Bt 3z AT g BiER L2
FUERERELE LR RE R

Fault Tolerant Architectural Exploration and

Fast Reconfiguration Algorithm for 3D FPGAS

Bt 2= av 5V B4ER 52
FHEHFERELE LB TE 2
Fault Tolerant Architectural Exploration and

Fast Reconfiguration Algorithm for 3D FPGASs

=R ALY o Student: Hao-Lin Peng

hERE ke BL Advisor: Dr. Juinn-Dar Huang

2|
|4
<k
(=
A=
%

A Thesis
Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical & Computer Engineering
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master of Science
in
Electronics Engineering & Institute of Electronics

September 2011
Hsinchu, Taiwan, Republic of China

dEAR- 00EL-

B3z av ‘w&iim!ifd*

FEEHEEATREE R WY

|

¥ By F ag

TRy

2
T IR AR LT

.vs"\ \/\

R
CR X

- RFETREINIER = Aol HNRAR S - B R fEAS ko
v AJEd sy 5 B &g (die) 1 B - & % (chip) £ {1 * B # 7 3t (through-silicon
& o i YT R e 2 B ehv 258 B4R R L 5 (3D FPGAS)

Bed 27 BFR L= AR Wi R A2 R

vias, TSVS) i s & &

GREE S LI S
oAk g 3 4% (fault

AR S0 FF AR Y P R A

4 el plT g

IRt

)‘é’é\}

=

I

~=h

tolerance)sn g K> B-HR L & * A @ hI= 2
A2V BIER L 5| £ A7 B (reconfiguration) shr i -k eha i B P E Fefh

oA ER Btk AAP L EZ BT 2N ER Lo

B4 Bl F S E N F G AR T R RNE AR R RS2 g A AT R

F T A2 AR E A (CLBS)F) & sl o™ A2V BB H A2 2 il k@A 22
e FHRESHETHREGTZDNFHE 2> APT URFFHOBR AT A 0
BRFER -V MEHZ Qv FABER LR DFALG

FoLBETTEARE S H A hEF T RS B TE TS

;=

fme
¢

*EFPEDOTR
n R
MR Far e i agEiE e

Fault Tolerant Architectural Exploration and

Fast Reconfiguration Algorithm for 3D FPGAs

Student: Hao-Lin Peng Advisor: Dr. Juinn-Dar Huang

Department of Electronics Engineering & Institute of Electronics
National Chiao Tung University

Abstract

Three-dimensional (3D) manufacturing technologies, which stack multiple dies
within a single chip and utilize through-silicon vias (TSVs) as vertical connections,
are considered as promising solutions to-the bottlenecks in 2D integrated circuits. The
3D field programmable gate array (FPGA) can be realized by extending the 2D
programmable routing switches to the 3D-one. The architectural regularity of FPGAs
provides an easy way to allocate inherent redundancy resources (spares), which can
be used for fault tolerance. Faulty FPGAs can be repaired by replacing the faulty
resources with redundancies. At first, we propose a demand-aware fault-tolerant
reconfiguration algorithm for 3D FPGAs that partially remaps the functionality of
faulty CLBs to fault-free CLBs to avoid functional faults. Experimental results show
that our method can increase the success rate of fault repair without significant timing
degradation compared to previous works. Furthermore, we also propose a
fault-tolerant pre-allocation concept that performs an architectural exploration for 3D
FPGAs, and picks out the most appropriate architectures with a better balance

between the success rate of repair and the timing degradation.

Acknowledgment

B T A etk
et e b AR By By M A Y

ab

P RE - EES Y

‘;Aﬁﬁy’%%ﬂjw
T LA R R A g B
% RE R REA N ARG ok < hwfe R EERA O RAF Y Pl o AR

> pbooh ,.ﬂzga:ﬁfi—_ 3 &@ﬁimfé%ﬁ
YR

‘fr’ﬁxg d i
R R A T

BENLRMAGIE AL BN @A
WiEsEp &

A
%
AtS
23
=
o
2}\

B e B 2 8 (V) R RS (8) T RIUNE 2 ¢ f ¢

& F tdp
WA AN GIFFRHFLS X m,\iil—hgj;/?ﬂ,— s

A

e L EANTA H 0 B n
AR Rz AR AFT T i d

BB L(ER) B
EE RS £l

) FEFEER ST 7 R D A AATTS 0 BRI o

RHRZE N FRira 1

EFEL BRI
S -

AcH E 0 AT AT

Brend 8§ b AT f B Aer
LIRS IR R ARG RE S > F15
EFEIRT o4

W7 RREr o P RAFEEE E#E 5 FIR

P fr

3

spenpE i g - 2

\ FenH U BEE S N - A
${$9°

Content

ADSTFACT ... I
ACKNOWIBAGMENT ... ii
COMEENT ..t v
LASE OF TADIES ... vi
IS o) T U= OSSR vii
(@8 T o) =1 g A [0 (0 To [0 Tox 1 To] o TSR 1
1.1 3D Integrated CIrCUILS.......cccveiiieieiieie ettt 1
1.2 Field Programmable Gate ArTaYcccccveieeieeieeiie e se e 3
1.3 YHEId ISSUBS ...t 4
1.4 Previous WOrk and MOtIVALION s sseveeeereereeisienienieeseseese e 6
1.5 CONITDULION ... 5 s ki e b A ket e ettt 10
1.6 ThesSiS Organization oo ... eieieeiir e tiie e seesiesieseeee e sbe et eenes 10
Chapter 2 PrelimINariesoo.ooo i iiissmmmaes s e sie st sse bt nes 11
2.1 3D P&R TOOI ..ottt 11
2.2 TIMING MOTEL ... 12
2.3 FaUIE MO ... 13
24 DEFINITIONS. ...ttt 14
2.5 Problem FOrmMUIAtIONcooiiiiiiiec e 14
Chapter 3 Proposed Demand-Aware Reconfiguration Algorithmc.cccceeeeeee. 15
3.1 Reconfiguration AIGOrithm ..o 16
3.1.1 The Concept of Our Algorithm.........ccceeviiiiiiiiece e 16
3.1.2 Demand-Aware Reconfiguration Algorithmccccoov i, 16

3.2 Re-routing AlGOrtNmM........ccoviiii s 22
3.2.1 Concept of Routing Algorithmcccoovveiiiieiiee e 22

3.2.2 Re-routing AIgOrithm...........coviieiiee e 23

Chapter 4 Fault Tolerant ArChiteCtUIE.........ccceevveiieiiee e 25
4.1 NON-RESEIVEA (NR) ...oeeiiciiciee e 25
4.2 Evenly-Distributed (ED)cccoviieiieie e 26

Chapter 5 Experimental RESUIESccoooiiiiiiiiiiiiee e 28
5.1 Experimental ENVIFONMENTccoiiiiiiiiiiieieeeeee s 28
5.2 RESUILS aNd ANAIYSIS ..o 29

521 EXperimental FIOW..........cociiiiiiiiii e 29
5.2.2 Analysis of TIMIiNg Penaltyccccooiiiiiiiiiiiece e, 30
5.2.3 SUCCESS RALE......c.eiiiiiiiiieiieie e 33
5.2.4 RUNTIME...c.oiiiiiiiiiiitieie bbb 37
Chapter 6 CONCIUSIONeoivieiece et sre s 39
RETEIEINCE ... it et ettt e ettt 40

