

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

1920x1080@90fps 之深度運算設計與實作

A 1920x1080@90fps Disparity Estimation Design with Edge-oriented

Two Way Dynamic Programming Optimization and Disparity

Propagation

研究生: 吳英佑

指導教授: 張添烜

中華民國 一 0一年 十二月

1920x1080@90fps 之深度運算設計與實作

A 1920x1080@90fps Disparity Estimation Design with Edge-oriented

Two Way Dynamic Programming Optimization and Disparity

Propagation

研 究 生: 吳英佑 Student: Ying-Yu Wu
指導教授: 張添烜 博士 Advisor: Tian-Sheuan Chang

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical Engineering and Computer Science

National Chiao Tung University

in Partial Fulfillment of Requirements

for the Degree of

Master of Science

In

Electrical Engineering

September 2008

Hsinchu, Taiwan, Republic of China

中華民國 一 0一年 十二月

1 9 2 0 x 1 0 8 0 @ 9 0 f p s 之 深 度 運 算 設 計 與 實 作

學生: 吳英佑 指導教授: 張添烜

國立交通大學電子工程學系暨電子所碩士班

摘要

隨著立體電視的問世，人們可以藉由立體視訊獲得新的視覺經驗。立體視訊可以立體攝影

機擷取，並經由影像處理技術運算後，可支援多視角與自由視點之立體電視應用。在立體視訊

的處理中，視差估測為最重要的技術之一。視差估測可產生拍攝場景之視差圖，可用於虛擬視

角視訊的合成。動態影像壓縮標準組織的立體視訊編碼團隊已提出目前最先進視差估測演算法。

其演算法可針對立體電視的應用產生高品質的視差圖，但因採用圖形切割演算法導致高運算複

雜度與低平行運算的問題。特別對於高畫質視訊，其問題更為嚴重。

為解決以上問題，本論文提改良過的雙向動態規劃演算法，利用參考邊界資訊的遮蔽處理、

方向性投票機制、以及利用邊界資訊處理不同時間嚇得像素穩定性，以達到高品質書度運算輸

出之需求。另外本文亦提出深度傳輸之演算法，可以有效降低運算時間至 50%以上。另一方面，

針對超大型積體電路設計，本文提出之硬體架構可以合成出以下數據之電路：1920x1080@90fps，

另外電路的閘數量為 2,325K ，使用 UMC 90nm CMOS 製成合成。

A 1920x1080@90fps Disparity Estimation Design with Edge-oriented Two
Way Dynamic Programming Optimization and Disparity Propagation

Student: Ying-Yu Wu Advisor: Tian-Sheuan Chang

Department of Electronics Engineering & Institute of Electronics

National Chiao Tung University
Abstract

Disparity estimation is one of the most interesting and important research topics in the
field of stereo TV application. Accurate estimation of disparity can significantly improve the
visual experience on the stereo image but at the expense of noticeable computational
complexity consumptions.

In this thesis, several techniques are proposed to improve the accuracy of estimated
disparity results at a low memory cost. The edge detection algorithm is first adopted in the
proposed algorithm to derive the important image content features and edge information for
making the upcoming disparity estimation process gets more precise results. Afterwards, the
proposed disparity propagation will take the edge information both from vertical and
horizontal direction into account for deciding whether the disparity should be propagated
from the edge area to the texture-less area. After the disparity propagation phase, the
un-propagated pixels will be treated by our proposed dual-way dynamic programming method
for determining their disparities. In our proposed dual-way dynamic programming algorithm,
the edge information will be taken into account as the energy minimization factor which will
affect the results of the estimated disparity. In addition, several post processing techniques
including occlusion handling, directional region voting, and edge-based temporal consistency
are also adopted in this thesis to further improve the estimated disparity results with
considering edge information.

Simulation results demonstrate that our proposed disparity estimation algorithm not only
improves the accuracy of the estimated disparity but also achieves less computational
complexity consumptions and memory buffer requirements. On average, our proposed
algorithm can achieve 34.48dB PSNR and reduce average 53.08 % of computation cost
compared to the conventional dynamic programming method. Finally, the proposed algorithm
is implemented in hardware form at 1920x1080@90fps and the synthesized gate count of our
design is only 2,325K by using 90nm CMOS technology.

誌謝

從大學到研究所，交大給予我許多成長與回憶。在此，藉由碩士論文的完成以感謝所有的

人。首要感謝的是指導老師張添烜教授，不論在研究方法、論文撰寫、為人處世皆給予我耐心

的指導與建議。接著要感謝趙家佐教授，在我大學三年級擔任指導教授指導專題研究。另外也

感謝其他口試委員，包含王聖智教授、蔡淳仁教授，願意撥空給予指導。

工程四館 427實驗室是我碩士班在交大停留最久的地方，首要感謝的是曾宇晟學長，教導

我良好的研究方法與態度，並引領我進入碩士論文的研究題目。也感謝實驗室學長國龍和易群，

在研究生涯中與我分享研究及生活。接著要感謝實驗室的同學們:亮齊、孟勳、克嘉、輔仁、兆

傑、珊榕、碩文。大家在生活及研究上互相討論學習，並營造實驗室和樂的氣氛。因為有你們

實驗室總是歡笑不斷。

最後要感謝我的家人及朋友，感謝我的父母一路以來的支持及栽培，終於順利完成了求學

之路，另外也要感謝我的好朋友世昌在這一路上的支持。此外也感謝雨濃在這一路上的陪伴及

支持。

i

Table of Contents
摘要 .. III

I. INTRODUCTION ... 1

1.1. BACKGROUND .. 1
1.2. MOTIVATION... 2
1.3. CONTRIBUTION .. 2
1.4. ORGANIZATION .. 49

II. RELATED WORKS .. 3

2.1. DISPARITY ESTIMATION .. 3
2.2. GENERAL ALGORITHM FLOW ... 6

III. PROPOSED DUAL-WAY DYNAMIC PROGRAMMING ALGORITHM FOR

DISPARITY ESTIMATION ... 25

3.1. OVERALL FLOWCHART ... 25
3.2. COST CALCULATION PHASE ... 26
3.3. DISPARITY ESTIMATION PHASE .. 30
3.4. DISPARITY REFINEMENT PHASE ... 40
3.5. SIMULATION RESULTS .. 48

IV. HARDWARE IMPLEMENTATION AND RESULTS ... 53

4.1 OVERALL ARCHITECTURE ... 53
4.2 FIRST STAGE DESIGN.. 54
4.3 SECOND STAGE DESIGN ... 57
4.4 THIRD STAGE DESIGN .. 58
4.5 IMPLEMENTATION RESULTS .. 61

V. CONCLUSION AND FUTURE WORK ... 62

5.1 CONCLUSION .. 62
5.2 FUTURE WORK ... 62

1

I. Introduction

1.1. Background

In the research field of computer vision, the stereo matching [1]-[53] is one of

the most active and interesting issues. The stereo matching techniques try to analyze

the stereo images pair by pair. Afterward, the displacement of corresponding pixel

pair existing in both images are estimated for deriving the depth information of

objects in the scene. Here, the displacement is measured in pixel unit and we usually

called the Disparity. The disparity values are usually between certain rang we usually

called Disparity Range and the disparities of all image pixels are grouped to form the

Disparity Map. Finally, the disparity map is the target output of stereo matching and it

will be used in the stereo related visual processing. Fig. 1. 1 shows an example of

Teddy test benchmark image. In this figure, Fig. 1. 1(a) and Fig. 1. 1(b) are the images

of left and right view, respectively. In addition, the Fig. 1. 1(c) is the ground truth

disparity map of left image which is visualized as grayscale intensities. In the

disparity map, the brighter grayscale means that the object is much close to the stereo

cameras. In other words, the disparity map includes the depth information of each

pixel in somewhere. As a result, if we obtain the depth information by using the stereo

matching, we will be able to derive the 3D information and reconstruct the 3D scene

by means of triangulation.

2

(a) (b) (c)

Fig. 1. 1. An example of disparity map (a) Left view, (b) Right view, and (c) Ground

truth disparity map of left image

1.2. Motivation

Many disparity estimation algorithms have been developed in computer vision for

different applications, such as 3DTV, gesture recognition, robot, 3D interactive interface,

and etc. Both dynamic programming and belief propagation are approaches that produce

better result than others. Computational complexity and memory usage of scan-line

based dynamic programming is much lower than the belief propagation. But traditional

dynamic programming still requires big buffer size due to buffering information of the

path table for tracing back the results of estimated disparity. Therefore, the buffer size

increases rapidly with the incensement on frame width.

Motivated by the problems in the dynamic programming disparity estimation

algorithm, the goal of this thesis is to develop a new scan-line based dynamic

programming disparity estimation kernel that could not only generate high quality

disparity maps, but also achieve the throughput of 60 frames/s for the HD1080p

resolution to satisfy the requirement of high definition 3DTV applications.

1.3. Contribution

 To achieve the above goals, this thesis proposes several techniques to

reduce the computational complexity and improve the quality as well. The main

contributions of the proposed algorithm are in several parts as mention below.

First, the proposed disparity propagation algorithm saves more than 50%

computation complexity generally in most of the test contents. Second, to solve

the memory cost problem of traditional dynamic programming, the thesis

3

proposes a alternative which named “Dual Way Dynamic Programming”. This

algorithm solves the memory usage problem effectively and also improves the

quality of the output disparities by computing energy function in dual directions.

Third, we propose several creative post processing techniques such as

“Edge-Based Occlusion Handling”, “Directional Regional Voting”, and

“Edge-based Temporal Consistency” to solves problems as occlusion on

boundaries, bad influence causes by pixels in different objects in the region, and

the flickering problem during video playback.

 Our proposed algorithm can be implemented up to 1080P@90fps with

UMC 90nm CMOS technology which generates two disparity maps and use

2335K gate counts and will fit the HD 3DTV trend.

II. Related Works

2.1. Disparity Estimation

Disparity estimation is one of key techniques which extracts the disparity

information from source images and produces the disparity map for each image in

3DTV applications. Afterword, the extracted disparity map could be used to present

the relative distance of objects in scene. In addition, the disparity map could be further

adopted to obtain virtual-view images. The approach for disparity estimation depends

on the number of input image views. The traditional single-view image uses the 2-D

to 3-D conversion technique while the two-view and multiple-view images use the

stereo correspondence techniques. The traditional 2-D to 3-D conversion technique

identifies the disparity map from different disparity cues, such as texture, defocus,

vanish point, and etc. [49], [50], and [51]. On the other hand, the stereo

correspondence techniques find the pairs of correspondences for deriving disparity

maps.

The inherent constraint of epipolar geometry could lead to the correspondence

4

search range reduction from 2-D to 1-D space for multi-view video disparity

estimation. Fig. 2. 1 presents the idea of epipolar geometry with two-view

configuration. In this figure, the target view point C watches the object Pb and the

watched information have been projected into the 2-D image plane at the pixels p. The

correspondence candidates of p would be laid on the ray from C to Pb for the

reference view point C’. As a result, the projected line is called epipolar line in the

reference image plane. On the other hand, the correspondence with p on the epipolar

line would be searched and the search range would be limited in 1-D space. In

addition, the rectification and translation could be executed to map the image planes

into the new positions with parallel epipolar lines as Fig. 2. 2 shown. Here, the

correspondence search range is on a horizontal line instead of an oblique line in the

original image plane. On the other hand, the correspondence pair is located at the

same y-coordinate in two views. As a result, the operation of disparity estimation

could be thus simplified in the raster-scan order.

