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行走區域標示及危險狀況判別之 

盲人輔助系統 

 
 

研究生：鄭綱      指導教授：王聖智博士 

 

國立交通大學 

電子工程學系電子研究所碩士班 

 

摘要 

 

在本論文中，我們提出一套以視覺為基礎的盲人輔助系統。本系

統採用了資料庫為主的架構，首先具有正常視力之輔助者事先於盲人

經常行走之區域，建立 360 度全景之資料庫，並對資料庫圖片事前標

籤重要的物體，像是人行道及道路；然後從全景資料庫中尋找與使用

者前方視野最相近的區域；接著把此最接近之區域的標籤利用兩張影

像之間的對應，產生目前環境的標籤；最後利用推論的標籤來判斷盲

人目前的處境是否危險。只要使用者處於有設置資料庫的環境下，本

系統能幫助盲人辨識可行走的區域，達成輔助盲人安全行走之目標。 
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       Student: Kang Cheng      Advisor: Dr. Sheng-Jyh Wang 

 

Department of Electronics Engineering, Institute of Electronics 

National Chiao Tung University 

Abstract 

In this thesis, we propose a data-driven system that assists blind 

people to walk safely on the sidewalk. In our system, an assistant with 

normal vision is asked to create the database for the places where the 

blind user usually visits. At each sampling spot of these places, the 

assistant takes a few photos that cover different viewing directions around 

the sampling spot to create a panorama image. After the installation of the 

database, the blind user is equipped a camera while he or she is walking 

around these places. For each captured image by the camera, the 

proposed system finds the most similar panoramic part in the database to 

identify the location and the orientation of blind user. With an 

image-to-image matching to warp the labels from the matched panoramic 

part to the captured image, our system can roughly infer the labeling of 

the contents within the captured image. Finally, based on the inferred 

labels, our system can identify situations that could be dangerous to the 

blinds. 
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Chapter 1.  

INTRODUCTION 

For people with normal vision, taking different activities outdoors, like shopping 

or playing sports, is just a piece of cake. However for thousands of blind people, even 

walking on sidewalk safely is not a simple task. Because visually impaired people 

cannot see the world clearly, they may be unconscious of walking into a wrong way. 

In order to take a safe travel outdoors, visually impaired people usually need a white 

cane or a guide dog to assist them. But the tactile information passed from the end of 

white cane is not always robust, and a guide dog may get easily interfered by the 

environment. With the rapid development of vision-based technologies, one may think 

if there is some kind of “virtual eyes” for blind people. That is, whether we can utilize 

algorithms of computer vision to provide a more convenient life for blind people? 

With the booming information technology in recent years, many portable devices 

can surf over internets and connect to global positioning system (GPS). Besides, the 

computational speed for portable devices is much faster than before. On the other 

hand, researchers have found that blind people tend to travel around places that are 

familiar to them. With the above two phenomena, we may be able to develop some 

kind of guiding system for blind people. For example, for a given environment, we 

can create a database beforehand. After that, when a blind user walks into this 

environment, he/she can use a portable device equipped with GPS to identify his/her 

location and to extract the corresponding information from the database to assist 

his/her movement within the scene. 
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In this thesis, our system is built based on the aforementioned data-driven 

framework. Given a video, our system automatically labels the safe walking area and 

determines whether the current situation is dangerous or not for the blind people. 

Some examples of dangerous situations are shown in Figure 1-1. Here we combine 

database retrieval and image-to-image dense matching to label the walking areas in a 

local environment. Based on the information extracted before, the system helps blind 

people to identify dangerous situations while walking. The red areas in Figure 1-1 

represent the road regions and the green areas indicate the sidewalk regions. 

 
Figure 1-1 Some examples of dangerous situations while walking on a sidewalk. 

Our goal is to identify dangerous situations based on the captured images. 

In the following chapters, we will first introduce a few kinds of electronic aid 

systems for blind people in Chapter 2. In Chapter 3, we present the proposed system 

for safe area labeling and dangerous situation detection. Some experimental results 

will be shown in Chapter 4. Finally, we will give our conclusion in Chapter 5. 
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Chapter 2.  

BACKGROUNDS 

Because visually impaired people cannot see the world clearly, they need 

something to help them walk safely indoors and outdoors. Generally speaking, white 

canes and guide dogs are the most popular travel aids for blind people. White cane is 

a hand-held facility that can assist blind people to notice some drop-offs on the 

walking area or some obstacles in front of him/her. On the other hand, guide dogs 

help blind users to find the safe walking direction. For over thirty years, many 

technologies have been applied to develop supporting devices that assist visually 

impaired people to live in a more convenient way. According to [1], these 

technologies are classified into three categories based on their functionalities. These 

three categories are listed as follows. 

1) Electronic travel aids (ETAs): 

ETA systems help blind people to roughly know the environment. For instance, 

some systems can tell whether there is an obstacle in front of the user or not. 

Some other systems can tell when crucial objects appear near the user. 

2) Electronic orientation aids (EOAs): 

Because of the poor vision of blind people, they may lose the sense of direction 

while walking. Hence, some systems are developed to tell blind people which 

direction they are facing to. 

3) Position locator devices (PLDs): 

Global Positioning System (GPS) is the most popular PLD. GPS feature has been 
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integrated in many 3C devices, like smart phones. Blind people can easily know 

their current location if they bring a GPS device with them. 

EOA and PLD systems have been developed and widely used in the last decades. On 

the other hand, ETA systems have been developed over the past thirty years. In this 

thesis, we focus on the usage of ETA devices. In Section 2.1, we will introduce some 

electronics travel aid systems using ultrasonic, laser, and RFID technology. In Section 

2.2, we will introduce systems using vision sensors, and introduce what kinds of 

functionalities can be achieved by computer vision based algorithms.  

 

2.1. ULTRASONIC, LASER AND RFID 

TRAVEL AID SYSTEMS 

As the name suggests, sensor-based systems are set up by using some specific 

sensors, like ultrasonic sensors or laser sensors. Since 1960‟s, many evolving 

technologies have been proposed for the navigation aids of blind people. Ultrasonic 

and laser sensors are usually used to detect obstacles in front of blind people, while 

RFID systems can help blind people to obtain some information about the local 

environment. 

In Section 2.1.1 we will introduce two guidance systems that use ultrasonic 

sensors. In Section 2.1.2, we will introduce some approaches that use lasers. In 

Section 2.1.3, we will introduce the RFID framework for the assistance of visually 

impaired people. 
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2.1.1. Ultrasonic Sensors 

In the 1990s, many researchers discovered that obstacle avoidance systems for 

mobile robots were highly related to the guiding system for blind people. The Navbelt 

[2] was a typical example. The technology used in Navbelt is originally developed for 

mobile robot guidance. The designers claim that Navbelt enables the user to avoid 

obstacle safely while walking in unknown environments. Moreover, this system was 

implemented to be portable and its prototype is shown in Figure 2-1. 

