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以靜態機率模型分析為基礎之應用於快速傅利葉轉換處理

器設計的精度最佳化技術 

 
研究生：石銘恩                      指導教授：周景揚 博士 

國立交通大學 

電子工程學系 電子研究所碩士班 

摘     要 

正交頻分多工系統被廣泛的使用於現今的設計，過去幾十年間可以找到許多關於正

交頻分多工計算核心的快速傅利葉轉換處理器的研究資料。這篇論文描述一個應用於正

交頻分多工系統的計算核心的快速傅利葉轉換處理器設計的精度最佳化流程，藉由決定

每一級的尺規行為來得到最佳化的訊號對量化雜訊比。此方法利用機率分佈來建立每一

級輸出信號的靜態行為模型。由無條件捨去法以及飽和算法的雜訊可以因此被分析，而

做出小數點位置的決定。我們提出的這種方法不但不用很花費時間的模擬分析，而可以

在很短的時間內，固定每一級的數字格式並得到最佳化的訊號對量化雜訊比。這種最佳

化流程可以處理不同的快速傅利葉轉換點數、快速傅利葉轉換演算法、字元長度以及輸

入的機率分佈。實驗結果顯示我們的方法可以在 8192 點、以 2 為基數的快速傅利葉轉

換處理器中，跟傳統的靜態尺規化分析方法比較，節省 3位元的字元長度，而不增加任

何硬體複雜度。精度更是非常接近動態尺規化方法。 
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Precision Optimization for FFT Processor Design using 
Static Probability-Based Analysis 

Student：Ming-En Shih              Advisor：Dr. Jing-Yang Jou 

Department of Electronics Engineering 
Institute of Electronics 

National Chiao Tung University 
 

ABSTRACT 

As OFDM-based systems are widely adopted in today’s designs, many literatures of FFT 

processors, the arithmetic kernel of OFDM-based systems, can be found in the past decades. 

For a high performance FFT processor, many parameters should be decided carefully. In this 

thesis, we proposed a precision optimization flow to decide the scaling behavior at each stage 

with optimized output SQNR for FFT processor. The methodology utilizes the probability 

distribution to model the statistical behavior of the output at each stage. The noise from 

truncation and saturation arithmetic can be further analyzed to make the scaling decision. 

Without time-consuming and pattern-dependent simulations, the proposed method fixes the 

number format at each stage in a short time that gives optimized SQNR. The optimization flow 

has ability to handle different FFT sizes, FFT algorithms, wordlengths, and distributions of 

input signals. Experimental results designate that about 3 bits wordlength can be saved in 

8K-point, radix-2 FFT processor, with no increasing in hardware complexity compared to 

traditional static scaling method. Furthermore, the precision is very close to the dynamic 

scaling method. 
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Chapter 1 
Introduction 
 

Recently, high-data-rate wireless communication systems are the focus of research and 

development. Orthogonal Frequency Division Multiplexing (OFDM) technology is one of the 

favorable choice for future broadband system and very suitable for video transmission and 

mobile Internet applications such as digital video/audio broadcasting (DVB/DAB) [1], local 

area network (IEEE 802.11a/g/n) [2], and network for multiple users (IEEE 802.16, WiMAX, 

LTE) [3-5]. As is well known, the Fast Fourier Transform (FFT) processors are one of the key 

components in OFDM-based wireless system [4, 6, 7]. The simplified block diagram of 

OFDM is shown in Fig. 1. In [8], the authors showed through extensive simulation that the 

most computationally intensive parts of such a high-data-rate system are the FFT core. 

Therefore, many literatures have been reported on FFT processor design nowadays.  
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Fig. 1 Simplified block diagram of OFDM transmitter/receiver 
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The architectures of FFT processors can be divided into two main categories: 1) 

memory-based architectures and 2) pipeline-based architectures. Memory-based architectures 

usually consist of a butterfly unit and certain number of memory blocks for providing an 

area-efficient design. Alternatively, a pipelined architecture consists of multiple stages to 

provide higher throughput at the cost of more hardware. In general, memory-based 

architectures are suitable for low hardware cost and long-size FFT processors whose size is not 

smaller than 512 [3]. And the pipeline-based architectures are feasible for short-size and high 

throughput applications. In this work, we focus on the FFT design with fixed wordlength at 

each stage, that is, the output wordlengths of every stages are the same as input signals. The 

memory-based architectures are under this constrain for sure. However, it is not limited for 

memory-based FFT. For many pipeline-based architectures, the fixed wordlength is also 

preferred due to the considerations of the hardware cost and the critical-path delay [9]. 

Taking the actual hardware design into consideration, the precision in terms of Signal to 

Quantization Noise Ratio (SQNR) is a significant design factor of system performance [10]. 

Conducting the addition and subtraction operations may cause overflows during FFT 

computations. In practice, the FFT algorithms are implemented by fixed-point arithmetic since 

the resolution of coefficients and operations cannot be infinite. Finite number of bits in binary 

format is used to represent all signals and coefficients. As a result, rounding or truncation 

operations introduce noise which is referred as quantization noise. Besides, conducting the 

addition and subtraction operations may cause overflows during FFT computations. Although 

increasing wordlength can be used to avoid accuracy loss [11], the hardware cost and the 

critical-path delay are increased accordingly.  

Therefore, many scaling methods have been proposed for an efficient FFT processor which 

meets SQNR requirement with the fixed-wordlength constrain [1, 7, 9, 12-14]. Oppenheim et al. 

[12] proposed a basic scaling method which is scaling by 1/2 for each radix-2 stage. Since the 

scaling factor is trivial to implement, the approach is the simplest scaling method. We define a 



 

3 

scaling method with a constant scaling factor as a static scaling method. Besides, the Block 

Floating Point (BFP) [14] and its variants [1, 7, 9, 14, 15] employ intermediate buffers to store 

the output data, and decides the output format appropriately to maximally utilize the dynamic 

range which gets good SQNR. However, these methods have a penalty in terms of area, power, 

latency, and complex control unit. This kind of methods is called the dynamic scaling method. 

Due to the increased complexity of BFP, traditional scaling optimization methods rely on 

time-consuming simulations to fix a static scaling behavior at each stage [13].  

In this thesis, we propose a static scaling optimization flow to quickly decide the number 

format at each stage to optimize the SQNR with given probability distribution of input signals, 

FFT algorithm, and wordlength. For the same SQNR requirement, smaller wordlength is 

needed in an FFT processor with no increase in complexity compared to existing static designs 

[12, 13]. 

