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Abstract

In this thesis, we propose: @ data-driven system that assists blind
people to walk safely on.the sidewalk. In our.system, an assistant with
normal vision is asked to create the database for the places where the
blind user usually visits. At:each sampling spot of these places, the
assistant takes a few photos-that cover different viewing directions around
the sampling spot to create a panorama image. After the installation of the
database, the blind user is equipped a camera while he or she is walking
around these places. For each captured image by the camera, the
proposed system finds the most similar panoramic part in the database to
identify the location and the orientation of blind user. With an
Image-to-image matching to warp the labels from the matched panoramic
part to the captured image, our system can roughly infer the labeling of
the contents within the captured image. Finally, based on the inferred
labels, our system can identify situations that could be dangerous to the

blinds.
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Chapter 1.

INTRODUCTION

For people with normal vision, taking different activities outdoors, like shopping
or playing sports, is just a piece of cake. However for thousands of blind people, even
walking on sidewalk safely is not a simple task. Because visually impaired people
cannot see the world clearly, they may be unconscious of walking into a wrong way.
In order to take a safe travel outdoors, visually impaired people usually need a white
cane or a guide dog to assist them. But the tactile information passed from the end of
white cane is not always robust, and a guide dog may get easily interfered by the
environment. With the rapid development of vision-based technologies, one may think
if there is some kind of “virtual eyes” for blind people. That is, whether we can utilize

algorithms of computer vision‘to provide a more convenient life for blind people?

With the booming information technology In recent years, many portable devices
can surf over internets and connect to global positioning system (GPS). Besides, the
computational speed for portable devices is much faster than before. On the other
hand, researchers have found that blind people tend to travel around places that are
familiar to them. With the above two phenomena, we may be able to develop some
kind of guiding system for blind people. For example, for a given environment, we
can create a database beforehand. After that, when a blind user walks into this
environment, he/she can use a portable device equipped with GPS to identify his/her
location and to extract the corresponding information from the database to assist

his/her movement within the scene.



In this thesis, our system is built based on the aforementioned data-driven
framework. Given a video, our system automatically labels the safe walking area and
determines whether the current situation is dangerous or not for the blind people.
Some examples of dangerous situations are shown in Figure 1-1. Here we combine
database retrieval and image-to-image dense matching to label the walking areas in a
local environment. Based on the information extracted before, the system helps blind
people to identify dangerous situations while walking. The red areas in Figure 1-1

represent the road regions and the green areas indicate the sidewalk regions.

Input frames

Corresponding
labels

> -

T —

Dangerous!

Figure 1-1 Some examples of dangerous situations while walking on a sidewalk.

Our goal is to identify dangerous situations based on the captured images.

In the following chapters, we will first introduce a few kinds of electronic aid
systems for blind people in Chapter 2. In Chapter 3, we present the proposed system
for safe area labeling and dangerous situation detection. Some experimental results

will be shown in Chapter 4. Finally, we will give our conclusion in Chapter 5.



Chapter 2.

BACKGROUNDS

Because visually impaired people cannot see the world clearly, they need
something to help them walk safely indoors and outdoors. Generally speaking, white
canes and guide dogs are the most popular travel aids for blind people. White cane is
a hand-held facility that can assist blind people to notice some drop-offs on the
walking area or some obstacles in front of him/her. On the other hand, guide dogs
help blind users to find the safe walking direction. For over thirty years, many
technologies have been applied. to develop supporting devices that assist visually
impaired people to live in-a more convenient way. According to [1], these
technologies are classified into three categories based on their functionalities. These

three categories are listed as follows.
1) Electronic travel aids (ETAS):

ETA systems help blind people to roughly know the environment. For instance,
some systems can tell whether there is an obstacle in front of the user or not.

Some other systems can tell when crucial objects appear near the user.
2) Electronic orientation aids (EOAS):

Because of the poor vision of blind people, they may lose the sense of direction
while walking. Hence, some systems are developed to tell blind people which

direction they are facing to.
3) Position locator devices (PLDs):

Global Positioning System (GPS) is the most popular PLD. GPS feature has been

3



integrated in many 3C devices, like smart phones. Blind people can easily know

their current location if they bring a GPS device with them.

EOA and PLD systems have been developed and widely used in the last decades. On
the other hand, ETA systems have been developed over the past thirty years. In this
thesis, we focus on the usage of ETA devices. In Section 2.1, we will introduce some
electronics travel aid systems using ultrasonic, laser, and RFID technology. In Section
2.2, we will introduce systems using vision sensors, and introduce what kinds of

functionalities can be achieved by computer vision based algorithms.

2.1. ULTRASONIC, LASERAND RFID

TRAVEL AID SYSTEMS

As the name suggests, sensor-based systems are set up by using some specific
sensors, like ultrasonic sensors or laser sensors. Since 1960’s, many evolving
technologies have been proposed for the navigation aids of blind people. Ultrasonic
and laser sensors are usually used to detect obstacles in front of blind people, while
RFID systems can help blind people to obtain some information about the local

environment.

In Section 2.1.1 we will introduce two guidance systems that use ultrasonic
sensors. In Section 2.1.2, we will introduce some approaches that use lasers. In
Section 2.1.3, we will introduce the RFID framework for the assistance of visually

impaired people.



2.1.1. Ultrasonic Sensors

In the 1990s, many researchers discovered that obstacle avoidance systems for
mobile robots were highly related to the guiding system for blind people. The Navbelt
[2] was a typical example. The technology used in Navbelt is originally developed for
mobile robot guidance. The designers claim that Navbelt enables the user to avoid
obstacle safely while walking in unknown environments. Moreover, this system was

implemented to be portable and its prototype is shown in Figure 2-1.

Figure 2-1 Prototype of Navbelt [2]

The Navbelt is equipped with eight ultrasonic range sensors, a portable computer,
and earphones. These ultrasonic sensors are used to detect obstacles. The computer
converts the received signals to an information map that records the orientations and
distances to the obstacles in front of the blind user. Navbelt has two modes, image
mode and guidance mode. In the image mode, the system tells a user the orientations
and distances to the obstacles by using different tones and amplitudes via earphones.
On the other hand, in the guidance mode; it assumes that the momentary direction and
destination of user are known. Hence, the Navbelt can use the sensors signal to guide

the user. However, in reality, the blind man would need an assistant with normal



vision to help him/her to walk for a while so the system could know the desired

direction for the blind.

By the same research group, Guide cane [3] is developed as an updated version of
Navbelt. This system can be held as a white cane, as shown in Figure 2-2. By
detecting obstacles, it guides the user to walk along the safer way. It would be
convenient to use this system and the user won’t need too much training time to get

used to the system.

