selector, and GND on the gate of the source selector.

GND on the bit line to be programmed, and VDD on other bit lines. When the bit lines

are driven to VDD, drain transistors are diode-connected and the corresponding bit lines

are floating. VPASS,P is applied to the unselected word lines to inhibit the tunneling

phenomena.

��� �����

���

������ �����

 ���!����" #� $%&''(%

 ���!����" #� $%&''()

��!����" #� $%*+

$,,

���$,, $,,

-""�����" ��!!

Figure 2.3: Program operation in a NAND string
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2.1.3 NAND Flash Cell Erase

Erasing of NAND memories is the inverse process of programming. When NAND flash

Cell is earsed, 0V is applied to the Source, Drain and Gate. And high voltage V is applied

to the Substrate. Electrons in Floating Gate are attracted to the Substrate and no more

electrons are left in Floating Gate. Fig. 2.4 is a simple illustration for this operation.

Figure 2.4: Erase operation in a NAND cell

2.1.4 NAND Flash Cell Read

A Single Level Cell (SLC) means that only 1 bit data is stored per cell. Therefore,

the threshold voltage region of a SLC is divided into two levels. Fig. 2.5(a) shows the

threshold voltage distribution of SLC and we will use Fig. 2.5(a) to explain read operation.

When we read a cell in Fig. 2.5(a), its gate is driven at VREAD(0V ) , while the other

cells are biased at VPASS,R(4 − 5V ), so that they can act as pass-transistors. In fact, an

erased SLC has a VTH smaller than 0 V; vice versa, a written SLC has a positive VTH

smaller than 4 V. In this example, biasing the gate of the selected cell with a voltage

equal to 0 V, the series of all the cells will conduct current if the addressed cell is erased.

6



(a) Threshold voltage distribution of a Signle

Level Cell

./0 1/234 56789

5:899;<

=>?@A3 1/234 B5

C243D3A03E F1 5:899;<

C243D3A03E F1 5:899;<

=3D3A03E F1 5<G8H

5:899;<

(b) NAND string biasing during read

Figure 2.5: Read operation in a NAND string

7



2.2 Reliability of NAND Flash Memory

2.2.1 Program Disturb

Program operation in a NAND string described in 2.1.2 will cause disturb in other

unselected cells. We use Fig. 2.6 to explain program disturb and pass disturb.

Cell A is the cell to be programmed. Cell B will suffer from the program disturb. The

effective programming voltage for cells B is VPGM − Vch. Vch is the equivalent potential

in the channel. To lower the effective programming voltage, a high VPASS,P is applied

in other cells. Pass disturb occurs in the cell C. It’s effective programming voltage is

VPASS,P . Therefore, the program disturb can be reduced by increasing VPASS,P at the

expense of an increased pass disturb.

IJK LJMNO

PQR

STUVWN LJMNO

XMONYNWKNZ [L \]^__`]

XMONYNWKNZ[L \]^__`a

SNYNWKNZ [L \]bc

\dd

PQR\dd \dd

eZZVNOONZ WNYY f g

h

Figure 2.6: Program disturb in a NAND string
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2.2.2 Read Disturb

Read disturbs are the most frequent source of disturbs in NAND architectures. This

kind of disturb may occur when reading many times the same cell without any erase

operation. Unselected cells in Fig. 2.7 will suffer from read disturb due to the VG = 4.5V

applied in unselected cells.

ijk ljmno pqrst

uvwp

xyz{|n ljmno }p

~mon�n|kn� �l uvw p

~mon�n|kn� �l uvw p

xn�n|kn� �l� } p

uvwp

Figure 2.7: Read disturb in a NAND string

2.2.3 NAND Flash Multi-level Cell

Fig. 2.8 shows a 2bits/cell NAND flash cell. The obvious advantage of a 2 bit/cell

implementation (MLC) with respect to a 1 bit/cell device (SLC) is that the area occupa-

tion of the matrix is half as much. On the other hand, the area of the periphery circuits

increases. Threshold voltage region is divided into 4 levels and region for each level is nar-

rower. Therefore, the probability of threshold voltage shifting to other level is increased

and led to degradation of reliability.

9



Figure 2.8: Threshold voltage distribution of a 2bits/cell NAND flash cell

Advanced technology scale down and more bits of data stored per NAND flash cell will

cause the degradation of reliability. More parity bits are required to improve the correcting

capability of BCH code. The increase of spare area (area for parity bits storage) greatly

degrades the data storage capacity and is infeasible to commerical product. To overcome

this problem, NAND flash memory system will provide more information (soft input) in

the next generation standard and much powerful error correcting code can be adopted.

BCH code is feasible for its simple hardware architecture and only hard input requirement.

However, BCH code has only little improvement when soft input is provided. LDPC code

is probability-based and soft information can be well-used. Therefore, LDPC code is a

good candidate for the next generation NAND flash memory system. Providing soft input

will inrease reading latency in flash memory system. This is a trade-off between correcting

capability and system latency. This thesis shows that only 2-bits soft input LDPC code

can outperform BCH code under same code rate.
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Chapter 3

Construction of Low Density Parity

Check Codes

Low Density Parity Check (LDPC) codes were first discovered by Gallager in 1962 [7]

and were rediscovered and generalized by MacKay in 1999 [8]. Based on the methods of

construction, LDPC codes can be classified into random-like codes and structured codes

[11]. Well designed LDPC codes decoded with iterative decoding using belief propagation

(BP) algorithm, achieve performance close to the Shannon limit. Consequently, LDPC

codes were widely adopted for error control in many communication and digital storage

systems.

