IEEE 802.16m #* 45T 7l ¥ 2 &M E AL BRR 1

Digital Signal Processor . Implementation of Initial Downlink

Synchronization for IEEE 802.16m

Foyo2 e F

TESC RIS 8 E

M- 00 & { °

Ar'S
W
M

IEEE 802.16m #~ 4~ {7 ¢ #) 2. B> M 5L a2 BF IR

L= pr R

Digital Signal Processor Implementation of Initial Downlink

Synchronization for IEEE 802.16m

Frd meF Student: Wei-Yu Chen

I ERE R iE L Advisor: Dr. David W. Lin

A Thesis
Submitted to Department of Electronics Engineering.& Institute of Electronics
College of Electrical and Computer Engineering
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of Master of Science
in
Electronics Engineering
September 2011
Hsinchu, Taiwan, Republic of China

$EAH- O0E

IEEE 802.16m #4457 {7 ¢ 2. #2352 B 7

\

T

Filimes TR SRS £

ik &
A AL Y 5 4S4HIEEE 802.16m ¢ 4 dnT 7 A F et iz
PRILT 5 b AnRALR 3 0
T - BAPTERAR B R PEE > NS AR LG i o
BAP IR P o & 3 R AT AN UL R foR B S A 5i(preamble index)
TEREH R AP R E R R - TR P 7 (data symbol) & e

CEREES 5 RIRE- T R UD SR st 3 N HIRE Bt st LK IR U O

WEEe Y- BRALRNY FAPATRRD ROWE B a 21w
B A i AP (144 S(phase error) o St A H gt RS ke B B A

Hig g+ ¥ i1 pl(quasi maximum likelihood) rz 17 /] #iedn & $9 i i 45 {r
N R DULAE T RN o SR B R Rl st S TRk
ol BRRA R BB 2 (8 8 B R OERINA UL R oA

Bad @ P e £ E SR PR B ok R

s

R 564 Bt Fiod ¥ DB A avR- B HAT A BRI POL RS B B
f m‘fr’—}%__ﬁ-ﬁg’%%}a& A R B G LLE’&FL\ & /?Jr‘f’]“— .

P LE LR K G

P

ARV R R

S SERE S RS AR Sul S-S LR I N A

NS

Digital Signal Processor Implementation of
Initial Downlink Synchronization for IEEE
802.16m

Student : Wei-Yu Chen Advisor : Dr. David W. Lin

Department of Electronics Engineering
Institute of Electronics

National Chiao Tung University

Abstract

In this thesis, the research focus on initial downlink synchronization of IEEE
802.16m, and discuss the implementation issue of DSP.

When a mobile station entering to the network, it needs to perform initial
synchronization, including of symbol timing offset, carrier frequency offset and
preamble index. We utilize the trait which the power of preamble is larger than it of
the common data symbol to compute the moving power sum, and then estimate the
left boundary of preamble by finding out the peak value of moving power sum. A
symbol period from this estimated boundary is regarded as the estimated preamble,
which has a phase noise with the exact preamble. We derive the quasi maximum
likelihood estimation from the likelihood function of the estimated preamble to obtain
fractional carrier frequency offset (FCFO) and the formula of channel estimation.
After compensating the estimated fractional carrier frequency offset to the formula of
channel estimation, we substitute several reasonable integral carrier frequency offsets
(ICFOs) and primary advanced preambles (PA-Preambles) into this formula and
obtain channel impulse responses (CIRs). After that, we compute different fine timing
offset index 64-points power sum of these CIRs and find out the peak value whose
ICFO, PA-Preamble index, and fine timing offset index are regarded as the result of

the joint estimation.

In order to compare the performance, we implement the algorithm into the
floating-point and fixed-point version. In the end, we modified the fixed-point version
on the digital signal processor platform, and optimize the speed of our programs to
reduce operation complexity. Although the performance is degraded because of
fixed-point modification, the results still can be accepted.

B < FAEEiEs & R RPN S 50 o R ek A
BRIBHRA X > ASEPERF KPR E A Faom b 8301) gl
Bodek il XEFARE L B REAMINRRERG Y c X RERET AR

AN

#7T k&R #E_Commlab # Frend £ > g ~ 4545 ~ & g

-

it hFRERNEL L BA NS nF s LA o R enfles s EA AL
4EY XAE RS o BY DS o

ﬂ-k-ﬁ}g;&fﬁ?{_uﬁ\@—; v E %ﬂa‘rm\ i\’ﬁrs-b%\l’é:;}%]\%‘ié‘:’gﬂ‘
B ‘JV;?'J SR If?'] "}r’*ﬂ—"‘/“?v e RN ,_‘{..EAEI%F”%W]‘; Forg PRIt

K ? AR F P antm B A R I IRE iR = gl Rt ii\EﬁfTi/&/IJ vl x4

o

N

Bots B R HSHNE A R A VR IER RS B kht a‘fﬁ"ﬁ:@” EEAR B E
e FA CHGACBAAGEDRF QAR 3T hhY £ L
§ o

At e g E A FL G R AA SRR

g Rt e

Contents

1 Introduction 1
2 Overview of the IEEE 802.16m Standard 3
2.1 Overview of OFDMA [3], [4] 3
2.1.1 Cyclic Prefixol oo 4

2.1.2 Discrete-Time Baseband Equivalent System Model 5t

2.2 Basic OFDMA Signal Structure in IEEE 802.16m"[5] 6
2.2.1 Resource Units oy Lo oo L on o S 7

2.2.2 Basic Categories of Subcarrier =0 vo 8

2.2.3 Primitive Parameters and Derived Parameters 8

2.2.4 Frame Structure 9

2.2.5 Transmitted Signal oL 12

2.2.6 Transmission Chain o0 12

2.3 Downlink Transmission in IEEE 802.16m [5] 13
2.3.1 Subband Partitioning 13

2.3.2 Miniband Permutation 0oL 17

2.3.3 Frequency Partitioning 19

2.4 Cell-Specific Resource Mapping [5]
2.4.1 CRU/DRU Allocation
2.4.2 Subcarrier Permutationo
2.4.3 Random Sequence Generation