Thumb-operated
mini joystick
(for direction control)

Cane

GuideCane
Ulfrasonic

sensors

Steering
servo

Incremental

ouioea1.con,wmt Side view: partial cut

Figure 2-2 Functional'components of Guide cane [3]

2.1.2. Laser Sensors

When setting up a travel aid device for blind, laser sensors are another choice.
Like the laser cane in [4], laser sensors are also used for obstacle avoidance. In the
work of [5, 6], the authors developed a hand-held environment discovering equipment
named “virtual white cane”. In their system, they use a laser-based range sensor and a
CCD camera. The system layout is illustrated in Figure 2-3. When a laser beam is
emitted from a laser pointer, the refection is to be detected by the well aligned CCD

sensor array. When the blind user swings the hand-held equipment around, the local

6



environment information will be captured. Based on the time profile produced by the
light, the equipment can analyze the data to estimate some environmental features,
such as steps and drop-offs. However, for an outdoor environment, the laser may be

jammed by a lot of unexpected noise.

D
=2
Lens "
= Q |
‘J’:—’f _ -~ W
R Sy B
{f ﬁ -:I{L. LaSEI'

Figure 2-3 The layout of the hand-held equipment of virtual white cane

2.1.3. RFID

For outdoor walking, visually impaired people are used to find blind tiles in order
to follow them by hand-held white cane. In [7], they built a large-scale guiding
framework based on Radio Frequency ldentification (RFID) devices and wireless
communication technology. In their framework, RFID tags, which can offer useful
information provided from the centralized information system, are buried under the
roads. With an RFID reader embedded in the blind cane, the blind users can get some
helpful information like the status of traffic light or the location of the nearest bus
station. An illustration of this framework is shown in Figure 2-4. Even though this

framework provides sufficient assistance for visually impaired users, it would require

7



a lot of efforts to create such a large-scale comfortable environment.

For obstacles detection, sonar- and laser-based travel aids have boomed for many
years. A major advantage of these devices is their efficient computation. However,
these devices can only detect objects that have an apparent 3-D shape. For example,
the signals emitted by sonar sensors are not able to detect sidewalks, curbs, or roads.

Another drawback is their high cost.

Route Segyer Tag Information
. L afl DataBase

Ph"’“f" . Bluetooth Bus station

‘Wlﬁﬁwgalher

raffic lights

Traffic AoaToR...~~

Crossroads.

ﬁ Store

Figure 2-4 The framework of the navigation.system in [7] using RFID

2.2. VISION-BASED TRAVEL AID SYSTEMS

As mentioned before, electronics travel aids (ETAs), which make use of
ultrasonic and laser sensors, have been developed to help blind user’s daily activities
in both indoor and outdoor environments. Compared to these popular technologies,
vision-based approaches can provide some other advantages. For example, image
sensors, like webcams, have low cost and low power demands. In theory, one can use
cameras to capture all the visual information in front of the blind user. In other words,

camera can be seen as “virtual eyes” for the blind people. With this property, we can
8



develop much more fantastic functionality to help the blinds by using computer vision

based algorithms.

In computer vision, object detection and recognition are crucial and challenging.
Given an image, there may be some informative objects for traveling, like waymarks,
crosswalks, traffic lights, and sidewalks. In recent years, some researchers have
investigated the issues of automatic detection, recognition, and segmentation of
multiple objects in an image. Besides, the scene understanding issue has been raised
to decompose the given image into several semantically meaningful regions. If the
scene understanding algorithms can roughly identify the spatial layout of the scene,
this useful message can be passed to visually impaired users to help them understand

their current environments.

In Section 2.2.1, we will'introduce a system for landmark targeting. The system
detects the prominent objects which are specific and important for blinds. In Section
2.2.2, we will introduce a few state-of-the-art scene understanding algorithms. These
works may achieve multi-class object segmentation and labeling. In Section 2.2.3, we

will introduce some vision-based guidance systems.

2.2.1. Landmark Targeting

While taking a walk outdoors, we usually follow sidewalks for the concern of
safety. On the other hand, we also need to pay attention to some obstacles such as cars
and people to avoid collision. In [8], the authors proposed a cheap and wearable
facility for visually impaired people. The block diagram of the overall system is

illustrated in Figure 2-5.
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Figure 2-5 Block diagrams of the framework in [8]

In their system, they first.search the paths in the input frame. The path detection
window is initially set to be.under a horizontal line that.is close to the middle of the
frame. After the initial frame, the position of the. horizontal line is updated
dynamically based on the detected path borders and the corresponding vanish points
of previous frames. After that, the Canny edge detector is used to generate an edge
map. In their approach, the authors assume the shape of the path in front of the user is
simple. Hence, the gradient orientations of the sidewalk borders are restricted to a
certain range. Besides, they assume the borders would intersect at a vanish point.
Based on the above assumptions, Hough transform is used to search for lines within
the path detection window. Some path detection results are shown as Figure 2-6. After
path detection, edge and texture cues are utilized to detect static obstacles. Moreover,
the optical flow method is used to capture moving obstacles such as human walking
on the sidewalk. Finally, the stereo disparity can provide the distance information of
the detected obstacles. Since the edge and texture cues can easily get interfered by

occlusion or shades, their work is currently limited to simple scenes only.
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Figure 2-6 Some results of path detection in [8]

2.2.2. Scene Understanding

In current multi-class object recognition/segmentation algorithms, Markov
random field (MRF) or conditional random_field (CRF) [9] is usually adopted to
incorporate different features in-a single model. In.[10], they proposed an approach to
learn a discriminative model of object classes which combines texture, layout, and
context information efficiently. They also use conditional random field to learn and
combine texture-layout, color, location, ‘and edge cues in a unified model, as
expressed in Eq. 2-1. Here, the notation ¢ indicates the class label and x indicates the

image.

log P(c|x,0) = Z(Wi (¢.x6,)+7(c,%;0,)+A(c;,i;6,))

+ D #(c.¢;,9;(x);:6,)~log Z(6,%)

(i.J)es

Eqg. 2-1

In this equation, the first term is texture-layout potentials; the second term is
color potentials; the third term represents location potentials; the fourth term is edge
potentials that measure the class located in the two sides of the edge; and Z is the
partition function term to normalize the distribution. In the training stage, they want to
learn the weighting @ for each feature term. In the label inference stage, they apply the

learned model to the image and try to associate object category label with pixels or
11



other image representations (see Figure 2-7). Finally, the input image is partitioned to
semantic meaningful regions. However, there may be some drawbacks in these
learning-based methods. One is that it is hard to adjust the number of object
categories after the model is determined. Moreover, if the features of different object

classes are similar, the inference results may be wrong.