Pb

Pf

C
C’

p
e’

pf’
pb’

Target view
Reference viewEpipolar line

Fig. 2. 1 Epipolar geometry

5

Pb

p

e
e’

pb’

Target view
Reference view

C
C’

Fig. 2. 2 Rectification for image planes

For the rectified image planes, the relationship between depth and disparity of a

correspondence pair is shown in Fig. 2. 3. In this figure, we can find that the object

point Pb is captured by the two cameras at the viewpoints of C and C’ and projected

onto the correspondence pair on the epipolar line. The correspondences are located at

the coordinates of X and -X’ based on their camera centers. Therefore, if we are able

to estimation the disparity X-X’ when given the focal length f and the baseline B of the

cameras, the object depth Z can be acquired by

𝑍 =
𝑓 × 𝐵
𝑋 − 𝑋′

As a result, the disparity estimation tries to find out the correspondence pair and

uses their x-coordinates to derive the disparity of depth value for each pixel.

6

Z

X

-X’

C

C’

Pb

f

f

B

Epipolar Line

Object

Target View

Reference View

Fig. 2. 3 Relationship between disparity and depth for a correspondence pair

2.2. General Algorithm Flow

Fig. 2. 4 shows a general framework for disparity estimation algorithms proposed

by Scharstien and Szeliski [52]. Two images are first obtained and rectified to be the

inputs and the expected result is the disparity map in this frame work. However, the

disparity estimation can be roughly classified into two categories: local approach and

global approach [52] and [53] in this framework. In the category of local approach, it

only consists of the matching cost calculation and the cost aggregation. However, the

optimization operation is additional executed for global approach. Finally, the

disparity map is refined by the last disparity refinement step which is an optional

process for computing fractional disparity and other post-processing. The literatures

of each step inside the general framework are briefly reviewed as follows.

7

Fig. 2. 4 General framework of disparity estimation

Fig. 4.1. Matching Cost Calculation

To find the best correspondence pair, the matching cost is an essential

quantitative evaluation. Fig. 2. 5 exhibits an example to illustrate the calculation of

matching cost. In this figure, multiple reference pixels are marked as the

correspondence candidates and all their matching costs have been computed

accompanied a target pixel. However, the relation of nearest and farthest objects in

Matching Cost Calculation

Cost Aggregation

Disparity Selection/Optimization

Disparity Refinement

Target View Reference View

Target-View
Disparity Map

8

scene is recognized as disparity range DR and it will be used to represent the number

of correspondence candidates. As a result, DR matching costs would be produced by

the target pixel. In order to find out the overall disparity map, all matching costs of all

target pixels have to be calculated and all calculated matching costs form a disparity

image space. Fig. 2. 6 shows a disparity image space which contains the spatial

dimensions X, Y and disparity dimension d. Overall, this disparity image space

consumes H×W×DR, where H and W are the frame height and width, memory space

to store the all matching costs of entire frame.

9

Target Pixel

Reference Pixels

DR
 (x, y)

(x, y)

Matching Costs

Target-view Image

Reference-view Image

A Pair of Correspondences

……

Fig. 2. 5 Matching costs of a target pixel and its correspondence candidates

10

d

x

y

d = DR-1

d = 0
d = 1
d = 2

W

H

DR

Fig. 2. 6 Matching costs of a target pixel and its correspondence candidates

There are many match measurements [3]-[52] as listed in Table 2-1 could be

used to compute the cost disparity image space. These match measurements could be

classified into pixel based and block based approach. For the pixel based approach,

the absolute difference (AD) and the square difference (SD) are used for computing

the matching costs by considering a target and reference pixel. To eliminate the

sampling sensitivity [1], the half pixels could be further considered for pixel

dissimilarity measurement. On the other hand, instead of using a target and reference

pixel to compute the matching cost, a target and reference pixel block is used to

compute the block based matching cost as Fig. 2. 7 shown. In addition, the statistical

approach called normalized cross correlation reduces the sensitivity of radiometric

gain and bias by using the block mean and variance. The Rank derives the rank value

11

of pixel color by transformation and the rank values are adopted for computing the

matching costs. On the other hand, the Census transforms the pixel intensity into

census bitstream consisting of the intensity comparison results between the center

pixel and the support pixels. Afterward, the Hamming distance is calculated to derive

the matching cost of two census bitstreams. In summary, since the Rank and Census

try to transform the original pixel from color to another domain, their ability to resist

the radiometric distortion between views would be much better.

Target Block

Reference Block

 (x-d, y)

(x, y)
(u, v)

Support
pixels

r

Fig. 2. 7 Block based matching cost calculation

12

Table 2-1 Different matching cost measurements

Block-based

Normalized Cross

Correlation (NCC)

∑ [𝐼𝑡𝑡𝑡(𝑢, 𝑣) − 𝐼�̅�𝑡𝑡][𝐼𝑡𝑟𝑟(𝑢 − 𝑑, 𝑣) − 𝐼�̅�𝑡𝑟𝑟]|𝑥−𝑢|≤𝑡
|𝑦−𝑣|≤𝑡

�∑ [𝐼𝑡𝑡𝑡(𝑢, 𝑣) − 𝐼�̅�𝑡𝑡]2�𝐼𝑡𝑟𝑟(𝑢 − 𝑑, 𝑣) − 𝐼�̅�𝑡𝑟𝑟�
2

|𝑥−𝑢|≤𝑡
|𝑦−𝑣|≤𝑡

Rank
�𝐼𝑡𝑡𝑡′ (𝑥,𝑦) − 𝐼𝑡𝑟𝑟′ (𝑥 − 𝑑,𝑦)�,

𝑤ℎ𝑒𝑒𝑒 𝐼′(𝑚,𝑛) = ∑ 𝐼(𝑚, 𝑛) > 𝐼(𝑢, 𝑣)|𝑚−𝑢|≤𝑡,|𝑛−𝑣|≤𝑡

Census
𝐻𝐻𝑚𝑚𝐻𝑛𝐻(𝐼𝑡𝑡𝑡′ (𝑥,𝑦), 𝐼𝑡𝑟𝑟′ (𝑥 − 𝑑,𝑦)),

𝑤ℎ𝑒𝑒𝑒 𝐼′(𝑚,𝑛) = 𝑏𝐻𝑏𝑏𝑏𝑒𝑒𝐻𝑚|𝑚−𝑢|≤𝑡,|𝑛−𝑣|≤𝑡(𝐼(𝑚,𝑛) > 𝐼(𝑢, 𝑣))

Pixel-based

Absolute Difference (AD) �𝐼𝑡𝑡𝑡(𝑥,𝑦) − 𝐼𝑡𝑟𝑟(𝑥 − 𝑑,𝑦)�

Square Difference (SD) �𝐼𝑡𝑡𝑡(𝑥,𝑦) − 𝐼𝑡𝑟𝑟(𝑥 − 𝑑, 𝑦)�
2

Pixel Dissimilarity

Measure (PDM)

𝑚𝐻𝑛 {�𝐼𝑡𝑡𝑡(𝑥, 𝑦) − 𝐼𝑡𝑟𝑟(𝑥 − 𝑑,𝑦)�, �𝐼𝑡𝑡𝑡(𝑥, 𝑦) − 𝐼𝑡𝑟𝑟+ �, |𝐼𝑡𝑡𝑡(𝑥, 𝑦) − 𝐼𝑡𝑟𝑟− |}

𝑤ℎ𝑒𝑒𝑒 𝐼𝑡𝑟𝑟+ 𝐻𝑛𝑑 𝐼𝑡𝑟𝑟− 𝐻𝑒𝑒 𝑏ℎ𝑒 𝑛𝑒𝐻𝐻ℎ𝑏𝑏𝑒𝐻𝑛𝐻 ℎ𝐻𝑎𝑓 𝑝𝐻𝑥𝑒𝑎 𝑏𝑓 𝐼_𝑒𝑒𝑓 (𝑥 − 𝑑, 𝑦)

Fig. 4.2. Cost Aggregation

The main purpose of cost aggregation is tried to gather the neighboring pixel

costs in a window for center pixel for further processing usage. The assumption

behinds of cost aggregation is that the neighboring pixels tend to have the same

disparity and gathering the matching costs from neighbors could be able increase the

reliability of matching cost. Therefore, the neighboring costs are accumulated in the

cost aggregation step for the center pixel by the following equation,

13

𝐶𝑡𝑎𝑎𝑡(𝑥,𝑦,𝑑) =
∑ 𝐶(𝑢, 𝑣,𝑑) × 𝑊𝐻𝐻𝐻𝑒(𝑢, 𝑣)(𝑢,𝑣)∈𝑤𝑤𝑛(𝑥,𝑦)

∑ 𝑊𝐻𝐻𝐻𝑒(𝑢, 𝑣)(𝑢,𝑣)∈𝑤𝑤𝑛(𝑥,𝑦)

where C is the initial matching cost and Caggr is the aggregated matching cost. In this

equation, each initial cost C(v, u, d) in an aggregation window with window size r is

accumulated with the weight Waggr(u, v) for the target cost Caggr(x, y, d). In addition,

the accumulated value is normalized by the sum of weights. The computational

complexity of this step is O(H×W×DR×r2) proportional to the aggregation window

size.

Fig. 2. 8 shows different cost aggregation methods with different weighting

distribution. The uniform weight as shown in Fig. 2. 8(a) contains constant weight and

fixed r for every support pixel. However, this uniform weight suffers from the

problem of over-blurred disparity map for small objects with too large r and disparity

map incorrectness for textureless regions with too small r. Therefore, to receiving

better disparity result, dynamically adjusting r according to image content as shown in

Fig. 2. 8(b) is a good way to do that. The Gaussian weight approach Fig. 2. 8(c) which

tries to make the pixels near window center has higher weighting is another

commonly used way for deciding the weighting for cost aggregation. However, the

disparity accuracy could not be achieved better due to the fixed window shape such

square or circle.

To adaptively change the window shape, the 8-direction or 4-direction

configuration as shown in Figure Fig. 2. 8(d) is used in the adaptive polygon weight

approach [4] and [5] to fit the object shape. And then, the multiple cross lines concept

as shown in Figure Fig. 2. 8(e) is adopted in the cross-based weight approach [6] to fit

the object shape. In these two methods, the support region is grown from the window

center until the dissimilar pixel has been encountered by the support region boundary.

Unfortunately, there two methods can be not performed well for the images with

14

highly texture content due to their continuous support regions.

However, the above mentioned problems could be able to be solved by the

adaptive support-weight (ADSW) approach [7] since all support pixels are considered

and their weights are decided by the bilateral filter kernels. The weights of ADSW are

defined as

𝑊𝑡𝑎𝑎𝑡(𝑢, 𝑣) = 𝑊𝑡𝑡𝑡(𝑢, 𝑣) × 𝑊𝑡𝑟𝑟(𝑢 − 𝑑, 𝑣)

where Wtar is the weight from target-view window and Wref is the weight from

reference-view window. The weights of Wtar and Wref can be computed by the bilateral

filter kernels listed below,

𝑊(𝑢, 𝑣) = 𝑓(||(𝑥,𝑦) − (𝑢, 𝑣)||)𝐻(||𝐼(𝑥,𝑦) − 𝐼(𝑢, 𝑣)||)

where f is the spatial kernel with the position distance and g is the range kernel with

the color distance. As a result, the aggregation weight could be large either the support

pixel is near the center pixel or the support pixel is similar to center pixel with the

help of two kernels.

 Compared to the adaptive polygon weight and cross-based weight approaches, the

aggregation weight of the adaptive support-weight shown in Fig. 2. 8(f) could fit

object shape better for highly texture regions but at the expensive of significant high

computational complexity requirement. However, the high computational complexity

issues can be addressed by the integral histogram approach [8], the iterative

aggregation with small window approach [9], and the data reuse approach in VLSI

design [10]. In overall, by using the well-defined weights, the aggregation cost step

can produce more reliable matching cost Caggr which will be very helpful for the

upcoming disparity selection and optimization.

