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Abstract

Disparity estimation is one of the most interesting and important research topics in the
field of stereo TV application. Accurate estimation of disparity can significantly improve the
visual experience on the stereo image but.at the expense of noticeable computational
complexity consumptions.

In this thesis, several techniques are proposed to improve the accuracy of estimated
disparity results at a low memory cost. The edge detection algorithm is first adopted in the
proposed algorithm to'derive the-important-image content features'and edge information for
making the upcoming disparity estimation process gets more precise results. Afterwards, the
proposed disparity propagation will take the edge information both from vertical and
horizontal direction.into account for deciding whether the disparity.should be propagated
from the edge area to the texture-lessarea. After the disparity propagation phase, the
un-propagated pixels will be treated by our proposed dual-way dynamic programming method
for determining their disparities. In our proposed dual-way dynamic programming algorithm,
the edge information will be taken.into account as the energy. minimization factor which will
affect the results of the estimated disparity. In addition, several post processing techniques
including occlusion handling, directional region voting, and edge-based temporal consistency
are also adopted in this thesis to further improve the estimated disparity results with
considering edge information.

Simulation results demonstrate that our proposed disparity estimation algorithm not only
improves the accuracy of the estimated disparity but also achieves less computational
complexity consumptions and memory buffer requirements. On average, our proposed
algorithm can achieve 34.48dB PSNR and reduce average 53.08 % of computation cost
compared to the conventional dynamic programming method. Finally, the proposed algorithm
is implemented in hardware form at 1920x1080@90fps and the synthesized gate count of our
design is only 2,325K by using 90nm CMOS technology.
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I. Introduction

1.1. Background

In the research field of computer vision, the stereo matching [1]-[53] is one of
the most active and interesting issues. The stereo matching techniques try to analyze
the stereo images pair by pair. Afterward, the displacement of corresponding pixel
pair existing in both images are estimated for deriving the depth information of
objects in the scene. Here, the displacement is measured in pixel unit and we usually
called the Disparity. The disparity values are usually between certain rang we usually
called Disparity Range and the disparities of all.image pixels are grouped to form the
Disparity Map. Finally, the disparity'map Is the target output of stereo matching and it
will be used in the stereo related visual processing. Fig. 1.1 shows an example of
Teddy test benchmark.image. In-this figure, Fig. 1. 1(a).and Fig.-1: 1(b) are the images
of left and right view, respectively. In addition, the Fig. 1. 1(c) is the ground truth
disparity map of left image which is visualized as grayscale intensities. In the
disparity map, the brighter grayscale means that the object is much close to the stereo
cameras. In other words; the disparity map includes_the depth information of each
pixel in somewhere. As a result, if we obtain the depth information by using the stereo

matching, we will be able to derive the 3D information and reconstruct the 3D scene

by means of triangulation.




(@) (b) (©)

Fig. 1. 1. Anexample of disparity map (a) Left view, (b) Right view, and (¢) Ground

1.2.

1.3.

truth disparity map of left image

Motivation

Many disparity estimation algorithms have been developed in computer vision for
different applications, such as 3DTV, gesture recognition, robot, 3D interactive interface,
and etc. Both dynamic programming and belief propagation are approaches that produce
better result than others. Computational complexity and memory usage of scan-line
based dynamic programming is much lower than the belief propagation. But traditional
dynamic programming. still requires big buffer size due to buffering information of the
path table for tracing back the-results of estimated disparity. Therefore, the buffer size

increases rapidly with the incensement on frame width.

Motivated by the problems in. the dynamic programming disparity estimation
algorithm, the ‘goal of this thesis is to develop~a new scan-line based dynamic
programming disparity estimation kernel that could not only generate high quality
disparity maps, but also achieve-the. throughput-of 60 frames/s for the HD1080p

resolution to satisfy the requirement of high definition 3DTV applications.

Contribution

To achieve the above goals, this thesis proposes several techniques to
reduce the computational complexity and improve the quality as well. The main
contributions of the proposed algorithm are in several parts as mention below.
First, the proposed disparity propagation algorithm saves more than 50%
computation complexity generally in most of the test contents. Second, to solve

the memory cost problem of traditional dynamic programming, the thesis
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proposes a alternative which named “Dual Way Dynamic Programming”. This

algorithm solves the memory usage problem effectively and also improves the

quality of the output disparities by computing energy function in dual directions.

Third, we propose several creative post processing technigues such as

“Edge-Based Occlusion Handling”, “Directional Regional Voting”, and

“Edge-based Temporal Consistency” to solves problems as occlusion on

boundaries, bad influence causes by pixels in different objects in the region, and

the flickering problem during video playback.

Our proposed algorithm can be implemented up to 1080P@90fps with
UMC 90nm CMOS technology which generates two disparity maps and use
2335K gate counts and will fit the HD 3DTV trend.
1. Related Works

2.1. Disparity Estimation

Disparity estimation is one of key techniques which extracts the disparity
information from source images and produces the disparity ‘map for each image in
3DTV applications. Afterword, the extracted disparity.-map could be used to present
the relative distance of objects/n scene. In addition, the disparity map could be further
adopted to obtain virtual-view images. The approach for disparity estimation depends
on the number of input image views. The traditional single-view image uses the 2-D
to 3-D conversion technique while the two-view and multiple-view images use the
stereo correspondence techniques. The traditional 2-D to 3-D conversion technique
identifies the disparity map from different disparity cues, such as texture, defocus,
vanish point, and etc. [49], [50], and [51]. On the other hand, the stereo
correspondence techniques find the pairs of correspondences for deriving disparity
maps.

The inherent constraint of epipolar geometry could lead to the correspondence
3



search range reduction from 2-D to 1-D space for multi-view video disparity
estimation. Fig. 2. 1 presents the idea of epipolar geometry with two-view
configuration. In this figure, the target view point C watches the object Pb and the
watched information have been projected into the 2-D image plane at the pixels p. The
correspondence candidates of p would be laid on the ray from C to Pb for the
reference view point C’. As a result, the projected line is called epipolar line in the
reference image plane. On the other hand, the correspondence with p on the epipolar
line would be searched and the search range would be limited in 1-D space. In
addition, the rectification and translation could be executed to map the image planes
into the new positions with parallel epipolar lines as Fig. 2. 2 shown. Here, the
correspondence search range is on a horizontal line instead of an oblique line in the
original image plane.. On the other hand, the correspondence pair is located at the
same y-coordinate in two views. As a result, the operation of disparity estimation

could be thus simplified in the raster-scan.order.

pb’ L

e pf / C
Epipolar line ¥ Reference view
Target view\

Fig. 2.1 Epipolar geometry
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Fig.2.2 Rectification for image planes
For the rectified image planes, the relationship between depth and disparity of a
correspondence pair is ' shown in Fig. 2. 3. In this figure, we can find that the object
point Pb is captured by the two cameras at the viewpoints.of C and C’ and projected
onto the correspondence pair on the epipolar line. The correspondences are located at
the coordinates of X and -X* based on their camera centers: Therefore, if we are able
to estimation the disparity X<X’ when.given the focal length f and the baseline B of the

cameras, the object depth Z can be acquired by
_fXB
X=X
As a result, the disparity estimation tries to find out the correspondence pair and

uses their x-coordinates to derive the disparity of depth value for each pixel.




Reference View

Target View

Epipolér Line

Fig. 2. 3 Relationship between disparity and depth for a correspondence pair

2.2. General Algorithm Flow

Fig. 2. 4 shows a general framework for disparity estimation algorithms proposed
by Scharstien and Szeliski [52]. Two-images are-first'obtained and rectified to be the
inputs and the expected result is the disparity map in this frame work. However, the
disparity estimation can be roughly classified into two categories: local approach and
global approach [52] and [53] in this framework. In the category of local approach, it
only consists of the matching cost calculation and the cost aggregation. However, the
optimization operation is additional executed for global approach. Finally, the
disparity map is refined by the last disparity refinement step which is an optional
process for computing fractional disparity and other post-processing. The literatures

of each step inside the general framework are briefly reviewed as follows.