building
bicycle

building : building
grass & road

object
) building grass tree sheep sky. airplane  water. face car
classes

bicycle = flower. sign bird book chair; road < "dog body boat

Figure 2-7 Example results from Textonboost [10] for image understanding

On the other hand, the authors in [11] adopted a data-driven approach. They first
retrieve similar scene type from the retrieval set and generate super-pixels for the
query image by using bottom-up segmentation. The super-pixels are described by
shape, location, texture, and appearance features. After those two steps, the likelihood
ratio score of object classes for each super-pixel can be obtained. They encode
contextual constraints with the help of Markov random field, as expressed in Equation
2-2. Here, ¢ also denotes the class label and s; represents the i" super-pixel. For each
semantic class is associated with a geometry class, such as ground, sky, or vertical.
Finally they jointly determine the geometric labels and semantic labels by optimizing

the objective function in Equation 2-3, which is an extension of Equation 2-2. Here,

12



the notation g represents geometric class label. The last term of Equation 2-3 enforces
the coherence between geometric class and semantic class. This term is zero when

these two labels are matched correctly, and is one otherwise. An example is shown in

Figure 2-8.
J(c)= Z Eoea (S1,C) + 4 Z Eqmootn (€11 C;) EqQ. 2-2
5,€SP (si.5))eA )
H(.9)=3(©)+3(@)+u ¢(c.9) Eq. 2.3
s;eSP
{a) Query (k) Ground () Initial (d) Contextual i) Joint Sermnantic

Truth Lakels Labseling MRF anid Geametric

720 686 776

W Awning W Road Sk
M Building W Sidewalkm Vert
WDOocor W Sgn W Horz
W FPerson W Window

o972 a7 6

Figure 2-8 Example result of SuperParsing in [11]

2.2.3. Vision-based Guiding Systems

In [12], the authors proposed a wearable and stereo-vision based navigation
system for blind people. A pair of cameras is used as the data acquisition device. They
also combine visual odometry and Simultaneous Localization and Mapping (SLAM)
algorithm into their work. By utilizing camera pose estimation with dense 3D
information from stereo-vision, a vicinity map is created for the surrounding

environment. The block diagram of their system is illustrated in Figure 2-9.
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Figure 2-9 System overview of [12]

However, the main limitation of their work comes from the stereo-vision
architecture. When the local environment is low-textured, the depth map produced by
the stereo camera system will not be accurate enough. Some surface model results are
shown in Figure 2-10, where red regions represent vertical surfaces, green regions

represent horizontal surfaces, and the red cones represent camera orientations.

Figure 2-10 Multi-level surface patch models for [12]
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In [13], the authors proposed a data-driven framework. In their system, training
video sequences were taken beforehand. They select some key frames as reference
data and perform registration with respect to 2D positions and orientations. For every
key frame, they extract Speeded Up Robust feature (SURF) [14] and GIST feature
[15]. When the query image is captured, the user will know where he/she is by
matching feature to the reference images in the database. The scene continuity is
modeled by the hidden Markov model (HMM). The guiding result is shown in Figure
2-11, where black dots represent key frame locations, blue lines represent ground
truth location of query frames, green lines represent covered ground truth, and red
parts represent the locations where error is over ten meters from the ground truth. For
outdoor cases, using GPS tools can achieve faster.and more accurate localization than

the proposed method in [13].

Figure 2-11 Guiding result of [13]
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Chapter 3.

PROPOSED SYSTEM

While traveling outdoors, walking on the sidewalk is the commonest action. For
people who have normal vision, it’s easy to change momentarily the walking direction
to avoid dangers. However, for thousands of blind people, they are afraid of walking
in a wrong direction, which may cause fatal dangers to them. Hence, automatically
detecting the walking area in front of blind people could be very helpful to them. For
blind people, the white cane is a commonly used tool. However, white canes cannot
provide reliable tactile information to help blind users distinguish curb from sidewalk.
On the other hand, the state-of-the-art sonar- and. laser-based systems cannot detect
the unobvious drop-offs on the sidewalk borders in outdoor environments either. To

achieve this kind of assistance, we aimto utilize computer vision algorithms.

Up to now, some nowadays popular scene understanding algorithms learn a
model to classify different image regions into corresponding object categories.
However, due to the multiple outdoor scene appearances and the view-dependent
variations of scene structure, a single model may not be able to efficiently handle the
scene understanding problem. Moreover, the scene understanding algorithms may get

poor inference results when the features of different objects appear to be similar.

From the habit investigation of blind people, we learn that blind people are used
to walk around in an environment that they are familiar with. This phenomenon
inspires us to adopt a data-driven approach. On the other hand, many modern portable
devices are able to surf over the internet and to receive GPS signals to identify their

geographic locations. Hence, we can set up a database for the places where the blind
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user tends to visit. When the blind user walks around these places, he or she can use
the information captured by his/her portable device and the identified geographic
location to retrieve appropriate reference data from the already installed database in

order to achieve safer navigation.

In this thesis, the goal of our system is to label the walking area for the current
scene in front of the blind user. First, the blind user will use some geographic locating
device like GPS to identify his/her current location. Based on the current location, the
system retrieves a few panorama images from the database to represent the
neighboring scenes of the blind user. After that, with respect to the image captured by
the portable camera hung in front of the blind user, the system adopts a fast global
feature matching method to search within the panoramas the most similar scene. In
practice, the captured image and the-matched image data would be roughly the same.
Since we have already labeled some important objects,-like roads and sidewalks, in
the panorama images, we can-warp, the labels of the matched image to form the labels
of the captured image. With the mapped.labels;the system can roughly understand the
current scene in front of the user and detect some situations that could be dangerous to

the user. Figure 3-1 shows the block diagram of our framework.

} Sub-Database - Facing Direction
y Retrieval determination

Input frame

Detection of Inferredlabel | goene Alignment ‘

Dangerous
B Dangerous & Label
or not: : . :
Situation Mapping

Figure 3-1 Block diagram of the proposed system
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The challenges of our system includes: (1) the scene appearance may vary a lot
in an outdoor environment; (2) the features of road and sidewalk may be similar to
each other; and (3) the observed scene may vary a lot with respect to different viewing
directions. Some examples of these challenges are shown in Figure 3-2.To solve the
first and second challenges, we adopt a database retrieval approach to search for the
most similar image that interprets the surrounding scene. To solve the third challenge,
the database is composed of panoramic images. In Section 3.1, we will explain the
detail of database construction and sub-database retrieval. In Section 3.2, we will
introduce the algorithm that determines the facing direction of the user. In Section 3.3,
we will introduce the processes of scene alignment and label mapping. In Section 3.4,
we will introduce the detection of dangerous situations. In Section 3.5, we will tell

how to use the temporal information to simplify our system.

Figure 3-2 Major challenges: (a) variations of scene appearance, (b) feature similarity between road

and sidewalk, and (c) very different scene contents from different viewing directions.