In this chapter, structured code construction methods will be introduced. Code pa-

rameters related to performance and implementation complexity will be discussed.

3.1 Code Construction

3.1.1 General Construction of QC-LDPC Codes

We start code construction from a base matrix W with size dv × dc. dv represents

column degree and dc represents row degree. wi,j means the element located in i-th row

and j-th column in W . wi,j could be a numeral value or an element in finite field. The

algebra to determine wi,j is diverse and make constructed QC-LDPC codes have different

performance and characteristic.

11



W =

















w0,0 w0,1 · · · w0,dc−1

w1,0 w2,1 · · · w1,dc−1

...
...

. . .
...

wdv−1,0 wdv−1,1 · · · wdv−1,dc−1

















Let P be a circulant permutation matrix(CPM) with size p. It’s top row is given by

the p-tuple (0 1 0 0 · · · 0). P consists of p-tuple first row and its p− 1 right cyclic shifts

as other rows. P i, the product of P with itself i times, is also a CPM whose top row has

a single 1-component at the position i. Fig. 3.1 is a demonstration for CPMs with size 4.

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

P
�

P
�
= P

�

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

P
�

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

P
�

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

Figure 3.1: Circulant Permutation Matrices with size 4

Replacing elements in the base matrix W with CPMs will derive the parity-check

matrix H . The correspondence between elements in the base matrix W and CPMs also

diverse. We will introduce two kinds of algorithm to construct QC-LDPC codes.

3.1.2 Product QC-LDPC codes

The base matrix W of product QC-LDPC codes [11] is constructed in a prime field.

Assume a prime number p is chosen, wi,j will be (i×j mod p) for 0 ≤ i, j < p. Maximum

size of the base matrix W will be p× p.

W =

















0 0 · · · 0

0 1 · · · j − 1
...

...
. . .

...

0 i− 1 · · · (i− 1)× (j − 1)

















After column degree dv and row degree dc is determined, we can select a sub-matrix

with size dv × dc from the base matrix W . Denoting the sub-matrix as Wsub, wsub i,j

12



represents the element located in i-th row and j-th column in Wsub. The CPM size of

product QC-LDPC codes is p. Let P be a CPM with size p, elements in selected sub-

matrix will be replaced by Pwsub i,j for 0 ≤ i < dv, 0 ≤ j < dc. Fig. 3.2 illustrates a base

matrix and its correspondent parity-check matrix.

0 0 0

0 1 2

0 2 1

(a) Base matrix

W for p = 3

�

� � �
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� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� �

P
�

P
�
P
�

P
�
P
�

P
�

P
�
P
�
P
� =

(b) Correspondent parity-check matrix H

Figure 3.2: Illustration of Product QC-LDPC codes
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3.1.3 Latin Square QC-LDPC codes

The base matrix W of Latin square QC-LDPC codes [12] is constructed in a galois

field GF (2m). Maximum size of the base matrix W is 2m × 2m and size of the CPM is

(2m − 1)× (2m − 1). wi,j is (α
iη − αj) for 0 ≤ i, j < 2m ,α0 = 1, α−∞ = 1.

W =

















α0η − α0 α0η − α1 · · · α0η − α−∞

α1η − α0 α1η − α1 · · · α1η − α−∞

...
...

. . .
...

α−∞η − α0 α−∞η − α1 · · · α−∞η − α−∞

















η is an element in GF (2m). Choosing different η only permutes the rows in W . We

can also select a sub-matrix with size dv × dc from the base matrix W . However, the

sub-matrix Wsub should be chosen carefully without element α−1. wsub i,j represents the

element located in i-th row and j-th column in Wsub. Assume wsub i,j is αk, elements in

Wsub will be replaced by P k. α−1 may exist in Wsub, but the CPM P−1 is not defined.

Fig. 3.3 illustrates a base matrix and a CPM of Latin Square QC-LDPC codes.
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(a) Base matrix W for m = 3, η = α0
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(b) CPM with size (2m − 1) ×

(2m − 1)

Figure 3.3: Illustration of Latin Square QC-LDPC codes
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3.1.4 Comparison between Product and Latin Square QC-LDPC

codes

In 3.1.2 and 3.1.3, the algebra of product and Latin square QC-LDPC codes were

introduced. Comparison between product and Latin square QC-LDPC codes were showed

in table 3.1.

Table 3.1: Comparison between Product and Latin Square QC-LDPC codes

Product Latin Square

wi,j (i× j mod p) (αiη − αj)

size of the CPM prime number p (2m − 1)

dependent rows in H less more

performance good excellent

The algebra of product QC-LDPC codes generates the base matrix W with the same

column offsets in each row. Fig. 3.4 shows that the offsets between i-th column and i−1-

th column are the same in each row. Regular offsets in the base matrix can reduce the

complexity of the shifter in the decoder. Besides, product QC-LDPC codes is constructed

in a prime field, but Latin square QC-LDPC codes should be constructed in a galois field

GF (2m). Product QC-LDPC codes is more flexible than Latin square QC-LDPC codes.

� � �

� � �

� � �

� � �

� � �

� �

� �

� �

� ��

�� ��

�

�

�

�

�

 ¡¡¢£¤

Figure 3.4: Base matrix of Product QC-LDPC codes without mod operation

Dependent rows in parity-check matrix H will affect the code rate. With the same dv,

dc, and CPM size, code rate of Latin square QC-LDPC codes is higher than product QC-

15



LDPC codes. Let dv = 4, dc = 36, CPM size = 127, a (4572, 4067) product QC-LDPC

code with code rate 0.8895 is constructed, and a (4572, 4081) Latin square QC-LDPC

code with code rate 0.8926 is constructed. Code rate is also a important requirement for

NAND flash memory.

