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摘要 

隨著立體電視的問世，人們可以藉由立體視訊獲得新的視覺經驗。立體視訊可以立體攝影

機擷取，並經由影像處理技術運算後，可支援多視角與自由視點之立體電視應用。在立體視訊

的處理中，視差估測為最重要的技術之一。視差估測可產生拍攝場景之視差圖，可用於虛擬視

角視訊的合成。動態影像壓縮標準組織的立體視訊編碼團隊已提出目前最先進視差估測演算法。

其演算法可針對立體電視的應用產生高品質的視差圖，但因採用圖形切割演算法導致高運算複

雜度與低平行運算的問題。特別對於高畫質視訊，其問題更為嚴重。 

為解決以上問題，本論文提改良過的雙向動態規劃演算法，利用參考邊界資訊的遮蔽處理、

方向性投票機制、以及利用邊界資訊處理不同時間嚇得像素穩定性，以達到高品質書度運算輸

出之需求。另外本文亦提出深度傳輸之演算法，可以有效降低運算時間至 50%以上。另一方面，

針對超大型積體電路設計，本文提出之硬體架構可以合成出以下數據之電路：1920x1080@90fps，

另外電路的閘數量為 2,325K ，使用 UMC 90nm CMOS 製成合成。 
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Abstract 

Disparity estimation is one of the most interesting and important research topics in the 
field of stereo TV application. Accurate estimation of disparity can significantly improve the 
visual experience on the stereo image but at the expense of noticeable computational 
complexity consumptions.  

In this thesis, several techniques are proposed to improve the accuracy of estimated 
disparity results at a low memory cost. The edge detection algorithm is first adopted in the 
proposed algorithm to derive the important image content features and edge information for 
making the upcoming disparity estimation process gets more precise results. Afterwards, the 
proposed disparity propagation will take the edge information both from vertical and 
horizontal direction into account for deciding whether the disparity should be propagated 
from the edge area to the texture-less area. After the disparity propagation phase, the 
un-propagated pixels will be treated by our proposed dual-way dynamic programming method 
for determining their disparities. In our proposed dual-way dynamic programming algorithm, 
the edge information will be taken into account as the energy minimization factor which will 
affect the results of the estimated disparity. In addition, several post processing techniques 
including occlusion handling, directional region voting, and edge-based temporal consistency 
are also adopted in this thesis to further improve the estimated disparity results with 
considering edge information.  

Simulation results demonstrate that our proposed disparity estimation algorithm not only 
improves the accuracy of the estimated disparity but also achieves less computational 
complexity consumptions and memory buffer requirements. On average, our proposed 
algorithm can achieve 34.48dB PSNR and reduce average 53.08 % of computation cost 
compared to the conventional dynamic programming method. Finally, the proposed algorithm 
is implemented in hardware form at 1920x1080@90fps and the synthesized gate count of our 
design is only 2,325K by using 90nm CMOS technology. 
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I. Introduction 

1.1. Background 

In the research field of computer vision, the stereo matching [1]-[53] is one of 

the most active and interesting issues. The stereo matching techniques try to analyze 

the stereo images pair by pair. Afterward, the displacement of corresponding pixel 

pair existing in both images are estimated for deriving the depth information of 

objects in the scene. Here, the displacement is measured in pixel unit and we usually 

called the Disparity. The disparity values are usually between certain rang we usually 

called Disparity Range and the disparities of all image pixels are grouped to form the 

Disparity Map. Finally, the disparity map is the target output of stereo matching and it 

will be used in the stereo related visual processing. Fig. 1. 1 shows an example of 

Teddy test benchmark image. In this figure, Fig. 1. 1(a) and Fig. 1. 1(b) are the images 

of left and right view, respectively. In addition, the Fig. 1. 1(c) is the ground truth 

disparity map of left image which is visualized as grayscale intensities. In the 

disparity map, the brighter grayscale means that the object is much close to the stereo 

cameras. In other words, the disparity map includes the depth information of each 

pixel in somewhere. As a result, if we obtain the depth information by using the stereo 

matching, we will be able to derive the 3D information and reconstruct the 3D scene 

by means of triangulation.  
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(a) (b) (c) 

Fig. 1. 1. An example of disparity map (a) Left view, (b) Right view, and (c) Ground 

truth disparity map of left image 

 

1.2. Motivation 

Many disparity estimation algorithms have been developed in computer vision for 

different applications, such as 3DTV, gesture recognition, robot, 3D interactive interface, 

and etc. Both dynamic programming and belief propagation are approaches that produce 

better result than others. Computational complexity and memory usage of scan-line 

based dynamic programming is much lower than the belief propagation. But traditional 

dynamic programming still requires big buffer size due to buffering information of the 

path table for tracing back the results of estimated disparity. Therefore, the buffer size 

increases rapidly with the incensement on frame width. 

Motivated by the problems in the dynamic programming disparity estimation 

algorithm, the goal of this thesis is to develop a new scan-line based dynamic 

programming disparity estimation kernel that could not only generate high quality 

disparity maps, but also achieve the throughput of 60 frames/s for the HD1080p 

resolution to satisfy the requirement of high definition 3DTV applications. 

 

1.3. Contribution 

    To achieve the above goals, this thesis proposes several techniques to 

reduce the computational complexity and improve the quality as well. The main 

contributions of the proposed algorithm are in several parts as mention below. 

First, the proposed disparity propagation algorithm saves more than 50% 

computation complexity generally in most of the test contents. Second, to solve 

the memory cost problem of traditional dynamic programming, the thesis 
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proposes a alternative which named “Dual Way Dynamic Programming”. This 

algorithm solves the memory usage problem effectively and also improves the 

quality of the output disparities by computing energy function in dual directions. 

Third, we propose several creative post processing techniques such as 

“Edge-Based Occlusion Handling”, “Directional Regional Voting”, and 

“Edge-based Temporal Consistency” to solves problems as occlusion on 

boundaries, bad influence causes by pixels in different objects in the region, and 

the flickering problem during video playback. 

    Our proposed algorithm can be implemented up to 1080P@90fps with 

UMC 90nm CMOS technology which generates two disparity maps and use 

2335K gate counts and will fit the HD 3DTV trend. 

II. Related Works 

2.1. Disparity Estimation 

Disparity estimation is one of key techniques which extracts the disparity 

information from source images and produces the disparity map for each image in 

3DTV applications. Afterword, the extracted disparity map could be used to present 

the relative distance of objects in scene. In addition, the disparity map could be further 

adopted to obtain virtual-view images. The approach for disparity estimation depends 

on the number of input image views. The traditional single-view image uses the 2-D 

to 3-D conversion technique while the two-view and multiple-view images use the 

stereo correspondence techniques. The traditional 2-D to 3-D conversion technique 

identifies the disparity map from different disparity cues, such as texture, defocus, 

vanish point, and etc. [49], [50], and [51]. On the other hand, the stereo 

correspondence techniques find the pairs of correspondences for deriving disparity 

maps.  

The inherent constraint of epipolar geometry could lead to the correspondence 
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search range reduction from 2-D to 1-D space for multi-view video disparity 

estimation. Fig. 2. 1 presents the idea of epipolar geometry with two-view 

configuration. In this figure, the target view point C watches the object Pb and the 

watched information have been projected into the 2-D image plane at the pixels p. The 

correspondence candidates of p would be laid on the ray from C to Pb for the 

reference view point C’. As a result, the projected line is called epipolar line in the 

reference image plane. On the other hand, the correspondence with p on the epipolar 

line would be searched and the search range would be limited in 1-D space. In 

addition, the rectification and translation could be executed to map the image planes 

into the new positions with parallel epipolar lines as Fig. 2. 2 shown. Here, the 

correspondence search range is on a horizontal line instead of an oblique line in the 

original image plane. On the other hand, the correspondence pair is located at the 

same y-coordinate in two views. As a result, the operation of disparity estimation 

could be thus simplified in the raster-scan order. 

Pb

Pf

C
C’

p
e’

pf’
pb’

Target view
Reference viewEpipolar line

 

Fig. 2. 1  Epipolar geometry 
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Pb

p

e
e’

pb’

Target view
Reference view

C
C’

 

Fig. 2. 2  Rectification for image planes 

For the rectified image planes, the relationship between depth and disparity of a 

correspondence pair is shown in Fig. 2. 3. In this figure, we can find that the object 

point Pb is captured by the two cameras at the viewpoints of C and C’ and projected 

onto the correspondence pair on the epipolar line. The correspondences are located at 

the coordinates of X and -X’ based on their camera centers. Therefore, if we are able 

to estimation the disparity X-X’ when given the focal length f and the baseline B of the 

cameras, the object depth Z can be acquired by 

𝑍 =
𝑓 × 𝐵
𝑋 − 𝑋′

 

As a result, the disparity estimation tries to find out the correspondence pair and 

uses their x-coordinates to derive the disparity of depth value for each pixel.  
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Z

X

-X’

C

C’

Pb

f

f

B

Epipolar Line

Object

Target View

Reference View

 

Fig. 2. 3  Relationship between disparity and depth for a correspondence pair 

 

 

2.2. General Algorithm Flow 

Fig. 2. 4 shows a general framework for disparity estimation algorithms proposed 

by Scharstien and Szeliski [52]. Two images are first obtained and rectified to be the 

inputs and the expected result is the disparity map in this frame work. However, the 

disparity estimation can be roughly classified into two categories: local approach and 

global approach [52] and [53] in this framework. In the category of local approach, it 

only consists of the matching cost calculation and the cost aggregation. However, the 

optimization operation is additional executed for global approach. Finally, the 

disparity map is refined by the last disparity refinement step which is an optional 

process for computing fractional disparity and other post-processing. The literatures 

of each step inside the general framework are briefly reviewed as follows.  
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Fig. 2. 4  General framework of disparity estimation 