15

0

0
0

0
0

0
0 0 0 0

01
0 1

0

0
0 0

0

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1 1 1 1 1

1
2

2
3

3
5

2
3

1
2

3
2

5
3

8
5

5
3

3
2

1 2 3 2 1

0
0

0 0 0 0
0

0
0

0
0

0 0 0 0 0

1 1 1
0 0

1 1
1 1 1

1 1 1 1

8
8

5
8

3
5

2
3

1
2

3
2

8
3

8
8

5
8

3
5

8 8 3 8 8

Uniform Weight Uniform Weight with
Adaptive Window Radius Gaussian Weight

Cross-based Weight Adaptive-Support Weight

1 1 1
1
1

1
1

1
1

1 1
1

1

1 1

Adaptive Polygon Weight

11
1

1

1
1

1 1
1 1

1

(a) (b) (c)

(d) (e) (f)

Fig. 2. 8 Different cost aggregation methods (a) uniform weight, (b) uniform weight

with adaptive window size, (c) Gaussian weight, (d) adaptive polygon weight, (e)

cross-based weight, and (f) adaptive support-weight

Fig. 2. 9

Fig. 4.3. Disparity Selection/Optimization

After the initial costs have been aggregated, the disparity map could be computed

by two optional methods. The most common and simple one is the winner-take-all

manner (WTA) which decides the disparity result directly by determining the

minimum cost reference pixel as the best correspondence for each target pixel.

Another disparity optimization approach takes the aggregated costs of entire frame for

computing the disparity map through the energy minimization. Literature [48]

demonstrated that the latter one can derive more precise disparity maps via the

evaluation results.

16

Some techniques such as dynamic programming (DP), graph-cut (GC), and

belief propagation (BP) are the commonly adopted for disparity optimization. In one

word, the main concept behinds these disparity optimization techniques are to

transform the disparity optimization problem into the energy minimization problem.

The energy function could be generally formulated by

𝐸(𝑑) = 𝐸𝑑𝑡𝑡𝑡(𝑑) + 𝜆𝐸𝑠𝑚𝑠𝑠𝑡ℎ(𝑑)

where Edata refers to data term for penalizing the dissimilarity of a correspondence

pair and Esmooth is smoothness term to penalizing the disparity inconsistency of two

neighboring pixels. In addition, d stands for a selected disparity set for entire frame. In

one word, a disparity set d is attempted to be found through the approach of

minimizing the total energy E that the optimization technique provided.

The principle of some well-known optimization techniques are briefly described

below.

(1) Dynamic Programming

The DP algorithm is a very well-known optimization algorithm which can be

used in disparity estimation by mapping the disparity estimation into finding the

shortest path problem. In DP, the optimization process is executed in a row by row

manner for finding the optimal results.

Fig. 2. 9(a) shows the illustration to demonstrate how the shortest path problem

can be solved by DP optimization technique. In this figure, the position of node is

corresponding to the coordinate in the x-d plane and the shortest path will be from x of

0 to W-1. The path should be suffered from the matching penalty and smoothness

penalty on a node and an edge, respectively. During the DP optimization process, two

steps called forward accumulating and backward tracing are executed in order to find

out the path with minimum penalty. In the first step, the penalties are accumulated in

forward direction to find out the moving path for each node as Fig. 2. 9(b) shown.

17

Afterward, the backward direction tracing as shown in Fig. 2. 9(c) is executed to find

the minimum penalty path with the help of the moving direction map that the forward

accumulating step produced.

However, the most critical issue caused by the DP technique is that the streak

artifact in the disparity map due to the row by row processing mechanism. To

eliminate the streak artifact problem, literature of Ohta and Kanade [11] performed

the DP in a 3-D space which consists both of the original intra-scanline and the

additional inter-scanline space. In addition, the tree structure has been used in the

tree-based DP algorithms [12]-[14] to connect scanlines and thus remove the streak

artifacts.

18

d

x(0, y, 0) (W-1, y, 0)

Backward Tracing

d

x(0, y, 0) (W-1, y, 0)

Forward Accumulating

↑
→
↑
↑
↑

→
↓

→
→
→

↑

→
→
→
→
↑
↑

↓
↓
↓

↓

……
Source Target

W

D
R

→
→
→
→
↑
↑

↓
↓
↓

↓

→
↓

→
→
→

↑

↓ ↑
↑
↓

↑

(a)

(b)

(c)

Fig. 2. 10 Illustration of dynamic programming optimization technique (a) graph

model in DP approach, (b) forward accumulating, and (c) backward tracing

(2) Graph-Cut

Converting the disparity selection problem into the max-flow/min-cut problem

[15] is the key concept of GC optimization technique. In addition, the associated

optimization algorithms can be adopted as well for generating more accurate disparity

19

maps. Fig. 2. 10 shows an example to illustrate the min-cut/max-flow for disparity

estimation where there are H×W×DR nodes with 6-connected node grid. The

well-defined matching cost and smoothness cost on each edge can be regarded as

pipes with different flow quantities due to different costs. In this illustration, the water

would be flowed from the source to sink node through the pipes. The terms of min-cut

and max-flow respectively stand for a cut surface cross edges that has the minimum

flow and the allowed maximum flow from the source to the sink. In other words, the

problems of min-cut and max-flow are equivalent in somehow. As a result, the

disparity map can be obtained directly via the resultant cut surface.

Source

Sink

Cut surface

W

H

DR
6-connected node

Fig. 2. 11 Illustration of graph-cut optimization technique

The widely used optimization techniques for solving the min-cut/max-flow

20

problem are the push-relabeling [16] and the augmenting path [17] and their

computational complexities are highly depended on the number of label candidates

(i.e. disparity range DR in disparity estimation). However, the large disparity range

leads to these optimization techniques suffer from extremely high computational

complexity problem.

Literatures of swap method [18] and an efficient augmenting path [19] have been

proposed by Boykov to reduce the computational complexity of GC. The optimization

process was performed isparity by disparity in swap method and each iteration only

considers one new disparity. In addition, the literature of Chou et. al. [20] proposed a

fast algorithm to predict the disparities by early skipping the partial optimization

process based on the swap method. On the other hand, the computational speed of the

push-relabeling approach depends on the processing order on nodes. As a result,

Checkassky and Goldberg [21] proposed a highest-label order which can achieve

more efficient computation than that of the typical FIFO order. In addition, the

block-based graph cut algorithm was proposed by Delong and Boykov [22] to increase

the parallelism of push-relabeling method.

In summary, due to the irregular computation and low parallelism of GC, the GC

technique is not suitable for accelerating by GPU programming and VLSI design even

through it can achieve more accurate disparity results.

(3) Belief Propagation

The first literature which applied to the BP approach to solve the disparity

estimation problem was proposed by Sun et al. [24] to derive more accurate disparity

maps via optimizing the energy in the graph model as shown in Fig. 2. 11. In this

figure, a node represents a pixel and all nodes are connected by four-connection grid.

During the optimization process, the matching costs of each node are diffused through

21

the messages to neighboring nodes iteration by iteration and this diffusion mechanism

is called message passing. Afterward, the disparity results are determined by

aggregating the matching costs and messages of a node after several iterations.

matching cost

message

Fig. 2. 12 Illustration of belief propagation approach

The most critical issue in the BP approach is that the highest computational

complexity, O(H×W×DR2×T) due to the message passing. Here, the T refers to the

iteration counts. For the operation, the DR2 results from the convolution and the

iteration count T should be more than 10. Therefore, the literatures of Felzenswalb

and Huttenlocher [25] proposed the hierarchical BP (HBP) and the linear-time

message passing to reduce the computation of message passing. The HBP could

increase the speed of disparity convergence and the linear-time message passing could

reduce the complexity of convolution from O(DR2) to O(DR). Szeliski et al. [26]

proposed the max-product loopy belief propagation (BP-M) to reduce the iteration

counts by a scale. However, since the BP approach has the property of high

parallelism, the BP technique is much suitable to be accelerated by the GPU

programming and VLSI design [27]-[33]. Unfortunately, the high memory cost

(4HW×DR) for storing the matching costs and messages of entire frame is the main

hardware design issue. To solve this problem, the literatures of bipartite gird [25] and

22

the sliding approach [34] were proposed for lighting the memory access penalty and

the predictive coding scheme [35] could be applied for message compression.

In summary, the DP algorithm could be easy to achieve real-time processing but

suffer from the problem of streak artifacts. However, the other improvement methods

would additional result in irregular computation. For the 2-D optimization techniques,

although the GC technique can derive high accurate disparity map, but the irregular

computational process significantly limits the capability of hardware accelerating.

Fig. 4.4. Disparity Refinement

In the final step, the post processing methods such as occlusion handling, object

consistency enhancement, and temporal consistency enhancement are usually applied

to further refine the disparity maps. Therefore, these methods are briefly described as

follows.

(1) Occlusion Handling

The occlusion problem is defined as that the object point is visible in one view

and invisible in the other view. Therefore, in the occlusion region, there are no

correspondence pixels in the invisible view. In general, the incorrect disparities would

appear in the occlusion regions and further induce artifacts in the view synthesis. To

deal with the occlusion problem, the occlusion detection is adopted first to detect the

occlusion and the occlusion filling mechanism is applied to fill the occlusion area by

the background disparities in general. The basic methods for occlusion detection are

surveyed in [45] based on different assumptions. The left-right check (LRC) assumes

that a correspondence pair should have same disparity and the occlusion constraint

(OCC) assumes that occlusion region in the other view would be resulted by the

disparity gap of two pixels. In addition, the order of two pixels should have the

correspondences with the same order in the other view as the order constraint (ORD)

23

assumed. In above occlusion detection techniques, the LRC is widely applied for the

disparity refinement [6] and [40], and the OCC and the ORD are combined into the

disparity optimization step [15] and [24] usually. With the detected occlusion pixels,

the disparities in the occlusion region could be directly replaced by the reliable

background disparities in occlusion filling step.

(2) Object Consistency Enhancement

In an object, the disparities are usually identical or changing smoothly. However,

the textureless regions usually cause the incorrect disparities and thus affect the

results of disparity maps. Therefore, the plane fitting approach [40] was usually

adopted by the high-performance disparity estimation algorithms [44], [36], [37] to

remove the disparity noise. In the plane fitting approach, the watershed segmentation,

mean-shift clustering, or K-mean clustering is usually adopted for computing the

segment information first. Based on the segment information, a new 3-D plane is

constructed by the linear regression method using the disparities in a segment. Besides

of the plane fitting method, the regional voting method [6] could also refine the

disparity maps well. Compared to the plane fitting technique, the regional vote

technique is much simpler due to the segment information is unnecessary.

(3) Temporal Consistency Enhancement

In previous work, most disparity estimation algorithms were focused on the still

image sequence [48]. However, these algorithms didn’t consider the temporal

consistency issue and thus result in some obstacles in the view synthesis application

for video sequences. Therefore, if the temporal consistency issue has not been dealt

with well, the disparity maps would produce flicker artifacts due to the independent

generation of disparity for each frame. In addition, the disparities without temporal

consistency treatment are unstable in the occlusion and textureless regions. As a result,

the flicker artifacts would be further propagated to the view synthesis results and

24

becomes observed.

Intuitively, the neighboring frames are usually taken into account in the disparity

estimation to address the temporal consistency issue. In the previous work [41]-[43], a

disparity flow in spatial and temporal domain is constructed by buffering several

disparity frames. Afterward, different smooth methods are executed in the disparity

flow. On the other hand, since two adjacent frames are available, the temporal BP

algorithm [38] executed the BP optimization in a 6-connection grid graph in which

two additional connections are linked between previous and next frame. In addition,

the temporal costs were added to matching costs according to previous disparity in the

3DVC’s DERS algorithm [45]-[47].

In summary, the view synthesis quality in 3DTV applications as well as

inconsistent disparity problem can be significantly improved by the disparity

refinement step.

