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應用於三維可程式邏輯閘陣列之 

容錯架構探索暨快速重組態演算法 

 

研究生：彭晧凌        指導教授：黃俊達 博士 

 

國立交通大學 

電子工程學系 電子研究所碩士班 

 

摘     要 

 當二維整合電路遇到瓶頸時，三維的製造技術被視為一個很好的解決方案，

它是藉由堆疊多個晶粒(die)至單一晶片(chip)並利用直通矽穿孔(through-silicon 

vias, TSVs)做為垂直方向的連接所完成的。三維的可程式邏輯閘陣列(3D FPGAs)

可以被藉由將二維的可程式路由切換器擴展為三維來製作。規律的可程式邏輯閘

陣列架構提供了固有不被使用的冗餘元件，這些元件可以被使用於容錯(fault 

tolerance)的需求，將其視為備用的元件，一旦有任何元件發生故障，則可以利用

可程式邏輯閘陣列重新配置(reconfiguration)的功能將故障的元件置換到無故障

的備用元件上以達到修復的效果。首先我們針對三維可程式邏輯閘陣列提出了一

個考慮到故障元件對於固有冗餘資源需求的重新配置演算法，藉由部分重新配置

故障的可程式邏輯單元(CLBs)到無故障的可程式邏輯單元之功能來避免發生故

障。實驗結果顯示相較於之前的容錯方法，我們可以提高容錯的修復成功率而且

不會有明顯的電路速度衰減。另外針對三維的可程式邏輯閘陣列提出預先佈置冗

餘元件的概念進行架構探索，在權衡預先配置與其產生的時間延遲兩項因素下找

出具容錯能力較佳的架構。 
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Abstract 

 Three-dimensional (3D) manufacturing technologies, which stack multiple dies 

within a single chip and utilize through-silicon vias (TSVs) as vertical connections, 

are considered as promising solutions to the bottlenecks in 2D integrated circuits. The 

3D field programmable gate array (FPGA) can be realized by extending the 2D 

programmable routing switches to the 3D one. The architectural regularity of FPGAs 

provides an easy way to allocate inherent redundancy resources (spares), which can 

be used for fault tolerance. Faulty FPGAs can be repaired by replacing the faulty 

resources with redundancies. At first, we propose a demand-aware fault-tolerant 

reconfiguration algorithm for 3D FPGAs that partially remaps the functionality of 

faulty CLBs to fault-free CLBs to avoid functional faults. Experimental results show 

that our method can increase the success rate of fault repair without significant timing 

degradation compared to previous works. Furthermore, we also propose a 

fault-tolerant pre-allocation concept that performs an architectural exploration for 3D 

FPGAs, and picks out the most appropriate architectures with a better balance 

between the success rate of repair and the timing degradation. 
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Chapter 1  

Introduction 

1.1 3D Integrated Circuits 

 Smaller feature size and increasing transistor counts allow the implementation of 

more complex and larger designs. However, as process technology scaling continues, 

manufacturing yield becomes increasingly low. And the global interconnect has 

become domination the delay of circuits, as shown in Figure 1. The delay of global 

interconnects is much larger than that of gates at 32nm process. 
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Figure 1. Relative delay vs. feature size [1]. 

 Three-dimensional (3D) manufacturing technologies are viewed as promising 

solutions to the bottlenecks in 2D integrated circuits. It has many advantages such as 

high density, low power and high performance. It is realized by wafer/die bonding 

techniques [2][3]; the communication between different layers is accomplished 

through vertical signaling, so the global interconnect is significantly reduced, as 

shown in Figure 2. 
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Figure 2. Global interconnects before and after 3D integration. 

 There are two methods of stacking chips SiPs (system-in-package) and PoPs 

(package-on-package) which are used for several years [4]–[6]. Chips are stacked and 

use wire-bonding for vertical signal links while packaging as shown in Figure 3.  

 

Figure 3. Wire bonding technology [7]. 

 However, it has some drawbacks. Inter-layer connections are restricted on the 

periphery of the chip; it takes longer communication path between devices. This 

problem can be resolved by through-silicon via (TSV) technology as shown in Figure 

4. The TSV-based 3D ICs stack multiple dies on a single chip and use inter-die vias 

for vertical connections. These vias can be located almost everywhere within a chip. 

Though the benefits offered by TSVs are extremely attractive, such as shorter global 

interconnects [8]–[11], lower interconnect power [12], smaller footprint [13] and 

better heterogeneous integration [2]. There are still many challenges of TSV-based 3D 

integration, including reliability, yield [13], power density, and above all, the huge 

area cost. 
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Figure 4. TSVs technology. 