3.1. SuB-DATABASE RETRIEVAL

In this section, we will introduce how to build the database and how to retrieve

the sub-database that contains the panoramic images of the neighboring scenes.
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3.1.1. Building Panoramic Database

In order to safely walk around in the campus of National Chiao Tung University,
we should set up a database that represent the scenes around a few sampling spots in
the campus. In the following paragraphs, we will explain how we install the database.
At each sampling spot, we took photos at 16 different viewing directions to model the
possible views that a person with normal vision may see. These 16 photos were
stitched together to form a 360-degree panoramic image, as shown in Figure 3-3.
When we took the photos, our camera is held at about 1.6 meters height. Moreover,
we took these photographs in cloudy days in order to reduce the strong-light effect

and the strong shade interference.
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Figure 3-3 Stitching 16images of different viewing directions to form a panoramic image

To stitch these photos of different viewing directions, we use the Hugin
panorama creator, which allows several overlapping photographs taken at the same
place to be merged into a large photo. This panorama creator matches the Scale
Invariant Transform (SIFT) features of the overlapping regions of two images to align
and transform photos to create a panoramic image. Before stitching images, we have
to choose an anchor image at a certain direction to achieve the same arrangement of
the panorama while stitching, as shown in Figure 3-4. The white balance and

exposure are also corrected for each image based on the anchor image.
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Figure 3-4 An example of three adjacent sub-databases. Here, all the panoramic images have the same

arrangement of directions.

After having obtained the panoramic images, we label each panorama to create
the annotations. Here, we use the on-line labeling tool LabelMe [16] to label the
important regions such as sidewalks and roads in the panorama, as shown in Figure
3-5. Inside the green polygons are labeled as sidewalk regions, while inside the pink

polygons are labeled as road regions.

Figure 3-5 Labels in a‘panoramic image

3.1.2. Sub-Database Retrieval for Neighboring Scenes

To interpret the surrounding environment for the user, we don’t need to search
over the whole database but only need to check a local sub-database. Intuitively, there
may be some degree of scene discontinuities between adjacent sub-databases. Hence,
we may not be able to get good interpretation of the surrounding environment if we
only check the nearest panoramic image. Moreover, the routes in campus are not
always straight. Hence, the scene at some sampling spots may have complex spatial
layout. To deal with these problems, we search the panoramic images at three nearby

sampling spots.

Our system is a kind of wearable aid system for visually impaired user. In real

implementation, we use a GPS device to find user’s location. Here we use the Garmin
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GPS 18portable device, as shown in Figure 3-6. Garmin GPS 18 updates the location
for every second and has a USB connection that can be easily connected to wearable
equipment. When this device is connected to a notebook, we use the open source
software Franson GpsGate 2.6 to extract NMEA data from the device to get the
current latitude. Like in [17], we have tagged all of our panoramic images with the
corresponding GPS coordinates. Hence, by using the Garmin GPS 18 to get the
current GPS location, we can identify the three panoramic images that have the
shortest geographic distance with respect to the current location. These three

panoramic images are treated as the sub-database for subsequent processes.

Figure 3-6 Garmins USB-version GPS 18

3.2. DETERMINATION OF FACING

DIRECTION

After finding the sub-database of three panoramic images at nearby sampling
spots, as shown in Figure 3-4, we search within each panoramic image to find the
image portion that is most similar to the current front-view image of the user. This
action can be seen as modeling the “virtual sight” for visually impaired people. With

the matched image portion, the blind user will be able to roughly know the current
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direction he/she is facing to.

In this step, we want find the most similar part efficiently via feature matching.
Many popular image matching algorithms in the literature, such as SIFT or Speeded
Up Robust Feature (SURF), are developed to match local regions. With these
approaches, the matching result may get easily interfered by unexpected objects in the
scene, like walking people or cars. In our approach, we describe the whole image in
terms of a single global feature vector, by which we can achieve lower computational

complexity and lower noise interference.

In the literature, global features are usually used to solve scene categorization
problems. Different scene categories usually have different appearances, as shown in
Figure 3-6. For example, street scenes may contain lots of vertical and horizontal lines,
while natural scenes usually contain-undulating contours. In our case, we want to
utilize a global feature to search for the matched image portion in the panoramic
images. For every panoramic_image in the sub-database, we partition it into 32
overlapping sub-images along the ‘horizontal ‘direction. Hence, given the image
captured by the camera, we try to find the best match among the 32 (sub-images per
panorama) x3 (panoramas per sub-database) = 96 sub-images. In Section 3.2.1, we
will introduce the widely used global feature “gist”. In Section 3.2.2, we will

introduce how to model the blind’s slow motion in the global matching process.

Figure 3-7 Different scene categories

3.2.1. Global Feature: Gist

Gist [18] is a low dimensional global feature, which encodes different responses
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to human eyes from different spatial regions of an image. In other words, the gist
feature models coarsely the edge and texture information of different spatial regions
in an image. This feature has been tested for various kinds of applications, like scene
categorization and image retrieval, and has demonstrated reliable performance.
Moreover, with the low dimension of this feature, we can efficiently measure the

similarity between two images.

The gist descriptor performs Fourier transform analysis after the pre-processing
that reduces boundary artifacts and normalizes the local contrast. To construct the gist
feature, the image is convolved with a multi-scale oriented Gabor filter bank, as
shown in Figure 3-8.The Gabor filter bank is composed of four scales, with each scale

having eight orientations. The filter bank responses-are shown in Figure 3-9.

Figure 3-8 Gabor filter banks for multiple scales and orientations



Orientation

>
L N m =

Figure 3-9 Filter bank responses
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Next, for each filter output, we average the magnitude response within each 4x4
non-overlapping blocks of the image. These responses are stacked together to form a
4x4x4x8=512 dimensional feature vector. The overall flow chart of the gist feature

extraction is shown in Figure 3-9.