List of Tables

Table 1. Estimated future effective yields of FPGAS..........cccocvveieeiiiie e, 5
Table 2. The cost of first iteration in the example.cccccvveveiieiienecccceee e, 21
Table 3. The estimated percentage of reserved spare CLBS.ccccccevvevveiieieiiennnn, 26
Table 4. The architeCture SEttiNG.ccveivveiieieceese e 28
Table 5. The benchmark CIFCUITS.cooiiiiiiiiiiie e 29

vi

List

of Figure

Figure 1. Relative delay vs. feature Size [1]....ccccceveiiieiiieii e 1
Figure 2. Global interconnects before and after 3D integration.ccccccevvveieiiennn. 2
Figure 3. Wire bonding teChnology [7].....ccooeeverieieiieii e 2
Figure 4. TSVS teChNOIOQY. ..ooiveeiiiieiie ettt nne s 3
FIQUIE 5. THIE SITUCKUTE. ...ttt e e nne s 3
Figure 6. 3D FPGA architeCtUre.cccveiuveieieecie e 4
Figure 7. The failure rate of electronic devices varies over time............cccoceevveveinennnn, 5
Figure 8. Reserve redundant resources for fault tolerance.cccooveveiieiiciviiennnn, 6
Figure 9. (a) Resynthesis. (b) Incremental Mapping.ccccoevvvevieiievieese e 7
Figure 10. The ripple move reconfiguration algorithm.c.ccccooeviviveiie e, 8
Figure 11. The reconfiguration algorithm without considering the demand issue. 9
Figure 12. The reconfiguration algorithm consider the demand issue...............c......... 10
Figure 13. A3D FPGA CAD fIOW.....ccviiiiieece e 11
Figure 14. (a) A clustered fault of r = 2. (b) The exponential probability function. ...13
Figure 15. The definitions of CLB array... s e 14
Figure 16. Find the searching diStanCe: ... it 17
Figure 17. Neighbor faulty and mapped CLBs 0f Ds3.......ccccvevvviveiiiiciccc 17
Figure 18. Neighbor spare CLBs of (a) bgg, (b)br1o, and (C) beis. covvvvvevveiiiii 18
Figure 19. The reconfiguration procedure when consider Dsi.cccoovevveiiivievvenenne, 19
Figure 20. The reconfiguration procedure when consider Dsiz..cccoovevveieiievnenenne, 20
Figure 21. The result of (a) ripple move algorithm and (b) our algorithm. 22
Figure 22. Our algorithm fIOW. ... 22
Figure 23. FPGA routing architecture and routing resource graph.............ccccccevenne. 23
Figure 24. The concept Of re-rOULE.ccooiveiiiie e 24
Figure 25. Rip-up affected net and re-route it...........cccceevveiieeiie s 24
Figure 26. (a) The timing-driven placement. (b) The drawback of timing-driven
placement for fault tolerance.cccoove i 25
Figure 27. Evenly-distributed architecture. ..., 27
Figure 28. The experimental flow of resynthesis...........cccccoovveiiiiiiiiii i, 30
Figure 29. The experimental flow of reconfiguration.............ccccoeevevieiiieiic e, 30
Figure 31. Timing penalty caused by reconfiguration.ccccoevveviie i, 32
Figure 32. Combined effect on timing penalty.cccoovviieiviiii e 33
Figure 33. The success rate for uniform fault model.ccccoooiiiiiii, 34
Figure 34. The number of failure cases for uniform fault model.................ccoeeine. 34
Figure 35. The success rate for clustered fault model............ccccooveiiiiiniii 36

vii

Figure 36. The number of failure cases for clustered fault model.cccceoennne. 36
Figure 37. The runtime for uniform fault model............c.ccoovriiiiine 37
Figure 38. The runtime for clustered fault model.ccccoiiiniiiie, 38

viii

Chapter 1
Introduction

1.1 3D Integrated Circuits

Smaller feature size and increasing transistor counts allow the implementation of
more complex and larger designs. However, as process technology scaling continues,
manufacturing yield becomes increasingly low. And the global interconnect has
become domination the delay of circuits, as shown in Figure 1. The delay of global

interconnects is much larger than that of gates at 32nm process.

o— Gate Delay
(Fan out 4)
Local
= (Scaled)
Global with
—

Repeaters
Global w/o
Repeaters

100

=
o
I

Relative Delay

=

0.1
250 180 130 920 45 32

Process Technology Node (nm)

Figure 1. Relative delay vs. feature size [1].

Three-dimensional (3D) manufacturing technologies are viewed as promising
solutions to the bottlenecks in 2D integrated circuits. It has many advantages such as
high density, low power and high performance. It is realized by wafer/die bonding
techniques [2][3]; the communication between different layers is accomplished
through vertical signaling, so the global interconnect is significantly reduced, as

shown in Figure 2.

—
i »‘/Bw b
T

Figure 2. Global interconnects before and after 3D integration.

@ L F

There are two methods of stacking chips SiPs (system-in-package) and PoPs
(package-on-package) which are used for several years [4]-[6]. Chips are stacked and

use wire-bonding for vertical signal links while packaging as shown in Figure 3.

Figure 3. Wire bonding technology [7].

However, it has some drawbacks. Inter-layer connections are restricted on the
periphery of the chip; it takes longer communication path between devices. This
problem can be resolved by through-silicon via (TSV) technology as shown in Figure
4. The TSV-based 3D ICs stack multiple dies on a single chip and use inter-die vias
for vertical connections. These vias can be located almost everywhere within a chip.
Though the benefits offered by TSVs are extremely attractive, such as shorter global
interconnects [8]-[11], lower interconnect power [12], smaller footprint [13] and
better heterogeneous integration [2]. There are still many challenges of TSV-based 3D
integration, including reliability, yield [13], power density, and above all, the huge

area cost.

Metal\l‘ayer Dieletric layer
/

< —

— f

Device layer
[Block | [Block | \ Block.'H

Through-silicon
-~ .
- vias

[Block | [Block |

r
[Block | [Block |

i—‘—r.—.—‘—.—“—ﬁ—.—i’ S 2 - /Bump

Figure 4. TSVs technology.

Field Programmable Gate Arrays (FPGAS) is an integrated circuit designed to be
programmed by the customer or designer after manufacturing. There are many
applications of it such as data processing, networks, and other industrial fields. The
reconfigurability of FPGAs makes faster time-to-market and mitigates unforeseen
design errors. Since 3D integration technology provides several unique advantages
compared with the conventional 2D one; so the. FPGAs are also extended from 2D to

3D.

1.2 Field Programmable Gate Array

| e T
| Connection block (CB)i E_Conﬂgurable logic block (CLB) |
L ——— ol
‘\ /;
\ ,l
N | k pmmmmmm e ——————eaa
I Switch block (SB) |
D e e e e e e e e e e o o e o] 1
Wire segment ,/'
P
3 n i
] -
Programmable _._}== = - Programmable
: o pll BT routing switch
connection switch L -

Figure 5. Tile structure.
An FPGA is a regular tile array, as shown in Figure 5. The major component is
configurable logic blocks (CLBs). Each CLB contains multiple basic logic elements
(BLEs) and can be programmed to implement any boolean function of up to J inputs.

To avoid confusion between the CLBs of a netlist and the physical CLBs on FPGAs,
3

http://en.wikipedia.org/wiki/Integrated_circuit

the CLBs of the netlist will be called blocks. Another major component of FPGA is
the interconnecting resource such as wire segments, connection boxes, and switch

boxes which connect complex routing.

S A— /L ___/_,__:_é._,____//

/ a— 74—

[e LA i At
AL -

Figure 6. 3D FPGA architecture.
The 3D FPGA architecture is shown in Figure 6. It consists of several identical
2D FPGA layers and the vertical inter-layer communication is accomplished through
extending the signal switching scheme of SBs from 2D to 3D while TSVs are used as

the vertical links between different layers [14].

1.3 Yield Issues

As process technology scaling continues, integrated circuits face greater
challenges from faults, process variability and reliability; therefore, manufacturing
large fault-free integrated circuits becomes increasingly difficult.

The failure rate may be observed over the entire life of the circuits, as shown in
Figure 7 [15]. The curve can be divided into three stages:

i) Infant — faults cause of material or manufacturing and can be exhibited as
circuit signals which are stuck-at 0 or 1 or switch too slowly to meet the timing
specification.

i) Random — faults cause of improper operation or external factor such as SEUs

(single event upsets) and SETs (single event transients), caused by certain types of

radiation.
iii) Wearout — faults cause of losses or degradation, the permanent deterioration
of a circuit over time, resulting in a negative impact on performance such as

electromigration and hot-carrier effects.

1 infant : random 1 wearout
1
| : !
3 | [
= ! |
@ | ! 1
T | 1
= | ' .
Et | 1
| : !
| 1

Time

Figure 7. The failure rate of electronic devices varies over time.

The exact level of fault densities-is unknown, but it is usually assumed that
1-15% [16] of resources on a chip.may become fault and the estimated future
effective yields of non-fault-tolerant FPGAs-are shown in Table 1 [17]. Regardless of
reference yields, future yields always decrease and the reduction is more noticeable
for low reference yields. For example, if the yield of current FPGAs is 75%, the yield
will be only 21% at 2021. As a result, fault tolerant methods are truly needed.