 Field Programmable Gate Arrays (FPGAs) is an integrated circuit designed to be 

programmed by the customer or designer after manufacturing. There are many 

applications of it such as data processing, networks, and other industrial fields. The 

reconfigurability of FPGAs makes faster time-to-market and mitigates unforeseen 

design errors. Since 3D integration technology provides several unique advantages 

compared with the conventional 2D one, so the FPGAs are also extended from 2D to 

3D. 

1.2 Field Programmable Gate Array 

 

Figure 5. Tile structure. 

 An FPGA is a regular tile array, as shown in Figure 5. The major component is 

configurable logic blocks (CLBs). Each CLB contains multiple basic logic elements 

(BLEs) and can be programmed to implement any boolean function of up to J inputs. 

To avoid confusion between the CLBs of a netlist and the physical CLBs on FPGAs, 

http://en.wikipedia.org/wiki/Integrated_circuit
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the CLBs of the netlist will be called blocks. Another major component of FPGA is 

the interconnecting resource such as wire segments, connection boxes, and switch 

boxes which connect complex routing. 

 

Figure 6. 3D FPGA architecture. 

 The 3D FPGA architecture is shown in Figure 6. It consists of several identical 

2D FPGA layers and the vertical inter-layer communication is accomplished through 

extending the signal switching scheme of SBs from 2D to 3D while TSVs are used as 

the vertical links between different layers [14]. 

1.3 Yield Issues 

 As process technology scaling continues, integrated circuits face greater 

challenges from faults, process variability and reliability; therefore, manufacturing 

large fault-free integrated circuits becomes increasingly difficult. 

 The failure rate may be observed over the entire life of the circuits, as shown in 

Figure 7 [15]. The curve can be divided into three stages: 

 i) Infant – faults cause of material or manufacturing and can be exhibited as 

circuit signals which are stuck-at 0 or 1 or switch too slowly to meet the timing 

specification.  

 ii) Random – faults cause of improper operation or external factor such as SEUs 

(single event upsets) and SETs (single event transients), caused by certain types of 
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radiation.  

 iii) Wearout – faults cause of losses or degradation, the permanent deterioration 

of a circuit over time, resulting in a negative impact on performance such as 

electromigration and hot-carrier effects.  

 

Figure 7. The failure rate of electronic devices varies over time. 

 The exact level of fault densities is unknown, but it is usually assumed that 

1-15% [16] of resources on a chip may become fault and the estimated future 

effective yields of non-fault-tolerant FPGAs are shown in Table 1 [17]. Regardless of 

reference yields, future yields always decrease and the reduction is more noticeable 

for low reference yields. For example, if the yield of current FPGAs is 75%, the yield 

will be only 21% at 2021. As a result, fault tolerant methods are truly needed.  

Table 1. Estimated future effective yields of FPGAs. 
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1.4 Previous Work and Motivation  

 The reconfugurability of FPGAs decreases the time-to-market and mitigates 

unforeseen design errors and the architectural regularity of FPGAs provides inherent 

redundancy resources (CLB utilizations are between 70–80% [18][19]) which can be 

exploited for fault tolerance and yield enhancement. Fault tolerance of FPGAs is 

discussed for several years; the fault tolerance methods can be categorized into two 

different levels: 

 i) Hardware level – the hardware-level repair is to reserves redundant resources 

[20]–[22], which are used to replace faulty resources by re-routing their connections. 

The redundancy introduced has area overhead, and these methods are limited in the 

number of faults that can be tolerated, as shown in Figure 8. For ease of exposition, 

we will refer to a block mapped on a faulty CLB as a faulty block. 

 The faulty block at the first row can be repaired by re-routing its connections to 

the rightmost redundant CLB, and the faulty CLB at the last row is a unmapped, so 

we do not need to repair it; however, the number of faulty blocks at the third row is 

more than the number of spare CLB, i.e., two faulty blocks versus one spare CLB, so 

that this circuit can not be completely repaired. 

 

Figure 8. Reserve redundant resources for fault tolerance. 
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 ii) Configuration level – the configuration-level repair is to map the netlist onto a 

set of fault-free resources by utilizing the spares of the FPGA and no need to have 

additional redundancy [19][23]–[25]. This kind of repair method can be divided into i) 

resynthesis – redo circuit placement and routing regarding the faulty resources unable 

to be mapped and ii) incremental mapping – partially reconfigure the design to avoid 

the faulty resources, as shown in Figure 9. These techniques provide a tradeoff 

between configuration time and timing degradation. An elaborate configuration 

procedure results in low timing degradation at the cost of high runtime and vice versa. 

 

(a) 

 

(b) 

Figure 9. (a) Resynthesis. (b) Incremental mapping. 

