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Delay and Area Optimal FIR Filter Synthesis
using Binary Subexpression Sharing

Student : Yao-Chung Hsu Advisor : Dr. Jing-Yang Jou

Department of Electronics Engineering
Institute of Electronic
National Chiao Tung University

ABSTRACT

The multiple constant multiplication (MCM) is extensively used in digital signal
processing (DSP) applications, such'as filters. It multiplies the input data with a set of
constant coefficients. Since constant multiplication can be implemented by adders and binary
shifters instead of generic multipliers, many multiplier-less MCM algorithm are proposed to
minimize the total number of adders. While designing a high-speed MCM, the adder
architecture should be taken into consideration to further minimize the critical path delay. In
this thesis, we present an ILP-based approach for delay and area-optimal binary subexpression
sharing for MCM design which uses different adder architectures (i.e., carry look-ahead adder
and carry save adder) simultaneously. The proposed method exploits patterns acquired from
all possible symbols (also known as subexpressions) to match the target MCM design
optimally. The experimental results show that the proposed algorithm can achieve significant

performance improvement as compared with the prior art.
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Chapter 1
Introduction

1.1 FIR Filters in DSP System

In many digital signal processing (DSP) algorithms, finite impulse response (FIR) filter
are widely used because of the advantage of stability and linear phase properties. For an
N-taps FIR filter, the input data Xx[n] with different time scale (0 to n-1) are multiplied by
corresponding constant coefficients C; and then are summed up to output data y[n]. This is

shown in the following equation.

N-1
y[nl=X, Cix[n-1] (1.1)
Fig. 1 (a) shows an N-taps transposed FIR -filter architecture which is composed of
adders, multipliers and registers. In digital circuit design; multiplication is more complicated

and with higher cost than add operation.

1.2 Multiple Constant Multiplications

Thus, it is important to design the multiplication operation optimally in an FIR design.
Note that the architecture that multiplies the input by a set of constant coefficient is also
known as multiple constant multiplications (MCM). Since the multiplier is an expansive
computational unit in hardware implementation and the coefficients are mostly constants in
filter design, the multiplication can be implemented by series of adders and shifters, instead of
using a generalized multiplier. For example, the constant multiplication y = 5 * x can be
computed as y = (x << 2) + x. The multiplier is replaced by a left shifter by 2 bits and an
adder. Compared to a generalized multiplier, it reduces the hardware cost significantly. Thus,
in typical digital filter designs, multiplier-less MCM is widely adopted to avoid using the

costly multiplication and provide an efficient filter design. Fig. 1 (b) shows to replace
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multiplications by a multiplier block and to use multiplier-less MCM to realize it.

The problem of multiplier-less MCM is similar to the classical addition chain problem
where the multiplication is replaced by addition only [1]. However, the ability of using
shifters and subtractors makes the multiplier-less MCM problem more complicated. The
existing multiplier-less MCM algorithms can be divided into two main categories: 1)
graph-based algorithms [2]-[5] and 2) digit-based algorithms [6]-[11]. The graph-based
algorithms iteratively construct the graph representation in a bottom-up fashion and use
heuristic methods to maximize the subexpression sharing. It can fast provide good quality of
solutions (not optimal). Besides, the digit-based algorithms generate the decomposition
depending on the specified binary representation.

The digit representations can be:divided into two categories: 1) canonical signed-digit
(CSD) 2) minimal signed-digit (MSD). CSD uses a unique signed representation (1, 0, and 1),
where 1 denotes -1, for each ' value with two properties: 1) the number of non-zero digits (i.c.,
1 and 1) is minimal; 2) any two consecutive non-zero digits are not adjacent (i.e., 1 or 1
cannot be side by side). Similar to CSD, MSD also-takes the signed representation. However,
it allows two adjacent non-zero digits.” Thus, a variable may have more than one

representation in MSD form.



x[n] — Multiplier Block

Final stage Adder for each coefficient

(b)

Fig. 1 (a) A N-taps Transposed FIR Filter. (b) Multiplications Replaced by a Multiplier Block

Most of these implementations-take filter coefficients in CSD format, where coefficients
are represented with a minimum number of nonzero bits [11]. With CSD format coefficients,
Common Subexpression Elimination (CSE) method has been utilized as a very powerful tool
in FIR filter design to reduce the number of arithmetic units (adders and shifters). For
example, consider two functions F; and F,, where F; = 13*x and F, = 45*x. The CSD format
of 13 and 45 are 10101 and 1010101 so that F; and F, can be represented in the following
manner: F; = 16*x - 4*x +x=x<<4-x<<2+xand F, = 64*x + 16*x - 4*x +x=x<< 6 +
X << 4 - x << 2 + x. The corresponding architecture is shown in Fig. 2. Both expressions F;
and F, have some common terms or called common subexpression D = 16*x - 4*x + x.
Therefore, F; and F, can be rewritten as F; = D and F, = x << 6 + D. Reusing D in both
expressions reduces the computation overhead and the number of adders required to

implement both expressions.
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Fig. 2 (a) Multiplication without CSE. (b) Multiplication with CSE

A 2-D CSE approach, involving both vertical and horizontal eliminations, is proposed in
[6]. The CSE method in [7] considers the length of ctitical path in the multiplier block, as well
as the number of required adders. A greedy CSE algorithm with a look-ahead method for
implementing low-complexity FIR filters 1s developed-in [10]. An optimization method
considering multivariable CSE"is. demonstrated i [8]. A level-constrained CSE (LCCSE)
method is proposed in [12], it provides an analysis procedure to determine critical and less
critical coefficients and constrain those critical coefficients by lower sharing.

Although, many literatures have been published, few of them discuss the problem of
optimal binary subexpression sharing. We propose method that exploits patterns acquired
from all possible symbols (also known as subexpressions) to match the target MCM design
and model it to Integer Linear Programming (ILP) problem to optimize the delay and area.
According to our experimental result, our MCM design is favorable for high speed

applications.