Target View

Matching Cost Calculation

v

Cost Aggregation

v

Disparity Selection/Optimization

v

Disparity Refinement

v

Target-View
Disparity Map

Fig. 2. 4 General framework of disparity estimation

Fig. 4.1. Matching Cost Calculation

To find the best correspondence pair, the matching cost is an essential
quantitative evaluation. Fig. 2. 5 exhibits an example to illustrate the calculation of
matching cost. In this figure, multiple reference pixels are marked as the
correspondence candidates and all their matching costs have been computed

accompanied a target pixel. However, the relation of nearest and farthest objects in
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scene is recognized as disparity range DR and it will be used to represent the number
of correspondence candidates. As a result, DR matching costs would be produced by
the target pixel. In order to find out the overall disparity map, all matching costs of all
target pixels have to be calculated and all calculated matching costs form a disparity
image space. Fig. 2. 6 shows a disparity image space which contains the spatial
dimensions X, Y and disparity dimension d. Overall, this disparity image space
consumes HxWxDR, where H and W are the frame height and width, memory space

to store the all matching costs of entire frame.



Target-view Image

Target Pixel
(X, y)

/ A Pair of Correspondences

Reference Pixels

DR >

‘ ...... | H |
Reference-view Image

Fig. 2.5 Matching costs of a target pixel and its correspondence candidates



Fig. 2. 6 Matching costs of a target pixel and its correspondence candidates

There are many.match measurements [3]-[52] as listed in Table 2-1 could be
used to compute the cost disparity image space. These match measurements could be
classified into pixel based and block based approach. For the pixel based approach,
the absolute difference (AD) and the square difference (SD) are used for computing
the matching costs by considering a target and reference pixel. To eliminate the
sampling sensitivity [1], the half pixels could be further considered for pixel
dissimilarity measurement. On the other hand, instead of using a target and reference
pixel to compute the matching cost, a target and reference pixel block is used to
compute the block based matching cost as Fig. 2. 7 shown. In addition, the statistical
approach called normalized cross correlation reduces the sensitivity of radiometric

gain and bias by using the block mean and variance. The Rank derives the rank value

10



of pixel color by transformation and the rank values are adopted for computing the
matching costs. On the other hand, the Census transforms the pixel intensity into
census bitstream consisting of the intensity comparison results between the center
pixel and the support pixels. Afterward, the Hamming distance is calculated to derive
the matching cost of two census bitstreams. In summary, since the Rank and Census
try to transform the original pixel from color to another domain, their ability to resist

the radiometric distortion between views would be much better.

Target Block

Support
pixels

wv) A
A x.y). ||F

O
(x-0:y)

Reference Block

Fig. 2. 7 Block based matching cost calculation
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Table 2-1 Different matching cost measurements
Block-based

ZIx—uISr[ltar(u: U) - I_tar] [Iref(u —d, U) - I_tref]

Normalized Cross ly—visr

Correlation (NCC) \/le—usr[lmr(u) V) — I_mr]z[lref(u —d,v) — I_tref]

2

ly—=v|sTr
|1£ar(x;}I) - I;ef(x - d;Y)|,
Rank ,
where I'(m,n) = Zlm—ulsr,|n—v|sr I(m,n) > I(u,v)
Hammin-g(lt,‘ar(xi 3’)’ I‘r"ef(x —d, }’))'
Census
where I'(m, n) = bitstreamyy, _yjj<yjn-v|<r (I(m,n) > 1(u,v))
Pixel-based
Absolute Difference (AD) oar @, ) ~ Los(x =4, y)|
. 2
Square Difference (SD) (Imr (G Y) = Lep(x —d; y))
Pixel Dissimilarity min{|lyayr (6, ¥) = Lef(x = d, )|, | Lear G ) = Blip |, ear 6, ¥) — Irps 1}
Measure (PDM) where I;ref and I, are the neighboring half pixel of I_ref (x —d,y)

Fig. 4.2. Cost Aggregation

The main purpose of cost aggregation is tried to gather the neighboring pixel
costs in a window for center pixel for further processing usage. The assumption
behinds of cost aggregation is that the neighboring pixels tend to have the same
disparity and gathering the matching costs from neighbors could be able increase the
reliability of matching cost. Therefore, the neighboring costs are accumulated in the

cost aggregation step for the center pixel by the following equation,

12



Z(u,v)ewin(x,y) C(u, U, d) X Waggr(u' 17)
Z(u,v)ewin(x,y) Waggr(u' 17)

Caggr(x,y,d) =
where C is the initial matching cost and C,gqr is the aggregated matching cost. In this
equation, each initial cost C(v, u, d) in an aggregation window with window size r is
accumulated with the weight Wygqe(u, V) for the target cost Caggr(X, v, d). In addition,
the accumulated value is normalized by the sum of weights. The computational
complexity of this step is O(HxWxDRxr?) proportional to the aggregation window
size.

Fig. 2. 8 shows different cost aggregation methods with different weighting
distribution. The uniform weight.as shown in Fig. 2..8(a) contains constant weight and
fixed r for every support pixel. However, this uniform weight suffers from the
problem of over-blurred disparity-map for small objects with too large r and disparity
map incorrectness for textureless-regions with too small r. Therefore, to receiving
better disparity result, dynamically adjusting r according to image content as shown in
Fig. 2. 8(b) is a good way to do that: The Gaussian weight approach Fig. 2. 8(c) which
tries to make the pixels. near window center -has higher weighting is another
commonly used way for deciding the weighting for‘cost aggregation. However, the
disparity accuracy could not be ‘achieved better due to the fixed window shape such
square or circle.

To adaptively change the window shape, the 8-direction or 4-direction
configuration as shown in Figure Fig. 2. 8(d) is used in the adaptive polygon weight
approach [4] and [5] to fit the object shape. And then, the multiple cross lines concept
as shown in Figure Fig. 2. 8(e) is adopted in the cross-based weight approach [6] to fit
the object shape. In these two methods, the support region is grown from the window
center until the dissimilar pixel has been encountered by the support region boundary.

Unfortunately, there two methods can be not performed well for the images with

13



highly texture content due to their continuous support regions.

However, the above mentioned problems could be able to be solved by the
adaptive support-weight (ADSW) approach [7] since all support pixels are considered
and their weights are decided by the bilateral filter kernels. The weights of ADSW are
defined as

Waggr(w,v) = Wear (U, 1) X Wrep(u — d, v)
where Wi, is the weight from target-view window and W, is the weight from
reference-view window. The weights of Wi, and Wy can be computed by the bilateral
filter kernels listed below,
W, v) = £ )= (w v)DgUHIGY) — 1w, v)]])

where f is the spatial kernel with the position distance and g is. the range kernel with
the color distance. As a result, the aggregation-weight could be large either the support
pixel is near the center pixel or the support pixelis similar to center pixel with the
help of two kernels.

Compared to the:adaptive polygon weight and cross-based weight approaches, the
aggregation weight of the adaptive support-weight shown in Fig. 2. 8(f) could fit
object shape better for highly texture regions but at the expensive of significant high
computational complexity requirement. However, the high computational complexity
issues can be addressed by the integral histogram approach [8], the iterative
aggregation with small window approach [9], and the data reuse approach in VLSI
design [10]. In overall, by using the well-defined weights, the aggregation cost step
can produce more reliable matching cost Caggr Which will be very helpful for the

upcoming disparity selection and optimization.