The remainder of this thesis is organized as follows. In Chapter 2, we briefly review the 

fundamentals of FFT algorithm and architecture. The proposed static scaling optimization 

flow is demonstrated in Chapter 3. Chapter 4 shows our experimental setup and presents the 

experimental results. Finally, Chapter 5 gives the concluding remarks of this thesis. 
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Chapter 2 
Preliminaries 
 

In this chapter, we will review FFT algorithms, FFT architectures, and the scaling 

consideration in FFT hardware design. 

2.1 The FFT Algorithm 
Since the FFT algorithm was proposed by Cooley and Turkey in 1965 [16], many similar 

algorithms have been developed to reduce the computational complexity of FFT [17-19]. To 

structure the DFT computation by forming increasingly smaller subsequences of the input 

sequence x(n) is called a decimation-in-time (DIT) FFT algorithm. Alternatively, using a 

first-half and second-half approach which divides the output sequence X(k) into increasingly 

smaller subsequences to decompose the DFT computation is called a decimation-in-frequency 

(DIF) FFT algorithm [20]. Because both of these algorithms are similar in nature, the DIT 

algorithm is used to illustrate the FFT algorithm in our thesis.  

We will introduce the radix-2/4/8 DIT FFT algorithm, and the general form, that is, 

radix-r DIT FFT algorithm, where r is 2s for s is any positive integer. Furthermore, the 

computational complexity of the radix-r FFT algorithms will be compared.  

 

2.1.1 Radix-2 DIT FFT Algorithm 

An FFT is an efficient algorithm to compute the Discrete Fourier Transform (DFT). The 

formulation of N-point DFT is define as 

       X(k) = ∑ x(n)WN
nkN−1

n=0 , k = 0,1, … , N − 1      (2.1) 

where x(n) and X(k) are complex numbers, 

and the coefficient WN
nk = e

−j2πnk
N = cos �2πnk

N
� − j sin �2πnk

N
� is called the twiddle factor. 
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Radix-2 Decimation-In-Time (DIT) FFT Algorithm divided x(n) into its even- and odd- 

numbered points and substitute n=2r for n is even, n=2r+1 for n is odd. 

X(k) = � x(2r)WN
(2r)k

N
2−1

r=0
+ � x(2r + 1)WN

(2r+1)k
N
2−1

r=0
 

= ∑ x(2r)WN
2rk

N
2−1
r=0 + WN

k ∑ x(2r + 1)WN
2rk

N
2−1
r=0       (2.2) 

Since 2/
2

NN WW = , (2.2) can be rewritten as 

   X(k) = ∑ x(2r)WN/2
rk

N
2−1
r=0 + WN

k ∑ x(2r + 1)WN/2
rk

N
2−1
r=0      (2.3) 

Each of the sums in (2.3) can be recognized as an N/2-point DFT. The first term is the 

N/2-point DFT of the even-numbered points of the original sequence and the second term is the 

odd-numbered points shown in Fig. 2. Then we divide k into k and k+N/2, for k = 0, 1, …, 

N/2-1. Because WN
N/2 = e−j�

2π
N �

N
2 = e−jπ = −1  and WN

r+N/2 = WN
N/2WN

r = −WN
r . Equation 

(2.3) can be rewritten to 

X(k) = ��x(2r) + WN
kx(2r + 1)�

N
2−1

r=0

WN/2
rk  

X �k + N
2
� = ∑ �x(2r) − WN

kx(2r + 1)�
N
2−1
r=0 WN/2

rk       (2.4) 

Through log2N-time recursive decompositions, we can complete an N-point FFT. As a 

result, the FFT computation can be computed by a butterfly shown in Fig. 3. The whole signal 

flow for the 8-point DIT FFT computation is shown in Fig. 4. From (2.1), we can find that the 

complexity of multiplications in DFT is N2. After the decompositions of FFT, the complexity 

of multiplications becomes N/2*(log2N-1) and the complexity of additions and subtractions is 

Nlog2N, which is much less than the original DFT equations. 
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Fig. 2 First stage of the decimation-in-time FFT algorithm for 8-point DFT 
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Fig. 3 The butterfly of a radix-2 DIT FFT algorithm 

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

X[0]

X[4]

X[2]

X[6]

X[1]

X[5]

X[3]

X[7]

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

0
NW

0
NW

0
NW

0
NW

0
NW

0
NW

0
NW

2
NW

2
NW

2
NW

1
NW

3
NW

 

Fig. 4 The signal flow graph of the 8-point DIT FFT algorithm 
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2.1.2 Radix-4 DIT FFT Algorithm 

 Similar to radix-2 FFT algorithm, we can also use 4-point DFT to decompose N-point 

FFT, which is called the radix-4 FFT algorithm. We split the N-point input signals into four 

subsequences, x(4n), x(4n+1), x(4n+2), x(4n+3), r = 0, 1, …, N/4-1, and the N-point DFT, 

with dividing k into k, k+N/4, k+2N/4, k+3N/4, for k=0, 1, …, N/4-1, can be rewritten as 

X(k) = � �x(4n) + WN
kx(4n + 1) + WN

2kx(4n + 2) + WN
3kx(4n + 3)�

N
4−1

n=0
WN/4

nk  

X(k + N/4) = � �x(4n) − jWN
kx(4n + 1) − WN

2kx(4n + 2) + jWN
3kx(4n + 3)�

N
4−1

n=0
WN/4

nk  

X(k + 2N/4) = � �x(4n) − WN
kx(4n + 1) + WN

2kx(4n + 2) − WN
3kx(4n + 3)�

N
4−1

n=0
WN/4

nk  

X(k + 3N/4) = ∑ �x(4n) + jWN
kx(4n + 1) − WN

2kx(4n + 2) − jWN
3kx(4n + 3)�

N
4−1
n=0 WN/4

nk   

(2.5) 

Equation (2.5) illustrates the radix-4 butterfly computation as shown in Fig. 5. The 

complexity of multiplications in the radix-4 FFT algorithm is 3/4N*(log4N-1), which is lower 

than radix-2, as the complexity of additions and subtractions is Nlog2N, which is the same as 

that of radix-2. 