 
Figure 2-1 Prototype of Navbelt [2] 

The Navbelt is equipped with eight ultrasonic range sensors, a portable computer, 

and earphones. These ultrasonic sensors are used to detect obstacles. The computer 

converts the received signals to an information map that records the orientations and 

distances to the obstacles in front of the blind user. Navbelt has two modes, image 

mode and guidance mode. In the image mode, the system tells a user the orientations 

and distances to the obstacles by using different tones and amplitudes via earphones. 

On the other hand, in the guidance mode; it assumes that the momentary direction and 

destination of user are known. Hence, the Navbelt can use the sensors signal to guide 

the user. However, in reality, the blind man would need an assistant with normal 
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vision to help him/her to walk for a while so the system could know the desired 

direction for the blind. 

By the same research group, Guide cane [3] is developed as an updated version of 

Navbelt. This system can be held as a white cane, as shown in Figure 2-2. By 

detecting obstacles, it guides the user to walk along the safer way. It would be 

convenient to use this system and the user won‟t need too much training time to get 

used to the system. 

 

 
Figure 2-2 Functional components of Guide cane [3] 

 

2.1.2. Laser Sensors 

When setting up a travel aid device for blind, laser sensors are another choice. 

Like the laser cane in [4], laser sensors are also used for obstacle avoidance. In the 

work of [5, 6], the authors developed a hand-held environment discovering equipment 

named “virtual white cane”. In their system, they use a laser-based range sensor and a 

CCD camera. The system layout is illustrated in Figure 2-3. When a laser beam is 

emitted from a laser pointer, the refection is to be detected by the well aligned CCD 

sensor array. When the blind user swings the hand-held equipment around, the local 
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environment information will be captured. Based on the time profile produced by the 

light, the equipment can analyze the data to estimate some environmental features, 

such as steps and drop-offs. However, for an outdoor environment, the laser may be 

jammed by a lot of unexpected noise. 

 

 

Figure 2-3 The layout of the hand-held equipment of virtual white cane 

 

 

2.1.3. RFID 

For outdoor walking, visually impaired people are used to find blind tiles in order 

to follow them by hand-held white cane. In [7], they built a large-scale guiding 

framework based on Radio Frequency Identification (RFID) devices and wireless 

communication technology. In their framework, RFID tags, which can offer useful 

information provided from the centralized information system, are buried under the 

roads. With an RFID reader embedded in the blind cane, the blind users can get some 

helpful information like the status of traffic light or the location of the nearest bus 

station. An illustration of this framework is shown in Figure 2-4. Even though this 

framework provides sufficient assistance for visually impaired users, it would require 
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a lot of efforts to create such a large-scale comfortable environment. 

For obstacles detection, sonar- and laser-based travel aids have boomed for many 

years. A major advantage of these devices is their efficient computation. However, 

these devices can only detect objects that have an apparent 3-D shape. For example, 

the signals emitted by sonar sensors are not able to detect sidewalks, curbs, or roads. 

Another drawback is their high cost. 

 

Figure 2-4 The framework of the navigation system in [7] using RFID 

 

2.2. VISION-BASED TRAVEL AID SYSTEMS 

As mentioned before, electronics travel aids (ETAs), which make use of 

ultrasonic and laser sensors, have been developed to help blind user‟s daily activities 

in both indoor and outdoor environments. Compared to these popular technologies, 

vision-based approaches can provide some other advantages. For example, image 

sensors, like webcams, have low cost and low power demands. In theory, one can use 

cameras to capture all the visual information in front of the blind user. In other words, 

camera can be seen as “virtual eyes” for the blind people. With this property, we can 
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develop much more fantastic functionality to help the blinds by using computer vision 

based algorithms.  

In computer vision, object detection and recognition are crucial and challenging. 

Given an image, there may be some informative objects for traveling, like waymarks, 

crosswalks, traffic lights, and sidewalks. In recent years, some researchers have 

investigated the issues of automatic detection, recognition, and segmentation of 

multiple objects in an image. Besides, the scene understanding issue has been raised 

to decompose the given image into several semantically meaningful regions. If the 

scene understanding algorithms can roughly identify the spatial layout of the scene, 

this useful message can be passed to visually impaired users to help them understand 

their current environments. 

In Section 2.2.1, we will introduce a system for landmark targeting. The system 

detects the prominent objects which are specific and important for blinds. In Section 

2.2.2, we will introduce a few state-of-the-art scene understanding algorithms. These 

works may achieve multi-class object segmentation and labeling. In Section 2.2.3, we 

will introduce some vision-based guidance systems. 

2.2.1. Landmark Targeting 

While taking a walk outdoors, we usually follow sidewalks for the concern of 

safety. On the other hand, we also need to pay attention to some obstacles such as cars 

and people to avoid collision. In [8], the authors proposed a cheap and wearable 

facility for visually impaired people. The block diagram of the overall system is 

illustrated in Figure 2-5. 
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Figure 2-5 Block diagrams of the framework in [8] 

In their system, they first search the paths in the input frame. The path detection 

window is initially set to be under a horizontal line that is close to the middle of the 

frame. After the initial frame, the position of the horizontal line is updated 

dynamically based on the detected path borders and the corresponding vanish points 

of previous frames. After that, the Canny edge detector is used to generate an edge 

map. In their approach, the authors assume the shape of the path in front of the user is 

simple. Hence, the gradient orientations of the sidewalk borders are restricted to a 

certain range. Besides, they assume the borders would intersect at a vanish point. 

Based on the above assumptions, Hough transform is used to search for lines within 

the path detection window. Some path detection results are shown as Figure 2-6. After 

path detection, edge and texture cues are utilized to detect static obstacles. Moreover, 

the optical flow method is used to capture moving obstacles such as human walking 

on the sidewalk. Finally, the stereo disparity can provide the distance information of 

the detected obstacles. Since the edge and texture cues can easily get interfered by 

occlusion or shades, their work is currently limited to simple scenes only. 
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Figure 2-6 Some results of path detection in [8] 

 

2.2.2. Scene Understanding 

In current multi-class object recognition/segmentation algorithms, Markov 

random field (MRF) or conditional random field (CRF) [9] is usually adopted to 

incorporate different features in a single model. In [10], they proposed an approach to 

learn a discriminative model of object classes which combines texture, layout, and 

context information efficiently. They also use conditional random field to learn and 

combine texture-layout, color, location, and edge cues in a unified model, as 

expressed in Eq. 2-1. Here, the notation c indicates the class label and x indicates the 

image. 