Performance comparison between product and Latin square QC-LDPC codes is showed

in Fig. 3.5. They have the same (p,dv, dc) and approximately the same (N,K). At SNR

4.3, the BER of Latin square LDPC codes is 2.2 × 10−7 whereas the BER of product

LDPC code is about 1.5× 10−6.

3 3.5 4 4.5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

(p,dv,dc) = (127,4,36), soft input, floating, iteration 20

Eb/No(db)

B
E

R

Product  (N,K)=(4572,4067)   rate=0.889
Latin       (N,K)=(4572,4081)   rate=0.893

Figure 3.5: Performance comparison between Product and Latin Square QC-LDPC codes
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3.1.5 Parameters in Code Construction

For a (N,K) QC-LDPC code, N is the codeword length and K is the information

length. Denote M as the numbers of check equations in H . Consider a base matrix W

with size dv×dc and CPMs with size p×p, equation (3.1) shows the relationship between

(N,K,M) and (p, dv, dc). Code rate is mainly decided by dv and dc (3.2).

N = dc × p

M = dv × p

K = N − (M − numbers of dependent rows in H)

(3.1)

K

N
=

(dc − dv)

dc
+

(numbers of dependent rows in H)

(dc × p)
(3.2)

Given N around 9200 and code rate around 0.9, we take product QC-LDPC codes as

an example. First, decide column degree dv and use equation (3.2) to calculate the dc

that meets the code rate requirement. Once dc is determined, use equation (3.1) to find

possible p. Table 3.2 lists some possible codes that meet the requirements.

Table 3.2: Codes from Product QC-LDPC codes

dv dc p N K

3 30 307 9210 8291

4 40 229 9160 8247

6 60 151 9060 8159

8 81 113 9153 8256
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3.2 Performance-Related Parameters

3.2.1 Cycles in Tanner Graph

A cycle in a graph of vertices and edges is defined as a sequence of connected edges

which starts from a vertex and ends at the same vertex, and satisfies the condition that

no vertex (except the initial and the final vertex) appears more than once. The number

of edges on a cycle is called the length of the cycle. Fig. 3.6 illustrates a Tanner Graph

with cycle-4 cycles and its corresponding parity check matrix. The length of the shortest

cycle in a graph is called the girth of the graph.

V¥ V¦ V§ V¨ V© Vª

C§C¦C¥

(a) A tanner graph with cycle-4

« « ¬

¬ « «

« ¬ ¬

« ¬ ¬

¬ ¬ «

« « ¬

(b) Correspondent parity-check matrix H

Figure 3.6: An example of a tanner graph with cycle-4

While decoding a LDPC code with BP algorithm, these short cycles, especially cycles

of length 4, make some variable nodes highly correlated and hence severely limit the

decoding performance. Therefore, it is important to design codes without short cycles in

their Tanner graphs, especially cycles of length 4. Because the parity-check matrix H is

constructed from the base matrix W with CPMs, we can use base matrix W instead of

parity-check matrix H to compute cycles in LDPC codes.

Fig. 3.7 illustrates cycle-4 produced from base matrix W . Note that the 1st row in

W and the 2nd row in W produce the same check equations labeled with the same color

in H . The value of the 2nd row in W is just the value of the 1st row in W added by 1.

Due to the characteristic of CPM, adding a fixed value in a row in W will not change the

check equations produced by the row.

We use Fig. 3.8 to prove that if the difference between the cyclic shift amount in one

sub-matrix row is equal to the difference between the cyclic shift amount in other sub-

matrix row, cycle-4 is formed. wm,s represents the shift value in m-th row, s-th column.
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H =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0 1 2

1 2 3

W =

Figure 3.7: Demonstration of cycle-4 in base matrix W and parity-check matrix H .

Subtract the value in m-th row by A and subtract the value in n-th row by C. Now,

wm,s = wn,s = 0, wm,t = (B−A), wn,t = (D−C). If the equation (3.3) is satisfied, cycle-4

exist in correspondent sub-blocks produced by these 4 shift value. Equation (3.3) can be

rewrite as equation (3.4).

...

BA

C D

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

...

......

... ...

...

...0 s t... p-1

0

.
.
.

m

.
.
.

n

.
.
.

p-1

Figure 3.8: A base matrix W with p× p

(B − A) = (D − C) mod p (3.3)

(B − A+ C −D) mod p = 0 (3.4)
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For product QC-LDPC codes, the shift value of wi,j is i × j mod p. Substitute this

equation wi,j into equation (3.4) we can derive equation (3.6).

(B − A) = m× (t− s) mod p

(C −D) = n× (s− t) mod p
(3.5)

(B −A + C −D) = (m− n)× (t− s) mod p = 0 (3.6)

Since p is a prime number and 0 < m < n < (p − 1), 0 < s < t < (p − 1), equation

(3.6) will not be satisfied for product QC-LDPC codes.