 

 

 

Fig. 4.1. Matching Cost Calculation 

To find the best correspondence pair, the matching cost is an essential 

quantitative evaluation. Fig. 2. 5 exhibits an example to illustrate the calculation of 

matching cost. In this figure, multiple reference pixels are marked as the 

correspondence candidates and all their matching costs have been computed 

accompanied a target pixel. However, the relation of nearest and farthest objects in 

Matching Cost Calculation

Cost Aggregation

Disparity Selection/Optimization

Disparity Refinement

Target View Reference View

Target-View 
Disparity Map
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scene is recognized as disparity range DR and it will be used to represent the number 

of correspondence candidates. As a result, DR matching costs would be produced by 

the target pixel. In order to find out the overall disparity map, all matching costs of all 

target pixels have to be calculated and all calculated matching costs form a disparity 

image space. Fig. 2. 6 shows a disparity image space which contains the spatial 

dimensions X, Y and disparity dimension d. Overall, this disparity image space 

consumes H×W×DR, where H and W are the frame height and width, memory space 

to store the all matching costs of entire frame.  
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Target Pixel

Reference Pixels

DR
 (x, y)

(x, y)

Matching Costs

Target-view Image

Reference-view Image

A Pair of Correspondences

……

 
Fig. 2. 5  Matching costs of a target pixel and its correspondence candidates 
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d

x

y

d  = DR-1

d  = 0
d  = 1
d  = 2

W

H

DR

 

Fig. 2. 6  Matching costs of a target pixel and its correspondence candidates 

 

There are many match measurements [3]-[52] as listed in Table 2-1 could be 

used to compute the cost disparity image space. These match measurements could be 

classified into pixel based and block based approach. For the pixel based approach, 

the absolute difference (AD) and the square difference (SD) are used for computing 

the matching costs by considering a target and reference pixel. To eliminate the 

sampling sensitivity [1], the half pixels could be further considered for pixel 

dissimilarity measurement. On the other hand, instead of using a target and reference 

pixel to compute the matching cost, a target and reference pixel block is used to 

compute the block based matching cost as Fig. 2. 7 shown. In addition, the statistical 

approach called normalized cross correlation reduces the sensitivity of radiometric 

gain and bias by using the block mean and variance. The Rank derives the rank value 



 

11 
 

of pixel color by transformation and the rank values are adopted for computing the 

matching costs. On the other hand, the Census transforms the pixel intensity into 

census bitstream consisting of the intensity comparison results between the center 

pixel and the support pixels. Afterward, the Hamming distance is calculated to derive 

the matching cost of two census bitstreams. In summary, since the Rank and Census 

try to transform the original pixel from color to another domain, their ability to resist 

the radiometric distortion between views would be much better.  

Target Block

Reference Block

 (x-d, y)

(x, y)
(u, v)

Support 
pixels

r

 

Fig. 2. 7  Block based matching cost calculation 
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Table 2-1 Different matching cost measurements 

Block-based 

Normalized Cross 

Correlation (NCC) 

∑ [𝐼𝑡𝑡𝑡(𝑢, 𝑣) − 𝐼�̅�𝑡𝑡][𝐼𝑡𝑟𝑟(𝑢 − 𝑑, 𝑣) − 𝐼�̅�𝑡𝑟𝑟]|𝑥−𝑢|≤𝑡
|𝑦−𝑣|≤𝑡

�∑ [𝐼𝑡𝑡𝑡(𝑢, 𝑣) − 𝐼�̅�𝑡𝑡]2�𝐼𝑡𝑟𝑟(𝑢 − 𝑑, 𝑣) − 𝐼�̅�𝑡𝑟𝑟�
2

|𝑥−𝑢|≤𝑡
|𝑦−𝑣|≤𝑡

 

Rank 
�𝐼𝑡𝑡𝑡′ (𝑥,𝑦) −  𝐼𝑡𝑟𝑟′ (𝑥 − 𝑑,𝑦)�,  

𝑤ℎ𝑒𝑒𝑒 𝐼′(𝑚,𝑛) = ∑ 𝐼(𝑚, 𝑛) > 𝐼(𝑢, 𝑣)|𝑚−𝑢|≤𝑡,|𝑛−𝑣|≤𝑡   

Census 
𝐻𝐻𝑚𝑚𝐻𝑛𝐻(𝐼𝑡𝑡𝑡′ (𝑥,𝑦), 𝐼𝑡𝑟𝑟′ (𝑥 − 𝑑,𝑦)),  

𝑤ℎ𝑒𝑒𝑒 𝐼′(𝑚,𝑛) = 𝑏𝐻𝑏𝑏𝑏𝑒𝑒𝐻𝑚|𝑚−𝑢|≤𝑡,|𝑛−𝑣|≤𝑡(𝐼(𝑚,𝑛) > 𝐼(𝑢, 𝑣)) 

Pixel-based 

Absolute Difference (AD) �𝐼𝑡𝑡𝑡(𝑥,𝑦) −  𝐼𝑡𝑟𝑟(𝑥 − 𝑑,𝑦)� 

Square Difference (SD) �𝐼𝑡𝑡𝑡(𝑥,𝑦) −  𝐼𝑡𝑟𝑟(𝑥 − 𝑑, 𝑦)�
2
 

Pixel Dissimilarity 

Measure (PDM) 

𝑚𝐻𝑛 {�𝐼𝑡𝑡𝑡(𝑥, 𝑦) −  𝐼𝑡𝑟𝑟(𝑥 − 𝑑,𝑦)�, �𝐼𝑡𝑡𝑡(𝑥, 𝑦) −  𝐼𝑡𝑟𝑟+ �, |𝐼𝑡𝑡𝑡(𝑥, 𝑦) −  𝐼𝑡𝑟𝑟− |}  

𝑤ℎ𝑒𝑒𝑒 𝐼𝑡𝑟𝑟+  𝐻𝑛𝑑 𝐼𝑡𝑟𝑟−  𝐻𝑒𝑒 𝑏ℎ𝑒 𝑛𝑒𝐻𝐻ℎ𝑏𝑏𝑒𝐻𝑛𝐻 ℎ𝐻𝑎𝑓 𝑝𝐻𝑥𝑒𝑎 𝑏𝑓 𝐼_𝑒𝑒𝑓 (𝑥 − 𝑑, 𝑦) 

 

 

 

Fig. 4.2. Cost Aggregation 

The main purpose of cost aggregation is tried to gather the neighboring pixel 

costs in a window for center pixel for further processing usage. The assumption 

behinds of cost aggregation is that the neighboring pixels tend to have the same 

disparity and gathering the matching costs from neighbors could be able increase the 

reliability of matching cost. Therefore, the neighboring costs are accumulated in the 

cost aggregation step for the center pixel by the following equation, 
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𝐶𝑡𝑎𝑎𝑡(𝑥,𝑦,𝑑) =
∑ 𝐶(𝑢, 𝑣,𝑑) × 𝑊𝐻𝐻𝐻𝑒(𝑢, 𝑣)(𝑢,𝑣)∈𝑤𝑤𝑛(𝑥,𝑦)

∑ 𝑊𝐻𝐻𝐻𝑒(𝑢, 𝑣)(𝑢,𝑣)∈𝑤𝑤𝑛(𝑥,𝑦)
 

where C is the initial matching cost and Caggr is the aggregated matching cost. In this 

equation, each initial cost C(v, u, d) in an aggregation window with window size r is 

accumulated with the weight Waggr(u, v) for the target cost Caggr(x, y, d). In addition, 

the accumulated value is normalized by the sum of weights. The computational 

complexity of this step is O(H×W×DR×r2) proportional to the aggregation window 

size. 

Fig. 2. 8 shows different cost aggregation methods with different weighting 

distribution. The uniform weight as shown in Fig. 2. 8(a) contains constant weight and 

fixed r for every support pixel. However, this uniform weight suffers from the 

problem of over-blurred disparity map for small objects with too large r and disparity 

map incorrectness for textureless regions with too small r. Therefore, to receiving 

better disparity result, dynamically adjusting r according to image content as shown in 

Fig. 2. 8(b) is a good way to do that. The Gaussian weight approach Fig. 2. 8(c) which 

tries to make the pixels near window center has higher weighting is another 

commonly used way for deciding the weighting for cost aggregation. However, the 

disparity accuracy could not be achieved better due to the fixed window shape such 

square or circle.  

To adaptively change the window shape, the 8-direction or 4-direction 

configuration as shown in Figure Fig. 2. 8(d) is used in the adaptive polygon weight 

approach [4] and [5] to fit the object shape. And then, the multiple cross lines concept 

as shown in Figure Fig. 2. 8(e) is adopted in the cross-based weight approach [6] to fit 

the object shape. In these two methods, the support region is grown from the window 

center until the dissimilar pixel has been encountered by the support region boundary. 

Unfortunately, there two methods can be not performed well for the images with 
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highly texture content due to their continuous support regions.  

