
國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

IEEE 802.16m 初始下行同步之數位訊號處理器實現

Digital Signal Processor Implementation of Initial Downlink

Synchronization for IEEE 802.16m

研 究 生：陳威宇

指導教授：林大衛 博士

中 華 民 國 一 ○ ○ 年 九 月

IEEE 802.16m 初始下行同步之數位訊號處理器實現

Digital Signal Processor Implementation of Initial Downlink

Synchronization for IEEE 802.16m

研究生: 陳威宇 Student: Wei-Yu Chen

指導教授: 林大衛 博士 Advisor: Dr. David W. Lin

國 立 交 通 大 學

 電子工程學系 電子研究所碩士班

碩士論文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical and Computer Engineering

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of Master of Science

in

Electronics Engineering

September 2011

Hsinchu, Taiwan, Republic of China

中華民國一○○年九月

 i

IEEE 802.16m 初始下行同步之數位訊號處理器實

現

研究生：陳威宇 指導教授：林大衛 博士

國立交通大學

電子工程學系 電子研究所碩士班

摘要

本篇論文研究方向為針對 IEEE 802.16m 中初始下行同步裡，實作於數位訊

號處理平台上的議題探討。

當一個行動電話開始要進入網路的時候，我們必須與基地台做初始的同步。

在初始的同步中，包含了符元時間偏移、載波偏移和前置符元序號(preamble index)

需要同步估測。我們利用前置符元的功率較一般資料符元(data symbol)大的特性

做功率移動累加，藉由找到累加結果的峰值來估測前置符元的起始位置。由此起

始位置向後推算一個符元長度以當作我們所估測出來的前置符元，而與真實的前

置符元存在一個相位性錯誤(phase error)。我們利用此估測出來的前置符元推導

其近似最大可能性估測(quasi maximum likelihood)以求得小數部分載波偏移和導

出前置符元的通道估測的式子。我們在頻域上將此通道估測的式子經由估測出來

的小數部分載波偏移補償之後，代入由合理範圍的整數部分載波偏移和不同的前

置符元而得到的通道脈衝響應。再計算這些通道脈衝響應不同的精準符碼時間偏

移序號64 點功率和並且選出最大的那一個，其所在的整數部分載波偏移、前置

符元和精準符碼時間偏移序號即為此聯合估測的結果。

 ii

接著，我們把此演算法實作於浮點運算與定點運算，以及比較兩者的效能。

最後，把定點運算實現於數位訊號處理平台，並且最佳化我們的程式速度，減少

運算複雜度，雖然定點運算會早成效能的衰減，但是結果依然可以接受。

 iii

Digital Signal Processor Implementation of

Initial Downlink Synchronization for IEEE

802.16m

Student：Wei-Yu Chen Advisor：Dr. David W. Lin

Department of Electronics Engineering

Institute of Electronics

National Chiao Tung University

Abstract

In this thesis, the research focus on initial downlink synchronization of IEEE

802.16m, and discuss the implementation issue of DSP.

When a mobile station entering to the network, it needs to perform initial

synchronization, including of symbol timing offset, carrier frequency offset and

preamble index. We utilize the trait which the power of preamble is larger than it of

the common data symbol to compute the moving power sum, and then estimate the

left boundary of preamble by finding out the peak value of moving power sum. A

symbol period from this estimated boundary is regarded as the estimated preamble,

which has a phase noise with the exact preamble. We derive the quasi maximum

likelihood estimation from the likelihood function of the estimated preamble to obtain

fractional carrier frequency offset (FCFO) and the formula of channel estimation.

After compensating the estimated fractional carrier frequency offset to the formula of

channel estimation, we substitute several reasonable integral carrier frequency offsets

(ICFOs) and primary advanced preambles (PA-Preambles) into this formula and

obtain channel impulse responses (CIRs). After that, we compute different fine timing

offset index 64-points power sum of these CIRs and find out the peak value whose

ICFO, PA-Preamble index, and fine timing offset index are regarded as the result of

 iv

the joint estimation.

In order to compare the performance, we implement the algorithm into the

floating-point and fixed-point version. In the end, we modified the fixed-point version

on the digital signal processor platform, and optimize the speed of our programs to

reduce operation complexity. Although the performance is degraded because of

fixed-point modification, the results still can be accepted.

 v

誌謝

在交通大學裡度過的這兩年多來要感謝的人太多了，除了謝天以外，首先我

想感謝林大衛老師，在這段時間以來的照顧以及在專業知識上給於了很多的幫

助，如果沒有老師的話，也不能這麼順利的寫完這篇論文。老師同時教導了我很

多做研究的方法及態度，讓我終身受用。

接下來要感謝的是 CommLab博班的學長，鴻志、彰哲、俊榮、伯森、世璞、

朝雄，在課業或研究上也給予我多的幫助以及意見。有你們的幫助，讓我在碩班

生涯中成長了很多，也學習到很多。

再來要感謝的是曉盈、俊言、卓翰、智凱、強丹、郁婷、偵源、書瑋、兆軒、

凱翔、峻利、復凱、婉瑜、怡茹、頌文以及學弟妹，在這段時間裡陪我吃喝玩樂，

不管是課業上的討論還是聊天打屁，有你們的陪伴，讓我碩班生涯添加了很多色

彩。

最後要感謝的是我的家人以及馮捷，感謝一直來的支持與鼓勵，在我遇到挫

折時包容我、體諒我，讓我在這段期間能夠無後顧之憂，完成這篇論文拿到碩士

學位。

本篇論文獻給所有曾經幫助過我的人，因為有你們，讓我成長茁壯，才能成

就今天的我。

陳威宇

民國一○○年十月 於風城‧新竹

Contents

1 Introduction 1

2 Overview of the IEEE 802.16m Standard 3

2.1 Overview of OFDMA [3], [4] . 3

2.1.1 Cyclic Prefix . 4

2.1.2 Discrete-Time Baseband Equivalent System Model 5

2.2 Basic OFDMA Signal Structure in IEEE 802.16m [5] 6

2.2.1 Resource Units . 7

2.2.2 Basic Categories of Subcarrier . 8

2.2.3 Primitive Parameters and Derived Parameters 8

2.2.4 Frame Structure . 9

2.2.5 Transmitted Signal . 12

2.2.6 Transmission Chain . 12

2.3 Downlink Transmission in IEEE 802.16m [5] 13

2.3.1 Subband Partitioning . 13

2.3.2 Miniband Permutation . 17

2.3.3 Frequency Partitioning . 19

i

2.4 Cell-Specific Resource Mapping [5] . 21

2.4.1 CRU/DRU Allocation . 22

2.4.2 Subcarrier Permutation . 23

2.4.3 Random Sequence Generation . 25

2.5 Advanced Preamble (A-Preamble) Structure [5] 26

2.5.1 Primary Advanced Preamble (PA-Preamble) 26

2.5.2 Secondary Advanced Preamble (SA-Preamble) 28

3 Initial Downlink Synchronization 32

3.1 The Initial Synchronization Problem [1,2] 32

3.2 Derivation of the Initial Synchronization Procedure [1, 2] 33

3.2.1 Coarse Timing Synchronization . 34

3.2.2 Estimation of Fractional Carrier Frequency Offset 36

3.2.3 Jointly Integral CFO, PA-Preamble Index, Channel Estimation and

Fine Timing Offset Searching . 41

3.2.4 Overall Block Diagram . 42

4 Introduction to the DSP Implementation Platform 45

4.1 The DSP Chip [11] . 45

4.1.1 Central Processing Unit . 47

4.1.2 Memory Architecture and Peripherals 48

4.2 TI’s Code Development Environment [13] 50

4.2.1 Code Composer Studio . 50

4.2.2 Code Development Flow [15] . 52

ii

4.3 Code Optimization on TI DSP Platform [15,16] 52

4.3.1 Compiler Optimization Options . 54

4.3.2 Software Pipelining . 56

4.3.3 Loop Unrolling . 57

5 Fixed-Point Implementation of Initial Downlink Synchronization 58

5.1 Floating-Point Simulation Results . 58

5.1.1 Coarse Timing Estimation . 59

5.1.2 Fractional CFO Estimation . 65

5.1.3 Joint Estimation of Integral Carrier Frequency Offset, PID and Fine

Timing . 65

5.2 Fixed-Point Implementation . 67

5.2.1 Coarse Timing Estimation and Removal of Cycle Prefix 79

5.2.2 Fractional Carrier Frequency Offset Estimation and Compensation . . 80

5.2.3 Integer Carrier Frequency Offset Estimation and PID Detection . . . 81

5.3 Fixed-Point Simulation Results . 81

5.3.1 Coarse Timing Estimation . 82

5.3.2 Fractional CFO Estimation . 88

5.3.3 Jointly Estimation of Integral Carrier Frequency Offset, PID and Fine

Timing . 88

5.4 Speeding Up of DSP Implementation . 90

5.4.1 Speeding Up of Coarse Timing Estimation 90

5.4.2 Using DSP Library Function for FFT and IFFT [18] 98

iii

5.4.3 Speeding Up of ICFO, PID, Fine Timing Estimation 98

5.5 DSP Optimization Results . 99

6 Conclusion and Future Work 104

6.1 Conclusion . 104

6.2 Future Work . 105

iv

List of Figures

2.1 Discrete-time model of the baseband OFDMA system (from [3]). 4

2.2 OFDMA symbol time structure (Fig. 478 in [5]). 5

2.3 Discrete-time baseband equivalent of an OFDMA system with M transmitting

users (from [4]). 6

2.4 OFDMA parameters (Table 794 in [5]). 10

2.5 More OFDMA parameters (Table 794 in [5]). 11

2.6 Basic frame structure for 5, 10 and 20 MHz channel bandwidths (Fig. 480

in [5]). 11

2.7 Definition of terms on the transmission chain (Fig. 479 in [5]). 12

2.8 Example of downlink physical structure (Fig. 499 in [5]). 13

2.9 PRU to PRUSB and PRUMB mapping for BW = 10 MHz, KSB = 7 (Figure

500 in [5]). 18

2.10 Mapping from PRUs to PRUSB and PPRUMB mapping for BW = 10 MHz

and KSB = 7 (Fig. 501 in [5]). 20

2.11 Location of the A-Preamble (re-arranged from Fig. 521 in [5]). 26

2.12 PA-Preamble symbol structure of 5-MHz system (Fig. 522 in [5]). 27

2.13 PA-Preamble symbol structure of 10 MHz system [1]. 27

2.14 PA-Preamble symbol structure of 20 MHz system [1]. 27

v

2.15 PA-Preamble Series (Table 815 in [5]). 28

2.16 SA-Preamble symbol structure of 5 MHz. 29

2.17 The allocation of sequence block for each FFT size (Fig. 524 in [5]). 30

2.18 SA-Preamble symbol structure for 512-FFT (Fig. 525 in [5]). 31

3.1 Window sliding structure [1]. 33

3.2 576 points power sum under AWGN in 0 dB [1]. 35

3.3 576 points power sum under SUI-5 at mobility 350 km/h in 0 dB [1]. 36

3.4 Channel impulse response of PB channel [1]. 37

3.5 Channel impulse response of SUI-5 channel [1]. 38

3.6 The estimated CIR with accurate ICFO, 8, compensating and correct PA-

Preamble index, 1, under PB channel with 120 km/h, 0dB in SNR. 43

3.7 The CIR with the inaccurate ICFO, 6, compensating and incorrect PA-Preamble

index, 0, under PB channel with 120 km/h, 0dB in SNR. 44

3.8 Block diagram of algorithm for initial DL synchronization [1]. 44

4.1 Functional block and CPU (DSP core) diagram [12]. 47

4.2 Code development cycle [14]. 51

4.3 Code development flow for C6000 (from [15]). 53

4.4 Software-pipelined loop (from [11]). 56

5.1 Block diagram of simulation procedure. 59

5.2 Histograms of coarse timing estimation under AWGN channel in different SNR. 60

5.3 Histograms of coarse timing estimation under SUI-1 channel in different SNR

value for a velocity of 10 km/h. 61

vi

5.4 Histograms of coarse timing estimation under SUI-1 channel in different SNR

value for a velocity of 90 km/h. 62

5.5 Histograms of coarse timing estimation under PB channel in different SNR

value for a velocity of km/h. 63

5.6 Histograms of coarse timing estimation under PB channel in different SNR

value for a velocity of 90 km/h. 64

5.7 Mean square error of FCFO estimation under SUI-1 and AWGN channels. . 65

5.8 Mean square error of FCFO estimation under SUI-3 and AWGN channels. . 66

5.9 Mean square error of FCFO estimation under PB and AWGN channels. . . . 67

5.10 Histograms of integer CFO estimation under AWGN channel in different SNR

values. 68

5.11 Histograms of integer CFO estimation under SUI-1 channel in different SNR

values at a velocity of 10 km/h. 69

5.12 Histograms of integer CFO estimation under SUI-1 channel in different SNR

values at a velocity of 90 km/h. 70

5.13 Histograms of PID detection under AWGN channel in different SNR values. 71

5.14 Histograms of PID detection under SUI-1 channel in different SNR values at

a velocity of 10 km/h. 72

5.15 Histograms of PID detection under SUI-1 channel in different SNR values at

a velocity of 90 km/h. 73

5.16 Histograms of fine timing estimation under AWGN channel in the different

SNR values. 74

5.17 Histograms of fine timing estimation under SUI-1 channel in different SNR

values at a velocity of 10 km/h. 75

vii

5.18 Histograms of fine timing estimation under SUI-1 channel in different SNR

values at a velocity of is 90 km/h. 76

5.19 Histograms of fine timing estimation under PB channel in different SNR values

at a velocity of 10 km/h. 77

5.20 Histograms of fine timing estimation under PB channel in different SNR values

at a velocity of 90 km/h. 78

5.21 Fixed-point data formats used in DSP implementation. 80

5.22 Calculating the correlation in received PA-Preamble. 81

5.23 ICFO estimation and PID detection flow chart. 82

5.24 Histograms of coarse timing estimation under AWGN channel in different SNR

values. 83

5.25 Histograms of coarse timing estimation under SUI-1 channel in different SNR

values at a velocity of 10 km/h. 84

5.26 Histograms of coarse timing estimation under SUI-1 channel in different SNR

values at a velocity of 90 km/h. 85

5.27 Histograms of coarse timing estimation under PB channel in different SNR

values at a velocity of 10 km/h. 86

5.28 Histograms of coarse timing estimation under PB channel in different SNR

values at a velocity of 90 km/h. 87

5.29 Mean square error of FCFO estimation under SUI-1 and AWGN channels with

fixed-point and floating-point computation. 88

5.30 Mean square error of FCFO estimation under SUI-3 and AWGN channels with

fixed-point and floating-point computation. 89

viii

5.31 Mean square error of FCFO estimation under PB and AWGN channels with

fixed-point and floating-point computation. 90

5.32 Histograms of integer CFO estimation under AWGN channel in different SNR

values with fixed-point implementation. 91

5.33 Histograms of integer CFO estimation under SUI-1 channel in different SNR

values at a velocity of 10 km/h with fixed-point implementation. 92

5.34 Histograms of integer CFO estimation under SUI-1 channel in different SNR

values at a velocity of 90 km/h with fixed-point implementation. 93

5.35 Histograms of PID detection estimation under AWGN channel in different

SNR values with fixed-point implementation. 94

5.36 Histograms of PID detection under SUI-1 channel in different SNR values at

a velocity of 10 km/h with fixed-point implementation. 95

5.37 Histograms of PID detection under SUI-1 channel in different SNR values at

a velocity of 90 km/h with fixed-point implementation. 96

5.38 Summation of magnitude-squares for coarse timing estimation. 98

5.39 Assembly code of the coarse timing estimation (1/3). 101

5.40 Assembly code of the coarse timing estimation (2/3). 102

5.41 Assembly code of the coarse timing estimation (3/3). 103

ix

List of Tables

2.1 PRU Structure for Different Types of Subframes 8

2.2 Mapping Between DSAC and KSB for 2048 FFT Size (Table 802 in [5]) . . . 15

2.3 Mapping Between DSAC and KSB for 1024 FFT Dize (Table 803 in [5]) . . . 16

2.4 Mapping Between DSAC and KSB for 512 FFT Size (Table 804 in [5]) 16

2.5 OFDMA Parameters for 2048 FFT When Tone Dropping Is Applied (Table

796 in [5]) . 17

2.6 OFDMA Parameters for 1024 FFT When Tone Dropping Is Applied (Table

796 in [5]) . 17

2.7 Mapping Between DFPC and Frequency Partition for 1024 FFT Size (Table

806 in [5]) . 21

4.1 Functional Units and Operations Performed [11] 49

5.1 System Parameters Used in Our Study . 59

5.2 The error rate of timing estimation. 67

5.3 The error rate of timing estimation. 89

5.4 Coarse Timing Estimation Results for Optimization Level 3 97

5.5 Coarse Timing Estimation Results for Optimization Level 1 97

5.6 ICFO, PID, Fine Timing Estimation Results for Optimization Level 3 99

x

5.7 ICFO, PID, Fine Timing Estimation Results for Optimization Level 1 99

5.8 DSP Optimization Results . 100

5.9 DSP Optimization Results with Inclusion and Exclusion of Memory Access 100

5.10 Code Size Results . 100

xi

Chapter 1

Introduction

The IEEE 802.16m standard activity is a response to the ITU-R’s plan for the fourth-

generation mobile communication standard IMT-Advanced, wherein it is specified that the

data rate should be at least 100 Mbps in an environment with high mobility and 1 Gbps

in a static environment. Since December 2006, the IEEE 802.16 standards group has set

up the IEEE 802.16m (i.e., Advanced WiMAX or WiMAX 2) task group. The new frame

structure developed by IEEE 802.16m is such that it can be compatible with IEEE 802.16e,

reduce communication latency, support relay and coexist with other radio access techniques,

so that it can become a promising candidates for 4G.