2.5 Advanced Preamble (A-Preamble) Structure [5]
2.5.1 Primary Advanced Preamble (PA-Preamble)

2.5.2 Secondary Advanced Preamble (SA-Preamble)

3 Inmitial Downlink Synchronization
3.1 The Initial Synchronization Problem [1,2]
3.2 Derivation of the Initial Synehronization Procedure [1,2]
3.2.1 Coarse Timing Synchronization” . .« 0.
3.2.2 Estimation of Fractional Carrier Frequency Offset

3.2.3 Jointly Integral CFO; PA-Preamble Index, Channel Estimation and

Fine Timing Offset Searching

3.2.4 Overall Block Diagram

4 Introduction to the DSP Implementation Platform
41 The DSP Chip [11].
4.1.1 Central Processing Unit
4.1.2 Memory Architecture and Peripherals
4.2 TI's Code Development Environment [13]
4.2.1 Code Composer Studio

4.2.2 Code Development Flow [15]

11

4.3

Code Optimization on TI DSP Platform [15,16]
4.3.1 Compiler Optimization Options
4.3.2 Software Pipelining o

4.3.3 Loop Unrolling

5 Fixed-Point Implementation of Initial Downlink Synchronization

5.1

5.2

5.3

5.4

Floating-Point Simulation Results
5.1.1 Coarse Timing Estimation
5.1.2 Fractional CFO Estimation

5.1.3 Joint Estimation of Integral Carrier Frequency Offset, PID and Fine

Fixed-Point Implementation . -~ .o oL
5.2.1 Coarse Timing Estimation and Removal of Cycle Prefix
5.2.2 Fractional Carrier<Frequency Offset-Estimation and Compensation . .
5.2.3 Integer Carrier Frequency Offset Estimation and PID Detection

Fixed-Point Simulation Results
5.3.1 Coarse Timing Estimation
5.3.2 Fractional CFO Estimation

5.3.3 Jointly Estimation of Integral Carrier Frequency Offset, PID and Fine

Speeding Up of DSP Implementation
5.4.1 Speeding Up of Coarse Timing Estimation

5.4.2 Using DSP Library Function for FFT and IFFT [18]

11

5.4.3 Speeding Up of ICFO, PID, Fine Timing Estimation

5.5 DSP Optimization Results

6 Conclusion and Future Work
6.1 Conclusion

6.2 Future Work

v

List of Figures

2.1 Discrete-time model of the baseband OFDMA system (from [3]). 4
2.2 OFDMA symbol time structure (Fig. 478 in [5]). 5

2.3 Discrete-time baseband equivalent of an OFDMA system with M transmitting

users (from [4]).o 6
2.4 OFDMA parameters (Table 794 in-[b])-o il . o oo oo oo 0oL 10
2.5 More OFDMA parameters (Table 794 in [5]). .ov00 oL L. 11

2.6 Basic frame structure for 5, 10 and 20 MHz channel bandwidths (Fig. 480

). 2\ N@res S 11
2.7 Definition of terms on the transmission-chain (Fig. 479 in [5]). 12
2.8 Example of downlink physical structure (Fig. 499 in [5]). 13

2.9 PRU to PRUsp and PRUy/p mapping for BW = 10 MHz, Kg¢g = 7 (Figure

2.10 Mapping from PRUs to PRUsg and PP RU,;g mapping for BW = 10 MHz

and Ksp =7 (Fig. 50100 [5]). .« o oo v e 20
2.11 Location of the A-Preamble (re-arranged from Fig. 521 in [5]). 26
2.12 PA-Preamble symbol structure of 5-MHz system (Fig. 522 in [5]). 27
2.13 PA-Preamble symbol structure of 10 MHz system [1]. 27
2.14 PA-Preamble symbol structure of 20 MHz system [1]. 27

2.15

2.16

2.17

2.18

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

4.1

4.2

4.3

4.4

5.1

5.2

5.3

PA-Preamble Series (Table 8151in [5]). 28

SA-Preamble symbol structure of 5 MHz. 29
The allocation of sequence block for each FFT size (Fig. 524 in [5]). 30
SA-Preamble symbol structure for 512-FFT (Fig. 525in [5]). 31
Window sliding structure [1].. Lo 33
576 points power sum under AWGN in 0dB [1]. 35
576 points power sum under SUI-5 at mobility 350 km/hin 0 dB [1]. 36
Channel impulse response of PB channel [1]. 37
Channel impulse response of SUI-5 channel [1].. 38

The estimated CIR with aceurate [CFO, 8; compensating and correct PA-
Preamble index, 1, underPB channel with 120 'km/h, 0dB in SNR. 43

The CIR with the inaccurate ICFO, 6, compensating and incorrect PA-Preamble

index, 0, under PB channel with 120 km/h; 0dBin SNR. 44
Block diagram of algorithm for initial- DL synchronization [1]. 44
Functional block and CPU (DSP core) diagram [12].. 47
Code development cycle [14]. o 51
Code development flow for C6000 (from [15]). 53
Software-pipelined loop (from [11]). L. 56
Block diagram of simulation procedure. 59

Histograms of coarse timing estimation under AWGN channel in different SNR. 60

Histograms of coarse timing estimation under SUI-1 channel in different SNR

value for a velocity of 10 km/h. oo oo 61

vi

5.4

5.9

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

Histograms of coarse timing estimation under SUI-1 channel in different SNR

value for a velocity of 90 km/h.o o000 62

Histograms of coarse timing estimation under PB channel in different SNR

value for a velocity of km/h.o oo 63

Histograms of coarse timing estimation under PB channel in different SNR

value for a velocity of 90 km/h.o 64
Mean square error of FCFO estimation under SUI-1 and AWGN channels. . 65
Mean square error of FCFO estimation under SUI-3 and AWGN channels. . 66
Mean square error of FCFO estimation under PB and AWGN channels. . . . 67