1.3 Thesis Organization

The remainder of this thesis is organized as follows. In Chapter 2, we briefly introduce
the necessary terminology and contrast against prior related works. Chapter 3 gives some
motivational examples. The proposed method is demonstrated in Chapter 4. Chapter 5 shows
our experimental setup and presents the experimental results. Finally, Chapter 6 gives the

concluding remarks of this thesis.



Chapter 2
Background

In this chapter, we briefly review the background knowledge and the primary previous

work, [14] proposes a new CSE method using binary representation of coefficients, called

Binary Subexpression Elimination (BSE). Section 2.1 presents the basic terminology which

we use in BSE. Section 2.2 demonstrates a heuristic method to realize the BSE architecture.

2.1 Basic Terminology

Coefficient, C: A binary number.

Non-zero bits, NZB(C): Number of non-zero bits in a binary number C.

For example, NZB(101001)=3, NZB(11101)=4.

Symbol, S: S is a binary number whose LSB and MSB bit are both 1’s. That is, S
must be odd and without leading 0’s.

For example, 1101(S13), 11(S3), 1001(Sg), 111(S7) are symbols and 110, 011, 1000
are not symbols.

Alphabet, A: A is a set of symbols.

For example, A={1, 11, 101, 111, 1001}={Sy, S3, Ss, S7, Sg} is an alphabet which has
5 symbols.

Fragment, F(S, i): A number generated from left shifting the symbol S by i bits.

For example, F(S5,3)=101<<3=101000.

Match, M: A match for a coefficient C with respect to A is a set of fragments such
that );F;=C and },;NZB(F;) =NzZB(C).

For example, assume A={1, 11, 101, 111, 1001, 10101} and C=11010. We can find



a match M¢={F(Ss3,3), F(S1,1)} such that 11000+10=11010 also find M;={F(Sg,1),
F(S1,3)} such that 10010+1000=11010.Identically, M,={F(S13,1)} is a match for C.
But {F(S21,0), F(Ss5,0)} is not a match because NZB(10101)+ NZB(101)=5, not equal

to NZB(11010)=3.

2.2 Previous Works

[14] proposes a new CSE method using binary representation of coefficients, called
Binary Subexpression Elimination (BSE). BSE realizes a two-stage multiplier block
architecture in Fig. 3. The first stage called alphabet generation unit generates binary common
subexpressions or called symbols and the second stage called fragment summation unit uses
these binary common subexpression to realize constant multiplication. Another application of
BSE is constant multiplicationfor DCT which is proposed in [13].

[14] claims that their method offers average logical-operator reduction of 21% over two
CSE methods [15] and [16]. Even <though -the number of nonzero bits in the CSD
representation is smaller than that'in corresponding binary representation, the potential of the
CSD-based CSE technique to reduce the number of adders by forming common
subexpressions is less than that of binary when the number of nonzero bits is minimum.

The most important issue for BSE method is how to find out a match for a coefficient. In
[14], they propose a heuristic method, called Sequential Longest Symbol Match (SLSM),
which uses fixed-alphabet A={1, 11, 101, 111, 1001}. They claim that these symbols or called
common subexpressions 11, 101, 111, 1001 are used to compose coefficients frequently and
the reductions are not significant when other longer symbols like 10001 are used. In SLSM,
we process one match at a time and sequentially match a coefficient from MSB to LSB in a
piece-wise fashion. We choose the longest symbol for each partial match. Note that SLSM can

only find one match for a coefficient though there are many possible solutions. For example,



assume C=1001101011. From MSB, 1(S1) or 1001(Sg) can be chosen but we choose 1001(Sg)
instead of 1(S;) because 1001(Sg) is the longest symbol where we can choose and so on. We
can finally choose So=1001 left shifts by 6 bits, Ss=101 left shifts by 3 bits and S;=111. The
result match is M={F(Se,6), F(Ss,3), F(S3,0)} such that 1001000000+101000+11=C. After

SLSM, we can use these fragment to realize the fragment summation unit, is shown in Fig. 4.

Alphabet Generation Unit

[cvx Lo [armx | asorx

Fragment Summation Unit

D —-p{’-:- :)—-- e = —--(’+1>—b- D —-p{’*_-:)—-r Y

Fig..3 BSE-based filter architecture

% << =2 =<3 =<3
(11)*X (101)*X (111)*X 1 (1001)*X
T - -
=<3
=<6
[ -+ )
=
+ )
Crna*X TT{1001101111)*X C*X Co*X

S U SUr S

Fig. 4 An Example of SLSM
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Chapter 3
Motivation

In this chapter, we briefly review the adder architectures and give four motivational
examples to demonstrate the limitations of previous work. Based on SLSM and
fixed-alphabet, we can find only one match for a coefficient. We try to find other possible

matches such that we can get more benefit.

3.1 Delay and Area Calculation

While designing a multiplier-less-MCM,: different adder architectures can be used
depending on the design constraints. There are two kinds of widely used adder architectures,
as shown in Fig. 5. General carry propagation adder (CPA) adds two numbers x and y to a
number a. The carry save adder (CSA) takes three numbers, X, y, and z, and transform it to
two numbers, a and b, such that X + y-+ z = a.-+b. Note that the output of CSA are not the
final summation result. An extra CPA is required to calculate the final two subexpressions,
CSA is preferred to iteratively cover the subexpressions then use a CPA to get the final results.

Because CPA is more complicated than CSA, we assume the delay and area ratio of CPA
and CSA is 2. For a 9 number adder operation, we use 7 CSA with 1 CPA to realize this
operation in Fig. 6 (a) rather than 8 CPA operations in Fig. 6 (b), so that we can reduce 7 units

area and 2 units delay.



Fig. 5 Two Kinds of Adder Architectures

0 A O O S A A O O R A I
CSA (1) CSA (1) CSA (1) CPA(2) || CPA(2) || CPA(2) || CPA(2)
1] D ld s & Lo
CSA (1) CSA (1) CPA (2) CPA (2)

L# y v ‘ v v |
CSA (1) CPA (2)
213 i
CSA (1) CPA (2)
(;PA (2‘) Sum
Sum
(a) Addition with CSA. (b) Addition without CSA.