In this work, we study the digital signal processor (DSP) software implementation of

a previously developed initial downlink synchronization method for IEEE 802.16m system

with a time division duplex (TDD) mode [1,2]. The initial downlink synchronization involves

frequency offset correction, timing recovery and bandwidth detection. In the procedure that

we have developed, channel estimation is also obtained simultaneously.

Our DSP implementation uses Texas Instrument (TI) fixed-point DSP platform. We

accelerate the execution speed of the programs and utilize difference optimization techniques

to reduce the computational complexity.

This thesis is organized as follows. We first introduce the IEEE 802.16m standard in

chapter 2. In chapter 3, we present the synchronization algorithm. Chapter 4 introduces

1

the DSP implementation platform. We discuss the DSP optimization methods and presents

the optimization results in chapter 5. Finally, the conclusion is given in chapter 6, where we

also point out some potential future work.

The contributions of this work are as follows:

• We modify the program from Matlab code to C code.

• We convert the code to fixed-point for implementation on DSP.

• We employ various optimization techniques to accelerate the execution speed of the

programs in the DSP implementation.

2

Chapter 2

Overview of the IEEE 802.16m
Standard

The IEEE 802.16m standard is based on orthogonal frequency division multiplexing (OFDM)

and orthogonal frequency division multiple access (OFDMA). In this chapter, we introduce

some basic concepts regarding OFDM and OFDMA first. Then we give an overview of the

draft IEEE 802.16m standard. For simplicity, we only introduce the specifications that are

most relevant to our study. For example channel coding, MAP messages, transmit diversity,

etc., are ignored in this introduction.

2.1 Overview of OFDMA [3], [4]

OFDMA is considered one most appropriate scheme for future wireless systems, including

4G broadband wireless networks. In a typical OFDMA system, users may simultaneously

transmit their data by modulating mutually exclusive sets of orthogonal subcarriers, so

that their signal are separated in the frequency domain. One typical structure is subband

OFDMA, where all available subcarriers are divided into a number of subbands and each

user is allowed to use one or more subbands for the data transmission. Usually, pilot symbols

are employed for the estimation of channel state information (CSI) within the subband. The

IEEE 802.16m is one example of such systems. Figure 2.1 shows an uplink (UL) OFDMA

system in which users simultaneously transmit to the base station (BS).

3

Figure 2.1: Discrete-time model of the baseband OFDMA system (from [3]).

2.1.1 Cyclic Prefix

Cyclic prefix (CP) or guard time is used in OFDM and OFDMA systems to overcome

the intersymbol and intercarrier interference problems. The multiuser channel is usually

substantially invariant within one-block (or one-OFDM(A)-symbol) duration. The channel

delay spread plus symbol timing mismatch is usually smaller than the CP duration. In these

conditions, users do not interfere with each other in the frequency domain when their signal

are properly synchronized in frequency and in time.

A CP is a copy of the last part of the OFDM(A) symbol, as illustrated in Fig. 2.2. A

copy of the last Tg of the useful symbol period is used to collect multipaths from the preious

symbol to maintain the orthogonality among subcarriers. However, the transmitter energy

increases with the length of the guard time while the receiver energy remains the same,

because the CP is discarded in the receiver. So there is a 10 log10(1− Tg/(Tb + Tg)) dB loss

in power efficiency compared to traditional single-carrier system.

4

Figure 2.2: OFDMA symbol time structure (Fig. 478 in [5]).

2.1.2 Discrete-Time Baseband Equivalent System Model

The material in this subsection is mainly taken from [4]. Consider an OFDMA system with

M active users sharing a bandwidth of B = 1
T

Hz (where T is the sampling period) as shown

in Fig. 2.3. The system consists of K subcarriers of which Ku are useful subcarriers (exclud-

ing guard bands and DC subcarrier). The users are allocated non-overlapping subcarriers

according to their needs.

Let the discrete-time baseband channel consists of L multipath components as

h(l) =
L−1∑
m=0

hmδ(l − lm), (2.1)

where hm is a zero-mean complex Gaussian random variable with E[hih
∗
j] = 0 for i 6= j. In

the frequency domain,

H = Fh, (2.2)

where H = [H0, H1, ..., HK−1]
T , h = [h0, ..., hL−1, 0, ..., 0]T and F is K-point discrete fourier

transform (DFT) matrix. The impulse response length lL−1 is upper bounded by the length

of CP (Lcp).

The received signal in the frequency domain is given by

Yn =
M∑
i=1

Xi,nHi,n + Vn, (2.3)

5

Figure 2.3: Discrete-time baseband equivalent of an OFDMA system with M transmitting
users (from [4]).

where Xi,n = diag(Xi,n,0, ..., Xi,n,K−1) is K ×K diagonal data matrix and Hi,n is the K × 1

channel vector H defined in (2.2) corresponding to the ith user in the nth symbol. The noise

vector Vn is distributed as CN (0, σ2IK).

2.2 Basic OFDMA Signal Structure in IEEE 802.16m

[5]

The Advanced Air Interface (AAI) defined by IEEE 802.16m is designed for nonline-of-sight

(NLOS) operation in the licensed frequency bands below 6 GHz. The AAI supports time-

division-duplexing (TDD) and frequency-division-duplexing (FDD) duplex modes, including

half FDD (H-FDD) mobile station (MS) operation. Unless otherwise specified, the frame

structure attributes and baseband processing are common for all duplex modes.

6

The AAI uses OFDMA as the multiple access scheme in both DL and UL. The material

of this section is mainly taken from [5].

2.2.1 Resource Units

The OFDMA physical layer (PHY) of IEEE 802.16m organizer the subcarrier and OFDMA

symbols into resource units as described below.

• Physical and logical resource units: A physical resource unit (PRU) is the basic physical

unit for resource allocation. It comprises Psc consecutive subcarriers by Nsym consec-

utive OFDMA symbols, where Psc = 18 and Nsym = 6 for type-1 subframes, Nsym = 7

for type-2 subframes, and Nsym = 5 for type-3 subframes. Table 2.2.1 illustrates the

PRU sizes for different subframe types. A logical resource unit (LRU) is the basic

logical unit for distributed and localized resource allocations. An LRU is Psc · Nsym

subcarriers for type-1, type-2, and type-3 subframes. The LRU includes the pilots that

are used in a PRU. The effective number of data subcarriers in an LRU depends on

the number of allocated pilots.

• Distributed resource unit: A distributed resource unit (DRU) contains a group of sub-

carriers which are spread across the distributed resource allocations within a frequency

partition. The size of DRU equals the size of PRU, i.e., Psc subcarriers by Nsym

OFDMA symbols.

• Contiguous resource unit: The localized resource unit, also known as contiguous re-

source unit (CRU), contains a group of subcarriers which are contiguous across the

localized resource allocations. The size of CRU equals the size of PRU, i.e., Psc sub-

carriers by Nsym OFDMA symbols.

7

Table 2.1: PRU Structure for Different Types of Subframes
Subframe Type Number of Subcarriers Number of Symbols

1 18 6
2 18 7
3 18 5

2.2.2 Basic Categories of Subcarrier

An OFDMA symbol is made up of subcarriers, the number of which determines the DFT

size used. There are several subcarrier types:

• Data subcarriers: for data transmission.

• Pilot subcarriers: for various estimation purposes.

• Null subcarriers: no transmission at all, including subcarriers in the guard bands and

the DC subcarrier.

The purpose of the guard bands is to help enable proper bandlimiting.

2.2.3 Primitive Parameters and Derived Parameters

Four primitive parameters characterize the OFDMA symbols:

• BW : the nominal channel bandwidth.

• Nused: number of used subcarriers (which includes the DC subcarrier).

• n: sampling factor. This parameter, in conjunction with BW and Nused, determines

the subcarrier spacing and the useful symbol time. This value is given in Figs. 2.4 and

2.5 for each nominal bandwidth.

• G: This is the ratio of CP time to “useful” time, i.e., Tcp/Ts. The following values are

supported: 1/16, 1/8, and 1/4.

8

The following parameters are defined in terms of, i.e., derived from the primitive param-

eters.

• NFFT : smallest power of two greater than Nused.

• Sampling frequency: Fs = bn ·BW/8000c × 8000.

• Subcarrier spacing: 4f = Fs/NFFT .

• Useful symbol time: Tb = 1/4f .

• CP time: Tg = G× Tb.

• OFDMA symbol time: Ts = Tb + Tg.

• Sampling time: Tb/NFFT .

2.2.4 Frame Structure

Fig. 2.6 illustrate the AAI basic frame structure. Each 20-ms superframe is divided into

four 5-ms radio frames. When using the same OFDMA parameters as in Figs. 2.4 and 2.5

with channel bandwidth of 5, 10, or 20 MHz, each 5-ms radio frame further consists of eight

subframes, when G = 1/8 and 1/16. With channel bandwidth of 8.75 or 7 MHz, each 5-ms

radio frame further consists of seven and six subframes, respectively, for G = 1/8 and 1/16.

In the case of G = 1/4, the number of subframes per frame is one less than that of other CP

lengths for each bandwidth case. A subframe forms the unit of assignment for either DL or

UL transmission. There are four types of subframes:

• Type-1 subframe consists of six OFDMA symbols.

• Type-2 subframe consists of seven OFDMA symbols.

• Type-3 subframe consists of five OFDMA symbols.

9

Figure 2.4: OFDMA parameters (Table 794 in [5]).

• Type-4 subframe consists of nine OFDMA symbols. This type shall be applied only to

UL subframe for the 8.75 MHz channel bandwidth when supporting the WirelessMAN-

OFDMA (i.e., IEEE 802.16e OFDMA) frames.

The basic frame structure is applied to FDD and TDD duplexing schemes, including

H-FDD MS operation. The number of switching points in each radio frame in TDD systems

shall be two, where a switching point is defined as a change of directionality, i.e., from DL

to UL or from UL to DL.

A data burst shall occupy either one subframe (i.e., the default transmission time interval

[TTI] transmission) or contiguous multiple subframes (i.e., the long TTI transmission). The

10

Figure 2.5: More OFDMA parameters (Table 794 in [5]).

Figure 2.6: Basic frame structure for 5, 10 and 20 MHz channel bandwidths (Fig. 480 in [5]).

long TTI in FDD shall be 4 subframes for both DL and UL. The long TTI in TDD shall

be the whole DL (UL) subframes for DL (UL) in a frame. Every superframe shall contain

a superframe header (SFH). The SFH shall be located in the first DL subframe of the

superframe and shall include broadcast channels.

11

Figure 2.7: Definition of terms on the transmission chain (Fig. 479 in [5]).

2.2.5 Transmitted Signal

The transmitted RF signal, as a function of time, during any OFDMA symbol to given by

s(t) = <{ej2πfc

(Nused−1)/2∑

k=−(Nused−1)/2,k 6=0

ck · ej2π4f(t−Tg)} (2.4)

where

• t is the time, elapsed since the beginning of the OFDMA symbol, with 0 < t < Ts,

• ck is a complex number giving the QAM modulated value of the data to be transmitted

on the subcarrier whose frequency offset index is k, during the OFDMA symbol,

• Tg is the guard time,

• 4f is the subcarrier frequency spacing, and

• fc is the carrier frequency.

2.2.6 Transmission Chain

The terms related to the transmission chain are defined as illustrated in Fig. 2.7.

12

Figure 2.8: Example of downlink physical structure (Fig. 499 in [5]).

2.3 Downlink Transmission in IEEE 802.16m [5]

Again, this section is mainly taken from [5]. Each DL subframe is divided into 4 or fewer

frequency partitions, each partition consisting of a set of PRUs across the total number of

OFDMA symbols available in the subframe. Each frequency partition can include contiguous

(localized) and/or non-contiguous (distributed) PRUs. Each frequency partition can be used

for different purposes such as fractional frequency reuse (FFR) or multicast and broadcast

services (MBS). Fig. 2.8 illustrates the DL physical structure in an example of two frequency

partitions with frequency partition 2 including both contiguous and distributed resource

allocations.

2.3.1 Subband Partitioning

The PRUs are first subdivided into subbands and minibands where a subband comprises

of N1 adjacent PRUs and a miniband comprises N2 adjacent PRUs, where N1 = 4 and N2

= 1. Subbands are suitable for frequency selective allocations as they provide a contiguous

13

allocation of PRUs in frequency. Minibands are suitable for frequency diverse allocation and

are permuted in frequency.

The number of subbands is denoted by KSB. The number of PRUs allocated to subbands

is denoted by LSB, where LSB = N1KSB. A 5, 4 or 3-bit field called Downlink Subband

Allocation Count (DSAC) determines the value of KSB depending on FFT size. The DSAC

is transmitted in the SFH. The remaining PRUs are allocated to minibands. The number of

minibands in an allocation is denoted by KMB. The number of PRUs allocated to minibands

is denoted by LMB, where LMB = N2KMB. The total number of PRUs is denoted as NP RU

where NPRU = LSB + LMB. The maximum number of subbands that can be formed is

denoted as Nsub where Nsub = bNPRU/N1c.

Tables 2.2 through 2.4 show the mapping between DSAC and KSB for FFT sizes of

2048, 1024, and 512, respectively. For system bandwidths in range of (10,20], the relation

between the system bandwidth and supported number of NPRU is listed in Table 2.5. The

mapping between DSAC and KSB is based on Table 2.2, the maximum valid value of KSB

is NPRU/4− 3.

For those system bandwidths in range of (5,10], the relation between the system band-

width and supported number of NPRU is listed in Table 2.6. The mapping between DSAC

and KSB is based on Table 2.3, the maximum valid value of KSB is NPRU/4− 2.