For Latin square QC-LDPC codes, wi,j is defined as (αiη − αj). Assume wi,j = αk,

the shift value is k. We can not directly substitute the equation wi,j into equation (3.4),

because the numeral value of k is decided by i, j and η. It’s trivial that if A = C and

B = D, cycle-4 exists in the QC-LDPC code. Add the shift value in m-th row by c and

add the value in n-th row by l. Equation (3.7) is the new value of wm,s, wm,t, wn,s and

wn,t. Equation (3.8) is the condition for wm,s = wn,s, wm,t = wn,t.

wm,s = αc(αmη − αs), wm,t = αc(αmη − αt)

wn,s = αl(αnη − αs), wn,t = αl(αnη − αt)
(3.7)

(αm
− αn)× (αt

− αs) = 0 (3.8)

Since 0 < m < n < (p − 1), 0 < s < t < (p − 1), equation (3.8) will not be satisfied

for Latin square QC-LDPC codes.

3.2.2 Column Degree

Column degree dv is defined as the numbers of check nodes connected to a variable

node. From equation (4.3), a variable node with higher dv receives more message from

different check nodes. For LDPC code, we call the performance degradation in water fall

region, the error floor. A LDPC code with higher column degree has better performance

in water fall region. It means that it can suppress the error floor in lower bit error rate

region. Fig. 3.9 shows the performance of LDPC codes with different column degree. s

represents scaling factor in this thesis.

A QC-LDPC codes with high column degree has good performance in water fall region.

In low SNR region, messages passed between check nodes and variable nodes will suffer
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Product Code, AWGN, iteration = 50 ,NMS
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(N,K)=(9210,8291)   rate=0.900  s=0.8 (p,dv,dc)=(307,3,30)
(N,K)=(9060,8159)   rate=0.901  s=0.6 (p,dv,dc)=(151,6,60)
(N,K)=(9153,8256)   rate=0.902  s=0.5 (p,dv,dc)=(113,8,81)

Figure 3.9: Performance of LDPC code with different column degree.

from more disturbance. In Fig. 3.9, (9210,8291) is a product QC-LDPC code, with column

degree 3. It has poor performance at waterfall region due to its low column degree. LDPC

code with column degree 6 and 8 has better performance at waterfall region. But, we can

still find that the bit error rate (BER) difference between SNR 4.8 and SNR 4.6 in LDPC

code with column 8 is large than the BER difference between SNR 4.5 and SNR 4.3 in

LDPC code with column 6.

3.3 Proposed (9216,8195) QC-LDPC code

The requirement for codes applied in NAND flash memory includes information length

K >= 8192, code rate > 0.9, and no performance degradation down to bit error rate near

10−12. For good performance, we use Latin square algebra to construct the LDPC code.

Although a LDPC code with higher column degree has better performance in water fall

region, it also implies more hardware cost in variable node update units (VNUs). The

selection of the column degree is a trade off between code performance and hardware

cost. At first, a (9180,8179) Latin square QC-LDPC code with (dv, dc, p) = (4, 36, 255)

is proposed. However, it’s information length is less than 8192. In order to increase the
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information length, we enlarge the size of CPM to 256 according to the equation (3.2).

Hence, the constructed (9216,8195) code is not a traditional Latin square QC-LDPC code.

The equation (3.6) helps us to find the code without cycle-4.

3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

AWGN, iteration = 20, s=0.75, Normalized Min−Sum

Eb/No(db)

B
E

R

(9216,8195), soft input          , floating
(9216,8195), 2 bits soft input, Q(4,2)
(9153,8179), soft input          , floating
(9153,8179), 2 bits soft input, Q(4,2)

Figure 3.10: Performance of Proposed (9216,8195) QC-LDPC codes

Fig. 3.10 shows the performance of (9216,8195) and (9180,8179) LDPC codes. The

lines with o (circle) are the performance with soft-input and no quantization in the de-

coder. The lines with ∗ (star) are the performance with 2 bits soft-input and 4 bits

quantization in the decoder. Their performance are very close. Hence, the decoder archi-

tecture is designed for the (9216,8195) Latin square QC-LDPC code.
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Chapter 4

LDPC Decoder Architecture

4.1 Decoding Algorithm

4.1.1 Standard BP Algorithm

The log-likelihood ratio (LLR) of intrinsic information of n-th variable node is denoted

by Pn. The message from n-th variable node to m-th check node is denoted by zmn. The

message from m-th check node to n-th variable node is denoted by εmn. The a posteriori

LLR of n-th bit is denoted by zn. The standard BP is carried out as followed.

1. Initialization: Set i = 1,maximum number of iterations to IMax. For each m, n,

set z
(0)
mn = Pn,

2. Iterative Decoding:

(a) Check node to variable node update step, for 1 ≤ n ≤ N and each m ∈ M(n),

process

ǫimn = 2 tanh−1(
d
∏

n′∈N(m)\n

tanh(
zi−1
mn′

2
)) (4.1)

(b) variable node to check node update step, for 1 ≤ n ≤ N and each m ∈ M(n),

process

z(i)mn = Pn +
∑

m′∈M(n)\m

ε
(i−1)
m′n (4.2)

z(i)n = Pn +
∑

m∈M(n)

ε(i−1)
mn (4.3)
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3. Hard Decision: Let Xn be the n-th bit of decoded codeword. If z
(i)
n ≥ 0, Xn = 0,

else if z
(i)
n < 0, Xn = 1. If H(x(i))t = 0 or IMax is reached, stop and output the code

word. Otherwise,set i = i+ 1 and go to Iterative Decoding.

The iterative decoding processes for one iteration of standard BP is illustrated below.

The messages are updated in parallel way between check nodes and variable nodes. The

process are shown in Fig. 4.1(a) and 4.1(b). The arrows with purple color represent check

node to variable node update message. The arrows with blue color represent variable node

to check node update message.