0
NW
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NW

2
NW

3
NW

 

Fig. 5 The butterfly of a radix-4 DIT FFT algorithm 
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2.1.3 Radix-8 DIT FFT Algorithm 

Compared to the radix-2 and radix-4 FFT algorithms, the radix-8 FFT algorithm can 

further reduce the complexity of multiplications. The general from is 

X �k + qN
8
� = ∑ W8

pqWN
pk ∑ X(8n + p)WN/8

nk
N
8−1
n=0

7
p=0     (2.6) 

where q=0, 1, …, 7. The complexity of multiplications is 7N
8
∗ (log8 N − 1). 

 

2.1.4 Radix-r DIT FFT Algorithm 

For general cases, we derive the radix-r DIT FFT algorithm, where r is 2s, and s is any 

positive integer. For N-point DFT, the general form is  

X �k + qN
r
� = ∑ Wr

pqWN
pk ∑ X(rn + p)WN/r

nk
N
r−1
n=0

r−1
p=0    (2.7) 

where q=0, 1, …, r − 1. The complexity of multiplications is (s−1)N
s

∗ (logs N − 1). 

 

2.1.5 Comparison of Radix-r DIT FFT Algorithms 

Table I shows the nontrivial complex multiplication required for radix-2, radix-4, and 

radix-8 algorithm [17]. Since the number of stages is logr N, where r is the radix number, the 

higher-radix FFT algorithm has lower complexity of multiplications obviously. The radix-8 

FFT algorithm has only about half of complex nontrivial complex multiplications compared 

to the radix-2 FFT algorithm, as listed in Table I. Nevertheless, higher hardware cost is 

required for the implementation of higher-radix butterfly unit. For example, the butterfly unit 

of the radix-8 FFT algorithm needs 7 nontrivial complex multipliers, while the butterfly unit 

of radix-2 FFT algorithm needs only 1 complex multiplier. Designers have to choose the 

feasible algorithm to optimize area, power consumption, and throughput. 
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Table I Nontrivial complex multiplications required for radix-2, radix-4, and radix-8 FFT algorithm 

DFT size Radix-2 Radix-4 Radix-8 

8 2 2 0 

16 10 8 6 

32 34 28 20 

64 98 76 48 

128 258 204 152 

256 642 492 376 

512 1538 1196 824 

1024 3586 2732 2104 

2048 8194 6316 4792 

4096 18434 13996 10168 

8192 40962 31404 23992 

 

2.2 The FFT Architecture 
The architectures of FFT processors can be divided into two main categories: 1) 

memory-based architectures and 2) pipeline-based architectures. In general, memory-based 

architectures are suitable for low hardware cost and long-size FFT processors whose size is 

not smaller than 512 [3]. And the pipeline-based architectures are feasible for short-size and 

high throughput designs. More details are introduced in the following subsections. 

2.2.1  Memory-based Architectures 

Memory-based architectures are the simplest FFT architecture, as shown in Fig. 6. 

General speaking, it consists of a storage and a processing element (PE) which contains one 

or few butterflies (BF). Data are read from the storage and computed in the PE. After the 

computation in butterflies, the results are written back to the storage once for each stage. The 
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number of stages for the N-point FFT computation is logr N. The number of butterflies and the 

algorithm in the processing element can be chosen freely to meet the throughput rate 

requirement. To solve the problem of the memory bandwidth, the generalized conflict-free 

addressing schemes for memory-based FFT architectures are presented in [21, 22]. 

Control Unit

Memory

Mux Radix-r PE Mux

 

Fig. 6 An example of the memory-based architecture 

2.2.2 Pipeline-based Architectures 

Pipeline-based architectures are usually regular, modular, local connection, and high 

throughput rate with higher hardware complexity [23]. In general, pipeline-based 

architectures can be divided into two types of architectures, which are the Single-path Delay 

Feedback (SDF) FFT architecture [24, 25] and the Multi-path Delay Commutator (MDC) [26]  

architecture. Take the SDF architecture as an example, the radix-2 SDF (R2SDF) architecture 

is shown in Fig. 7. The R2SDF can use the registers very efficiently by storing half of the 

butterfly output into the shift register while the other half of output is passing to the next stage. 

That is, only one output passes to the next stage in each cycle. 

Radix-2
BF

×

Radix-2
BF

Radix-2
BF

Radix-2
BF

8 4 2 1

× ×
 

Fig. 7 The R2SDF architecture for 16-point FFT 
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2.3 Scaling Method 
Because of the addition and subtraction operations in FFT computations, the value range is 

increased from stage to stage. One solution to avoid possible overflows in a fixed-point FFT 

design is to increase the wordlength [11]. However, the increased wordlength has many 

drawbacks in FFT implementations. First, a larger storage is required to store the data which 

increases both chip area and power consumption. Second, a longer wordlength results in worse 

critical-path timing for the arithmetic units, which is not preferred in the high-throughput FFT 

designs. The most of all, the wordlength is fixed in the memory-based FFT architecture which 

cannot allow different wordlengths from stage to stage. Consequently, many scaling methods 

have been proposed for FFT processors to scale the data for wordlength reduction. The scaling 

scheme for fixed-point FFT processors can be roughly divided into two categories: 1) Static 

Scaling Method and 2) Dynamic Scaling Method. 

Oppenheim et al. [12, 20] suggest a static scaling procedure which is easy to understand, 

simple to implement, and most often used. Since the maximum magnitude increases by no more 

than a factor of 2 from stage to stage, we can prevent overflow by incorporating an attenuation 

of 1/2, that is, increase 1 bit for integer-part and decrease 1 bit for fraction-part, at the input to 

each butterfly, as shown in Fig. 8. In this case, the SQNR may not as good as the dynamic 

scaling method, but the hardware is very simple to implement.  
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Xm-1[p]

r
NW

2
1
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Xm-1[q]

Xm[p]

Xm[q]  

Fig. 8 Butterfly showing scaling by 1/2 at the input 

 We can further improve the method with a slight modification. Compared to scaling at 

input, incorporating the attenuation of 1/2 at the output to each stage is a better way in terms of 
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SQNR. Since the original method induces the noise at the input of each butterfly, the accuracy 

will be lost from the beginning. We modify the butterfly of Fig. 8 to that of Fig. 9, where the 

output is noiseless before scaling. Fig. 10 shows the simulation result of two methods. We can 

see that scaling at the output is always a better choice.  
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Fig. 9 Butterfly showing scaling by 1/2 at the output 

 
Fig. 10 Comparison of different scaling positions, wordlength = 12 bits 

 In [13], Ramakrishnan et al. consider a special case of FFT design for OFDM receivers. 