PRUs are partitioned and reordered into two groups called subband PRUs and miniband

PRUs and denoted PRUSB and PRUMB, respectively. The set PRUSB is numbered from 0

to LSB − 1, and the set PRUMB is numbered from 0 to LMB − 1. The mapping of PRUs to

PRUSB is given by

PRUSB[j] = PRU [i], j = 0, 1, ..., LSB − 1, (2.5)

14

Table 2.2: Mapping Between DSAC and KSB for 2048 FFT Size (Table 802 in [5])

where

i = N1·{{d Nsub

Nsub −KSB

e·bj + LMB

N1

c+bbj + LMB

N1

c·
GCD(Nsub, d Nsub

Nsub−KSB
e)

Nsub

c} mod Nsub}+(j+LMB)·N1

(2.6)

with GCD(x, y) being the greatest common divisor of x and y, and the mapping of PRUs

to PRUMB by

PRUMB[k] = PRU [i], k = 0, 1, ..., LMB − 1, (2.7)

15

Table 2.3: Mapping Between DSAC and KSB for 1024 FFT Dize (Table 803 in [5])

Table 2.4: Mapping Between DSAC and KSB for 512 FFT Size (Table 804 in [5])

where

i =

N1 · {d Nsub

Nsub−KSB
·e · b k

N1
c+ bb k

N1
c · GCD(Nsub,d Nsub

Nsub−KSB
e)

Nsub
c} mod Nsub

+(k) mod N1, KSB > 0,
i = k, KSB = 0.

(2.8)

Fig. 2.9 illustrates the PRU to PRUSB and PRUMB mappings for a 10 MHz bandwidth

with KSB equal to 7.

16

Table 2.5: OFDMA Parameters for 2048 FFT When Tone Dropping Is Applied (Table 796
in [5])

Table 2.6: OFDMA Parameters for 1024 FFT When Tone Dropping Is Applied (Table 796
in [5])

2.3.2 Miniband Permutation

The miniband permutation maps the PRUMBs to Permuted PRUMBs (PPRUMBs) to en-

sure frequency diverse PRUs are allocated to each frequency partition. The mapping from

17

Figure 2.9: PRU to PRUSB and PRUMB mapping for BW = 10 MHz, KSB = 7 (Figure 500
in [5]).

18

PRUMB to (PPRUMBs) is given by

PRUMB[j] = PRU [i], j = 0, 1, ..., LMB − 1, (2.9)

where

i = (q(j) mod D) · P + bq(j)
D
c, (2.10)

P = min(KMB, N1/N2), (2.11)

r(j) = max(j − ((KMB mod P) ·D), 0), (2.12)

q(j) = j + b r(j)

D − 1
c, (2.13)

D = bKMB

P
+ 1c. (2.14)

Fig. 2.10 depicts the mapping from PRUs to PRUSB and PPRUMB.

2.3.3 Frequency Partitioning

The PRUSBs and PPRUMBs are allocated to one or more frequency partitions. The fre-

quency partition configuration is transmitted in the SFH in a 4 or 3-bit called the Downlink

Frequency Partition Configuration (DFPC) depending on system bandwidth. The Frequency

Partition Count (FPCT) defines the number of frequency partitions. The Frequency Par-

tition Size (FPSi) defines the number of PRUs allocated to FPi. FPCT and FPSi are

determined from DFPC as shown in Table 2.7. A field of 1, 2, or 3-bit parameter, called

the Uplink Frequency Partition Subband Count (DFPSC), defines the number of subbands

allocated to frequency partition (FPi), for i > 0. When UFPC = 0, DFPSC is equal to 0.

The number of subbands in ith frequency partition is denoted by KSB,FPi
. The number of

minibands is denoted by KMB,FPi
, which is determined by FPSi and and FPSC fields. The

number of subband PRUs and miniband PRUs in each frequency partition are LSB,FPi
=

N1 ·KSB,FPi
and LMB,FPi

= N2 ·KMB,FPi
, respectively. We have

KSB,FPi =

{
KSB, i = 0,
FPSC, i > 0,

(2.15)

19

Figure 2.10: Mapping from PRUs to PRUSB and PPRUMB mapping for BW = 10 MHz
and KSB = 7 (Fig. 501 in [5]).

KMB,FPi
= (FPSi −KSB,FPi

·N1)/N2, 0 ≤ i < FPSC. (2.16)

20

Table 2.7: Mapping Between DFPC and Frequency Partition for 1024 FFT Size (Table 806
in [5])

The mapping of subband PRUs and miniband PRUs to the frequency partition is given by

PRUFPi
(j) =

{
PRUSB(k1), 0 ≤ j < LSB,FPi

,
PPRUMB(k2), LSB,FPi

≤ j < (LSB,FPi
+ LMB,FPi

),
(2.17)

where

k1 =
i−1∑
m=0

LSB,FPm + j (2.18)

and

k2 =
i−1∑
m=0

LSB,FPm + j − LSB,FPi
. (2.19)

2.4 Cell-Specific Resource Mapping [5]

The content of this section is mainly taken from [5]. PRUFPis are mapped to LRUs. All

further PRU and subcarrier permutations are constrained to the PRUs of a frequency par-

tition.

21

2.4.1 CRU/DRU Allocation

The partition between CRUs and DRUs is done on a sector specific basis. A 4 or 3-bit

Downlink subband-based CRU Allocation Size (DCASSBi) field is sent in the SFH for each

allocated frequency partition. DCASSBi indicates the number of allocated CRUs for parti-

tion FPi in unit of subband size. A 5, 4 or 3-bit Downlink miniband-based CRU Allocation

Size (DCASMB) is sent in the SFH only for partition FP0 depending on system bandwidth,

which indicates the number of allocated miniband-based CRUs for partition FP0. The num-

ber of CRUs in each frequency partition is denoted LCRU,FPi, where

LCRU,FPi =

{
CASSBi ·N1 + CASMB ·N2, i = 0,

CASSBi ·N1, 0 < i < FPSC.
(2.20)

The number of DRUs in each frequency partition is denoted LDRU.FPi, where LDRU,FPi =

FPSi−LCRU,FPi for 0 ≤ i < FPSC and FPSi is the number of PRUs allocated to FPi. The

mapping of PRUFPi to CRUFPi is given by

CRUFPi[j] =

{
PRUFPi[j], 0 ≤ j < CASSBi ·N1, 0 ≤ i < FPSC,

PRUFPi[k + CASSBi ·N1], CASSBi ·N1 ≤ j < LCRU,FPi, 0 ≤ i < FPSC,

(2.21)

where k = s[j −CASSBi ·N1], with s[] being the CRU/DRU allocation sequence defined as

s[j] = {PermSeq(j) + DL PermBase} mod {FPSi − CASSBi ·N1}. (2.22)

where PermSeq() is the permutation sequence of length (FPSi − CASSBi · N1) and is

determined by SEED = IDcell · 343 mod 210, DL PermBase is an interger ranging from 0

to 31, which is set to preamble IDcell. The mapping of PRUFPi to DRUFPi is given by

DRUFPi[j] = PRUFPi[k + CASSBi ·N1], 0 ≤ j < LDRU,FPi. (2.23)

where k = sc[j], with sc[] being the sequence which is obtained by renumbering the remain-

ders of the PRUs which are not allocated for CRU from 0 to LDRU,FPi − 1.

22

2.4.2 Subcarrier Permutation

The subcarrier permutation defined for the DL distributed resource allocations within a

frequency partition spreads the subcarriers of the DRU across the whole distributed resource

allocations. The granularity of the subcarrier permutation is equal to a pair of subcarriers.

After mapping all pilots, the remainder of the used subcarriers are used to define the

distributed LRUs. To allocate the LRUs, the remaining subcarriers are paired into contiguous

tone-pairs. Each LRU consists of a group of tone-pairs.

Let LSC,l denote the number of data subcarriers in lth OFDMA symbol within a PRU,

i.e., LSC,l = PSC −Nl, where nl denotes the number of pilot subcarriers in the lth OFDMA

symbol within a PRU. Let LSP,l denote the number of data subcarrier-pairs in the lth

OFDMA symbol within a PRU and is equal to LSC,l/2. A permutation sequence PermSeq()

performs the DL subcarrier permutation as follows. For each lth OFDMA symbol in the

subframe:

1. Allocate the nl pilots within each DRU as described in [5] Section (16.3.4.4). Denote

the data subcarriers of DRUFPi[j] in the lth OFDMA symbol as

SCFPi
DRU,j,l[k], 0 ≤ j < LDRU,FPi, 0 ≤ k < LSC,l. (2.24)

2. Renumber the LDRU,FPi · LSC,l data subcarriers of the DRUs in order, from 0 to

LDRU,FPi · LSC,l − 1. Group these contiguous and logically renumbered subcarriers

into LDRU,FPi · LSP,l pairs and renumber them from 0 to LDRU,FPi · LSP,l − 1. The

renumbered subcarrier pairs in the lth OFDMA symbol are denoted as

RSPFPi,l[u] = {SCFPi
DRUj,l[2v], SCFPi

DRUj,l[2v + 1]}, 0 ≤ u < LDRU,FPiLSP,l, (2.25)

where j = bu/LSP,lc and v = {u} mod (LSP,l).

3. Apply the subcarrier permutation formula to map RSPFPi,l into the sth distributed

23

LRU, s = 0, 1, . . . , LDRU,FPi− 1, where the subcarrier permutation formula is given by

SCFPi
LRUs,l[m] = RSPFPi,l[k], 0 ≤ m ≤ LSP,l, (2.26)

with

k = LDRU,FPi · f(m, s) + g(PermSeq(), s, m, l, t). (2.27)

In the above,

1. SCFPi
LRUs,l[m] is the mth subcarrier pair in the lth OFDMA symbol in the sth distributed

LRU of the tth subframe;

2. m is the subcarrier pair index, 0 ≤ m ≤ LSP,l − 1;

3. l is the OFDMA symbol index, 0 ≤ l ≤ Nsym − 1;

4. s is the distributed LRU index, 0 ≤ s ≤ LDRU,FPi − 1;

5. t is the subframe index with respect to the frame;

6. PermSeq() is the permutation sequence of length LDRU,FPi and is determined by

SEED = IDcell · 343 mod 210;

7. g(PermSeq(), s, m, l, t) is a function with value in the range [0, LDRU,FPi − 1], which

is defined according to

g(PermSeq(), s, m, l, t) = {PermSeq[{f(m, s) + s + l} mod {LDRU,FPi}]

+DL PermBase} mod LDRU,FPi. (2.28)

where DL PermBase is set to preamble IDcell; and

8. f(m, s) = (m + 13× s)mod LSP,l.

24

2.4.3 Random Sequence Generation

The permutation sequence generation algorithm with 10-bit SEED (Sn−10, Sn−9, ..., Sn−1)

shall generate a permutation sequence of size M according to the following process:

• Initialization

1. Initialize the variables of the first order polynomial equation with the 10-bit seed,

SEED. Set d1 = bSEED/25c+ 1 and d2 = SEED mod 25.

2. Initialize the maximum iteration number, N = 4.

3. Initialize an array A with size M to contents 0, 1, . . . , M − 1 (i.e., A[i] = i, for

0 ≤ i < M).

4. Initialize the counter i to M − 1.

5. Initialize x to −1.

• Repeat the following steps if i > 0

1. Initialize the counter j to 0.

2. Loop as follows:

(a) Increment x and j by 1.

(b) Calculate the output variable of y = {(d1 · x + d2) mod 1031} mod M .

(c) Repeat the above steps (a) and (b), if y ≤ i and j < N .

(d) If y ≤ i, set y = y mod i.

(e) Swap the ith and the yth elements in the array, i.e., perform the steps Temp =

A[i], A[i] = A[y], and A[y] = Temp.

(f) Decrement i by 1.

Then PermSeq(i) = A[i], where 0 ≤ i < M .

25

SU0 SU1 SU2

Superframe : 20ms

F0 F1 F2 F3

TDD frame : 5ms

Superframe Header PA-Preamble SA-Preamble

DL
SF

DL
SF

DL
SF

UL
SF

UL
SF

TTG RTG

Figure 2.11: Location of the A-Preamble (re-arranged from Fig. 521 in [5]).

2.5 Advanced Preamble (A-Preamble) Structure [5]

The material in this subsection is mainly taken from [5]. There are two types of Ad-

vanced Preamble (A-Preamble): primary advanced preamble (PA-Preamble) and secondary

advanced preamble (SA-Preamble). One PA-Preamble symbol and three SA-Preamble sym-

bols exist within the superframe. The location of an A-Preamble symbol the first symbol

of a frame. PA-Preamble is at the first symbol of second frame in a superframe while SA-

Preamble is at the first symbol of each of the remaining three frames. Fig. 2.11 depicts the

location of A-Preamble symbols.

2.5.1 Primary Advanced Preamble (PA-Preamble)

The length of sequence for PA-Preamble is 216 regardless of the FFT size. PA-Preamble

carries the information of advanced base station (ABS) type, system bandwidth, and carrier

26

Figure 2.12: PA-Preamble symbol structure of 5-MHz system (Fig. 522 in [5]).

297 299 301 509 511 513 515 723 725 727

…… ……

DC

297 299 301 509 511 513 515 723 725 727

…… ……

DC

Figure 2.13: PA-Preamble symbol structure of 10 MHz system [1].

configuration.

Take, for example, a 5-MHz system where the subcarrier index 256 is the DC subcarrier.

The set of PA-Preamble subcarriers are given by

PAPreambleCarrierSet = 2 · k + 41, (2.29)

where k is a running index from 0 to 215. Figs. 2.12, 2.13, and 2.14 depict the structures

of the PA-Preamble in the frequency domain for systems of different bandwidths. The PA-

Preamble always occupies the middle 5-MHz bandwidth whose center is the DC subcarrier

and the outside subcarriers are all zero.

809 811 813 1021 1023 1025 1027 1235 1237 1239

…… ……

DC

809 811 813 1021 1023 1025 1027 1235 1237 1239

…… ……

DC

Figure 2.14: PA-Preamble symbol structure of 20 MHz system [1].

27

640267A0C0DF11E475066F1610954B5AE55E189EA7E72EFD57240FN/APartially
configured10

D46CF86FE51B56B2CAA84F26F6F204428C1BD23F3D888737A0851Creserved9

3A65D1E6042E8B8AADC701E210B5B4B650B6AB31F7A918893FB04Areserved8

DA8CE648727E4282780384AB53CEEBD1CBF79E0C5DA7BA85DD3749reserved7

8A9CA262B8B3D37E3158A3B17BFA4C9FCFF4D396D2A93DE65A0E7Creserved6

7EF1379553F9641EE6ECDBF5F144287E329606C616292A3C77F928reserved5

BCFDF60DFAD6B027E4C39DB20D783C9F467155179CBA31115E2D04reserved4

6DE116E665C395ADC70A89716908620868A60340BF35ED547F8281reserved3

92161C7C19BB2FC0ADE5CEF3543AC1B6CE6BE1C8DCABDDD319EAF720 MHz2

1799628F3B9F8F3B22C1BA19EAF94FEC4D37DEE97E027750D298AC7,8.75,10 MHz1

6DB4F3B16BCE59166C9CEF7C3C8CA5EDFC16A9D1DC01F2AE6AA08F5 MHz

Fully
configured

0

Series to modulateBWCarrierIndex

640267A0C0DF11E475066F1610954B5AE55E189EA7E72EFD57240FN/APartially
configured10

D46CF86FE51B56B2CAA84F26F6F204428C1BD23F3D888737A0851Creserved9

3A65D1E6042E8B8AADC701E210B5B4B650B6AB31F7A918893FB04Areserved8

DA8CE648727E4282780384AB53CEEBD1CBF79E0C5DA7BA85DD3749reserved7

8A9CA262B8B3D37E3158A3B17BFA4C9FCFF4D396D2A93DE65A0E7Creserved6

7EF1379553F9641EE6ECDBF5F144287E329606C616292A3C77F928reserved5

BCFDF60DFAD6B027E4C39DB20D783C9F467155179CBA31115E2D04reserved4

6DE116E665C395ADC70A89716908620868A60340BF35ED547F8281reserved3

92161C7C19BB2FC0ADE5CEF3543AC1B6CE6BE1C8DCABDDD319EAF720 MHz2

1799628F3B9F8F3B22C1BA19EAF94FEC4D37DEE97E027750D298AC7,8.75,10 MHz1

6DB4F3B16BCE59166C9CEF7C3C8CA5EDFC16A9D1DC01F2AE6AA08F5 MHz

Fully
configured

0

Series to modulateBWCarrierIndex

Figure 2.15: PA-Preamble Series (Table 815 in [5]).