Histograms of integer CFO estimation under AWGN channel in different SNR

values. e e 68

Histograms of integer CFO estimation under SUI-1 channel in different SNR

values at a velocity of 10km/h. . . o0 0000 o 69

Histograms of integer CFO estimation under SUI-1 channel in different SNR

values at a velocity of 90 km/hi et L L L 70
Histograms of PID detection under AWGN channel in different SNR values. 71

Histograms of PID detection under SUI-1 channel in different SNR values at

a velocity of 10 km/h. oo 72

Histograms of PID detection under SUI-1 channel in different SNR values at

avelocity of 90 km/h.o oo 73

Histograms of fine timing estimation under AWGN channel in the different

SNR values. 74

Histograms of fine timing estimation under SUI-1 channel in different SNR

values at a velocity of 10 km/h.o oo L 75

Vil

5.18

5.19

5.20

5.21

5.22

5.23

5.24

5.25

5.26

5.27

5.28

5.29

5.30

Histograms of fine timing estimation under SUI-1 channel in different SNR

values at a velocity of is 90 km/h.o o000 76

Histograms of fine timing estimation under PB channel in different SNR values

at a velocity of 10 km/h. oL o 7

Histograms of fine timing estimation under PB channel in different SNR values

at a velocity of 90 km/h.o 78
Fixed-point data formats used in DSP implementation. 80
Calculating the correlation in received PA-Preamble. 81
ICFO estimation and PID detection flow chart. 82

Histograms of coarse timing estimation under AWGN channel in different SNR

values. e e 83

Histograms of coarse timing estimation-under SUI-1 channel in different SNR

values at a velocity of 10km/h. . . o0 0000 o 84

Histograms of coarse timing estimation under SUI-1 channel in different SNR

values at a velocity of 90 km/hi et L L L 85

Histograms of coarse timing estimation under PB channel in different SNR

values at a velocity of 10 km/h.o oo 86

Histograms of coarse timing estimation under PB channel in different SNR

values at a velocity of 90 km/h.o o Lo 87

Mean square error of FCFO estimation under SUI-1 and AWGN channels with

fixed-point and floating-point computation. L. 88

Mean square error of FCFO estimation under SUI-3 and AWGN channels with

fixed-point and floating-point computation. 89

Viil

5.31

5.32

5.33

5.34

5.35

5.36

5.37

5.38

5.39

5.40

5.41

Mean square error of FCFO estimation under PB and AWGN channels with

fixed-point and floating-point computation. 90

Histograms of integer CFO estimation under AWGN channel in different SNR

values with fixed-point implementation. 91

Histograms of integer CFO estimation under SUI-1 channel in different SNR

values at a velocity of 10 km/h with fixed-point implementation. 92

Histograms of integer CFO estimation under SUI-1 channel in different SNR

values at a velocity of 90 km/h with fixed-point implementation. 93

Histograms of PID detection estimation under AWGN channel in different

SNR values with fixed-point implementation. 94

Histograms of PID detection ainder-SUI-1 channel in different SNR values at

a velocity of 10 km/h with fixed-point implementation. 95

Histograms of PID detection under SUI-1 channel in different SNR values at

a velocity of 90 km/h with fixed-point implementation. 96
Summation of magnitude-squares for coarse timing estimation. 98
Assembly code of the coarse timing estimation (1/3). 101
Assembly code of the coarse timing estimation (2/3). 102
Assembly code of the coarse timing estimation (3/3). 103

1X

List of Tables

2.1

2.2

2.3

2.4

2.5

2.6

2.7

4.1

5.1

5.2

5.3

5.4

5.5

5.6

PRU Structure for Different Types of Subframes
Mapping Between DSAC and Kgp for 2048 FFT Size (Table 802 in [5]) . . .
Mapping Between DSAC and Kgp for 1024 FFT Dize (Table 803 in [5]) . . .
Mapping Between DSAC and Kgp for 512 FET Size (Table 804 in [5])

OFDMA Parameters for 2048 FFT When Tone Dropping Is Applied (Table

System Parameters Used in Our Study
The error rate of timing estimation.
The error rate of timing estimation.
Coarse Timing Estimation Results for Optimization Level 3
Coarse Timing Estimation Results for Optimization Level 1

ICFO, PID, Fine Timing Estimation Results for Optimization Level 3

15

16

16

5.7

5.8

5.9

5.10

ICFO, PID, Fine Timing Estimation Results for Optimization Level 1 99
DSP Optimization Results 0oL 100
DSP Optimization Results with Inclusion and Exclusion of Memory Access 100

Code Size Results 100

x1

Chapter 1

Introduction

The IEEE 802.16m standard activity is a response to the ITU-R’s plan for the fourth-
generation mobile communication standard IMT-Advanced, wherein it is specified that the
data rate should be at least 100 Mbps i an environment with high mobility and 1 Gbps
in a static environment. Since Deecember 2006, the TEEE 802.16 standards group has set
up the IEEE 802.16m (i.e., Advanced WiMAX or WiMAX 2) task group. The new frame
structure developed by IEEE 802:16m is such that it can be compatible with IEEE 802.16e,
reduce communication latency, support relay and coexist with other radio access techniques,

so that it can become a promising candidates-for4G.

In this work, we study the digital signal processor (DSP) software implementation of
a previously developed initial downlink synchronization method for IEEE 802.16m system
with a time division duplex (TDD) mode [1,2]. The initial downlink synchronization involves
frequency offset correction, timing recovery and bandwidth detection. In the procedure that

we have developed, channel estimation is also obtained simultaneously.