14
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Fig. 2. 8 Different cost aggregation methods (a) uniform weight, (b) uniform weight
with adaptive window size, (¢) Gaussian weight, (d) adaptive polygon weight, (e)
cross-based weight, and (f) adaptive support-weight

Fig. 2.9

Fig. 4.3. Disparity Selection/Optimization

After the initial costs have been aggregated, the disparity map could be computed
by two optional methods. The most common and simple one is the winner-take-all
manner (WTA) which decides the disparity result directly by determining the
minimum cost reference pixel as the best correspondence for each target pixel.
Another disparity optimization approach takes the aggregated costs of entire frame for
computing the disparity map through the energy minimization. Literature [48]
demonstrated that the latter one can derive more precise disparity maps via the

evaluation results.
15



Some techniques such as dynamic programming (DP), graph-cut (GC), and
belief propagation (BP) are the commonly adopted for disparity optimization. In one
word, the main concept behinds these disparity optimization techniques are to
transform the disparity optimization problem into the energy minimization problem.
The energy function could be generally formulated by

E(d) = Eaata(d) + AEsmootn(d)
where Egqq refers to data term for penalizing the dissimilarity of a correspondence
pair and Esmooth 1S SMoothness term to penalizing the disparity inconsistency of two
neighboring pixels. In addition, d standsfor a-selected disparity set for entire frame. In
one word, a disparity set ‘d _is attempted to be found. through the approach of
minimizing the total energy E that the optimization technique provided.
The principle of some well-known optimization techniques are briefly described
below.
(1) Dynamic Programming

The DP algorithm is a very well-known optimization algorithm which can be
used in disparity estimation by mapping the disparity estimation into finding the
shortest path problem. In DP,/the optimization process is executed in a row by row
manner for finding the optimal results.

Fig. 2. 9(a) shows the illustration to demonstrate how the shortest path problem
can be solved by DP optimization technique. In this figure, the position of node is
corresponding to the coordinate in the x-d plane and the shortest path will be from x of
0 to W-1. The path should be suffered from the matching penalty and smoothness
penalty on a node and an edge, respectively. During the DP optimization process, two
steps called forward accumulating and backward tracing are executed in order to find
out the path with minimum penalty. In the first step, the penalties are accumulated in

forward direction to find out the moving path for each node as Fig. 2. 9(b) shown.
16



Afterward, the backward direction tracing as shown in Fig. 2. 9(c) is executed to find
the minimum penalty path with the help of the moving direction map that the forward
accumulating step produced.

However, the most critical issue caused by the DP technique is that the streak
artifact in the disparity map due to the row by row processing mechanism. To
eliminate the streak artifact problem, literature of Ohta and Kanade [11] performed
the DP in a 3-D space which consists both of the original intra-scanline and the
additional inter-scanline space. In addition, the tree structure has been used in the
tree-based DP algorithms [12]-[14] to connect. scanlines and thus remove the streak

artifacts.
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Fig. 2. 10 Illustration of dynamic programming optimization technique (a) graph

model in DP approach, (b) forward accumulating, and (c) backward tracing

(2) Graph-Cut
Converting the disparity selection problem into the max-flow/min-cut problem
[15] is the key concept of GC optimization technique. In addition, the associated

optimization algorithms can be adopted as well for generating more accurate disparity

18



maps. Fig. 2. 10 shows an example to illustrate the min-cut/max-flow for disparity
estimation where there are HXWxDR nodes with 6-connected node grid. The
well-defined matching cost and smoothness cost on each edge can be regarded as
pipes with different flow quantities due to different costs. In this illustration, the water
would be flowed from the source to sink node through the pipes. The terms of min-cut
and max-flow respectively stand for a cut surface cross edges that has the minimum
flow and the allowed maximum flow from the source to the sink. In other words, the
problems of min-cut and max-flow are equivalent in somehow. As a result, the

disparity map can be obtained directly.via theresultant cut surface.

Source

6-connected node

Sink

Fig. 2. 11 Illustration of graph-cut optimization technique

The widely used optimization techniques for solving the min-cut/max-flow

19



problem are the push-relabeling [16] and the augmenting path [17] and their
computational complexities are highly depended on the number of label candidates
(i.e. disparity range DR in disparity estimation). However, the large disparity range
leads to these optimization techniques suffer from extremely high computational
complexity problem.

Literatures of swap method [18] and an efficient augmenting path [19] have been
proposed by Boykov to reduce the computational complexity of GC. The optimization
process was performed isparity by disparity in swap method and each iteration only
considers one new disparity. In addition; the literature of Chou et. al. [20] proposed a
fast algorithm to predict the disparities by early. skipping the partial optimization
process based on the swap method. On the other hand, the computational speed of the
push-relabeling approach depends on the processing.order on-nodes. As a result,
Checkassky and Goldberg [21] proposed a highest-label order which can achieve
more efficient computation than that of the typical FIFO ‘order. In addition, the
block-based graph cut algorithm was proposed by Delong and Boykov [22] to increase
the parallelism of push-relabeling method.

In summary, due to the irregular.computation and low parallelism of GC, the GC
technique is not suitable for accelerating by GPU programming and VLSI design even

through it can achieve more accurate disparity results.

(3) Belief Propagation

The first literature which applied to the BP approach to solve the disparity
estimation problem was proposed by Sun et al. [24] to derive more accurate disparity
maps via optimizing the energy in the graph model as shown in Fig. 2. 11. In this
figure, a node represents a pixel and all nodes are connected by four-connection grid.

During the optimization process, the matching costs of each node are diffused through
20



the messages to neighboring nodes iteration by iteration and this diffusion mechanism
is called message passing. Afterward, the disparity results are determined by

aggregating the matching costs and messages of a node after several iterations.

l l matching cost
»

Fig. 2. 12 Ilustration of belief propagation.approach

The most critical "issue in the BP approach is that the highest computational
complexity, O(HxWxDR?xT) due to the message passing. Here;.the T refers to the
iteration counts. For the operation, the-DR-results-from the convolution and the
iteration count T should be .more than 10. Therefore, the literatures of Felzenswalb
and Huttenlocher [25] proposed the hierarchical BP (HBP) and the linear-time
message passing to reduce the computation of message passing. The HBP could
increase the speed of disparity convergence and the linear-time message passing could
reduce the complexity of convolution from O(DR?) to O(DR). Szeliski et al. [26]
proposed the max-product loopy belief propagation (BP-M) to reduce the iteration
counts by a scale. However, since the BP approach has the property of high
parallelism, the BP technique is much suitable to be accelerated by the GPU
programming and VLSI design [27]-[33]. Unfortunately, the high memory cost
(4HWxDR) for storing the matching costs and messages of entire frame is the main

hardware design issue. To solve this problem, the literatures of bipartite gird [25] and

21



the sliding approach [34] were proposed for lighting the memory access penalty and
the predictive coding scheme [35] could be applied for message compression.

In summary, the DP algorithm could be easy to achieve real-time processing but
suffer from the problem of streak artifacts. However, the other improvement methods
would additional result in irregular computation. For the 2-D optimization techniques,
although the GC technique can derive high accurate disparity map, but the irregular

computational process significantly limits the capability of hardware accelerating.

Fig. 4.4. Disparity Refinement

In the final step, the post processing methods.such as occlusion handling, object
consistency enhancement; and temporal consistency enhancement are usually applied
to further refine the:disparity maps. Therefore, these methods are briefly described as
follows.
(1) Occlusion Handling

The occlusion problem is defined as that the object point is visible in one view
and invisible in the other view. Therefore, in the occlusion region, there are no
correspondence pixels in the invisible view. In.general, the incorrect disparities would
appear in the occlusion regions and further induce artifacts in the view synthesis. To
deal with the occlusion problem, the occlusion detection is adopted first to detect the
occlusion and the occlusion filling mechanism is applied to fill the occlusion area by
the background disparities in general. The basic methods for occlusion detection are
surveyed in [45] based on different assumptions. The left-right check (LRC) assumes
that a correspondence pair should have same disparity and the occlusion constraint
(OCC) assumes that occlusion region in the other view would be resulted by the
disparity gap of two pixels. In addition, the order of two pixels should have the

correspondences with the same order in the other view as the order constraint (ORD)
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assumed. In above occlusion detection techniques, the LRC is widely applied for the
disparity refinement [6] and [40], and the OCC and the ORD are combined into the
disparity optimization step [15] and [24] usually. With the detected occlusion pixels,
the disparities in the occlusion region could be directly replaced by the reliable
background disparities in occlusion filling step.
(2) Object Consistency Enhancement

In an object, the disparities are usually identical or changing smoothly. However,
the textureless regions usually cause the incorrect disparities and thus affect the
results of disparity maps. Therefore, the plane fitting approach [40] was usually
adopted by the high-performance disparity estimation algorithms [44], [36], [37] to
remove the disparity noise. In the plane fitting approach, the watershed segmentation,
mean-shift clustering, or K-mean clustering-is usually adopted: for computing the
segment information first. Based on the segment information, a new 3-D plane is
constructed by the linear regression method using the disparities in a segment. Besides
of the plane fitting«method, .the regional voting method [6] could also refine the
disparity maps well. Compared to the plane fitting technique, the regional vote
technique is much simpler dueto the segment information is unnecessary.
(3) Temporal Consistency Enhancement

In previous work, most disparity estimation algorithms were focused on the still
image sequence [48]. However, these algorithms didn’t consider the temporal
consistency issue and thus result in some obstacles in the view synthesis application
for video sequences. Therefore, if the temporal consistency issue has not been dealt
with well, the disparity maps would produce flicker artifacts due to the independent
generation of disparity for each frame. In addition, the disparities without temporal
consistency treatment are unstable in the occlusion and textureless regions. As a result,

the flicker artifacts would be further propagated to the view synthesis results and
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becomes observed.