Fig. 6 An Example of Delay and Area Calculation

3.2 An Example of Alphabet Selection

In SLSM process, the number of fragments in result match rests with the length of

symbols where we choose in each partial selection from fixed-alphabet. Thus, in this example,

10



we add a longer symbol 10001 in Alphabet which is called A; and try to reduce the number of
fragments in result match.

We use SLSM with the coefficient C=1111000110010 to realize the alphabet generation
unit and the fragment summation unit. Fig. 7 (a) shows the circuitry that corresponds to the
match Ma={F(57,10), F(S51,9), F(Ss,4) , F(S1,1)} with alphabet Aj={1, 11, 101, 111, 1001}
and Fig. 7 (b) shows the circuitry that corresponds to an alternative match My={F(S7,10),
F(S17,5), F(Se,1)} with alphabet A;.  Obviously, the fragment summation unit reduces 1 CSA
cost that is equal to save 1 unit area and 1 unit delay. By adding longer symbol, it takes

different alphabet and probably can get more efficient fragment summation unit.

X X
<<3 <<1 <<3 <<4 <<3
A -y A 4 A bl 4 A A A A
CPA (2) CPA (2) CPA(2) | | CPA(2) | | CPA(2)
|
o S
<<4 S3 S7
<<10| <<9 SI7
<< << << '7S9
CSA (1) 10‘ 5: 1
<<t CSA (1)
CSA (1)
\ . CPA (2)
CPA (2)
\j v
xX*C xX*C
(a) 4p={ 1,11, 101, 111, 1001} (b)4,=1{1,11,101, 111, 1001, 10001}

Fig. 7 An Example of Alphabet Selection

3.3 An Example of Match Choice

SLSM provides only one match for a coefficient; actually we only need to insure that all

11



of 1’s in the coefficient should be corresponded to a fragment. The following example shows
an alternative match where we use an interleaving way such to cover all of 1’s in the
coefficient.

We use a fixed-alphabet A=A and assume coefficient C=1001101101. Fig. 8 (a) shows
the result Ma={F(S,6), F(S5,3), F(S5,0)} based on SLSM. But the pattern 101101 in C can
separate to two fragment F(Sg,2) and F(Sy,0) instead of F(Ss,3) and F(Ss,0) by an interleaving
way. An alternative match My={F(Sg,6), F(Se,2), F(S9,0)} is shown in (b). In this case, we can
eliminate the symbol Ss which is not used by getting different match so that the alphabet

generation unit can reduce 2 units area.

X X I
<<3 <<2 <<3
v v 4 ) 4 A
CPA (2) CPA (2) CPA (2)
|
. Sy Sy
S
<<6 | <<3 <<6 <<2
A v A A
CSA (1) CSA (1)
A A A
CPA (2) CPA (2)
\j v
X*C X*C
(a) Circuitary of SLSM (b) An alternative matching

Fig. 8 An Example of Match Choice

3.4 An Example of Sharing Issue

In major MCM methods, common subexpression sharing is an important way to reduce

the hardware cost. But SLSM does not consider other coefficients when process a coefficient.

12



To consider more coefficients, the two coefficient Co=101101 and C1:=011010 are used as this
example.

Fig. 9 (a) shows SLSM result Mao={F(Ss,3), F(S5,0)} for Co and Ma1={F(S3,3), F(S1,1)}
for C; . However, we can find another efficient matches Mpo={F(Ss,3), F(S5,3)} for Cpand
Mp1={F(Ss,1), F(S51,3)} for C; as shown in (b). Take M1 and Mpjinto comparison, Mp; uses
the same symbol Ss in Mpy without generating a new symbol Ss. On alphabet generation unit,
we can save 2 units area. In this case, we try to use a common symbol Ss to realize the two

coefficients instead of process the two coefficients individually.

X X
<2 <<1 <<?
4 4 4 =y A 4
CPA (2) CPA (2) CPA (2)
|
° Ss Se
Ss
<<3 <<3 <<1 <<2 <<1 <<3
A A N A A A A
CPA (2) CPA (2) CPA(2) || CPA(2)
v \j v v
X*Cq X*Cy X*Cq X*Cyq
(a) Circuitary of SLSM (b) An alternative matching

Fig. 9 An Example of Sharing Issue

3.5 An Example of Timing Issue

SLSM cannot take a trade-off between area and delay because of its fixed result. Under
different timing constraint, we must choose a suitable match for a coefficient rather than a
changeless match.

The following example shows two different matches, we assume coefficient

C=111000110010 and alphabet is Ag. Fig. 10 (a) shows that the match M={F(S7,9), F(S3,4),
13



F(S1,1)} 1s found by SLSM and (b) shows another match My={F(S3,10), F(S51,9) , F(Ss,4),
F(S1,1)}. Compared to My, maximum delay of My, is longer than M, but My has small area cost
than M,. In our work, we provide users for a timing constraint, extend all of possible matches

under this timing constraint and decide a best solution.

X X -
<<2 <<1 <<1 <<1 I
A =N A A
CPA (2) CPA (2) CPA (2)
|
o Y <<9 <<2
S5 ‘<<1 0 <<5h S3
<<9 | <<1| <<4 A A
CS,;\ 1 CSA (1)
0 .
CSA (1)
A A
CPA (2) v v
CPA (2)
A/ v
xX*C X*C
(a) Circuitry of SLSM (b) An alternative matching

Fig. 10 An Example of Timing Issue

3.6 Problem Formulation
In this thesis, we address the problem of optimal MCM design based on two stage
multiplier block architecture. We are given:

e aset of fixed-point coefficient {Co, C;..., Cp.1},

e the timing constraint from input X to output of fragment summation unit X*C,

e the delay and area ratio of CSA and CPA.

Our goal is to minimize total area cost including alphabet generation unit and fragment
summation unit under the given timing constraint.

14



Chapter 4
Our Proposed Algorithm

In this chapter, we describe our algorithm, called Global Optimal Symbol Match (GOSM),
which can find out matches for coefficients and implement the delay and area optimal
BSE-based FIR filters. Section 4.1 presents our algorithm including terminology (4.1.1),
pseudo code (4.1.2), complexity analysis (4.1.3) and two enhanced methods (4.1.4 and 4.1.5).
Section 4.2 illustrates a working example. Finally, section 4.3 gives Integer Linear

Programming (ILP) formulation to optimize delay and area.