 

( , )

log ( | , ) ( ( , ; ) ( , ; ) ( , ; ))

( , , ( ); ) log ( , )

i i i i i

i

i j ij

i j

P c c x c i

c c Z

  




      

  


  

 





c x x

g x x
 Eq. 2-1 

In this equation, the first term is texture-layout potentials; the second term is 

color potentials; the third term represents location potentials; the fourth term is edge 

potentials that measure the class located in the two sides of the edge; and Z is the 

partition function term to normalize the distribution. In the training stage, they want to 

learn the weighting θ for each feature term. In the label inference stage, they apply the 

learned model to the image and try to associate object category label with pixels or 
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other image representations (see Figure 2-7). Finally, the input image is partitioned to 

semantic meaningful regions. However, there may be some drawbacks in these 

learning-based methods. One is that it is hard to adjust the number of object 

categories after the model is determined. Moreover, if the features of different object 

classes are similar, the inference results may be wrong. 

 

Figure 2-7 Example results from Textonboost [10] for image understanding 

On the other hand, the authors in [11] adopted a data-driven approach. They first 

retrieve similar scene type from the retrieval set and generate super-pixels for the 

query image by using bottom-up segmentation. The super-pixels are described by 

shape, location, texture, and appearance features. After those two steps, the likelihood 

ratio score of object classes for each super-pixel can be obtained. They encode 

contextual constraints with the help of Markov random field, as expressed in Equation 

2-2. Here, c also denotes the class label and si represents the i
th 

super-pixel. For each 

semantic class is associated with a geometry class, such as ground, sky, or vertical. 

Finally they jointly determine the geometric labels and semantic labels by optimizing 

the objective function in Equation 2-3, which is an extension of Equation 2-2. Here, 
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the notation g represents geometric class label. The last term of Equation 2-3 enforces 

the coherence between geometric class and semantic class. This term is zero when 

these two labels are matched correctly, and is one otherwise. An example is shown in 

Figure 2-8. 
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Eq. 2-3 

 

Figure 2-8 Example result of SuperParsing in [11] 

 

2.2.3. Vision-based Guiding Systems 

In [12], the authors proposed a wearable and stereo-vision based navigation 

system for blind people. A pair of cameras is used as the data acquisition device. They 

also combine visual odometry and Simultaneous Localization and Mapping (SLAM) 

algorithm into their work. By utilizing camera pose estimation with dense 3D 

information from stereo-vision, a vicinity map is created for the surrounding 

environment. The block diagram of their system is illustrated in Figure 2-9. 
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Figure 2-9 System overview of [12] 

However, the main limitation of their work comes from the stereo-vision 

architecture. When the local environment is low-textured, the depth map produced by 

the stereo camera system will not be accurate enough. Some surface model results are 

shown in Figure 2-10, where red regions represent vertical surfaces, green regions 

represent horizontal surfaces, and the red cones represent camera orientations. 

 

Figure 2-10 Multi-level surface patch models for [12] 
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In [13], the authors proposed a data-driven framework. In their system, training 

video sequences were taken beforehand. They select some key frames as reference 

data and perform registration with respect to 2D positions and orientations. For every 

key frame, they extract Speeded Up Robust feature (SURF) [14] and GIST feature 

[15]. When the query image is captured, the user will know where he/she is by 

matching feature to the reference images in the database. The scene continuity is 

modeled by the hidden Markov model (HMM). The guiding result is shown in Figure 

2-11, where black dots represent key frame locations, blue lines represent ground 

truth location of query frames, green lines represent covered ground truth, and red 

parts represent the locations where error is over ten meters from the ground truth. For 

outdoor cases, using GPS tools can achieve faster and more accurate localization than 

the proposed method in [13]. 

 

Figure 2-11 Guiding result of [13] 
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Chapter 3.  

PROPOSED SYSTEM 

While traveling outdoors, walking on the sidewalk is the commonest action. For 

people who have normal vision, it‟s easy to change momentarily the walking direction 

to avoid dangers. However, for thousands of blind people, they are afraid of walking 

in a wrong direction, which may cause fatal dangers to them. Hence, automatically 

detecting the walking area in front of blind people could be very helpful to them. For 

blind people, the white cane is a commonly used tool. However, white canes cannot 

provide reliable tactile information to help blind users distinguish curb from sidewalk. 

On the other hand, the state-of-the-art sonar- and laser-based systems cannot detect 

the unobvious drop-offs on the sidewalk borders in outdoor environments either. To 

achieve this kind of assistance, we aim to utilize computer vision algorithms.  

Up to now, some nowadays popular scene understanding algorithms learn a 

model to classify different image regions into corresponding object categories. 

However, due to the multiple outdoor scene appearances and the view-dependent 

variations of scene structure, a single model may not be able to efficiently handle the 

scene understanding problem. Moreover, the scene understanding algorithms may get 

poor inference results when the features of different objects appear to be similar.  

From the habit investigation of blind people, we learn that blind people are used 

to walk around in an environment that they are familiar with. This phenomenon 

inspires us to adopt a data-driven approach. On the other hand, many modern portable 

devices are able to surf over the internet and to receive GPS signals to identify their 

geographic locations. Hence, we can set up a database for the places where the blind 
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user tends to visit. When the blind user walks around these places, he or she can use 

the information captured by his/her portable device and the identified geographic 

location to retrieve appropriate reference data from the already installed database in 

order to achieve safer navigation. 

In this thesis, the goal of our system is to label the walking area for the current 

scene in front of the blind user. First, the blind user will use some geographic locating 

device like GPS to identify his/her current location. Based on the current location, the 

system retrieves a few panorama images from the database to represent the 

neighboring scenes of the blind user. After that, with respect to the image captured by 

the portable camera hung in front of the blind user, the system adopts a fast global 

feature matching method to search within the panoramas the most similar scene. In 

practice, the captured image and the matched image data would be roughly the same. 

Since we have already labeled some important objects, like roads and sidewalks, in 

the panorama images, we can warp the labels of the matched image to form the labels 

of the captured image. With the mapped labels, the system can roughly understand the 

current scene in front of the user and detect some situations that could be dangerous to 

the user. Figure 3-1 shows the block diagram of our framework.  

 

Figure 3-1 Block diagram of the proposed system 
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The challenges of our system includes: (1) the scene appearance may vary a lot 

in an outdoor environment; (2) the features of road and sidewalk may be similar to 

each other; and (3) the observed scene may vary a lot with respect to different viewing 

directions. Some examples of these challenges are shown in Figure 3-2.To solve the 

first and second challenges, we adopt a database retrieval approach to search for the 

most similar image that interprets the surrounding scene. To solve the third challenge, 

the database is composed of panoramic images. In Section 3.1, we will explain the 

detail of database construction and sub-database retrieval. In Section 3.2, we will 

introduce the algorithm that determines the facing direction of the user. In Section 3.3, 

we will introduce the processes of scene alignment and label mapping. In Section 3.4, 

we will introduce the detection of dangerous situations. In Section 3.5, we will tell 

how to use the temporal information to simplify our system. 