V­ V® V¯ V° V± V² V­

( )
11

iε
V® V°

( )
12

iz ( )
14

iz

C¯C®C­ C­

(a) check node to variable node update

( )
11

iz

1P

( )
31

iε
V³ V´ Vµ V¶ V· V¸

CµC´C³ C³ Cµ

V³

(b) variable nod to check node update

Figure 4.1: Illustration of standard BP.

Because of the numeral characteristic of tanh function, the absolute value of equation

(4.1) will be dominated by min(
∣

∣

∣
z
(i−1)
mn′

∣

∣

∣
). We can approximate (4.1) as following equation.

This is so called min-sum algorithm [13].

ε(i)mn ≈ (
∏

n′∈N(m)\n

sign(z
(i−1)
mn′ ))× min

n′∈N(m)\n
(
∣

∣

∣
z
(i−1)
mn′

∣

∣

∣
) (4.4)

The normalized min-sum (NMS) algorithm [14] applies a scaling factor β to compen-

sate for the approximation error. Our LDPC decoder adopt the NMS algorithm, because
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it reduces the computational complexity in check node to variable node update step.

ε(i)mn ≈ (
∏

n′∈N(m)\n

sign(z
(i−1)
mn′ ))× min

n′∈N(m)\n
(
∣

∣

∣
z
(i−1)
mn′

∣

∣

∣
)× β (4.5)

4.1.2 Column Shuffled Decoding Algorithm

From the equation (4.5), check node to variable node update step can be implemented

by sorters and the number of inputs to sorters is determined by row degree. However, high

code rate Quasi-Cyclic (QC) LDPC code constructed by Circulant Permutation Matrices

introduce high row degree. The hardware cost and critical path of Check Node Unit

(CNU) is greatly increased. Column shuffled decoding algorithm [10] divides received

codeword into G groups and processes check node update step in G cycles. Thus, the

number of inputs will be reduced.

In column shuffled decoding algorithm, the initialization, stopping criterion test, and

output steps remain the same as the standard BP algorithm. The only difference between

two algorithms lies in the updating procedure. Assume the N bits of a codeword are

divided into G groups, so each group contains N/G = NG bits. The messages are only

exchanged between one group of variable nodes and check nodes which are connected the

group of variable nodes at a time. In addition, each group of messages is updated in order.

Furthermore, it count one iteration when all groups have been updated. For G = 1, the

column shuffled decoding becomes standard BP.

1. Initialization: z
(0)
mn = Pn

2. Iterative Decoding: For 0 ≤ g ≤ G− 1, perform the following two steps.

(a) Check node to variable node update step, for g ·NG ≤ n ≤ (g+1) ·NG−1 and

each m ∈ M(n), process

ε(i)mn ≈
∏

n′∈N(m)\n
n′≤g·NG−1

sign(z
(i)
mn′)×

∏

n′∈N(m)\n
n′≥g·NG

sign(z
(i−1)
mn′ )

×min







min
n′∈N(m)\n
n′≤g·NG−1

{∣

∣

∣
z
(i)
mn′

∣

∣

∣

}

, min
n′∈N(m)\n
n′≥g·NG

{∣

∣

∣
z
(i−1)
mn′

∣

∣

∣

}







× β (4.6)
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(b) variable node to check node update step, for g · NG ≤ n ≤ (g + 1) · NG − 1,

process

z(i)mn = Pn +
∑

m′∈M(n)\m

ε
(i−1)
m′n (4.7)

z(i)n = Pn +
∑

m∈M(n)

ε(i−1)
mn (4.8)

3. Hard Decision: Let Xn be the n-th bit of decoded codeword. If z
(i)
n ≥ 0, Xn = 0,

else if z
(i)
n < 0, Xn = 1.

The decoding processes for one iteration of column shuffled decoding is illustrated in

Fig. 4.2 with G = 3 as example. The arrows with purple color represent check node to

variable node messages to be updated. The arrows with blue color represent variable node

to check node messages to be updated. On the other hand, gray arrows represent that

messages are not updated.
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(c) Update third group

Figure 4.2: Illustration of VSS
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4.2 Area-Efficient Column Shuffled Decoding Archi-

tecture

Details of Column Shuffled decoding algorithm is introduced in previous chapter.

Hardware architecture for the proposed (9216,8195) LDPC code will be fully explained in

this section. Our design is focused on the hardware cost. Therefore, the decoder depicted

in Fig. 4.4(a) is composed of partial-parallel CNUs and partial-parallel VNUs. Fig. 4.3 is

proposed base matrix with dv = 4, dc = 36. Variable nodes are divided into 36 groups (G

= 36). There are 256 Check Node Units (CNUs) and 256 Variable Node Units (VNUs).

Let α
(i)
g denotes the sorted messages sent from variable nodes in the g-th group to one

specific check node at i-th iteration, which is:

α(i)
g = min

n′∈N(m)\n
g·NG≤n′≤(g+1)·NG−1

{∣

∣

∣
z
(i)
mn′

∣

∣

∣

}

(4.9)

Then the magnitude part of check node to variable node message in (4.6) could be com-

puted by the following equation:

∣

∣ε(i)mn

∣

∣ = min

{

{

α
(i)
j

}

j<g
, α(i)

g ,
{

α
(i−1)
k

}

k>g

}

(4.10)

Fig. 4.4(b) demonstrates the timing diagram of proposed decoder. There are G ini-

tialization cycles required to calculate α0
g for 0 ≤ g ≤ G − 1. Since only one subgroup

of the message z
(i)
mn is updated in g-th cycle of one iteration, the main operation of CNU

could be simplified. Calculate α
(i)
g (local sorting) in each cycle and then perform global

sorting like equation (4.10).