Table 1. Estimated future effective yields of FPGAs.

Years
Ref. yield 2009 2012 2015 2018 2021
70% 70% 60% 46% 28% 12%
75% 75% 67% 55% 38% 21%
80% 80% 74% 64% 52% 37%
83% 83% 77% 69% 59% 47%

1.4 Previous Work and Motivation

The reconfugurability of FPGAs decreases the time-to-market and mitigates
unforeseen design errors and the architectural regularity of FPGASs provides inherent
redundancy resources (CLB utilizations are between 70-80% [18][19]) which can be
exploited for fault tolerance and yield enhancement. Fault tolerance of FPGAS is
discussed for several years; the fault tolerance methods can be categorized into two
different levels:

1) Hardware level — the hardware-level repair is to reserves redundant resources
[20]-[22], which are used to replace faulty resources by re-routing their connections.
The redundancy introduced has area overhead, and these methods are limited in the
number of faults that can be tolerated; as shown in Figure 8. For ease of exposition,
we will refer to a block mapped on-a faulty CLB as-a faulty block.

The faulty block at the first row can be repaired by re-routing its connections to
the rightmost redundant CLB, and the faulty CLB at the last row is a unmapped, so
we do not need to repair it; however, the number of faulty blocks at the third row is
more than the number of spare CLB, i.e., two faulty blocks versus one spare CLB, so

that this circuit can not be completely repaired.

T WS 01 5T ¥ auty and mapped CLB
T DT 00 M DT U sparects
1 0 ¥ 0 ¥ ST T Reserved redundancy GLB

*

Figure 8. Reserve redundant resources for fault tolerance.

ii) Configuration level — the configuration-level repair is to map the netlist onto a
set of fault-free resources by utilizing the spares of the FPGA and no need to have
additional redundancy [19][23]-[25]. This kind of repair method can be divided into i)
resynthesis — redo circuit placement and routing regarding the faulty resources unable
to be mapped and ii) incremental mapping — partially reconfigure the design to avoid
the faulty resources, as shown in Figure 9. These techniques provide a tradeoff
between configuration time and timing degradation. An elaborate configuration

procedure results in low timing degradation at the cost of high runtime and vice versa.

VI gty
NN SR Il B
RENENE N o

(@)

(b)

Figure 9. (a) Resynthesis. (b) Incremental mapping.

Here we introduce one of the configuration-level methods named ripple move
reconfiguration algorithm [23]. The faulty block is reconfigured by moving it to

adjacent CLBs along a path from faulty and mapped CLB to non-faulty spare CLB.
7

The faulty block is iteratively moved to spare CLB in order of timing criticality. For
each block, a directed acyclic graph (DAG) is constructed. Nodes represent CLBSs;
edges are weighted with the delay required upon moving the node from existing
location to the adjacent CLB. In the DAG, the faulty and mapped CLB is the source
and the K nearest non-faulty spare CLBs are modeled as the destinations where K is a
parameter determining the quality of reconfiguration. A greater value of K represents
a DAG with more destinations, which also implies that this DAG has higher
probability to find the solution but also increases the problem size. Finally, the
shortest path algorithm is applied to find the reconfiguration path, and then the faulty
block is reconfigured by moving it to adjacent CLBs along this path. The procedure is
iteratively invoked for each faulty block until all faults are successfully reconfigured

or no path is found resulting in reconfiguration fail, as shown in Figure 10.

Yo “rs - “r

OGE G e | 6 | A A A
Chubalt S 0 S 0 S o I 0 O S S S S
= (o) (4) (6} (23)

B v B e T o B I o I Vo<’ AP -~
1191 1201 1211 1221|1231 | 124, ~.. | i
- - - -1 - - T v
-—= == == == == = (3 N {’29\\
o o Py P) o g | P H '
o e B G|) Rl
S orTT et oema | e | ens sy
{3ll {32I 1331 {34! :35I {36| {35}
pp—) pu—— | —) p——] ——) | “~ ’

Figure 10. The ripple move reconfiguration algorithm.

However, the algorithm only finds a locally optimal solution at each iteration. An
example shown in Figure 11, assume the criticality of the three faulty and mapped
CLBs is in order of {brs, brio, bris}, the value of K is 3 and the edge cost is the
Manhattan distance between two CLBs. At the first iteration, a DAG is constructed

with beg as source and {bsi, bs3, bsiz} as destinations and the shortest path is found

{brs, b7, bsi3}. Second, another DAG is constructed with CLB 10 as source and {bs,
bss, bse} as destinations with the shortest path {bgig, by, bs3}. In the last DAG, bgss is
set as the source and {bsi, bsys, bs3o} are the destinations with the shortest path {bgis,

D14, D20, D26, bs32}. The total cost of the example is 2+2+4=8.

T oess ol ers oEn Py
VL 2 3 idr 3 16
gt R 5w g
e Tl i 1121
V- ==) e —— -—=
i3] l14l*§l 16} 117! 18
| R | B [B —-_— —-_— —_—

o oA TR W =5
J91 (200 (211 (221 (23] (241
|--—| |--_| 175 5 15 =---i
(251 (260 (271 [28) |29) ;30
- - - - - - - - - - - I--‘
1311 1321 133] i34 I35 136}
—_—— | Rt I—=a l==3 I-=a =

Figure 11. The reconfiguration algorithm without considering the demand issue.

From the example mentioned above, the distance between bgg and any one of
{bs1, bs3, bsi3} is 2, and bsy3 is chosen as a destination. It can be observed that bgys is
more demands for bs;3 because the number of non-faulty CLBs in its neighborhood is
less than bgg's. If bsiz is mapped, bris has to choose a farther non-faulty CLB as
destination. Therefore, it results in higher timing degradation.

With the same example, a different reconfiguration result is shown in Figure 12.
Now we consider that if the shortest path is found {brs, b7, bs:} then the shortest path
for beis is {br1s, b1s, bs13}, the total cost of the example becomes 6. The result showed
that previous work can not handle this problem very well and therefore we want to

develop a reconfiguration algorithm from more global point of view.

-
LIS
[
i, !
o
S
| rep—
==
(AN
[p—_— |
==
1 &
| y——
i
-
—
[
[y—— |
_—
|w
IS
-
T
19
[—— |
_—
HE=N
| ST

| P [B —— a3 Lo S |] | R - - oo S
T S F R)
U TR T R T B L T - :"'i :"'l :"'l :"'n :"‘n :“‘.
A9 1200 1210 1221 (231 (24 Jd91 1200 1211 11221 (231 241
== === == == = === |--- I--_ I--_ I--_ I--_ |--"
25! 126} (27} 28] [29) (30} 125) 1260 127) |{28) (201 {30;
=== === e 1 ———— e | == =T [=== [
3111321 133) (341 1351 (36} 1311|1321 133} |134) 135! i36)

Figure 12. The reconfiguration algorithm consider the demand issue.

1.5 Contribution

In this thesis, we propose a configuration-level algorithm that reconfigures faults
through replacement with spares followed by routing adjustment and yields higher
reconfiguration success rate compared to the previous work. In addition, we also
propose a generic fault tolerant architecture for 3D FPGAs that distributes spares
evenly across the 3D FPGA in order to provide a reconfiguration friendly architecture

to improve the success rate.

1.6 Thesis Organization

The remainder of this thesis is organized as follows. In Chapter 2, timing model,
fault model, definitions and problem formulation are presented first. Then we propose
our reconfiguration algorithm in Chapter 3. In Chapter 4, two fault tolerant
architectures are proposed. Experimental results are presented in Chapter 5 and some

contributions are concluded in Chapter 6.

10

Chapter 2
Preliminaries

In this chapter we first introduce the tool which used in the thesis and then
describes two models used to timing analysis and fault location assumption. Finally,

we describe the definitions and problem formulation.

2.1 3D P&R Tool

Three dimensional place and route (TPR) [14][26] is the first complete CAD
flow in academia from layering process to routing process for 3D FPGAs. The main

flow of them is shown in Figure 13.

m Architecture

v
TSV-driven
3D layering

Fo—————f == ————

| TPR-based

v

Timing-driven
3D placement

Timing-driven
3D routing

|
|
|
|
| v
|
|
|
|

P&R result

Figure 13. A3D FPGA CAD flow.