However, the above mentioned problems could be able to be solved by the 

adaptive support-weight (ADSW) approach [7] since all support pixels are considered 

and their weights are decided by the bilateral filter kernels. The weights of ADSW are 

defined as 

𝑊𝑡𝑎𝑎𝑡(𝑢, 𝑣) = 𝑊𝑡𝑡𝑡(𝑢, 𝑣) × 𝑊𝑡𝑟𝑟(𝑢 − 𝑑, 𝑣) 

where Wtar is the weight from target-view window and Wref is the weight from 

reference-view window. The weights of Wtar and Wref can be computed by the bilateral 

filter kernels listed below, 

𝑊(𝑢, 𝑣) = 𝑓(||(𝑥,𝑦) − (𝑢, 𝑣)||)𝐻(||𝐼(𝑥,𝑦) − 𝐼(𝑢, 𝑣)||) 

where f is the spatial kernel with the position distance and g is the range kernel with 

the color distance. As a result, the aggregation weight could be large either the support 

pixel is near the center pixel or the support pixel is similar to center pixel with the 

help of two kernels. 

   Compared to the adaptive polygon weight and cross-based weight approaches, the 

aggregation weight of the adaptive support-weight shown in Fig. 2. 8(f) could fit 

object shape better for highly texture regions but at the expensive of significant high 

computational complexity requirement. However, the high computational complexity 

issues can be addressed by the integral histogram approach [8], the iterative 

aggregation with small window approach [9], and the data reuse approach in VLSI 

design [10]. In overall, by using the well-defined weights, the aggregation cost step 

can produce more reliable matching cost Caggr which will be very helpful for the 

upcoming disparity selection and optimization. 
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Fig. 2. 8  Different cost aggregation methods (a) uniform weight, (b) uniform weight 

with adaptive window size, (c) Gaussian weight, (d) adaptive polygon weight, (e) 

cross-based weight, and (f) adaptive support-weight 

Fig. 2. 9   

 

Fig. 4.3. Disparity Selection/Optimization 

After the initial costs have been aggregated, the disparity map could be computed 

by two optional methods. The most common and simple one is the winner-take-all 

manner (WTA) which decides the disparity result directly by determining the 

minimum cost reference pixel as the best correspondence for each target pixel. 

Another disparity optimization approach takes the aggregated costs of entire frame for 

computing the disparity map through the energy minimization. Literature [48] 

demonstrated that the latter one can derive more precise disparity maps via the 

evaluation results. 
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Some techniques such as dynamic programming (DP), graph-cut (GC), and 

belief propagation (BP) are the commonly adopted for disparity optimization. In one 

word, the main concept behinds these disparity optimization techniques are to 

transform the disparity optimization problem into the energy minimization problem. 

The energy function could be generally formulated by 

𝐸(𝑑) = 𝐸𝑑𝑡𝑡𝑡(𝑑) + 𝜆𝐸𝑠𝑚𝑠𝑠𝑡ℎ(𝑑) 

where Edata refers to data term for penalizing the dissimilarity of a correspondence 

pair and Esmooth is smoothness term to penalizing the disparity inconsistency of two 

neighboring pixels. In addition, d stands for a selected disparity set for entire frame. In 

one word, a disparity set d is attempted to be found through the approach of 

minimizing the total energy E that the optimization technique provided. 

The principle of some well-known optimization techniques are briefly described 

below.  

(1) Dynamic Programming 

The DP algorithm is a very well-known optimization algorithm which can be 

used in disparity estimation by mapping the disparity estimation into finding the 

shortest path problem. In DP, the optimization process is executed in a row by row 

manner for finding the optimal results.  

Fig. 2. 9(a) shows the illustration to demonstrate how the shortest path problem 

can be solved by DP optimization technique. In this figure, the position of node is 

corresponding to the coordinate in the x-d plane and the shortest path will be from x of 

0 to W-1. The path should be suffered from the matching penalty and smoothness 

penalty on a node and an edge, respectively. During the DP optimization process, two 

steps called forward accumulating and backward tracing are executed in order to find 

out the path with minimum penalty. In the first step, the penalties are accumulated in 

forward direction to find out the moving path for each node as Fig. 2. 9(b) shown. 



 

17 
 

Afterward, the backward direction tracing as shown in Fig. 2. 9(c) is executed to find 

the minimum penalty path with the help of the moving direction map that the forward 

accumulating step produced.  

However, the most critical issue caused by the DP technique is that the streak 

artifact in the disparity map due to the row by row processing mechanism. To 

eliminate the streak artifact problem, literature of Ohta and Kanade [11] performed 

the DP in a 3-D space which consists both of the original intra-scanline and the 

additional inter-scanline space. In addition, the tree structure has been used in the 

tree-based DP algorithms [12]-[14] to connect scanlines and thus remove the streak 

artifacts. 
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Fig. 2. 10  Illustration of dynamic programming optimization technique (a) graph 

model in DP approach, (b) forward accumulating, and (c) backward tracing 

 

(2) Graph-Cut 

Converting the disparity selection problem into the max-flow/min-cut problem 

[15] is the key concept of GC optimization technique. In addition, the associated 

optimization algorithms can be adopted as well for generating more accurate disparity 
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maps. Fig. 2. 10 shows an example to illustrate the min-cut/max-flow for disparity 

estimation where there are H×W×DR nodes with 6-connected node grid. The 

well-defined matching cost and smoothness cost on each edge can be regarded as 

pipes with different flow quantities due to different costs. In this illustration, the water 

would be flowed from the source to sink node through the pipes. The terms of min-cut 

and max-flow respectively stand for a cut surface cross edges that has the minimum 

flow and the allowed maximum flow from the source to the sink. In other words, the 

problems of min-cut and max-flow are equivalent in somehow. As a result, the 

disparity map can be obtained directly via the resultant cut surface.  

Source

Sink

Cut surface

W

H

DR
6-connected node

 

Fig. 2. 11  Illustration of graph-cut optimization technique 

 

The widely used optimization techniques for solving the min-cut/max-flow 
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problem are the push-relabeling [16] and the augmenting path [17] and their 

computational complexities are highly depended on the number of label candidates 

(i.e. disparity range DR in disparity estimation). However, the large disparity range 

leads to these optimization techniques suffer from extremely high computational 

complexity problem. 

Literatures of swap method [18] and an efficient augmenting path [19] have been 

proposed by Boykov to reduce the computational complexity of GC. The optimization 

process was performed isparity by disparity in swap method and each iteration only 

considers one new disparity. In addition, the literature of Chou et. al. [20] proposed a 

fast algorithm to predict the disparities by early skipping the partial optimization 

process based on the swap method. On the other hand, the computational speed of the 

push-relabeling approach depends on the processing order on nodes. As a result, 

Checkassky and Goldberg [21] proposed a highest-label order which can achieve 

more efficient computation than that of the typical FIFO order. In addition, the 

block-based graph cut algorithm was proposed by Delong and Boykov [22] to increase 

the parallelism of push-relabeling method. 

In summary, due to the irregular computation and low parallelism of GC, the GC 

technique is not suitable for accelerating by GPU programming and VLSI design even 

through it can achieve more accurate disparity results. 

 

(3) Belief Propagation 

The first literature which applied to the BP approach to solve the disparity 

estimation problem was proposed by Sun et al. [24] to derive more accurate disparity 

maps via optimizing the energy in the graph model as shown in Fig. 2. 11. In this 

figure, a node represents a pixel and all nodes are connected by four-connection grid. 

During the optimization process, the matching costs of each node are diffused through 
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the messages to neighboring nodes iteration by iteration and this diffusion mechanism 

is called message passing. Afterward, the disparity results are determined by 

aggregating the matching costs and messages of a node after several iterations.  

matching cost

message

 

Fig. 2. 12  Illustration of belief propagation approach 

 

The most critical issue in the BP approach is that the highest computational 

complexity, O(H×W×DR2×T) due to the message passing. Here, the T refers to the 

iteration counts. For the operation, the DR2 results from the convolution and the 

iteration count T should be more than 10. Therefore, the literatures of Felzenswalb 

and Huttenlocher [25] proposed the hierarchical BP (HBP) and the linear-time 

message passing to reduce the computation of message passing. The HBP could 

increase the speed of disparity convergence and the linear-time message passing could 

reduce the complexity of convolution from O(DR2) to O(DR). Szeliski et al. [26] 

proposed the max-product loopy belief propagation (BP-M) to reduce the iteration 

counts by a scale. However, since the BP approach has the property of high 

parallelism, the BP technique is much suitable to be accelerated by the GPU 

programming and VLSI design [27]-[33]. Unfortunately, the high memory cost 

(4HW×DR) for storing the matching costs and messages of entire frame is the main 

hardware design issue. To solve this problem, the literatures of bipartite gird [25] and 
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the sliding approach [34] were proposed for lighting the memory access penalty and 

the predictive coding scheme [35] could be applied for message compression. 

In summary, the DP algorithm could be easy to achieve real-time processing but 

suffer from the problem of streak artifacts. However, the other improvement methods 

would additional result in irregular computation. For the 2-D optimization techniques, 

although the GC technique can derive high accurate disparity map, but the irregular 

computational process significantly limits the capability of hardware accelerating.   

 

Fig. 4.4. Disparity Refinement 

In the final step, the post processing methods such as occlusion handling, object 

consistency enhancement, and temporal consistency enhancement are usually applied 

to further refine the disparity maps. Therefore, these methods are briefly described as 

follows.  