The authors exploit the Gaussian nature of OFDM signals to predict the growth of the value 

range of signals at each stage and decide the scaling behavior appropriately. They suggest 

increasing 1 bit of integer parts for every two stages instead of every stage. However, the 

model of Gaussian distributed inputs is not suitable for general case, like uniformly distributed 

input which is most assumed in FFT analysis [11, 12]. Furthermore, the method has good 

results only in a small range of σ of Gaussian distribution. Fig. 11 shows the SQNR for different 

σ with the two methods.  
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Fig. 11 The SQNR for different σ with 12-bits, 8192-point FFT 

The other way to do the static scaling optimization is through time-consuming and 

pattern-dependent simulations to find feasible number formats for each stage. Since the 

exhaustive simulation is impractical in many cases, designers usually intuitively pick some 

configurations to evaluate, and choose the best one among them. 

The dynamic scaling method uses a shard-exponent concept which not only reduces the 

wordlength in FFT processors but also acquires good SQNR. The block floating point (BFP) 

algorithm [1, 14, 20], which is one of the dynamic scaling approaches, employs intermediate 

buffers to store the output data, and detects the maximum value to decide the exponent for each 

buffer. Unfortunately, the intermediate buffers and exponent storage causes a large amount of 

area overhead. Also, the additional processing latency and power consumption are introduced 

by the intermediate buffer accesses and data detections. Due to the increased complexity of the 

dynamic scaling method, the static scaling approach is preferred for many FFT designs in 

reality. 

 We propose a static scaling optimization method to maximize the precision in terms of 

SQNR. Not only the hardware complexity is the same as that of the traditional static scaling 

method, but also the precision comes close to the dynamic scaling method. Our method 

utilizes the concept of the derived distribution of signals to estimate the noise induced by both 
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truncation and saturation operations. It can suggest the number format for each stage in a 

short time, and also can handle different FFT sizes, FFT algorithms, wordlengths, and 

distributions of input signals. 
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Chapter 3 
The Proposed Approach 
 

This chapter has four sections. The first one describes the motivation of static scaling 

optimization. And the second one defines the problem formulation. In the third section, we 

illustrate the probability model and the derived distribution with the computation in FFT. Last, 

we present the proposed static scaling optimization method. The purpose of this thesis is to fix 

the scaling behavior at each stage with optimized SQNR in short time. 

 

3.1 Motivation 
With the approach of [12], the integer-part bit would be increased by 1 for each butterfly. 

Fig. 12 shows the general form of the scaling behavior for each stage with the radix-2 FFT 

algorithm. Note that a stage is a radix-2 butterfly computation and the format <m, n> means a 

2’s complement binary number with m bits for integer-part and n bits for fraction-part, where 

m + n = WL (total wordlength). The number of representable values is 2WL. When m is 

increased by 1, the scale of representable values is double. The n is then decreased by 1, so 

the precision is decreased. Take the radix-2 64-point FFT with <1, 11> input format as an 

example, it has log2 64 = 6 stages, therefore the output format would be <7, 5>. 

Stage s<s, WL-s> <s+1, WL-s-1>

 

Fig. 12 The scaling behavior for each stage with the approach of [12] 

 However, through 21.6M sets of 64-pt FFT simulation which takes 12 hours to run, the 

probability that need 7 bits for integer-part is about 0%. That is, we may use fewer bits for 



 

16 

integer-part to acquire better SQNR since more bits for fraction-part are reserved. To handle 

the possible overflow problems, we apply saturation arithmetic which is a common technique 

in DSP computation to reduce the noise. 

 Saturation arithmetic is an arithmetic to limit a number to a fixed range between a 

minimum and maximum value. For example, if the valid range is from -8 to 7 (4 bits for 

integer-part), the overflow occurs when we compute 2’b0100 (4) + 2’b0101 (5) = 2’b1001 

(-7). The noise would be 9 – (-7) = 16 since the correct answer is 9. If we apply saturation 

arithmetic, the result would be saturated to 7 when the correct answers larger than 7. So the 

error is 9–7 = 2 which is much smaller than 16. 

 We illustrate an example of static scaling optimization. Fig. 13 shows a configuration 

which is the traditional scaling behavior of 256-point FFT and the SQNR is 35.39 dB. If we 

modify the output format at Stage 8 from <9, 3> to <8, 4>, the SQNR would be increased to 

37.03 dB. And we further modify the output format at stage 7 from <8, 4> to <7, 5>, the 

SQNR would be increased to 38.47 dB. However, if we further modify the output format at 

stage 2 from <3, 9> to <2, 10>, the SQNR would be decreased to 17.82 dB. The example tells 

that the format of each stage has to be chosen appropriately to get the best SQNR. 

Stage 1 Stage 2 Stage 3 Stage 4

Stage 5Stage 6Stage 7Stage 8

Input
<1, 11>

<2, 10> <3, 9> <4, 8>

<5, 7>

<6, 6><7, 5><8, 4>Output
<9, 3>

 

Fig. 13 The scaling behavior for 256-point FFT with the approach of [12] 

 Traditional static scaling optimization method has relied on time consuming simulations 

to fix the scaling behavior at each stage [13]. Nevertheless, it costs about 80 hours to simulate 

only 10k sets of 8192-point FFT for one configuration. And for the radix-2 FFT algorithm, 

since each stage has to be decided increasing 1 bit of integer-part or not, 8192 possible 
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configurations exist. It needs about 75 years to do the simulation which is very impractical. 

As a result, we propose a static scaling optimization approach which can fix the scaling 

behavior in less than 2 minutes in this thesis. 

 

3.2 Problem Formulation 
To define the precision optimization problem, we illustrate the problem as follow: Given 

FFT size, radix-r FFT algorithm where r is the power of 2, wordlength for both I/O and 

storage, and the input probability distribution, the static scaling optimization problem is to fix 

the number format at each stage to give the maximum SQNR for the whole fixed-point FFT 

computation.  
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3.3 Probability Model 

3.3.1 Probability Mass Function 

In order to do the analysis, we model the input as a discrete random variable (RV) which 

is real and its number of values is finite. For a discrete random variable X, it has an associated 

probability mass function (PMF) [27], which gives the probability of each numerical value 

that the random variable can take, denoted pX. In particular, if x is any possible value of X, the 

probability mass of x, denoted pX(x), is the probability of the event {X = x} (P({X = x}) for 

short) consisting of all outcomes that give rise to a value equal to x: 

pX(x) = P({X = x})       (3.1) 

Note that 

             ∑ 𝑝X(𝑥)x = 1        (3.2) 

where in the summation above, x ranges over all the possible numerical values of X. 