25

III. Proposed Dual-Way Dynamic Programming Algorithm for

Disparity Estimation

3.1. Overall Flowchart

Fig. 3.1 shows the flowchart of proposed disparity estimation algorithm which is

composed by three phases including Cost Calculation Phase, Disparity Estimation

Phase, and Disparity Refinement Phase and the duty of each phase is described as

follows in detail.

Fig. 3.1. Flowchart of proposed disparity estimation algorithm

Left View Right View

Calculating Absolute Difference (AD)

Ed
ge

 D
et

ec
tio

n

Cost Aggregation

Disparity Propagation

Dual-Way Dynamic Programming

Occlusion Handling

Directional Regional Voting

Edge-based Temporal Consistency

Disparity Map of Left View Disparity Map of Right View

(ADLeft, DispLeft) (ADRight, DispRight)

(CostLeft, DispLeft) (CostRight, DispRight)

(CostLeft, DispDP
Left) (CostRight, DispDP

Right)

(DispDW
Left) (DispDW

Right)

(DispOH
Left) (DispOH

Right)

(DispDRV
Left) (DispDRV

Right)

(DispFinal
Left) (DispFinal

Right)

(E
dg

eH
or

. Le
ft,

Ed
ge

H
or

. Ri
gh

t,
Ed

ge
Ve

r. Le
ft,

an
d

Ed
ge

Ve
r. Ri

gh
t)

C
os

t C
al

cu
la

tio
n

Ph
as

e
D

is
pa

rit
y

Es
tim

at
io

n
Ph

as
e

D
is

pa
rit

y
R

ef
in

em
en

t P
ha

se

26

3.2. Cost Calculation Phase

This phase corresponds to execute all required operations for deriving the costs

which will be used in the upcoming disparity estimation process. In this phase, the

costs of absolute difference (AD) corresponding to each pixel and disparity are

calculated first. Afterward, the calculated absolute difference values will be fed into

the cost aggregation module for cost refinement.

3.2.1. Pixel-based Absolute Difference

Many distortion measurements such mean square error (MSE) and sum absolute

difference (SAD) have been widely adopted in many field to derive the difference

between two measurement sources. In our proposed algorithm, we adopt pixel based

absolute difference for deriving the distortion of each disparity for the upcoming

disparity estimation process. The absolute difference of each pixel and disparity is

calculated as follows.

𝐴𝐷𝐿(𝑥, 𝑦, 𝑑)𝑑∈𝐷𝐷,𝐿∈{𝐿𝑟𝑟𝑡,𝐷𝑤𝑎ℎ𝑡} = |𝑌(𝑥, 𝑦) − 𝑌′(𝑥 ± 𝑑,𝑦)|

where AD is the absolute difference; x and y stand for the pixel position; Y refers to

the pixel intensity of target view; Y’ means the pixel intensity of reference view, d

implies the disparity, and DR represents the disparity range. Fig. 3.2 shows an

example to illustrate how the absolute difference of each pixel and disparity been

calculated.

27

Target view Reference view

xx-1x-2 x+1 x+2

y

y-2

y-1

y+1

y+2

xx-1x-2 x+1 x+2

y

y-2

y-1

y+1

y+2
AD(x,y,0)

AD(x-1,y)

AD(x-2,y)
d=0d=1d=2

Fig. 3.2. Illustration of absolute difference calculation

3.2.2. Cost Aggregation

After the absolute difference calculation process, the calculated ADs will be used

in the cost aggregation process for the cost refinement in each disparity level. As

mentioned in Section 2 that many weighing methods can be adopted to calculate the

costs for cost aggregation. However, every weighting method has its own

characteristic and most suitable cases. For the simplest uniform weighting and

uniform weighting with adaptive radius methods, although these methods have much

simple weighting operation, they don't consider the spatial relationship and thus may

result in ill aggregation results. An alternative way is the adaptive support weigh

method which takes the spatial relationship into account to decide the weighting

coefficients. However, although adaptive support weight method can obtain much

better results than uniform weighting methods, the computational complexity of

adaptive weight method is significant due to the exponential operation has to be

implemented. To well fit the object shape, the polygon weighting method seems to be

28

the good choice. However, significant memory storage spaces are required for this

kind of weighting methods and thus result in the high hardware implementation costs.

As a result, the Gaussian weighting method is adopted in our proposed cost

aggregation algorithm since the Gaussian weighting method has the properties of the

considering the spatial relationship and low hardware implementation cost due to the

fixed weighting coefficients. In our proposed algorithm, the 5×5 window size with

Gaussian weight mask is used for the cost aggregation. The aggregated costs are

calculated as below.

𝐶𝑏𝑏𝑏𝐿(𝑥,𝑦,𝑑)𝑑∈𝐷𝐷,𝐿∈{𝐿𝑟𝑟𝑡,𝐷𝑤𝑎ℎ𝑡} =
∑ ∑ 𝐴𝐷𝐿(𝑥 + 𝐻, 𝑗 + 𝑗,𝑑) × 𝑊𝐺𝑡𝑢𝑠𝑠𝑤𝑡𝑛(𝐻, 𝑗)2

𝑤=−2
2
𝑗=−2

∑ ∑ 𝑊𝐺𝑡𝑢𝑠𝑠𝑤𝑡𝑛(𝐻, 𝑗)2
𝑤=−2

2
𝑗=−2

where the Cost is the aggregated costs and the WGaussian refers to the weighting factor

of Gaussian Weight mask as shown in Fig. 3.3.

1 2 3 2

2 3 5 3

3 5 8 5

2 3 5 3

1

2

3

2

1 2 3 2 1

0-1-2 1 2

0

2

1

1

2

Fig. 3.3. Weighting factors of Gaussian Weight mask

3.2.3. Edge Detection

To increase the accuracy of disparity estimation, the edge information of image is

considered in our proposed algorithm due to the most difficult regions to be treated

always occur at the object boundaries or edges. There are many edge detection or

object segmentation algorithms that have been proposed in the literatures. However,

the well-known edge detection algorithm called Sobel edge detection algorithm with

29

3×3 window size is adopted in our proposed algorithm for detecting the edge

information due to its simplicity and popularity. The edge information after Sobel

edge detection process is shown in below.

𝐸𝑑𝐻𝑒𝐻(𝑥,𝑦) = � �𝑌(𝑥 + 𝐻,𝑦 + 𝑗) × 𝑊𝑆𝑠𝑆𝑟𝑆_𝐻(𝐻, 𝑗)
1

𝑗=1

1

𝑤=−1

𝐸𝑑𝐻𝑒𝑉(𝑥,𝑦) = � �𝑌(𝑥 + 𝐻,𝑦 + 𝑗) × 𝑊𝑆𝑠𝑆𝑟𝑆_𝑉(𝐻, 𝑗)
1

𝑗=1

1

𝑤=−1

where Edge is the edge information after Sobel operator; H and V refer to the

horizontal and vertical direction; and WSobel means the weighting factor of Sobel mask

as shown below.

W𝑆𝑠𝑆𝑟𝑆_𝐻 = �
−1 0 1
−2 0 2
−1 0 1

� 𝐻𝑛𝑑 W𝑆𝑠𝑆𝑟𝑆_𝐻 = �
1 2 1
0 0 0
−1 −2 −1

�

Fig. 3.4 exhibits the edge information after Sobel edge detection algorithm. From

this figure, we can observe that the Sobel edge detection algorithm can derive useful

edge information which will be very helpful for the upcoming disparity estimation

process.

30

(a)

(b)

Fig. 3.4. Edge information after Sobel operator (a) Horizontal

edge and (b) Vertical edge

3.3. Disparity Estimation Phase

Once the costs of all pixels and disparities have been successfully calculated, the

costs will be fed into our proposed disparity estimation module. In our disparity

estimation phase, we propose two algorithms called disparity propagation and

two-way dynamic programming as figure Fig. 3.5 shown. The disparity propagation is

first executed to determine whether the neighbor disparities could be propagated to

current pixel or not in order to save the computational complexity of disparity

estimation. After the disparity propagation process, the proposed two-way dynamic

programming algorithm is performed to obtain the disparity map of left and right view.

In our proposal, the disparities are considered in both of left-to-right and right-to-left

way so that the occlusion problem as well as streaking problem can be reduced

efficiently. In addition, the computational complexity of our proposed disparity

31

estimation algorithm is much lesser than that of the traditional dynamic programming

algorithms. It should be noticed that the edge detection operation is involved in our

proposed algorithm since the edge information in both horizontal and vertical

directions will be considered throughout the overall operation of our proposal.

Horizontal Disparity Propagation

Propagated
horizontally?

Vertical Disparity Propagation

Propagated vertically?

Dual-Way Dynamic Programming

Disparity Map

YES

YES

NO

NO

D
is

pa
ri

ty
 P

ro
pa

ga
tio

n

Fig. 3.5. Flowchart of proposed disparity estimation phase

3.3.1 Disparity Propagation

In the disparity estimation phase, we first use a technique called disparity

propagation to determine whether to propagate the disparity from the previous pixels

if the current pixel is located at the edge region. The main assumption behinds our

proposed disparity propagation algorithm is that disparities around the edge area are

more reliable than texture-less area, so, it is expected to propagate the disparities from

32

edge area to texture-less area. In addition, since the texture-less area usually contains

insignificant characteristics, therefore, it is very easy to be affected by the luminance

variation and thus result in the noisy results (inaccurate disparity results). Therefore,

our proposed disparity propagation is tried to smooth the disparity results in

horizontal and vertical direction. In addition, the disparities after disparity propagation

would be as the final disparity results so that the upcoming disparity estimation

process for the propagated pixels can be reduced and thus achieve the computational

complexity as well as power consumption reduction. In our proposal, the disparity is

propagated both from the horizontal or vertical directions and the disparity

propagation operation is listed below.

Horizontal Disparity Propagation

In the horizontal disparity propagation process, both of the horizontal and

vertical edge information is considered to determine the propagation of disparity. The

decision rule for horizontal disparity propagation is listed below.

𝐻𝑓 �
 𝐸𝑑𝐻𝑒𝐻(𝑥,𝑦) ≤ 𝛿𝑃𝑡𝑠𝑃𝑠𝑎𝑡𝑡𝑤𝑠𝑛
 𝐸𝑑𝐻𝑒𝑉(𝑥, 𝑦) ≤ 𝛿𝑃𝑡𝑠𝑃𝑠𝑎𝑡𝑡𝑤𝑠𝑛

� 𝑏ℎ𝑒𝑛 𝐷(𝑥, 𝑦) = 𝐻𝑒𝐻𝑚𝐻𝑛
𝑑∈𝐷𝐷

{𝐶𝑏𝑏𝑏(𝑥𝑃,𝑦,𝑑)}

where δPropogation is the determination parameter; D refers to the final disparity map of

pixel located at x and y position; and xp means the previous pixel depends on scanning

direction. Fig. 3.6 shows an example to illustrate how to derive the xp for different

scanning directions.

33

xp x x xp

(a) (b)

Fig. 3.6. Illustration of xp derivation for different scanning directions

(a)Left-to-Right and (b)Right-to-Left

It should be mentioned that since our proposed horizontal disparity propagation

uses two scanning directions for disparity propagation, the final disparity and cost for

current pixel is decided by seeing which scanning direction has the smallest cost.

Vertical Disparity Propagation

After the horizontal disparity propagation, the vertical disparity propagation is

executed depending on whether the disparity of current pixel has been propagated

from the previous pixel xp. If the disparity of current pixel is exactly propagated from

the previous pixel xp, the vertical disparity propagation will not be executed for the

current pixel. Oppositely, if the disparity of current pixel is not propagated from the

previous pixel xp, the vertical disparity propagation will be on for disparity

propagation. Similar to horizontal disparity propagation, the proposed vertical

disparity propagation also considers the edge information from the vertical direction

to decide whether the disparity could be propagated vertically. However, the main

difference between horizontal disparity propagation and vertical disparity propagation

is that the absolute differences of pixel intensity are further considered to decide the

disparity propagation. The decision rule of our proposed vertical disparity propagation

is listed below.