The flow starts with a technology-mapped netlist in .blif format, which describes
the circuit. To map a circuit into FPGA, T-VPack [14] converts the .blif netlist into
a .net netlist of FPGA logic blocks. Then, the .net netlist and the architecture
description file are input to the placement algorithm. At first, the placement algorithm

partitions the circuit into n balanced partitions, where n equals to the number of layers
11

in a 3D FPGA design. Second, all layers are placed by an SA-based placement
algorithm; CLBs are selected and swapped or moved randomly during the placement
until maximum number of iterations is reached. Finally, global and detailed routing is

performed using the adapted 3D version of the TPR routing algorithm.

2.2 Timing Model

In a “tile-based” FPGA, the FPGA structure is homogeneous, i.e. every location
(x,y, z) in the FPGA is constructed from identical tiles. Exploiting such architectures,
a delay lookup matrix indexed by (Ax, Ay, Az) is constructed. Each (Ax, Ay, Az) entry
in the matrix is computed by TPR's timing-driven router, that performs a routing
between the two blocks and the delay is recorded in the delay lookup matrix at
location (Ax, Ay, Az), so the matrix performs:as a function that return estimated delay
between two blocks given the delta location (Ax, Ay, Az) of them.

The circuit is represented as a directed acyclic graph. Nodes represent the input
and output pins of circuit elements such as registers and LUTs. Connections between
nodes are modeled with edges in the graph which are annotated with the delay
required to pass through the circuit element or routing. To determine the delay of the
circuit, a breadth-first traversal is applied to the timing graph. Each node with incident
edges is labeled with its arrival time as shown in Equation (1):

Torrival(1) = M@Xyj ganingiy {Tarrivar (1) + delay (J, 1)} (1)

Node i is the node currently being computed, and delay (j, i) is the delay value
marked on the edge. To compute the slack, we perform a second breadth-first
traversal of the timing graph for required time Trequired- Trequired at all sinks is set to the
maximum arrival time and then propagated backwards starting from the sinks with the
following Equation (2):

Trequired (I) = Minvjefanou(i){Trequired(j) + dE|ay(i, J)} (2)
12

Finally, the slack of a connection (j, i) as shown in Equation (3):

2

in

Slack (I' J) = Trequired(J) _Tarrival(i) - delay(i, J) (3)

.3 Fault Model

In this paper we only use a CLB-level fault model, which assumes that any fault

a CLB then the CLB is disabled; faults in other part are not considered. In our

experiments, we use two different fault models described below.

i)

-
1
|
-

= - —
1
1

Uniform fault model — Faults uniformly distribute across the FPGA. In the other
words, the probability of a CLB being fault is independent of the state of the
neighboring CLBs. The model is implemented by randomly assuming a CLB of
coordinate (X, Y, z) to be faulty.
Clustered fault model — Faults distributein.clusters. In the other words, if a CLB
is faulty then its neighboring CLBs have a higher probability of being faulty, as
shown in Figure 14. This model.is implemented by randomly assuming a CLB of
coordinate (x, y, z) to be the center C of a fault cluster of radius r. On the layer z,
the CLBs within distance r from the center are faulty with an exponentially
decreasing probability function as shown in Equation (4):

P(X,) = pe* 4

where w is failure rate and X is a positive value range between 1 and r.

——
~

0.5

0.4

1
1
-
1
1
-
1
1
-

0.3

- Jp—— p—

[0.2

,...._....__ .__
1
1

0.1

,__
1
1

0

,__
i

o

-

N

w

S

w

)

x

(@) (b)

Figure 14. (a) A clustered fault of r = 2. (b) The exponential probability function.

13

2.4 Definitions

In this section we define some sets and function that will be used in the
following chapters. We define a set called B, which includes all CLBs on the FPGA is
shown in Equation (5) and B is a set of all faulty and mapped CLBs, as shown in
Equation (6). Similarly, Bs is a set of all non-faulty spare CLBs (as shown in Equation
(7)). ber is a faulty and mapped CLB, which is the most critical one and du(b;, bj) is a

function which returns the Manhattan distance between two CLBs, as shown in Figure

15.
B={b|bisaCLB} 5)
B ={b: | b: is a faulty and mappedCLB}, B. < B (6)
B, ={b. | b is a non-faultyspare CLB}, B, — B (7

nith: Bt o

B={by, by, ..., bos}

- o= i:" Ry Be={brs, br13, bers}

1] 112} 113l 14) *1:! B = {bss, boy, boy, bss, bss,
T I bs10, Bsz1, P23 Dsza, Ds2s)

| Ml S Rt B S R e dM(b23a b25) =2

Figure 15. The definitions of CLB array.

2.5 Problem Formulation

Given a netlist of CLBs, architecture specification, existing placement and
routing result and locations of faulty CLBs, our objective is to partially reconfigure
the design avoiding the faulty CLBs and the circuit delay meets the timing

requirement.

14

Chapter 3
Proposed Demand-Aware
Reconfiguration Algorithm

As mentioned in Section 1.4, we propose a demand-aware reconfiguration
algorithm considering the demand issue during fault reconfiguration. According to the
cost function of ripple move reconfiguration algorithm (as shown in Equation (8)), we
modify the cost function to the demand-aware version consisting of the delay and the
demand cost as shown in Equation (9).

Cost .., =Cost

delay (8)

+ ﬂ X COStdemand (9)

path

Cost__, =axCost

path delay

For quickly estimating the delay between two blocks, an approximation can be
computed by using Manhattan distance. The estimated delay is recorded in the delay
lookup matrix, so when we construct.a DAG for a fault CLB, edges are weighted with
the delay required upon moving the block from existing location to the adjacent CLB
by looking up the delay matrix and Costgeay is calculated by finding the shortest path
(least delay cost) on the DAG.

The objective of the demand cost CoStgemang IS t0 achieve a solution with more
aspect of consideration. « and g are the adjustable parameters. In demand-unaware
method, « is set to 1 and f is set to 0. In proposed demand-aware method, « is set to
0.2and B issetto 0.8.

In the rest of this chapter, the concept of our algorithm is described in Section
3.1.1. Section 3.1.2 explains how to gradually reconfigure the circuit placement by
our iterative reconfiguration algorithm and in the last section, the routing algorithm

and re-routing algorithm are described.

15

3.1 Reconfiguration Algorithm

3.1.1 The Concept of Our Algorithm

In the ripple move reconfiguration method, a DAG is constructed for each faulty
block. The weight of an edge e=<u, v> is set to the difference between the required
delay of the block residing in the CLB u and in the adjacent CLB v; then the shortest
path (least cost) between the source CLB and destination CLB is found. According to
the shortest path, the faulty block is reconfigured by ripple moving CLBs to their
adjacent ones along this path. However, the result of this greedy method may be too
local because for each faults. It constructs a DAG only from the faulty block point of
view; and non-faulty spare CLBs are greedily chosen as destinations in order of the
locally delay cost is minimized in-each iteration. In fact, the demand for non-faulty
spare CLB of every faulty block may be different, thus these two factors have to be
considered when constructing DAG. Therefore, our algorithm is based on such a

concept to resolve this problem.

3.1.2 Demand-Aware Reconfiguration Algorithm

For ease of explanation, the following is an example to detail how we use this
concept of demand. At the begin of each iteration, we determine a range with the
distance dser by expanding the from bgr, the target faulty and mapped CLB which has
the most critical, until this range contains at least K (K=3 in this example) spare CLBs.
Notice that it is a three-dimensional range, as shown in Figure 16 and the definition is

shown in Equation (10).

Bs' ={b; | dy, (b ,bs) <dggr}and | Bs' | >k, By’ < By (10)

16

fis}~ {20, 421]
N/

25 i26) [27)

31) (s2t {3
Figure 16.

I3

vl rrr é\ ------ 1:----:)' /
122 123] 124 ~ \ i
== b e N \ i/

N R
e R rrr il P *\ \ ,’,’
'28: 129, |30: N 1/
(L= I —] \\\:‘v;"
Tl I--'i 5
T

Find the searching distance.

Next, we find the neighbor faulty and mapped CLBs of each bs. Consider bs; at

first, we utilize the dsgr to find bgy, as shown in Figure 17. We define a Bgy as a set of

faulty and mapped CLBs in the neighborhood of bs, as shown in Equation (11).