Our DSP implementation uses Texas Instrument (TI) fixed-point DSP platform. We
accelerate the execution speed of the programs and utilize difference optimization techniques

to reduce the computational complexity.

This thesis is organized as follows. We first introduce the IEEE 802.16m standard in

chapter 2. In chapter 3, we present the synchronization algorithm. Chapter 4 introduces

the DSP implementation platform. We discuss the DSP optimization methods and presents
the optimization results in chapter 5. Finally, the conclusion is given in chapter 6, where we

also point out some potential future work.

The contributions of this work are as follows:

e We modify the program from Matlab code to C code.

e We convert the code to fixed-point for implementation on DSP.

e We employ various optimization techniques to accelerate the execution speed of the

programs in the DSP implementation.

Chapter 2

Overview of the IEEE 802.16m
Standard

The IEEE 802.16m standard is based on orthogonal frequency division multiplexing (OFDM)
and orthogonal frequency division multiple access (OFDMA). In this chapter, we introduce
some basic concepts regarding OFDM and,OFDMA first. Then we give an overview of the
draft IEEE 802.16m standard. For simplicity, we only introduce the specifications that are
most relevant to our study. For example channel coding, MAP messages, transmit diversity,

etc., are ignored in this introduction.

2.1 Overview of OFDMA [3], [4]

OFDMA is considered one most appropriate scheme for future wireless systems, including
4G broadband wireless networks. In a typical OFDMA system, users may simultaneously
transmit their data by modulating mutually exclusive sets of orthogonal subcarriers, so
that their signal are separated in the frequency domain. One typical structure is subband
OFDMA, where all available subcarriers are divided into a number of subbands and each
user is allowed to use one or more subbands for the data transmission. Usually, pilot symbols
are employed for the estimation of channel state information (CSI) within the subband. The
IEEE 802.16m is one example of such systems. Figure 2.1 shows an uplink (UL) OFDMA

system in which users simultaneously transmit to the base station (BS).

u u (m) expjw,m)
!)
P/S f— Channeln) r,(m)
order L | v,(m)
r b | Bl
. | B r(.m) r -
L
. \y" S/P Remove | ¥ .
. _ e gli cp [[PMTe
User #K N“X i .
Skao — v (m) ™
Sk Uy uk{m) N1
X
. W Add L P/S
IDFT ™ » = Channel) t(m)
. cp i §
5 KA1 order L
o NX 1 exp(jwmn)

Figure 2.1: Discrete-time model of the baseband OFDMA system (from [3]).

2.1.1 Cyclic Prefix

Cyclic prefix (CP) or guard time istused in OFDM and. OFDMA systems to overcome
the intersymbol and intercarrier-interference problems. ' The multiuser channel is usually
substantially invariant within one-block (or one-OFDM(A)-symbol) duration. The channel
delay spread plus symbol timing mismatch is;usually smaller than the CP duration. In these
conditions, users do not interfere with each other in the frequency domain when their signal

are properly synchronized in frequency and in time.

A CP is a copy of the last part of the OFDM(A) symbol, as illustrated in Fig. 2.2. A
copy of the last Tj, of the useful symbol period is used to collect multipaths from the preious
symbol to maintain the orthogonality among subcarriers. However, the transmitter energy
increases with the length of the guard time while the receiver energy remains the same,
because the CP is discarded in the receiver. So there is a 10 log,,(1 — 7, /(T +1,)) dB loss

in power efficiency compared to traditional single-carrier system.

I, T
T,
=% - o=

Figure 2.2: OFDMA symbol time structure (Fig. 478 in [5]).

2.1.2 Discrete-Time Baseband Equivalent System Model

The material in this subsection is mainly taken from [4]. Consider an OFDMA system with
M active users sharing a bandwidth of B :% Hz (where T is the sampling period) as shown
in Fig. 2.3. The system consists of K subcarriers of which K, are useful subcarriers (exclud-
ing guard bands and DC subcarrier). The uSers are allocated non-overlapping subcarriers

according to their needs.

Let the discrete-time baseband channel consists of L multipath components as

L—1

h(l) =3 hnd(l = L), (2.1)

m=0
where h,, is a zero-mean complex Gaussian random variable with E[h;h}] = 0 for i # j. In

the frequency domain,

H = Fh, (2.2)

where H = [Hy, Hy, ..., Hx 1]*, h = [hg, ..., h 1,0, ...,0]7 and F is K-point discrete fourier
transform (DFT) matrix. The impulse response length ;1 is upper bounded by the length
of CP (Lgp).

The received signal in the frequency domain is given by

M
=1

XNino
* . Channel
+ |IDFT) o s i Add CP p—=
. "].J.j_
Xin®K-1T *
|
M1 C
non—overlapping users 9
Yno
G DFT . 57 pe— Remove CP
L L |
- — et
Yo, k-1
MNojse

Figure 2.3: Discrete-time baseband equivalent of an OFDMA system with M transmitting
users (from [4]).

where X, = diag(Xin.0,.-s Xinrx—1) 48 K-x K diagonal data matrix and H;, is the K x 1
channel vector H defined in (2.2) corresponding to the ith user in the nth symbol. The noise
vector V,, is distributed as CN (0, 02 I).

2.2 Basic OFDMA Signal Structure in IEEE 802.16m
[5]

The Advanced Air Interface (AAI) defined by IEEE 802.16m is designed for nonline-of-sight
(NLOS) operation in the licensed frequency bands below 6 GHz. The AAI supports time-
division-duplexing (TDD) and frequency-division-duplexing (FDD) duplex modes, including
half FDD (H-FDD) mobile station (MS) operation. Unless otherwise specified, the frame

structure attributes and baseband processing are common for all duplex modes.