(1) Occlusion Handling 

The occlusion problem is defined as that the object point is visible in one view 

and invisible in the other view. Therefore, in the occlusion region, there are no 

correspondence pixels in the invisible view. In general, the incorrect disparities would 

appear in the occlusion regions and further induce artifacts in the view synthesis. To 

deal with the occlusion problem, the occlusion detection is adopted first to detect the 

occlusion and the occlusion filling mechanism is applied to fill the occlusion area by 

the background disparities in general. The basic methods for occlusion detection are 

surveyed in [45] based on different assumptions. The left-right check (LRC) assumes 

that a correspondence pair should have same disparity and the occlusion constraint 

(OCC) assumes that occlusion region in the other view would be resulted by the 

disparity gap of two pixels. In addition, the order of two pixels should have the 

correspondences with the same order in the other view as the order constraint (ORD) 
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assumed. In above occlusion detection techniques, the LRC is widely applied for the 

disparity refinement [6] and [40], and the OCC and the ORD are combined into the 

disparity optimization step [15] and [24] usually. With the detected occlusion pixels, 

the disparities in the occlusion region could be directly replaced by the reliable 

background disparities in occlusion filling step. 

(2) Object Consistency Enhancement 

In an object, the disparities are usually identical or changing smoothly. However, 

the textureless regions usually cause the incorrect disparities and thus affect the 

results of disparity maps. Therefore, the plane fitting approach [40] was usually 

adopted by the high-performance disparity estimation algorithms [44], [36], [37] to 

remove the disparity noise. In the plane fitting approach, the watershed segmentation, 

mean-shift clustering, or K-mean clustering is usually adopted for computing the 

segment information first. Based on the segment information, a new 3-D plane is 

constructed by the linear regression method using the disparities in a segment. Besides 

of the plane fitting method, the regional voting method [6] could also refine the 

disparity maps well. Compared to the plane fitting technique, the regional vote 

technique is much simpler due to the segment information is unnecessary. 

(3) Temporal Consistency Enhancement 

In previous work, most disparity estimation algorithms were focused on the still 

image sequence [48]. However, these algorithms didn’t consider the temporal 

consistency issue and thus result in some obstacles in the view synthesis application 

for video sequences. Therefore, if the temporal consistency issue has not been dealt 

with well, the disparity maps would produce flicker artifacts due to the independent 

generation of disparity for each frame. In addition, the disparities without temporal 

consistency treatment are unstable in the occlusion and textureless regions. As a result, 

the flicker artifacts would be further propagated to the view synthesis results and 
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becomes observed. 

Intuitively, the neighboring frames are usually taken into account in the disparity 

estimation to address the temporal consistency issue. In the previous work [41]-[43], a 

disparity flow in spatial and temporal domain is constructed by buffering several 

disparity frames. Afterward, different smooth methods are executed in the disparity 

flow. On the other hand, since two adjacent frames are available, the temporal BP 

algorithm [38] executed the BP optimization in a 6-connection grid graph in which 

two additional connections are linked between previous and next frame. In addition, 

the temporal costs were added to matching costs according to previous disparity in the 

3DVC’s DERS algorithm [45]-[47]. 

In summary, the view synthesis quality in 3DTV applications as well as 

inconsistent disparity problem can be significantly improved by the disparity 

refinement step. 
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III. Proposed Dual-Way Dynamic Programming Algorithm for 

Disparity Estimation 

3.1. Overall Flowchart 

Fig. 3.1 shows the flowchart of proposed disparity estimation algorithm which is 

composed by three phases including Cost Calculation Phase, Disparity Estimation 

Phase, and Disparity Refinement Phase and the duty of each phase is described as 

follows in detail. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1. Flowchart of proposed disparity estimation algorithm 
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3.2. Cost Calculation Phase 

This phase corresponds to execute all required operations for deriving the costs 

which will be used in the upcoming disparity estimation process. In this phase, the 

costs of absolute difference (AD) corresponding to each pixel and disparity are 

calculated first. Afterward, the calculated absolute difference values will be fed into 

the cost aggregation module for cost refinement. 

3.2.1. Pixel-based Absolute Difference 

Many distortion measurements such mean square error (MSE) and sum absolute 

difference (SAD) have been widely adopted in many field to derive the difference 

between two measurement sources. In our proposed algorithm, we adopt pixel based 

absolute difference for deriving the distortion of each disparity for the upcoming 

disparity estimation process. The absolute difference of each pixel and disparity is 

calculated as follows. 

𝐴𝐷𝐿(𝑥, 𝑦, 𝑑)𝑑∈𝐷𝐷,𝐿∈{𝐿𝑟𝑟𝑡,𝐷𝑤𝑎ℎ𝑡} = |𝑌(𝑥, 𝑦) − 𝑌′(𝑥 ± 𝑑,𝑦)| 

where AD is the absolute difference; x and y stand for the pixel position; Y refers to 

the pixel intensity of target view; Y’ means the pixel intensity of reference view, d 

implies the disparity, and DR represents the disparity range. Fig. 3.2 shows an 

example to illustrate how the absolute difference of each pixel and disparity been 

calculated. 
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Fig. 3.2. Illustration of absolute difference calculation 

 

 

3.2.2. Cost Aggregation 

After the absolute difference calculation process, the calculated ADs will be used 

in the cost aggregation process for the cost refinement in each disparity level. As 

mentioned in Section 2 that many weighing methods can be adopted to calculate the 

costs for cost aggregation. However, every weighting method has its own 

characteristic and most suitable cases. For the simplest uniform weighting and 

uniform weighting with adaptive radius methods, although these methods have much 

simple weighting operation, they don't consider the spatial relationship and thus may 

result in ill aggregation results. An alternative way is the adaptive support weigh 

method which takes the spatial relationship into account to decide the weighting 

coefficients. However, although adaptive support weight method can obtain much 

better results than uniform weighting methods, the computational complexity of 

adaptive weight method is significant due to the exponential operation has to be 

implemented. To well fit the object shape, the polygon weighting method seems to be 
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the good choice. However, significant memory storage spaces are required for this 

kind of weighting methods and thus result in the high hardware implementation costs.     

As a result, the Gaussian weighting method is adopted in our proposed cost 

aggregation algorithm since the Gaussian weighting method has the properties of the 

considering the spatial relationship and low hardware implementation cost due to the 

fixed weighting coefficients. In our proposed algorithm, the 5×5 window size with 

Gaussian weight mask is used for the cost aggregation. The aggregated costs are 

calculated as below. 

𝐶𝑏𝑏𝑏𝐿(𝑥,𝑦,𝑑)𝑑∈𝐷𝐷,𝐿∈{𝐿𝑟𝑟𝑡,𝐷𝑤𝑎ℎ𝑡} =
∑ ∑ 𝐴𝐷𝐿(𝑥 + 𝐻, 𝑗 + 𝑗,𝑑) × 𝑊𝐺𝑡𝑢𝑠𝑠𝑤𝑡𝑛(𝐻, 𝑗)2

𝑤=−2
2
𝑗=−2

∑ ∑ 𝑊𝐺𝑡𝑢𝑠𝑠𝑤𝑡𝑛(𝐻, 𝑗)2
𝑤=−2

2
𝑗=−2

 

where the Cost is the aggregated costs and the WGaussian refers to the weighting factor 

of Gaussian Weight mask as shown in Fig. 3.3. 
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Fig. 3.3. Weighting factors of Gaussian Weight mask 

 

3.2.3. Edge Detection 

To increase the accuracy of disparity estimation, the edge information of image is 

considered in our proposed algorithm due to the most difficult regions to be treated 

always occur at the object boundaries or edges. There are many edge detection or 

object segmentation algorithms that have been proposed in the literatures. However, 

the well-known edge detection algorithm called Sobel edge detection algorithm with 
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3×3 window size is adopted in our proposed algorithm for detecting the edge 

information due to its simplicity and popularity. The edge information after Sobel 

edge detection process is shown in below. 

𝐸𝑑𝐻𝑒𝐻(𝑥,𝑦) = � �𝑌(𝑥 + 𝐻,𝑦 + 𝑗) × 𝑊𝑆𝑠𝑆𝑟𝑆_𝐻(𝐻, 𝑗)
1

𝑗=1

1

𝑤=−1

 

𝐸𝑑𝐻𝑒𝑉(𝑥,𝑦) = � �𝑌(𝑥 + 𝐻,𝑦 + 𝑗) × 𝑊𝑆𝑠𝑆𝑟𝑆_𝑉(𝐻, 𝑗)
1

𝑗=1

1

𝑤=−1

 

where Edge is the edge information after Sobel operator; H and V refer to the 

horizontal and vertical direction; and WSobel means the weighting factor of Sobel mask 

as shown below. 

W𝑆𝑠𝑆𝑟𝑆_𝐻 = �
−1 0 1
−2 0 2
−1 0 1

�  𝐻𝑛𝑑 W𝑆𝑠𝑆𝑟𝑆_𝐻 = �
1 2 1
0 0 0
−1 −2 −1

� 

Fig. 3.4 exhibits the edge information after Sobel edge detection algorithm. From 

this figure, we can observe that the Sobel edge detection algorithm can derive useful 

edge information which will be very helpful for the upcoming disparity estimation 

process. 
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(a) 

 
(b) 

Fig. 3.4. Edge information after Sobel operator (a) Horizontal 

edge and (b) Vertical edge 

 

3.3. Disparity Estimation Phase 

Once the costs of all pixels and disparities have been successfully calculated, the 

costs will be fed into our proposed disparity estimation module. In our disparity 

estimation phase, we propose two algorithms called disparity propagation and 

two-way dynamic programming as figure Fig. 3.5 shown. The disparity propagation is 

first executed to determine whether the neighbor disparities could be propagated to 

current pixel or not in order to save the computational complexity of disparity 

estimation. After the disparity propagation process, the proposed two-way dynamic 

programming algorithm is performed to obtain the disparity map of left and right view. 