 Here we introduce one of the configuration-level methods named ripple move 

reconfiguration algorithm [23]. The faulty block is reconfigured by moving it to 

adjacent CLBs along a path from faulty and mapped CLB to non-faulty spare CLB. 
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The faulty block is iteratively moved to spare CLB in order of timing criticality. For 

each block, a directed acyclic graph (DAG) is constructed. Nodes represent CLBs; 

edges are weighted with the delay required upon moving the node from existing 

location to the adjacent CLB. In the DAG, the faulty and mapped CLB is the source 

and the K nearest non-faulty spare CLBs are modeled as the destinations where K is a 

parameter determining the quality of reconfiguration. A greater value of K represents 

a DAG with more destinations, which also implies that this DAG has higher 

probability to find the solution but also increases the problem size. Finally, the 

shortest path algorithm is applied to find the reconfiguration path, and then the faulty 

block is reconfigured by moving it to adjacent CLBs along this path. The procedure is 

iteratively invoked for each faulty block until all faults are successfully reconfigured 

or no path is found resulting in reconfiguration fail, as shown in Figure 10.     

 

Figure 10. The ripple move reconfiguration algorithm. 

 However, the algorithm only finds a locally optimal solution at each iteration. An 

example shown in Figure 11, assume the criticality of the three faulty and mapped 

CLBs is in order of {bF8, bF10, bF15}, the value of K is 3 and the edge cost is the 

Manhattan distance between two CLBs. At the first iteration, a DAG is constructed 

with bF8 as source and {bS1, bS3, bS13} as destinations and the shortest path is found 
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{bF8, b7, bS13}. Second, another DAG is constructed with CLB 10 as source and {bS1, 

bS3, bS6} as destinations with the shortest path {bF10, b9, bS3}. In the last DAG, bF15 is 

set as the source and {bS1, bS25, bS32} are the destinations with the shortest path {bF15, 

b14, b20, b26, bS32}. The total cost of the example is 2+2+4=8.     

 

Figure 11. The reconfiguration algorithm without considering the demand issue. 

 From the example mentioned above, the distance between bF8 and any one of 

{bS1, bS3, bS13} is 2, and bS13 is chosen as a destination. It can be observed that bF15 is 

more demands for bS13 because the number of non-faulty CLBs in its neighborhood is 

less than bF8's. If bS13 is mapped, bF15 has to choose a farther non-faulty CLB as 

destination. Therefore, it results in higher timing degradation. 

With the same example, a different reconfiguration result is shown in Figure 12. 

Now we consider that if the shortest path is found {bF8, b7, bS1} then the shortest path 

for bF15 is {bF15, b14, bS13}, the total cost of the example becomes 6. The result showed 

that previous work can not handle this problem very well and therefore we want to 

develop a reconfiguration algorithm from more global point of view. 
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Figure 12. The reconfiguration algorithm consider the demand issue. 

1.5 Contribution 

 In this thesis, we propose a configuration-level algorithm that reconfigures faults 

through replacement with spares followed by routing adjustment and yields higher 

reconfiguration success rate compared to the previous work. In addition, we also 

propose a generic fault tolerant architecture for 3D FPGAs that distributes spares 

evenly across the 3D FPGA in order to provide a reconfiguration friendly architecture 

to improve the success rate. 

1.6 Thesis Organization 

 The remainder of this thesis is organized as follows. In Chapter 2, timing model, 

fault model, definitions and problem formulation are presented first. Then we propose 

our reconfiguration algorithm in Chapter 3. In Chapter 4, two fault tolerant 

architectures are proposed. Experimental results are presented in Chapter 5 and some 

contributions are concluded in Chapter 6. 
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Chapter 2  

Preliminaries 
In this chapter we first introduce the tool which used in the thesis and then 

describes two models used to timing analysis and fault location assumption. Finally, 

we describe the definitions and problem formulation.  

2.1 3D P&R Tool 

 Three dimensional place and route (TPR) [14][26] is the first complete CAD 

flow in academia from layering process to routing process for 3D FPGAs. The main 

flow of them is shown in Figure 13. 

 

Figure 13. A 3D FPGA CAD flow. 

 The flow starts with a technology-mapped netlist in .blif format, which describes 

the circuit. To map a circuit into FPGA, T-VPack [14] converts the .blif netlist into 

a .net netlist of FPGA logic blocks. Then, the .net netlist and the architecture 

description file are input to the placement algorithm. At first, the placement algorithm 

partitions the circuit into n balanced partitions, where n equals to the number of layers 
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in a 3D FPGA design. Second, all layers are placed by an SA-based placement 

algorithm; CLBs are selected and swapped or moved randomly during the placement 

until maximum number of iterations is reached. Finally, global and detailed routing is 

performed using the adapted 3D version of the TPR routing algorithm. 