Fig. 2.15 shows the PA-Preamble sequences in hexadecimal format. The defined series is

mapped onto subcarriers in ascending order, obtained by converting the series to a binary

series and starting the series from the most signification bit (MSB) up to 216 bits with 0

mapped to +1 and 1 mapped to −1.

The magnitude boosting levels for FFT sizes 512, 1024, 2048 are 1.9216, 2.6731, 4.6511,

respectively. For 512-FFT, as an example, the boosted PA-Preamble at kth subcarrier is

ck = 1.9216 · bk, (2.30)

where bk represents the PA-Preamble value before boosting (+1 or −1).

2.5.2 Secondary Advanced Preamble (SA-Preamble)

The lengths of sequences for SA-Preamble are 144, 288, and 576 for 512-FFT, 1024-FFT,

and 2048-FFT, respectively, where subcarrier indexes 256, 512, and 1024, respectively, are

28

40 41 42

…… ……

DC

253 254 255 470 471 472257 258 259

Subcarriers of segment 0

Subcarriers of segment 1

Subcarriers of segment 2

40 41 42

…… ……

DC

253 254 255 470 471 472257 258 259

Subcarriers of segment 0

Subcarriers of segment 1

Subcarriers of segment 2

Figure 2.16: SA-Preamble symbol structure of 5 MHz.

the DC subcarrier. The set of SA-Preamble subcarriers are given by

SAPreambleCarrierSetn = n + 3 · k + 40 · NSAP

144
+ b 2 · k

NSAP

c, (2.31)

where n is the index of the SA-Preamble carrier-set with n = 0, 1, or 2 representing

the segment ID, and k is a running index from 0 to NSAP − 1 for each FFT size. Fig. 2.16

illustrates the allocation under 512-FFT.

Each cell ID has an integer value IDcell from 0 to 767. The IDcell is defined as

IDcell = 256n + Idx, (2.32)

where n is the segment ID and Idx = 2 · mod (q, 128) + bq/128c with q being a running

index from 0 to 255.

For 512-FFT system, the 144-bit SA-Preamble sequence is divided into 8 main sub-

blocks, namely, A, B, C, D, E, F, G, and H. The length of each sub-block is 18 samples

(after modulation). Each segment ID has a different set of sequence sub-blocks. Tables 784

to 786 in [5] give the 8 sub-blocks of each segment ID, where 9 hexadecimal numbers are used

to represent the 36 bits that are mapped to a QPSK sequence in +1, +j, −1, and −j for each

sub-block. Each table contains 128 sequences indexed by q from 0 to 127. The modulation

29

Figure 2.17: The allocation of sequence block for each FFT size (Fig. 524 in [5]).

sequence is obtained by converting each hexadecimal number X
(q)
i into two QPSK symbols

v
(q)
2i and v

(q)
2i+1, where i=0, 1, ..., 7, 8. The converting equations are as follows:

v
(q)
2i = exp(j

π

2
(2 · bq

i,0 + bq
i,1)), v

(q)
2i+1 = exp(j

π

2
(2 · bq

i,2 + bq
i,3)), (2.33)

where X
(q)
i = 23 · b(q)

i,0 + 22 · b(q)
i,1 + 21 · b(q)

i,2 + 20 · b(q)
i,3 .

The other 128 sequences indexed by q from 128 to 255 are obtained by letting v
(q)
k =

(v
(q−128)
k)∗ where q = 128, 129, ..., 254, 255.

Fig. 2.17 shows how the sub-blocks are modulated and mapped (sequentially in ascending

order) onto the SA-Preamble subcarrier-set. For higher FFT sizes, the basic blocks (A, B,

C, D, E, F, G, H) are repeated in the same order. For instance, in the case of 1024-FFT,

sub-blocks E, F, G, H, A, B, C, D, E, F, G, H, A, B, C, and D are modulated and mapped

sequentially in ascending order onto the SA-Preamble subcarrier-set according to segment

ID.

For 512-FFT, the blocks (A, B, C, D, E, F, G, H) are subject to the following right

circular shifts (0, 2, 1, 0, 1, 0, 2, 1), respectively. Fig. 2.18 depicts the symbol structure

of SA-Preamble in the frequency domain for 512-FFT. For higher FFT sizes, the same rule

applies.

30

DC (256)

 40 43 91 96 99 147 149 152 200 202 205 253

54 54 54 54

54 54 54 54

: SAPreambleCarrierSet0 : SAPreambleCarrierSet1 : SAPreambleCarrierSet2

 258 261 309 311 314 362 367 370 418 420 423 471

B
2(120)

D
0(012)

C
1(201)

F
0(012)

E
1(201)

H
1(201)

G
2(120)

A
0(012)

DC (256)

 40 43 91 96 99 147 149 152 200 202 205 253

54 54 54 54

54 54 54 54

: SAPreambleCarrierSet0 : SAPreambleCarrierSet1 : SAPreambleCarrierSet2

 258 261 309 311 314 362 367 370 418 420 423 471

B
2(120)

D
0(012)

C
1(201)

F
0(012)

E
1(201)

H
1(201)

G
2(120)

A
0(012)

Figure 2.18: SA-Preamble symbol structure for 512-FFT (Fig. 525 in [5]).

31

Chapter 3

Initial Downlink Synchronization

The downlink synchronization can be divided into two type: initial synchronization and

normal synchronization. When the advance mobile station (AMS) receiver enters the network

for the first time, it need to perform initial DL synchronization. Afterward, the AMS needs

to keep trading the carrier frequency, and the timing, and the power level, which constitutes

the work of normal DL synchronization. In this thesis, our study focuses on initial DL

synchronization; so we discuss the initial DL synchronization problem of the IEEE 802.16m

TDD system and introduce the initial DL synchronization algorithm of [1, 2].

3.1 The Initial Synchronization Problem [1,2]

In DL signal reception, in principle, the receiver needs to estimate the carrier frequency

offset (CFO), carrier phase offset (CPO), sampling frequency offset (SFO), sampling phase

offset (SPO), and symbol time offset (STO). Some causes of CFO are mismatch of local

oscillators and Doppler shifts due to mobility, and a cause of CPO is phase mismatch in

local oscillators. Different sampling rates in the transmitter and the receiver bring about

SFO and different sampling phases in the transmitter and the receiver, i.e., SPO. The STO

can arise from the unknown propagation delay between the transmitter and the receiver.

If CFO estimation is accurate enough and if STO estimation and correction is constantly

performed, then SFO estimation may be unnecessary, because from the beginning of an

32

RTG PA-Preamble Data Symbol
CP

256 64 512 576

Window size = 576 samples

00…..000000

320

Data Symbol

Window Sliding
Window size = 576 samples

Figure 3.1: Window sliding structure [1].

OFDMA symbol to the end of it the SPO may change very little. The CPO and the SPO

can be considered part of channel response and dealt with in channel estimation. As a result,

only two issues yet need to be solved, i.e., CFO estimation and STO estimation. These are

the focus of the present chapter.

Moreover, because the PA-Preamble in IEEE 802.16m also carries information about the

system bandwidth, there is a need to identify it also in the synchronization stage. Our

synchronization design thus also takes this into consideration.

3.2 Derivation of the Initial Synchronization Proce-

dure [1, 2]

There are three possible PA-Preamble series, as shown in Fig. 2.15. Because the PA-Pramble

series are known, we utilize this knowledge to derive the initial DL synchronization algorithm.

Although there are three different PA-Preambles with different bandwidth, 5, 10, and 20

MHz, but the commonality is that all three PA-Preambles, whose length is all 216 points,

locate in the middle part of the bandwidth. Therefore, when the MS receives the signal, it

only need to observe a 5-MHz bandwidth because there is no PA-Preamble signal outside

this bandwidth, whatever the system bandwidth. In other words, we can do downsampling

for the 10-MHz and the 20-MHz signal to the 5MHz bandwidth without losing information

on PA-Preamble.

The received PA-Preamble (including CP) can be represented as

y576 = Γ(δ) ·T576 · h576 + η576 (3.1)

33

where y576 = [y448, y449, ..., y511, y0, y1, ..., y511]
′
, the received PA-Preamble symbol, δ is the

normalized carrier frequency offset (what the normalization is whit respect to subcarrier

spacing), T576 is the 576× 576 Toeplitz matrix of the transmitted PA-Preamble symbol as

T576 =

x512 0 0 0 0
x513 x512 0 0 0

. x513 x512 0

. . x513 x512
x575 0
x0 x575 . . . x512
x1 x0 x575
. x1 x0 0 . . .
. . x1 . . x574 x512 0 . .

x509 x575 x574 x573 . . . x512 0 .
x510 x509 . . . x0 x575 x574 . . . x513 x512 0
x511 x510 x509 . . x1 x0 x575 . . x515 x514 x513 x512

, (3.2)

h576 is the channel response vector, Γ(δ) is the 576× 576 diagonal matrix summarizing the

effect of the CFO as

Γ(δ) =

exp(−j · 2π
512
· δ · 0)

exp(−j · 2π
512
· δ · 1) 0

.
.

0 .
exp(−j · 2π

512
· δ · 575)

, (3.3)

and η576 is the additive white Gaussian noise (AWGN) vector.

3.2.1 Coarse Timing Synchronization

Fig. 3.1 depicts a model about the 576-points power sum with the window sliding. We know

the information of TTG + RTG =165 µs in [5], so it is reasonable to suppose RTG is 45

µs, about 256 sampling periods, and CP factor is 1/8 in our study. We can also know the

power of PA-Preamble is larger than the common data symbol because the amplitude of

PA-Preamble is boosted before transmitting [5].

When the MS receives the PA-Preamble signal subject to delay, multipath propagation,

and additive noise, the first task is to estimate the coarse timing to facilitate later work.

34

0 200 400 600 800 1000 1200
600

800

1000

1200

1400

1600

1800

2000

X: 577
Y: 1858

576 points moving power sum under AWGN channel with 0 dB

P
ow

er

timing index

Figure 3.2: 576 points power sum under AWGN in 0 dB [1].

Refer to Fig. 3.1. We consider summing the signal power in a 576-point window. With the

window sliding, we can decide the coarse timing as the point with the maximum power sum.

This technique can actually be interpreted as quasi-maximum likelihood (ML) noncoherent

detection of the preamble timing.

According to [1], Figs. 3.2 and 3.3 show the results of power sum with the window sliding

in 0 dB of signal-to-noise ratio (SNR), under the AWGN channel and the SUI-5 channel

with mobility 350 km/h. The rayleighchan, a Matlab function, leads to an initial delay of

the generated channel, even if we set the delay of the direct path zero. Figs. 3.5 depict this

phenomenon and we must compensate it in [1].

Note that the PA-Preamble timing we get by the above method has an offset to the real

PA-Preamble timing due to multipath and noise effects. We will handle these problems in

fine timing synchronization.

35

0 200 400 600 800 1000 1200
600

800

1000

1200

1400

1600

1800

2000

X: 581
Y: 1881

576 points moving power sum under SUI−5 channel with mobility 350km/h in 0 dB

P
ow

er

timing index

Figure 3.3: 576 points power sum under SUI-5 at mobility 350 km/h in 0 dB [1].

3.2.2 Estimation of Fractional Carrier Frequency Offset

Eq. (3.1) gives the received PA-Preamble signal. We attempt an ML estimation of δ from

it. It turns out that a truly ML estimation is quite complex because T576 is not circulant.

However, if the coarse timing lands us in the CP and if we sacrifice the available signal power

in the CP, then we can obtain a reduced-complexity solution. Let y512 denote the received

PA-Preamble symbol after removal of the CP. It is given by

y512 = Γ(δ) ·Txn · h + η, (3.4)

where xn = [x0, x1, ..., x511]
′

(the transmitted PA-Preamble symbol), Txn is a 512 × 512

circulant matrix given by

36

Figure 3.4: Channel impulse response of PB channel [1].

Txn =

x0 x511 x510 x509 . . . x2 x1

x1 x0 x511 x510 . . . x3 x2

. x1 x0 x511 . . . x3 x2

x63 . x1
. x63
. x510 .

x509 x511 x510

x510 x509 . . x63 . . x0 x511

x511 x510 x509 . . x63 . x1 x0

, (3.5)

h is the channel impulse response vector,

Γ(δ) =

exp(−j · 2π
512
· δ · 0)

exp(−j · 2π
512
· δ · 1) 0

.
.

0 .
exp(−j · 2π

512
· δ · 511)

, (3.6)

and η is an AWGN vector. Due to possibly incorrect identification of the PA-Preamble

starting time from the coarse timing synchronization, there may be a circular shift of the

elements in the h vector from their original positions.

37

Figure 3.5: Channel impulse response of SUI-5 channel [1].

Eq. (3.4) can then be rewritten as:

y512 = Γ(δ) · FH · F ·Txn · FH · F · h + η (3.7)

= Γ(δ) · FH · (F ·Txn · FH) · (F · h) + η (3.8)

= Γ(δ) · FH ·Dk ·H + η, (3.9)

where F is the normalized 512×512 FFT matrix, FH is the corresponding normalized IFFT

matrix, H is the channel frequency response vector, and Dk is a diagonal matrix of the

PA-Preamble sequence in the frequency domain, with k being the PA-Preamble index.

The likelihood function of y512 can be written as:

p(y512|δ,H, k) =
1

(2πσ2
η)

512
· exp(− 1

2σ2
η

‖y512 − Γ(δ) · FH ·Dk ·H‖2), (3.10)

in the likelihood function, there are three unknowns, namely δ, H and k. The ML estimation

is thus given by

38

arg max
δ,H,k

p(y512|δ,H, k) (3.11)

= arg min
δ,H,k

‖y512 − Γ(δ) · FH ·Dk ·H‖2 (3.12)

= arg min
δ,k

min
H|δ,k

‖y512 − Γ(δ) · FH ·Dk ·H‖2 (3.13)

⇒ arg min
δ,k

‖y512 − Γ(δ) · FH ·Dk ·DH
k · F · ΓH(δ) · y512‖2. (3.14)

Note that (3.14) arises because the inner minimization of (3.13) is achieved with H =

DH
k ·F ·ΓH(δ) ·y512 as can be obtained via standard least-square estimation technique. Since

Dk ·DH
k is the same whatever for add k, we cannot solve for the optimal k from (3.14), but

must find it through above other means, In addition, the minimization target in (3.14) is a

function of δ only. Thus it is equivalent to:

arg min
δ
‖y512 − Γ(δ) · FH ·Dk ·DH

k · F · ΓH(δ) · y512‖2 (3.15)

= arg min
δ
‖[I − Γ(δ) · FH ·Dk ·DH

k · F · ΓH(δ)] · y512‖2 (3.16)

= arg min
δ

yH
512 · [I − Γ(δ) · FH ·Dk ·DH

k · F · ΓH(δ)]2 · y512 (3.17)

= arg max
δ

yH
512 · Γ(δ) · FH ·Dk ·DH

k · F · ΓH(δ) · y512 (3.18)

= arg max
δ

γH(δ) · [YH · FH ·Dk ·DH
k · F ·Y] · γ(δ) (3.19)

where γ(δ) = [exp(−j · 2π
512

· δ · 0), exp(−j · 2π
512

· δ · 1), ..., exp(−j · 2π
512

· δ · 511)]
′
, and Y is a

diagonal matrix whose ith diagonal element is the ith element in y512.