 

 

Figure 3-2 Major challenges: (a) variations of scene appearance, (b) feature similarity between road 

and sidewalk, and (c) very different scene contents from different viewing directions. 

 

3.1. SUB-DATABASE RETRIEVAL 

In this section, we will introduce how to build the database and how to retrieve 

the sub-database that contains the panoramic images of the neighboring scenes. 
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3.1.1. Building Panoramic Database 

In order to safely walk around in the campus of National Chiao Tung University, 

we should set up a database that represent the scenes around a few sampling spots in 

the campus. In the following paragraphs, we will explain how we install the database. 

At each sampling spot, we took photos at 16 different viewing directions to model the 

possible views that a person with normal vision may see. These 16 photos were 

stitched together to form a 360-degree panoramic image, as shown in Figure 3-3. 

When we took the photos, our camera is held at about 1.6 meters height. Moreover, 

we took these photographs in cloudy days in order to reduce the strong-light effect 

and the strong shade interference. 

 

Figure 3-3 Stitching 16images of different viewing directions to form a panoramic image 

To stitch these photos of different viewing directions, we use the Hugin 

panorama creator, which allows several overlapping photographs taken at the same 

place to be merged into a large photo. This panorama creator matches the Scale 

Invariant Transform (SIFT) features of the overlapping regions of two images to align 

and transform photos to create a panoramic image. Before stitching images, we have 

to choose an anchor image at a certain direction to achieve the same arrangement of 

the panorama while stitching, as shown in Figure 3-4. The white balance and 

exposure are also corrected for each image based on the anchor image. 
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Figure 3-4 An example of three adjacent sub-databases. Here, all the panoramic images have the same 

arrangement of directions.  

After having obtained the panoramic images, we label each panorama to create 

the annotations. Here, we use the on-line labeling tool LabelMe [16] to label the 

important regions such as sidewalks and roads in the panorama, as shown in Figure 

3-5. Inside the green polygons are labeled as sidewalk regions, while inside the pink 

polygons are labeled as road regions. 

 

Figure 3-5 Labels in a panoramic image 

3.1.2. Sub-Database Retrieval for Neighboring Scenes 

To interpret the surrounding environment for the user, we don‟t need to search 

over the whole database but only need to check a local sub-database. Intuitively, there 

may be some degree of scene discontinuities between adjacent sub-databases. Hence, 

we may not be able to get good interpretation of the surrounding environment if we 

only check the nearest panoramic image. Moreover, the routes in campus are not 

always straight. Hence, the scene at some sampling spots may have complex spatial 

layout. To deal with these problems, we search the panoramic images at three nearby 

sampling spots.  

Our system is a kind of wearable aid system for visually impaired user. In real 

implementation, we use a GPS device to find user‟s location. Here we use the Garmin 
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GPS 18portable device, as shown in Figure 3-6. Garmin GPS 18 updates the location 

for every second and has a USB connection that can be easily connected to wearable 

equipment. When this device is connected to a notebook, we use the open source 

software Franson GpsGate 2.6 to extract NMEA data from the device to get the 

current latitude. Like in [17], we have tagged all of our panoramic images with the 

corresponding GPS coordinates. Hence, by using the Garmin GPS 18 to get the 

current GPS location, we can identify the three panoramic images that have the 

shortest geographic distance with respect to the current location. These three 

panoramic images are treated as the sub-database for subsequent processes.  

 

Figure 3-6 Garmin’s USB-version GPS 18 

 

3.2. DETERMINATION OF FACING 

DIRECTION 

After finding the sub-database of three panoramic images at nearby sampling 

spots, as shown in Figure 3-4, we search within each panoramic image to find the 

image portion that is most similar to the current front-view image of the user. This 

action can be seen as modeling the “virtual sight” for visually impaired people. With 

the matched image portion, the blind user will be able to roughly know the current 
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direction he/she is facing to.  

In this step, we want find the most similar part efficiently via feature matching. 

Many popular image matching algorithms in the literature, such as SIFT or Speeded 

Up Robust Feature (SURF), are developed to match local regions. With these 

approaches, the matching result may get easily interfered by unexpected objects in the 

scene, like walking people or cars. In our approach, we describe the whole image in 

terms of a single global feature vector, by which we can achieve lower computational 

complexity and lower noise interference. 

In the literature, global features are usually used to solve scene categorization 

problems. Different scene categories usually have different appearances, as shown in 

Figure 3-6. For example, street scenes may contain lots of vertical and horizontal lines, 

while natural scenes usually contain undulating contours. In our case, we want to 

utilize a global feature to search for the matched image portion in the panoramic 

images. For every panoramic image in the sub-database, we partition it into 32 

overlapping sub-images along the horizontal direction. Hence, given the image 

captured by the camera, we try to find the best match among the 32 (sub-images per 

panorama) 3 (panoramas per sub-database) = 96 sub-images. In Section 3.2.1, we 

will introduce the widely used global feature “gist”. In Section 3.2.2, we will 

introduce how to model the blind‟s slow motion in the global matching process. 

 

Figure 3-7 Different scene categories 

3.2.1. Global Feature: Gist 

Gist [18] is a low dimensional global feature, which encodes different responses 
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to human eyes from different spatial regions of an image. In other words, the gist 

feature models coarsely the edge and texture information of different spatial regions 

in an image. This feature has been tested for various kinds of applications, like scene 

categorization and image retrieval, and has demonstrated reliable performance. 

Moreover, with the low dimension of this feature, we can efficiently measure the 

similarity between two images. 

The gist descriptor performs Fourier transform analysis after the pre-processing 

that reduces boundary artifacts and normalizes the local contrast. To construct the gist 

feature, the image is convolved with a multi-scale oriented Gabor filter bank, as 

shown in Figure 3-8.The Gabor filter bank is composed of four scales, with each scale 

having eight orientations. The filter bank responses are shown in Figure 3-9. 

 

Figure 3-8 Gabor filter banks for multiple scales and orientations 
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Figure 3-9 Filter bank responses 

Next, for each filter output, we average the magnitude response within each 44 

non-overlapping blocks of the image. These responses are stacked together to form a 

4448=512 dimensional feature vector. The overall flow chart of the gist feature 

extraction is shown in Figure 3-9. 