2.2 Timing Model 

 In a “tile-based” FPGA, the FPGA structure is homogeneous, i.e. every location 

(x, y, z) in the FPGA is constructed from identical tiles. Exploiting such architectures, 

a delay lookup matrix indexed by (Δx, Δy, Δz) is constructed. Each (Δx, Δy, Δz) entry 

in the matrix is computed by TPR's timing-driven router, that performs a routing 

between the two blocks and the delay is recorded in the delay lookup matrix at 

location (Δx, Δy, Δz), so the matrix performs as a function that return estimated delay 

between two blocks given the delta location (Δx, Δy, Δz) of them. 

 The circuit is represented as a directed acyclic graph. Nodes represent the input 

and output pins of circuit elements such as registers and LUTs. Connections between 

nodes are modeled with edges in the graph which are annotated with the delay 

required to pass through the circuit element or routing. To determine the delay of the 

circuit, a breadth-first traversal is applied to the timing graph. Each node with incident 

edges is labeled with its arrival time as shown in Equation (1): 

(1) 

Node i is the node currently being computed, and delay (j, i) is the delay value 

marked on the edge. To compute the slack, we perform a second breadth-first 

traversal of the timing graph for required time Trequired. Trequired at all sinks is set to the 

maximum arrival time and then propagated backwards starting from the sinks with the 

following Equation (2): 

(2) 

)},()({)( )( ijdelayjTMaxiT arrivalifaninjarrival  

)},()({)( )( jidelayjTMiniT requiredifanoutjrequired  
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Finally, the slack of a connection (j, i) as shown in Equation (3): 

(3) 

2.3 Fault Model 

 In this paper we only use a CLB-level fault model, which assumes that any fault 

in a CLB then the CLB is disabled; faults in other part are not considered. In our 

experiments, we use two different fault models described below. 

i) Uniform fault model – Faults uniformly distribute across the FPGA. In the other 

words, the probability of a CLB being fault is independent of the state of the 

neighboring CLBs. The model is implemented by randomly assuming a CLB of 

coordinate (x, y, z) to be faulty. 

ii) Clustered fault model – Faults distribute in clusters. In the other words, if a CLB 

is faulty then its neighboring CLBs have a higher probability of being faulty, as 

shown in Figure 14. This model is implemented by randomly assuming a CLB of 

coordinate (x, y, z) to be the center C of a fault cluster of radius r. On the layer z, 

the CLBs within distance r from the center are faulty with an exponentially 

decreasing probability function as shown in Equation (4): 

 (4) 

where μ is failure rate and X is a positive value range between 1 and r. 

 

    (a)         (b) 

Figure 14. (a) A clustered fault of r = 2. (b) The exponential probability function. 

),()()(),( jidelayiTjTjiSlack arrivalrequired 

XeXP  ),(
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2.4 Definitions 

 In this section we define some sets and function that will be used in the 

following chapters. We define a set called B, which includes all CLBs on the FPGA is 

shown in Equation (5) and BF is a set of all faulty and mapped CLBs, as shown in 

Equation (6). Similarly, BS is a set of all non-faulty spare CLBs (as shown in Equation 

(7)). bFT is a faulty and mapped CLB, which is the most critical one and dM(bi, bj) is a 

function which returns the Manhattan distance between two CLBs, as shown in Figure 

15.  

(5) 

(6) 

(7) 

 

Figure 15. The definitions of CLB array. 

2.5 Problem Formulation 

 Given a netlist of CLBs, architecture specification, existing placement and 

routing result and locations of faulty CLBs, our objective is to partially reconfigure 

the design avoiding the faulty CLBs and the circuit delay meets the timing 

requirement. 

}CLB a is |{ bbB 

BBbbB FFFF   },CLB mapped andfaulty  a is |{

BB-bbB SSSS   },CLB sparefaulty non a is |{
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Chapter 3  

Proposed Demand-Aware 

Reconfiguration Algorithm 
 As mentioned in Section 1.4, we propose a demand-aware reconfiguration 

algorithm considering the demand issue during fault reconfiguration. According to the 

cost function of ripple move reconfiguration algorithm (as shown in Equation (8)), we 

modify the cost function to the demand-aware version consisting of the delay and the 

demand cost as shown in Equation (9). 

(8) 

(9) 

 For quickly estimating the delay between two blocks, an approximation can be 

computed by using Manhattan distance. The estimated delay is recorded in the delay 

lookup matrix, so when we construct a DAG for a fault CLB, edges are weighted with 

the delay required upon moving the block from existing location to the adjacent CLB 

by looking up the delay matrix and Costdealy is calculated by finding the shortest path 

(least delay cost) on the DAG. 