Intuitively, the neighboring frames are usually taken into account in the disparity
estimation to address the temporal consistency issue. In the previous work [41]-[43], a
disparity flow in spatial and temporal domain is constructed by buffering several
disparity frames. Afterward, different smooth methods are executed in the disparity
flow. On the other hand, since two adjacent frames are available, the temporal BP
algorithm [38] executed the BP optimization in a 6-connection grid graph in which
two additional connections are linked between previous and next frame. In addition,
the temporal costs were added to matching costs according to previous disparity in the
3DVC’s DERS algorithm [45]-[47].

In summary, the view synthesis quality iin 3DTV applications as well as
inconsistent disparity problem can be" significantly. improved by the disparity

refinement step.

24



I11. Proposed Dual-Way Dynamic Programming Algorithm for
Disparity Estimation
3.1. Overall Flowchart
Fig. 3.1 shows the flowchart of proposed disparity estimation algorithm which is
composed by three phases including Cost Calculation Phase, Disparity Estimation
Phase, and Disparity Refinement Phase and the duty of each phase is described as

follows in detalil.
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Fig. 3.1. Flowchart of proposed disparity estimation algorithm
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3.2. Cost Calculation Phase

This phase corresponds to execute all required operations for deriving the costs
which will be used in the upcoming disparity estimation process. In this phase, the
costs of absolute difference (AD) corresponding to each pixel and disparity are
calculated first. Afterward, the calculated absolute difference values will be fed into
the cost aggregation module for cost refinement.
3.2.1. Pixel-based Absolute Difference

Many distortion measurements such mean square error (MSE) and sum absolute
difference (SAD) have been widely adopted. in many field to derive the difference
between two measurement.sources. In our proposed algorithm, we adopt pixel based
absolute difference for deriving the distortion of each disparity for the upcoming
disparity estimation:process. The absolute difference of each pixel and disparity is
calculated as follows.

ADy(x,y, d)dEDR,LE{Left,Right} =Y (x,y) -V (xtdyl

where AD is the absolute difference; x and y stand for the pixel-position; Y refers to
the pixel intensity of target view; Y’ means the pixel intensity of reference view, d
implies the disparity, and DR represents the disparity range. Fig. 3.2 shows an
example to illustrate how the absolute difference of each pixel and disparity been

calculated.
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Target view Reference view

Fig. 3.2. lllustration of absolute difference calculation

3.2.2. Cost Aggregation

After the absolute difference calculation process, the calculated ADs will be used
in the cost aggregation process for the cost refinement in each disparity level. As
mentioned in Section.2 that many weighing methods can be adopted to calculate the
costs for cost aggregation.. However, every weighting method has its own
characteristic and most suitable cases. For the simplest uniform weighting and
uniform weighting with adaptive radius methods, although these methods have much
simple weighting operation, they don't consider the spatial relationship and thus may
result in ill aggregation results. An alternative way is the adaptive support weigh
method which takes the spatial relationship into account to decide the weighting
coefficients. However, although adaptive support weight method can obtain much
better results than uniform weighting methods, the computational complexity of
adaptive weight method is significant due to the exponential operation has to be

implemented. To well fit the object shape, the polygon weighting method seems to be
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the good choice. However, significant memory storage spaces are required for this
kind of weighting methods and thus result in the high hardware implementation costs.

As a result, the Gaussian weighting method is adopted in our proposed cost
aggregation algorithm since the Gaussian weighting method has the properties of the
considering the spatial relationship and low hardware implementation cost due to the
fixed weighting coefficients. In our proposed algorithm, the 5x5 window size with
Gaussian weight mask is used for the cost aggregation. The aggregated costs are

calculated as below.

Cost,(x,y,d) _ S B AD(x + i)+, d) X Wogussian(i,)
’ ’ d ’ ’ J h "y . 3
L €DR,Le{Left,Right} §=_2 212:_2 WGaussian(l'])

where the Cost is the aggregated costs and the Wgaussian refers to the weighting factor

of Gaussian Weight mask as shown-in Fig. 3.3.
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Fig. 3.3. Weighting factors of Gaussian Weight mask

3.2.3. Edge Detection

To increase the accuracy of disparity estimation, the edge information of image is
considered in our proposed algorithm due to the most difficult regions to be treated
always occur at the object boundaries or edges. There are many edge detection or
object segmentation algorithms that have been proposed in the literatures. However,

the well-known edge detection algorithm called Sobel edge detection algorithm with
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3x3 window size is adopted in our proposed algorithm for detecting the edge
information due to its simplicity and popularity. The edge information after Sobel

edge detection process is shown in below.

1 1
Edges(6y) = ) > Y+ 1,y + 1) X Woper (i)

i=1j=1
1 1
Bdgey(t,y) = ). Y Y(x+i,y+ ) X Wappery (i)

i=—1j=1
where Edge is the edge information after Sobel operator; H and V refer to the
horizontal and vertical direction; and Wssper means the weighting factor of Sobel mask

as shown below.

-1 0 1 1 2 1
WSobel_H =1-2 0-2|and WSobel_H =10 0 0
-1 01 -1 =2 -1

Fig. 3.4 exhibits the edge information after Sobel edge detection algorithm. From
this figure, we can_observe that the Sobel edge detection algorithm can derive useful
edge information which will be very helpful:for the- upcoming disparity estimation

process.
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(b)

Fig. 3.4. Edge information after-Sobel operator (a) Horizontal

edge and (b) \ertical edge

3.3. Disparity Estimation Phase

Once the costs of all pixels and disparities have been successfully calculated, the
costs will be fed into our proposed disparity estimation module. In our disparity
estimation phase, we propose two algorithms called disparity propagation and
two-way dynamic programming as figure Fig. 3.5 shown. The disparity propagation is
first executed to determine whether the neighbor disparities could be propagated to
current pixel or not in order to save the computational complexity of disparity
estimation. After the disparity propagation process, the proposed two-way dynamic
programming algorithm is performed to obtain the disparity map of left and right view.
In our proposal, the disparities are considered in both of left-to-right and right-to-left
way so that the occlusion problem as well as streaking problem can be reduced

efficiently. In addition, the computational complexity of our proposed disparity
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estimation algorithm is much lesser than that of the traditional dynamic programming
algorithms. It should be noticed that the edge detection operation is involved in our
proposed algorithm since the edge information in both horizontal and vertical

directions will be considered throughout the overall operation of our proposal.

l

Horizontal Disparity Propagation

Propagated
horizontally?

Vertical Disparity Propagation

Disparity Propagation

Propagated vertically?