 
Figure 3-10 Block diagram of Gist feature extraction 

On the other hand, our panoramic image is composed of 16 images of different 

directions to cover the 360-degree view of a scene. For different viewing directions, 

the scene structure could be very different and the statistics of detected edges and the 

texture representation are different. In Figure 3-11, we show the visualization of gist 

features in polar plots, where along the radius green and red colors are used to 
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represent different responses of multi-scale filters. Filter responses of different 

orientations are encoded in different angles of the polar plots. The brightness of the 

color represents the magnitude of the response. The 16 polar plots indicate the filter 

responses of the 16 non-overlapping local image regions. In Figure 3-11, we can 

easily distinguish the difference of gist feature among different images. In our system, 

the gist feature of each sub-image in the panoramas is pre-calculated to reduce the 

computation time. To measure the similarity between two images, we calculate the 

correlation of their corresponding gist features. If we denote p as the index of the 96 

sub-images, Xp as the pth sub-image, and G(I) as the gist feature of the input frame, 

we find the best match Xp based on the following equation 

 
* arg min ( ) ( )

p
p p

X
X G I G X   Eq. 3-1 

 

 
Figure 3-11 Visualization of Gist feature for different image views 

 

 

3.2.2. Spatio-temporal Constraint for Search Window 

In our system, we assume that the blind user don‟t move drastically. That is, the 

panning speed and the walking speed are not too fast. With the slow motion 

assumption, the orientation of the matched sub-image at the current moment will be 

very similar to the orientation of the matched sub-image at the previous moment. As 
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shown in Figure 3-12, if the image portion between the red dash lines represents the 

best match for the previous input frame, then the orange region indicates the possible 

image portions for matching at the current moment. This assumption can greatly 

reduce the search range within the sub-database. In mathematics, this concept can be 

modeled as a Markov chain, as expressed in Equation 3-2. Here, Pr(Xt= i) denotes the 

probability at Time t that the best matched image portion is the ith sub-image in the 

sub-database. 

 , 1Pr( ) Pr( )t r j tX j p X r    Eq. 3-2 

where 1Pr( | )ij t tp X j X r  

 
Eq. 3-3 

For the implementation detail, we search for the 7 nearest directions out of all 32 

directions based on the direction of the previous best match. After global feature 

matching, we obtain the current facing direction of the user. The matched portion of 

the panoramic image also roughly interprets the surrounding environment.  

 

Figure 3-12 Slow motion of blind user reduces the search area within the panoramic images. 
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3.3. SCENE ALIGNMENT AND LABEL 

TRANSFORMATION 

As mentioned above, we have found the image portion of the panoramic images 

in the sub-database that is the most similar to the front view of the blind user. Here, 

we call this best matched image portion as the reference image of the input frame. As 

a matter of fact, there still exist some differences between the input frame and the best 

match, as shown in Figure 3-13. That is, even though these two images are captured at 

similar places with similar facing directions, the scene contents are not exactly the 

same. Hence, we need to further align the best match with the input frame to obtain 

more accurate labeling results. 

  
(a) (b) 

Figure 3-13 (a) Input frame. (b) The best matched image portion. 

For the sake of mapping the best match to the input frame, we focus on finding 

the correspondence between the two images. Up to now, many state-of-the-art 

methods have discussed this correspondence problem. One approach is to find some 

interest points of the images for matching, such as SIFT feature points. However, this 

sparse approach tends to have poor results when there are no appropriate interest 

points in the images. Another approach is to use the correspondence of regions to 

match the images, such as the approach in [19]. In this kind approach, they first 
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segment the images into many sub-regions. After that, they use some suitable features 

of the sub-regions to match the images. Intuitively, the matching result will be not 

accurate if the sub-regions are not accurately segmented.  

In our approach, we adopt pixel-wise matching. Although the result of 

pixel-level matching is usually noisy, we can utilize some robust feature to tackle this 

problem. Here, we use SIFT flow proposed in [20] to perform pixel-wise matching in 

order to obtain better scene alignment. 

3.3.1. SIFT Flow 

SIFT flow is a novel method for the application of scene alignment. It adopts the 

same computational framework of optical flow to achieve dense matching. Instead of 

using RGB values and gradient information to represent the pixels, SIFT flow uses 

pixel-wise SIFT feature instead. Since this kind of histogram-based features contains 

contextual information around the pixel, we can use them to obtain more reliable 

matching results across different scene appearances. Moreover, the SIFT descriptor 

performs well under luminance variations of outdoor environment.  

To better observe the generation of SIFT feature map, we adopt the visualization 

method shown in Figure 3-14. In this representation, after principal component 

analysis (PCA), the top three principal components of the 128-dimensional SIFT 

descriptors are calculated and are projected into the RGB space for visualization. In 

Figure 3-14, pixels with similar colors would share similar local image structure.  

Even though we only use the top three principal components of the SIFT features 

for visualization, we use the 128-dimensional SIFT descriptors for dense matching. 

The objective function of the matching process is expressed as below: 
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Here, p and q are pixel coordinates. The notation s indicates the SIFT image and 

w indicates the flow vectors. The first term in Equation 3-4 is the feature matching 

term, also known as the data term. In this term, SIFT features are matched across the 

two images. The second term sets a constraint that the flow magnitude should not be 

too large, with η representing the weighting of this constraint. The third term models 

the spatial regularization so that the flow vectors of adjacent pixels will be similar, 

with α representing the coefficient of flow discontinuity. The dual-layer loopy belief 

propagation [21] is adopted to obtain the optimized flow field, which allows the 

separation of the vertical flow from the horizontal flow in message passing by 

decoupling the smoothness term.   

 

Figure 3-14 Visualization of SIFT features 

After the optimization process, we obtain the SIFT flow field. Based on the flow 

vectors, we can warp the pixels of the best matched image for image alignment. As 

shown in Figure 3-15, the warped image will be quite similar to the input image 

frame.  
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Figure 3-15 (a) Input frame. (b) Best match from database. (c) Warped image. 

Similarly, we map the labels of the best matched image along the flow vectors. 

The mapped label can be taken as the inference of the environment, as shown in 

Figure 3-16, where the green labels represent the sidewalk area and the red labels 

represent the road area. To keep the completeness of region and to suppress some 

outliers, we actually have performed the morphological “open” operation after the 

mapping of labels. 

 

Figure 3-16 (a) Best match and the corresponding labels.  

(b) Input frame and the inferred labels. 

As mentioned above, based on pixel-wise matching, we can map the labels of the 

best matched image to interpret the contents of the input image frame. The reasons 

why we don‟t use optical flow for dense correspondence are as follows. First, the 

assumption for optical flow doesn‟t fit our problem. Most optical flow methods are 
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used to describe the temporal correspondence of two successive frames in a video 

sequence. Due to the significant similarity between two successive frames, the 

assumption of consistent brightness is usually used and a small search window is 

usually adopted. For our case, however, there always remains certain appearance 

difference between the best matched image and the input frame. Hence, the traditional 

optical flow method may not be appropriate for our situation. Moreover, the SIFT 

flow approach utilizes a larger search window so that we can tolerate larger 

differences between these two images in scene alignment, as shown in Figure 3-17.  