Input frame

4 scales and 8 orientations Gabor
filtering for the image

Stack averaged responses of every 4*4
overlapping region for 32 filters

Figure 3-10 Block diagram of Gist feature extraction

On the other hand, our panoramic image is composed of 16 images of different
directions to cover the 360-degree view of a scene. For different viewing directions,
the scene structure could be very different and the statistics of detected edges and the
texture representation are different. In Figure 3-11, we show the visualization of gist

features in polar plots, where along the radius green and red colors are used to
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represent different responses of multi-scale filters. Filter responses of different
orientations are encoded in different angles of the polar plots. The brightness of the
color represents the magnitude of the response. The 16 polar plots indicate the filter
responses of the 16 non-overlapping local image regions. In Figure 3-11, we can
easily distinguish the difference of gist feature among different images. In our system,
the gist feature of each sub-image in the panoramas is pre-calculated to reduce the
computation time. To measure the similarity between two images, we calculate the
correlation of their corresponding gist features. If we denote p as the index of the 96
sub-images, Xpas the pth sub-image, and G(I) as the gist feature of the input frame,

we find the best match X, based on the following equation

X, :argrgipnG(l)G(Xp)’ Eq. 3-1

|\ ¢

I

- g 4 LS 4

Figure 3-11 Visualization of Gist feature for different image views

3.2.2. Spatio-temporal Constraint for Search Window

In our system, we assume that the blind user don’t move drastically. That is, the
panning speed and the walking speed are not too fast. With the slow motion
assumption, the orientation of the matched sub-image at the current moment will be

very similar to the orientation of the matched sub-image at the previous moment. As

25



shown in Figure 3-12, if the image portion between the red dash lines represents the
best match for the previous input frame, then the orange region indicates the possible
image portions for matching at the current moment. This assumption can greatly
reduce the search range within the sub-database. In mathematics, this concept can be
modeled as a Markov chain, as expressed in Equation 3-2. Here, Pr(X;= i) denotes the
probability at Time t that the best matched image portion is the ith sub-image in the

sub-database.

Pr(X,=j)=p,; Pr(X.,=r1) Eq. 3-2

where P =Pr(X,=j| X, =r) Eqg. 3-3

For the implementation detail; we search for the 7 nearest directions out of all 32
directions based on the direction of the -previous best match. After global feature
matching, we obtain the current facing direction of the user. The matched portion of

the panoramic image also roughly interprets the surrounding environment.

Figure 3-12 Slow motion of blind user reduces the search area within the panoramic images.
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3.3. SCENE ALIGNMENT AND LABEL

TRANSFORMATION

As mentioned above, we have found the image portion of the panoramic images
in the sub-database that is the most similar to the front view of the blind user. Here,
we call this best matched image portion as the reference image of the input frame. As
a matter of fact, there still exist some differences between the input frame and the best
match, as shown in Figure 3-13. That is, even though these two images are captured at
similar places with similar facing directions, the scene contents are not exactly the
same. Hence, we need to further.align-the best match with the input frame to obtain

more accurate labeling results:

Figure 3-13 (a) Input frame. (b) The best matched image portion.

For the sake of mapping the best match to the input frame, we focus on finding
the correspondence between the two images. Up to now, many state-of-the-art
methods have discussed this correspondence problem. One approach is to find some
interest points of the images for matching, such as SIFT feature points. However, this
sparse approach tends to have poor results when there are no appropriate interest
points in the images. Another approach is to use the correspondence of regions to

match the images, such as the approach in [19]. In this kind approach, they first
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segment the images into many sub-regions. After that, they use some suitable features
of the sub-regions to match the images. Intuitively, the matching result will be not

accurate if the sub-regions are not accurately segmented.

In our approach, we adopt pixel-wise matching. Although the result of
pixel-level matching is usually noisy, we can utilize some robust feature to tackle this
problem. Here, we use SIFT flow proposed in [20] to perform pixel-wise matching in

order to obtain better scene alignment.

3.3.1. SIFT Flow

SIFT flow is a novel method for:the application of scene alignment. It adopts the
same computational framework of optical flow to achieve dense matching. Instead of
using RGB values and gradient information to represent the pixels, SIFT flow uses
pixel-wise SIFT feature instéad. Since this kind of histogram-based features contains
contextual information around the-pixel, we can‘use them to obtain more reliable
matching results across different scene appearances. Moreover, the SIFT descriptor

performs well under luminance variations of outdoor environment.

To better observe the generation of SIFT feature map, we adopt the visualization
method shown in Figure 3-14. In this representation, after principal component
analysis (PCA), the top three principal components of the 128-dimensional SIFT
descriptors are calculated and are projected into the RGB space for visualization. In

Figure 3-14, pixels with similar colors would share similar local image structure.

Even though we only use the top three principal components of the SIFT features
for visualization, we use the 128-dimensional SIFT descriptors for dense matching.

The objective function of the matching process is expressed as below:
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E(w) = > min([s,(p) —s,(p +w(p))[,,) + D n7(u(P)|+|v(p))

+Z min(a |u(p) —u(a)|, d) +min(a |v(p) —v(q)|, d)

(p,a)

Eq. 3-4

Here, p and q are pixel coordinates. The notation s indicates the SIFT image and
w indicates the flow vectors. The first term in Equation 3-4 is the feature matching
term, also known as the data term. In this term, SIFT features are matched across the
two images. The second term sets a constraint that the flow magnitude should not be
too large, with n representing the weighting of this constraint. The third term models
the spatial regularization so that the flow vectors of adjacent pixels will be similar,
with a representing the coefficient of flow discontinuity. The dual-layer loopy belief
propagation [21] is adopted to obtain the optimized flow field, which allows the
separation of the vertical flow from-the horizontal .flow in message passing by

decoupling the smoothness term.

Dense SIFT visualization

L >

Figure 3-14 Visualization of SIFT features

After the optimization process, we obtain the SIFT flow field. Based on the flow
vectors, we can warp the pixels of the best matched image for image alignment. As
shown in Figure 3-15, the warped image will be quite similar to the input image

frame.
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Figure 3-15 (a) Input frame. (b) Best match from database. (c) Warped image.

Similarly, we map the labels of the best matched image along the flow vectors.
The mapped label can be taken as the inference of the environment, as shown in
Figure 3-16, where the green labels represent the sidewalk area and the red labels
represent the road area. To keep the completeness of region and to suppress some
outliers, we actually have performed the morphological “open” operation after the

mapping of labels.

Label mapping I

Figure 3-16 (a) Best match and the corresponding labels.

(b) Input frame and the inferred labels.

As mentioned above, based on pixel-wise matching, we can map the labels of the
best matched image to interpret the contents of the input image frame. The reasons
why we don’t use optical flow for dense correspondence are as follows. First, the

assumption for optical flow doesn’t fit our problem. Most optical flow methods are
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used to describe the temporal correspondence of two successive frames in a video
sequence. Due to the significant similarity between two successive frames, the
assumption of consistent brightness is usually used and a small search window is
usually adopted. For our case, however, there always remains certain appearance
difference between the best matched image and the input frame. Hence, the traditional
optical flow method may not be appropriate for our situation. Moreover, the SIFT
flow approach utilizes a larger search window so that we can tolerate larger

differences between these two images in scene alignment, as shown in Figure 3-17.

] |

Optical flow SIFT flow

Figure 3-17 Different size of search window for. optical flow and SIFT flow

To build meaningful correspondence between two images, we assume that these
two images share a similar local image structure. The perspectives of the images are
also assumed to be similar. However, the blind user may have various kinds of
movement while walking on the sidewalk, such as a horizontal move shown in Figure
3-18. Under this example, the SIFT flow may not be able to perform meaningful

correspondence due to the different perspective caused by the horizontal move.