4.1 Algorithm Flow

The detail processes are shown in Fig. 11. Step 1, we-enumerate all possible matches and
construct the Coefficient Assembly Tree (CAT). Step 2, to reduce the complexity, we

eliminate the redundant paths. Step 3, we use ILP to decide the best paths for all coefficients.

User define .
1.Timing constraint Coefficient set {Co, ...,

2.delay and area ratio Co-1)

\/

Step1 : Enumerate all possible matches and
construct CAT

4

Step2 : Eliminate the redundant path

Step3 : Decide the best paths for all coefficients

Fig. 11 GOSM Flow
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4.1.1 Terminology

e  (Coefficient Assembly Tree, CAT(C): A tree which is extended for a coefficient C.
For example, Fig. 12 (a) illustrates a CAT for a coefficient C=6’b011010.

e Path: A match which is from root to leaf in CAT(C).
For example, in Fig. 12 (a), The CAT includes 5 paths which correspond to 5
possible matches for this coefficient.

e  SymSet(Path): A set of symbol that are used on Path.
For example, the marked path in Fig. 12 (a) includes two fragment, (S1,4) and (Ss,1),
therefore, SymSet(Path)={S1,Ss}.

e  Delay(Path): Delay of Path including symbol generation time.
For example, Fig. 12 (b) shows the implementation of alphabet generation unit and
fragment summation. unit-which -correspond to the Path={(S1,4),(Ss,1)}. The
maximum delay is 4 which is from X to X*C.

e Area(Path): Area cost of Path:
For example, we use a'CPA-to_add two fragment, (S;,4) and (Ss,1), is shown in
below frame of Fig. 12 (b).

e  Area(S): Area cost of symbol S.
For example, we use two symbols, S; and Ss, on this Path, since the alphabet
generation unit includes two area cost, Area(S;)=0 and Area(Ss)=2.

e  Trim leading zero’s, TrimLZ(C): Trim the leading 0’s in C.
For example, TrimLZ(011010)=11010, TrimLZ(0001011)=1011.

e  Trim MSB, TrimMSB(C): Trim the MSB in C.
For example, TrimMSB(11010)=1010.

e |C]: Bitwidth of TrimLZ(C), where C is a binary number.

For example, [1001]=4, |011010[=5, |11010}=5.
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Difference of length, DOL(C, S): Return |C|-|S|, where C is a coefficient and S is a
symbol.

For example, DOL(11010,1001)=5-4=1 , DOL(11010,11)=5-2=3.

Residue(B, C): TrimLZ(B-C), where B and C are binary numbers.

For example, Residue(11010,10010)=TrimLZ(11010-10010)=TrimLZ(01000)=1000.

C=6'b011010

SymSet(Path)={S;; Ss}

(a)
X
<<2
4
CPA (2)
<<4 <<1 Ss
‘ Delay(Path)=2+2=4
CPA (2) Area(Path)=2
Area(Ss5)=2
\
X*C
(b)

Fig. 12 (a)A CAT Example. (b)The Delay and Area Calculations.
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4.1.2 Coefficient Assembly Tree Enumerator

CAT enumerator enumerates a CAT for a coefficient. To find out all CATs, we execute
CAT enumerator n times for n coefficients in coefficient set. The recursive pseudo code for

CAT enumerator as follows.

Initial: A=J;
CAT (Root, TrimLZ(C))
1 Symbol=0;
2 for num_1 from 0 to NZB(C)-1
3 C’=TrimMSB(C);
4 S=1;
5 Sym_Enum(C’, S, num_1);
6 forcachS € Symbol
7 d=DOL(C, S);
8 create a child node r=F(S,-d) for Root;
9 add symbol S into alphabet A;

10 CAT(r, Residue(C, S<<d));

End
Sym_Enum(C’, S, num_1)

1. if(num_1==0)

2 add S to Symbol;

3 return;

4. if(MSB(C*)==0)

5. Sym_Enum(TrimMSB(C”), S<<1, num_1);// skip current 0

6. else// MSB(C’)==1

7 if(NZB(C’)>num_1) // enough remaining 1’s?
8 Sym_Enum(TrimMSB(C”), S<<1, num_1);// skip current 1
9 Sym_Enum(TrimMSB(C’), S<<1+1, num_1-1);// pick current 1
End

Note that, the alphabet A is empty initially. To simplify the calculation we trim the
leading zero’s in C, before starting CAT. The first for loop in line 2 to line 5 generates the

useable symbol. Num_1 indicates the number of 1’s which must be chosen in C’. For example,
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assume C=011010 C’=TrimMSB(11010)=1010, it means zero 1‘s-combinations from two 1’s
in C’(C3), one 1’s-combinations from two 1’s in C’(C%) and two 1’s-combinations from two
1’s in C’(C2), after the for loop, by three kinds of different combinations we can get 4 possible
symbols 1(S3), 11(S3), 1001(Sg), 1101(S;13) and add them to a set Symbol. The second for loop
in line 6 to line 10, for each symbol S in Symbol, we create a child node r= F(S, d) where d is
DOL(C, S), add S into A and use the Residue(C, S<<d) to recursive call CAT. For example, we
create a child node r=F(1,d) for Root where d is DOL(011010,1)=4, add 1(S;) to A and call
CAT(r,1010). The recursive call terminates when the first for loop don’t generate any
symbols.