 

Figure 3-17 Different size of search window for optical flow and SIFT flow 

To build meaningful correspondence between two images, we assume that these 

two images share a similar local image structure. The perspectives of the images are 

also assumed to be similar. However, the blind user may have various kinds of 

movement while walking on the sidewalk, such as a horizontal move shown in Figure 

3-18. Under this example, the SIFT flow may not be able to perform meaningful 

correspondence due to the different perspective caused by the horizontal move. 

 

Figure 3-18 Illustration of poor alignment. (a) Input frame. (b) Best match. (c) Warped image. 
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In the above example, even though these two images are taken at the same place, 

we still can‟t obtain a convincible flow field to represent the matching relation. 

Because of the insufficient information provided by a single support image, the 

mapped image is not very similar to the input frame.  

3.3.2. Panoramic Approach 

To provide a more accurate warping result, instead of taking a single support 

image for dense matching, we utilize a larger image portion in the panoramic image, 

as shown in Figure 3-19. The extended support image is about 2.5 times wider than 

the width of the input frame, but with the same height. Moreover, to search over a 

wider support image, we also relax the constraint of flow magnitude. The weighting 

of flow constraint is set to 0.4 times of the original setup. With the extended support 

image and the relaxed flow magnitude constraint, more panoramic information can be 

acquired for better dense matching, as shown in Figure 3-20.  

 
Figure 3-19 Panoramic extension of the original support image. 
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Figure 3-20 More information is acquired by using panoramic approach.   

Top: extended support image. Bottom: input frame.  

Color lines indicate feature correspondence 

 

3.4. DANGEROUS SITUATION DETECTION 

By using the inferred labels, we can decide whether the situation in front of the 

blind user is dangerous or not. Here we focus on the relation between road and 

sidewalk and apply a rule-based method to analyze these labels. Since humans 

typically pay more attention to the central region in front of them, we define the 

region of interest to be the trapezoid mask shown in Figure 3-21.  

 
Figure 3-21 Region of interest that models human’s visual attention area. 

The complete flow diagram of dangerous situation detection is illustrated in 

Figure 3-23. The first dangerous situation is defined to be the case when the road 
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region is larger than the sidewalk region in the trapezoid mask. This situation usually 

occurs when the user turns his/her direction toward the road or when the user‟s 

position is near the border between road and sidewalk. Here, we define the area of 

road label inside the mask as Ar and the area of sidewalk label as As. As expressed in 

Equation 3-5, when the area ratio Aratio1 = Ar/As is larger than a certain threshold 

Tharea1, we infer the situation as dangerous. In our system, Tharea1 is empirically set to 

0.325. 

On the other hand, the blind user may walk to the border between the sidewalk 

and some region other than road. For this case, we denote the unlabeled region as 

“undefined” and denote its area as Aun. As expressed in Equation 3-5, when the ratio 

Aratio2 = Aun/As is larger than another threshold Tharea2, we infer that situation to be 

dangerous too. In our system, the threshold Tharea2 is empirically set to 0.8.  
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 Eq. 3-5 

After analyzing the area ratio of different labels, we check whether the sidewalk 

region is right in front of the user. In other words, even if the area ratios are lower 

than corresponding threshold, the situation would be dangerous if there is no sidewalk 

label at the bottom of the trapezoid mask. Here, we infer the situation as dangerous if 

there is no sidewalk label within the bottom 15% region of the trapezoid mask. Here, 

we denote this bottom 15% region as Mb, as expressed in Equation 3-6. 
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The other dangerous situation happens when the sidewalk area in front of the 

user is too small. Here, we detect this situation if the area of sidewalk label in the 

mask is under a certain rate Rs, as expressed in Equation 3-7. We define AT as the area 

of trapezoid mask. In our system, Rs is empirically set to be 0.25. 
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 Hence, we detect the situation is dangerous if D1, D2, or D3 is one. Otherwise, the 

situation is safe. After analyzing the label, the system can pass the message to the 

blind user so that he/she can know whether his/her current situation is dangerous or 

not. In real implementation, one can use an audio device to warn the blind user if 

he/she has the normal sense of hearing. 

In addition to the detection of the dangerous situations for blind people, our 

system can also suggest the blind user the right direction of safe walking. After a 

dangerous situation is detected, we analyze the spatial layout of the warped labels to 

determine the right direction. In detail, we extract the pixel positions of each label 

class and average the coordinates of the horizontal component. If we define the center 

of the x coordinate of the road labels is Cr and the center of the x coordinate of the 

sidewalk labels is Cs, we can compare the values of Cr and Cs to determine the 

suggested turning direction. If there is no road label, we just check whether Cs is on 

the right half or on left half of an image. If the area of sidewalk labels is too small, the 

spatial layout of labels would be unreliable. In this case, we estimate the safe direction 

by using the label information at the previous moment. In Figure 3-22, we present the 
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pseudo code of the decision process. 

 
Figure 3-22 Decision rules for direction turning 

 

 

Figure 3-23 Flow diagram of dangerous situation detection 
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3.5. TEMPORAL INTERPOLATION 

In order to reduce the computational complexity, another approach is to utilize 

temporal information. Instead of performing the whole process for every frame, we 

can use temporal correspondence to simplify the process. In our system, we perform 

the whole process only over a few frames, named the anchor frames. For each anchor 

frame, we perform sub-database retrieval and calculate SIFT flow to generate the 

outcome. For those frames between a pair of adjacent anchor frames, we simply 

propagate the labeling results of the anchor frame to estimate their labels. This 

process is illustrated in Figure 3-24 below.  

On the other hand, the camera may pan when the blind user turns left or right, 

as shown in Figure 3-25. For this case, we track the camera status using the statistics 

of the SIFT flow between adjacent frames. 

 

Figure 3-24 Simplified architecture by using temporal information. 
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Figure 3-25 Camera panning caused by the turning of the user. 

3.5.1. Motion Prediction 

As mentioned above, to deal with the panning of camera, we analyze the SIFT 

flow between two adjacent frames. Again, because of the larger search window used 

in the calculation of SIFT flow, we will be able to handle a large motion. To predict 

the motion, we analyze the flow field in the horizontal direction. Here, we calculate 

the mean of the flow magnitude along the horizontal direction. This result indicates 

the turning direction of the user. As shown in Figure 3-26 and Figure 3-27, we take 

the histogram of the flow magnitude in the horizontal direction. When the mean of the 

horizontal flow magnitudes is lower than -20, we infer the user as turning left. On the 

other hand, when the mean value is larger than 20, we infer the user as turning right. 

Some examples are shown below in Figure 3-26 and Figure 3-27. 