 The objective of the demand cost Costdemand is to achieve a solution with more 

aspect of consideration. α and β are the adjustable parameters. In demand-unaware 

method, α is set to 1 and β is set to 0. In proposed demand-aware method, α is set to 

0.2 and β is set to 0.8. 

 In the rest of this chapter, the concept of our algorithm is described in Section 

3.1.1. Section 3.1.2 explains how to gradually reconfigure the circuit placement by 

our iterative reconfiguration algorithm and in the last section, the routing algorithm 

and re-routing algorithm are described. 

 

delaypath CostCost 

demanddelaypath CostCostCost  
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3.1 Reconfiguration Algorithm 

3.1.1 The Concept of Our Algorithm 

 In the ripple move reconfiguration method, a DAG is constructed for each faulty 

block. The weight of an edge e=<u, v> is set to the difference between the required 

delay of the block residing in the CLB u and in the adjacent CLB v; then the shortest 

path (least cost) between the source CLB and destination CLB is found. According to 

the shortest path, the faulty block is reconfigured by ripple moving CLBs to their 

adjacent ones along this path. However, the result of this greedy method may be too 

local because for each faults. It constructs a DAG only from the faulty block point of 

view; and non-faulty spare CLBs are greedily chosen as destinations in order of the 

locally delay cost is minimized in each iteration. In fact, the demand for non-faulty 

spare CLB of every faulty block may be different, thus these two factors have to be 

considered when constructing DAG. Therefore, our algorithm is based on such a 

concept to resolve this problem.   

3.1.2 Demand-Aware Reconfiguration Algorithm 

 For ease of explanation, the following is an example to detail how we use this 

concept of demand. At the begin of each iteration, we determine a range with the 

distance dSER by expanding the from bFT, the target faulty and mapped CLB which has 

the most critical, until this range contains at least K (K=3 in this example) spare CLBs. 

Notice that it is a three-dimensional range, as shown in Figure 16 and the definition is 

shown in Equation (10).  

  (10) SSSSERSFTMSS B'Bk'Bdbbdb'B   , || and }),(|{
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Figure 16. Find the searching distance. 

 Next, we find the neighbor faulty and mapped CLBs of each bS. Consider bS3 at 

first, we utilize the dSER to find bFN, as shown in Figure 17. We define a BFN as a set of 

faulty and mapped CLBs in the neighborhood of bS, as shown in Equation (11).   

(11) 

 

Figure 17. Neighbor faulty and mapped CLBs of bS3. 

 And we utilize the dSER to find the neighbor non-faulty spare CLBs BSN of these 

faulty and mapped CLBs, as shown in Figure 18. BSN is defined as spare CLBs 

residing in the neighborhood of bF with the distance smaller or equal to dSER, as shown 

in Equation (12). 

FFNSERFNSMFNSFN BBdbbdbbB  },),(|{)(
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(12) 

 

(a) 

 

     (b)             (c) 

Figure 18. Neighbor spare CLBs of (a) bF8, (b) bF10, and (c) bF15. 

 Here we introduce Equation (13), which represents the demands for bS of bF and 

is in inverse proportion to the number of spare CLBs in the neighborhood and the 

Manhattan distance between them. If there is a spare CLB very close to a bF and only 

few spare CLBs is in the bF’s neighborhood, then the demands for the spare CLB of 

the bF is very high. The maximum demand Dmd-max for a spare CLB is defined as 

Equation (14).  

SSNSERSNFMSNFSN BBdbbdbbB   },),(|{)(

|)(|

1

),(

1
),(

FSNSFM

SFmd
bBbbd

bbD 
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(13) 

(14) 

 

Figure 19. The reconfiguration procedure when consider bS1. 

 According to the definition, the demands for bS3 of bF10 and bF15 are: 

 

 

 

 

 For the reconfiguration, the demand cost of bFT for bS is defined in the Equation 

(15). The small demand cost means the demand of bFT for bS is high. 

(15) 

 So in the example, the demand cost for bS3 of bF8 is: 

 

 Similarly, for bS1, the procedure is shown in Figure 19. Notice that only bF8 in the 

neighborhood of bS1, so the demand cost is 0. 
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 For bS13 at the last, the procedure is shown in Figure 20.  

 

 

 

 

 

 

 

Figure 20. The reconfiguration procedure when consider bS13.. 
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 In the example, we assume the delay cost equals to the Manhattan distance 

between two CLBs, so the delay cost of all shortest path in this example equal to 2. 

The costs of each candidate destinations in the first iteration are shown in Table 2, 

where is 0.2 and is 0.8. 

Table 2. The cost of first iteration in the example. 