Dual-Way Dynamic-Programming

;

Disparity Map

Fig. 3.5. Flowchart of proposed disparity estimation phase

3.3.1 Disparity Propagation

In the disparity estimation phase, we first use a technique called disparity
propagation to determine whether to propagate the disparity from the previous pixels
if the current pixel is located at the edge region. The main assumption behinds our
proposed disparity propagation algorithm is that disparities around the edge area are

more reliable than texture-less area, so, it is expected to propagate the disparities from
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edge area to texture-less area. In addition, since the texture-less area usually contains
insignificant characteristics, therefore, it is very easy to be affected by the luminance
variation and thus result in the noisy results (inaccurate disparity results). Therefore,
our proposed disparity propagation is tried to smooth the disparity results in
horizontal and vertical direction. In addition, the disparities after disparity propagation
would be as the final disparity results so that the upcoming disparity estimation
process for the propagated pixels can be reduced and thus achieve the computational
complexity as well as power consumption reduction. In our proposal, the disparity is
propagated both from the horizontal- or.vertical directions and the disparity

propagation operation is listed below:

Horizontal Disparity-Propagation

In the horizontal disparity propagation  process, both of the horizontal and
vertical edge information is considered to determine the propagation of disparity. The

decision rule for horizontal disparity propagation is listed below.

i (EdgeH(x: y) < 5Propogation>

then D(x,y) = argmin{Cost(x,,y,d
Edgev(xry) = 5Pr0pogation ( y) g { ( pY )}

d€DR

where Jpropogation 1S the determination parameter; D refers to the final disparity map of
pixel located at x and y position; and x, means the previous pixel depends on scanning
direction. Fig. 3.6 shows an example to illustrate how to derive the x, for different

scanning directions.
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Fig. 3.6. lllustration of x, derivation for different scanning directions
(a)Left-to-Right and (b)Right-to-Left
It should be mentioned that since our proposed horizontal disparity propagation
uses two scanning directions for disparity propagation, the final disparity and cost for

current pixel is decided by seeing which scanning direction has the smallest cost.

Vertical Disparity Propagation

After the horizontal disparity propagation; the vertical disparity propagation is
executed depending on whether 'the disparity of current pixel has been propagated
from the previous pixel X,. If the disparity of current pixel is‘exactly propagated from
the previous pixel x,, the vertical disparity propagation will not be executed for the
current pixel. Oppositely, if the ‘disparity of current pixel is not propagated from the
previous pixel X, the vertical disparity propagation will be on for disparity
propagation. Similar to horizontal disparity propagation, the proposed vertical
disparity propagation also considers the edge information from the vertical direction
to decide whether the disparity could be propagated vertically. However, the main
difference between horizontal disparity propagation and vertical disparity propagation
is that the absolute differences of pixel intensity are further considered to decide the
disparity propagation. The decision rule of our proposed vertical disparity propagation

is listed below.
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EdgeH (x: y) < 6Propogation
if Edgey(x,y — 1) < 5Propogation then D(x,y) = D(x,y — 1)
Y, y) —Y(x,y — 1)

3.3.2 Dual-Way Dynamic Programming

Traditional DP usually stores all path information as a path table for path
searching. Therefore, the memory storage space will be very significant due to
W(frame width)*DR disparities have to be stored. As a result, the memory space
requirement of traditional DP is significant. In addition, the traditional DP algorithms
only consider one way scanning. If'only considering one.way, the resulted disparity
will be very bad due to the occlusion problem. Therefore, we consider both ways for
improving the accuracy of derived disparity results. According to the horizontal and
vertical disparity propagation result, our proposed dual-way dynamic programming
algorithm is executed depending on whether the disparity of current pixel has been
propagated either fram the horizontal or vertical ‘direction. If the disparity of current
pixel is propagated from neither horizontal nor vertical direction, the dual-way
dynamic programming will be executed to decide the final disparity of current pixel.
Fig. 3.7 illustrates the idea of our proposed dual-way dynamic programming. In our
proposal, the main idea is that disparities with minimum cost are considered

horizontally and vertically.

Left-to-Right Diffusion Right-to-Left Diffusion

Wtical diffusion

Disparity in previous row :

Costin currentrow




Fig. 3.7. Ilustration of our proposed dual-way dynamic programming

To decide the best disparity for current pixel, we propose an energy function for
deciding the disparity. The proposed energy function is listed below.
E(x,y,d) = g, X Cost(xp,y, d) + &, X Cost(x,y,d)
+py X |dmin — d| + py X |dy — d|

where
gp: the cost penalty of previous pixel at disparity d
&c. the cost penalty of current pixel at disparity d
pu: the horizontal smaothing cost
pv: the vertical smoothing cost
d'min: the disparity of previous pixel with minimum energy cost
d,: the disparity value of pixel in upper row

Once the energy cost of each disparity level has been successfully calculated, the
final disparity of current pixel can be decided by the following expression.

D(x,y) =argmin{E(x,y,d)}
deDR

In the following, the definition of the parameters listed above is described below
in detail. The main idea behinds the parameter definition of our proposed algorithm is
that we pay more attention on the edge regions since the edge regions are the most
difficult areas to deal with. Therefore, our parameters are defined based on horizontal
and vertical edge.

For horizontal edge: Two types of horizontal edge conditions are used to decide
the parameters as listed below.

1. No horizontal edge: If current pixel has no horizontal edge passed through, it
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means that the smoother weighting parameters can be used for smoothing the
disparity from the neighbor pixels. As a result, the parameters for no horizontal
edge condition are shown in Fig. 3.8(a). This case means that the current pixel is
located inside the object, therefore, we hope that the disparity of current pixel
should be as much similar to the previous pixel as possible so that the resulted
disparity map for certain object could be more consistent especially for the
texture-less areas. Therefore, we give the higher weighting for the ¢, and py to
make sure that the previous reliable disparity could affect the results of energy
function significantly.

Horizontal edge existence: The main idea behinds this filtering is to let the
disparity of current pixel to be more similar to the disparity of the object where the
current pixel belonging to. If current pixel is located on the-horizontal edge, two
parameter definition methods are proposed depending on which region that the
current pixel belongs to. If current pixel and previous pixel belong to the same
object and existing the edge magnitude discontinuity in horizontal direction, the &,
and py are increased.and & is decreased to result in the consistent disparity map
with the streaking problem reduction as.Fig. 3.8(b) shown. Otherwise, if the
current pixel belongs to the right object, both of the parameter weighting of
previous pixel and horizontal smooth cost are reduced. If current pixel and
previous pixel belong to different objects and existing the edge magnitude
discontinuity in horizontal direction as Fig. 3.8(c) shown, the & and pn are
decreased and ¢ is increased to make sure the current disparity would be affected

by the previous disparity slightly.
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49 ® ¢, =2*Previous_weight
E% e ¢&.=1*Current_weight
e py =4 * Horizontal_smooth_cost
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-
49 e ¢, =2™*Previous_weight
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< e py=1*Horizontal_smooth_cost
(b)
-

b

€ p = 0.5* Previous_weight
&¢= 1* Current_weight
pn = 1'* Horizontal _smooth cost

(c)
Fig. 3.8. 'The parameter definition for different types of horizontal edge

conditions

For vertical edge: Two types of vertical edge conditions are proposed as well to
decide the parameters as listed below.

1. No vertical edge: If current pixel has no vertical edge passed through, it means
that the smoother weighting parameters can be used for smoothing the disparity
from the neighbor pixels. As a result, the parameters for no vertical edge condition
are shown in Fig. 3.9(a). This case means that the current pixel is located inside
the object, therefore, we hope that the disparity of current pixel should be as much
similar to the previous pixel as possible so that the resulted disparity map for

certain object could be more consistent especially for the texture-less areas.
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Therefore, we give the higher weighting for the p, to make sure that the previous
reliable disparity could affect the results of energy function significantly.

. Vertical edge existence: If current pixel is located on the vertical edge, two
parameter definition methods are proposed depending on which region that the
current pixel belongs to. If current pixel and upper pixel belong to the same object
and existing the edge magnitude discontinuity in vertical direction, the p, is
decreased to result in the consistent disparity map with the streaking problem
reduction as Fig. 3.9 (b) shown. Otherwise, if current pixel and upper pixel belong
to different objects and existing.the edge. magnitude discontinuity in vertical
direction as Fig. 3.9(c) shown, the pn is decreased.to make sure the current

disparity would be affected by the previous disparity slightly.

!
c% e py=4*Horizontal_smooth_cost
()
I
E7 e py =2 * Horizontal _smooth_cost
(b)
EJ\
< e py=0.5* Horizontal_smooth_cost

(c)
Fig. 3.9. The parameter definition for different types of vertical edge conditions
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In our thesis, the constant parameters of Previous_weight, Current_weight,
Horizontal _smooth_cost, and Vertical _smooth_cost are setto 1, 2, 0, and 16,
respectively by empirical approach.