Since the quantity Dk ·DH
k is the same for all three PA-Preamble series, the bracketed

term in (3.19) is a known quantity for a given received PA-Preamble signal. Let M =

YH · FH ·Dk ·DH
k · F ·Y. Then the quantity to be maximized can be expressed as

39

γH(δ) ·M · γ(δ)

= [1, e−a, e−2a, ..., e−511a] ·

m0,0 m0,1 m0,511

m1,0 m1,1 m1,2 m1,511

m2,0 m2,1 m2,2 m2,3 .
.
.
.

m509,0
m510,0 m510,1 . . m510,511

m511,0 m511,1 m511,2 m511,510 m511,511

·

1
ea

e2a

.

.

.
e510a

e511a

= (m0,0 + e−a ·m1,0 + ... + e−511a ·m511,0) + (m0,1 + e−a ·m1,1 + ... + e−511a ·m511,1) · ea

+... + (m0,511 + e−a ·m1,511 + ... + e−511a ·m511,511) · e511a

= (m0,0 + m1,1 + ... + m511,511) · e0 + (m0,1 + m1,2 + ... + m510,511) · ea + ... + (m0,511 · e511a)
+(m1,0 + m2,1 + ... + m511,510) · e−a + (m2,0 + m3,1 + ... + m511,509) · e−2a + ... + (m511,0 · e−511a)

=
511∑

n=−511

Mn · ej·2π·n·δ/512,

(3.20)

where a = j · 2 · π · δ/512, mp,q is the (p, q)th element of M, and Mn =
511∑
n=0

mn,n, the sum of

the nth diagonal of M.

Note that since Dk ·DH
k is diagonal, W , FH ·Dk ·DH

k ·F is a circulant matrix. Indeed,

because Dk ·DH
k is nearly periodic (with mostly every other element equal to 1 while others

equal to zero) along the diagonal, W is nearly tri-diagonal and so is M. The three diagonal

sums are given by

M0 =
511∑
i=0

wi,i · |yi,i|2, (3.21)

M−256 =
511∑

i=256

yH
i,i · wi,i−256 · yi−256,i−256, (3.22)

M256 =
511∑

i=256

yH
i−256,i−256 · wi−256,i · yi,i, (3.23)

where yi,i is the ith diagonal element of Y, and wi,i is the ith diagonal of W. Note that

M−256 = M∗
256. Substituting (3.21)–(3.23) into (3.20) with all other terms set to null in

order to reduce the effect of noise. We utilize the mathematic format of FFT of these three

dominant terms to estimate fractional carrier frequency (FCFO) by finding the peak value

and derive as

40

X[f] =
511∑
n=0

Mn · e−j·2·π·n·f/512 (3.24)

≈ M∗
256 + M0 · e−j·2·π·f/512 + M256 · e−j·4·π·f/512 (3.25)

= e−j·2·π·f/512 · (M∗
256 · ej·2·π·f/512 + M0 + M256 · e−j·2·π·f/512) (3.26)

= e−j·2·π·f/512 · (2 · <{M256 · e−j·2·π·f/512}+ M0) (3.27)

= e−j·2·π·f/512 · [2 · (<{M256} · cos(
2 · π
512

· f)

+ ={M256} · sin(
2 · π
512

· f)) + M0] (3.28)

= e−j·2·π·f/512 · [2 ·
√
<{M256}2 + ={M256}2 · (<{M256}√

<{M256}2 + ={M256}2

· cos(
2 · π
512

· f) +
={M256}√

<{M256}2 + ={M256}2
· sin(

2 · π
512

· f)) + M0] (3.29)

= e−j·2·π·f/512 · [2 · ||M256|| · (cos(θ − π · f
256

)) + M0], (3.30)

where θ = − arctan
={M256}
<{M256} = δ · π. Therefore, the peak value happens when θ − π·f

256
=

δ · π − π·f
256

= 0, and then, δ = 0.0039 · f . Note that the FFT size corresponds to the

resolution of estimating δ and the resolution of this derivation is 0.0039. Moreover, we can

conclude δ = − 1
π

arctan
={M256}
<{M256} , and this final result is quite similar to that of the Moose

algorithm [8].

3.2.3 Jointly Integral CFO, PA-Preamble Index, Channel Estima-
tion and Fine Timing Offset Searching

CFO is separated into two parts, FCFO and integral carrier frequency offset (ICFO), and

the former have been estimation in the previous subsection. We can expect that the power

of channel impulse response (CIR), the inverse fourier transform of H as obtained in (3.14),

will be more concentrated if we compensate with the accurate CFO and use the correct one

of the three possible PA-Preamble symbols. For example, Figs. 3.6 and 3.7 depict two CIRs

obtained from using a combination of correct CFO and correct PA-Preamble index and from

41

using a combination of incorrect values. The simulation environment we choose in Figs. 3.6

and 3.7 is PB channel, 120 km/h, 0 dB in SNR, the correct ICFO 8, the correct PID 1

(10-MHz), the wrong ICFO 6, and the wrong PID 0 (5-MHz). We consider there are 21

possible ICFO explained in the Eq. (3.31), 3 PA-Preamble symbols and 256 timing locations

in CIR, therefore, 21× 3× 64 = 16128 candidates in total. The method we use here is to do

64 points sum of squared CIR for these candidates and find out one which has the maximum

of power sum. The reason why we choose the searching range of ICFO from −20 to 20 is

that we assume a maximum mismatch of the local oscillator frequency of ±80 ppm, so that

a wireless system with carrier frequency 2.5 GHz ±18.28 subcarriers of offset at the 10.9375

kHz subcarrier spacing of IEEE 802.16m, as given by

2.5G · 80ppm

10.94K
≈ 18.28. (3.31)

For the fine timing, since it is reasonable to assume that the CIR is mostly concentrated

over a length not exceeding the CP length, we decide the ICFO, the PA-Preamble index and

the fine timing offset by finding which one of all candidates has the maximum power sum

over the CP length.

3.2.4 Overall Block Diagram

In summary, Fig. 3.8 shows the resulting overall block diagram of the derived initial DL

synchronization method.

42

0 100 200 300 400 500 600
0

1

2

3

4

5

6

7
x 10

5

 Figure 3.6: The estimated CIR with accurate ICFO, 8, compensating and correct PA-
Preamble index, 1, under PB channel with 120 km/h, 0dB in SNR.

43

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5
x 10

5

 Figure 3.7: The CIR with the inaccurate ICFO, 6, compensating and incorrect PA-Preamble
index, 0, under PB channel with 120 km/h, 0dB in SNR.

Coarse timing

synchronization
Received

Signal

Quasi-ML Estimation

of FCFO
FCFO

CIR

ICFO

PA-preamble

Index

Fine timing

Time-Domain Processing

Frequency-Domain Processing

Hk,ICFO Dk*F*
�

(FCFO+ICFO)*y512

, ,

 ()[t : t+63]arg max
k

k

D ICFO t

Mean square value of IFFT H

Joint ICFO ,PID and fine timing Searching

≈

y512

Figure 3.8: Block diagram of algorithm for initial DL synchronization [1].

44

Chapter 4

Introduction to the DSP
Implementation Platform

In this chapter, we introduce the architecture of the DSP chip because we implement the ini-

tial synchronization on DSP chip. We use the DSP chip on the module is the TMS320C6416T

made by Texas Instrument (TI). We introduce and the DSP chip, and what is more, we

present the software development tool, Code Composer Studio (CCS), the code development

technique.

4.1 The DSP Chip [11]

The TMS320C6416T DSP is a fixed-point DSP in the TMS320C64x series of the TMS320C6000

DSP platform family. It is based on the advanced VelociTI very-long-instruction-word

(VLIW) architecture developed by TI. A functional block and DSP core diagram of TMS320C64x

series is shown in Fig. 4.1.

The C64x core CPU consists of 64 general-purpose 32-bit registers and eight functional

units. Features of C6000 device include the following.

• Eight functional units, including two multipliers and six arithmetic-logic units

– Executes up to eight instructions per cycle

– Allows designers to develop effective RISC-like code for fast development time

45

• Instruction packing

– Gives code size equivalence for eight instructions executed serially or in parallel

– Reduces code size, program fetches, and power consumption

• Conditional execution of all instructions

– Reduces costly branching

– Increases parallelism for higher sustained performance

• Efficient code execution on independent functional units

– Efficient C complier on DSP benchmark suite

– Assembly optimizer for fast development and improved parallelization

• 8/16/32-bit data support, providing efficient memory support for a variety of applica-

tions

• 40-bit arithmetic options add extra precision for vocoders

• 32× 32-bit integer multiply with 32- or 64-bit result

• Saturation and normalization provide support for key arithmetic operations

• Field manipulation and instruction extract, set, clear, and bit counting support com-

mon operation found in control and data manipulation applications

• Each multiplier can perform two 16 × 16-bit or four 8 × 8 bit multiplies every clock

cycle

• Quad 8-bit and dual 16-bit instruction set extensions with data flow support

• Support for non-aligned 32-bit (word) and 64-bit (double word) memory accesses

46

Figure 4.1: Functional block and CPU (DSP core) diagram [12].

• Special communication-specific instructions have been added to address common op-

erations in error-correcting codes

• Bit count and rotate hardware extends support for bit-level algorithms

In the follwing subsections, we introduce three parts of the TMS320C64x DSP including

CPU, memory, and peripherals.

4.1.1 Central Processing Unit

The C64x DSP core contains 64 32-bit general purpose registers, program fetch unit, instruc-

tion decode unit, two data paths each with four function units, control register, control logic,

47

advanced instruction packing, test unit, emulation logic and interrupt logic. The program

fetch, instruction fetch, and instruction decode units can arrange eight 32-bit instructions to

the eight function units every CPU clock cycle. The processing of instructions occurs in each

of the two data paths (A and B) shown in Fig. 4.1, each of which contains four functional

units and one register file. The four functional units are as follows: A multiplier (.M), a

arithmetic and logic operations (.L), a unit for branch, byte shifts, and arithmetic operations

(.S), and a unit for linear and circular address calculation to load and store with external

memory operations (.D). The details of the functional units are described in Table 4.1.

Each register file consists of 32 32-bit registers for each four functional units reads and

writes directly within its own data path. That is, the functional units .L1, .S1, .M1, .D1

can only write to register file A. The same condition occurs in register file B. However,

two cross-paths (1X and 2X) allow functional units from one data path to access a 32-bit

operand from the opposite side register file. The cross path 1X allows data path A to read

their source from register file B. The cross path 2X allows data path B to read their source

from register file A. In the C64x, CPU pipelines data-cross-path accesses over multiple clock

cycles. This allows the same register to be used as a data-cross-path operand by multiply

functional units in the same execute packet.

4.1.2 Memory Architecture and Peripherals

The C64x is a two-level cache-based architecture. The level 1 cache is separated into program

and data spaces. The level 1 program cache (L1P) is a 128 Kbit direct mapped cache and

the level 1 data cache (L1D) is a 128 Kbit 2-way set-associative mapped cache. The level

2 (L2) memory consists of 1 MB memory space for cache (up to 256 Kbytes) and unified

mapped memory.

The external memory interface (EMIF) provides interfaces for the DSP core and exter-

nal memory, such as synchronous-burst SRAM (SBSRAM), synchronous DRAM (SRAM),

SDRAM, FIFO and asynchronous memories (SRAM and EPROM). The EMIF also provides

48

Table 4.1: Functional Units and Operations Performed [11]
Parameter Value

.L unit(.L1, .L2) 32/40-bit arithmetic and compare operations

32-bit logical operations

Leftmost 1 or 0 counting for 32 bits

Normalization count for 32 and 40 bits

Byte shifts

Data packing/unpacking

5-bit constant generation

Dual 16-bit and Quad 8-bit arithmetic operations

Dual 16-bit and Quad 8-bit min/max operations

.S unit (.S1, .S2) 32-bit arithmetic operations

32/40-bit shifts and 32-bit bit-field operations

32-bit logical operations

Branches

Constant generation

Register transfers to/from control register file (.S2 only)

Byte shifts

Data packing/unpacking

Dual 16-bit and Quad 8-bit compare operations

Dual 16-bit and Quad 8-bit saturated arithmetic operations

.M unit (.M1, .M2) 16 x 16 multiply operations

16 x 32 multiply operations

Dual 16 x 16 and Quad 8 x 8 multiply operations

Dual 16 x 16 multiply with add/subtract operations

Quad 8 x 8 multiply with add operations

Bit expansion

Bit interleaving/de-interleaving

Variable shift operations

Rotation

Galois Field Multiply

.D unit (.D1, .D2) 32-bit add, subtract, linear and circular address calculation

Loads and stores with 5-bit constant offset

Loads and stores with 15-bit constant offset(.D2 only)

Loads and stores doubles words with 5-bit constant

Loads and store non-aligned words and double words

5-bit constant generation

32-bit logical operations

49

64-bit-wide (EMIFA) and 16-bit-wide (EMIFB) memory read capability.

The C64x contains some peripherals such as enhanced direct-memory-access (EDMA),

host-port interface (HPI), PCI, three multichannel buffered serial ports (McBSPs), three

32-bit general-purpose timers and sixteen general-purpose I/O pins. The EDMA controller

handles all data transfers between the level-two (L2) cache/memory and the device periph-

eral. The C64x has 64 independent channels. The HPI is a 32-/16-bit wide parallel port

through which a host processor can directly access the CPUs memory space. The PCI port

supports connection of the DSP to a PCI host via the integrated PCI master/slave bus

interface.

4.2 TI’s Code Development Environment [13]

The Code Composer Studio (CCS) is a key element of the DSP software and development

tools from Texas Instruments. The tutorial [14] introduces the key features of CCS and the

programmer’s guide [15] gives a reference for programming TMS320C6000 DSP devices. A

programmer needs to be familiar with coding development flow and CCS for building a new

project on the DSP platform efficiently.

4.2.1 Code Composer Studio

The CCS combines the basic code generation tools with a set of debugging and real-time

analysis capabilities which supports all phases of the development cycle shown in Fig. 4.2.

Some main features of the CCS are listed below:

• Real-time analysis.

• Source code debugger common interface for both simulator and emulator targets.

– C/C++ assembly language support.

– Simple breakpoints.

50

Figure 4.2: Code development cycle [14].

– Advanced watch window.

– Symbol browser.

• DSP/BIOS support.

– Pre-emptive multi-threading.

– Interthread communication.

– Interupt handing.

• Chip Support Libraries (CSL) to simplify device configuration. CSL provides C-

program functions to configure and control on-chip peripherals.

• DSP libraries for optimum DSP functionality. The DSP library includes many C-

callable, assembly-optimized, general-purpose signal-processing and image/video pro-

cessing routines. These routines are typically used in computationally intensive real-

time applications where optimal execution speed is critical. The TMS320C64x digital

signal processor library (DSPLIB) provides some routines for:

– Adaptive filtering.

– Correlation.

– FFT.

– Filtering and convolution.

51

– Math.

– Matrix functions.

– Miscellaneous.

Some of these routine is used in our implementation, such as FFT. We introduce it in a later

chapter.

4.2.2 Code Development Flow [15]

The recommended code development flow involves utilizing the C6000 code generation tools

to aid in optimization rather than forcing the programmer to code by hand in assembly.

Hence the programmer may let the compiler do all the laborious work of instruction selection,

parallelizing, pipelining, and register allocation. This simplifies the maintenance of the code,

as everything resides in a C framework that is simple to maintain, support, and upgrade.

Fig. 4.3 illustrates the three phases in the code development flow. Because phase 3 is usually

too detailed and time consuming, most of the time a programmer will not go into phase 3 to

write linear assembly code unless the software pipelining efficiency is too bad or the resource

allocation is too unbalanced. In our work, we do not go to phase 3.