Since the input of an FFT processor is a fixed-point complex number, the wordlength (WL) 

for both real and imaginary parts of the signals are fixed. That is, the number of the 

representable value is numerical which is restricted to 2WL for 2’s complement binary number. 

For example, 2 bits number with <1, 1> format has 22=4 representable values which are {-1, 

-0.5, 0, 0.5}. As a result, the PMF can perfectly describe the behavior of signals in terms of 

the probability of each representable value in fixed-point design. 

Besides, computing either real part or imaginary part of input signals can represent the 

total result in terms of SQNR, which is proved below. 

Theorem 1  

In FFT computation, computing either real part or imaginary part of input signals can 

represent the total result in terms of SQNR if the real part and imaginary part of the input 

signals have the same probability distribution. 

Proof of Theorem 1: 
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For N-point FFT, x[n] is the input sequence which has N element and y[k] is the FFT 

of x[n] where 

y[k] = ∑ x[n]WN
nkN−1

n=0          (3.3) 

We first prove that 

Powersignal = 2 ∗ Powersignal_real     (3.4) 

For each element in y, denoted y[k], we have 

Powery = |y[k]|2 = ��∑ 𝑥[n]WN
nkN−1

n=0 ��
2

= �∑ |𝑥[n]|�WN
nk�N−1

n=0 �
2
 (3.5) 

Since WN
nk is on the unit circle and its magnitude is unary, that is 

�WN
nk� = 1        (3.6) 

Equation (3.5) can be rewritten to  

|y[k]|2 = �∑ |𝑥[n]|N−1
n=0 �

2
= �∑ �𝑥𝐼[n] + 𝑗 ∗ 𝑥𝑄[n]�N−1

n=0 �
2
   (3.7) 

where 𝑥𝐼[n] is the real part and 𝑥𝑄[n] is the imaginary part. 

Since 𝑥𝐼[n] and 𝑥𝑄[n] have the same distribution, in average, Eq. (3.7) becomes 

|y[k]|2 = �∑ �2𝑥𝐼[n]2N−1
n=0 �

2
= 2 ∗ �∑ 𝑥𝐼[n]N−1

n=0 �
2
    (3.8) 

And from the computation with real part of the input sequence yreal, we have 

|yreal[k]|2 = �∑ 𝑥𝐼[n]N−1
n=0 �

2
      (3.9) 

Combing Eq. (3.8) and Eq. (3.9), we obtain |y[k]|2 = 2|yreal[k]|2, which guarantees Eq. 

(3.4). 

The power of noise can also be proved that 

Powernoise = 2 ∗ Powernoise_real     (3.10) 

From Eq. (3.4) and (3.10), we can derive that     

SQNRtotal = 10 ∗ log10 �
Powersignal
Powernoise

�dB 

= 10 ∗ log10 �
2∗Powersignal_real
2∗Powernoise_real

�dB = SQNRreal   (3.11) 

The proof for imaginary-part is the same. 
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End of proof 

By Theorem 1, we can only analyze the real-part of input signals to represent the complex 

signals when computing SQNR. 

In the following discussion, we assume either real-part or imaginary-part for each input 

signal of the fixed-point FFT computation is a discrete random variable that is independent 

with each other and uniformly distributed in [-1, 1). Fig. 14 shows the PMF of an input 

random variable with the uniform distribution and 6-bit wordlength. 

 

Fig. 14 The PMF of an input random variable with wordlength = 6 bits 

 

3.3.2 Derived Distribution for the FFT Computation 

In this section, we consider functions Y = g(X) of a discrete random variable X. Given the 

PMF of X, we discuss techniques to calculate the PMF of Y (also called a derived distribution) 

[27]. In order to discuss the derived distribution of the FFT computation, we now focus on the 

special case where the function g is the FFT computation, denoted fft. A flow graph 

representing the raidx-2 butterfly computation is shown in Fig. 15, which is the basic 

computation of FFT. We can observe that the butterfly consists of two operations, which are 

the addition/subtraction operation and the twiddle factor multiplication operation. If we can 

handle the two derived distributions of these two operations, we can derive the distribution of 

the output of the FFT computation at each stage. 
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Fig. 15 The butterfly computation 

 For the addition operation, we now consider an example of a function of two random 

variables, namely, the case where Z = A + B, for independent A and B with PMFs pA and pB, 

respectively. Then for any integer z, we have 

     pZ(z) = P(A + B = z) 

         = ∑ P(A = a, B = b){(a,b)|a+b=z}  

       = ∑ P(A = a, B = z − b)a  

= ∑ pA(a)pB(z − b)x         (3.12) 

 The resulting PMF pZ is called the convolution of the PMFs of A and B. See Fig. 16 for 

an illustration. And the subtraction operation can be proved that is the same as the addition 

operation. 

 
Fig. 16 The calculation of the addition of two independent uniform random variables 

 Since the twiddle factor W is unary, that is, |W| = 1, the scalar has no effect when 

computing the derived distribution of Yreal[k] = ∑ xIWN
nkN−1

n=0  or Yimag[k] = ∑ xQWN
nkN−1

n=0 . 

According to Theorem 1, each of Yreal or Yimag can represent the total FFT computation in 

terms of SQNR. As a result, the PMF of the FFT computation can be represented by the 
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propagation of the addition operation. Fig. 17 shows the derived distribution in the 8-point 

FFT computation. The x-axis is the representable value and the y-axis is the probability of 

each representable value. 

 
Fig. 17 The derived distribution in the signal flow of the FFT computation 

 

3.3.3 Saturation Analysis 

To model the behavior of saturation, we limit the representable value of output between a 

maximum and a minimum value which are decided by the given output format. For example, 

if the integer part of the given format is 4 bits, the maximum value is near 8 (smaller than 8 by 

a fractional unit), and the minimum value is exactly -8. The probability of the overflowed 

values which are beyond the limited value would be added to the maximum or the minimum 

value, such that the PMF of output with the behavior of saturation is modeled. The PMF with 

the behavior of saturation is illustrated in Fig. 18. 