In our proposal, the disparities are considered in both of left-to-right and right-to-left 

way so that the occlusion problem as well as streaking problem can be reduced 

efficiently. In addition, the computational complexity of our proposed disparity 
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estimation algorithm is much lesser than that of the traditional dynamic programming 

algorithms. It should be noticed that the edge detection operation is involved in our 

proposed algorithm since the edge information in both horizontal and vertical 

directions will be considered throughout the overall operation of our proposal.  
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Fig. 3.5. Flowchart of proposed disparity estimation phase 

 

3.3.1 Disparity Propagation 

In the disparity estimation phase, we first use a technique called disparity 

propagation to determine whether to propagate the disparity from the previous pixels 

if the current pixel is located at the edge region. The main assumption behinds our 

proposed disparity propagation algorithm is that disparities around the edge area are 

more reliable than texture-less area, so, it is expected to propagate the disparities from 
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edge area to texture-less area. In addition, since the texture-less area usually contains 

insignificant characteristics, therefore, it is very easy to be affected by the luminance 

variation and thus result in the noisy results (inaccurate disparity results). Therefore, 

our proposed disparity propagation is tried to smooth the disparity results in 

horizontal and vertical direction. In addition, the disparities after disparity propagation 

would be as the final disparity results so that the upcoming disparity estimation 

process for the propagated pixels can be reduced and thus achieve the computational 

complexity as well as power consumption reduction. In our proposal, the disparity is 

propagated both from the horizontal or vertical directions and the disparity 

propagation operation is listed below. 

 

Horizontal Disparity Propagation 

In the horizontal disparity propagation process, both of the horizontal and 

vertical edge information is considered to determine the propagation of disparity. The 

decision rule for horizontal disparity propagation is listed below. 

 

𝐻𝑓 �
 𝐸𝑑𝐻𝑒𝐻(𝑥,𝑦) ≤  𝛿𝑃𝑡𝑠𝑃𝑠𝑎𝑡𝑡𝑤𝑠𝑛 
 𝐸𝑑𝐻𝑒𝑉(𝑥, 𝑦) ≤  𝛿𝑃𝑡𝑠𝑃𝑠𝑎𝑡𝑡𝑤𝑠𝑛

�  𝑏ℎ𝑒𝑛 𝐷(𝑥, 𝑦) =  𝐻𝑒𝐻𝑚𝐻𝑛
𝑑∈𝐷𝐷

{𝐶𝑏𝑏𝑏(𝑥𝑃,𝑦,𝑑)} 

 

where δPropogation is the determination parameter; D refers to the final disparity map of 

pixel located at x and y position; and xp means the previous pixel depends on scanning 

direction. Fig. 3.6 shows an example to illustrate how to derive the xp for different 

scanning directions. 
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xp x x xp

(a) (b)
 

Fig. 3.6. Illustration of xp derivation for different scanning directions 

(a)Left-to-Right and (b)Right-to-Left 

It should be mentioned that since our proposed horizontal disparity propagation 

uses two scanning directions for disparity propagation, the final disparity and cost for 

current pixel is decided by seeing which scanning direction has the smallest cost.  

 

Vertical Disparity Propagation 

After the horizontal disparity propagation, the vertical disparity propagation is 

executed depending on whether the disparity of current pixel has been propagated 

from the previous pixel xp. If the disparity of current pixel is exactly propagated from 

the previous pixel xp, the vertical disparity propagation will not be executed for the 

current pixel. Oppositely, if the disparity of current pixel is not propagated from the 

previous pixel xp, the vertical disparity propagation will be on for disparity 

propagation. Similar to horizontal disparity propagation, the proposed vertical 

disparity propagation also considers the edge information from the vertical direction 

to decide whether the disparity could be propagated vertically. However, the main 

difference between horizontal disparity propagation and vertical disparity propagation 

is that the absolute differences of pixel intensity are further considered to decide the 

disparity propagation. The decision rule of our proposed vertical disparity propagation 

is listed below. 
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𝐻𝑓 �
 𝐸𝑑𝐻𝑒𝐻(𝑥,𝑦) ≤  𝛿𝑃𝑡𝑠𝑃𝑠𝑎𝑡𝑡𝑤𝑠𝑛 

 𝐸𝑑𝐻𝑒𝐻(𝑥,𝑦 − 1) ≤  𝛿𝑃𝑡𝑠𝑃𝑠𝑎𝑡𝑡𝑤𝑠𝑛
|𝑌(𝑥,𝑦) − 𝑌(𝑥,𝑦 − 1)|

�  𝑏ℎ𝑒𝑛 𝐷(𝑥,𝑦) = 𝐷(𝑥, 𝑦 − 1) 

 

3.3.2 Dual-Way Dynamic Programming 

Traditional DP usually stores all path information as a path table for path 

searching. Therefore, the memory storage space will be very significant due to 

W(frame width)*DR disparities have to be stored. As a result, the memory space 

requirement of traditional DP is significant. In addition, the traditional DP algorithms 

only consider one way scanning. If only considering one way, the resulted disparity 

will be very bad due to the occlusion problem. Therefore, we consider both ways for 

improving the accuracy of derived disparity results. According to the horizontal and 

vertical disparity propagation result, our proposed dual-way dynamic programming 

algorithm is executed depending on whether the disparity of current pixel has been 

propagated either from the horizontal or vertical direction. If the disparity of current 

pixel is propagated from neither horizontal nor vertical direction, the dual-way 

dynamic programming will be executed to decide the final disparity of current pixel. 

Fig. 3.7 illustrates the idea of our proposed dual-way dynamic programming. In our 

proposal, the main idea is that disparities with minimum cost are considered 

horizontally and vertically.  

Cost in current row

Vertical diffusion
Disparity in previous row

Vertical diffusion

Left-to-Right Diffusion Right-to-Left Diffusion
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Fig. 3.7. Illustration of our proposed dual-way dynamic programming 

 

To decide the best disparity for current pixel, we propose an energy function for 

deciding the disparity. The proposed energy function is listed below. 

𝐸(𝑥,𝑦, 𝑑) = 𝜀𝑃 × 𝐶𝑏𝑏𝑏�𝑥𝑃,𝑦,𝑑� + 𝜀𝑐 × 𝐶𝑏𝑏𝑏(𝑥,𝑦,𝑑) 

+𝜌𝐻 × �𝑑𝑚𝑤𝑛′ − 𝑑� + 𝜌𝑉 × |𝑑𝑢 − 𝑑| 

where 

εp: the cost penalty of previous pixel at disparity d 

εc: the cost penalty of current pixel at disparity d 

ρH: the horizontal smoothing cost 

ρV: the vertical smoothing cost 

d'min: the disparity of previous pixel with minimum energy cost 

du: the disparity value of pixel in upper row 

Once the energy cost of each disparity level has been successfully calculated, the 

final disparity of current pixel can be decided by the following expression. 

𝐷(𝑥,𝑦) = 𝐻𝑒𝐻𝑚𝐻𝑛
𝑑∈𝐷𝐷

{𝐸(𝑥,𝑦,𝑑)} 

In the following, the definition of the parameters listed above is described below 

in detail. The main idea behinds the parameter definition of our proposed algorithm is 

that we pay more attention on the edge regions since the edge regions are the most 

difficult areas to deal with. Therefore, our parameters are defined based on horizontal 

and vertical edge.  

For horizontal edge: Two types of horizontal edge conditions are used to decide 

the parameters as listed below. 

1. No horizontal edge: If current pixel has no horizontal edge passed through, it 
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means that the smoother weighting parameters can be used for smoothing the 

disparity from the neighbor pixels. As a result, the parameters for no horizontal 

edge condition are shown in Fig. 3.8(a). This case means that the current pixel is 

located inside the object, therefore, we hope that the disparity of current pixel 

should be as much similar to the previous pixel as possible so that the resulted 

disparity map for certain object could be more consistent especially for the 

texture-less areas. Therefore, we give the higher weighting for the εp and ρh to 

make sure that the previous reliable disparity could affect the results of energy 

function significantly. 

2. Horizontal edge existence: The main idea behinds this filtering is to let the 

disparity of current pixel to be more similar to the disparity of the object where the 

current pixel belonging to. If current pixel is located on the horizontal edge, two 

parameter definition methods are proposed depending on which region that the 

current pixel belongs to. If current pixel and previous pixel belong to the same 

object and existing the edge magnitude discontinuity in horizontal direction, the εp 

and ρh are increased and εc is decreased to result in the consistent disparity map 

with the streaking problem reduction as Fig. 3.8(b) shown. Otherwise, if the 

current pixel belongs to the right object, both of the parameter weighting of 

previous pixel and horizontal smooth cost are reduced. If current pixel and 

previous pixel belong to different objects and existing the edge magnitude 

discontinuity in horizontal direction as Fig. 3.8(c) shown, the εp and ρh are 

decreased and εc is increased to make sure the current disparity would be affected 

by the previous disparity slightly. 
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• εp = 2 * Previous_weight
• εc = 1 * Current_weight
• ρH = 4 * Horizontal_smooth_cost 

• εp = 2 * Previous_weight
• εc = 0.5 * Current_weight
• ρH = 1 * Horizontal_smooth_cost 

• εp = 0.5 * Previous_weight
• εc = 1 * Current_weight
• ρH = 1 * Horizontal_smooth_cost 

(a)

(b)

(c)  

Fig. 3.8. The parameter definition for different types of horizontal edge 

conditions 

 

For vertical edge: Two types of vertical edge conditions are proposed as well to 

decide the parameters as listed below. 