4.3 Code Optimization on TI DSP Platform [15,16]

In this section, we describe several methods that can accelerate our code and reduce the

execution time on the C64x DSP. First, we use the following techniques to analyze the

performance of specific code regions:

• One of the preliminary measures of code is the time it takes the code to run. Use

the clock() and printf() functions in C/C++ to time and display the performance of

specific code regions. We can use the stand-alone simulator (load6x) to run the code

for this purpose. We need to subtract out the overhead of calling the clock() function.

52

Figure 4.3: Code development flow for C6000 (from [15]).

53

• Use the profile mode of the stand-alone simulator. This can be done by executing

load6x with the –g option. The profile results will be stored in a file with the .vaa

extension. One may refer to the TMS320C6000 Optimizing Compiler Users Guide for

more information.

• Enable the clock and use profile points and theRUNcommandin theCode Composer

debugger to track the number of CPU clock cycles consumed by a particular section

of code. One may use View Statistics to view the number of cycles consumed.

• The critical performance areas in a code are most often loops. An easiest way to

optimize a loop is by extracting it into a separate file that can be rewritten, recompiled,

and run with the stand-alone simulator (load6x).

We can also evaluate the performance results by running the code and looking at the

instructions generated by the compiler.

4.3.1 Compiler Optimization Options

In this subsection, we introduce the compiler options that control the operation of the

compiler. The C6000 compiler offers high-level language support by transforming a C/C++

code into more efficient assembly language source code. The compiler tools include a shell

program (cl6x), which can be used use to compile, assembly optimize, assemble, and link

programs in a single step. To compiler shell can be invoked by issuing the command

cl6x [options] [filenames] [-z [linker options] [object files]]

For a complete description of the C/C++ compiler and the options discussed in [15], see

the TMS320C6000 Optimizing Compiler User Guide [14]. The major compiler options we

use are -o3, -k, -pm -op2, -mh<n>, -mw, and -mi.

• -on: The “n” denotes the level of optimization (0, 1, 2, and 3), which controls the type

and degree of optimization.

54

– -o3: highest level optimization, whose main features are:

∗ Performs software pipelining.

∗ Performs loop optimizations, and loop unrolling.

∗ Removes all functions that are never called.

∗ Reorders function declarations so that the attributes of called functions are

known when the caller is optimized.

∗ Propagates arguments into function bodies when all calls pass the same value

in the same argument position.

∗ Identifies file-level variable characteristics.

• -k: Keep the assembly file to analyze the compiler feedback.

• -pm -op2: In the CCS compiler option, -pm and -op2 are combined into one option.

– -pm: Gives the compiler global access to the whole program or module and allows

it to be more aggressive in ruling out dependencies.

– -op2: Specifies that the module contains no functions or variables that are called

or modified from outside the source code provided to the compiler. This improves

variable analysis and allowed assumptions.

• -mh<n>: Allows speculative execution. The appropriate amount of padding, n, must

be available in data memory to insure correct execution. This is normally not a problem

but must be adhered to.

• -mw: Produce additional compiler feedback. This option has no performance or code

size impact.

• -mi: Describes the interrupt threshold to the compiler. If the compiler knows that no

interrupts will occur in the code, it can avoid enabling and disabling interrupts before

and after software-pipelined loops for improvement in code size and performance. In

55

Figure 4.4: Software-pipelined loop (from [11]).

addition, there is potential for performance improvement where interrupt registers may

be utilized in high register pressure loops.

4.3.2 Software Pipelining

Software pipelining is a technique used to schedule instructions from a loop so that multiple

iterations of the loop execute in parallel. When we use the -o2 and -o3 compiler options, the

compiler attempts to software pipeline the code with information that it gathers from the

program. Fig. 4.4 illustrates a software-pipelined loop. The stages of the loop are represented

by A, B, C, D, and E. In this figure, a maximum of five iterations of the loop can execute

at one time. The shaded area represents the loop kernel. In the loop kernel, all five stages

execute in parallel. The area above the kernel is known as the pipelined loop prolog, and

the area below the kernel is known as the pipelined loop epilog.

Because loops present critical performance areas in a code, the TI document advises one

to consider the following areas to improve the performance of the C code:

• Trip count.

• Redundant loops.

56

• Loop unrolling.

• Speculative execution.

4.3.3 Loop Unrolling

Another technique that improves performance is unrolling the loop; that is, expanding small

loops so that each iteration of the loop appears in the code. This optimization increases

the number of instructions available to execute in parallel. We can use loop unrolling when

the operations in a single iteration do not use all of the resources of the C6000 architecture.

There are three ways loop unrolling can be performed:

• The compiler can automatically unroll the loop.

• The programmer can suggest that the compiler unroll the loop using the UNROLL

pragma.

• The programmer can unroll the C/C++ code by self

In our work, we use the compiler to help us loop unrolling itself.

57

Chapter 5

Fixed-Point Implementation of Initial
Downlink Synchronization

In this chapter, we consider the fixed-point implementation of the initial downlink synchro-

nization algorithm on DSP, and we present the simulation results, including both floating-

point and fixed-point. Fig. 5.1 shows our simulation process, we use Matlab to simulate the

wireless channel.

5.1 Floating-Point Simulation Results

In this section, we present the floating-point simulation results for C program, the system

parameters for our simulation are defined in Table 5.1, and we modify the C code form

Matlab code to do simulation under different channel environments and velocities. The power

delay profiles (PDPs) used include Standford University Interim (SUI) [17] and Pedestrian

B (PB) [9]. Our SNR values are from 0 to 20 dB, which is the ratio of the variance of

PA-Preamble samples to that of the noise samples. The mobile velocity is from 0 to 120

km/h, and the carrier frequency offset (CFO) is 8.42884 subcarrier spacings, so the integral

carrier frequency offset (ICFO) is 8 subcarrier spacings and fractional carrier frequency offset

(FCFO) is 0.42884 subcarrier spacings. The simulation results are obtained with 1000 runs

of simulation for each difference SNR.

58

Figure 5.1: Block diagram of simulation procedure.

Table 5.1: System Parameters Used in Our Study
Parameters Values

System Channel Bandwidth (MHz) 5 10 20
Sampling Frequency (MHz) 5.6 11.2 22.4
FFT Size 512 1024 2048
Subcarrier Spacing (kHz) 10.94 10.94 10.94
Useful Symbol Time (µsec) 91.4 91.4 91.4
Guard Time (µsec) 11.4 11.4 11.4
OFDMA Symbol Time (µsec) 102.9 102.9 102.9

5.1.1 Coarse Timing Estimation

The target of coarse timing estimation is to find a staring timing sample for PA-Preamble,

and the correct PA-Preamble time index is 576 in our simulation. Figs. 5.2 shows the

histograms of coarse timing samples under AWGN channel at 0 dB and 10 dB, and it is clear

that the higher SNR gives a better performance. Figs. 5.3 and 5.4 illustrate the histograms

under SUI-1 at SNR values of 0 and 10 dB and velocities of 10 and 90 km/h, respectively. It

is seen that SNR affects the performance more than the velocity. Figs. 5.5 and 5.6 illustrate

the histograms under PB at similar SNR values and velocities. The correct timing index

under SUI-1 and PB channel is 583, where the 6 samples difference with AWGN is due to

the property of the Matlab function for simulating the multipath channel as discussed in

chapter 3. The accuracy of coarse timing estimation affects the MSE of FCFO estimation.

59

540 560 580 600 620 640 660 680
0

50

100

150

200

250
Coarse timing estimation under AWGN in 0dB.

C
um

ul
at

iv
e

am
ou

nt

Estimated timing index

575 576 577
0

100

200

300

400

500

600

700

800

900
Coarse timing estimation under AWGN in 10dB.

C
um

ul
at

iv
e

am
ou

nt

Estimated timing index

Figure 5.2: Histograms of coarse timing estimation under AWGN channel in different SNR.

60

550 560 570 580 590 600 610 620 630
0

50

100

150

200

250
Coarse timing estimation under SUI1 at mobility 10 km/h in 0 dB.

C
um

ul
at

iv
e

am
ou

nt

Estimated timing index

578 579 580 581 582 583 584 585
0

100

200

300

400

500

600

700

800
Coarse timing estimation under SUI1 at mobility 10 km/h in 10 dB.

C
um

ul
at

iv
e

am
ou

nt

Estimated timing index

Figure 5.3: Histograms of coarse timing estimation under SUI-1 channel in different SNR
value for a velocity of 10 km/h.

61

550 600 650 700
0

50

100

150

200

250
Coarse timing estimation under SUI1 at mobility 90 km/h in 0 dB.

C
um

ul
at

iv
e

am
ou

nt

Estimated timing index

579 580 581 582 583 584 585
0

100

200

300

400

500

600

700

800
Coarse timing estimation under SUI1 at mobility 90 km/h in 10 dB.

C
um

ul
at

iv
e

am
ou

nt

Estimated timing index

Figure 5.4: Histograms of coarse timing estimation under SUI-1 channel in different SNR
value for a velocity of 90 km/h.

62

550 560 570 580 590 600 610 620 630 640
0

50

100

150
Coarse timing estimation under PB at mobility 10 km/h in 0 dB.

C
um

ul
at

iv
e

am
ou

nt

Estimated timing index

575 580 585 590 595 600
0

50

100

150

200

250

300

350

400
Coarse timing estimation under PB at mobility 10 km/h in 10 dB.

C
um

ul
at

iv
e

am
ou

nt

Estimated timing index

Figure 5.5: Histograms of coarse timing estimation under PB channel in different SNR value
for a velocity of km/h.

63

540 560 580 600 620 640 660
0

20

40

60

80

100

120

140

160
Coarse timing estimation under PB at mobility 90 km/h in 0 dB.

C
um

ul
at

iv
e

am
ou

nt

Estimated timing index

579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
0

50

100

150

200

250

300

350

400
Coarse timing estimation under PB at mobility 90 km/h in 10 dB.

C
um

ul
at

iv
e

am
ou

nt

Estimated timing index

Figure 5.6: Histograms of coarse timing estimation under PB channel in different SNR value
for a velocity of 90 km/h.

64

0 5 10 15 20
10

−6

10
−5

10
−4

10
−3

MSE of FCFO Estimation

M
S

E

Preamble SNR (dB)

AWGN
SUI1 (10 km/h)
SUI1 (30 km/h)
SUI1 (60 km/h)
SUI1 (90 km/h)

Figure 5.7: Mean square error of FCFO estimation under SUI-1 and AWGN channels.

5.1.2 Fractional CFO Estimation

Figs. 5.7 to 5.9 show the mean square error of fractional carrier frequency offset estimation

under AWGN, SUI-1, SUI-3 and PB channels at different mobile velocities. The simulation

results perform similar to results of reference [2], because our SNR definition is the same

with [2].

5.1.3 Joint Estimation of Integral Carrier Frequency Offset, PID
and Fine Timing

In this subsection, we present the simulation of ICFO estimation results in Figs. 5.10 to 5.12.

The simulation parameters are:

• ICFO: 8 subcarrier spacings.

65

0 5 10 15 20
10

−6

10
−5

10
−4

10
−3

MSE of FCFO Estimation

M
S

E

Preamble SNR (dB)

 AWGN
SUI3 (10 km/h)
SUI3 (30 km/h)
SUI3 (60 km/h)
SUI3 (90 km/h)

Figure 5.8: Mean square error of FCFO estimation under SUI-3 and AWGN channels.

• PA-Preamble index (PID): 1 (10MHz).

• Channel models: AWGN, SUI-1, PB.

• Mobile velocities: 10 km/h, 90 km/h.

• SNR value: 0 dB, 10 dB.

They illustrates the histograms under AWGN and SUI-1 channels at SNR values of 0 and

10 dB and velocities 10 and 90 km/h, respectively. Figs. 5.13 to 5.15 show the histograms of

PID detection under AWGN and SUI-1 channels at similar SNR and velocity setting. They

show that the ICFO and PID estimation are quite accurate at different SNR and channel

conditions. Figs. 5.16 to 5.20 illustrate the performance of fine timing estimation under

AWGN, SUI-1 and PB channels in 0 dB, 10 dB, and 20 dB of SNR at speeds 10 km/h

and 90 km/h, respectively. We define “error” to be that the estimated timing index does

66

0 5 10 15 20
10

−6

10
−5

10
−4

10
−3

MSE of FCFO Estimation

M
S

E

Preamble SNR (dB)

AWGN
PB (10 km/h)
PB (30 km/h)
PB (60 km/h)
PB (90 km/h)

Figure 5.9: Mean square error of FCFO estimation under PB and AWGN channels.

Table 5.2: The error rate of timing estimation.
AWGN PB 10km PB 90km SUI1 10km SUI1 90km

0 dB 0.013 0.113 0.118 0.011 0.021
10 dB 0 0.001 0.005 0 0
20 dB 0 0 0 0 0

not locate between the boundary of delay spread and the right-hand end of CP. Then we

can calculate the error rate, show in Table 5.2. The simulation results of overall timing

estimation is similar with reference [1].

5.2 Fixed-Point Implementation

Usually, we use floating-point processing to verity the performance of the algorithms. But

fixed-point processing improves power efficiency, speed and hardware cost. Hance large-

67

−25 −20 −15 −10 −5 0 5 10 15 20 25
0

100

200

300

400

500

600

700

800

900

1000

Bin Count: 1e+003

Bin Center: 8
Bin Edges: [7.5, 8.5]

ICFO estimated index

C
um

ul
at

iv
e

am
ou

nt
ICFO estimation under AWGN in 0 dB.

−25 −20 −15 −10 −5 0 5 10 15 20 25
0

100

200

300

400

500

600

700

800

900

1000

Bin Count: 1e+003

Bin Center: 8
Bin Edges: [7.5, 8.5]

ICFO estimated index

C
um

ul
at

iv
e

am
ou

nt

ICFO estimation under AWGN in 10 dB.

Figure 5.10: Histograms of integer CFO estimation under AWGN channel in different SNR
values.

68

−25 −20 −15 −10 −5 0 5 10 15 20 25
0

100

200

300

400

500

600

700

800

900

1000

Bin Count: 1e+003

Bin Center: 8
Bin Edges: [7.5, 8.5]

ICFO estimated index

C
um

ul
at

iv
e

am
ou

nt
ICFO estimation under SUI1 at mobility 10 km/h in 0 dB.

−25 −20 −15 −10 −5 0 5 10 15 20 25
0

100

200

300

400

500

600

700

800

900

1000

Bin Count: 1e+003

Bin Center: 8
Bin Edges: [7.5, 8.5]

ICFO estimated index

C
um

ul
at

iv
e

am
ou

nt

ICFO estimation under SUI1 at mobility 10 km/h in 10 dB.

Figure 5.11: Histograms of integer CFO estimation under SUI-1 channel in different SNR
values at a velocity of 10 km/h.

69

−25 −20 −15 −10 −5 0 5 10 15 20 25
0

100

200

300

400

500

600

700

800

900

1000

Bin Count: 1e+003

Bin Center: 8
Bin Edges: [7.5, 8.5]

ICFO estimated index

C
um

ul
at

iv
e

am
ou

nt
ICFO estimation under SUI1 at mobility 90 km/h in 0 dB.

−25 −20 −15 −10 −5 0 5 10 15 20 25
0

100

200

300

400

500

600

700

800

900

1000

Bin Count: 1e+003

Bin Center: 8
Bin Edges: [7.5, 8.5]

ICFO estimated index

C
um

ul
at

iv
e

am
ou

nt

ICFO estimation under SUI1 at mobility 90 km/h in 10 dB.

Figure 5.12: Histograms of integer CFO estimation under SUI-1 channel in different SNR
values at a velocity of 90 km/h.

70

0 1 2
0

100

200

300

400

500

600

700

800

900

1000
PID detection under AWGN in 0 dB.

C
um

ul
at

iv
e

am
ou

nt

PID index

0 1 2
0

100

200

300

400

500

600

700

800

900

1000
PID detection under AWGN in 10 dB.

C
um

ul
at

iv
e

am
ou

nt

PID index

Figure 5.13: Histograms of PID detection under AWGN channel in different SNR values.