Figure 3-18 Illustration of poor alignment. (a) Input frame. (b) Best match. (c) Warped image.
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In the above example, even though these two images are taken at the same place,
we still can’t obtain a convincible flow field to represent the matching relation.
Because of the insufficient information provided by a single support image, the

mapped image is not very similar to the input frame.

3.3.2. Panoramic Approach

To provide a more accurate warping result, instead of taking a single support
image for dense matching, we utilize a larger image portion in the panoramic image,
as shown in Figure 3-19. The extended support image is about 2.5 times wider than
the width of the input frame, but with the same height. Moreover, to search over a
wider support image, we also relaxthe constraint of flow magnitude. The weighting
of flow constraint is set to 0.4 times-of the original setup. With the extended support
image and the relaxed flow magnitude constraint, more panoramic information can be

acquired for better dense matching, as'shown in‘Figure 3-20.

Figure 3-19 Panoramic extension of the original support image.
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2.5 times wider !

Figure 3-20 More information is acquired by using panoramic approach.
Top: extended support image: Bottom: input frame.

Color lines indicate feature correspondence

3.4. DANGEROUS SITUATION DETECTION

By using the inferred labels, we can decide whether the situation in front of the
blind user is dangerous or not. Here we focus on the relation between road and
sidewalk and apply a rule-based method to analyze these labels. Since humans
typically pay more attention to the central region in front of them, we define the

region of interest to be the trapezoid mask shown in Figure 3-21.

Figure 3-21 Region of interest that models human & visual attention area.

The complete flow diagram of dangerous situation detection is illustrated in

Figure 3-23. The first dangerous situation is defined to be the case when the road
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region is larger than the sidewalk region in the trapezoid mask. This situation usually
occurs when the user turns his/her direction toward the road or when the user’s
position is near the border between road and sidewalk. Here, we define the area of
road label inside the mask as A, and the area of sidewalk label as As. As expressed in
Equation 3-5, when the area ratio Amiior = AJAs is larger than a certain threshold
Tharear, We infer the situation as dangerous. In our system, Thyea is empirically set to

0.325.

On the other hand, the blind user may walk to the border between the sidewalk
and some region other than road. For this case, we denote the unlabeled region as
“undefined” and denote its area as Ayn. As expressed in Equation 3-5, when the ratio
Avatioz = Aun/As is larger than another-threshold Thaea2, We infer that situation to be

dangerous too. In our system, the threshold Thaeaz is empirically set to 0.8.

areal

D=1, i Ay = % >Th

Dlzl’ If Aatioz = % > Thareaz Eq 3-5

D, =0, otherwise

After analyzing the area ratio of different labels, we check whether the sidewalk
region is right in front of the user. In other words, even if the area ratios are lower
than corresponding threshold, the situation would be dangerous if there is no sidewalk
label at the bottom of the trapezoid mask. Here, we infer the situation as dangerous if
there is no sidewalk label within the bottom 15% region of the trapezoid mask. Here,

we denote this bottom 15% region as My, as expressed in Equation 3-6.
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Eq. 3-6

D,=1ifA=0inM, & D, =0
D, =0, otherwise but D, =0

The other dangerous situation happens when the sidewalk area in front of the
user is too small. Here, we detect this situation if the area of sidewalk label in the
mask is under a certain rate Rs, as expressed in Equation 3-7. We define Aras the area

of trapezoid mask. In our system, Rs is empirically set to be 0.25.

D,=1ifA <R xA & D,=0
{3 A% s AT 2 Eq.3-7

D, =0, otherwise but D, =0

Hence, we detect the situation is dangerous if Dy, Dy, or D3 is one. Otherwise, the
situation is safe. After analyzing the label, the system can pass the message to the
blind user so that he/she can know.whether his/her current situation is dangerous or
not. In real implementation, one can use an audio device to warn the blind user if

he/she has the normal sense of hearing:

In addition to the detection of the dangerous situations for blind people, our
system can also suggest the blind user the right direction of safe walking. After a
dangerous situation is detected, we analyze the spatial layout of the warped labels to
determine the right direction. In detail, we extract the pixel positions of each label
class and average the coordinates of the horizontal component. If we define the center
of the x coordinate of the road labels is C, and the center of the x coordinate of the
sidewalk labels is Cs, we can compare the values of C, and Cs to determine the
suggested turning direction. If there is no road label, we just check whether Cs is on
the right half or on left half of an image. If the area of sidewalk labels is too small, the
spatial layout of labels would be unreliable. In this case, we estimate the safe direction

by using the label information at the previous moment. In Figure 3-22, we present the
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pseudo code of the decision process.

if danger
ifarea of sidewalk label > 0.25 * image width * image height

then compare C, & C, of the input frame

if there is road label

C. <C,: turnleft

C. >C,: turnright -

¢, is smaller than half image width: turn left -
¢, islarger than half image width: turn right -
endif

else
then compare C, & C, of the label of last safe situation

else

if there was road label

C. <C,: turnleft

C. >C,: turnright -

C, was smaller than half image width: turn left -
¢, was larger than half image width: turn right -
endif

endif
endif

else

Figure 3-22‘Decision rules for-direction turning

Inferredlabel |

Estimate safe turning
direction

[ Safe situation ]

Figure 3-23 Flow diagram of dangerous situation detection
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3.5. TEMPORAL INTERPOLATION

In order to reduce the computational complexity, another approach is to utilize
temporal information. Instead of performing the whole process for every frame, we
can use temporal correspondence to simplify the process. In our system, we perform
the whole process only over a few frames, named the anchor frames. For each anchor
frame, we perform sub-database retrieval and calculate SIFT flow to generate the
outcome. For those frames between a pair of adjacent anchor frames, we simply
propagate the labeling results of the anchor frame to estimate their labels. This

process is illustrated in Figure 3-24 below.

On the other hand, the camera may pan when-the blind user turns left or right,
as shown in Figure 3-25. For this case, we track the camera status using the statistics

of the SIFT flow between adjacent frames.

Anchor frame at beginning Rest of frames in the time interval

Input frame

l

Search for near sub-databases

Motion

Global feature matching prediction

l

Label mapping by SIFT flow

l

Label of input frame

l

Dangerous situation detection

Figure 3-24 Simplified architecture by using temporal information.
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Figure 3-25 Camera panning caused by the turning of the user.

3.5.1. Motion Prediction

As mentioned above, to deal with the panning of camera, we analyze the SIFT
flow between two adjacent frames. Again, because of the larger search window used
in the calculation of SIFT flow, we will be able to handle a large motion. To predict
the motion, we analyze the flow field in the horizontal direction. Here, we calculate
the mean of the flow magnitude along the horizontal direction. This result indicates
the turning direction of the user. As shown in Figure 3-26 and Figure 3-27, we take
the histogram of the flow magnitude in the horizontal direction. When the mean of the
horizontal flow magnitudes is lower than -20, we infer the user as turning left. On the
other hand, when the mean value is larger than 20, we infer the user as turning right.