1. No vertical edge: If current pixel has no vertical edge passed through, it means 

that the smoother weighting parameters can be used for smoothing the disparity 

from the neighbor pixels. As a result, the parameters for no vertical edge condition 

are shown in Fig. 3.9(a). This case means that the current pixel is located inside 

the object, therefore, we hope that the disparity of current pixel should be as much 

similar to the previous pixel as possible so that the resulted disparity map for 

certain object could be more consistent especially for the texture-less areas. 
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Therefore, we give the higher weighting for the ρv to make sure that the previous 

reliable disparity could affect the results of energy function significantly. 

2. Vertical edge existence: If current pixel is located on the vertical edge, two 

parameter definition methods are proposed depending on which region that the 

current pixel belongs to. If current pixel and upper pixel belong to the same object 

and existing the edge magnitude discontinuity in vertical direction, the ρv is 

decreased to result in the consistent disparity map with the streaking problem 

reduction as Fig. 3.9 (b) shown. Otherwise, if current pixel and upper pixel belong 

to different objects and existing the edge magnitude discontinuity in vertical 

direction as Fig. 3.9(c) shown, the ρh is decreased to make sure the current 

disparity would be affected by the previous disparity slightly. 

• ρV = 4 * Horizontal_smooth_cost 

• ρV = 2 * Horizontal_smooth_cost 

• ρH = 0.5 * Horizontal_smooth_cost 

(a)

(b)

(c)  

Fig. 3.9. The parameter definition for different types of vertical edge conditions 
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In our thesis, the constant parameters of Previous_weight, Current_weight, 

Horizontal_smooth_cost, and Vertical_smooth_cost are set to 1, 2, 0, and 16, 

respectively by empirical approach.  

Fig. 3.10 shows the disparity estimation results of our proposed algorithm. From 

this figure, we can observe that the disparity propagation can result in much more 

smooth disparity estimation result compared to only using dual-way dynamic 

programming disparity estimation. 

 
(a) 
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(b) 

Fig. 3.10. Results of disparity estimation after (a) dual-way dynamic 

programming and (b) dual-way dynamic programming with disparity 

propagation 

 

3.4. Disparity Refinement Phase 

Although the disparity estimation phase can derive the disparity maps for both of 

left and right views, however, the disparity maps should be further refined to obtain 

more accurate disparity estimation results. Therefore, three algorithms called 

occlusion handling, directional regional voting, and edge-based temporal consistency 

are proposed in our disparity refinement phase to further punish the disparity maps. In 

occlusion handling, the occlusion artifacts are treated in order to reduce the artifact 

effects in the occlusion regions. The directional regional voting process performs the 

filtering operation for the disparity map in a directional regional manner so that the 

processed disparity map could be as smoother as possible. Finally, the edge-based 

temporal consistency operation executes the filter operation for the disparity map in 

the temporal domain by considering not only the color difference but the edge 



 

41 
 

information so that the filtered disparity map could be very smooth between the 

consecutive frames. The detailed design principle of each proposed module will be 

described in the following subsections.  

 

3.4.1 Edge-Based Occlusion Handling 

In general, the occlusion effects usually occur at the object edge and boundary. 

Therefore, occlusion handing by considering the edge information is a very intuitive 

and straightforward manner. In our proposal, the idea of strong edge is detected to 

help the occlusion handing. Fig. 3.10 shows the illustration and flowchart of our 

proposed occlusion handling algorithm. Our proposed occlusion handling algorithm is 

composed by three steps called Strong Edge Detection, Reliability Check and Section 

Voting and Smoothing.  

Strong Edge Detection: In strong edge detection module, the edge information 

after edge detection is used to determine the strong edge positions by the following 

procedure. The variables inside the pseudo code are defined as follows. 

PosLeft: Position to indicate the location of left strong edge 

PosRight: Position to indicate the location of right strong edge 

ImageHeight: Image height 

ImageWidth: Image width 

δOC: Threshold for strong edge detection 
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Set PosLeft and PosRight to 0 

FOR y = 0 to ImageHeight 

  FOR x = 0 to ImageWidth 

    IF (PosLeft has been found) 

    IF( |EdgeH(x,y)| + |EdgeV(x,y)| ≥ δOC) 

          PosRight = x; 

        End IF 

        IF (Both PosLeft and PosRight have been found) 

           Reliability Check(); 

           Section Voting and Smoothing (); 

           PosLeft = PosRight; 

        End IF 

    Else 

      IF( |EdgeH(x,y)| + |EdgeV(x,y)| ≥ δOC) 

          PosLeft = x; 

        End IF 

    End IF 

  End FOR 

End FOR 

 

Reliability Check: Once two strong edge positions PosLeft and PosRight have been 

successfully detected, the disparities located between PosLeft and PosRight are checked 

one by one to determine whether the disparity is reliable enough or not. If a disparity 

has been determined as unreliable, it will be marked as unreliable one and it will not 

been considered in the following disparity smoothing operation anymore. The idea 

behinds our reliability checking is to avoid the disparities that have been influenced 

by the unreliable disparities inside a restricted region. Determining whether a 

disparity is reliable or not can be achieved by the following operation. 
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𝐻𝑓 �
|𝐷(𝑥,𝑦) − 𝐷(𝑥 − 𝐷(𝑥,𝑦),𝑦)| ≤ 𝛿𝑑     𝐷(𝑥, 𝑦) 𝑚𝐻𝑒𝑚𝑏 𝐻𝑏 𝑒𝑒𝑎𝐻𝐻𝑏𝑎𝑒
𝑂𝑏ℎ𝑒𝑒𝑤𝐻𝑏𝑒                                                 𝐷(𝑥,𝑦)𝑚𝐻𝑒𝑚𝑏 𝐻𝑏 𝑢𝑛𝑒𝑒𝑎𝐻𝐻𝑏𝑎𝑒  

𝑤ℎ𝑒𝑒𝑒 𝑥 ∈ {𝑃𝑏𝑏𝐿𝑟𝑟𝑡,𝑃𝑏𝑏𝐷𝑤𝑎ℎ𝑡} and δd is an empirical defined threshold. 

 

Section Voting and Smoothing: After the unreliable disparities have been marked, 

the section voting and smoothing operation is executed for smoothing the disparities 

located between PosLeft and PosRight. Fig. 3.11 exhibits a step-by-step illustration for 

explaining our proposed section voting and smoothing algorithm. First, the disparity 

and reliable/unreliable maps are fed into the section voting operation for counting the 

occurrences of each disparity with the help of reliable/unreliable map. If a disparity 

has been marked as unreliable, the counts of corresponding disparity will not been 

accumulated. Once the section voting operation has been done, the disparity with 

maximum occurrence will be selected as the dominating disparity and this disparity 

will be used to replace all disparities located between PosLeft and PosRight. 

Strong Edge Detection

Reliability Check

Section Voting and Smoothing

Disparity Map Edge Map

PosLeft and PosRight

Disparity Map

Disparity Map

Edge Map

Occlusion Handling

Disparity Map

 

Fig. 3.11. Illustration and flowchart of our proposed occlusion handling 

algorithm 
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Disparity Map

Reliable/Unreliable Map

Reliable UnReliable

Section Voting

1

PosLeft PosRight

2 3 0

Smoothing

Disparity Map
 

Fig. 3.12. Illustration of our proposed Section Voting and Smoothing algorithm 

 

 

3.4.2 Directional Region Voting 

In the traditional region voting approaches, a voting window is used for voting 

the occurrence of each disparity. However, this voting approach suffers from the 

inharmonious disparity effect inside the voting window if the covered region of voting 

window contains two objects. In this situation, the traditional region voting 

approaches would further damage the estimated disparity results. Therefore, we 

propose a directional region voting algorithm to avoid the problem caused by the 

traditional region voting via considering both of the edge and color difference 

information. Following figure is the diagram of procedure of proposed directional 

regional voting method. 
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Disparity Histogram Voting

Directional Voting Area Determination

Edge(x0,y0,x)>δ(x)

Initialization Set left_voting_available = 0
                           right_voting_available = 0

                        up_voting_available = 0
                             down_voting_available = 0

                                                                  diff_right = abs(Intensity(x0,y0)-Intensity(x0+1,y0))
                                                               diff_left = abs(Intensity(x0,y0)-Intensity(x0-1,y0))
                                                              diff_up = abs(Intensity(x0,y0)-Intensity(x0,y0-1))

                                                                 diff_down = abs(Intensity(x0,y0)-Intensity(x0,y0+1))

diff_left > diff_right

Set left_voting_available = 0
       right_voting_available = 1

YES

Set left_voting_available = 1
       right_voting_available = 0

NO

Set left_voting_available = 1
       right_voting_available = 1

YES

NO

Edge(x0,y0,y)>δ(y)

diff_up > diff_down

Set up_voting_available = 0
       down_voting_available = 1

YES

Set left_voting_available = 1
       right_voting_available = 0

NO

Set up_voting_available = 1
       down_voting_available = 1

YES

NO

for(y=y0+2;y>=y0-2;y--)
         for(x=x0+2;x>=x0-2;y--)

                                 Intensity(x,y)-Intensity(x0,y0)<=μ

H(D(x,y)) = H(D(x,y)) + 1

YES

D(x0,y0) = max(H(d))

NO

 

Fig. 3.13. Flowchart of proposed directional regional voting algorithm 

    According to the algorithm, there are nine types of voting area that will be 

possible to be determined. Please check them as figure below: 

 

Fig. 4.14. nine types of determined voting area 

Figure 3.14 shows nine different types of determined area which might occur in 

the algorithm. The determined voting area is determined by the edge information on 
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both horizontal and vertical direction and also take the intensity difference between 

center pixel and other neighbor pixels into account. After the voting area is 

determined, the algorithm will start accumulating disparity histogram of the pixels in 

the determined region. Only the ones which have similar intensity value will be taken 

into account. After the disparity histogram is complete, the disparity which get the 

maximum number will be assigned to the center pixel. 