The Sym_Enum is a sub-function in CAT line 5 which is used to generate the useable
symbol for C. Before starting Sym_Enum, we trim the first 1 in C to an initial symbol S. By
Sym_Enum, the symbol S grows up to those useable symbols and stores in the set Symbol. In
each recursive call, we check the MSB(C’). If it’s 0, we skip this bit, let S<<1 and recursive
call Sym_Enum for TrimMSB(C?). If it’s 1, we can skip this 1 as a 0 if the remaining 1’s in C’
still enough also we can pick this‘1 and let (S<<1)+1 and decrease the index num_1 by 1. The
recursive call terminates when num_l “counts down to 0. An example for
Sym_Enum(1010,1,1) is illustrated in Fig. 14. In this example, S grew up to 11(S3) and

1001(Sy), it also means one 1’s-combinations from two 1’s in C’=1010(C%).
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C=011010
TrimLZ(C)=11010

CAT(R,11010)

CAT((S,,4),1010)
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C=11010
TrimMSB(C)=1010
S=1

Assume num_1=1

@ MSB(C)=1
C=010
‘ Symbol={11}
MSB(C)=0
C=10
Symbol={11}

MSB(C)=1

C=0
Symbol={11, 1001}
0
=1000

Fig. 14 Tlustration for Sym_Enum(1010,1,1)

4.1.3 Coefficient Assembly Tree Complexity

The analysis of CAT complexity, we try to find out NumP(k).

e  NumP(k): Number of possible path in CAT(C) such that NZB(C)=k.

Actually, NumP(k) is only related to NZB(C). For example, the CAT of 10011 and the
CAT of 11001 have identical number of paths because of their identical number of non-zero

bits. According to CAT enumerator, the recursive equation as follows

1, k=0,1
Nump(k) = {Z}:&(C}“l) - NumP(k — i — 1), otherwise (4.1)
, where C?'l represents i-combination from n-1 bits.

When k=2, the number of path: NumP(2)= Cg ‘NumP(1)+ C}-NumP(0) =1+1=2; if k=3,
21



NumP(3)= C3-NumP(2)+ C3-NumP(1)+ C3-NumP(0) =1*2+2+1=5. Table I shows NumP(k)

from k=0 to k=12.

Table I CAT Complexity
NZB(C) | NumP(k) | NZB(C) | NumP(k) | NZB(C) | NumP(k)
0 1 5 52 10 115975
1 1 6 203 11 673224
2 2 7 877 12 4213597
3 5 8 4140 >12 >4213597
4 15 9 21147

4.1.4 Pruned Coefficient Assembly Tree

To consider the timing issue, during enumerating CAT, we can check maximum delay
and prune those paths which are over timing constraint. The pseudo code of the modified

CAT, called PCAT is as follows.

Initial: A=J;
Pathmigae=<;
PCAT (Root, TrimLZ(C), Pathmigdie)
1 Symbol=Z;
2 for num_1 from 0 to NZB(C)-1
3 C’=TrimMSB(C);
4 S=1;
5 Sym_Enum(C’, S, num_1);
6 foreachS € Symbol
7 d=DOL(C, S);
8 add F(S, d) to Pathmidd|e;
9 if(Delay(Pathmigaie) <timing constraint)
10 create a child node r=F(S, d) for Root;
11 add symbol S into alphabet A;
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12 PCAT(r, Residue(C, S<<d), Pathmigdte);
End

The differences between CAT and PCAT are marked by bold text. To calculate maximum
delay of Path, we call PCAT with Pathpigge and record every node we enumerate. The
significant difference is that, before creating a childe node, we must estimate the delay if the
child node F(S, d) add to a temporary path Pathmigqie, corresponding to line 8 and line 9.

For example, the coefficient C is 11011101 and we assume the delay and area ratio of
CPA and CSA is 2 and the timing constraint is 5. When we execute to the node F(Ss, 4) in Fig.
15, PCAT(F(Ss,4), 1101, {F(S1,7), F(Ss5,4)}), we add the node F(S3,3) with an arrow to
Pathmigale and calculate the maximum delay of Pathmiggie={F(S1,7), F(S5,4), F(S1,3)} to decide
whether we create child node F(S3,3) or not. Because the delay of Pathpiggie is 5, which is
equal to the timing constraint, PCAT for node F(S1,3). will not be execute. By pruning on
F(S1,3), Those child nodes of F(S1,3) which are marked by dash circle will not be enumerated.

Pruned Coefficient Assembly Tree (PCAT) may not be enumerated completely as CAT
since the complexity will not be as pessimistic-as our analysis in section 4.1.3. In the
following chapter (5.4), we will show the reduction rate by pruning with different timing

constraint.
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P('Z[/Lnn/d/c

C=11011101

#SS

<74 <2 .
CPA (2)
(S12)) (850 ‘ <f3 I
S CSA (1)
(81,0)
CPA (2)
X*C

Fig. 15 A Pruning Example

4.1.5 Reduced Pruned Coefficient Assembly Tree

In this section, we propose a method, called reduction phase to reduce Coefficient
Assembly Tree complexity again. Once a path is completed in PCAT process (not create any
child node), we check SymSet(Path) and Area(Path) to decide whether we eliminate this path
or not. Similar to SymSet(Path), we store the smallest area path from those path have
completed so far. Since we only reserve the smallest area path for a kind of SymSet(Path).
Using hashtable technique, we can realize SymSet(Path) check in linear time. For example, if
the area ratio of CPA and CSA is 2 and coefficient C=11011101, we assume a path;
={F(51,7),F(S5,4),F(51,3),F(51,2),F(S1,0)} with respect to SymSet(Path;)={S;, Ss} store in
the temporary in previous action then a path,={F(S1,7),F(Ss,4),F(S1,3),F(S5,0)} with respect

to SymSet(Path,)={S1, Ss} now is completed. Because they have same SymSet and
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Area(Pathy)=4 is smaller than Area(Path;)=5, we replace path; by path; into the temporary.
path; is a redundant path in this case, eliminate path; does not affect our optimal solution
because Path, is a better choice whatever considering other coefficient. In chapter 5, we

show that the reduction phase can reduce about 20% total number of paths.

4.2 Working Example

We illustrate a complete example with two coefficients. The coefficient set is
{101101(Cy), 011010(C4)} and the delay and area ratio of CPA and CSA is 2, the timing
constraint is 4. Fig. 16 shows the overall process, and deep color node indicates a pruning
occur because of its timing violation. After executing PCAT for Cop, an alphabet A extends
completely. For each coefficient, through PCAT enumerator and reduction phase, we can get

two RPCAT and there are five paths for each coefficient,as shows in Fig. 17.