3.5.2. Label Propagation 

As mentioned above, we use temporal information to propagate the labels for 

non-anchor frames. The labeling results of the preceding frame are warped to generate 

the labels of the current frame based on the temporal correspondence between these 

two frames. The use of temporal correspondence makes the labeling results reliable 

and accurate as long as we have obtained correct labels in the anchor frame.  
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Figure 3-26 Histogram of SIFT flow magnitudes in the horizontal direction when the 

user turns left. The green words indicate the inferred camera status. 

 

 

 

Figure 3-27 Histogram of SIFT flow magnitudes in the horizontal direction when the 

user walks straight. The green words indicate the inferred camera status. 
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Chapter 4.  

EXPERIMENTAL RESULTS 

In this chapter, we will demonstrate some of our experimental results. In Section 

4-1, we will show the results of label transformation by the SIFT flow with single 

view approach and by the SIFT flow with panoramic approach. In Section 4-2, we 

will show the performance of our system over a real outdoor environment in NCTU. 

Our proposed system is tested over a personal computer with Intel® Core™ i5-760 

CPU at 2.8G Hz. Our algorithm is developed in Matlab but without code 

optimization. 

4.1. LABEL RESULTS OF DIFFERENT 

APPROACHES 

First, we show the warping and label results by SIFT flow with the single-view 

approach and with the panoramic approach. A result is shown in Figure 4-1, which 

shows that the panoramic approach provides more accurate warping and label result. 

The parameters of SIFT flow are set to be the same for both cases. The input frame is 

captured at the resolution of 640480 pixels and then down-sampled to 160120 

pixels. The panoramic image is 2.5 times wider than the input frame, but with the 

same height. 
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Figure 4-1 (a) Single-view support image, (b) panoramic-view support image, (c) warped result 

from single-view image, (d) warped result from panoramic-view image, (e) ground truth labels, 

(f) mapped labels based on single-view support, and (g) mapped labels based on panoramic view. 

Another example is shown in Figure 4-2. Via panoramic approach, even though 

the results of warped image and label do not perfectly resemble the input frame, the 

results can still well represent the input frame.  

 

Figure 4-2 (a) Single-view support image, (b) panoramic-view support image, (c) warped result from 

single-view image, (d) warped result from panoramic-view image, (e) ground truth labels, 

(f) mapped labels based on single-view support, and (g) mapped labels based on panoramic view. 
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4.2. OUTDOOR EXPERIMENTAL RESULTS 

WITHIN NCTU 

4.2.1. Database Setup 

Our system is tested on two routes near the north gate of National Chiao Tung 

University (NCTU), as shown in Figure 4-3. Red lines indicate these two routes, 

which consist of various kinds of scenes, such as bus station, intersection, or trees, as 

shown in Figure 4-4. The total length for these two routes is about 300 meters. 

 

Figure 4-3 Our test routes in NCTU. 

 

 

Figure 4-4 Scene appearances 
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To create the database along these two routes, we choose 11 sampling spots in 

total. The selection of sampling spots is based on three criteria: 1) a scene that 

contains an intersection, 2) a scene that contains informative landmarks, such as 

crosswalk and waymark, and 3) a scene that contains special construction, like bus 

station. We follow these criteria to build our panoramic database. As aforementioned 

in Section 3-1-1, we take 16 photographs of different views at each sampling spot to 

create the panoramic image. 

4.2.2. Experimental Results in Test Environments 

We test our system over three video sequences that were captured in three 

different weather conditions: cloudy days, sunny days with some unexpected shadows 

in the scene, and evening time with low lighting condition. Here we show some 

inferred label and detected dangerous situations. The resolution of the videos is 

640480. The test procedure of our system includes the panoramic approach and 

temporal interpolation mentioned in Section 3.3.2 and Section 3.5. The test video of 

the sunny situation was captured around 14:00 in the afternoon, while evening video 

was captured around 18:00 in the evening. While taking these video sequences, we 

mimicked the way blind people take a straight walk until the „real‟ dangerous 

situation occurs. Hence, the walking tracks follow a zigzag style. We sample all the 

test video with the sampling period of 0.6 seconds. For every 6 seconds, we pick an 

anchor frame. In our experiments, the detection process is performed over the anchor 

frames only. For the remaining frames between anchor frames, we use temporal 

information to propagate labels.  



 

44 

 

4.2.2.1. Results of Database Retrieval 

In Section 3-2, we have discussed how to find the portion of panoramas which is 

most similar to the sight in front of the blind user. Here we show some examples of 

the best matches after sub-database retrieval by using gist feature matching with the 

spatio-temporal constraint. 

 
Figure 4-5 Results of database retrieval for walking forward with some pedestrians passing by. 

 (a) Frame index, (b) input frames, and (c) the best match from the panoramic sub-database. 

In the previous example, we can see that the interference in the local image 

structure, such as passing pedestrians, doesn‟t affect the outcome of database retrieval 

too much. The best matched part and input frame would share a similar local structure. 

In comparison, in the following example, we show the case of a panning view. 

     Figure 4-6 Results of database retrieval for a panning case. 

(a) Frame index, (b) input frames, and (c) the best match from the panoramic sub-database. 

. 
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4.2.2.2. Cloudy Day 

For the test video captured in a cloudy day, its lighting condition is very similar 

to that in our database. Some results of the cloudy-day case are shown below. Here, 

we show different walking situations on the sidewalk and the detected dangerous 

situations. To visualize the outcome of our system, we use an exclamation mark to 

represent the occurrence of dangerous situation. Moreover, the yellow arrow indicates 

the suggested safe way to turn if a danger situation is detected. The case of walking 

forward is shown in Figure 4-7.  

 
Figure 4-7 The case of walking forward in safe situation. (a) Frame index. (b) Input frames. 

(c) Inferred labels. (d) Outcome of dangerous situation detection. 

Next, we show an example in which the blind user turn into a wrong direction. In 

this case, our system will warn the user the detection of a dangerous situation. In this 

example, the system informs the user to turn right to achieve safe walk.  
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Figure 4-8 The case of turning to a wrong direction. (a)Frame index. (b) Input frame. (c) Inferred 

labels. (d) Outcomes of dangerous situation detection. (e) Suggested turning direction. 

In the previous example, we still find that the labels are not perfectly accurate for 

Frames 317 and 318. However, the tendency of the change of mapped labels along the 

temporal domain is correct. That is to say, the result of dangerous situation detection 

is still correct even if the labels are not perfectly correct. For Frames 314~316, one 

could see that the user walks on the sidewalk border. We also treat this situation as 

dangerous. One more dangerous situation occurs when the blind user walks on the 

border of sidewalk and road. In this case, our system detects the occurrence of 

dangerous situation and suggests the blind user turn right for safe walk. 
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Figure 4-9 The case of approaching to the border of sidewalk and road. (a) Frame index.  