Fig. 3.10 shows the disparity estimation results of our proposed algorithm. From
this figure, we can observe that the disparity propagation can result in much more
smooth disparity estimation result compared to only using dual-way dynamic

programming disparity estimation.
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(b)

Fig. 3.10. Results of disparity estimation after (a) dual-way dynamic

programming and (b) dual-way dynamic programming with disparity
propagation

3.4. Disparity Refinement Phase

Although the disparity estimation phase can derive the disparity maps for both of
left and right views, however, the disparity maps-should be further refined to obtain
more accurate disparity estimation results. “Therefore, three algorithms called
occlusion handling, directional regional voting, and edge-based temporal consistency
are proposed in our disparity refinement phase to further punish the disparity maps. In
occlusion handling, the occlusion artifacts are treated in order to reduce the artifact
effects in the occlusion regions. The directional regional voting process performs the
filtering operation for the disparity map in a directional regional manner so that the
processed disparity map could be as smoother as possible. Finally, the edge-based
temporal consistency operation executes the filter operation for the disparity map in

the temporal domain by considering not only the color difference but the edge
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information so that the filtered disparity map could be very smooth between the
consecutive frames. The detailed design principle of each proposed module will be

described in the following subsections.

3.4.1 Edge-Based Occlusion Handling

In general, the occlusion effects usually occur at the object edge and boundary.
Therefore, occlusion handing by considering the edge information is a very intuitive
and straightforward manner. In our proposal, the idea of strong edge is detected to
help the occlusion handing. Fig. 3.10 .shows the illustration and flowchart of our
proposed occlusion handling algorithm. Our propoesed occlusion handling algorithm is
composed by three steps called Strong Edge Detection, Reliability Check and Section
\oting and Smoothing.

Strong Edge Detection: In strong edge detection module, the edge information
after edge detection is used to determine the strong edge positions.by the following
procedure. The variables inside the pseudo code are defined as follows.

Pos,eft: Position to indicate the.location of left strong edge
Posright: Position to indicate the location of right strong edge
Imageneign:: Image height

Imagewigth: Image width

doc: Threshold for strong edge detection

41



Set Pos ¢t and Posgight to O
FOR 'y = 0 to Imageneignt
FOR x = 0 to Imagewidth
IF (Posie has been found)
IF(|Edgen(x.y)| + |Edgev(x,y)| = doc)
POSRight = X;
End IF
IF (Both Posi et and Posgign: have been found)
Reliability Check();
Section Voting and Smoothing ();
POSett = POSgignt;
End IF
Else
IF(|Edgen(xy)f-+ |Edgey(xy)[= doc)
PoS|eft = X;
End IF
End IF
End FOR
End FOR

Reliability Check: Once two strong edge positions Pos;ex and Posgign: have been
successfully detected, the disparities located between Pos s and Posgigh: are checked
one by one to determine whether the disparity is reliable enough or not. If a disparity
has been determined as unreliable, it will be marked as unreliable one and it will not
been considered in the following disparity smoothing operation anymore. The idea
behinds our reliability checking is to avoid the disparities that have been influenced
by the unreliable disparities inside a restricted region. Determining whether a

disparity is reliable or not can be achieved by the following operation.
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_f{lD(x, y) —D(x—D(x,v),y)| <64 D(x,y) marks as reliable
Otherwise D(x,y)marks as unreliable

where x € {Posy ¢, PoSgignt} and dq is an empirical defined threshold.

Section Voting and Smoothing: After the unreliable disparities have been marked,
the section voting and smoothing operation is executed for smoothing the disparities
located between Posiew and Posgignt. Fig. 3.11 exhibits a step-by-step illustration for
explaining our proposed section voting and smoothing algorithm. First, the disparity
and reliable/unreliable maps are fed into the section voting operation for counting the
occurrences of each disparity with'the help of reliable/unreliable map. If a disparity
has been marked as unreliable;the counts of corresponding disparity will not been
accumulated. Once the section-voting operation has been done, the disparity with
maximum occurrence will be selected as the-dominating disparity and this disparity

will be used to replace all disparities located between Pos, e and Posright.

Byl /
lPosLeﬁ and POSgight 7\

| |
i Reliability Check : o

Disparity Map Edge Map
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Strbng Edge Detectiron

Occlusion Handling

l

Section Voting and Smoothing

Disparity Map // . l | |

Fig. 3.11. lllustration and flowchart of our proposed occlusion handling

algorithm
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Fig. 3.12. lllustration of our-proposed Section Voting and-Smoothing algorithm

3.4.2 Directional Region Voting

In the traditional region voting approaches, a voting window is used for voting
the occurrence of each disparity. However, thisvoting approach suffers from the
inharmonious disparity effect inside the 'voting window if the covered region of voting
window contains two objects. In this situation, the traditional region voting
approaches would further damage the estimated disparity results. Therefore, we
propose a directional region voting algorithm to avoid the problem caused by the
traditional region voting via considering both of the edge and color difference
information. Following figure is the diagram of procedure of proposed directional

regional voting method.
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Initialization Set left_voting_available = 0
right_voting_available = 0
up_voting_available = 0
down_voting_available = 0
diff_right = abs(Intensity(x0,y0)-Intensity(x0+1,y0))
diff_left = abs(Intensity(x0,y0)-Intensity(x0-1,y0))
diff_up = abs(Intensity(x0,y0)-Intensity(x0,y0-1))
diff_down = abs(Intensity(x0,y0)-Intensity(x0,y0+1))

I
Edge(x0,y0,9)> 6 (y)

Edge(x0,y0,%)> 6 (x)

YES YES
NO
diff_left > diff_right diff_up > diff_down
YES
¢ y ¢
Set left_voting_available = 1 Set left_voting_available = 0 Set left_voting_available = 1 Set up_voting_available = 1 Set up_voting_available = 0 Set left_voting_available = 1
right_voting_available = 1 right_voting_available = 1 right_voting_available = 0 down_voting_available = 1 down_voting_available = 1 right_voting_available = 0

Directional Voting Area Dx

for(y=y0+2;y>=y0-2;y--)
for(x=x0+2:x>=x0-2;y--)
Intensity(x,y)-Intensity(x0,y0)<=

H(DGxy) = HOGy) +1

Disparity Histogram Voting

Dx0,y0) = max(H(d))

Fig. 3.13. Flowchart of proposed directional regional voting algorithm
According to the algorithm, there are nine types of voting areathat will be

possible to be determined. Please check-them as figure below:

(1

(5) (6) (7) (8) (9)

Fig. 4.14. nine types of determined voting area
Figure 3.14 shows nine different types of determined area which might occur in

the algorithm. The determined voting area is determined by the edge information on
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both horizontal and vertical direction and also take the intensity difference between
center pixel and other neighbor pixels into account. After the voting area is
determined, the algorithm will start accumulating disparity histogram of the pixels in
the determined region. Only the ones which have similar intensity value will be taken
into account. After the disparity histogram is complete, the disparity which get the

maximum number will be assigned to the center pixel.

3.4.3 Edge-based Temporal Consistency

In traditional temporal consistency treatment, the.color difference between
successive frames is used for determining whether the disparity of current frame
should be replaced by the disparity from the collocated pixel-in previous frame to
keep the disparity consistence temporally. However, as mentioned before that the
occlusion effect usually occurred at the edge region. Therefore, our proposed
algorithm will not only consider the color difference but also the edge information for
the temporal consistence treatment. In addition, three consecutive frames are

considered at the same time for deciding the disparity propagation.
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Initialization f=0
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Compute color factor C; =

StateBuffer[x][y][0]&StateBuffer[x][y][1]&StateBuffer[x][y1[2]

Compute edge factor E; =
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C==0 && E==0) || (C==0 && E==1
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StateBuffer[x][y][3]=StateBuffer[x][y1[4],
StateBuffer[x][y][4]=StateBuffer[x][y]1[5]

x+=1
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x=1landy+=1 YES

X < Imagewign - 1

f+=1

Fig. 4.15. Flowchart of proposed temporal consistency algorithm
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3.5. Simulation Results
Our proposed algorithm has been tested on some general test contents, Fig.
3.16 shows the contents adopted in the experiment, and table 111-1 lists their
detailed information. The test sequences are provided by different research
institutes. The frame size includes 1024x768 (XGA), 19201080 (HD1080p),
and 1280x960. In these sequences, the Kendo, Balloons, Halll, and Hall2 are
captured by the moving cameras, and others are captured by fixed cameras. All

the test sequences have been calibrated to make sure the disparity range can be

limited in 1-D space.