34

𝐻𝑓 �
 𝐸𝑑𝐻𝑒𝐻(𝑥,𝑦) ≤ 𝛿𝑃𝑡𝑠𝑃𝑠𝑎𝑡𝑡𝑤𝑠𝑛

 𝐸𝑑𝐻𝑒𝐻(𝑥,𝑦 − 1) ≤ 𝛿𝑃𝑡𝑠𝑃𝑠𝑎𝑡𝑡𝑤𝑠𝑛
|𝑌(𝑥,𝑦) − 𝑌(𝑥,𝑦 − 1)|

� 𝑏ℎ𝑒𝑛 𝐷(𝑥,𝑦) = 𝐷(𝑥, 𝑦 − 1)

3.3.2 Dual-Way Dynamic Programming

Traditional DP usually stores all path information as a path table for path

searching. Therefore, the memory storage space will be very significant due to

W(frame width)*DR disparities have to be stored. As a result, the memory space

requirement of traditional DP is significant. In addition, the traditional DP algorithms

only consider one way scanning. If only considering one way, the resulted disparity

will be very bad due to the occlusion problem. Therefore, we consider both ways for

improving the accuracy of derived disparity results. According to the horizontal and

vertical disparity propagation result, our proposed dual-way dynamic programming

algorithm is executed depending on whether the disparity of current pixel has been

propagated either from the horizontal or vertical direction. If the disparity of current

pixel is propagated from neither horizontal nor vertical direction, the dual-way

dynamic programming will be executed to decide the final disparity of current pixel.

Fig. 3.7 illustrates the idea of our proposed dual-way dynamic programming. In our

proposal, the main idea is that disparities with minimum cost are considered

horizontally and vertically.

Cost in current row

Vertical diffusion
Disparity in previous row

Vertical diffusion

Left-to-Right Diffusion Right-to-Left Diffusion

35

Fig. 3.7. Illustration of our proposed dual-way dynamic programming

To decide the best disparity for current pixel, we propose an energy function for

deciding the disparity. The proposed energy function is listed below.

𝐸(𝑥,𝑦, 𝑑) = 𝜀𝑃 × 𝐶𝑏𝑏𝑏�𝑥𝑃,𝑦,𝑑� + 𝜀𝑐 × 𝐶𝑏𝑏𝑏(𝑥,𝑦,𝑑)

+𝜌𝐻 × �𝑑𝑚𝑤𝑛′ − 𝑑� + 𝜌𝑉 × |𝑑𝑢 − 𝑑|

where

εp: the cost penalty of previous pixel at disparity d

εc: the cost penalty of current pixel at disparity d

ρH: the horizontal smoothing cost

ρV: the vertical smoothing cost

d'min: the disparity of previous pixel with minimum energy cost

du: the disparity value of pixel in upper row

Once the energy cost of each disparity level has been successfully calculated, the

final disparity of current pixel can be decided by the following expression.

𝐷(𝑥,𝑦) = 𝐻𝑒𝐻𝑚𝐻𝑛
𝑑∈𝐷𝐷

{𝐸(𝑥,𝑦,𝑑)}

In the following, the definition of the parameters listed above is described below

in detail. The main idea behinds the parameter definition of our proposed algorithm is

that we pay more attention on the edge regions since the edge regions are the most

difficult areas to deal with. Therefore, our parameters are defined based on horizontal

and vertical edge.

For horizontal edge: Two types of horizontal edge conditions are used to decide

the parameters as listed below.

1. No horizontal edge: If current pixel has no horizontal edge passed through, it

36

means that the smoother weighting parameters can be used for smoothing the

disparity from the neighbor pixels. As a result, the parameters for no horizontal

edge condition are shown in Fig. 3.8(a). This case means that the current pixel is

located inside the object, therefore, we hope that the disparity of current pixel

should be as much similar to the previous pixel as possible so that the resulted

disparity map for certain object could be more consistent especially for the

texture-less areas. Therefore, we give the higher weighting for the εp and ρh to

make sure that the previous reliable disparity could affect the results of energy

function significantly.

2. Horizontal edge existence: The main idea behinds this filtering is to let the

disparity of current pixel to be more similar to the disparity of the object where the

current pixel belonging to. If current pixel is located on the horizontal edge, two

parameter definition methods are proposed depending on which region that the

current pixel belongs to. If current pixel and previous pixel belong to the same

object and existing the edge magnitude discontinuity in horizontal direction, the εp

and ρh are increased and εc is decreased to result in the consistent disparity map

with the streaking problem reduction as Fig. 3.8(b) shown. Otherwise, if the

current pixel belongs to the right object, both of the parameter weighting of

previous pixel and horizontal smooth cost are reduced. If current pixel and

previous pixel belong to different objects and existing the edge magnitude

discontinuity in horizontal direction as Fig. 3.8(c) shown, the εp and ρh are

decreased and εc is increased to make sure the current disparity would be affected

by the previous disparity slightly.

37

• εp = 2 * Previous_weight
• εc = 1 * Current_weight
• ρH = 4 * Horizontal_smooth_cost

• εp = 2 * Previous_weight
• εc = 0.5 * Current_weight
• ρH = 1 * Horizontal_smooth_cost

• εp = 0.5 * Previous_weight
• εc = 1 * Current_weight
• ρH = 1 * Horizontal_smooth_cost

(a)

(b)

(c)

Fig. 3.8. The parameter definition for different types of horizontal edge

conditions

For vertical edge: Two types of vertical edge conditions are proposed as well to

decide the parameters as listed below.

1. No vertical edge: If current pixel has no vertical edge passed through, it means

that the smoother weighting parameters can be used for smoothing the disparity

from the neighbor pixels. As a result, the parameters for no vertical edge condition

are shown in Fig. 3.9(a). This case means that the current pixel is located inside

the object, therefore, we hope that the disparity of current pixel should be as much

similar to the previous pixel as possible so that the resulted disparity map for

certain object could be more consistent especially for the texture-less areas.

38

Therefore, we give the higher weighting for the ρv to make sure that the previous

reliable disparity could affect the results of energy function significantly.

2. Vertical edge existence: If current pixel is located on the vertical edge, two

parameter definition methods are proposed depending on which region that the

current pixel belongs to. If current pixel and upper pixel belong to the same object

and existing the edge magnitude discontinuity in vertical direction, the ρv is

decreased to result in the consistent disparity map with the streaking problem

reduction as Fig. 3.9 (b) shown. Otherwise, if current pixel and upper pixel belong

to different objects and existing the edge magnitude discontinuity in vertical

direction as Fig. 3.9(c) shown, the ρh is decreased to make sure the current

disparity would be affected by the previous disparity slightly.

• ρV = 4 * Horizontal_smooth_cost

• ρV = 2 * Horizontal_smooth_cost

• ρH = 0.5 * Horizontal_smooth_cost

(a)

(b)

(c)

Fig. 3.9. The parameter definition for different types of vertical edge conditions

39

In our thesis, the constant parameters of Previous_weight, Current_weight,

Horizontal_smooth_cost, and Vertical_smooth_cost are set to 1, 2, 0, and 16,

respectively by empirical approach.

Fig. 3.10 shows the disparity estimation results of our proposed algorithm. From

this figure, we can observe that the disparity propagation can result in much more

smooth disparity estimation result compared to only using dual-way dynamic

programming disparity estimation.

(a)

40

(b)

Fig. 3.10. Results of disparity estimation after (a) dual-way dynamic

programming and (b) dual-way dynamic programming with disparity

propagation

3.4. Disparity Refinement Phase

Although the disparity estimation phase can derive the disparity maps for both of

left and right views, however, the disparity maps should be further refined to obtain

more accurate disparity estimation results. Therefore, three algorithms called

occlusion handling, directional regional voting, and edge-based temporal consistency

are proposed in our disparity refinement phase to further punish the disparity maps. In

occlusion handling, the occlusion artifacts are treated in order to reduce the artifact

effects in the occlusion regions. The directional regional voting process performs the

filtering operation for the disparity map in a directional regional manner so that the

processed disparity map could be as smoother as possible. Finally, the edge-based

temporal consistency operation executes the filter operation for the disparity map in

the temporal domain by considering not only the color difference but the edge

41

information so that the filtered disparity map could be very smooth between the

consecutive frames. The detailed design principle of each proposed module will be

described in the following subsections.

3.4.1 Edge-Based Occlusion Handling

In general, the occlusion effects usually occur at the object edge and boundary.

Therefore, occlusion handing by considering the edge information is a very intuitive

and straightforward manner. In our proposal, the idea of strong edge is detected to

help the occlusion handing. Fig. 3.10 shows the illustration and flowchart of our

proposed occlusion handling algorithm. Our proposed occlusion handling algorithm is

composed by three steps called Strong Edge Detection, Reliability Check and Section

Voting and Smoothing.

Strong Edge Detection: In strong edge detection module, the edge information

after edge detection is used to determine the strong edge positions by the following

procedure. The variables inside the pseudo code are defined as follows.

PosLeft: Position to indicate the location of left strong edge

PosRight: Position to indicate the location of right strong edge

ImageHeight: Image height

ImageWidth: Image width

δOC: Threshold for strong edge detection

42

Set PosLeft and PosRight to 0

FOR y = 0 to ImageHeight

 FOR x = 0 to ImageWidth

 IF (PosLeft has been found)

 IF(|EdgeH(x,y)| + |EdgeV(x,y)| ≥ δOC)

 PosRight = x;

 End IF

 IF (Both PosLeft and PosRight have been found)

 Reliability Check();

 Section Voting and Smoothing ();

 PosLeft = PosRight;

 End IF

 Else

 IF(|EdgeH(x,y)| + |EdgeV(x,y)| ≥ δOC)

 PosLeft = x;

 End IF

 End IF

 End FOR

End FOR

Reliability Check: Once two strong edge positions PosLeft and PosRight have been

successfully detected, the disparities located between PosLeft and PosRight are checked

one by one to determine whether the disparity is reliable enough or not. If a disparity

has been determined as unreliable, it will be marked as unreliable one and it will not

been considered in the following disparity smoothing operation anymore. The idea

behinds our reliability checking is to avoid the disparities that have been influenced

by the unreliable disparities inside a restricted region. Determining whether a

disparity is reliable or not can be achieved by the following operation.

43

𝐻𝑓 �
|𝐷(𝑥,𝑦) − 𝐷(𝑥 − 𝐷(𝑥,𝑦),𝑦)| ≤ 𝛿𝑑 𝐷(𝑥, 𝑦) 𝑚𝐻𝑒𝑚𝑏 𝐻𝑏 𝑒𝑒𝑎𝐻𝐻𝑏𝑎𝑒
𝑂𝑏ℎ𝑒𝑒𝑤𝐻𝑏𝑒 𝐷(𝑥,𝑦)𝑚𝐻𝑒𝑚𝑏 𝐻𝑏 𝑢𝑛𝑒𝑒𝑎𝐻𝐻𝑏𝑎𝑒

𝑤ℎ𝑒𝑒𝑒 𝑥 ∈ {𝑃𝑏𝑏𝐿𝑟𝑟𝑡,𝑃𝑏𝑏𝐷𝑤𝑎ℎ𝑡} and δd is an empirical defined threshold.