 

 Finally, we take bS1 as the destination and the bF8 is reconfigured by moving it to 

adjacent CLBs along the shortest path {bF8, b7, bS1}. This procedure is iteratively 

performed for each faulty block until all faults are successfully reconfigured or no 

path is found resulting in reconfiguration failure. The final result of ripple move 

reconfiguration algorithm is shown in Figure 21-(a). This method randomly chooses 

one of {bS1, bS3, bS13} as destination because it does not consider the demand cost. 

Another result is shown in Figure 21-(b), it is demonstrated that our demand-aware 

reconfiguration algorithm can find the better solution compared to the ripple move 

reconfiguration algorithm. 

     

    (a)         (b) 
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Figure 21. The result of (a) ripple move algorithm and (b) our algorithm. 

 The algorithm flow is shown in Figure 22; after constructing a DAG first, the 

reconfiguration path is determined by finding the shortest path between the source and 

one of the k destinations; finally, the fault is reconfigured by moving blocks to 

adjacent CLBs along this path. The reconfiguration iteration is performed until every 

block is located on non-faulty CLBs. 

 

Figure 22. Our algorithm flow. 

3.2 Re-routing Algorithm 

3.2.1 Concept of Routing Algorithm 

 After placement, the locations of all CLBs have been determined, and then a 

timing driven router connects all connections between CLBs. In routing stage, the 

FPGA architecture is represented as a routing resource graph. It represents wire 

segments, TSVs and input or output pins of logic blocks, as shown in Figure 23.  
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Figure 23. FPGA routing architecture and routing resource graph. 

 The routing algorithm in TPR is based on Pathfinder negotiated congestion 

algorithm [26]. It iteratively rips-up and re-routes every net until the result meets the 

congestion constraint. At the first iteration, all nets are routed for minimizing delay 

without congestion constraint; that is, the routing resources are allowed overuse. 

When overuse exists at end of a routing iteration, the cost of overusing a routing 

resource is increased, so congestion will be resolved at another routing iteration. This 

process is repeated until all routing resources only are used once. 

 

3.2.2 Re-routing Algorithm 

 During fault-tolerant reconfiguration, the blocks on the shortest path are moved 

for one grid in each iteration and a set of blocks are moved due to the 10% faulty 

CLBs generally. When the block is moved, its connections are also affected, thus we 

have to re-route these connections, as shown in Figure 24.  
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Figure 24. The concept of re-route. 

 We record the blocks which are moved during the placement stage of 

fault-tolerant replacement stage. When in the routing stage, we rip-up all the affected 

nets and fix the exist routing, and then re-route them. Figure 25 shows an example 

that endpoints of Net_1 connect to CLB_A, CLB_B and CLB_C, respectively. If the 

block originally residing in CLB_A is moved to a new CLB, we rip-up Net_1 and the 

routing of Net_1 is started from the output pin of the new CLB and terminated at the 

original sink1 and the original sink2. If the block residing in CLB_B or CLB_C is 

moved to a new CLB, we rip-up Net_1 and the new routing of Net_1 is started from 

the original source and terminated at the input pin of the new CLB.      

 

Figure 25. Rip-up and re-route the affected net. 
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Chapter 4  

Fault Tolerant Architecture 

4.1 Non-Reserved (NR) 

 Locations of blocks are determined using an SA-based placement algorithm with 

the objective of minimizing wirelength and circuit delay. Thus, spare CLBs are 

pushed to the edge of FPGA, such a distribution of spare CLBs is called non-reserved 

(NR) architecture, as shown in Figure 26-(a). As the result, this placement is not 

suitable to fault reconfiguration through replacement with spare CLB because most 

spares located along the edge, which may cause a large amount of CLBs moved by 

ripple-move fault reconfiguration, as shown in Figure 26-(b). Therefore, even if we 

have a better reconfiguration algorithm, results will be limited because the restrictions 

of architecture.  

     

     (a)        (b) 

Figure 26. (a) The timing-driven placement. (b) The drawback of timing-driven 

placement for fault tolerance. 
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4.2 Evenly-Distributed (ED) 

 As mentioned above, traditional architecture is not suitable to fault tolerance, 

which inspires us to discover new architectures that take fault tolerance into 

consideration. We address this problem by evenly distributing spare CLBs across the 

FPGA and force them to pre-allocate spare resources before the SA-based placement 

algorithm. These pre-allocated spare CLBs are not allowed being used during 

SA-based placement, so we can get a placement result with spares evenly distributed 

in the 3D FPGA design. Such a distribution of spare CLBs is called even-distributed 

(ED) architecture. When faults occur, spares are very likely close to the faulty CLBs 

and benefit replacement without severely timing degradation.   

 We propose five optional ED architecture ED3, ED4, ED5, ED6 and ED7. ED# 

represents a spare pattern that the postfix # specifies the maximum distance between 

two adjacent spare CLBs in either X or Y or XY direction, as shown in Figure 27. The 

estimated percentage of reserved spare CLBs of each ED architecture is shown in 

Table 3. 