Some examples are shown below in Figure 3-26 and Figure 3-27.

3.5.2. Label Propagation

As mentioned above, we use temporal information to propagate the labels for
non-anchor frames. The labeling results of the preceding frame are warped to generate
the labels of the current frame based on the temporal correspondence between these
two frames. The use of temporal correspondence makes the labeling results reliable

and accurate as long as we have obtained correct labels in the anchor frame.
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frame number 818 and 819 with mean = -30.8996
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Figure 3-26 Histogram of SIFT flow magnitudes in the horizontal direction when the

user turns left. The green wordsrindicate the inferred camera status.

frame number 397 and 398 with mean = -0.87531
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Figure 3-27 Histogram of SIFT flow magnitudes in the horizontal direction when the

user walks straight. The green words indicate the inferred camera status.
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Chapter 4.

EXPERIMENTAL RESULTS

In this chapter, we will demonstrate some of our experimental results. In Section
4-1, we will show the results of label transformation by the SIFT flow with single
view approach and by the SIFT flow with panoramic approach. In Section 4-2, we
will show the performance of our system over a real outdoor environment in NCTU.
Our proposed system is tested over a personal computer with Intel® Core™ i5-760
CPU at 2.8G Hz. Our algorithm is developed in Matlab but without code

optimization.

4.1. LABEL RESULTS OF DIFFERENT

APPROACHES

First, we show the warping and label results by SIFT flow with the single-view
approach and with the panoramic approach. A result is shown in Figure 4-1, which
shows that the panoramic approach provides more accurate warping and label result.
The parameters of SIFT flow are set to be the same for both cases. The input frame is
captured at the resolution of 640x480 pixels and then down-sampled to 160x120
pixels. The panoramic image is 2.5 times wider than the input frame, but with the

same height.
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® ® (8
Figure 4-1 (a) Single-view support image, (b) panoramic-view support image, (c) warped result
from single-view image, (d) warped result from panoramic-view image, (e) ground truth labels,

(f) mapped labels based on single-view support, and:(g) mapped labels based on panoramic view.

Another example is shown in Figure 4-2. Via panoramic approach, even though
the results of warped image.and label do not perfectly resemble the input frame, the

results can still well represent the input frame.

Input frame

(@

® ® (=

Figure 4-2 (a) Single-view support image, (b) panoramic-view support image, (c) warped result from
single-view image, (d) warped result from panoramic-view image, () ground truth labels,

(f) mapped labels based on single-view support, and (g) mapped labels based on panoramic view.
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4.2. OUTDOOR EXPERIMENTAL RESULTS

WITHIN NCTU

4.2.1. Database Setup

Our system is tested on two routes near the north gate of National Chiao Tung
University (NCTU), as shown in Figure 4-3. Red lines indicate these two routes,
which consist of various kinds of scenes, such as bus station, intersection, or trees, as

shown in Figure 4-4. The total length for these two routes is about 300 meters.

Figure 4-4 Scene appearances
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To create the database along these two routes, we choose 11 sampling spots in
total. The selection of sampling spots is based on three criteria: 1) a scene that
contains an intersection, 2) a scene that contains informative landmarks, such as
crosswalk and waymark, and 3) a scene that contains special construction, like bus
station. We follow these criteria to build our panoramic database. As aforementioned
in Section 3-1-1, we take 16 photographs of different views at each sampling spot to

create the panoramic image.

4.2.2. Experimental Results in Test Environments

We test our system over three video. sequences that were captured in three
different weather conditions: cloudy days, sunny days with some unexpected shadows
in the scene, and evening time with low lighting condition. Here we show some
inferred label and detected dangerous situations. The resolution of the videos is
640x480. The test procedure’of .our system includes the panoramic approach and
temporal interpolation mentioned in‘Section 3:3.2 and Section 3.5. The test video of
the sunny situation was captured around 14:00 in the afternoon, while evening video
was captured around 18:00 in the evening. While taking these video sequences, we
mimicked the way blind people take a straight walk until the ‘real’ dangerous
situation occurs. Hence, the walking tracks follow a zigzag style. We sample all the
test video with the sampling period of 0.6 seconds. For every 6 seconds, we pick an
anchor frame. In our experiments, the detection process is performed over the anchor
frames only. For the remaining frames between anchor frames, we use temporal

information to propagate labels.
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4.2.2.1. Results of Database Retrieval

In Section 3-2, we have discussed how to find the portion of panoramas which is
most similar to the sight in front of the blind user. Here we show some examples of
the best matches after sub-database retrieval by using gist feature matching with the

spatio-temporal constraint.
@ 336
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Figure 4-5 Results of database retrieval for walking forward with some pedestrians passing by.

(a) Frame index, (b) input frames, and-(c) the best match from the panoramic sub-database.

In the previous example, we can see that the interference in the local image
structure, such as passing pedestrians, doesn’t affect the-outcome of database retrieval
too much. The best matched part and input frame would share a similar local structure.

In comparison, in the following example, we show the case of a panning view.

Figure 4-6 Results of database retrieval for a panning case.

(a) Frame index, (b) input frames, and (c) the best match from the panoramic sub-database.
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4.2.2.2. Cloudy Day

For the test video captured in a cloudy day, its lighting condition is very similar
to that in our database. Some results of the cloudy-day case are shown below. Here,
we show different walking situations on the sidewalk and the detected dangerous
situations. To visualize the outcome of our system, we use an exclamation mark to
represent the occurrence of dangerous situation. Moreover, the yellow arrow indicates
the suggested safe way to turn if a danger situation is detected. The case of walking

forward is shown in Figure 4-7.

(a) 194

S

Figure 4-7 The case of walking forward in safe situation. (a) Frame index. (b) Input frames.

(c) Inferred labels. (d) Outcome of dangerous situation detection.

Next, we show an example in which the blind user turn into a wrong direction. In
this case, our system will warn the user the detection of a dangerous situation. In this

example, the system informs the user to turn right to achieve safe walk.
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Figure 4-8 The case of turning to a wrong direction. (a)Frame index. (b) Input frame. (c) Inferred

labels. (d) Outcomes of dangerous situation detection. (e) Suggested turning direction.