 

 

3.4.3 Edge-based Temporal Consistency 

In traditional temporal consistency treatment, the color difference between 

successive frames is used for determining whether the disparity of current frame 

should be replaced by the disparity from the collocated pixel in previous frame to 

keep the disparity consistence temporally. However, as mentioned before that the 

occlusion effect usually occurred at the edge region. Therefore, our proposed 

algorithm will not only consider the color difference but also the edge information for 

the temporal consistence treatment. In addition, three consecutive frames are 

considered at the same time for deciding the disparity propagation.  
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Set StateBuffer[h][v][i]=1 where h=0~ImageWidth-1, v=0~ImageHeight-1, i=0~5, x=y=1

f >= 5

Compute edge state EState

Compute color difference state CState and CDiff

Set StateBuffer[x][y][2] = CState and StateBuffer[x][y][5] = EState 

Compute color factor Cf = 
StateBuffer[x][y][0]&StateBuffer[x][y][1]&StateBuffer[x][y][2] 

Compute edge factor Ef = 
StateBuffer[x][y][3]&StateBuffer[x][y][4]&StateBuffer[x][y][5] 

(Cf==0 && Ef==0) || (Cf==0 && Ef==1) Propagate disparity 
from previous frame

x < ImageWidth - 1

CDiff >= 360

Set StateBuffer[x][y][0] = StateBuffer[x][y][1] = 
StateBuffer[x][y][2] = CState and StateBuffer[x][y][5] = EState 

y < ImageHeight - 1

x+=1

x=1 and y+=1

f+=1

YES

YES

YES

YES

YES

f+=1

NO

NO

NO

NO

NO

Set StateBuffer[x][y][0]=StateBuffer[x][y][1],
StateBuffer[x][y][1]=StateBuffer[x][y][2],
StateBuffer[x][y][3]=StateBuffer[x][y][4],
StateBuffer[x][y][4]=StateBuffer[x][y][5]

Initialization f=0

 

Fig. 4.15. Flowchart of proposed temporal consistency algorithm 
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3.5. Simulation Results 

Our proposed algorithm has been tested on some general test contents, Fig. 

3.16 shows the contents adopted in the experiment, and table III-1 lists their 

detailed information. The test sequences are provided by different research 

institutes. The frame size includes 1024×768 (XGA), 1920×1080 (HD1080p), 

and 1280×960. In these sequences, the Kendo, Balloons, Hall1, and Hall2 are 

captured by the moving cameras, and others are captured by fixed cameras. All 

the test sequences have been calibrated to make sure the disparity range can be 

limited in 1-D space. 

   
(a) (b) (c) 

 
  

(d) (e) (f) 

  

 

(g) (h)  
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Fig. 4.16. Clips of test sequences in center view 

(a) BookArrival, (b) LoveBird1, (c) Newspaper, (d) Café, (e) Kendo, (f) Balloons, (g) 

Champagne, (h) Pantomime, (i) Hall1, (j) Hall2, (k) Street, (l) CarPark 

 

Table III-1 Test sequences 

Sequence 

Name 
Provider Frame Size 

Frame 

Rate 

(frame/s) 

Number of 

Frame 

Number of 

View 

Camera 

Spacing 

(cm) 

Is 

Moving 

Camera 

BookArrival HHI 1024×768 16.67 300 16 6.5 No 

LoveBird1 ETRI 1024×768 30 300 12 3.5 No 

Newspaper GIST 1024×768 30 300 9 6.5 No 

Kendo Nagoya 1024×768 30 300 7 5 Yes 

Balloons Nagoya 1024×768 30 300 7 5 Yes 

Champagne Nagoya 1280×960 30 300 80 5 No 

Pantomime Nagoya 1280×960 30 300 80 5 No 
HHI: Fraunhofer Heinrich Hertz Institute, Germany 

ERTI: Electronics and Telecommunications Research Institute, Korea 

GIST: Gwangju Institute of Science and Technology, Korea 

Nagaya: Nagoya University, Japan 

 

1.1. Organization 

The rests of this thesis is organized as follows. In Section II, some related works 

including disparity estimation, general algorithm flow are overviewed to establish the 

related background of the main target that this thesis would like to address. Section III 

presents the detailed algorithm description that this thesis proposed. Some simulation 

results compared to other literatures are given in Section VI to show the efficiency of 

our proposal. The hardware architecture design for our proposed algorithm is 

discussed in Section V. Finally, some conclusions and future works are given in 

Section VI. 
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3.5.1 Input and Output Configuration 

    The input sequences are in 2-view configuration. Table III-2 shows the 

selected views of all the test sequences for 2-view configuration. Table III-3 

shows the output configuration and the selected views in our evaluation. 

Table III-2 Input and output views for 2-view configuration 

Sequence Name 
Input View No. 

(IL-IR) 

Synthesized Pair 

(IL-VC or VC-IR) 

Frame Range for 

Disparity Estimation 

BookArrival 10-8 10-9 0-99 

LoveBird1 6-8 7-8 0-299 

Newspaper 4-6 5-6 0-299 

Kendo 2-4 3-4 0-299 

Balloons 2-4 3-4 0-299 

Champagne 39-41 40-41 0-499 

Pantomime 39-41 40-41 0-499 

    

Table III-3 Experiment setting in our evaluation 

Sequence Name Output 

No. 

Frame Size Disparity  

Range 

Frame 

Range 

Proposed Algorithm 

Input No. Avail. Eval. 

BookArrival 9, 7 1024×768 70 0-99 10-8-6 Yes Yes 

LoveBird1 5, 7 1024×768 70 0-299 4-6-8 Yes Yes 

Newspaper 3, 5 1024×768 88 0-299 2-4-6 Yes Yes 

Kendo 2, 4 1024×768 64 0-299 1-3-5 Yes Yes 

Balloons 2, 4 1024×768 64 0-299 1-3-5 Yes Yes 

Champagne 38, 40 1280×960 110 0-499 37-39-41 Yes Yes 

Pantomime 38, 40 1280×960 40 0-499 37-39-41 Yes Yes 

        

 

3.5.2 Experiment Results 
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     The experiment settings follow the above description in previous section. 

We test three different kinds of evaluation statistics as following, PSNR, PSPNR, 

computation complexity reduction. Table III-4 shows the result of different 

sequences in PSNR, PSPNR, and table III-5 shows the computation complexity 

reduction of sequences. 

 

Method 

           Type 

Sequence     

Proposed RTHDSM[54] HQDE[55] 

PSNR PSPNR PSNR PSPNR PSNR PSPNR 

BookArrival 35.41 

  

49.21 35.36 

  

48.60 35.89 51.83 

Pantomine 37.32 

  

55.30 37.89 

  

56.98 37.10 

  

51.88 

Lovebird1 34.16 

  

51.37 33.83 

  

51.89 31.86 

  

51.92 

NewsPaper 29.57 

  

43.29 29.32 

  

42.11 29.86 

  

44.06 

Kendo 35.94 

  

49.31 35.58 

  

49.64 35.66 

  

49.90 

Table III-4 Experiment Results 
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Method Type 

Sequence     

Proposed 

BookArrival 56.3%  

Pantomine 66.6%  

Lovebird1 35.01%  

NewsPaper 41.9%  

Kendo 59.8%  

Champagne 57.6% 

balloons 54.07% 

Table III-5 Computational complexity reduction 

 

    According to above experiment results, we can see that the proposed 

algorithm has generated good quality of disparity map by using dual way 

dynamic programming, edge-based occlusion handling, and directional regional 

voting techniques. Table III-5 also shows that the proposed algorithm solves the 

flickering problem effectively by using edge-based temporal consistency 

techniques. 
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IV. Hardware Implementation and Results 

 

4.1 Overall architecture 

     Fig. 4.1 shows the overall hardware architecture design of our proposed 

disparity estimation algorithm. In our proposed hardware design, the proposed 

algorithms are divided into three pipeline stages. The first stage contains four 

modules including Edge Detection, Absolute Difference Calculation, Cost 

Aggregation, and Disparity Propagation module. The second stage contains 

our proposed dual-way dynamic programming. The third stage contains all 

modules which are used for refining the estimated disparity results including 

occlusion handling, directional regional voting, and edge-based temporal 

consistency. The detailed hardware architecture design principle is explained 

in the following subsections.  
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External Memory

Memory Access Controller

YR YT du d' dp

Absolute 
Difference 
Calculation

Cost 
Aggregation

Disparity 
Propagation

Dual-Way Dynamic Programming

Occlusion Handling

Directional Region Voting

Temporal Consistency

Edge 
Detection

Interface

1st Pipeline Stage

2nd Pipeline Stage

3rd Pipeline Stage

Disparity Map

Control signal

128 bits data bus

 

Fig. 4.1. The hardware architecture of our proposed disparity estimation 

algorithm 

 

4.2 First Stage Design 

 Absolute Difference Calculation Module 

The operation of our proposed absolute difference calculation module is 

described as follows. First, three rows of luma input pixel are read from external 

memory and buffered by using internal memory buffer. Afterwards, 5x5 pixels are 
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read from internal memory left to right and fed into absolute difference 

computation module. In this thesis, 5x5 pixels are grouped together as the basic 

processing unit. For each 5x5 processing unit, the absolute differences within the 

disparity range are calculated for the following disparity estimation purpose. 