71

0 1 2
0

100

200

300

400

500

600

700

800

900

1000
PID detection under SUI1 at mobility 10 km/h in 0 dB.

C
um

ul
at

iv
e

am
ou

nt

PID index

0 1 2
0

100

200

300

400

500

600

700

800

900

1000
PID detection under SUI1 at mobility 10 km/h in 10 dB.

C
um

ul
at

iv
e

am
ou

nt

PID index

Figure 5.14: Histograms of PID detection under SUI-1 channel in different SNR values at a
velocity of 10 km/h.

72

0 1 2
0

100

200

300

400

500

600

700

800

900

1000
PID detection under SUI1 at mobility 90 km/h in 0 dB.

C
um

ul
at

iv
e

am
ou

nt

PID index

0 1 2
0

100

200

300

400

500

600

700

800

900

1000
PID detection under SUI1 at mobility 90 km/h in 10 dB.

C
um

ul
at

iv
e

am
ou

nt

PID index

Figure 5.15: Histograms of PID detection under SUI-1 channel in different SNR values at a
velocity of 90 km/h.

73

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80
Fine timing estimation under AWGN in 0dB.

C
um

ul
at

iv
e

am
ou

nt

Estimated timing index

5 10 15 20 25 30 35 40 45 50 55
0

10

20

30

40

50

60
Fine timing estimation under AWGN in 10dB.

C
um

ul
at

iv
e

am
ou

nt

Estimated timing index

20 25 30 35 40 45
0

20

40

60

80

100

120

140

160
Fine timing estimation under AWGN in 20 dB.

C
um

ul
at

iv
e

am
ou

nt

Estimated timing index

Figure 5.16: Histograms of fine timing estimation under AWGN channel in the different SNR
values.

74

0 50 100 150 200 250 300
0

10

20

30

40

50

60
Fine timing estimation under SUI1 at mobility 10 km/h in 0 dB.

C
um

ul
at

iv
e

am
ou

nt

Estimated timing index

5 10 15 20 25 30 35 40 45 50 55
0

10

20

30

40

50

60

70
Fine timing estimation under SUI1 at mobility 10 km/h in 10 dB.

C
um

ul
at

iv
e

am
ou

nt

Estimated timing index

15 20 25 30 35 40 45
0

50

100

150
Fine timing estimation under SUI1 at mobility 10 km/h in 20 dB.

C
um

ul
at

iv
e

am
ou

nt

Estimated timing index

Figure 5.17: Histograms of fine timing estimation under SUI-1 channel in different SNR
values at a velocity of 10 km/h.

75

0 50 100 150 200 250 300
0

10

20

30

40

50

60
Fine timing estimation under SUI1 at mobility 90 km/h in 0 dB.

C
um

ul
at

iv
e

am
ou

nt

Estimated timing index

5 10 15 20 25 30 35 40 45 50 55
0

10

20

30

40

50

60
Fine timing estimation under SUI1 at mobility 90 km/h in 10 dB.

C
um

ul
at

iv
e

am
ou

nt

Estimated timing index

15 20 25 30 35 40 45
0

50

100

150
Fine timing estimation under SUI1 at mobility 90 km/h in 20 dB.

C
um

ul
at

iv
e

am
ou

nt

Estimated timing index

Figure 5.18: Histograms of fine timing estimation under SUI-1 channel in different SNR
values at a velocity of is 90 km/h.

76

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90
Fine timing estimation under PB at mobility 10 km/h in 0 dB.

C
um

ul
at

iv
e

am
ou

nt

Estimated timing index

10 20 30 40 50 60
0

10

20

30

40

50

60

70
Fine timing estimation under PB at mobility 10 km/h in 10 dB.

C
um

ul
at

iv
e

am
ou

nt

Estimated timing index

20 25 30 35 40 45 50 55
0

20

40

60

80

100

120
Fine timing estimation under PB at mobility 10 km/h in 20 dB.

C
um

ul
at

iv
e

am
ou

nt

Estimated timing index

Figure 5.19: Histograms of fine timing estimation under PB channel in different SNR values
at a velocity of 10 km/h.

77

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80
Fine timing estimation under PB at mobility 90 km/h in 0 dB.

C
um

ul
at

iv
e

am
ou

nt

Estimated timing index

10 20 30 40 50 60
0

10

20

30

40

50

60
Fine timing estimation under PB at mobility 90 km/h in 10 dB.

C
um

ul
at

iv
e

am
ou

nt

Estimated timing index

15 20 25 30 35 40 45 50 55
0

20

40

60

80

100

120

140
Fine timing estimation under PB at mobility 90 km/h in 20 dB.

C
um

ul
at

iv
e

am
ou

nt

Estimated timing index

Figure 5.20: Histograms of fine timing estimation under PB channel in different SNR values
at a velocity of 90 km/h.

78

volume practical implementation normally employ fixed-point processing. In this section,

we present the initial downlink synchronization algorithm implementation in fixed-point

processing using TI’s TMS320C6416T DSP. We also try to utilize coding style and intrinsic

functions to reduce cycle counts on DSP.

According to chapter 4, we know that the C6416T CPU has a VLIW architecture that

contains 8 parallel 32-bits function units. The 8 units include two multipliers and six that

can do a number of arithmetic, logic and memory access operations, and it is flexible so

that each function unit can do double 16-bit or quadruple 8-bit operations. In our work, we

choose 16-bit data type mostly, because 16-bit computation has enough accuracy for most

of the functions we implement.

Fig. 5.21 shows the fixed-point data formats used in the different places in our algorithm,

where Qx.y means there are x bits before the binary points and y bits after. In our case, x+y

= 15 because the sign takes 1 bit. We choose Q7.8 to be the data format at many places,

because coarse timing estimation needs to accumulate the squared norm of data. The Q7.8

format can avoid overflow in coarse timing estimation. In fact, we find that the Q7.8 data

format has enough accuracy for our experiment. In the following subsections, we discuss the

details of the blocks in the algorithm.

5.2.1 Coarse Timing Estimation and Removal of Cycle Prefix

The first step in the procedure is coarse timing estimation to find the approximate location

of PA-Preamble. Figs. 3.1 shows our signal structure, where we compute the signal power

in a finite window size and slide the window. According to the IEEE 802.16m standard,

the PA-Preamble magnitude is boosted by a factor of 1.9216, 2.6731 or 4.6511 compared to

regular data signal. To the maximum power position should be a good indicator of what

the PA-Preamble is. After coarse timing estimation, we remove the CP from the 576 points

starting at the estimated point to get 512 points of data. Actually, because the estimated

point by coarse timing estimation may be located within the CP, what we in fact do is to take

79

Figure 5.21: Fixed-point data formats used in DSP implementation.

the first 512 points starting from the coarse timing point, which is equivalent to discard the

last 64 point of the 576 points, because it is more probable to get a complete PA-Preamble

this way.

5.2.2 Fractional Carrier Frequency Offset Estimation and Com-
pensation

FCFO estimation is the second step in the procedure. Fig. 5.22 shows that we correlate the

first 256 points and the last 256 points of PA-Preamble to calculate the FCFO, which is

obtained as the arc-tangent of the correlation. For efficiency in DSP implementation, we use

a lookup table to implement the arctan() function. For dynamic range, we create a table

for the arcsin() function to estimate the FCFO in place of a table of the arctan() function.

The table contains 2048 entries uniformly spanning the range [sin 0, sin 0.25π), and the table

entries are normalized with respect π so that they span the range [0, 0.25).

In frequency offset compensation, we create two lookup tables for the sin() and the cos()

functions, each containing 2048 entries uniformly spanning the range [0, π ÷ 2). Since the

values of sin() and cos() are from −1 to 1, we choose Q.15 as the data format. Hence, when

80

Figure 5.22: Calculating the correlation in received PA-Preamble.

the FCFO is compensated, the data format becomes Q7.24. Then we change the data format

from Q7.24 to Q7.8 in order to avoid overflow in ICFO estimation.

5.2.3 Integer Carrier Frequency Offset Estimation and PID De-
tection

The last step of the procedure is ICFO estimation and PID detection. For this, we operate in

the frequency domain. Since ICFO is just a shift in the subcarrier indexes in the frequency

domain, it is relatively simple to implement in C program. According to (3.14), we calculate

the channel frequency response and transform it to the time domain. Since the CIR length

is supposed be not exceeding 64 points, we can assume that the correct choice of ICFO and

PID should yield the maximum squared value, sum for the resulting CIR. The flow chart is

shown in Fig. 5.23.

5.3 Fixed-Point Simulation Results

In this section, we show the fixed-point simulation results and compare them with the

floating-point simulation results under different channel models. All simulation parameters

and environments are the same as those given in section 5.1.

81

Figure 5.23: ICFO estimation and PID detection flow chart.

5.3.1 Coarse Timing Estimation

Fig. 5.24 shows the histograms of coarse timing samples under AWGN channel with 0 and

10 dB of SNR. Figs. 5.25 and 5.26 show the histograms under SUI-1 at SNR values of 0 and

10 dB and velocities of 10 and 90 km/h, respectively. In Figs. 5.27 and 5.28, we show the

histograms under PB channel at SNR values of 0 and 10 dB and velocities of 10 and 90 km/h,

respectively. Note that the simulation results are almost the same with the floating-point

results shown in Figs. 5.2 to 5.6.

82

540 560 580 600 620 640
0

50

100

150

200

250
Bin Count: 249

Bin Center: 576
Bin Edges: [576, 577]

Coarse timing estimation under AWGN in 0dB with fixed−point implementation.
C

um
ul

at
iv

e
am

ou
nt

Estimated timing index

575 576 577
0

100

200

300

400

500

600

700

800

900

Bin Count: 850

Bin Center: 576
Bin Edges: [576, 577]

Coarse timing estimation under AWGN in 10dB with fixed−point implementation.

C
um

ul
at

iv
e

am
ou

nt

Estimated timing index

Figure 5.24: Histograms of coarse timing estimation under AWGN channel in different SNR
values.

83

550 600 650 700
0

50

100

150

200

250

Bin Count: 203

Bin Center: 580
Bin Edges: [580, 581]

Coarse timing estimation under SUI−1 at mobility 10 km/h in 0 dB with fixed−point implementation.
C

um
ul

at
iv

e
am

ou
nt

Estimated timing index

579 580 581 582 583 584 585 586
0

100

200

300

400

500

600

700

800

Bin Count: 788

Bin Center: 580
Bin Edges: [580, 581]

Coarse timing estimation under SUI−1 at mobility 10 km/h in 10 dB with fixed−point implementation.

C
um

ul
at

iv
e

am
ou

nt

Estimated timing index

Figure 5.25: Histograms of coarse timing estimation under SUI-1 channel in different SNR
values at a velocity of 10 km/h.

84

540 560 580 600 620 640 660 680
0

50

100

150

200

250

Bin Count: 215

Bin Center: 580
Bin Edges: [580, 581]

Coarse timing estimation under SUI−1 at mobility 90 km/h in 0 dB with fixed−point implementation.
C

um
ul

at
iv

e
am

ou
nt

Estimated timing index

579 580 581 582 583 584 585 586 587 588 589
0

100

200

300

400

500

600

700

800

Bin Count: 760

Bin Center: 580
Bin Edges: [580, 581]

Coarse timing estimation under SUI−1 at mobility 90 km/h in 10 dB with fixed−point implementation.

C
um

ul
at

iv
e

am
ou

nt

Estimated timing index

Figure 5.26: Histograms of coarse timing estimation under SUI-1 channel in different SNR
values at a velocity of 90 km/h.

85

540 560 580 600 620 640 660
0

20

40

60

80

100

120

140
Bin Count: 140

Bin Center: 581
Bin Edges: [581, 582]

Coarse timing estimation under PB at mobility 10 km/h in 0 dB with fixed−point implementation.
C

um
ul

at
iv

e
am

ou
nt

Estimated timing index

578 580 582 584 586 588 590 592 594 596
0

50

100

150

200

250

300

350

400

Bin Count: 368

Bin Center: 581
Bin Edges: [581, 582]

Coarse timing estimation under PB at mobility 10 km/h in 10 dB with fixed−point implementation.

C
um

ul
at

iv
e

am
ou

nt

Estimated timing index

Figure 5.27: Histograms of coarse timing estimation under PB channel in different SNR
values at a velocity of 10 km/h.

86

540 560 580 600 620 640 660 680 700
0

20

40

60

80

100

120

140

Bin Count: 126

Bin Center: 581
Bin Edges: [581, 582]

Coarse timing estimation under PB at mobility 90 km/h in 0 dB with fixed−point implementation.
C

um
ul

at
iv

e
am

ou
nt

Estimated timing index

578 580 582 584 586 588 590 592 594 596 598
0

50

100

150

200

250

300

350

400

Bin Count: 384

Bin Center: 581
Bin Edges: [581, 582]

Coarse timing estimation under PB at mobility 90 km/h in 10 dB with fixed−point implementation.

C
um

ul
at

iv
e

am
ou

nt

Estimated timing index

Figure 5.28: Histograms of coarse timing estimation under PB channel in different SNR
values at a velocity of 90 km/h.

87

0 5 10 15 20
10

−6

10
−5

10
−4

10
−3

MSE of FCFO Estimation

M
S

E

Preamble SNR (dB)

AWGN
AWGN−Fixed
SUI1 (10 km/h)
SUI1 (60 km/h)
SUI1 (90 km/h)
SUI1−Fixed (10 km/h)
SUI1−Fixed (60 km/h)
SUI1−Fixed (90 km/h)

Figure 5.29: Mean square error of FCFO estimation under SUI-1 and AWGN channels with
fixed-point and floating-point computation.

5.3.2 Fractional CFO Estimation

Figs. 5.29 to 5.31 show the MSE of fractional CFO estimation in SUI-1, SUI-3, PB and

AWGN channels at speeds 10, 30, 60 and 90 km/h with fixed-point and floating-point compu-

tation. From the simulation results, we can see that the performance curves for floating-point

and fixed-point computation are only a little different.

5.3.3 Jointly Estimation of Integral Carrier Frequency Offset, PID
and Fine Timing

Figs. 5.32 to 5.34 show the estimation performance of integer CFO under AWGN and SUI-1

channels at speeds of 10 and 90 km/h at SNR of 0 and 10 dB, respectively, and Figs. 5.35 to

5.37 show the estimation performance of PID under AWGN and SUI-1 channels at speeds of

88

0 5 10 15 20
10

−6

10
−5

10
−4

10
−3

MSE of FCFO Estimation

M
S

E

Preamble SNR (dB)

AWGN
AWGN−Fixed
SUI3 (10 km/h)
SUI3 (60 km/h)
SUI3 (90 km/h)
SUI3−Fixed (10 km/h)
SUI3−Fixed (60 km/h)
SUI3−Fixed (90 km/h)

Figure 5.30: Mean square error of FCFO estimation under SUI-3 and AWGN channels with
fixed-point and floating-point computation.

10 and 90 km/h at SNR of 0 and 10 dB. Table 5.3 shows the error rate of timing estimation.

We can see that floating-point and fixed-point implementation have the same results shown

in Figs. 5.10 to 5.15, in all cases simulated.

Table 5.3: The error rate of timing estimation.
AWGN PB 10km PB 90km SUI1 10km SUI1 90km

0 dB 0.017 0.121 0.155 0.031 0.025
10 dB 0 0.002 0.001 0 0
20 dB 0 0 0 0 0

89

0 5 10 15 20
10

−6

10
−5

10
−4

10
−3

MSE of FCFO Estimation

M
S

E

Preamble SNR (dB)

AWGN
AWGN−Fixed
PB (10 km/h)
PB (60 km/h)
PB−Fixed (10 km/h)
PB−Fixed (60 km/h)

Figure 5.31: Mean square error of FCFO estimation under PB and AWGN channels with
fixed-point and floating-point computation.