RPCAT(Cy)

\"T‘—,

D"

v e
& @

A= {Si, Ss, So, S33, S11, S37, Sa1, Sus, S3, S5}

Fig. 16 Illustrate RPCAT(Cy) in Working Example
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Fig. 17 The RPCAT Results for Cy and C;

4.3 Integer Linear Programming (ILP) Formulation

In the previous section, we enumerate all possible matches and construct the CAT.
Secondly, we form our problem to an ILP problem and use ILP solver to decide the best paths

for all coefficients.

4.3.1 Variables

In the proposed ILP formulation, two variables are used to model the behavior of
choosing a path in a CAT. First, VarPath indicates whether the path is selected or not. The

other one is VarS which means the symbol selection in the alphabet. The following equation
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lists the corresponding ILP formulations.

VarPath: - — 1, if Path;; is chosen by ILP solver. 42
arcathi; = 0, if Path;; is not chosen by ILP solver. (4.2)
_ (L, if §; is chosen by ILP solver.
vars; = {O, if S; is not chosen by ILP solver. (43)

4.3.2 Objective Function

Our proposed FIR filter is a two stage architecture, alphabet generation unit and
fragment summation unit. Since VarS is a 0-1 variable, we can calculate the area of alphabet
generation unit by Zjn;gl(Area(Si)-VarSi). Similarly, VarPath is also a 0-1 variable. The area
of fragment summation unit can' be . caleulated by similar equation, such as
ot Z}:Ol(Area(Pathi,j)-VarPathi,j). In order to minimize the total area cost, the objective
function can be formulated as:

Yo (Area(S)Vars) + Y I (Area(Path;j)-VarPath ) (4.4)
where n is number of coefficients
k is number of paths in ith coefficient and

m is number of symbols in alphabet A.

4.3.3 Existence Constraint

In CAT, each path means a kind of implementation, which is composed by many
symbols. If a Path;j is selected the corresponding symbols should be also existed in the
alphabet, i.e. S € SymSet(Path; j). Therefore, the existence constraint is used to guarantee all of

the symbols of the selected path is existed in the alphabet. The formulation is as follows:

VarPath; < min{VarSy,..., VarSn.1} Vv Path;;|Se SymSet(Path;;) (4.5)
4.3.4 Unigueness Constraint
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A coefficient can be produced by several implementations. If multiple implementations
are chosen, it results in hardware waste. In order to ensure only one path is chosen for a

coefficient, the uniqueness constraint should be accordingly formulated as:
S op(Vars) = 1 (4.6)

where K is number of paths for the coefficient

4.3.5 ILP Example

In section 4.2, we illustrate the example with two coefficients. After above procedure, we
can get 5 possible paths for each coefficient Cy and C, as show in Fig. 17. Then, the objective
1s minimized
4VarPathg ot+2VarPathg ;+2VarPathg »+2 VarPathg s +0VarPathg 4+
3VarPath; g+2VarPath; ;+2VarPath; +2VarPath, s+0VarPath; 4+
0VarS;+2VarSs+2VarSs+2VarSgt+3VarSy+3VarSis+3VarSz7+3VarSs +4VarSys.

In addition, the corresponding constraintsare listed below:

Existence constraint:
VarPathg o< min{VarS,}; VarPathg ;< min{VarSs};
VarPatho ,< min {VarSy}; VarPathg ;< min{ VarSs, VarSss};
VarPathg 4< min{VarSss};
VarPath o< min{VarS,}; VarPathg ;< min{VarSs};
VarPathg ,< min{VarSs}; VarPathg ;< min{VarSy};
Uniqueness constraint:
VarPathg ¢+VarPathg 1 +VarPathg ;+VarPathg s +VarPathg s=1;
VarPath, ¢+VarPath, ;+VarPath, ,+VarPath, s+VarPath; ,=1.
Eventually, we use ILP solver, named gurobi [17] to solve this ILP problem. The ILP

result is VarPathg ,=1, VarPath; ;=1 and VarSe=1, as shown in Fig. 18 and the best solution is
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Area(Pathg 2)+Area(Path; 3)+Area(Sq)=2+2+2=6.

RPCAT(Cy)

Fig. 18 ILP Results of Working Example
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Chapter 5
Experimental Results

5.1 Experiments Setup

The proposed BSE algorithm, GOSM, is developed in C++/Linux environment. We also
use this environment to develop SLSM [14]. The coefficient sets of these test designs are
generated by Matlab FDAtool [18].

Two widely used CPA architectures. First, a ripple carry adder (RCA) is the simplest
adder structure where the carry bit must wait for the previous full adder. Thus, the critical path
delay is relatively longer than otheradder structures: Second, a carry look-ahead adder (CLA)
calculates the carry bits before.the sum, which reduce the critical path delay dramatically.

Table II reports the synthesis results” of these two CPA and CSA (refer to 3.1)
architectures with different bitwidth under TSMC 180nm process. It apparently shows that
RCA is the smallest with longer. computation time and CSA is fastest with linear area
increasing. Thus, in high speed application, such as software defined radio (SDR), it is desired
to design a filter with shorter critical path delay. Therefore, we choose CLA as CPA and
decide that area ratio is 4(1368/376) in 16 bitwidth, 3(968/306) in 12 bitwidth and delay ratio
is 4(1.2/0.32) in 16 bitwidth, 3(0.95/0.32) in 12 bitwidth.

Table II Synthesis Results of Different Adder Architectures in TSMC .18um

Architectures 4-bit 8-bit 12-bit 16-bit

Delay(ns) 2.05 2.85 3.92 4.99
RCA 3

Area (um”) 134 141 211 282

Delay(ns) 0.60 0.79 0.95 1.2
CLA 5

Area (um”) 301 814 968 1368
CSA Delay(ns) 0.32 0.32 0.32 0.32

Area (um?) 190 235 306 376
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5.2 Case Study I : Versus SLSM

Table III/IV illustrates 10 filter designs with 16/12 bitwidth coefficients, named Ip
(lowpass), hp (highpass), bp (bandpass), bs (bandsotp) and their filter length. The area &
delay ratio is 4/3 for 16/12 bitwidth. First, we find out maximum delay and area cost for all
designs by using SLSM method as show in 2™ and 3™ columns. Then, we use those
Maximum delays as our timing constraints in GOSM method and the corresponding area
result are shown in right side columns. Rate is the percentage of (area cost by SLSM-area
cost by GOSM)/area cost by SLSM and #sym. represents number of symbols which ILP
solver actually chooses in GOSM.