Ben (bs):{bFN|dM(bS'bFN)SdSER}'BFN c B¢ (11)
N
s ~
,/ ~
P “. Bebs3)={bPrs, Pr1o) brys}
// \\
7 Y
A7 RGO aT |'i'i :'g‘. '-é—'
GAr (21 135 & 1B io
Y Vi
N\
5t BOk BT
._Z.'\ =) Zodl olE
N V4
131 il‘!i‘i’i!?i LD
\\
el f200 i211 (22 (23] [24]
7= Al [et | oy | iy I--'i
125, 126, 27) 28, 123, 30,
iz’»_ﬂ 53_2? (33 134! i?s_l 136!

Figure 17. Neighbor faulty and mapped CLBs of bss.

And we utilize the dsgr to find the neighbor non-faulty spare CLBs Bgy of these

faulty and mapped CLBs, as shown in Figure 18. Bsy is defined as spare CLBs

residing in the neighborhood of b with the distance smaller or equal to dsgr, as shown

in Equation (12).

17

(12)

< B;s

Woy | dy (B by) < der}, Boy

Bsy (0r)

112
-

{bS1! bS3s bSTJ}
===
WLl

Ty
193>
4

1
| R

*« Bsnlbrs)

‘i

i
=2!

[P
1171

-mj

5
-

7/
o

i
1—2!

ANITTY
2l

12
i
]
i
]
]
1
"0
1

1
8]
L
-
124
i
130
i
136

]
]
|l
1N
]
==
]
1
1
1
1
1

={bs;, bsy3}
—
1
~
I__}
{17
/’
3
.Ilf IZS_J
=___
1224
=___
l.§§a

7/

10,111

1o}
2|
28!
34

24}
136!
BSN(bF‘IS)
¥
i
1
1
[
1
1
L
I--—| 1
N '271/ {
N 7
(331 |
331 0

]
]
]
]
1
1
261
| Rt N R
32}

e
A
=_-A_
=
1
L

1
123
1
1
!
i
135

:--_I
1221
[
128}
—
1341
=__..
lgéa

(a)
={bs;}

]
]
27}
]

i
121

1

1

!
33

20,7
N7
o
126!
1321

N
~ . Bsnlbrio)

AN
oy
112} N
[
123
——=
1311

(©

(b)
Figure 18. Neighbor spare CLBs of () bgs, (b) brio, and (c) bgs.

Here we introduce Equation (13), which represents the demands for bs of bg and

is in inverse proportion to the number of spare CLBs in the neighborhood and the

Manhattan distance between them. If there is a spare CLB very close to a bgand only

few spare CLBs is in the bg’s neighborhood, then the demands for the spare CLB of

the be is very high. The maximum demand Dpg.max for a spare CLB is defined as

Equation (14).

| Bon (e) |

dy1®, bs)

Dya (0, b5)

(13)

Dmd—max (bs) = Max {Dmd (bF ! bS)} (14)
be €Bye (bs)

[
N
RN
I \\
|

N
I N
1 A

Bepn(bs)={b N =
: N F ws1}={brs} 2~ Bsnlbeg)={bsy, bs;, bsy3}
Lt omgE T BPE PER O . s
R R e R SNy I BN B
7 7/ [R D R LT | P

[=3 T 05O o5 4 L . o
::_7_.-‘/:_2.- ORI L I Nl

/ ~ == | B =-=3] —1
ey *1 [S s S ety S TR *_ PR
\ilillx/'l‘lj 150 We 1o 8 \\1135 4] s cin6) 7] 18]
N ——— s e e N 7/
ol 1200 121} 122] 23] i24] -:'“- S 0 3 B
SSeISSe IESe SRS R aEse ot all el WS ER S

N\ 7

| [[[} T T —— —— —— = —— ——d
25! {200 27) (28] (29! (30 2si {261 l271 i8] {20} {30;
i B i B o N T i ot T e T o S oy B B s
3111320 33 34 33 @88l 311321 381 34 1351 s

Figure 19. The reconfiguration procedure when consider bsg;.

According to the definition, the demands for bs; of bgigand bgys are:

1 1 1 1
D, (beg, bs3) = + =—+-=0.83
S (b b)) B () | 2 3

1 1 1 1
D, (be10, bs3) = + =—+-=15
RS d, (0, by) [Bgy(beyg)| 21

1 1 1 1
D, (be15, b3) = + =—+=-=
R (Bsby) 1By (0es) | 2 2

For the reconfiguration, the demand cost of bgr for bs is defined in the Equation
(15). The small demand cost means the demand of bgr for bs is high.

CD(bl—‘r’bS):l_M (15)

Dmd—max (bs)

So in the example, the demand cost for bss of begis:
Dyg (Bps, bs;) _ 083
Dmd—max (bS3) 15
Similarly, for bs;, the procedure is shown in Figure 19. Notice that only bggin the

Cp(beq, bgs) =1- =055

neighborhood of bs;, so the demand cost is 0.

Ding (Peg, bs,) = L + L = 1
dy (0, b) |Bsy(Peg)| 2

19

+—-=0.83

1
3

L 083
0.83

Dmd (bF87 bSl) —

—1-

CD(bFB’ bSB)

1
L 083

Dmd—max (b51)

1— D (bFS’ b513)

For bsi3 at the last, the procedure is shown in Figure 20.

N~
= o1 IR
S 2 L2 =
I T ==
T wa ma
— - I 1 —
1
g oLt =2
2
— |=="
[TI E
Il - L=
— s
Nu_ 2 == _II."
h% lm Teml _9_\
d ™y L_J _II\I.
: d z
| _II."\
B e
a 7
A‘\II." _II."
I — I~
I - =
N
- N
0 N
= N
© ~
oy \
N
[a)
O

~5
124!
.y
(30!

23]
129}

{bS‘f L] bS35 bS‘f.?}

3}
=5
124}
:--_I
130!
:___
lz%;
:___
l%ga

P
1
23]
29]
SN(bFB)
oy
121}
127}

117
N

]
I
-
]
I
]
]
N
~ B
1
I
—
N7
]
I
-l

==
/{16
r__
leJ
r--
lzga
7/
===
U
:—‘—_
126

i
]
27}
N
<2l
N
oy
1191 120
=23 Al
:--_I
1231

”r
71
1
1
1
1

]

]

1

ir
N
20

114
=7

120
7
26}

1

1

e\
—_—— A
N\ 7

i
2!
Py

1
24]
30;
36!

[}
19
-2

25
:——‘-l
léla

1
18
1
1
1
L
)
1
L
)
1
L

N
Y
1
——
4
i ——

l
) I
1
1
1
1
4
1
1

s bsrt §
1]
~
I__§
{17

1

|
r--
=
r--
l§§a

71
)

1
L
=3
(161
:_-_I
220

’
o
’
1281
:--_I
134!

-5
1
]
275
N7
33j

!
121
1
1
1
i

BSN(bFTS)
Figure 20. The reconfiguration procedure when consider bs;s..

oal
420!

Y

:"".
lgg} .\
73
1321

101~
| Rty
—-==
5]

1

In the example, we assume the delay cost equals to the Manhattan distance
between two CLBs, so the delay cost of all shortest path in this example equal to 2.
The costs of each candidate destinations in the first iteration are shown in Table 2,
where a is 0.2 and (3 is 0.8.

Table 2. The cost of first iteration in the example.

Cost
Destination Delay Demand Total
bs, X2 px0 0.4
bg; X2 B x0.45 0.76
bss3 X2 Bx0.17 0.536

Finally, we take bs; as the destination and the bgg is reconfigured by moving it to
adjacent CLBs along the shortest path {bgs, b7, bsi}. This procedure is iteratively
performed for each faulty block until. all faults are successfully reconfigured or no
path is found resulting in reconfiguration failure. The final result of ripple move
reconfiguration algorithm is shown in Figure 21-(a). This method randomly chooses
one of {bs; bss bsiz} as destination because it does not consider the demand cost.
Another result is shown in Figure 21-(b), it is demonstrated that our demand-aware
reconfiguration algorithm can find the better solution compared to the ripple move

reconfiguration algorithm.

| T [[=5 15
111 12 f3) 4] 18; 167 (A} 127 {3 (4] 15; 16;
0 2] (s b I.lﬂ.‘) 12

==d bo=a 12l o2 et -= —-_— ==a IZZa 1=

21

Figure 21. The result of (a) ripple move algorithm and (b) our algorithm.