In the previous example, we_still find that the labels are not perfectly accurate for
Frames 317 and 318. However, the tendency of the change of mapped labels along the
temporal domain is correct. That is to say, the result of dangerous situation detection
is still correct even if the labels are not perfectly correct. For Frames 314~316, one
could see that the user walks on'the sidewalk-border. We also treat this situation as
dangerous. One more dangerous situation occurs when the blind user walks on the
border of sidewalk and road. In this case, our system detects the occurrence of

dangerous situation and suggests the blind user turn right for safe walk.
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Figure 4-9 The case of approaching to the border of sidewalk and road. (a) Frame index.
(b) Input frame. (c) Inferred labels. (d) Outcome of dangerous situation detection. (e) Suggested

turning direction.

The final example in figure 4-10 shows the dangerous situation when there is

little sidewalk area in front of the blind user.

(@) 164 165 166
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Figure 4-10 The case of little sidewalk area in front of the user. (a) Frame index. (b) Input frame. (c)

Inferred labels. (d) Outcome of dangerous situation detection. (€) Suggested turning direction.



4.2.2.3. Sunny Day and Evening Time

For sunny days, the shades projected on the objects usually cause difficulty in
detection and recognition. Due to the strong edges caused by shadows, the processes
of sub-database retrieval and label mapping may easily get affected. On the other
hand, the lighting condition is usually poor for outdoor environment during the
evening time. In the following examples, we show the performance of our system

under these two weather conditions.

©)

Figure 4-11 Test results in sunny day. (a) Input frames. (b) Inferred label. (c) Outcome of dangerous

situation detection. (d) Suggested turning direction.

The above figure shows some simulation results for the test video captured in a
sunny day. The performance of our system is not too bad under slight shadow
interference. However, for the rightest frame in Figure 4-11, there is a huge dark area
in front of the user caused by the shade of tree. In this case, our system may infer

incorrect labels.

In the following case, we show the simulation results at evening time. In some
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scenes, the light condition is very poor, such as these places near trees. In this kind of

poor lighting condition, our system may not generate correct outcome.

i

Figure 4-12 Some examples at evening. time. (a) Input frame. (b) Inferred labels. (c) Outcome of

dangerous situation detection. (d) Suggested turning direction.

4.2.2.4. Experimental Data

First we analyze the accuracy of sub-database retrieval. We recall that each
panorama in the sub-database is partitioned into 32 overlapping parts, representing 32
viewing directions. For the accuracy of sub-database retrieval, we define the best
match is accurate if its corresponding direction is within the 4 nearest directions of the
user’s true facing direction. We test the accuracy of sub-database retrieval using the
aforementioned three videos. In the cloudy-day video, we test 438 frames to measure
the accuracy. In sunny-day and evening-time videos, we test 385 and 425 frames,

respectively.

Table 4-1 Accuracy of sub-database retrieval

Cloudy Sunny Evening
Accuracy (%) 97.717 97.143 94.479

When analyzing the experimental outcome of our system, we regard our issue as
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a detection problem. We take the detected dangerous situation as the positive outcome.

The definitions of false positive and false negative are listed in Table 4-2.

Table 4-2 Definition of false positive and false negative

True dangerous N
N True safe situation
situation
System detects
dangerous True positive False positive
situation
System detects ) )
. False negative True negative
safe situation

The equations for detection rate, false positive rate, and false negative rate are

defined as below:

true positive + true negative

Detection rate = Eq. 4-1
total numbers of sampled frames
. fal itiv
False positive rate = ??e R _ Eq. 4-2
false positive +true negative
. false negativ
False negative rate = alse negative Eq. 4-3

false negative +true positive

(O]

Figure 4-13 Ground truth definition (a) to (c): apparent cases, (d) to (f): use the location of border to

determine whether it is a dangerous situation.

For the case of cloudy days, we test our algorithm over 438 images, in which 110
images indicate dangerous situations. By comparing our panoramic approach with

temporal information to the single-view approach, we can see that the panoramic
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approach is more reliable. In the test of the single-view approach, we create a
database which is composed of 8 single-view images representing 8 different viewing
directions at each sampling spot. For the spatio-temporal constraint, we search for 3
nearest facing directions of all 8 directions based on the best match at the previous
moment. Other procedures are set to be the same as the panoramic approach. The
cases of walking to the border between sidewalk and road (shown in Figure 4-9) are
not detected as a dangerous situation by the single-view approach. The ground truth
results are defined manually. Some dangerous cases are quite apparent. However, for
the case of approaching to the border of sidewalk, we use the position of border to
determine whether it is a dangerous situation. If the border of sidewalk at the bottom
of the image locates within the central one third. of the image width, we define the

situation to be dangerous, as shown.in Figure 4-13.

Table 4-3 Experimental data at cloudy day and comparison. of single-view approach

Detection rate

False positive rate

False negative rate

(%) (%) (%)
Panoramic approach 95.205 3.354 9.091
Single-view approach 77.854 9.756 59.091

For the evening-time case, we test our system over 425 images, in which 77
images indicate dangerous situations. For the sunny-day case, we test over 385 images,

in which 79 images indicate dangerous situation.

Table 4-4 Experimental data under different lighting conditions

Detection rate False positive | False negative
(%) rate (%) rate (%)
Sunny 92.727 5.882 12.658
Evening 93.381 3.736 22.078

In the above simulations, false positives and false negatives usually occur in

some frames right before or right after the frames of dangerous situations. This
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phenomenon tells us that our system may be able to detect the situation when the user

“really” approaches dangers.

The computing time of our algorithm is listed in Table 4-5. When we take the full
procedure starting from sub-database retrieval to the detection of dangerous situations,
the computation time is about 4.25 seconds. By using temporal information, we only
need three seconds per frame for non-anchor frames. The three seconds are almost
spent by the computation of SIFT flow. We recall that the resolution of the test videos
is 640x480. When using SIFT flow to achieve scene alignment, we don’t need to use
the full image resolution. Instead, the width and height of the input frame and the
support image are down-sampled to 0.25 times of the original images. Because the
numbers of nodes are reduced to.1/16 for belief propagation, the computation time is

much faster, while still maintaining similar performance-in label mapping.

Table.4-5 Computational speed for-our-system

Full-procedure

Using temporal

Using temporal

per frame
(seconds)

information information
(anchor frame) (remaining
frames)
Process time 4.25 4.25 3.065




Chapter 5.

CONCLUSIONS

In this thesis, we propose a vision-based travel aid system for blind people. Our
system can label the walking area in front of the blind user and automatically detect
the occurrence of dangerous situation. With the proposed system, blind user can know
which direction would be safer to walk along. In our system, we adopt a
database-driven framework. First we utilize blind user’s position coordinate and gist
feature to find a part of panoramas which is the similar to the view in front of the user.
After that, we exploit the SIFT flow for image alignment. We map the label of the best
matched sub-image to infer the labels of the input frame. Finally we use the label
information to detect the dangerous situation. Our system is able to run on different
kinds of environments as long as the local database is installed beforehand. Some
experimental results have shown our.system is reliable under different weather

conditions.
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