The AAT uses OFDMA as the multiple access scheme in both DL and UL. The material

of this section is mainly taken from [5].

2.2.1 Resource Units

The OFDMA physical layer (PHY) of IEEE 802.16m organizer the subcarrier and OFDMA

symbols into resource units as described below.

e Physical and logical resource units: A physical resource unit (PRU) is the basic physical
unit for resource allocation. It comprises Ps. consecutive subcarriers by Ny, consec-
utive OFDMA symbols, where P;. = 18 and Ny, = 6 for type-1 subframes, Ny, =7
for type-2 subframes, and Ny, = 5 for type-3 subframes. Table 2.2.1 illustrates the
PRU sizes for different subframe. types. - A'logical resource unit (LRU) is the basic
logical unit for distributed and localized resource allocations. An LRU is P, - Ny,
subcarriers for type-1, type=2, and type-3 subframes. The LRU includes the pilots that
are used in a PRU. The effective number of data subcarriers in an LRU depends on

the number of allocated pilots.

e Distributed resource unit: A distributed resource unit (DRU) contains a group of sub-
carriers which are spread across the distributed resource allocations within a frequency
partition. The size of DRU equals the size of PRU, i.e., P, subcarriers by Ngn,

OFDMA symbols.

e Contiguous resource unit: The localized resource unit, also known as contiguous re-
source unit (CRU), contains a group of subcarriers which are contiguous across the

localized resource allocations. The size of CRU equals the size of PRU, i.e., P, sub-

carriers by Ngy,, OFDMA symbols.

Table 2.1: PRU Structure for Different Types of Subframes

Subframe Type | Number of Subcarriers | Number of Symbols
1 18 6
2 18 7
3 18 5

2.2.2 Basic Categories of Subcarrier

An OFDMA symbol is made up of subcarriers, the number of which determines the DFT

size used. There are several subcarrier types:

e Data subcarriers: for data transmission.
e Pilot subcarriers: for various estimation purposes.

e Null subcarriers: no transmission at allyincluding subcarriers in the guard bands and

the DC subcarrier.
The purpose of the guard bands is to help enable proper bandlimiting.

2.2.3 Primitive Parameters and Derived Parameters

Four primitive parameters characterize the OFDMA symbols:

e BWW: the nominal channel bandwidth.
® Nyseq: number of used subcarriers (which includes the DC subcarrier).

e n: sampling factor. This parameter, in conjunction with BW and N4, determines
the subcarrier spacing and the useful symbol time. This value is given in Figs. 2.4 and

2.5 for each nominal bandwidth.

e (: This is the ratio of CP time to “useful” time, i.e., Tt,,/Ts. The following values are

supported: 1/16, 1/8, and 1/4.

The following parameters are defined in terms of, i.e., derived from the primitive param-

eters.

e Nppr: smallest power of two greater than N 4.

e Sampling frequency: Fs = |n- BW/8000] x 8000.
e Subcarrier spacing: Af = F;/Nppr.

e Useful symbol time: T, = 1/Af.

o CP time: T, = G x Tj.

e OFDMA symbol time: T, = T}, + T}

e Sampling time: T, /Nppr.

2.2.4 Frame Structure

Fig. 2.6 illustrate the AAI basic frame structure. Each 20-ms superframe is divided into
four 5-ms radio frames. When using the same-OFDMA parameters as in Figs. 2.4 and 2.5
with channel bandwidth of 5, 10, or 20 MHz, each 5-ms radio frame further consists of eight
subframes, when G = 1/8 and 1/16. With channel bandwidth of 8.75 or 7 MHz, each 5-ms
radio frame further consists of seven and six subframes, respectively, for G = 1/8 and 1/16.
In the case of G = 1/4, the number of subframes per frame is one less than that of other CP
lengths for each bandwidth case. A subframe forms the unit of assignment for either DL or

UL transmission. There are four types of subframes:

e Type-1 subframe consists of six OFDMA symbols.
e Type-2 subframe consists of seven OFDMA symbols.

e Type-3 subframe consists of five OFDMA symbols.

The nominal channel bandwidth, BW (MHz) 5 7 8.75 10 20
Sampling factor, n 28/25 8/7 8/7 28/25 28/25
Sampling frequency. F, (MHz) 5.6 8 10 11.2 224
FFT size, Nggr 512 1024 1024 1024 2048
Subcarrier spacing, Af (kHz) 10.94 7.81 9.77 10.94 10.94
Useful symbol time, T3 (us) 91.4 128 1024 914 91.4
OFDMA symbol time, T; (us) 102.857 144 115.2 102.857 | 102.857
Number of 48 34 43 48 48
OFDMA symbols
FDD per Sms frame
CPratio, G=1/8 Idle time (us) 62.857 104 46.40 62.857 62.857
Number of 47 33 42 47 47
OFDMA symbols
TDD per Sms frame
TTG + RTG (us) 165.714 248 161.6 165.714 | 165.714
OFDMA symbol time, T, (us) 97.143 136 108.8 97.143 97.143
Number of 51 36 45 51 51
OFDMA symbols
FDD per Sms frame
CP ratio, G=1/16 Idle time (us) 45.71 104 104 45.71 45.71
Number of 50 35 44 50 50
OFDMA symbols
TDD per Sms frame
TTG + RTG (us) 142.853 240 2128 142.853 | 142.853

Figure 2.4: OFDMA. parameters (Table 794 in [5]).

e Type-4 subframe consists of nine OFDMA symbols. This type shall be applied only to
UL subframe for the 8.75 MHz channel bandwidth when supporting the WirelessM AN-
OFDMA (i.e., IEEE 802.16e OFDMA) frames.

The basic frame structure is applied to FDD and TDD duplexing schemes, including
H-FDD MS operation. The number of switching points in each radio frame in TDD systems
shall be two, where a switching point is defined as a change of directionality, i.e., from DL

to UL or from UL to DL.