The algorithm flow is shown in Figure 22; after constructing a DAG first, the

reconfiguration path is determined by finding the shortest path between the source and

one of the k destinations; finally, the fault is reconfigured by moving blocks to

adjacent CLBs along this path. The reconfiguration iteration is performed until every

block is located on non-faulty CLBs.

¥ Reconfiguration
iteration

Faulty block

exists?

Construct a DAG and
find a shortest path

Perform a reconfiguration
along this shortest path

Reconfiguration Reconfigured
failure placement

Figure 22. Our algorithm flow.

3.2 Re-routing Algorithm

3.2.1 Concept of Routing Algorithm

L J

After placement, the locations of all CLBs have been determined, and then a

timing driven router connects all connections between CLBs. In routing stage, the

FPGA architecture is represented as a routing resource graph.

It represents wire

segments, TSVs and input or output pins of logic blocks, as shown in Figure 23.

22

wire3

wired
wireb 1
B_in2 wired wire2
Sink1 B_inl wire3 wirel A_out Source
Net_1
Sink2

C_inl wireb

Figure 23. FPGA routing architecture and routing resource graph.

The routing algorithm in TPR is based on Pathfinder negotiated congestion
algorithm [26]. It iteratively rips-up and re-routes every net until the result meets the
congestion constraint. At the first iteration, all nets are routed for minimizing delay
without congestion constraint; that is, the routing resources are allowed overuse.
When overuse exists at end of a routing-iteration, the cost of overusing a routing
resource is increased, so congestion will be resolved at another routing iteration. This

process is repeated until all routing resources only are used once.

3.2.2 Re-routing Algorithm

During fault-tolerant reconfiguration, the blocks on the shortest path are moved
for one grid in each iteration and a set of blocks are moved due to the 10% faulty
CLBs generally. When the block is moved, its connections are also affected, thus we

have to re-route these connections, as shown in Figure 24.

23

Net_b

Figure 24. The concept of re-route.

We record the blocks which are moved during the placement stage of
fault-tolerant replacement stage. When in the routing stage, we rip-up all the affected
nets and fix the exist routing, and then re-route them. Figure 25 shows an example
that endpoints of Net_1 connect to CLB_A, CLB_B and CLB_C, respectively. If the
block originally residing in CLB_A is moved to a new CLB, we rip-up Net_1 and the
routing of Net_1 is started from the output pin of the new CLB and terminated at the
original sink1 and the original sink2. If the block residing in CLB_B or CLB_C is
moved to a new CLB, we rip-up Net_1 and the new routing of Net_1 is started from

the original source and terminated at the input pin of the new CLB.

B_in2 wired -wire2

Sink1 B_inl wire3 wirel A_out Source
Net_1
Sink2 Q C_inl wire6
. wire5 .
rip-up | ¥ rip-up
New_sinkl @4” s A out Sink1 .A"- .“.L\Iew_out
. 0—0 0—=0

New_sink2 @y, i Source Sink2 @y, .« New source

-
-
- - - -
L Y L e

Figure 25. Rip-up and re-route the affected net.

24

Chapter 4
Fault Tolerant Architecture

4.1 Non-Reserved (NR)

Locations of blocks are determined using an SA-based placement algorithm with
the objective of minimizing wirelength and circuit delay. Thus, spare CLBs are
pushed to the edge of FPGA, such a distribution of spare CLBs is called non-reserved
(NR) architecture, as shown in Figure 26-(a). As the result, this placement is not
suitable to fault reconfiguration through replacement with spare CLB because most
spares located along the edge, which may cause a large amount of CLBs moved by
ripple-move fault reconfiguration, as shown in Figure 26-(b). Therefore, even if we
have a better reconfiguration algorithm;-results will be limited because the restrictions

of architecture.

-

i
J

R E A A B i W g B B e B
bme Lo b Lo - Lo L_J Lo Lo Lo Lk Lo Lo Loa
oo mopmone
nnnnmn Dompmom
mmmEnnn peossoom
mnmnooom Li-'.' mmipoom
ymnoooDmn voopomom
irimmmo aomeesse
(@ (b)

Figure 26. (a) The timing-driven placement. (b) The drawback of timing-driven

placement for fault tolerance.

25

4.2 Evenly-Distributed (ED)

As mentioned above, traditional architecture is not suitable to fault tolerance,
which inspires us to discover new architectures that take fault tolerance into
consideration. We address this problem by evenly distributing spare CLBs across the
FPGA and force them to pre-allocate spare resources before the SA-based placement
algorithm. These pre-allocated spare CLBs are not allowed being used during
SA-based placement, so we can get a placement result with spares evenly distributed
in the 3D FPGA design. Such a distribution of spare CLBs is called even-distributed
(ED) architecture. When faults occur, spares are very likely close to the faulty CLBs
and benefit replacement without severely timing degradation.

We propose five optional ED architecture ED3, ED4, ED5, ED6 and ED7. ED#
represents a spare pattern that the ‘postfix # specifies the maximum distance between
two adjacent spare CLBs in either X or Y or XY direction, as shown in Figure 27. The

estimated percentage of reserved spare CLBs of each ED architecture is shown in

Table 3.
Table 3. The estimated percentage of reserved spare CLBs.
Spare pattern
ED7 ED6 ED5 ED4 ED3
%Reserved 2 2.7 4 6.25 11

It should be noticed that the CLB utilization of most FPGA is only 70-80% in
order to enhance the routability. As we use spare CLBs, the total number of signal
nets does not increase. Thus, routing complexity does not significantly increase,
however, a price to be paid for using the fault tolerant architecture is an additional

delay increasing because we change the original timing driven placement, detail

26

discussions are concluded in Chapter 5.

'l a
3t J

—-_— _II..

1 1
_— = -

C
rI rIL

ll_-
ENEE
-II.. _II._ |
i_Jt_]

—lld
sl
-lld —lld
L_J
o3 =1
L_J . L3
-lld —lld
R

==
1 1
bt

Figure 27. Evenly-distributed architecture.
27

Chapter 5
Experimental Results

5.1 Experimental Environment

The architectural setting in our experiments are shown in Table 4. The settings of
CLBs and channel width are based on Altera Stratix IV [27], Xilinx FPGAs [28] and
related work [29]. There are 4 wire segments with different lengths in these 32 wires,
L1, L2, L4 and L8. The length of a wire segment is the number of CLBs it spans.
There are 12 L1/L2 and 4 L4/L8 wires. In Z direction, each TSV spans one layer only
for routability.

Table 4. The architecture setting.

Architectural Settings Value
LB # of inputs of an LB (/) 8
(Altera Sratix¥) # of LUTs in an LB (N) 2

of inputs of a LUT (J) 6
gfl‘iﬂg“e' width Both W, and W, 32
of wire segments | X-Y directions | (L71,L2, L4, L8) (12,12, 4, 4)

Z direction L1 only (Routability-driven) 16
I/0s Location Bottom-most layer
TSV Pitch Bum
Process technology node 45nm

Table 5 shows the 16 test cases in our benchmark set — 15 are from MCNC [30]
and 1 is from IWLS2005 [31], which are sorted by number of CLBs. Each test case
perform 25 experimental runs with different random seeds (5 fault seeds and 5
placement seeds) and find the average as the result. In addition, the number of layers

(nz) is set to 4. The CLB utilization is set to 70% and the fault rate is set to 10%.

28

Table 5. The benchmark circuits.

Design #CLBs | #Nets #1/0s
tseng 524 885 174
ex5p 532 937 71
apex4 631 1086 28
dsip 685 1374 426
misex3 699 1159 28
alud 761 1257 22
seq 875 1458 76
apex2 939 1572 41
5298 966 1361 10
frisc 1778 2823 136
elliptic 1802 3039 245
spla 1845 2977 62
pdc 2288 3671 56
ex1010 2299 3932 20
clma 4192 6871 144
usb_funct_0mv_b 7440 11374 234

5.2 Results and Analysis

5.2.1 Experimental Flow

In our experiment, three types of configuration-level repair methods are
implemented: i) resynthesis ii) Cong's reconfiguration algorithm and iii) our
reconfiguration algorithm. Figure 28 shows the experimental flow of resynthesis, the
faulty CLB are marked before layer assignment and regarding them unable to be
mapped. Figure 29 shows the experimental flow of two reconfiguration algorithms.
Taking the initial placement and routing as an existing result, faults are repaired by

partially reconfiguring blocks avoiding faulty CLB.