  

Fig. 18 (a) The PMF before saturation with 5-bit integer part (b) The PMF after saturation to 4-bit integer part 

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

X[0]

-1

-1

-1

-1

-1

-1

-1



 

23 

3.3.4 SQNR Calculation 

In order to calculate the SQNR of the output of FFT, we need to know the power of the 

fixed-point output and the noise-free output. With the method in 3.3.2, we can get the output 

derived distribution, denoted p for its PMF, which is assumed that the computation is 

noise-free. That is, the noise from multiplication and add/subtraction is ignored. However, the 

output wordlength is fixed to the input wordlength, such that the number of representable 

value for output is not as much as the representable value in the output derived distribution, 

denoted x’. Signal x’ would be truncated to x which is representable for output. These point 

then induce truncation error which is x’-x. Note that the saturation operation also induces error, 

and the way to calculate its power is as same as truncation error. We can take the overflowed 

value before saturated as x’, and x would be the value that x’ is saturated to. 

For example, if the output derived distribution has the format <2, 1>, the representable 

value is [-1, -1.5, -1, -0.5, 0, 0.5, 1, 1.5]. But the I/O wordlength is 2 bits, and the output 

format is <2, 0>, x’: [-1.5, -0.5, 0.5, 1.5] cannot be represented. These values would be 

truncated to x: [-2, -1, 0, 1], respectively, and induce truncation error by 0.5 for each. 

The formula for SQNR calculation is 

SQNR = 10 ∗ log10 �
Powersignal
Powernoise

�  dB    (3.13) 

And we can calculate the power of signal by the output derived distribution as 

Powersignal = ∑ (𝑥2 ∗ 𝑝(𝑥))𝑥      (3.14) 

The power of noise can also be calculate by 

Powernoise = ∑ ((𝑥′ − 𝑥)2 ∗ 𝑝(𝑥′))𝑥′     (3.15) 

With Eq. (3.14) and Eq. (3.15), we can evaluate SQNR by Eq. (3.13). 

Take a 64-point FFT with 12-bit I/O as an example, we apply four different output formats 

and calculate their SQNR. The integer part decides the output range, and the fraction part 

decides the unit. The calculation result is shown in Table II . Note that Unit in the third 
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column means the smallest number which the format can represent. We can find that <6, 6> 

has the best SQNR among these output formats, since its overflow probability is near zero and 

the unit is half compared to <7, 5>. 

Table II 64-Point FFT Output Format Analysis 

Output Format Output Range Unit SQNR Overflow 

Probability 

<7, 5> [-64, 63) 0.0313 48.17 dB 0 % 

<6, 6> [-32, 31) 0.0156 54.19 dB 5.53*10-11 % 

<5, 7> [-16, 16) 0.0078 42.49 dB 0.049 % 

<4, 8> [-8, 8) 0.0039 16.14 dB 8.33 % 

The proposed SQNR model was verified using the simulation method. The comparison is 

shown in Table III. In this simulation, the result is from 21.6M randomly sets of 64-point FFT 

with the uniform distribution. And each of formats cost about 12 hours to simulate by Matlab. 

As a result, the SQNR difference is smaller than 0.15 dB, and the overflow probabilities 

evaluated by the two methods are extremely closed. 

 

Table III The comparison between analysis method and simulation method 

Output Format Analysis Method Simulation Method Difference 

SQNR Overflow 

Probability 

SQNR Overflow 

Probability 

SQNR Overflow 

Probability 

<7, 5> 48.17 dB 0 % 48.17 dB 0 % 0.00 dB 0 % 

<6, 6> 54.19 dB 5.53*10-11 % 54.20 dB 0 % 0.01 dB ~0 % 

<5, 7> 42.49 dB 0.049 % 42.34 dB 0.050 % 0.15 dB 0.001 % 

<4, 8> 16.14 dB 8.33 % 16.13 dB 8.34 % 0.01 dB 0.01 % 
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3.4  Scaling Optimization 
In this section, we further consider the scaling behavior from stage to stage, and illustrate 

the proposed flow of the scaling optimization. Since the output wordlength is fixed, the 

representable value of each stage is also the same, and then the scale decision has to be made. 

Based on the probability model and derived distribution concepts, we propose a greedy 

algorithm to suggest the scaling behavior at each stage with optimized precision. The 

modified model is more suitable for fixed-point hardware implementation, and the 

computation complexity is O(2WL*s), where s is the number of stages and WL is the 

wordlength. 

 

3.4.1 Truncation Operation 

The wordlength is increasing through FFT computation in the butterfly as mentioned. 

However, the data has to be quantized to write into storage whose wordlength is fixed and as 

same as the input of butterfly. Truncation operation for quantization is to discard few bits 

from the least significant bit (LSB) for limiting the number of bits. For example, consider the 

5-bit binary number 0.1011 (0.6875) and if we truncate it to 4 bits, the result would be 0.101 

(0.625) which is resulting from discarding 1 bit from LSB. 

For each radix-2 butterfly, the number of representable values in output is about double 

compared to the input as shown in Fig. 19. When the truncation operation is applied then, half 

of values are not representable. To model the probability behavior, the probability of the value 

which is truncated would be added to the probability of representable value. After the 

truncation, the PMF in Fig. 19 becomes the PMF shown in Fig. 20. The noise induced by 

truncation operation can be computed with the method mentioned in Ch. 3.3.4. 
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Fig. 19 The PMF behavior of butterfly computation, and the input and output format are <1, 1> and <2, 1>, 

respectively. 

-1.5 -1 -0.5 0 0.5-2 1 1.5

1/4

 
Fig. 20 The PMF after truncation operation 

3.4.2 Saturation Operation 

In addition to the truncation operation, saturation behavior can also be modeled in terms of 

PMF and noise. With given number range, that is, wordlength of integer part, the maximum 

and minimum value can be decided. The number beyond the limitation would be saturated to 

the maximum or minimum value, and its probability is also added to the probability of the 

maximum or minimum value. The operation is similar to the analysis method mentioned in 

Ch. 3.3.3. The major difference is that the operation is applied at each stage and evaluated the 

noise induced for scaling decision. 



 

27 

3.4.3 Scaling Decision 

With the two operations and its noise analysis, the noise at each stage can be evaluated 

with given number format. Take the radix-2 FFT algorithm as an example, there are two 

scaling choices which are to increase 1 integer bit or to maintain the number format of input 

from stage to stage. If increasing 1 integer bit is decided, the range of representable value is 

double, but the fractional precision is decreasing by 1 bit. That is, the truncation operation is 

applied. In the other hand, maintaining the number format of input can also maintain the 

fractional precision. However, the range of representable value is not increased such that the 

saturation operation needs to be applied for the overflowed value. The noise of each scaling 

choice can be analyzed by our proposed model. Fig. 21 presents the PMFs of the two scaling 

decisions. As a result, the scaling decision can be made by choosing the one with smaller 

noise. 