A data burst shall occupy either one subframe (i.e., the default transmission time interval

[TTI] transmission) or contiguous multiple subframes (i.e., the long TTI transmission). The

10

OFDMA symbol time, T} (us) 114.286 160 128 114.286 | 114.286
Number of 43 31 39 43 43
OFDMA symbols
FDD per Sms frame
CP ratio, G=1/4 Idle time (us) 85.694 40 8 85.694 | 85.604
Number of 42 30 38 42 42
OFDMA symbols
TDD per Sms frame
TTG + RTG (us) 199.98 200 136 199.98 199.98
Number of Guard Sub-Carriers Left 40 80 80 80 160
Right 39 79 79 79 159
Number of Used Sub-Carriers 433 865 865 865 1729
Number of Physical Resource Unit (18x6) in a type-1 sub- 24 48 48 48 96
frame.
Figure 2.5: More OFDMA parameters (Table 794 in [5]).

Superframe: 20ms

l SU0 suU1 su2 l suU3
~ S
-~ Frame: 5ms .
- - ~
0 o F1 F2 F3 |
- S
- Subframe ™~
e T
- —p l— ~

| SFO|SF1|SF2| SF3

SF4| SF5| SF6| SF7|

Figure 2.6: Basic frame structure for 5, 10 and 20 MHz channel bandwidths (Fig. 480 in [5]).

long TTI in FDD shall be 4 subframes for both DL and UL. The long TTT in TDD shall
be the whole DL (UL) subframes for DL (UL) in a frame. Every superframe shall contain
a superframe header (SFH). The SFH shall be located in the first DL subframe of the

/ \
/ \
w|u|w|v|n(n
O|=(r| | |th

—P l—

OFDMA Symbol

superframe and shall include broadcast channels.

11

I Superframe Header

R LRU N N
Segment to "
. by LRU . D IFFT/CP
: Y : ata insertion
(MIMO) burst

MAC l » FEC l » Mod l > J mapping l > T
MAC data Encoded data Modulated data LRU Data burst OFDMA
(bit) (seq.) (symbol) (seq.) (LRU index) (Data region) symbol

Figure 2.7: Definition of terms on the transmission chain (Fig. 479 in [5]).

2.2.5 Transmitted Signal

The transmitted RF signal, as a function of time, during any OFDMA symbol to given by

(Nysed—1)/2
S(t) — §R{€j27rfc Z Cpe - ej27"Af(t_T9)} (24)

k== (Vi sed—1) /2)kiz£0

where

t is the time, elapsed since'the beginning of the OFDMA symbol, with 0 < ¢ < Tj,

e ¢, is a complex number giving the QAM modulated value of the data to be transmitted

on the subcarrier whose frequency offset-index is k£, during the OFDMA symbol,

T, is the guard time,

A f is the subcarrier frequency spacing, and

fe is the carrier frequency.

2.2.6 Transmission Chain

The terms related to the transmission chain are defined as illustrated in Fig. 2.7.

12

Entire
subframe

Multi cell

Frequency
partition 1

Frequency
partition 2

Distributed Contiguous

b Cell-specific

Figure 2.8: Example of downlink physical structure (Fig. 499 in [5]).

2.3 Downlink Transmission in IEEE 802.16m [5]

Again, this section is mainly taken from [5]. Each DL subframe is divided into 4 or fewer
frequency partitions, each partition‘consisting of a_set of PRUs across the total number of
OFDMA symbols available in the subframe. Each frequency partition can include contiguous
(localized) and/or non-contiguous (distributed) PRUs. Each frequency partition can be used
for different purposes such as fractional frequency reuse (FFR) or multicast and broadcast
services (MBS). Fig. 2.8 illustrates the DL physical structure in an example of two frequency
partitions with frequency partition 2 including both contiguous and distributed resource

allocations.

2.3.1 Subband Partitioning

The PRUs are first subdivided into subbands and minibands where a subband comprises
of N; adjacent PRUs and a miniband comprises Ny adjacent PRUs, where N; = 4 and N,

= 1. Subbands are suitable for frequency selective allocations as they provide a contiguous

13

allocation of PRUs in frequency. Minibands are suitable for frequency diverse allocation and

are permuted in frequency.

The number of subbands is denoted by Kgp. The number of PRUs allocated to subbands
is denoted by Lgp, where LgB = N1Ksp. A 5, 4 or 3-bit field called Downlink Subband
Allocation Count (DSAC) determines the value of Kgp depending on FFT size. The DSAC
is transmitted in the SFH. The remaining PRUs are allocated to minibands. The number of
minibands in an allocation is denoted by K ;5. The number of PRUs allocated to minibands
is denoted by Ljsp, where Ly, B = NoK . The total number of PRUs is denoted as Np RU
where Npry = Lgp + Lyg. The maximum number of subbands that can be formed is

denoted as Ny, where Ny, = | Nproy /N1 .

Tables 2.2 through 2.4 show the mapping between DSAC and Kgp for FFT sizes of
2048, 1024, and 512, respectively. For system bandwidths in range of (10,20], the relation
between the system bandwidth and supported number of Npgy is listed in Table 2.5. The

mapping between DSAC and Kgp is based on Table 2.2, the maximum valid value of Kgp

is NPRU/4_3-

For those system bandwidths in range-of (5,10, the relation between the system band-
width and supported number of Npgy is listed in Table 2.6. The mapping between DSAC

and Kgp is based on Table 2.3, the maximum valid value of Kgp is Npgy/4 — 2.