Under same timing constraint, GOSM can minimize area cost average 26/22% in 16/12
bitwidth with timing constraint. Using SLSM; with the growth of the filter length, the area
cost of filter increase linearly. But-in GOSM, the area cost of filter increase slower.
Furthermore, by using GOSM; ILP solver chooses not only five symbols (avg. 18.) but grew
up with the filter length. For longer length filters, the.complex symbols appear in coefficient
frequently. The benefit of those complex symbels causes the different of the reduction ratio
between SLSM and GOSM in longer length filters. Therefore, the reduce ratio of area cost
and the length of filter are in direct proportion.

GOSM can find the solutions when timing constraint is tighter which illustrate in rows of
delay-2 and delay-1 since it expand the solution space. The Reduction rate of maximum delay

is at most 20%.
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Table I1I Results of Filters with Bitwidth of Coefficient=16 and Area & Delay Ratio=4

Designs SLSM GOSM

filter | delay | area delay delay-1 delay-2

area (rate) #sym. | area (rate) #sym. | area (rate) #sym.

bs 31 10 92 77 (16.3%) | 6 80 (13%) |7 97 (-5.4%) |10
Ip 32 10 89 76 (14.6%) | 6 80 (10.1%) | 8 95 (-6.7%) |9
hp 63 10| 144 | 126 (12.5%) |10 138 (4.2%) |8 166 (-15.3%) | 12
bp 64 11| 156 | 135 (13.5%) | 11 135 (13.5%) | 12 147 (5.7%) | 11
Ip_127 10| 231 186 (19.5%) |13 189 (18.2%) | 13 234 (-1.3%) |22
bp 128 10| 306 | 248 (18.9%) |17 271 (11.4%) | 17 344 (-12.4%) | 33
hp 255 10| 387 | 267 (31%). |27 276 (28.7%) | 27 311 (19.6%) |33
Ip_256 10| 395| 254 (35.7%) 21 262" (33.7%) | 21 300 (24.1%) | 26
bs 511 10| 626 | 354 (43.5%) | 35 357 (43%) |35 424 (32.3%) |44
Ip 512 10| 820 | 378 (53.9%) |36 387 /(52.8%) | 36 440 (46.4%) | 44
Avg. 10.1 | 324.6 | 210.1 (26%) -18.2 | 2175 (23%) |18.4 |2558 (16.3%) |24.4
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Table IV Results of Filters with Bitwidth of Coefficient=12 and Area & Delay Ratio=3

Designs SLSM GOSM
filter | delay | area delay delay-1 delay-2
area (rate) #sym. | area (rate) #sym. | area (rate) #sym.
bs 31 7 45 38 (15.6%) | 6 43 (4.4%) |7
Ip 32 7 38 33 (13.2%) | 5 38 (0%) 5
hp 63 7 61 53 (13.1%) | 8 62 (-1.6%) | 8
bp 64 8 67 57 (15%) |9 57 (15%) |10 66 (1.5%) |10
Ip 127 7 76 54 (289%) |9 57 (-25%) |10
bp 128 71 124 109 (12.1%) | 13
hp 255 7 93 64 (31.2%) | 12 70 (24.7%) | 13
Ip_256 7 80 56 (30%) 12 59 426.3%) | 12
bs 511 71 106 72 (32.1%) | 12
Ip 512 71 125 86 (31.2%) | 14 93 (25.6%) | 14
Avg. 7.1 81.5| 622 (22.2%) .10 599 (8.7%) |9.9 66 (1.5%) |10

5.3 Case Study Il : Synthesis Result

We use synopsys Design Compiler [19] and TSMC 0.18um CMOS process on a

workstation. Table V illustrates the synthesis result of test design: Ip 32 with 16 bitwidth

coefficients.

Compared GOSM with SLSM, our estimations are given from Case Study I multiplied

by 1 CSA unit factor and corresponding synthesis results are shown in right side. In this

design, we a little over estimate about 13% in delay and 6.6% in area. In Diff. row, we

estimate GOSM can reduce 20% delay but increase 6.74% area overhead. Actually, GOSM

can reduce 21% delay but increase 7.1% area overhead. It is means that the reduction rate in
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Table III and IV can accurately correspond to their synthesis result.

Table V Synthesis Result of Test Design: Ip 32

Our estimation Synthesis Result of Multiplier
Algorithms Block (error rate)
Delay(ns) Area( umz) Delay(ns) Area(pmz)
SLSM 10*0.32=3.2 | 89*376=33464 | 2.8 (12.5%) | 31201.6 (6.7%)
GOSM 8%0.32=2.56 | 95*376=35720 | 2.2 (14.4%) | 33420.3 (6.5%)
Diff. 20% -6.74% 21% -7.1%

5.4 Case Study 111 : Pruned-CAT

In this case study, Table"VI shows the comparison of number of paths without/with
pruning (section 4.1.4). The bitwidth of coefficient is 16. 2" column shows number of paths
without pruning, CAT algorithm. Right side columns show number of paths using PCAT
algorithm with 8~11 timing constraints. Number of paths extremely decreases to less than 5%

remaining with 8 timing constraint. Under 10 timing constraint, pruning technique also

reduces average 37.5% number of paths.
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Table VI Results of PCAT