Fig. 4.16. Clips of test sequences in center view
(a) BookArrival, (b) LoveBird1, (c) Newspaper, (d) Café, (e) Kendo, (f) Balloons, (g)

Champagne, (h) Pantomime, (i) Hall1, (j) Hall2, (k) Street, (l) CarPark

Table 111-1 Test sequences

Frame Camera Is

Sequence ) ) Number of Number of ) )
Provider Frame Size Rate ) Spacing Moving

Name Frame View

(frame/s) (cm) Camera

BookArrival HHI 1024x768 16.67 300 16 6.5 No

LoveBird1 ETRI 1024x768 30 300 12 3.5 No

Newspaper GIST 1024x768 30 300 9 6.5 No

Kendo Nagoya  1024x768 30 300 7 5 Yes

Balloons Nagoya  1024x768 30 300 7 5 Yes

Champagne  Nagoya <. 1280%960 30 300 80 5 No

Pantomime Nagoya = /1280x960 30 300 80 5 No

HHI: Fraunhofer Heinrich Hertz Institute, Germany

ERTI: Electronics and Telecommunications Research Institute, Korea
GIST..Gwangju Institute of Science and Technology, Korea

Nagaya: Nagoya University, Japan

1.1. Organization

The rests of this thesis is.organized as follows. In.Section Il, some related works
including disparity estimation, general algorithm-flow are overviewed to establish the
related background of the main target that this thesis would like to address. Section IlI
presents the detailed algorithm description that this thesis proposed. Some simulation
results compared to other literatures are given in Section VI to show the efficiency of
our proposal. The hardware architecture design for our proposed algorithm is
discussed in Section V. Finally, some conclusions and future works are given in

Section V1.
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3.5.1 Input and Output Configuration

The input sequences are in 2-view configuration. Table 111-2 shows the
selected views of all the test sequences for 2-view configuration. Table 111-3
shows the output configuration and the selected views in our evaluation.

Table 111-2 Input and output views for 2-view configuration

Input View No. Synthesized Pair Frame Range for
Sequence Name
(1,-17) (I,-Vc or Ve&lg) Disparity Estimation
BookArrival 10-8 10-9 0-99
LoveBird1 6-8 7-8 0-299
Newspaper 4-6 5-6 0-299
Kendo 2-4 3-4 0-299
Balloons 2-4 3-4 0-299
Champagne 39-41 40-41 0-499
Pantomime 39-41 40-41 0-499

Table I11-3 Experiment setting in our evaluation

Sequence Name|Output Frame Size DisparityFrame |Proposed Algorithm

No. Range ' Range [Input No. Avail. Eval.

BookArrival 9,7 1024x768 70 0-99 10-8-6  Yes Yes
LoveBirdl 5,7 1024x768 70 0-299 4-6-8 Yes Yes
Newspaper 3,5 1024x768 88 0-299 2-4-6  Yes Yes

Kendo 2,4 1024x768 64 0-299 1-3-5 Yes Yes
Balloons 2,4 1024x768 64 0-299 1-3-5  Yes Yes

Champagne | 38,40 1280x960 110 0-499 |37-39-41 Yes Yes

Pantomime 38,40 1280x960 40 0-499 [37-39-41 Yes Yes

3.5.2 Experiment Results
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The experiment settings follow the above description in previous section.

We test three different kinds of evaluation statistics as following, PSNR, PSPNR,

computation complexity reduction. Table I11-4 shows the result of different

sequences in PSNR, PSPNR, and table I11-5 shows the computation complexity

reduction of sequences.

Method | Proposed RTHDSM[54] HQDE[55]

Type [PSNR PSPNR PSNR PSPNR | PSNR PSPNR
Sequence
BookArrival 35.41 49.21 35.36 48.60 35.89 51.83
Pantomine 37.32 55.30 37.89 56.98 37.10 51.88
Lovebirdl 34.16 51.37 33.83 51.89 31.86 51.92
NewsPaper 29.57 43.29 29.32 42.11 29.86 44.06
Kendo 35.94 49.31 35.58 49.64 35.66 49.90

Table 111-4 Experiment Results
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Method Type Proposed
Sequence
BookArrival 56.3%
Pantomine 66.6%
Lovebirdl 35.01%
NewsPaper 41.9%
Kendo 59.8%
Champagne 57.6%
balloons 54.07%

Table 111-5 Computational complexity reduction

According to above experiment.results, we can see that the proposed
algorithm has generated good quality of disparity map by using dual way
dynamic programming, edge-based occlusion handling, and directional regional
voting techniques. Table 111-5 also shows that the proposed algorithm solves the

flickering problem effectively by using edge-based temporal consistency

techniques.
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IV. Hardware Implementation and Results

4.1 Overall architecture

Fig. 4.1 shows the overall hardware architecture design of our proposed
disparity estimation algorithm..In our-proposed hardware design, the proposed
algorithms are divided into three pipeline stages. The first stage contains four
modules including Edge Detection, Absolute Difference Calculation, Cost
Aggregation;-and Disparity Propagation module. The second stage contains
our proposed dual-way dynamic programming. The third stage contains all
modules which are used for refining the estimated disparity results including
occlusion handling, directional regional~voting, and edge-based temporal
consistency. The detailed hardware architecture design principle is explained

in the following subsections.
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External Memory

T128 bits data bus
Memory Access Controller
Interface
Yr Yr d, d' dp
I
B
. 3
Absolute . .
—! Edge ) Cost Disparity
Detection Difference = Aggregation Propagation
Calculation gereg pag
] — i
1st Pipeline Stage !
4 Control signal
*—) Dual-Way Dynamic Programming
2nd Pipeline Stage
I Occlusion Handling =
® *—) Directional Region Voting
Temporal Consistency —
3rd Pipeline Stage

Disparity Map

Fig. 4.1. The hardware architecture of our proposed disparity estimation

algorithm

4.2 First Stage Design
® Absolute Difference Calculation Module
The operation of our proposed absolute difference calculation module is
described as follows. First, three rows of luma input pixel are read from external

memory and buffered by using internal memory buffer. Afterwards, 5x5 pixels are
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read from internal memory left to right and fed into absolute difference
computation module. In this thesis, 5x5 pixels are grouped together as the basic
processing unit. For each 5x5 processing unit, the absolute differences within the
disparity range are calculated for the following disparity estimation purpose.
Therefore, number of 8-bit adders depends on the disparity range. Adders are
required for computing all absolute differences. Fig 4.2 exhibits the detailed
hardware architecture design of our proposed absolute difference calculation
module. In this design, two buffers are used for storing the image data of Yg and Yf.
In addition, the number of absolute difference calculation sets with 25 parallel

absolute difference calculation‘'modules in eachis depending on the disparity range.

Progress Control
25 x 8bits

YR I

- 25 x 8bits
— Abs
_F()—Q Cost
N

Output Control aggregation

| Input Control ||
5x5 s i 25 x 8bits

25 x 8bits

l

YT 5{

Output Control

- Abs
Disparity range Input Control Q_Q

a8uel Ajuedsip uo spuadaq

Input Control Output Control

25 Parallel AD modules

Fig. 4.2. The hardware architecture of our proposed absolute difference module

® Cost Aggregation Module
After obtaining the absolute differences, the aggregation operation is applied
to the absolute differences for deriving the cost aggregation results. Although our

proposed aggregation algorithm only directly implements the cost aggregation
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operation as Fig 3 shown, however, it is worth to point out that our proposed
hardware architecture has a very good design that the absolute differences of each
3x3 processing unit are directly added by the Gaussian weightings and sent to the
disparity propagation module without buffering so that the hardware buffer costs

can be reduced significantly.