PRUs are partitioned and reordered into two groups called subband PRUs and miniband
PRUs and denoted PRUgp and PRU,,g, respectively. The set PRUgp is numbered from 0

to Lgg — 1, and the set PRU);g is numbered from 0 to Ly;g — 1. The mapping of PRUs to

PRUgp is given by

PRUsplj] = PRUJi], j=0,1,...,Lsp — 1, (2.5)

14

Tahla 92 9 Mannina Ratwoan MAA(and K. far 920AR TRT Qiva (Mahla KRNI in fﬁ])

psAC | Moed e | PO | ocared (g
0 0 16 16
. ! 17 17
: 2 18 18
’ 3 : 19
4 4 20 20
3 5 1 11
6 6 22 N
8 24 \
g 9 15 5
10 10 6 N
1 11 77 N
12 12 9 N
13 13 79 N
14 14 30 N
13 13 3 N
where
; ; Neup
= Nl.{{(NSUZVjuz}(SB | +]€MBJ+H] +]\/€MBJ.GCD(Nsu]b\}SI;Z)\fsub—KSB-I)J} m0d Now)+ (- Lars) i

(2.6)
with GC'D(x,y) being the greatest common divisor of z and y, and the mapping of PRUs
to PRUyp by

PRUypl[k] = PRUi], k=0,1,.., Lyp — 1, (2.7)

15

Table 2.3: Mapping Between DSAC and Kgp for 1024 FFT Dize (Table 803 in [5])

e R R

0 0 2 2

1 1 g g

- 2 10 10

3 3 11 NA

+ 4 12 NA

3 5 13 NA

6 i 4 A

7 7 15 NA

Tahle 2.4- Mannine Retween NSACand Koo forh12 FET Size (Table 804 in [R])

' Number of subbands . Number of subbands
DSAC allocated (Kgg) DSAC allocated (Ksg)
0 0 4 4
1 1 5 NA.
2 2 s} NA.
3 3 7 NA
where
Nsub k k GCD(NS“[”’VNGJZS*H}%SB
. Nl {’—Nsub;KSB- LNIJ + \‘]\[_1J ' Nsub J} mOd NSUb
L= +(k) mod Ny, Ksp >0,
1=k, Kqp =0.
(2.8)

Fig. 2.9 illustrates the PRU to PRUgg and PRU,;p mappings for a 10 MHz bandwidth

with Kgp equal to 7.

16

Table 2.5: OFDMA Parameters for 2048 FF'T When Tone Dropping Is Applied (Table 796
in [5])

BW Range, x Number of guard subcarriers Number of used Number of
(MHz) Left Right subcarriers PRUs (Nppr)
20.0=x>=19.2 196 195 1657 92
19.2=x>=18.4 232 231 1585 88
18.4=y>=17.5 268 267 1513 84
17.5=x>=16.7 304 303 1441 80
16.7=x>=15.9 340 339 1369 76
15.9=>x>=15.0 376 375 1297 72
15.0=x>=14.2 412 411 1225 68
14.2=x>=13.4 448 447 1153 64
13.4=x>=12.5 484 483 1081 60
12.5=x>=11.7 520 519 1009 56
11.7=x>=10.9 556 555 937 52
10.92x>10.0 592 591 865 48

Table 2.6: OFDMA Parameters for 1024 FFT When Tone Dropping Is Applied (Table 796
in [5])

BW Range, x Number of guard subcarriers Number of used Number of

(MHz) Left Right subcarriers PRUs (Npr1)
10.0=x>=0.2 116 115 793 44
9.2=x>=84 152 151 721 40
8.4=x>=T.5 188 187 649 36
7.5=x>=6.7 224 223 577 32
6.7=x>=5.9 260 259 505 28
5.9=x=5.0 296 295 433 24

2.3.2 Miniband Permutation

The miniband permutation maps the PRUyps to Permuted PRUyps (PPRUyps) to en-

sure frequency diverse PRUs are allocated to each frequency partition. The mapping from

17

PRUgg

Figure 2.9: PRU to PRUgp and PRU,; 5 mapping for BW = 10 MHz, Kgp = 7 (Figure 500
in [5]).

18

PRUyp to (PPRUy;ps) is given by

PRUylj] = PRU[i], j=0,1,...Lys—1, (2.9)
where
i=(aj) mod D). P+ 1)), 210
P = min(Kup, Ny /Ny), (2.11)
r(j) = max(j — ((Kyp mod P) - D),0), (2.12)
i) =i+ o), (2.13)
p— Bz g (2.14)

Fig. 2.10 depicts the mapping from PRUs t6 PRUgsp and PPRU ;.

2.3.3 Frequency Partitioning

The PRUgps and PPRU,;ps are allocated to one or more frequency partitions. The fre-
quency partition configuration is transmitted inthe SEH in a 4 or 3-bit called the Downlink
Frequency Partition Configuration (DFPC) depending on system bandwidth. The Frequency
Partition Count (FPCT) defines the number of frequency partitions. The Frequency Par-
tition Size (F'PS;) defines the number of PRUs allocated to F'P;. FPCT and FPS; are
determined from DFPC as shown in Table 2.7. A field of 1, 2, or 3-bit parameter, called
the Uplink Frequency Partition Subband Count (DFPSC), defines the number of subbands

allocated to frequency partition (F'FP;), for i > 0. When UFPC = 0, DFPSC is equal to 0.