To reduce the hardware cost, we choose G = dc = 36, so the process of local sorting

in equation (4.9) can be omitted. Furthermore, traditional column shuffled decoding

completes a full variable node computation in 1 cycle. We divide the computation into

dc, 4 cycles. Fig. 4.3 illustrate that how we divide the check nodes and variable nodes.
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Figure 4.3: Division on the nodes

In the propose architecture, only messages α
(i)
g and ε

(i)
mn are sorted. The sorted results

could be represented by 1st min value, 2nd min value, and the index of 1st and 2nd value

in NMS algorithm. Therefore, the proposed decoder only latches 2 values, 2 index, and

sign part of messages in each subgroup, while the variable node to check node message

z
(i)
mn is on-the-fly calculated. The area-efficient column shuffled decoding architecture is

feasible because the CNU could be updated immediately after VNU’s operations.
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Figure 4.4: Proposed architecture and scheduling
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4.3 Check Node Unit

This section presents detail CNU architecture based on column shuffled decoding. The

CNU architecture is further optimized to reduce storage requirement and the numbers of

inputs to sorters. Different CNU architectures will affect the convergence speed and per-

formance which will be discussed in the next chapter. The messages sent from VNU are

converted from two’s complement format to sign-magnitude format for efficient compu-

tation of CNU. Therefore, the operation of check node to variable node update could be

divided into magnitude part and sign part.

4.3.1 Accumulative Sorter

For our proposed QC-LDPC codes with dc = 36, The column shuffled with G = 36

could divide 36 inputs of the CNU into 36 parts. Thus, a CNU receives only 1 input in g-

th group update according to equation (4.9). In NMS algorithm, to implement operation

in the equation (4.10) perfectly needs to store dc − 1 z
(i)
mn, these dc − 1 z

(i)
mn will be sorted

with α
(i)
g . The sorted 1st, 2nd min value will be sent as ε

(i)
mn in equation (4.2).

However, due to the large storage cost, to store dc − 1 z
(i)
mn for the sorted 1st, 2nd

min value is impractical. Only 2 z
(i)
mn are stored in our CNU architecture. The inputs of

the sorter are 2 z
(i)
mn and 1 α

(i)
g . It’s a simple 3 to 2 accumulative sorter. Proposed CNU

architecture reduces large storage cost and hardware cost. But, it suffer from performance

loss, because it may lead to wrong results in sorted 1st, 2nd min value while reducing the

numbers of stored z
(i)
mn.

Fig. 4.5 is an example for the operation of accumulative sorters. In this example, we

assume row degree = 5 and G = 5. Follow the operation in the equation (4.10), the sorted

1st, 2nd min result in 1-th group in iteration 2 should be 0.75 and 0.75. Fig. 4.5(a) shows

the sorted results with 2 z
(i)
mn stored. We get wrong sorted results in 1st, 2nd min value.

Fig. 4.5(b) shows the sorted results with 3 z
(i)
mn stored. The 1st min value is correct, but

2nd min value is still wrong. The problem resulted from the conflict between index of

input value and the index of stored 1st, 2nd min value.
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Figure 4.5: Accumulative sorters with different numbers of stored z
(i)
mn

4.3.2 Optimization Strategy

Increase the number of stored z
(i)
mn can reduce the index conflict problem at the cost of

more storage and gate count. In proposed CNU architecture, the sorter is a very simple

3 to 2 accumulative sorter. The rules in replacing 1st, 2nd min should be considered

carefully in order to reduce the conflict problem. The main idea is to reserve the latest

index if the sorted value are the same. Equation (4.11) and (4.12) will lead to different

sorted results which are demonstrated in Fig. 4.6.

input < 1st min , input < 2nd min (4.11)

input ≤ 1st min , input ≤ 2nd min (4.12)

The correct sorted 1st, 2nd min in 1-th group in iteration 2 should be 0.25 and 0.75.

The sorted 1st, 2nd min following the equation (4.11) is 1.25 and 1.5. The sorted 1st, 2nd

min following the equation (4.12) is 0.25 and 1.5. It’s obvious that equation (4.12) is close

to the correct 1st, 2nd min.
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Figure 4.6: Accumulative sorters with different replacing rules

The two different replacing rules result in different performance. In Fig. 4.7, red line

shows the BER using equation (4.12) and green line shows the BER using equation (4.11).

Using equation (4.12) can achieve better performance.
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4.4 Variable Node Unit

Fig. 4.8 shows the VNU architecture, where SM to TC represents sign-magnitude

to two’s-complement conversion, and TC to SM represent two’s-complement to sign-

magnitude conversion. Since column degree is 4, the adder takes 4 cycles to compute

the posteriori LLR z
(i)
n in g-th group. ε

(i)
mn used in the adder should be stored to calculate

the z
(i)
mn sent to (g + 1)-th group.

The bit width of messages passing between CNU and VNU is 4. Scaling factor 0.75 in

NMS algorithm (4.5) is applied in our architecture. Small value 0.25 will not be multiplied

by scaling factor in order to reserve its information. 2 bits channel value is mapped to

4 bits value by non-linear quantization. More details of non-linear quantization will be

discussed in next chapter.
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Figure 4.8: VNU architecture
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4.5 Shifting Network

High compexity of routing network between Check Node Units (CNU) and Varible

Node Units (VNU), is the main difficulty for hardware implementation of LDPC code.