Dual-Way Dynamic

Cost Aggregation
Programming

Absolute Difference
Calculation Stage

|

|

|

| |Clol|Cl1] | Cl2] | C3]| C[4]

I : 11232 1
C[5]| ™. C[9]

25 x 8bits| 2205320 Daabis
Output Control Ly cl10] C[14] @ 3 /5|8 |5]|3| 4+—— Input Control
| - 213 /5./3]|2

C[15] .. |C[19]
I : 102.03{2 1
| |ct20plci21]| cl221|ci23]| cl24]
|
|
[

(C[0])+(C[1]<<1)+(C[2]<<1+C[2])+(C[3]<<1)+(C[4])

Fig. 4.3. Thehardware architecture of our-preposed cost aggregation module

® Disparity Propagation Module

As mentioned before that the edge information is used to determine whether
the disparity of current pixel should be propagated from the disparity of previous of
above pixel. Therefore, the cost propagation module must contain edge detection
module to obtain the edge information of current 3x3 processing unit. Just like the
absolute difference calculation module, the luma components stored inside the
internal memory buffer with size in 3x3 are accessed and then processed by Sobel
operator. Once the edge information has been obtained, the edge information is

used to determine whether the disparity should be propagated. If the result shows
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that the disparity of current pixel should be propagated, the disparity information of

previous or above pixel would be read from DRAM.

4.3 Second Stage Design
When designing the hardware architecture of dynamic programming, the most
critical issues is the data dependency existed in the energy function since the energy
function takes the neighbor information into account for deciding the disparity of
current pixel. Therefore, in order to break the data dependency and thus helping to

increase the possibility of parallelization,. we remove the smooth term of
(PH><|d'mzn—d|) from the“energy function.of dynamic programming. By

removing this term; the ‘operation-of each pixel will not been affected by the result
of previous pixel.and thus lets-the different pixels belonging to the same scanline
could be able ito execute dynamic programming in parallel. Since the data
dependency has been removed, our-proposed architecture calculates the energy
function of two adjacent pixels to increase the throughput so.that our specification
can be met. Therefore, 10 calculate the energy function of two pixels at the same
time, the aggregation information of four pixels has to be inputted. When the costs
of two pixels have been inputted to the dynamic programming module, the dynamic

programming module computes the energy costs from left to right and right to left.
However, thanks the removing of the horizontal term of (py X |d’min — d|), it

would not result in wrong results of the parallel computed energy function. Once all
128 energies corresponding to 128 disparities have been successfully calculated, the
energies are compared and the two disparities with least energy cost will be stored
into the buffer as the final results. Here, the hardware cost to compare the energies

Is 33 bits comparator x 127 x 2(one for left to right and another one for right to left).
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Fig 4.4 and Fig 4.5 show the hardware architecture design of our proposed
dual-way dynamic programming. For high throughput consideration, our proposed
dual-way dynamic programming design is further divided into two stages. The first
stage is in charge of calculating the energy function and the second stage takes care

of storing the results that the energy function resulted for further usage.
I d
| Dual-Way DP Stage (1) u DPo[o] op

Cost Aggregation | . pro J:
I A S DPO[2] |——) .
| “%3*\@ e :
| \ :
: DPx33bits DPDES: mjﬁ

~

DPO[6]

DPx32bits
DPx32bits

Input Control

DPO_Min

DPO[7]

C’ [O] DPx32bits

é
¢

DPO[DR-4]

DPO[DR-3]

DPO[DR-2]
C' [DR+1] DPO[DR-1]

Fig. 4.4. The hardware architecture of our proposed dual-way dynamic

programming stage one

Dual-Way DP Stage (2)

DPO_Min

DPOR[0] | DPOR[L] | «evvvveeeeeens DPOg([1] | DPOR[0] Cainl0] L Y Crin[DR-2] | Crin[DR-1]

L

Amin[0] L 3 Ao’ [1] | dwi’ (0] Amin[0] Amin[1] [ ceeeeeeeeiee drin’ [DR-2] | dmin’ [DR-1]

Internal Memory Internal Memory

Fig. 4.5. The hardware architecture of our proposed dual-way dynamic

programming stage two

4.4 Third Stage Design

The third stage of our proposed hardware architecture design is used for
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further refining the estimated disparity map. The detailed architecture design is

explained as follows.

Occlusion Handling Module

Fig 4.6 shows the detailed hardware architecture design of our occlusion
handling module. In our design, the results produced by dual-way dynamic
programming stage are inputted to the occlusion handling module. The Input
Control module controls all operations of all sub-modules. The Occlusion Strong
Edge Detection modules takes the edge.information resulted from first pipeline
stage to detect the strong edge. The Disparity Histogram module counts the
appearance of each disparity and the results will be produced by the Disparity

Assignment module.

Counter

Dual-Way DP : Occlusion Handling Module
l Output to Int: |
utput to Interna
| ‘ o —
Internal -+ InputConttol | S?r;ﬂ:slilzge L) Disparity Histogram Disparity 4’\/|er:10ry
Memory [ Detection | %0 [ 31 b xonaxom ) enment
| ]
I
'

Edge Information

Fig. 4.6. The hardware architecture of our proposed occlusion handling module

Directional Regional Module

Fig 4.7 shows the detailed hardware architecture design of our directional
region voting. The directional voting arbiter takes 5x5 inputs from outputs of
edge-based occlusion handling and also the edge information into account. The
directional voting arbitor determines the available area for voting and then do the
voting with disparity histogram. After the histogram is complete, we assign the

disparity of maximum histogram number to the center pixel.
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Fig. 4.7. The hardware architecture of our proposed directional region voting

module

® Temporal Consistency-Module
Fig 7 shows the detailed hardware. architecture design of our temporal
consistency module."The temporal consistency kernel takes the intensity value of
current pixel;-the corresponding pixel in the previousframe, and edge
information into account to check-if the disparity of pixel has to be propagated or
not. The kernel check the difference between two corresponding pixels and also
check the edge information. at-both horizontal-and vertical directions to make

sure if the current pixel is fixed or moving.

Temporal Consistency Module

Edge Information
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| Counter
| I
I
I
|

Fig. 4.8. The hardware architecture of our proposed temporal consistency

module
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4.5 Implementation Results

Table 111-6 tabulates the hardware implementation results. The processing

ability of our designed hardware architecture is processing 1080p frame with

90 fps frame rate.

search very wide range. In addition, our design is synthesized by UMC 90nm

CMOS technology. The synthesized results report that our proposed hardware

architecture consu

The disparity range is 128 so that our proposed design can

mes 2325K gate count and 80KB SRAM space under the

100MHz operating frequency and 128 bits bus bandwidth.

Input image resolution 1920x1080
Output image resolution 1920x1080
Frame rate 90 fps
Disparity range 128

Technology UMC90nm CMOS
Gate counts 2325K

Operating frequency 100MHz

Bus bandwidth 128 bits

SRAM (Internal memory) 80KB

Table 111-6 Implementation results
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V. Conclusion and Future Work

5.1 Conclusion
The main contribution of this thesis is to propose a low computational
complexity disparity estimation algorithm with good quality. We contributes in
every single stage of the algorithm such as “Dual Way Dynamic Programming”,
“Disparity Propagation”, “Edge-Based Occlusion Handling”, “Directional
Regional Voting”, and “Edge-based Temporal Consistency”. The algorithm
yields good quality compared with other.disparity estimation methods and also is
hardware-friendly to be implemented. The implementation takes reasonable cost
on both gate counts of 2325K and memory cost of 80KB which seems reasonable
at the spec of 12080P@90fps.
5.2 Future Work
In the future, we will focusing on both disparity map quality enhancement
and also costing down the hardware cost to make it more economy-efficient.
We can add motion vectors as input factors on both disparity propagation stage
and temporal consistency stage to make sure the disparity surface is smoother
and the flickering problem is less. We can also use downsample technique to
reduce the gate count and memory cost of hardware to make it more

hardware-friendly.
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