Section Voting and Smoothing: After the unreliable disparities have been marked,

the section voting and smoothing operation is executed for smoothing the disparities

located between PosLeft and PosRight. Fig. 3.11 exhibits a step-by-step illustration for

explaining our proposed section voting and smoothing algorithm. First, the disparity

and reliable/unreliable maps are fed into the section voting operation for counting the

occurrences of each disparity with the help of reliable/unreliable map. If a disparity

has been marked as unreliable, the counts of corresponding disparity will not been

accumulated. Once the section voting operation has been done, the disparity with

maximum occurrence will be selected as the dominating disparity and this disparity

will be used to replace all disparities located between PosLeft and PosRight.

Strong Edge Detection

Reliability Check

Section Voting and Smoothing

Disparity Map Edge Map

PosLeft and PosRight

Disparity Map

Disparity Map

Edge Map

Occlusion Handling

Disparity Map

Fig. 3.11. Illustration and flowchart of our proposed occlusion handling

algorithm

44

Disparity Map

Reliable/Unreliable Map

Reliable UnReliable

Section Voting

1

PosLeft PosRight

2 3 0

Smoothing

Disparity Map

Fig. 3.12. Illustration of our proposed Section Voting and Smoothing algorithm

3.4.2 Directional Region Voting

In the traditional region voting approaches, a voting window is used for voting

the occurrence of each disparity. However, this voting approach suffers from the

inharmonious disparity effect inside the voting window if the covered region of voting

window contains two objects. In this situation, the traditional region voting

approaches would further damage the estimated disparity results. Therefore, we

propose a directional region voting algorithm to avoid the problem caused by the

traditional region voting via considering both of the edge and color difference

information. Following figure is the diagram of procedure of proposed directional

regional voting method.

45

Disparity Histogram Voting

Directional Voting Area Determination

Edge(x0,y0,x)>δ(x)

Initialization Set left_voting_available = 0
 right_voting_available = 0

 up_voting_available = 0
 down_voting_available = 0

 diff_right = abs(Intensity(x0,y0)-Intensity(x0+1,y0))
 diff_left = abs(Intensity(x0,y0)-Intensity(x0-1,y0))
 diff_up = abs(Intensity(x0,y0)-Intensity(x0,y0-1))

 diff_down = abs(Intensity(x0,y0)-Intensity(x0,y0+1))

diff_left > diff_right

Set left_voting_available = 0
 right_voting_available = 1

YES

Set left_voting_available = 1
 right_voting_available = 0

NO

Set left_voting_available = 1
 right_voting_available = 1

YES

NO

Edge(x0,y0,y)>δ(y)

diff_up > diff_down

Set up_voting_available = 0
 down_voting_available = 1

YES

Set left_voting_available = 1
 right_voting_available = 0

NO

Set up_voting_available = 1
 down_voting_available = 1

YES

NO

for(y=y0+2;y>=y0-2;y--)
 for(x=x0+2;x>=x0-2;y--)

 Intensity(x,y)-Intensity(x0,y0)<=μ

H(D(x,y)) = H(D(x,y)) + 1

YES

D(x0,y0) = max(H(d))

NO

Fig. 3.13. Flowchart of proposed directional regional voting algorithm

 According to the algorithm, there are nine types of voting area that will be

possible to be determined. Please check them as figure below:

Fig. 4.14. nine types of determined voting area

Figure 3.14 shows nine different types of determined area which might occur in

the algorithm. The determined voting area is determined by the edge information on

46

both horizontal and vertical direction and also take the intensity difference between

center pixel and other neighbor pixels into account. After the voting area is

determined, the algorithm will start accumulating disparity histogram of the pixels in

the determined region. Only the ones which have similar intensity value will be taken

into account. After the disparity histogram is complete, the disparity which get the

maximum number will be assigned to the center pixel.

3.4.3 Edge-based Temporal Consistency

In traditional temporal consistency treatment, the color difference between

successive frames is used for determining whether the disparity of current frame

should be replaced by the disparity from the collocated pixel in previous frame to

keep the disparity consistence temporally. However, as mentioned before that the

occlusion effect usually occurred at the edge region. Therefore, our proposed

algorithm will not only consider the color difference but also the edge information for

the temporal consistence treatment. In addition, three consecutive frames are

considered at the same time for deciding the disparity propagation.

47

Set StateBuffer[h][v][i]=1 where h=0~ImageWidth-1, v=0~ImageHeight-1, i=0~5, x=y=1

f >= 5

Compute edge state EState

Compute color difference state CState and CDiff

Set StateBuffer[x][y][2] = CState and StateBuffer[x][y][5] = EState

Compute color factor Cf =
StateBuffer[x][y][0]&StateBuffer[x][y][1]&StateBuffer[x][y][2]

Compute edge factor Ef =
StateBuffer[x][y][3]&StateBuffer[x][y][4]&StateBuffer[x][y][5]

(Cf==0 && Ef==0) || (Cf==0 && Ef==1) Propagate disparity
from previous frame

x < ImageWidth - 1

CDiff >= 360

Set StateBuffer[x][y][0] = StateBuffer[x][y][1] =
StateBuffer[x][y][2] = CState and StateBuffer[x][y][5] = EState

y < ImageHeight - 1

x+=1

x=1 and y+=1

f+=1

YES

YES

YES

YES

YES

f+=1

NO

NO

NO

NO

NO

Set StateBuffer[x][y][0]=StateBuffer[x][y][1],
StateBuffer[x][y][1]=StateBuffer[x][y][2],
StateBuffer[x][y][3]=StateBuffer[x][y][4],
StateBuffer[x][y][4]=StateBuffer[x][y][5]

Initialization f=0

Fig. 4.15. Flowchart of proposed temporal consistency algorithm

48

3.5. Simulation Results

Our proposed algorithm has been tested on some general test contents, Fig.

3.16 shows the contents adopted in the experiment, and table III-1 lists their

detailed information. The test sequences are provided by different research

institutes. The frame size includes 1024×768 (XGA), 1920×1080 (HD1080p),

and 1280×960. In these sequences, the Kendo, Balloons, Hall1, and Hall2 are

captured by the moving cameras, and others are captured by fixed cameras. All

the test sequences have been calibrated to make sure the disparity range can be

limited in 1-D space.

(a) (b) (c)

(d) (e) (f)

(g) (h)

49

Fig. 4.16. Clips of test sequences in center view

(a) BookArrival, (b) LoveBird1, (c) Newspaper, (d) Café, (e) Kendo, (f) Balloons, (g)

Champagne, (h) Pantomime, (i) Hall1, (j) Hall2, (k) Street, (l) CarPark

Table III-1 Test sequences

Sequence

Name
Provider Frame Size

Frame

Rate

(frame/s)

Number of

Frame

Number of

View

Camera

Spacing

(cm)

Is

Moving

Camera

BookArrival HHI 1024×768 16.67 300 16 6.5 No

LoveBird1 ETRI 1024×768 30 300 12 3.5 No

Newspaper GIST 1024×768 30 300 9 6.5 No

Kendo Nagoya 1024×768 30 300 7 5 Yes

Balloons Nagoya 1024×768 30 300 7 5 Yes

Champagne Nagoya 1280×960 30 300 80 5 No

Pantomime Nagoya 1280×960 30 300 80 5 No
HHI: Fraunhofer Heinrich Hertz Institute, Germany

ERTI: Electronics and Telecommunications Research Institute, Korea

GIST: Gwangju Institute of Science and Technology, Korea

Nagaya: Nagoya University, Japan

1.1. Organization

The rests of this thesis is organized as follows. In Section II, some related works

including disparity estimation, general algorithm flow are overviewed to establish the

related background of the main target that this thesis would like to address. Section III

presents the detailed algorithm description that this thesis proposed. Some simulation

results compared to other literatures are given in Section VI to show the efficiency of

our proposal. The hardware architecture design for our proposed algorithm is

discussed in Section V. Finally, some conclusions and future works are given in

Section VI.

50

3.5.1 Input and Output Configuration

 The input sequences are in 2-view configuration. Table III-2 shows the

selected views of all the test sequences for 2-view configuration. Table III-3

shows the output configuration and the selected views in our evaluation.

Table III-2 Input and output views for 2-view configuration

Sequence Name
Input View No.

(IL-IR)

Synthesized Pair

(IL-VC or VC-IR)

Frame Range for

Disparity Estimation

BookArrival 10-8 10-9 0-99

LoveBird1 6-8 7-8 0-299

Newspaper 4-6 5-6 0-299

Kendo 2-4 3-4 0-299

Balloons 2-4 3-4 0-299

Champagne 39-41 40-41 0-499

Pantomime 39-41 40-41 0-499

Table III-3 Experiment setting in our evaluation

Sequence Name Output

No.

Frame Size Disparity

Range

Frame

Range

Proposed Algorithm

Input No. Avail. Eval.

BookArrival 9, 7 1024×768 70 0-99 10-8-6 Yes Yes

LoveBird1 5, 7 1024×768 70 0-299 4-6-8 Yes Yes

Newspaper 3, 5 1024×768 88 0-299 2-4-6 Yes Yes

Kendo 2, 4 1024×768 64 0-299 1-3-5 Yes Yes

Balloons 2, 4 1024×768 64 0-299 1-3-5 Yes Yes

Champagne 38, 40 1280×960 110 0-499 37-39-41 Yes Yes

Pantomime 38, 40 1280×960 40 0-499 37-39-41 Yes Yes

3.5.2 Experiment Results

51

 The experiment settings follow the above description in previous section.

We test three different kinds of evaluation statistics as following, PSNR, PSPNR,

computation complexity reduction. Table III-4 shows the result of different

sequences in PSNR, PSPNR, and table III-5 shows the computation complexity

reduction of sequences.

Method

 Type

Sequence

Proposed RTHDSM[54] HQDE[55]

PSNR PSPNR PSNR PSPNR PSNR PSPNR

BookArrival 35.41

49.21 35.36

48.60 35.89 51.83

Pantomine 37.32

55.30 37.89

56.98 37.10

51.88

Lovebird1 34.16

51.37 33.83

51.89 31.86

51.92

NewsPaper 29.57

43.29 29.32

42.11 29.86

44.06

Kendo 35.94

49.31 35.58

49.64 35.66

49.90

Table III-4 Experiment Results

52

Method Type

Sequence

Proposed

BookArrival 56.3%

Pantomine 66.6%

Lovebird1 35.01%

NewsPaper 41.9%

Kendo 59.8%

Champagne 57.6%

balloons 54.07%

Table III-5 Computational complexity reduction

 According to above experiment results, we can see that the proposed

algorithm has generated good quality of disparity map by using dual way

dynamic programming, edge-based occlusion handling, and directional regional

voting techniques. Table III-5 also shows that the proposed algorithm solves the

flickering problem effectively by using edge-based temporal consistency

techniques.

53

IV. Hardware Implementation and Results

4.1 Overall architecture

 Fig. 4.1 shows the overall hardware architecture design of our proposed

disparity estimation algorithm. In our proposed hardware design, the proposed

algorithms are divided into three pipeline stages. The first stage contains four

modules including Edge Detection, Absolute Difference Calculation, Cost

Aggregation, and Disparity Propagation module. The second stage contains

our proposed dual-way dynamic programming. The third stage contains all

modules which are used for refining the estimated disparity results including

occlusion handling, directional regional voting, and edge-based temporal

consistency. The detailed hardware architecture design principle is explained

in the following subsections.

54

External Memory

Memory Access Controller

YR YT du d' dp

Absolute
Difference
Calculation

Cost
Aggregation

Disparity
Propagation

Dual-Way Dynamic Programming

Occlusion Handling

Directional Region Voting

Temporal Consistency

Edge
Detection

Interface

1st Pipeline Stage

2nd Pipeline Stage

3rd Pipeline Stage

Disparity Map

Control signal

128 bits data bus

Fig. 4.1. The hardware architecture of our proposed disparity estimation

algorithm

4.2 First Stage Design

 Absolute Difference Calculation Module

The operation of our proposed absolute difference calculation module is

described as follows. First, three rows of luma input pixel are read from external

memory and buffered by using internal memory buffer. Afterwards, 5x5 pixels are

55

read from internal memory left to right and fed into absolute difference

computation module. In this thesis, 5x5 pixels are grouped together as the basic

processing unit. For each 5x5 processing unit, the absolute differences within the

disparity range are calculated for the following disparity estimation purpose.