29

Locations of
faults

TSV-driven
3D layering

MResynthesis |

Fault tolerant
3D placement

o

Timing-driven
3D routing

Repaired mapping

Figure 28. The experimental flow of resynthesis.

) Locations of
P&R result Architecture
faults

Timing-driven
3D re-routing

:' Incremental |~ T T T T I
| mapping :
: [1 .
| Cong’s Ours !
: (Demand-unaware) (Demand-aware) :
l | |
|
I 1 [
| |
1 |
| |
1 |

Repaired mapping

Figure 29. The experimental flow of reconfiguration.

5.2.2 Analysis of Timing Penalty

Following are two reasons cause of timing degradation:

i) Initial architecture — there are six architectures used in our experiment, NR,
ED3, ED4, ED5, ED6, ED7 with different percentages of reserved spare CLBs for
each pattern, i.e., different spare densities; the higher spare density results in more
blocks spread to the edge of the FPGA and thus the more delay increases. Figure 30

shows the delay increase of each architecture compared to NR. ED7 has the minimal

30

impact to timing because it has the minimal spare density, otherwise, ED3 has the
maximal timing overhead. For ease of exposition, we refer to the result of the NR

architecture as IA-NR.

1.5%
o 1.2%
(7)]
(5+]
g 0.9%
£
> 0.6%
)
0.0% M
ED7 ED6 ED5 ED4 ED3

Figure 30. Timing penalty caused by fault tolerant architecture.

i) Reconfiguration — the delay is increased as the circuit placement being
reconfigured. Because the ED architecture . provides a fault tolerant friendly
architecture. The higher spare density is, the more spare CLBs close to faulty blocks,
which causes the timing degradation is lower during reconfiguration. Figure 31-(a)
shows the delay increase caused by reconfiguration for uniform fault model based on
their 1A results. The delay overhead is gradually reduced as spare density grows, and
the increased delay of our method is always lower than Cong's.

Similarly, Figure 31-(b) illustrates the delay increase for clustered fault model.
The delay increases is significantly higher compared to uniform fault model because
of a number of faults being localized within a region. it is represents clustered fault

distribution is more difficult to be reconfigured.

31

Uniform
7%
6%
5%
4%
3%
2%

-Tkhrpewm
0% 1 T T T T T
NR ED7 ED6 ED5 ED4 ED3

(@)

H Cong's

Ours

Delay increase

Clustered
7%
6%
5%
4% -

3% | H Cong's
® e I I I Ours
[}

S | l -

0% H T T

NR ED7 ED6 ED5 ED4 ED3

(b)

Figure 30. Timing penalty caused by reconfiguration.

ay increase

Figure 32-(a) shows the delay increase caused by reconfiguration for uniform
fault model with the IA-NR as the baseline. It is observed that our delay increases are
lower than Cong's. The delay increase is gradually reduces at the beginning as the
spare density grows; however, if we continue increase the spare density, the timing
degradation caused by initial architecture will dominate the FPGA, so the delay
increase is gradually increased.

The total delay increase caused by reconfiguration for clustered fault model are
much higher compared to the pattern degradation, so the delay increase is decreased
as grows spare density, and our delay increase are lower than Cong's, as shown in

Figure 32-(b)

32

Uniform

7%
U 6%
©

0,
o 5%
O 4% 1
c H Cong's
;' 3% Ours
L 2% - —
)]
I] :

0% Bl T T T T T

NR ED7 ED6 ED5 ED4 ED3
(a)
Clustered

7%
U 6% -
(7))
E 5% |
O 4% | .
c m Cong's
; 3% -
& 50 | | Ours
(]
0 1% - —

0% |

NR ED7 ED6 ED5S ED4 ED3
(b)

Figure 31. Combined effect on timing penalty.

5.2.3 Success Rate

A successful result is defined as a result with the all faults successfully
reconfigured and the critical delay is within timing constraint; otherwise, the case is
called failure case. Then the success rate is the percentage of the successful results.
Resynthesis has the highest success rate as well as minimal timing degradation. We
take the result as the baseline of reconfiguration. Therefore, we set the timing
constraint to the delay that every case has 96% success rate in resynthesis flow. Figure
33 shows the results of success rate for uniform fault model. Our algorithm improves
up to 13% success rate. If we relax 1% of the timing constraint, (i.e., 101% of the

delay of the resynthesis flow with 96% success rate) the overall success rate is

33

increased by 5~10% and our algorithm has up to 9% improvement.

95%

90%
b=t - Ours_1%
© 85%
v - Ours_0%
w 1
8 80% -@®- Cong's_1%
g -l- Cong's_0%
1 75%

70%

NR ED7 ED6 ED5 ED4 ED3
Figure 32. The success rate for uniform fault model.
Ours 0% Timing failure
120 - W Reconfiguration failure

=
(=1
o

00
o

of failure cases
(2]
o

40 —
0] I O ==
NR ED7 ED6 ED5 ED4 ED3
(@)
Congls 0% Timing failure
- B Reconfiguration failure
120
(%]
9 100
o
g
S5 60 |
S 40 -
+*
0 | | B =
NR ED7 ED6 EDS ED4 ED3
(b)

Figure 33. The number of failure cases for uniform fault model.
Figure 34 shows the number of failure cases for uniform fault model, which is
separated into i) reconfiguration failure — not all faults can find the corresponding

reconfiguration paths; ii) timing failure — all faults can be reconfigured but the
34

resultant timing cannot meet the timing requirement. In the Figure 34-(a), it meets our
expectation that the number of reconfiguration failure cases are decreased as the spare
density grows. However, the initial architecture with high spare density dominates the
timing degradation. It makes the number of timing failure cases more than one of the
architectures with lower spare densities. Therefore, the total number of failure cases is
increased. In the Figure 34-(b), it is also meets our expectation that the number of
reconfiguration failure cases is decreased as the spare density grows. However, the
number of timing failure cases is unstable because this algorithm just makes the
locally optimal choice at each iteration. Take the example of NR and ED?7, the low
timing degradation can be obtained in the initial iterations for ED7 because the faulty
blocks are close to spare CLBs; however, there are more results violating timing
constraint in the last iterations of ED7 compared to NR.

Figure 35 shows the results: of success rate for clustered fault model. Our
algorithm improves up to 25% success rate. If ‘we relax 1% of the target timing
constraint, the overall success rate is increased 3~5% and our algorithm improves up
to 25% success rate. The number of failure cases is far more than uniform fault model
because concentrated faulty and mapped CLBs are difficult to be reconfigured, as
shown in Figure 36. It is observed that the number of failure cases are decreased as
the spare density grows; however, the results of two algorithm is not much difference
in high spare density because the number reserved non-faulty spare CLBs is too

much.

35

Success rate

—o- Ours_1%
= Ours_0%
-®- Cong's_1%
-3- Cong's_0%

NR ED7 ED6 ED5 ED4 ED3

Figure 34. The success rate for clustered fault model.

Ours 0% Timing failure
- B Reconfiguration failure
250
(7]
8 200
©
o
@ 150
L
3
"o 100
(¥
<) I H =
B ==
0 I
NR ED7 ED6 ED5 ED4 ED3
(@)
Cong's 0% Timing failure
- B Reconfiguration failure
250
(7]
@
& 200
o
o 150
S
2
T 100 —
G
= I
0 .
NR ED7 ED6 ED5 ED4 ED3

(b)

Figure 35. The number of failure cases for clustered fault model.

36

5.2.4 Runtime

The average runtime is shown in Figure 37. From the three configuration-level
repair method, the runtime of reconfiguration methods (i.e., ours and Cong’s) is
roughly half of the resynthesis method. Moreover, the improvement is dominated by
the placement stage since in the reconfiguration methods, constructing the DAGs

and then finding the shortest paths are more efficient than SA-based method.

Uniform

60

50 —

40 —

30 - Placement

Runtime

20 B Routing

10 -

Clustered

60

19.24

30 - Placement

Runtime

20 | H Routing

10 -

Ours Cong's Resynthesis

(b)
Figure 36. The runtime for uniform fault model.
In Figure 37, the runtime is separated into placement runtime and routing

runtime. The runtime overhead of placement in our methods is slightly more than

37

Cong’s because our placer considers more factors when calculating costs in the
reconfiguration iterations. With more global point of view, the affected nets of our
placer is less than those of Cong’s, which implies less number of routing iterations
will be taken. Therefore, our router runs faster than Cong’s. Figure 38 shows the
average runtime for each architecture, the runtime is decreased as the spare density

grows because the faulty blocks are closer to spare CLBs.