 
Fig. 21 The PMFs of different scaling decisions 

 The proposed procedure of scaling decision is shown in Fig. 22. With the PMF of input, 

we calculate the noise for different i, which is the increasing integer bit. If the FFT algorithm 

is radix-2, the possible i would be 0 or 1. And if the FFT algorithm is radix-4, the possible i 
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would be 0, 1, or 2 for each stage. For different i, both of truncation and saturation operation 

have to be applied appropriately. After the possible noise for all condition is computed, the k 

with minimum noise would be chosen to be the increasing bit of this stage. 
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Fig. 22 The procedure of scaling decision 
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3.4.4 The Scaling Optimization Flow 

Fig. 23 presents the flow of the proposed scaling optimization method for the FFT 

processor. First, we have the given FFT size (N), wordlength (WL), algorithm (r), and the 

distribution of input signals as input constraint. The input format is <1, WL-1>, such that the 

initial integer part, denoted int_part(s), where s is the stage number, is 1 for s = 0. Next, 

considering the first stage, s = 1, we can obtain the derived distribution of output by addition 

operation. Then, we make the scaling decision by our proposed procedure, illustrated in Ch. 

3.4.3. The increasing bit, k, from the scaling decision flow would be added to the integer part 

of previous stage to obtain the integer part of output at this stage. The same procedure would 

be run from the first stage to the last one, and fix the scaling behavior at each stage. 
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Fig. 23 The proposed optimization flow 

  



 

30 

Chapter 4 
Experimental Results 
 
 In this work, the proposed optimization flow is implemented by MATLAB to fix the 

scaling behavior. The FFT length N can be 2s, where s is an integer, and the wordlength WL 

can be any integer, usually from 8 to 16 from FFT processors. The FFT algorithm can be any 

power of 2, and we demonstrate radix-2, radix-4, and radix-8 in our experimental results. The 

distribution of input signal can be decided by user, and we assume uniform distribution for 

our experiment. Also, the experiment with normal distribution of input signals is present in 

radix-4 FFT algorithm to compare our result with [13]. 

  To verify the proposed optimization result, the MATLAB is used to build the 

fixed-point model of the FFT hardware. In addition to our scaling scheme, the BFP approach 

[1] and Oppenheim’s method [12] are also implemented by MATLAB. The block size of BFP 

approach is set to 64 words as suggested in [1]. As our model, the quantization mode is 

always truncation and the overflow mode is saturation for all experiments. Note that the 

absolute SQNR can be higher if all the experiments take rounding off as the quantization 

mode. Furthermore, an 8192-point radix-2 FFT processor is implemented with TSMC 0.18μ

m cell library and Synopsys DesignWare to synthesis under 100MHz clock rate to illustrate 

the benefit of our model. 

 Finally, the platform for both MATLAB and Synopsys DesignWare is built in Intel dual 

Pentium Xeon at 2.5GHz with 32GB of main memory, running Linux. 

 

4.1 SQNR with Different Scaling Behaviors 

Fig. 24 presents the SQNR of all 256 possible scaling behaviors for 256-point, radix-2 
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FFT with 12-bit wordlength, and the input signals are uniformly distributed in [-1, 1) with <1, 

11> number format. The result is from simulation and it takes 245,440 seconds (68 hours) for 

1k sets FFT for configuration. The configuration ID for scaling behavior is coding as follow: 

Taking the ID number as 8-bit unsigned binary number, 0 means the integer part is not 

increased and 1 means the integer part increased by 1 bit. The MSB is the scaling decision for 

the first stage and the LSB is the decision for the last stage. The number in the middle is the 

decision from 2-th to 7-th stage from left to right. For example, ID 245 which is the result 

from our proposed approach is 1111_0101 in binary format. It means that the integer part is 

not increased at the 5-th and 7-th stage and increased by 1 bit at all the other stages. That is, 

the integer part for ID 245 from the first stage to the last is 2, 3, 4, 5, 5, 6, 6, and 7, 

respectively. Likewise, ID 255 (1111_1111) is increased 1 bit at each stage, and it is the 

Oppenheim’s approach [12]. We can find that our result’s SQNR is 42.75dB which is the 

optimal solution in all configurations.  

We can observe that larger configuration ID can usually provide better SQNR, that is, 

increasing integer part at early stages and maintain the number format at some stages after are 

basic guidelines for scaling optimization. Table IV shows the SQNR rank from 1 to 10 and 20 

of Fig. 24. Rank 1 is our proposed result and rank 20 is Oppenheim’s approach. 

 

Fig. 24 The SQNR of all possible scaling behaviors for 256-point, radix-2 FFT with 12-bit wordlength 
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Table IV Precision rank of all possible scaling behaviors for 256-point, radix-2 FFT with 12-bit wordlength 

Precision 

Rank 

Integer Part of Each Stage SQNR 

1  2  3  4  5  6  7  8 

1 2  3  4  5  5  6  6  7 42.75 dB 

2 2  3  4  5  5  6  7  7 41.68 dB 

3 2  3  4  5  6  6  6  7 41.62 dB 

4 2  3  4  4  5  6  6  7 41.37 dB 

5 2  3  4  5  6  6  7  7 40.69 dB 

6 2  3  4  4  5  6  7  7 40.69 dB 

7 2  3  4  5  5  6  7  8 40.37 dB 

8 2  3  4  5  6  6  7  8 39.56 dB 

9 2  3  4  5  5  5  6  7 39.47 dB 

10 2  3  4  5  6  6  6  6 39.45 dB 

20 2  3  4  5  6  7  8  9 35.39 dB 

 Fig. 25, Fig. 26, and Fig. 27 present the SQNR for different sizes with different scaling 

approaches for radix-2, radix-4, radix-8 FFT algorithms, respectively, and the wordlength is 

12 bits. As the FFT size increasing, more benefit of precision can be obtained with the 

proposed method. That is because the room for scaling optimization is larger when number of 

stages is larger. 
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Fig. 25 SQNR vs. FFT sizes with different scaling approaches for radix-2 FFT algorithm 
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Fig. 26 SQNR vs. FFT sizes with different scaling approaches for radix-4 FFT algorithm 
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Fig. 27 SQNR vs. FFT sizes with different scaling approaches for radix-8 FFT algorithm 
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4.2 Optimized Scaling Behavior for 8192-point FFT 

Table V presents the scaling behavior for 8192-point, radix-2 FFT with different 

wordlength (WL), and the input signals are uniformly distributed in [-1, 1] with <1, WL-1> 

number format. The runtime of the optimization flow is from 0.04 seconds to 127.2 seconds 

for 8 to 16 bits of wordlength. Since the major computation is the convolution at each stage, 

the time complexity is O(2WL*s), where s is the number of stages. We can find that the 

SQNR of our result is much higher than Oppenheim’s approach [12]. Fig. 28 shows that the 

wordlength has about 3 bits less than Oppenheim’s approach with the same SQNR. 