Therefore, number of 8-bit adders depends on the disparity range. Adders are

required for computing all absolute differences. Fig 4.2 exhibits the detailed

hardware architecture design of our proposed absolute difference calculation

module. In this design, two buffers are used for storing the image data of YR and YT.

In addition, the number of absolute difference calculation sets with 25 parallel

absolute difference calculation modules in each is depending on the disparity range.

Input Control
- Abs

- Abs

- Abs

Output Control

Progress Control

25 Parallel AD modules

Depends on disparity range

25 x 8bits

25 x 8bits

25 x 8bits

25 x 8bits5 x 5

Disparity range

5

Cost
aggregation

YR

YT

Input Control Output Control

Input Control Output Control

Fig. 4.2. The hardware architecture of our proposed absolute difference module

 Cost Aggregation Module

After obtaining the absolute differences, the aggregation operation is applied

to the absolute differences for deriving the cost aggregation results. Although our

proposed aggregation algorithm only directly implements the cost aggregation

56

operation as Fig 3 shown, however, it is worth to point out that our proposed

hardware architecture has a very good design that the absolute differences of each

3x3 processing unit are directly added by the Gaussian weightings and sent to the

disparity propagation module without buffering so that the hardware buffer costs

can be reduced significantly.

C[0] C[1] C[2] C[3] C[4]

C[5] C[9]

C[10] C[14]

C[15] C[19]

C[20] C[21] C[22] C[23] C[24]

1 2 3 2 1

2 3 5 3 2

3 5 8 5 3

2 3 5 3 2

1 2 3 2 1

Output Control Input Control
25 x 8bits 32bits

Absolute Difference
Calculation Stage

Dual-Way Dynamic
Programming

Cost Aggregation

(C[0])+(C[1]<<1)+(C[2]<<1+C[2])+(C[3]<<1)+(C[4])

Fig. 4.3. The hardware architecture of our proposed cost aggregation module

 Disparity Propagation Module

As mentioned before that the edge information is used to determine whether

the disparity of current pixel should be propagated from the disparity of previous of

above pixel. Therefore, the cost propagation module must contain edge detection

module to obtain the edge information of current 3x3 processing unit. Just like the

absolute difference calculation module, the luma components stored inside the

internal memory buffer with size in 3x3 are accessed and then processed by Sobel

operator. Once the edge information has been obtained, the edge information is

used to determine whether the disparity should be propagated. If the result shows

57

that the disparity of current pixel should be propagated, the disparity information of

previous or above pixel would be read from DRAM.

4.3 Second Stage Design

When designing the hardware architecture of dynamic programming, the most

critical issues is the data dependency existed in the energy function since the energy

function takes the neighbor information into account for deciding the disparity of

current pixel. Therefore, in order to break the data dependency and thus helping to

increase the possibility of parallelization, we remove the smooth term of

(𝜌𝐻 × �𝑑′𝑚𝑤𝑛 − 𝑑�) from the energy function of dynamic programming. By

removing this term, the operation of each pixel will not been affected by the result

of previous pixel and thus lets the different pixels belonging to the same scanline

could be able to execute dynamic programming in parallel. Since the data

dependency has been removed, our proposed architecture calculates the energy

function of two adjacent pixels to increase the throughput so that our specification

can be met. Therefore, to calculate the energy function of two pixels at the same

time, the aggregation information of four pixels has to be inputted. When the costs

of two pixels have been inputted to the dynamic programming module, the dynamic

programming module computes the energy costs from left to right and right to left.

However, thanks the removing of the horizontal term of (𝜌𝐻 × �𝑑′𝑚𝑤𝑛 − 𝑑�), it

would not result in wrong results of the parallel computed energy function. Once all

128 energies corresponding to 128 disparities have been successfully calculated, the

energies are compared and the two disparities with least energy cost will be stored

into the buffer as the final results. Here, the hardware cost to compare the energies

is 33 bits comparator x 127 x 2(one for left to right and another one for right to left).

58

Fig 4.4 and Fig 4.5 show the hardware architecture design of our proposed

dual-way dynamic programming. For high throughput consideration, our proposed

dual-way dynamic programming design is further divided into two stages. The first

stage is in charge of calculating the energy function and the second stage takes care

of storing the results that the energy function resulted for further usage.

Input Control

C’[0]

C’[1]

C’[DR+1]

Abs

CMP

CMP

CMP

CMP

CMP

CMP

CMP

CMP

CMP

CMP

MUX

DP0[0]

DP0[1]

DP0[2]

DP0[3]

DP0[4]

DP0[5]

DP0[6]

DP0[7]

DPO[DR-1]

DPO[DR-2]

DP0[DR-3]

DP0[DR-4]

DPx33bits

DPx32bits

DPx32bits

εc

εp

d

du

DPx32bits

0
1

DR-1

Dmin

8bits

DP0_Min
33bits

Cost Aggregation

Dual-Way DP Stage (1)

Fig. 4.4. The hardware architecture of our proposed dual-way dynamic

programming stage one

CMP

MUX

0
1

DR-1

Dmin

8bits

DP0_Min
33bits

DP0LR[0] DP0LR[1] DP0RL[1] DP0RL[0]

dmin[0] dmin[1] dmin’[1] dmin’[0]

Cmin[0] Cmin[1] Cmin[DR-2] Cmin[DR-1]

dmin[0] dmin[1] dmin’[DR-2] dmin’[DR-1]

Internal Memory Internal Memory

LR RL

Dual-Way DP Stage (2)

Fig. 4.5. The hardware architecture of our proposed dual-way dynamic

programming stage two

4.4 Third Stage Design

The third stage of our proposed hardware architecture design is used for

59

further refining the estimated disparity map. The detailed architecture design is

explained as follows.

 Occlusion Handling Module

Fig 4.6 shows the detailed hardware architecture design of our occlusion

handling module. In our design, the results produced by dual-way dynamic

programming stage are inputted to the occlusion handling module. The Input

Control module controls all operations of all sub-modules. The Occlusion Strong

Edge Detection modules takes the edge information resulted from first pipeline

stage to detect the strong edge. The Disparity Histogram module counts the

appearance of each disparity and the results will be produced by the Disparity

Assignment module.

Dual-Way DP

Internal
Memory Input Control

Occlusion
Strong Edge
Detection x0 x1 xDR-2 xDR-1

Disparity Histogram Disparity
Assignment

Edge Information Counter

Output to Internal
Memory

Occlusion Handling Module

Fig. 4.6. The hardware architecture of our proposed occlusion handling module

 Directional Regional Module

Fig 4.7 shows the detailed hardware architecture design of our directional

region voting. The directional voting arbiter takes 5x5 inputs from outputs of

edge-based occlusion handling and also the edge information into account. The

directional voting arbitor determines the available area for voting and then do the

voting with disparity histogram. After the histogram is complete, we assign the

disparity of maximum histogram number to the center pixel.

60

Voting HistogramInternal
Memory

Directional
Voting Arbitor

Edge Information

Output disparity

Occlusion Handling Module

1/0 1/0 1/0 1/0 1/0

1/0 1/0 1/0 1/0 1/0

1/0 1/0 1/0 1/0 1/0

1/0 1/0 1/0 1/0 1/0

1/0 1/0 1/0 1/0 1/0

N(0)

N(DR-1)

Frame width

5

8bits

Disparity range

Directional Regional Voting Module

Fig. 4.7. The hardware architecture of our proposed directional region voting

module

 Temporal Consistency Module

Fig 7 shows the detailed hardware architecture design of our temporal

consistency module. The temporal consistency kernel takes the intensity value of

current pixel, the corresponding pixel in the previous frame, and edge

information into account to check if the disparity of pixel has to be propagated or

not. The kernel check the difference between two corresponding pixels and also

check the edge information at both horizontal and vertical directions to make

sure if the current pixel is fixed or moving.

Temporal
Consistency

Kernel

Edge Information

Final DisparityDirectional Regional Voting
Module

MUX

Counter

Output disparity
8 bits

8 bits

Previous frame
disparitiesYR 8 bits

YR‘ 8 bits

Temporal Consistency Module

Fig. 4.8. The hardware architecture of our proposed temporal consistency

module

61

4.5 Implementation Results

Table III-6 tabulates the hardware implementation results. The processing

ability of our designed hardware architecture is processing 1080p frame with

90 fps frame rate. The disparity range is 128 so that our proposed design can

search very wide range. In addition, our design is synthesized by UMC 90nm

CMOS technology. The synthesized results report that our proposed hardware

architecture consumes 2325K gate count and 80KB SRAM space under the

100MHz operating frequency and 128 bits bus bandwidth.

Input image resolution 1920x1080

Output image resolution 1920x1080

Frame rate 90 fps

Disparity range 128

Technology UMC 90nm CMOS

Gate counts 2325K

Operating frequency 100MHz

Bus bandwidth 128 bits

SRAM (Internal memory) 80KB

Table III-6 Implementation results

62

V. Conclusion and Future Work

5.1 Conclusion

 The main contribution of this thesis is to propose a low computational

complexity disparity estimation algorithm with good quality. We contributes in

every single stage of the algorithm such as “Dual Way Dynamic Programming”,

“Disparity Propagation”, “Edge-Based Occlusion Handling”, “Directional

Regional Voting”, and “Edge-based Temporal Consistency”. The algorithm

yields good quality compared with other disparity estimation methods and also is

hardware-friendly to be implemented. The implementation takes reasonable cost

on both gate counts of 2325K and memory cost of 80KB which seems reasonable

at the spec of 1080P@90fps.

5.2 Future Work

 In the future, we will focusing on both disparity map quality enhancement

and also costing down the hardware cost to make it more economy-efficient.

We can add motion vectors as input factors on both disparity propagation stage

and temporal consistency stage to make sure the disparity surface is smoother

and the flickering problem is less. We can also use downsample technique to

reduce the gate count and memory cost of hardware to make it more

hardware-friendly.

63

Reference

[1] S. Birchfield and C. Tomasi, “A pixel dissimilarity measure that is insensitive to image

sampling” IEEE Trans. Pattern Anal. Mach. Intell.(TPAMI), no. 20, vol. 4,

pp. 401-406, Apr. 1998.

[2] H. Hirschmuller and D. Scharstein, “Evaluation of cost functions for stereo matching,” in

Proc. IEEE Conf. on Comput. Vision Pattern Recognition (CVPR’07), Jun. 2007.

[3] N. Y.-C. Chang, Y.-C. Tseng, and T.-S. Chang, “Analysis of color space and similarity

measure impact on stereo block matching,” in Proc. IEEE Asia Pacific Conf. on Circuits

and Syst. (APCCAS’08), Dec. 2008, pp. 926-929.

[4] J. Lu, G. Lafruit, and F. Catthoor, “Anisotropic local high-confidence voting for accurate

stereo correspondence,” in Proc. SPIE Image Process.: Algorithm and Syst. VI, vol.

68120, Jan. 2008.

[5] K. Zhang, J. Lu, and G. Lafruit, “Scalable stereo matching with locally adaptive polygon

approximation,” in Proc. IEEE Int. Conf. on Image Process. (ICIP’08), Oct. 2008, pp.

313-316.

[6] K. Zhang, J. Lu, and G. Lafruit, “Cross-based local stereo matching using orthogonal

integral images,” IEEE Trans. Circuits Syst. Video Technol., no. 19, vol. 7, pp. 1073-1079,

Jul. 2009.

[7] K.-J. Yoon and I.-S. Kweon, “Adaptive support-weight approach for correspondence

search,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 4, pp. 650-656, Apr. 2006.