Table 3. The estimated percentage of reserved spare CLBs. 

 

 

 It should be noticed that the CLB utilization of most FPGA is only 70–80% in 

order to enhance the routability. As we use spare CLBs, the total number of signal 

nets does not increase. Thus, routing complexity does not significantly increase, 

however, a price to be paid for using the fault tolerant architecture is an additional 

delay increasing because we change the original timing driven placement, detail 
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discussions are concluded in Chapter 5.  

 

 

 

Figure 27. Evenly-distributed architecture. 
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Chapter 5  

Experimental Results 

5.1 Experimental Environment 

 The architectural setting in our experiments are shown in Table 4. The settings of 

CLBs and channel width are based on Altera Stratix IV [27], Xilinx FPGAs [28] and 

related work [29]. There are 4 wire segments with different lengths in these 32 wires, 

L1, L2, L4 and L8. The length of a wire segment is the number of CLBs it spans. 

There are 12 L1/L2 and 4 L4/L8 wires. In Z direction, each TSV spans one layer only 

for routability. 

Table 4. The architecture setting. 

 

 Table 5 shows the 16 test cases in our benchmark set – 15 are from MCNC [30] 

and 1 is from IWLS2005 [31], which are sorted by number of CLBs. Each test case 

perform 25 experimental runs with different random seeds (5 fault seeds and 5 

placement seeds) and find the average as the result. In addition, the number of layers 

(nz) is set to 4. The CLB utilization is set to 70% and the fault rate is set to 10%. 
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Table 5. The benchmark circuits. 

 

5.2 Results and Analysis 

5.2.1 Experimental Flow   

 In our experiment, three types of configuration-level repair methods are 

implemented: i) resynthesis ii) Cong's reconfiguration algorithm and iii) our 

reconfiguration algorithm. Figure 28 shows the experimental flow of resynthesis, the 

faulty CLB are marked before layer assignment and regarding them unable to be 

mapped. Figure 29 shows the experimental flow of two reconfiguration algorithms. 

Taking the initial placement and routing as an existing result, faults are repaired by 

partially reconfiguring blocks avoiding faulty CLB.   
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Figure 28. The experimental flow of resynthesis. 

 

Figure 29. The experimental flow of reconfiguration. 

5.2.2 Analysis of Timing Penalty  

Following are two reasons cause of timing degradation: 

 i) Initial architecture – there are six architectures used in our experiment, NR, 

ED3, ED4, ED5, ED6, ED7 with different percentages of reserved spare CLBs for 

each pattern, i.e., different spare densities; the higher spare density results in more 

blocks spread to the edge of the FPGA and thus the more delay increases. Figure 30 

shows the delay increase of each architecture compared to NR. ED7 has the minimal 
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impact to timing because it has the minimal spare density, otherwise, ED3 has the 

maximal timing overhead. For ease of exposition, we refer to the result of the NR 

architecture as IA-NR.  

 

Figure 30. Timing penalty caused by fault tolerant architecture. 

 ii) Reconfiguration – the delay is increased as the circuit placement being 

reconfigured. Because the ED architecture provides a fault tolerant friendly 

architecture. The higher spare density is, the more spare CLBs close to faulty blocks, 

which causes the timing degradation is lower during reconfiguration. Figure 31-(a) 

shows the delay increase caused by reconfiguration for uniform fault model based on 

their IA results. The delay overhead is gradually reduced as spare density grows, and 

the increased delay of our method is always lower than Cong's.      

 Similarly, Figure 31-(b) illustrates the delay increase for clustered fault model. 

The delay increases is significantly higher compared to uniform fault model because 

of a number of faults being localized within a region. it is represents clustered fault 

distribution is more difficult to be reconfigured. 
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(a) 

 

(b) 

Figure 30. Timing penalty caused by reconfiguration. 

 Figure 32-(a) shows the delay increase caused by reconfiguration for uniform 

fault model with the IA-NR as the baseline. It is observed that our delay increases are 

lower than Cong's. The delay increase is gradually reduces at the beginning as the 

spare density grows; however, if we continue increase the spare density, the timing 

degradation caused by initial architecture will dominate the FPGA, so the delay 

increase is gradually increased. 

 The total delay increase caused by reconfiguration for clustered fault model are 

much higher compared to the pattern degradation, so the delay increase is decreased 

as grows spare density, and our delay increase are lower than Cong's, as shown in 

Figure 32-(b) 
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(a) 

 

(b) 

Figure 31. Combined effect on timing penalty. 