Shifting Network [15] [16] has been proposed to reduce the routing complexity. There

are two routing networks between CNUs and VNUs. One is the direction from CNUs to

VNUs, while another one is the direction form VNUs to CNUs.

Due to the quasi-cyclic character in Latin square QC-LDPC code, the shifting network

can be simplified. The value computed by CNUs will be stored to memories. Operations

of VNUs start with fetching the value from memories. The routing networks from mem-

ories to VNUs are fixed. Therefore, shifting networks between CNUs and memories are

needed. The idea is illustrated in Fig. 4.9. Green lines represent the routing networks

from memories to VNUs. Purple lines represent shifting networks between CNUs and

memories.

The shifting network in Fig. 4.9(b) in G0 can be ignored, because the sub-matrix in

G0 are two identity matrices. From previous discussion 3.2.1, adding a fixed value in a

row in base matrix W will not change the check equations produced by the row. W1 in

Fig. 4.10 is the original base matrix proposed. W2 is the equivalent base matrix to W1

with four identity matrices in G0. Thus, the shifting network on the initial cycle in G0

can be ignored.

However, the difference between cyclic shift amount of each group is a not constant.

A table is constructed to record the difference between cyclic shift amount of each group.

The shifting network in our design is a traditional Barrel shifter.
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Chapter 5

Simulation and Implementation

Results

5.1 Optimized Quantization

Belief Propagation (BP) is a probability-based message passing algorithm. When soft

input is available, LDPC code can provide powerful correcting ability. LDPC code with 2-

bits soft input can outperform BCH code under same code rate. Additive White Gaussian

Noise (AWGN) channel with Binary Phase Shift Keying Modulation (BPSK) are used for

demonstration and simulation. We assume that bit ‘0’ is mapped to ‘1’ and bit ‘1’ is

mapped to ‘−1’. 2-bits quantization can represents 4 levels. We select a threshold f to

divide received channel value into 4 levels as shown in Fig. 5.1. A bit with channel value

near 0 has a high probability to be an error bit. Therefore, a non-linear quantization is

preferred.

0

-f f

-1 1

qrstuqrst uqrvw qrvw

Figure 5.1: 2 bits (4 levels) non-linear quantization.
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The value of f , Vmin and Vmax will affect the code performance severely. We use Fig.

5.2 to explain how to derive appropriate parameters for 2-bits quantization. Once the f

is determined, received channel value is divided into 4 regions. The main idea is to find

the value that can mostly represent all the value in the region. Therefore, the concept of

weighted mean is applied.

xw =

∑

wixi
∑

wi

(5.1)

In Fig. 5.2, given f = 0.35, SNR= 4.0, (Vmin, Vmax) = (0.2390, 1.0813) can be derived

from equation (5.1).

-f f

xyz{|xyz{ |xy}~ xy}~

0

Figure 5.2: Received channel value distribution for (9216,8179) LDPC code
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Fig. 5.3 shows the performance with different (f, Vmin, Vmax). The bit width of input

LLR after non-linear quantization and messages passing between CNUs and VNUs in de-

coder is floating. Decoding algorithm is Normalized Min-Sum algorithm. (f, Vmin, Vmax) =

(0.35, 0.25, 0.75) and (f, Vmin, Vmax) = (0.35, 0.5, 1.5) have the same performance, because

they have the same (Vmax/Vmin) ratio. However, the parameters from equation (5.1) can

appropriately represent the value in the divided region, it is not ensured that the param-

eters provide the best decoding performance. The bit width and the algorithm used in

the decoder will affect the final result, but the (Vmax/Vmin) ratio is still a good reference

for us. In Fig. 5.3, (Vmax, Vmin) with (Vmax/Vmin) ratio near the derived (Vmax, Vmin) have

good performance.
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Figure 5.3: Code performance with different (f, Vmin, Vmax), floating
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Fig. 5.4 also shows the performance with different (f, Vmin, Vmax), but the bit width of

input LLR after non-linear quantization and messages passing between CNUs and VNUs

in decoder is 4. (f, Vmin, Vmax) = (0.35, 0.25, 0.75) and (f, Vmin, Vmax) = (0.35, 0.5, 1.5),

which have the same performance in Fig. 5.3, now have 0.15dB performance difference

at BER 10−3. Assume two sets of (Vmax, Vmin) with the same (Vmax/Vmin) ratio, larger

(Vmax, Vmin) provides better performance. Hence, (f, Vmin, Vmax) = (0.35, 0.5, 1.75) is

chosen.
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Figure 5.4: Code performance with different (f, Vmin, Vmax), Q(4,2)
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5.2 Performance Evaluation

Fig. 5.5 shows that the BER performance of proposed Area-Efficient Column Shuffle

decoding algorithm converges faster than and NMS algorithm and the CNU with index

conflict cases.
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Figure 5.5: Converge Speed Comparison at SNR 4.4

In Fig. 5.6, there is 1.3dB performance gain of 2-bit non-linear soft input LDPC code

over BCH code at BER 10−4. 2-bit non-linear soft input LDPC code has a great potential

to replace BCH code for NAND flash memory system. The simulation parameters of

LDPC code are 4-bit quantization (2-bit integer and 2-bit decimal fraction), with scaling

factor 0.75. The bit width of messages passing between CNU and VNU is 4. Area-Efficient

Column Shuffle decoding architecture with 36 group partition, 4 row partition reduce the

amount of CNUs and VNUs, inputs to CNUs, and inputs to VNUs. Since the converge

speed of proposed algorithm is faster than the converge speed of NMS algorithm. With

20 iterations, the performance of proposed algorithm is better than NMS algorithm.