(b) Input frame. (c) Inferred labels. (d) Outcome of dangerous situation detection. (e) Suggested 

turning direction. 

 

The final example in figure 4-10 shows the dangerous situation when there is 

little sidewalk area in front of the blind user.  

 

Figure 4-10 The case of little sidewalk area in front of the user. (a) Frame index. (b) Input frame. (c) 

Inferred labels. (d) Outcome of dangerous situation detection. (e) Suggested turning direction. 
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4.2.2.3. Sunny Day and Evening Time 

For sunny days, the shades projected on the objects usually cause difficulty in 

detection and recognition. Due to the strong edges caused by shadows, the processes 

of sub-database retrieval and label mapping may easily get affected. On the other 

hand, the lighting condition is usually poor for outdoor environment during the 

evening time. In the following examples, we show the performance of our system 

under these two weather conditions. 

 

Figure 4-11 Test results in sunny day. (a) Input frames. (b) Inferred label. (c) Outcome of dangerous 

situation detection. (d) Suggested turning direction. 

 

The above figure shows some simulation results for the test video captured in a 

sunny day. The performance of our system is not too bad under slight shadow 

interference. However, for the rightest frame in Figure 4-11, there is a huge dark area 

in front of the user caused by the shade of tree. In this case, our system may infer 

incorrect labels.  

In the following case, we show the simulation results at evening time. In some 
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scenes, the light condition is very poor, such as these places near trees. In this kind of 

poor lighting condition, our system may not generate correct outcome. 

 
Figure 4-12 Some examples at evening time. (a) Input frame. (b) Inferred labels. (c) Outcome of 

dangerous situation detection. (d) Suggested turning direction. 

4.2.2.4. Experimental Data 

First we analyze the accuracy of sub-database retrieval. We recall that each 

panorama in the sub-database is partitioned into 32 overlapping parts, representing 32 

viewing directions. For the accuracy of sub-database retrieval, we define the best 

match is accurate if its corresponding direction is within the 4 nearest directions of the 

user‟s true facing direction. We test the accuracy of sub-database retrieval using the 

aforementioned three videos. In the cloudy-day video, we test 438 frames to measure 

the accuracy. In sunny-day and evening-time videos, we test 385 and 425 frames, 

respectively. 

Table 4-1 Accuracy of sub-database retrieval 

 Cloudy Sunny Evening 

Accuracy (%) 97.717 97.143 94.479 

When analyzing the experimental outcome of our system, we regard our issue as 
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a detection problem. We take the detected dangerous situation as the positive outcome. 

The definitions of false positive and false negative are listed in Table 4-2. 

Table 4-2 Definition of false positive and false negative 

 
True dangerous 

situation 
True safe situation 

System detects 

dangerous 

situation 

True positive False positive 

System detects 

safe situation 
False negative True negative 

The equations for detection rate, false positive rate, and false negative rate are 

defined as below: 

 
true positive true negative

Detection rate
total numbers of sampled frames


  Eq. 4-1 

 
false positive

False positive rate
false positive true negative




 Eq. 4-2 

 
false negative

False negative rate
false negative true positive




 Eq. 4-3 

 
Figure 4-13 Ground truth definition (a) to (c): apparent cases, (d) to (f): use the location of border to 

determine whether it is a dangerous situation. 

For the case of cloudy days, we test our algorithm over 438 images, in which 110 

images indicate dangerous situations. By comparing our panoramic approach with 

temporal information to the single-view approach, we can see that the panoramic 
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approach is more reliable. In the test of the single-view approach, we create a 

database which is composed of 8 single-view images representing 8 different viewing 

directions at each sampling spot. For the spatio-temporal constraint, we search for 3 

nearest facing directions of all 8 directions based on the best match at the previous 

moment. Other procedures are set to be the same as the panoramic approach. The 

cases of walking to the border between sidewalk and road (shown in Figure 4-9) are 

not detected as a dangerous situation by the single-view approach. The ground truth 

results are defined manually. Some dangerous cases are quite apparent. However, for 

the case of approaching to the border of sidewalk, we use the position of border to 

determine whether it is a dangerous situation. If the border of sidewalk at the bottom 

of the image locates within the central one third of the image width, we define the 

situation to be dangerous, as shown in Figure 4-13. 

Table 4-3 Experimental data at cloudy day and comparison of single-view approach 

 
Detection rate 

(%) 

False positive rate 

(%)  

False negative rate 

(%)  

Panoramic approach 95.205 3.354 9.091 

Single-view approach 77.854 9.756 59.091 

For the evening-time case, we test our system over 425 images, in which 77 

images indicate dangerous situations. For the sunny-day case, we test over 385 images, 

in which 79 images indicate dangerous situation. 

Table 4-4 Experimental data under different lighting conditions 

 
Detection rate 

(%) 

False positive 

rate (%)  

False negative 

rate (%)  

Sunny 92.727 5.882 12.658 

Evening 93.381 3.736 22.078 

 In the above simulations, false positives and false negatives usually occur in 

some frames right before or right after the frames of dangerous situations. This 
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phenomenon tells us that our system may be able to detect the situation when the user 

“really” approaches dangers.  

The computing time of our algorithm is listed in Table 4-5. When we take the full 

procedure starting from sub-database retrieval to the detection of dangerous situations, 

the computation time is about 4.25 seconds. By using temporal information, we only 

need three seconds per frame for non-anchor frames. The three seconds are almost 

spent by the computation of SIFT flow. We recall that the resolution of the test videos 

is 640480. When using SIFT flow to achieve scene alignment, we don‟t need to use 

the full image resolution. Instead, the width and height of the input frame and the 

support image are down-sampled to 0.25 times of the original images. Because the 

numbers of nodes are reduced to 1/16 for belief propagation, the computation time is 

much faster, while still maintaining similar performance in label mapping. 

Table 4-5 Computational speed for our system 

 

Full procedure Using temporal 

information 

(anchor frame) 

Using temporal 

information 

(remaining 

frames) 

Process time 

per frame 

(seconds) 

4.25 4.25 3.065 
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Chapter 5.  

CONCLUSIONS 

In this thesis, we propose a vision-based travel aid system for blind people. Our 

system can label the walking area in front of the blind user and automatically detect 

the occurrence of dangerous situation. With the proposed system, blind user can know 

which direction would be safer to walk along. In our system, we adopt a 

database-driven framework. First we utilize blind user‟s position coordinate and gist 

feature to find a part of panoramas which is the similar to the view in front of the user. 

After that, we exploit the SIFT flow for image alignment. We map the label of the best 

matched sub-image to infer the labels of the input frame. Finally we use the label 

information to detect the dangerous situation. Our system is able to run on different 

kinds of environments as long as the local database is installed beforehand. Some 

experimental results have shown our system is reliable under different weather 

conditions.  
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