[8] M.-H. Ju and H.-B. Kang, “Constant time stereo matching” in Proc. Int. Conf. on

Machine Vision and Image Process. (IMVIP’09), Step. 2009, pp. 13-17.

64

[9] W. Yu, T. Chen, F. Franchetti, and J. C. Hoe, “High performance stereo vision designed

for massively data parallel platforms,” IEEE Trans. Circuits Syst. Video Technol., vol. 20,

no. 11, pp. 1509-1519, Nov. 2010.

[10] N. Y.-C. Chang, T.-H. Tsai, B.-H. Hsu, Y.-C. Chen, and T.-S. Chang, “Algorithm and

architecture of disparity estimation with mini-census adaptive support weight,” IEEE

Trans. Circuits Syst. Video Technol., vol. 20, no. 6, pp. 792-805, Jun. 2010.

[11] Y. Ohta and T. Kanade, “Stereo by intra- and inter- scanline search using dynamic

programming,” IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI), no. 7, vol. 2, pp.

139-154, Mar. 1985.

[12] O. Veksler, “Stereo correspondence by dynamic programming on a tree,” in Proc. IEEE

Conf. on Comput. Vision Pattern Recognition (CVPR’05), 2005, pp. 384-390.

[13] Y .Deng and X. Lin, “A fast line segment based dense stereo algorithm using tree

dynamic programming,” in Proc. European Conf. on Comput. Vision (ECCV’06), 2006,

pp. 201-210.

[14] C. Lei, J. Selzer, Y.-H. Yang, “Region-tree based stereo using dynamic programming

optimization,” in Proc. IEEE Conf. on Comput. Vision Pattern Recognition (CVPR’06),

vol. 2, 2006, pp. 2378-2385.

[15] V. Kolomogorov and R. Zabih, “Computing visual correspondence with occlusions using

graph cuts,” in Proc. IEEE Int. Conf. on Comput. Vision (ICCV’01), vol. 2, Jul. 2001, pp.

508-515.

[16] L. Ford and D. Fulkerson, Flows in networks, Princeton Univ. Press, 1962.

[17] A. V. Goldberg, “A new approach to the maximum flow problem,” J. of the ACM, vol. 35,

pp. 921-940, 1988.

65

[18] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization via graph

cuts,” IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI), vol. 23, no. 11, pp. 1222-1239,

Nov. 2001.

[19] Y. Boykov and V. Kolmogorov, “An experimental comparison of min-cut/max-flow

algorithms for energy minimization in vision,” IEEE Trans. Pattern Anal. Mach. Intell.

(TPAMI), vol. 26, no. 9, pp. 1124-1137, Sep. 2004.

[20] C.-W. Chou, J.-J. Tsai, H.-M. Hang, and H.-C. Lin, “A fast graph cut algorithm for

disparity estimation,” in Proc. Picture Coding Symp. (PCS’10), Nagoya, Japan, Dec. 2010,

pp. 326-329.

[21] B. V. Cherkassky and A. V. Goldberg, “On implementing the push-relabel method for the

maximum flow problem,” Algorithmica, New York Inc.: Spring-Verlag, 1997, vol. 19, pp.

390-410.

[22] A. Delong and Y. Boykov, “A scalable graph-cut algorithm for N-D grids,” in Proc. IEEE

Conf. on Comput. Vision Pattern Recognition (CVPR’08), Jun. 2008.

[23] N. Y.-C. Chang and T.-S. Chang, “A scalable graph-cut engine architecture for real-time

vision,” in Proc. VLSI design/CAD Symp., Hualien, Taiwan, 2007.

[24] J. Sun, N.-N. Zhang, and H.-Y. Shum, “Stereo matching using belief propagation,” IEEE

Trans. Pattern Anal. Mach. Intell. (TPAMI), vol. 25, no. 7, pp. 787-800, Jul. 2003.

[25] P. F. Felzenswalb and D. P. Huttenlocher, “Efficient belief propagation for early vision,”

Int. J. Comput. Vision (IJCV), vol. 70, no. 1, pp. 41-54, May 2006.

[26] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A. Agarwala, M. Tappen,

and C. Rother, “A comparative study of energy minimization methods for Markov

66

Random Fields with smoothness-based priors,” IEEE Trans. Pattern Anal. Mach. Intell.

(TPAMI), vol. 30, no. 6, pp. 1060-1080, Jun. 2008.

[27] Q. Yang, L. Wang, R. Yang, S. Wang, M. Liao, and D. Nister, “Real-time global stereo

matching using hierarchical belief propagation,” in Proc. British Mach. Vision Conf.

(BMVC), 2006.

[28] S. Park C. Chen, and H. Jeong, “VLSI architecture for MRF based stereo matching,” in

Proc. Int. Symp. on Syst., Architecture, Modeling and Simulation (SAMOS’07), Greece,

Jul. 2007.

[29] C.-C. Cheng, C.-K. Liang, Y.-C. Lai, H. H. Chen, and L.-G. Chen, “Analysis of belief

propagation for hardware realization,” in Proc. IEEE Workshop on Signal Process. Syst.

(SiPS’08), Washington DC, USA, Oct. 2008, pp. 152-157.

[30] C.-C. Cheng, C.-K. Liang, Y.-C. Lai, H. H. Chen, and L.-G. Chen, “Fast belief

propagation process element for high-quality stereo estimation,” in Proc. IEEE Int. Conf.

on Acoustics, Speech, and Signal Process. (ICASSP’09), Taipei, Taiwan, Apr. 2009, pp.

745-748.

[31] C.-K. Liang, C.-C. Cheng, Y.-C. Lai, L.-G. Chen, and H. H. Chen, “Hardware-efficient

belief propagation,” in Proc. IEEE Conf. on Comput. Vision and Pattern Recognition

(CVPR’09), Florida, USA, Jun. 2009, pp. 80-87.

[32] C.-C. Cheng, C.-T. Li, C.-K. Liang, Y.-C. Lai, and L.-G. Chen, “Architecture design of

stereo matching using belief propagation,” in Proc. IEEE Int. Symp. Circuits and Syst.

(ISCAS’10), Jun. 2010, pp. 4109-4112.

67

[33] C.-K. Liang, C.-C. Cheng, Y.-C. Li, L.-C. Chen, and H. H. Chen, “Hardware-efficient

belief propagation,” IEEE Trans. Circuits Syst. Video Technol. (TCSVT), vol. 21, no. 5,

pp. 525-537, May 2011.

[34] S. C. Park and H. Jeong, “Memory-efficient iterative process for two-dimensional

first-order regular graph,” Optics Letter, vol. 33, no. 1, pp. 74-76, Jan. 2008.

[35] T. Yu, R.-S. Lin, B. Super, B. Tang, “Efficient message representation for belief

propagation,” in Proc. IEEE Int. Conf. on Comput. Vision (ICCV’07), Oct. 2007.

[36] A. Klaus, M. Sormann, and K. Karner, “Segment-based stereo matching using belief

propagation and self-adapting dissimilarity measure,” in Proc. IEEE Int. Conf. on

Pattern Recognition (ICPR’06), Sep. 2006, pp. 15-18.

[37] Q. Yang, L. Wang, R. Yang, H. Stewenius, and D. Nister, “Stereo matching with

color-weighted correlation, hierarchical belief propagation and occlusion handling,”

IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI), vol. 31, no. 3, pp. 1-13, Mar. 2009.

[38] E. S. Larsen, P. Mordohai, M. Pollefeys, and H. Fuchs, “Temporally consistent

reconstruction from multiple video streams using enhanced belief propagation,” in Proc.

IEEE Int. Conf. on Comput. Vision (ICCV’07), Rio de Janeiro, Brazil, Oct. 2007.

[39] G. Egnal and R. P Wildes, “Detecting binocular half-occlusions: empirical comparisons

of five approaches,” IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI), vol. 24, no. 8, pp.

1127-1133, Aug. 2002.

[40] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model

fitting with applications to analysis and automated cartography,” Commun. of the ACM,

vol. 24, no. 6, pp. 381-395, 1981.

68

[41] M. Gong, “Enforcing temporal consistency in real-time stereo estimation,” in Proc.

European Conf. on Comput. Vision (ECCV’06), vol. 3953, 2006, pp. 564-577.

[42] D. Min, S. Yea, Z. Arican, and A. Vetro, “Disparity search range estimation: forcing

temporal consistency,” in Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Process.

(ICASSP’10), Dallas, Texas, May 2010, pp. 2366-2369.

[43] R. Khoshabeh, S. H. Chan, T. Q. Nyuyen, “Spatio-temporal consistency in video

disparity estimation,” in Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Process.

(ICASSP’11), Prague, Czech Republic, May 2011.

[44] Depth estimation reference software (DESR), version 4.0 [Online]. Available:

http://wg11.sc29.org/svn/repos/MPEG-4/test/tags/3D/depth_estimation/ DERS_4

[45] Enhancement of temporal consistency for multi-view depth map estimation, ISO/IEC

JTC1/SC29/WG11, M15594, Jul. 2008.

[46] Depth estimation improvement for depth discontinuity areas and temporal consistency

preserving, ISO/IEC JTC1/SC29/WG11, M16048, Feb. 2008.

[47] The consideration of the improved depth estimation algorithm: the depth estimation

algorithm for temporal consistency enhancement in non-moving background, ISO/IEC

JTC1/SC29/WG11, m16070, Jan. 2009.

[48] D. Scharstien and R. Szeliski, Middlebury Stereo Evaluation – Version 2 [Online].

Available: http://vision.middlebury.edu/stereo/eval/

[49] Q. Wei, “Converting 2D to 3D: a survey,” Inform. and Commun. Theory Group, Faculty

Elect. Eng., Math. and Comput. Sci., Delft Univ. of Technol., Netherlands, Research

Assignment, Dec. 2005.

69

[50] D. Hoiem, A. Stein, A. A. Efros, and M. Hebert, “Recovering occlusion boundaries from a

single image,” in Proc. IEEE Int. Conf. on Comput. Vision (ICCV’07), Oct. 2007.

[51] D. Hoiem, A. Efros, and M. Hebert, “Recovering surface layout from an image,” Int. J.

Comput. Vision (IJCV), vol. 75, no. 1, pp. 151-172, Oct. 2007.

[52] D. Scharstien and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo

correspondence algorithm,” Int. J. Comput. Vision (IJCV), vol. 47, no. 1-3, pp. 7-42, May

2002.

[53] M. Z. Brown, D. Burschka, and G. D. Hager, “Advances in computational stereo,” IEEE

Trans. Pattern Anal. Mach. Intell. (TPAMI), vol. 25, no. 8, pp. 993-1008, Aug. 2003.

[54]Lu. Zhang, “Design and Implementation of Real-Time High-Definition Stereo

Matching SoC on FPGA”

[55]Yu-Cheng Tseng, “The Study of Disparity Estimation Design for High Definition

3DTV Application”

	摘要
	誌謝
	I. Introduction
	1.1. Background
	1.2. Motivation
	1.3. Contribution

	II. Related Works
	2.1. Disparity Estimation
	2.2. General Algorithm Flow

	III. Proposed Dual-Way Dynamic Programming Algorithm for Disparity Estimation
	3.1. Overall Flowchart
	3.2. Cost Calculation Phase
	3.3. Disparity Estimation Phase
	3.4. Disparity Refinement Phase
	3.5. Simulation Results
	1.1. Organization
	3.5.1 Input and Output Configuration
	3.5.2 Experiment Results

	IV. Hardware Implementation and Results
	4.1 Overall architecture
	4.2 First Stage Design
	4.3 Second Stage Design
	4.4 Third Stage Design
	4.5 Implementation Results

	V. Conclusion and Future Work
	5.1 Conclusion
	5.2 Future Work