Uniform
40
v 33
E
= -®- Ours
c
é’ 36 B Cong's
34
NR ED7 ED6 ED5 ED4 ED3
(a)
Clustered
40
° 1 \‘\‘
£
= -®- Ours
[
& 36 \\' - Cong's
34 I I I I I
NR ED7 ED6 ED5 ED4 ED3

(b)

Figure 37. The runtime for clustered fault model.

38

Chapter 6
Conclusion

As process technology scaling continues, manufacturing large fault-free
integrated circuits become increasingly difficult. The architectural regularity of
FPGAs provides inherent redundancy resources which can be exploited for fault
tolerance and yield enhancement. In this thesis, we propose a fault tolerant
reconfiguration algorithm for CLBs. A faulty block is relocated to its adjacent CLBs
along a reconfiguration path from faulty and mapped CLB to non-faulty spare CLB.
After all faulty CLBs are successfully reconfigured, we rip-up the affected nets and
then re-route them. We also propose a generic fault tolerant architecture for 3D
FPGAs that distributes spare CLBs evenly across the 3D FPGA, which provides a
reconfiguration friendly architecture to-improves the success rate. The experimental
results show that more faults can-be repaired when the fault patterns are generated
using the uniform fault model than-for the"clustered fault model. As well, our
algorithm improves up to 13% success rate for the uniform fault model and 25%
success rate for the clustered fault model compared to the previous work. The runtime

overhead of our method is only slightly more than the prior art.

39

Reference

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

International Technology Roadmap for Semiconductor. Semiconductor Industry
Association 2005-2010.

A. W. Topol, D. C. La Tulipe, L. Shi, D. J. Frank, K. Bernstein, S. E. Steen, A.
Kumar, G. U. Singco, A. M. Young, K. W. Guarini, and M. leong,
“Three-dimensional integrated circuits,” IBM J. of Res. and Develop., vol. 50, no.
4/5, pp. 491-506, Jul.—-Sep. 2006.

K. Banerjee, S. J. Souri, P. Kapur, and K. C. Saraswat, “3-D ICs: a novel chip
design for improving deep submicron interconnect performance and
systems-on-chip integration,” Proc. IEEE, vol. 89, no. 5, pp. 602-633, May.
2001.

R. R. Tummala and V. K. Madisetti, “System on chip or system on package?”
Design & Test Computers, vol. 16, no. 2, pp. 48-56, Apr.—Jun. 1999.

P. H. Shiu, R. Ravichandran, S. Easwar, and S. K. Lim, “Multi-layer
floorplanning for reliable system-on-package,” Int’l Symp. Circuits and System,
pp. 23-26, 2004.

K. L. Tai, “System-In-Package (SIP): challenges and opportunities,” Asia South
Pacific Design Automation Conf., pp.191-196, 2000.

SOCecentral. [Online]. Available; http://www.soccentral.com

S. Das, A. P. Chandrakasan, and R. Reif, “Calibration of rent's rule models for
three-dimensional integrated circuits,” IEEE Trans. Very Large Scale Integration
Systems, vol. 12, no. 4, pp. 359-366, Apr. 2004.

A. Rahman and R. Reif, “System-level performance evaluation of
three-dimensional integrated circuits,” IEEE Trans. Very Large Scale Integration
Systems, vol.8, no.6, pp. 671-678, Dec. 2000.

[10] S. Das, A. Fan, K. Chen, C. S. Tan, N. Checka, and R. Reif, “Technology,

performance, and computer-aided design of three-dimensional integrated circuits,”
Proc. Int’l Symp. Physical Design, pp. 108—115, 2004.

[11] I. Kaya, S. Salewski, M. Olbrich, and E. Barke, “Wirelength reduction using 3D

physical design,” Int’l1 Workshop Integrated Circuit System Design, pp. 453462,
2004.

[12] W. R. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A.M. Sule, M. Steer,

and P. D. Franzon, “Demystifying 3D ICs: the pros and cons of going vertical,”
IEEE Design & Test of Computers, vol. 22, no. 6, pp. 498-510, Nov.—Dec. 2005.

[13] I. Loi, S. Mitra, T. H. Lee, S. Fujita, and L. Benini, “A low-overhead fault

tolerance scheme for TSV-based 3D network on chip links,” Proc. Int’l1 Conf.

40

Computer-Aided Design, pp. 598-602, 2008.

[14] C. Ababei, H. Mogal, and K. Bazargan, “Three-dimensional place and route for
FPGASs,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, vol. 25, no. 6, pp. 1132-1140, Jun. 2006.

[15] E. Stott, P. Sedcole and P. Cheung, “Fault Tolerance and Reliability in Field
Programmable Gate Arrays,” Computers & Digital Techniques, vol. 4, No. 3, pp.
196-210, 2010.

[16] M. Mishra, S. Goldstein, “Defect tolerance at the end of the roadmap,” Proc.
Int’l Test Conf. Vol. 1, pp. 1201-1210, Sep. 2003.

[17] P. Maidee, “Methodologies and Tolls for Yield Improvement of
Field-programmable Logic Architectures,” PhD thesis, 20009.

[18] J. Emmert, C. Stroud, and M. Abramovici, “Online Fault Tolerance for FPGA
Logic Blocks,” IEEE Trans on Very Large Scale Integration (VLSI) Systems,
Vol. 15, No. 2, pp. 216-226, Feb. 2007.

[19] A. Mathur and C. L. Liu, “Timing-driven placement reconfiguration for fault
tolerance and yield enhancementin FPGASs,” Proc. European conference on
Design and Test, pp. 165-169, 1996.

[20] F. Hatori, T. Sakurai, K. Sawada, M. Takahashi, M. Ichida, M. Uchida, I. Yoshii,
Y. Kawahara, T. Hibi, Y. Saeki, H.. Muroga, A. Tanaka, and K. Kanzaki,
“Introducing redundancy in field programmable gate arrays,” Proc. CIC Conf.,
vol. 7, pp. 1-4, Aug. 2002.

[21] F. Hanchek and S. Dutt, “Design " methodologies for tolerating cell and
interconnect faults in FPGAs,” Conf. Computer Design. pp. 326-331, 1996.

[22] A. Doumar and H. Ito. “Defect and fault tolerance SRAM-based FPGAs by
shifting the configuration data,” IEICE Trans. Inf. Syst. pp. 1104-1115, 2000.

[23] A.K. Agarwal, J. Cong, and B. Tagiku. “Fault tolerant placement and defect
reconfiguration for nano-FPGASs,” In Proc. Int. Conf on Computer Aided Design,
2008.

[24] J. Narasimhan, K. Nakajima, C. S. Rim, A. T. Dahbura, “Yield enhancement of
programmable ASIC arrays by reconfiguration of circuit placements,” IEEE
Trans. on Computer Aided Design of Integrated Circuits and Systems, pp.
976-986, Aug. 1994.

[25] F. Hanchek, S. Dutt, “Node-covering based defect and fault tolerance methods
for increased yield in FPGAs,” Proc. 9th Int. Conf on VLSI Design. pp. 225-229,
1996.

[26] C. Ababei, Y. Feng, B. Goplen, H. Mogal, T. Zhang, K. Bazargan, and S.
Sapatnekar, “Placement and routing in 3D integrated circuits,” IEEE Design Test
Computers, vol. 22, no. 6, pp. 520-531, Nov. 2005.

41

[27] Altera. [Online]. Available: http://www.altera.com/

[28] Xilinx. [Online]. Available: http://www.xilinx.com/

[29] C.-1 Chen, B.-C. Lee, and J.-D. Huang, “Architectural exploration of 3D FPGAs
towards a better balance between area and delay,” Proc. Design, Automation &
Test in Europe Conf. and Exhibit., pp. 587-590, 2011.

[30] S. Yang, “Logic synthesis and optimization benchmarks user guide,” Technical
Report 1991-IWLS-UG-Saeyang, Microelectronics Center of North Carolina,
1991.

[31] [Online]. Available: http://www.eecs.berkeley.edu/~alanmi/benchmarks/

42