Therefore, about 48k (3*8k*2, for both real and imaginary parts) bits of storage can be saved 

by our approach. And compared to BFP approach [1], the performance of our method is 

almost the same without the high hardware complexity for dynamic scaling method. 

Table V Scaling behavior for 8192-point, radix-2 FFT 

WL 

(bit) 

Integer Part of Each Stage SQNR 

(proposed) 

SQNR 

[12] 1  2  3  4  5  6  7  8  9  10  11  12  13 Runtime 

(sec) 

8 2  3  4  4  5  5  6  6  7  7   8   8   9 0.04 18.08 dB -3.75 dB 

9 2  3  4  4  5  5  6  6  7  7   8   8   9  0.06 23.70 dB 2.14 dB 

10 2  3  4  5  5  6  6  7  7  8   8   9   9 0.07 27.47 dB 8.11 dB 

11 2  3  4  5  5  6  6  7  7  8   8   9   9 0.11 33.47 dB 14.10 dB 

12 2  3  4  5  5  6  6  7  7  8   8   9   9 1.60 39.50 dB 20.13 dB 

13 2  3  4  5  5  6  6  7  7  8   8   9   9 3.52 45.51 dB 26.15 dB 

14 2  3  4  5  5  6  6  7  7  8   8   9   9 18.36 51.50 dB 32.16 dB 

15 2  3  4  5  5  6  7  7  8  8   9   9   10 44.44 55.28 dB 38.18 dB 

16 2  3  4  5  6  6  7  7  8  8   9   9   10 127.2 60.83 dB 44.18 dB 
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 The comparison of 11-bit and 14-bit wordlength for 8192-point, radix-2 FFT processor 

are given in Table VI. The FFT architecture is memory-based and synthesized in 10 ns of 

cycle time, which gives 100M Sample per second of throughput. The SQNR of the one with 

11-bit wordlength by our proposed method is almost the same as the other one with 14-bit 

wordlength by Oppenheim’s approach as shown in Fig. 28. The area and power reduction 

excluding storage is 33.65 % and 26.89 %, respectively, as well as the storage reduction is 

21.41 %.  

Table VI Hardware Comparison of 11-bit and 14-bit wordlength for 8192-point, radix-2 FFT 

8192-point radix-2 FFT  

(100MS/s) 

11-bit WL 14-bit WL Reduction 

Area excluding storage 85,771.2 μm2 129.852.7μm2 33.65 % 

Power excluding storage 1.9229 mW 2.6302 mW 26.89 % 

Storage 180k bits 229k bits 21.41 % 

Fig. 29 shows the SQNR with different wordlengths for 8192-point, radix-4 FFT. Also 

3-bit benefit is obtained with our method as compared to Oppenheim’s scheme. Note that 

Ramakrishnan’s approach [13] is not suitable for inputs with uniform distribution, so the error 

performance is not good under this assumption. The case of radix-8 FFT is shown in Fig. 30. 

Moreover, about 4-bit wordlength can be saved in this algorithm. 
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Fig. 29 SQNR vs. wordlength for 8192-point, radix-4 FFT 
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Fig. 30 SQNR vs. wordlength for 8192-point, radix-8 FFT 

 For the inputs with normal distribution, Fig. 31 and Fig. 32 show the experimental results 

of deviation σ= 0.2 and 0.4. When σ= 0.2, our analyzed results from 10-bit to 15-bit 

wordlength is the same as these of Ramakrishnan’s approach, which are increasing 1 bit for 

each radix-4 stage. However, Ramakrishnan’s approach is not feasible when σ= 0.4, while 

our method still has good performance. Fig. 33 shows the SQNR for different deviations with 

12-bit wordlength, and we can find that Ramakrishnan’s approach is only feasible in a narrow 

range. Expect the performance is the same atσ= 0.2, our approach is better than 

Ramakrishnan’s method in all the other cases. 
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Fig. 31 SQNR vs. wordlength for 8192-point, radix-4 FFT with normally distributed inputs (σ= 0.2) 
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Fig. 32 SQNR vs. wordlength for 8192-point, radix-4 FFT with normally distributed inputs (σ= 0.4) 

0.00 
5.00 

10.00 
15.00 
20.00 
25.00 
30.00 
35.00 
40.00 
45.00 
50.00 

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35 0.

4

0.
45 0.

5

SQ
N

R 
(d

B)

Deviation σ

Oppenheim [12]

BFP [1]

proposed

Ramakrishnan [13]

 

Fig. 33 SQNR with different deviations for 8192-point, radix-4 FFT with normally distributed inputs (WL = 12) 
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Chapter 5 
Conclusion & Future Work 
 

In this thesis, a fast precision optimization approach to fix the scaling behavior at each 

stage which gives optimized SQNR is proposed for the FFT processor design with the 

fixed-wordlength storage. This method is based on the probability-based analysis which 

utilizes the concept of the derived distribution. It has ability to evaluate the overflow and 

truncation behavior in terms of probability and induced noise at each stage. The proposed 

flow can handle different FFT sizes, input distributions, algorithms, and wordlengths of 

storage. The experimental results show that about 3 bits of wordlength for 8192-point radix-2 

FFT processor can be saved compared to Oppenheim’s approach [12] without any hardware 

overhead. Furthermore, the wordlength can be saved about 4 bits for 8192-point, radix-8 FFT. 

Area and power consumption can be further reduced significantly. The performance is also 

comes close to the dynamic scaling method [1], that is, the SQNR difference is within 2 dB 

which is about 1/3 bit for the same wordlength. 

In the future, more designs for DSP, such as FIR filters, can be analyzed by the concept of 

derived distribution to optimize the wordlength. The scaling decision is a good guideline for 

design automations and optimizations. 
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