5.4 Speeding Up of DSP Implementation

In this section, we discuss how to reduce cycle counts in DSP implementation. The optimiza-

tion techniques used include compiler option, intrinsic functions and DSP library function.

We set the level of optimization of compiler option to -o3, which performs software pipelining

and loop optimizations, and we do not perform loop unrolling ourselves. In the following,

we concentrate the discussion on the use of intrinsic functions and DSP library functions in

the function blocks.

5.4.1 Speeding Up of Coarse Timing Estimation

Calculating the magnitude-square of a complex number needs two multiplication, so accumu-

lating 576 magnitude-squares for 1152 time position would require 576×2×1152 = 1, 327, 104

90

−25 −20 −15 −10 −5 0 5 10 15 20 25
0

100

200

300

400

500

600

700

800

900

1000
Bin Count: 1e+003

Bin Center: 8
Bin Edges: [7.5, 8.5]

ICFO estimation under AWGN in 0dB.
C

um
ul

at
iv

e
am

ou
nt

ICFO estimated index

−25 −20 −15 −10 −5 0 5 10 15 20 25
0

100

200

300

400

500

600

700

800

900

1000
Bin Count: 1e+003

Bin Center: 8
Bin Edges: [7.5, 8.5]

ICFO estimation under AWGN in 10dB.

C
um

ul
at

iv
e

am
ou

nt

ICFO estimated index

Figure 5.32: Histograms of integer CFO estimation under AWGN channel in different SNR
values with fixed-point implementation.

91

−25 −20 −15 −10 −5 0 5 10 15 20 25
0

100

200

300

400

500

600

700

800

900

1000
Bin Count: 1e+003

Bin Center: 8
Bin Edges: [7.5, 8.5]

ICFO estimation under under SUI−1 at mobility 10 km/h in 0 dB.
C

um
ul

at
iv

e
am

ou
nt

ICFO estimated index

−25 −20 −15 −10 −5 0 5 10 15 20 25
0

100

200

300

400

500

600

700

800

900

1000
Bin Count: 1e+003

Bin Center: 8
Bin Edges: [7.5, 8.5]

ICFO estimation under under SUI−1 at mobility 10 km/h in 10 dB.

C
um

ul
at

iv
e

am
ou

nt

ICFO estimated index

Figure 5.33: Histograms of integer CFO estimation under SUI-1 channel in different SNR
values at a velocity of 10 km/h with fixed-point implementation.

92

−25 −20 −15 −10 −5 0 5 10 15 20 25
0

100

200

300

400

500

600

700

800

900

1000
Bin Count: 1e+003

Bin Center: 8
Bin Edges: [7.5, 8.5]

ICFO estimation under under SUI−1 at mobility 90 km/h in 0 dB.
C

um
ul

at
iv

e
am

ou
nt

ICFO estimated index

−25 −20 −15 −10 −5 0 5 10 15 20 25
0

100

200

300

400

500

600

700

800

900

1000
Bin Count: 1e+003

Bin Center: 8
Bin Edges: [7.5, 8.5]

ICFO estimation under under SUI−1 at mobility 90 km/h in 10 dB.

C
um

ul
at

iv
e

am
ou

nt

ICFO estimated index

Figure 5.34: Histograms of integer CFO estimation under SUI-1 channel in different SNR
values at a velocity of 90 km/h with fixed-point implementation.

93

0 1 2
0

100

200

300

400

500

600

700

800

900

1000
Bin Count: 1e+003

Bin Center: 1
Bin Edges: [0.5, 1.5]

PID detection under AWGN in 0dB.
C

um
ul

at
iv

e
am

ou
nt

PID index

0 1 2
0

100

200

300

400

500

600

700

800

900

1000
Bin Count: 1e+003

Bin Center: 1
Bin Edges: [0.5, 1.5]

PID detection under AWGN in 10dB.

C
um

ul
at

iv
e

am
ou

nt

PID index

Figure 5.35: Histograms of PID detection estimation under AWGN channel in different SNR
values with fixed-point implementation.

94

0 1 2
0

100

200

300

400

500

600

700

800

900

1000
Bin Count: 1e+003

Bin Center: 1
Bin Edges: [0.5, 1.5]

PID detection under under SUI−1 at mobility 10 km/h in 0 dB.
C

um
ul

at
iv

e
am

ou
nt

PID index

0 1 2
0

100

200

300

400

500

600

700

800

900

1000
Bin Count: 1e+003

Bin Center: 1
Bin Edges: [0.5, 1.5]

PID detection under under SUI−1 at mobility 10 km/h in 10 dB.

C
um

ul
at

iv
e

am
ou

nt

PID index

Figure 5.36: Histograms of PID detection under SUI-1 channel in different SNR values at a
velocity of 10 km/h with fixed-point implementation.

95

0 1 2
0

100

200

300

400

500

600

700

800

900

1000
Bin Count: 1e+003

Bin Center: 1
Bin Edges: [0.5, 1.5]

PID detection under under SUI−1 at mobility 90 km/h in 0 dB.
C

um
ul

at
iv

e
am

ou
nt

PID index

0 1 2
0

100

200

300

400

500

600

700

800

900

1000
Bin Count: 1e+003

Bin Center: 1
Bin Edges: [0.5, 1.5]

PID detection under under SUI−1 at mobility 90 km/h in 10 dB.

C
um

ul
at

iv
e

am
ou

nt

PID index

Figure 5.37: Histograms of PID detection under SUI-1 channel in different SNR values at a
velocity of 90 km/h with fixed-point implementation.

96

Table 5.4: Coarse Timing Estimation Results for Optimization Level 3
Functions Avg. Clock Cycles
Main Loop 7722
Initial Loop 139

Maximum PowerLevel 4756

Table 5.5: Coarse Timing Estimation Results for Optimization Level 1
Functions Avg. Clock Cycles
Main Loop 41448
Initial Loop 16140

Maximum PowerLevel 37026

multiplications. However, most of accumulated quantities appear repeatedly across succes-

sive time positions as shown in Fig. 5.38. Using this fact, we may compute the sum of

magnitude-squares as

Power(N + 1) = Power(N)−R(N) + R(N + 576), (5.1)

Power(0) =
575∑
n=0

R(n), (5.2)

where R(N) is the magnitude-squares of the received signal sample at time N and Power(N)

is the sum as indicated in Fig. 5.38.

The compiler automatically utilizes the assembly instruction MPY2 that computes two

16 × 16 multiplication in parallel. We show the improved C code and the corresponding

assembly code in Figs. 5.39 to 5.41. Hence, the coarse timing estimation needs about 576×
2 + 1152 × 4 = 5760 multiplications. According to Table 5.4, the efficiency of the coarse

timing estimation is (5760÷4÷7861)×100 = 18.3%, and Table 5.5 shows the cycle counts for

compiler option of optimization level 1, the efficiency is (5760÷ 2÷ 57588)× 100 = 5%. The

exection time of optimization level 1 is worse than optimization level 3 since the optimization

level 1 does not performs loop unloring, software-pipleining and call assembly instruction

MPY2.

97

+ +
Figure 5.38: Summation of magnitude-squares for coarse timing estimation.

5.4.2 Using DSP Library Function for FFT and IFFT [18]

TI supplies a DSP library that contains the FFT/IFFT function DSP fft16x16r() that

implements a cache-optimized complex forward mixed radix FFT with scaling, rounding and

digit reversal. The input data x[], output data y[] and coefficients w[] are 16-bit numbers.

The output is returned in the array y[] in normal order. Each complex value is stored

as interleaved 16-bit real and imaginary parts. The code uses a special ordering of FFT

coefficients (also called twiddle factors). This DSP library function takes dlog4(nx) − 1e ×
(5

4
× nx + 25) + 5

4
× nx + 26 cycles and the codesize is 868 bytes, where nx is FFT size.

5.4.3 Speeding Up of ICFO, PID, Fine Timing Estimation

In integer CFO estimation, we utilize the signal structure in the frequency domain, hence

we need not compute the CIR the corresponding with PA-Preamble subcarrier is 0. Further-

more, we use the same method with coarse timing estimation to calculate the sum of CIR.

Therefore, it is needs 216 × 2 × 3 × 21 = 27, 216 multiplications to compute the CIR and

(64× 2 + 256× 4)× 3× 21 = 72, 576 multiplications to compute the sum of CIR.

According to Table 5.6, the efficiency of sum of CIR is (72576÷4÷75411)×100 = 24.1%

and the efficiency of CIR computation is (27216 ÷ 2 ÷ 33705) × 100 = 40.4%. Table 5.7

shows the cycle counts for compiler option of optimization level 1, the efficiency of sum

of CIR is (72576 ÷ 2 ÷ 406602) × 100 = 8.9%, and the efficiency of CIR computation is

98

Table 5.6: ICFO, PID, Fine Timing Estimation Results for Optimization Level 3
Functions Avg. Clock Cycles

Sum of CIR 75411
CIR Computation 33705

MaxFixed 33453
Others 6042

Table 5.7: ICFO, PID, Fine Timing Estimation Results for Optimization Level 1
Functions Avg. Clock Cycles

Sum of CIR 406602
CIR Computation 326970

MaxFixed 547848
Others 340204

(27216÷ 2÷ 326970)× 100 = 4.16%.

5.5 DSP Optimization Results

Table 5.8 shows the number of clock for each function used in the initial DL synchronization

procedures, and number of clock cycles does not including TI library in this table. Obviously,

IFFT function takes the most percentage of total cycles, because number of IFFT times is the

21 (ICFO candidates)×3 (bandwidth) = 63 times, and IFFT function time positions would

require about 14,000 cycles per time. The DSP fft16x16r() function is already highly

optimized. Table 5.9 shows the number of clock cycles including and excluding memory

access. Table 5.10 shows the code size of the program for different optimization levels. In

our system, the clock frequency of TMS320C6416T DSP is 1 GHz, so the total execution

time of initial DL synchronization procedures is 1.181 ms.

99

Table 5.8: DSP Optimization Results
Functions Avg. Clock Cycles Percentage of Total Cycles (%)

Coarse Timing Estimation 10239 0.96
FCFO Estimation 5911 0.554

Compensation 2141 0.2
FFT 14046 1.318
IFFT 884394 82.963

ICFO Estimation 148611 13.941
Remove CP 668 0.063
Total cycles 1066010 100

Table 5.9: DSP Optimization Results with Inclusion and Exclusion of Memory Access
Total Cycles Avg. Clock Cycles

Exclude Memory Access 1066010
Include Memory Access 1168531

Table 5.10: Code Size Results
Program Memory

Optimization Level 3 Program Code Size (-o3) 448.613 KB
Optimization Level 1 Program Code Size (-o1) 439.781 KB

Data Memory Size 327.68KB

100

Figure 5.39: Assembly code of the coarse timing estimation (1/3).

101

Figure 5.40: Assembly code of the coarse timing estimation (2/3).

102

Figure 5.41: Assembly code of the coarse timing estimation (3/3).

103

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we first presented the overall procedure of initial DL synchronization of the

IEEE 802.16m TDD system, and verified them through floating-point computation. Second,

we implemented the initial DL synchronization to fixed-point computation and compared

the performance with floating-point computation. Finally, we optimized procedure of initial

DL synchronization on TI’s C6416T digital signal processor.

In the procedure of initial DL synchronization, we used coarse timing estimation to esti-

mate the PA-Preamble location, thus, we obtained the FCFO from the quasi-ML estimation.

In the end, we utilized the characteristic of the power centralization of CIR to estimate the

ICFO, PID and fine timing offset.

For DSP implementation, we chosen Q7.8 to be our data format, and verified the per-

formance through simulation results is close to the floating-point computation. We used

optimization techniques that including preamble character, intrinsic functions and DSP li-

brary function to reduce the computation time. According to Table 5.8, if the clock frequency

of TMS320C6416T DSP is 1 GHz, execution time of initial DL synchronization procedures

is 1.181 ms.

104

6.2 Future Work

There are several possible extension for our research:

• Reduce codesize of procedure of initial DL synchronization since we do not discuss in

this thesis.

• Implement code of fixed-point vision on SMT395 board since we only use CCS simulator

in this thesis.

• Use intrinsic function to reduce more cycle count.

• Integration the system of overall procedure of DL communication such as channel

coding, synchronization and channel estimation on DSP implementation.

105

Bibliography

[1] Kai-Wei Lu, “Initial downlink synchronization for IEEE 802.16m,” M.S. thesis, Indus-

trial Technology R&D Master Program on Communication Engineering, National Chiao

Tung University, Hsinchu, Taiwan, R.O.C., February 2010.

[2] P.-S. Wang, K.-W. Lu, D. W. Lin, and P. Ting, “Quasi-maximum likelihood initial

downlink synchronization for IEEE 802.16m,” in Proc. IEEE Int. Workshop Signal

Processing Advances Wirel. Commun., June 2011, pp. 506–510.

[3] Man-On Pun, Michele Morelli, and C.-C. Jay Kuo, “Maximum-likelihood synchroniza-

tion and channel estimation for OFDMA uplink transmissions,” IEEE Trans. Commun.,

vol. 54, no. 4, pp. 726–736, Apr. 2006.

[4] Lior Eldar, M. R. Raghavendra, S. Bhashyam, Ron Bercovich, and K. Giridhar, “Para-

metric channel estimation for pseudo-random user-allocation in uplink OFDMA,” in

IEEE Int. Conf. Commun., 2006, vol. 7, pp. 3035–3039.

[5] IEEE 802.16 Task Group m Draft 9, Part 16: Air Interface for Fixed and Mobile

Broadband Wireless Access Systems — Advanced Air Interface (working document).

IEEE 802.16m, Oct. 6, 2010.

[6] K.-C. Hung and D. W. Lin, “Joint detection of integral carrier frequency offset and

preamble index in OFDMA WiMAX downlink synchronization,” in Proc. IEEE Wireless

Commun. Networking Conf., Mar. 2007, pp. 1959–1964.

106

[7] R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications. Boston:

Artech House, 2000.

[8] P.H. Moose, “A technique for orthogonal frequency division multiplexing frequency

offset correction,” IEEE Trans. Commun., vol. 42, no. 10, pp. 2908–2914, Oct. 1994.

[9] Y. Chunxuan, A. Reznik, G. Sternberg, Y. Shah, “On the secrecy capabilities of ITU

Channels,” in IEEE Vehicular Technology Conference, Oct. 2007, pp. 2030–2034.

[10] Sundance home page: http://www.sundance.com

[11] Texas Instruments, TMS320C6000 CPU and Instruction Set Reference Guide. Litera-

ture no. SPRU189F, Oct. 2000.

[12] Texas Instruments, TMS320C6414T, TMS320C6415T, TMS320C6416T Fixed-Point

Digital Signal Processors. Literature no. SPRS226A, Mar. 2004.

[13] Texas Instruments, Code Composer Studio User’s Guide. Literature no. SPRU328B,

Feb. 2000.

[14] Texas Instruments, TMS320C6000 Code Composer Studio Tutorial. Literature no.

SPRU301CI, Feb. 2000.

[15] Texas Instruments, TMS320C6000 Programmer’s Guide. Literature no. SPRU198J,

Apr. 2010.

[16] Texas Instrument, TMS320C6000 Optimizing Compiler User Guide. Literature no.

SPRU187S, Mar. 2011.

[17] V. Erceg et al., “Channel models for fixed wireless applications,” IEEE standards con-

tribution no. IEEE 802.16.3c-01/29r4, July 2001.

[18] Texas Instrument, TMS320C64x DSP Library Programmer’s Reference. Literature no.

SPRU565B, Oct. 2003.

107

[19] J. J. van de Beek et al., “ML estimation of time and frequency offset in OFDM systems,”

IEEE Trans. Signal Processing, vol. 45, no. 7, pp. 1800–1805, July 1997.

108

	Cover.pdf
	Cover2.pdf
	abstract.pdf
	acknowledgement.pdf
	9811650_thesis.pdf