Therefore, number of 8-bit adders depends on the disparity range. Adders are 

required for computing all absolute differences. Fig 4.2 exhibits the detailed 

hardware architecture design of our proposed absolute difference calculation 

module. In this design, two buffers are used for storing the image data of YR and YT. 

In addition, the number of absolute difference calculation sets with 25 parallel 

absolute difference calculation modules in each is depending on the disparity range. 

Input Control
- Abs

- Abs

- Abs

Output Control

Progress Control

25 Parallel AD modules

Depends on disparity range

25 x 8bits

25 x 8bits

25 x 8bits

25 x 8bits5 x 5

Disparity range

5

Cost 
aggregation

YR

YT

Input Control Output Control

Input Control Output Control

 
Fig. 4.2. The hardware architecture of our proposed absolute difference module 

 

 Cost Aggregation Module 

After obtaining the absolute differences, the aggregation operation is applied 

to the absolute differences for deriving the cost aggregation results. Although our 

proposed aggregation algorithm only directly implements the cost aggregation 
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operation as Fig 3 shown, however, it is worth to point out that our proposed 

hardware architecture has a very good design that the absolute differences of each 

3x3 processing unit are directly added by the Gaussian weightings and sent to the 

disparity propagation module without buffering so that the hardware buffer costs 

can be reduced significantly.  

 

C[0] C[1] C[2] C[3] C[4]

C[5] C[9]

C[10] C[14]

C[15] C[19]

C[20] C[21] C[22] C[23] C[24]

1 2 3 2 1

2 3 5 3 2

3 5 8 5 3

2 3 5 3 2

1 2 3 2 1

Output Control Input Control
25 x 8bits 32bits

Absolute Difference 
Calculation Stage

Dual-Way Dynamic 
Programming

Cost Aggregation

(C[0])+(C[1]<<1)+(C[2]<<1+C[2])+(C[3]<<1)+(C[4])

 

Fig. 4.3. The hardware architecture of our proposed cost aggregation module 

 

 

 Disparity Propagation Module 

As mentioned before that the edge information is used to determine whether 

the disparity of current pixel should be propagated from the disparity of previous of 

above pixel. Therefore, the cost propagation module must contain edge detection 

module to obtain the edge information of current 3x3 processing unit. Just like the 

absolute difference calculation module, the luma components stored inside the 

internal memory buffer with size in 3x3 are accessed and then processed by Sobel 

operator. Once the edge information has been obtained, the edge information is 

used to determine whether the disparity should be propagated. If the result shows 



 

57 
 

that the disparity of current pixel should be propagated, the disparity information of 

previous or above pixel would be read from DRAM.  

 

4.3 Second Stage Design 

When designing the hardware architecture of dynamic programming, the most 

critical issues is the data dependency existed in the energy function since the energy 

function takes the neighbor information into account for deciding the disparity of 

current pixel. Therefore, in order to break the data dependency and thus helping to 

increase the possibility of parallelization, we remove the smooth term of 

(𝜌𝐻 × �𝑑′𝑚𝑤𝑛 − 𝑑� ) from the energy function of dynamic programming. By 

removing this term, the operation of each pixel will not been affected by the result 

of previous pixel and thus lets the different pixels belonging to the same scanline 

could be able to execute dynamic programming in parallel. Since the data 

dependency has been removed, our proposed architecture calculates the energy 

function of two adjacent pixels to increase the throughput so that our specification 

can be met. Therefore, to calculate the energy function of two pixels at the same 

time, the aggregation information of four pixels has to be inputted. When the costs 

of two pixels have been inputted to the dynamic programming module, the dynamic 

programming module computes the energy costs from left to right and right to left. 

However, thanks the removing of the horizontal term of (𝜌𝐻 × �𝑑′𝑚𝑤𝑛 − 𝑑�), it 

would not result in wrong results of the parallel computed energy function. Once all 

128 energies corresponding to 128 disparities have been successfully calculated, the 

energies are compared and the two disparities with least energy cost will be stored 

into the buffer as the final results. Here, the hardware cost to compare the energies 

is 33 bits comparator x 127 x 2(one for left to right and another one for right to left). 



 

58 
 

Fig 4.4 and Fig 4.5 show the hardware architecture design of our proposed 

dual-way dynamic programming. For high throughput consideration, our proposed 

dual-way dynamic programming design is further divided into two stages. The first 

stage is in charge of calculating the energy function and the second stage takes care 

of storing the results that the energy function resulted for further usage. 
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Fig. 4.4. The hardware architecture of our proposed dual-way dynamic 

programming stage one 

 

CMP

MUX

0
1

DR-1

Dmin

8bits

DP0_Min
33bits

DP0LR[0] DP0LR[1] DP0RL[1] DP0RL[0]

dmin[0] dmin[1] dmin’[1] dmin’[0]

Cmin[0] Cmin[1] Cmin[DR-2] Cmin[DR-1]

dmin[0] dmin[1] dmin’[DR-2] dmin’[DR-1]

Internal Memory Internal Memory

LR RL

Dual-Way DP Stage (2)

 

Fig. 4.5. The hardware architecture of our proposed dual-way dynamic 

programming stage two 

 

4.4 Third Stage Design 

The third stage of our proposed hardware architecture design is used for 
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further refining the estimated disparity map. The detailed architecture design is 

explained as follows. 

 

 Occlusion Handling Module 

Fig 4.6 shows the detailed hardware architecture design of our occlusion 

handling module. In our design, the results produced by dual-way dynamic 

programming stage are inputted to the occlusion handling module. The Input 

Control module controls all operations of all sub-modules. The Occlusion Strong 

Edge Detection modules takes the edge information resulted from first pipeline 

stage to detect the strong edge. The Disparity Histogram module counts the 

appearance of each disparity and the results will be produced by the Disparity 

Assignment module. 

Dual-Way DP

Internal 
Memory Input Control

Occlusion 
Strong Edge 
Detection x0 x1 xDR-2 xDR-1

Disparity Histogram Disparity 
Assignment

Edge Information Counter

Output to Internal 
Memory

Occlusion Handling Module

 

Fig. 4.6. The hardware architecture of our proposed occlusion handling module 

 

 

 Directional Regional Module 

Fig 4.7 shows the detailed hardware architecture design of our directional 

region voting. The directional voting arbiter takes 5x5 inputs from outputs of 

edge-based occlusion handling and also the edge information into account. The 

directional voting arbitor determines the available area for voting and then do the 

voting with disparity histogram. After the histogram is complete, we assign the 

disparity of maximum histogram number to the center pixel. 
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Fig. 4.7. The hardware architecture of our proposed directional region voting 

module 

 

 Temporal Consistency Module 

Fig 7 shows the detailed hardware architecture design of our temporal 

consistency module. The temporal consistency kernel takes the intensity value of 

current pixel, the corresponding pixel in the previous frame, and edge 

information into account to check if the disparity of pixel has to be propagated or 

not. The kernel check the difference between two corresponding pixels and also 

check the edge information at both horizontal and vertical directions to make 

sure if the current pixel is fixed or moving. 

Temporal 
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Module

MUX

Counter
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Previous frame 
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Fig. 4.8. The hardware architecture of our proposed temporal consistency 

module 
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4.5 Implementation Results 

Table III-6 tabulates the hardware implementation results. The processing 

ability of our designed hardware architecture is processing 1080p frame with 

90 fps frame rate. The disparity range is 128 so that our proposed design can 

search very wide range. In addition, our design is synthesized by UMC 90nm 

CMOS technology. The synthesized results report that our proposed hardware 

architecture consumes 2325K gate count and 80KB SRAM space under the 

100MHz operating frequency and 128 bits bus bandwidth. 

 

 

Input image resolution 1920x1080 

Output image resolution 1920x1080 

Frame rate 90 fps 

Disparity range 128 

Technology UMC 90nm CMOS 

Gate counts 2325K 

Operating frequency 100MHz 

Bus bandwidth 128 bits 

SRAM (Internal memory) 80KB 

Table III-6 Implementation results 
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V. Conclusion and Future Work 

 

5.1 Conclusion 

   The main contribution of this thesis is to propose a low computational 

complexity disparity estimation algorithm with good quality. We contributes in 

every single stage of the algorithm such as “Dual Way Dynamic Programming”, 

“Disparity Propagation”, “Edge-Based Occlusion Handling”, “Directional 

Regional Voting”, and “Edge-based Temporal Consistency”. The algorithm 

yields good quality compared with other disparity estimation methods and also is 

hardware-friendly to be implemented. The implementation takes reasonable cost 

on both gate counts of 2325K and memory cost of 80KB which seems reasonable 

at the spec of 1080P@90fps. 

5.2 Future Work 

   In the future, we will focusing on both disparity map quality enhancement 

and also costing down the hardware cost to make it more economy-efficient. 

We can add motion vectors as input factors on both disparity propagation stage 

and temporal consistency stage to make sure the disparity surface is smoother 

and the flickering problem is less. We can also use downsample technique to 

reduce the gate count and memory cost of hardware to make it more 

hardware-friendly. 
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