Unfortunately, Fig. 5.7 shows that error floor appears at BER 10−9. The performance

degradation may result from low column degree or information loss from soft input to

2-bit input.
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Figure 5.6: Code performance
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Figure 5.7: Code performance simulated by FPGA

43



5.3 Synthesis Results

The critical path of CNUs + Shifters + VNUs is 5ns. We assume that the critical path

of control circuit is 1ns. Therefore the clock cycle after synthesis is 6ns. Clock period in

Place and Route is 9ns.

According to the simulation result from Table 5.1, 4 decoding iteration is sufficient to

decode most codewords in high SNR region.

Table 5.1: Early Termination Simulation at different SNR, 105 codewords

SNR 4.5 4.75 5.0 5.25

Average decoding iterations 4.137 3.323 2.853 2.426

Throughput =
Informationlength

Cycles per iteration ·Numbers of iteration · Cycle period

=
8195

36 · 4 · 4 · 9
= 1.581Gbps.

Synthesis results is listed in Table. 5.2. Total gate count is 605.35k whereas the shifter

accounts for 105.2k, 17.38% of total design.

Table 5.2: Synthesis Results with technology UMC90.

Gate count

Combinational circuits

VNU (Adder,Substractor) 90.49k

CNU (Sorter) 69.12k

Shifter 105.20k

Memory

Channel value 80.80k

Hard decision 40.40k

Sign Bits 66.60k

Register
1st, 2nd min, idx 147.40k

Old sign, min 32.77k

Estimated result 632.78k

Final result 605.35k
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5.4 Implementation Results

Table. 5.3 shows the postlayout results. Gate count after synthesis is 605.35k and

Core area is 3.74mm2 without IO pad. Using 90nm CMOS technology, the maximum

throughput is 1.581 Gbps under clock period 9ns with 4 iterations.

Table 5.3: Summary of implementation results (Place and Route).

Proposed LDPC Decoder

Technology UMC 90nm 1P9M

Code Spec (9216,8195)

Code Rate 0.889

Column Degree 36

Row Degree 4

Algorithm Area-efficient Column Shuffle Decoding

Area 3.74mm2 (Without IO Pad)

Gate Count 605.35k

Iteration 20

Input Quantization 2 bits

Clock Period 9ns

Maximum Throughput 1.581 Gbps

The core density in this design is 69.83 %, but its density distribution is quite unbal-

anced. The 256 bits Barrel Shifter results in serious congestion problems. Clock period

must be increased to solve the congestion problems. The clock period after synthesis is

6ns. Clock period in Place and Route is 9ns.

In Table. 5.4, the gate count of our proposed design is approximate 3 times of the

(9214,8192) BCH code design.
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Table 5.4: Comparison with BCH codes

Proposed LDPC Code BCH Code

Code Spec (9216,8195) (9214,8192)

Code Rate 0.89 0.89

Column Degree 4 t=73

Throughput 1.581 Gb/s 2.41 Gb/s

Gate Count(No I/O Buffer) 484.2k 166.4k

Figure 5.8: BPSK Emulation using FPGA: Xilinx Virtex-5 LX330 with FF1760 package

46



Figure 5.9: Chip Layout in Place and Route
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis proposes a (9216, 8195) LDPC code with code rate 0.89 for NAND flash

memory system. (9216, 8195) LDPC code is constructed from the base matrix produced

by Latin square algebra, with column degree 4, row degree 36. The size of CPM differ-

ent from original Latin square is applied in order to make information length > 8192.

Parameters for 2 bits quantization is calculated based on the concept of weighted mean.

Simulations show that LDPC code with 2-bit soft input can outperform BCH code under

same code rate. Therefore, LDPC code is a good candidate to replace BCH code in the

next generation standard. High code rate LDPC code introduces high row degree. This

makes implementation difficult due to the large number of inputs to sorter and the in-

creased routing complexity. Area-efficient Column Shuffled decoding algorithm is a good

solution to this problem. Variable nodes are divided into 36 groups. Check node update

procedures are processed in 36 cycles, reducing the number of inputs to sorter. Only

1st, 2nd min are reserved to reduce the storage cost. Replacing rules in the accumulative

sorter is further optimized for performance. With row divided into 4 subgroups, VNU can

be simplified to a 2-inputs adder and a 2-input subtractor. Shifting networks are applied

between CNUs and memories. The gate count of our design is 605.35k. The maximum

throughput can achieve 1.581 Gbps with 4 iterations, using 90nm CMOS technology.

48



6.2 Future Work

The gate count of shifters account for 17.38% of total design. If we can further

simplified the shifters, critical path and gate count of our design can be lowered, and

the throughput can also be promoted. The study in the regulation of the base matrix

may be a solution to this problem.

FPGA simulation shows that error floor appears at BER 10−9. Error correcting code

applied on NAND flash memory system requires no performance degradation down to

BER near 10−12. The most probable reason resulting in performance degradation is that

only 1st, 2nd min are stored. Wrong sorted results will propagate in iterative decoding

process. The replacing rules in accumulative sorter should be modified to make the sorted

result more accurately.

There is no standard flash memory channel for any simulation. Therefore, a standard

flash memory channel is desired if we want to compare performances of different error

correcting code on flash memory. We may use the unsymmetrical AWGN channel for

more accurate simulation.
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