5.2.3 Success Rate 

 A successful result is defined as a result with the all faults successfully 

reconfigured and the critical delay is within timing constraint; otherwise, the case is  

called failure case. Then the success rate is the percentage of the successful results. 

Resynthesis has the highest success rate as well as minimal timing degradation. We 

take the result as the baseline of reconfiguration. Therefore, we set the timing 

constraint to the delay that every case has 96% success rate in resynthesis flow. Figure  

33 shows the results of success rate for uniform fault model. Our algorithm improves 

up to 13% success rate. If we relax 1% of the timing constraint, (i.e., 101% of the 

delay of the resynthesis flow with 96% success rate) the overall success rate is 
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increased by 5~10% and our algorithm has up to 9% improvement.  

 

Figure 32. The success rate for uniform fault model. 

 

(a) 

 

(b) 

Figure 33. The number of failure cases for uniform fault model. 

Figure 34 shows the number of failure cases for uniform fault model, which is 

separated into i) reconfiguration failure – not all faults can find the corresponding 

reconfiguration paths; ii) timing failure – all faults can be reconfigured but the 
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resultant timing cannot meet the timing requirement. In the Figure 34-(a), it meets our 

expectation that the number of reconfiguration failure cases are decreased as the spare 

density grows. However, the initial architecture with high spare density dominates the 

timing degradation. It makes the number of timing failure cases more than one of the 

architectures with lower spare densities. Therefore, the total number of failure cases is 

increased. In the Figure 34-(b), it is also meets our expectation that the number of 

reconfiguration failure cases is decreased as the spare density grows. However, the 

number of timing failure cases is unstable because this algorithm just makes the 

locally optimal choice at each iteration. Take the example of NR and ED7, the low 

timing degradation can be obtained in the initial iterations for ED7 because the faulty 

blocks are close to spare CLBs; however, there are more results violating timing 

constraint in the last iterations of ED7 compared to NR.  

 Figure 35 shows the results of success rate for clustered fault model. Our 

algorithm improves up to 25% success rate. If we relax 1% of the target timing 

constraint, the overall success rate is increased 3~5% and our algorithm improves up 

to 25% success rate. The number of failure cases is far more than uniform fault model 

because concentrated faulty and mapped CLBs are difficult to be reconfigured, as 

shown in Figure 36. It is observed that the number of failure cases are decreased as 

the spare density grows; however, the results of two algorithm is not much difference 

in high spare density because the number reserved non-faulty spare CLBs is too 

much.      
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Figure 34. The success rate for clustered fault model. 

 

(a) 

 

(b) 

Figure 35. The number of failure cases for clustered fault model. 
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5.2.4 Runtime 

 The average runtime is shown in Figure 37. From the three configuration-level 

repair method, the runtime of reconfiguration methods (i.e., ours and Cong’s) is 

roughly half of the resynthesis method. Moreover, the improvement is dominated by 

the placement stage since in the reconfiguration methods, constructing the DAGs 

and then finding the shortest paths are more efficient than SA-based method.  

    

(a) 

 

(b) 

Figure 36. The runtime for uniform fault model. 

 In Figure 37, the runtime is separated into placement runtime and routing 

runtime. The runtime overhead of placement in our methods is slightly more than 
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Cong’s because our placer considers more factors when calculating costs in the 

reconfiguration iterations. With more global point of view, the affected nets of our 

placer is less than those of Cong’s, which implies less number of routing iterations 

will be taken. Therefore, our router runs faster than Cong’s. Figure 38 shows the 

average runtime for each architecture, the runtime is decreased as the spare density 

grows because the faulty blocks are closer to spare CLBs. 

 

(a) 

 

(b) 

Figure 37. The runtime for clustered fault model. 
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Chapter 6    

Conclusion 
 As process technology scaling continues, manufacturing large fault-free 

integrated circuits become increasingly difficult. The architectural regularity of 

FPGAs provides inherent redundancy resources which can be exploited for fault 

tolerance and yield enhancement. In this thesis, we propose a fault tolerant 

reconfiguration algorithm for CLBs. A faulty block is relocated to its adjacent CLBs 

along a reconfiguration path from faulty and mapped CLB to non-faulty spare CLB. 

After all faulty CLBs are successfully reconfigured, we rip-up the affected nets and 

then re-route them. We also propose a generic fault tolerant architecture for 3D 

FPGAs that distributes spare CLBs evenly across the 3D FPGA, which provides a 

reconfiguration friendly architecture to improves the success rate. The experimental 

results show that more faults can be repaired when the fault patterns are generated 

using the uniform fault model than for the clustered fault model. As well, our 

algorithm improves up to 13% success rate for the uniform fault model and 25% 

success rate for the clustered fault model compared to the previous work. The runtime 

overhead of our method is only slightly more than the prior art. 
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