Designs # of possible paths with reduction phase(reduction rate)
filter | Without Timing constraint
pruning 11 10 9 8

bs 31 5447 | 5196 (4.6%) 3411 (37.4%) | 494 (91%) 49 (99.1%)
Ip 32 1842 | 1821 (1.1%) 1590 (13.7%) | 435 (76.4%) 49 (97.3%)
hp 63 27200 | 24893 (8.5%) 8464 (68.9%) | 635 (97.7%) | 113 (99.6%)
bp 64 21003 | 19909 (5.2%) | 12359 (41.2%) | 846 (96%) 120 (99.4%)
Ip 127 9413 | 9094 (3.4%) 6714 (28.7%) | 1272 (86.5%) | 216 (97.7%)
bp 128 58780 | 53944 (8.2%) | 19479 (66.9%) | 1711 (97.1%) | 236 (99.6%)
hp 255 18684 | 17834 (4.5%). | 11869 (36.5%) | 1830 (90.2%) | 463 (97.5%)
Ip 256 18077 | 17213  (4.8%) 111268 (37.7%) | 1618 (91%) 487 (97.3%)
bs 511 16912 | 16452 (2.7%) | 12944 (23.5%) | 2757 (83.7%) | 829 (95.1%)
Ip 512 16521 | 16139 (2.3%) | 13082:(20.8%) | 4284 (74.1%) | 1068 (93.5%)
Avg. 19387.9 | 18249 (4.5%) +{. 10118 _(37.5%) | 1588 (88.4%) | 363 (97.6%)

5.5 Case Study IV : Reduced CAT

Table VII shows the comparison of number of paths before/after reduction phase (section

4.1.5). The bitwidth of coefficient is 16.There is no timing constraint and pruning occurrence.

In # of possible paths column, reduction phase can reduce average 27.8% number of paths

and save the run time of ILP solver. In bp 128 this case, we can extra cost no more than 1 sec

on enumerating RCAT but get about 50% speedup on ILP solving time. By using reduction

phase, we can reduce ILP solver overhead, only increase a little enumerating time.
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Table VII Results of RCAT

Designs Before reduction After reduction

filter # of possible paths | Run time(sec.) # of possible paths Run time(sec.)

Tree ILP (reduction rate) Tree ILP

bs 31 5447 1 0.8 1.09 3965 (27.2%) | 1.43 | 0.61
Ip 32 18421 0.22 | 0.15 1428 (22.5%) [ 0.84 | 0.12
hp 63 27200 | 12.6 17.74 19782 (27.3%) | 13.53 | 8.85
bp 64 21003 | 6.74 | 5.16 13789 (34.3%) | 7.78 | 2.34
Ip 127 9413 | 1.95 |0.62 6786 (27.9%) | 4.39 | 0.36
bp 128 58780 | 40.19 | 73.34 43710 (25.6%) | 40.89 | 37.67
hp 255 18684 | 4.6 1.82 12930 (30.8%) | 9.46 | 0.92
Ip_256 18077 ['5.06— [ 2.26 12732 (29.6%) { 9.96 | 0.97
bs 511 16912 | 3.87 1 12179 (28%) | 13.37 | 0.59
Ip 512 16521 | 3.61 0.93 12393 (25%) | 13.5 ]0.65
Avg. 19387.9 |<7.96 10.41 13969.4 (27.8%) | 11.29 | 5.31

5.6 Case Study V : Reduced Pruned CAT

Combining pruning with reduction phase, Table VIII illustrate the results of RPCAT.

Table VIII is the result of Table VI with reduction phase. Compared to Table VI, RPCAT

also has the same tendency on timing axis but overall reduce about 20% number of path

when timing constraint is 9~11. We succeed in reducing CAT complexity by using above

two strategies.
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Table VIII Results of RPCAT

Designs # of possible paths with reduction phase(reduction rate)
filter | Without Timing constraint
pruning 11 10 9 8

bs 31 3965 | 3725 (6.1%) 2397 (39.5%) | 397 (90%) 49  (98.8%)
Ip 32 1428 | 1407 (1.5%) 1186 (17%) 336 (76.5%) 49 (96.6%)
hp 63 19782 | 17636 (10.8%) | 5940 (70%) 450 (97.7%) | 111 (99.4%)
bp 64 13789 | 12800 (7.2%) 7591 (44.9%) | 575 (95.8%) | 113 (99.2%)
Ip 127 6786 | 6481 (4.5%) 4641 (31.6%) | 1017 (85%) 214 (96.8%)
bp 128 43710 | 39167 (10.4%) | 14120 (67.7%) | 1260 (97.1%) | 226 (99.5%)
hp 255 12930 | 12121 (6.3%) 7673 (40.7%) | 1409 (89.1%) | 447 (96.5%)
Ip_256 12732 | 11902  (6:5%) 7471 | (41.3%) | 1255 (90%) 469 (96.3%)
bs 511 12179 | 11737 (3.6%) 8793 ((27.8%) | 2118 (82.6%) | 786 (93.5%)
Ip 512 12393 | 12019 (3.1%) 9403 :(24.1%) | 3223 (74%) | 1000 (92%)
Avg. 13969.4 | 12899 (6%) 6921.5_.(40.5%) | 1204 (88%) 346 (96.9%)
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Chapter 6
Conclusions & Future Works

In this thesis, Global Optimal Symbol Match (GOSM) is proposed for FIR filer synthesis.
This method explores a large solution space, gives an optimal solution under the given timing
constraint by formed ILP problem, provides a delay and area optimal BSE-based FIR filters
and makes trade-off between area and delay.

Compared to SLSM, under the same timing constraint, GOSM reduces area cost about
25% and reduces maximum delay at most 20%.

According to case study II, BSE-based FIR filter by GOSM method can achieve up to
about 400MHz clock rate in .I8um process and it could be suitable for high speed DSP
applications.

We also propose two different kinds of method, PCAT and RCAT to reduce the
complexity of coefficient assembly-tree. PCAT reduces 37.5% number of paths when the
timing constraint is 10. RCAT takes at most 50% speedup on ILP solving time.

GOSM produces an optimal solution in BSE architecture with two reduction methods to
seamless minimize the complexity of coefficient assembly tree. However, for some coefficient,
the number of paths is still large and takes too much long time for ILP solver. From those
cases which NZB(C) is much bigger (i.e., up to 13 bits), we can separate this coefficient C to
some sub-coefficients and then their non-zero bits would be smaller. Although the optimal
property is scarified, a good-quality BSE-based filter can be still generated for an extremely

large filter case.
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