The number of subbands in ith frequency partition is denoted by Ksp rp,. The number of
minibands is denoted by Kj/p pp,, which is determined by F'PS; and and FPSC fields. The
number of subband PRUs and miniband PRUs in each frequency partition are Lsp rp, =
Ny - Kgp rp, and Ly pp, = No - Ky pp,, respectively. We have

o KSBJ 1= 07
Ksp rpi = { FPSC, i > 0. (2.15)

19

PRUgg PRUg

PRU

) x
,;ﬁ*‘!ﬁ =
= NINCE

Elh[b[h[wlwlwlwulu T =T=Tu [a|E[E][r[r[wlwlu]u]l=T=T=1T=
o LI L T I T T = = Wl oo |wlwo w|of-|®n

CTHTH Ao [TETR Ao [[TR e - e (R =]

Figure 2.10: Mapping from PRUs to PRUgg and PPRU,;p mapping for BW = 10 MHz

KMB,FPZ- = (FPSi — KSB,FPi : Nl)/NQ, 0 <17 < FPSC. (216)

20

Table 2.7: Mapping Between DFPC and Frequency Partition for 1024 FFT Size (Table 806
in [5])

Freq. Partitioning , .
DFPC | o perpy | FPCT FPS, FPS; (i)
0 1:0:0:0 1 Npgrr 0
1 0:1:1:1 3 0 FPS| =Npprr— 2*floor(Npgrr/3)
FP5y = floor(Npgr3)
FP53 = ﬂOOl’C:_?\r'-PRL':"E:J
2 1:1:1:1 4 ;‘\"PRL“-E*ﬂODI(:_?\FPRU:*I-] ﬂOOl’(_-"\-':DRt?:-U
3 3:1:1:1 4 Npgrr-3*floor(Npgr7/6) floor(Npgi/6)
4 5:1:1:1 4 Npgpr3*floor(Npgry/8) floor(Npgrr8)
5 9:5:5:5 4 Npgi-3*floor(Npg*5/24) floor(Npg*5/24)
6 0:1:1:0 2 0 Npppf2 fori=1. 2
0 fori=3
7 1:1:1:0 3 Npgrr-2*floor(Npgry/3) floor(Npgps3) fori=1. 2
0 fori=3

The mapping of subband PRUs and. miniband PRUs to.the frequency partition is given by

PRUsg(k1), 0= <Lsprp,

PRUzR(1) = { PPRUyg(k2), Lspre < j < (Lsprp + Lusrp), (2.17)
where 4
kv= Z Lsp rpg+y (2.18)
m=0
and -
ko = Z Lsp,rp, +J — LspFrp,- (2.19)
m=0

2.4 Cell-Specific Resource Mapping [5]

The content of this section is mainly taken from [5]. PRUpp;s are mapped to LRUs. All
further PRU and subcarrier permutations are constrained to the PRUs of a frequency par-

tition.

21

2.4.1 CRU/DRU Allocation

The partition between CRUs and DRUs is done on a sector specific basis. A 4 or 3-bit
Downlink subband-based CRU Allocation Size (DC ASgsg;) field is sent in the SFH for each
allocated frequency partition. DC'ASsp; indicates the number of allocated CRUs for parti-
tion F P; in unit of subband size. A 5, 4 or 3-bit Downlink miniband-based CRU Allocation
Size (DC' ASyp) is sent in the SFH only for partition F'Py depending on system bandwidth,
which indicates the number of allocated miniband-based CRUs for partition F'Fy. The num-

ber of CRUs in each frequency partition is denoted Lc gy rpi, where

B { CASsp;i - Ny + CASyp - N, 1=0, (2.20)

Leruppi = CASspi - Ny, 0 <i<FPSC.

The number of DRUs in each frequency partition is denoted Lpry ppi, Where Lpry ppi =
FPS; — Leguppi for 0 <i < FPSC and F'PS, is the number of PRUs allocated to F'P;. The

mapping of PRUpp; to C RUpp; is given by

FPil)] = PRUppi[k + CASgsp; - N}y CASsp; - Ni < j < Leruppi, 0 <i < FPSC,
(2.21)

where k = s[j — CASsp; - N1], with s[| being the CRU/DRU allocation sequence defined as
slj| = {PermSeq(j) + DL_PermBase} mod {FPS; — CASgp;- N1}. (2.22)

where PermSeq() is the permutation sequence of length (F'PS; — CASgp; - N1) and is
determined by SEED = IDcell - 343 mod 2'°, DL_PermBase is an interger ranging from 0

to 31, which is set to preamble IDcell. The mapping of PRUpp; to DRUpp; is given by
DRUpp;[j] = PRUppi [k + CASspi - N1], 0 < j < Lpru,rpi- (2.23)

where k = s°[j], with s°[| being the sequence which is obtained by renumbering the remain-

ders of the PRUs which are not allocated for CRU from 0 to Lpryrpi — 1.

22

2.4.2 Subcarrier Permutation

The subcarrier permutation defined for the DL distributed resource allocations within a
frequency partition spreads the subcarriers of the DRU across the whole distributed resource

allocations. The granularity of the subcarrier permutation is equal to a pair of subcarriers.

After mapping all pilots, the remainder of the used subcarriers are used to define the
distributed LRUs. To allocate the LRUs, the remaining subcarriers are paired into contiguous

tone-pairs. Each LRU consists of a group of tone-pairs.

Let Lsc,; denote the number of data subcarriers in /th OFDMA symbol within a PRU,
i.e., Lsc; = Psc — Nj, where n; denotes the number of pilot subcarriers in the {th OFDMA
symbol within a PRU. Let Lgp; denote the number of data subcarrier-pairs in the [th
OFDMA symbol within a PRU and is equal to-Lggi/2. A permutation sequence PermSeq()
performs the DL subcarrier permutation-as follows. For-each [th OFDMA symbol in the

subframe:

1. Allocate the n; pilots within each DRU as described in [5] Section (16.3.4.4). Denote

the data subcarriers of DRUpp;[j] in-the [th-OFDMA symbol as

SChrujlkl, 0<j < Lprurpi, 0<k< Lscy. (2.24)

2. Renumber the Lpgryrpi -+ Lsc; data subcarriers of the DRUs in order, from 0 to
Lprurpi - Lscy — 1. Group these contiguous and logically renumbered subcarriers
into Lpru,rpi - Lspy pairs and renumber them from 0 to Lpgyrpi - Lspy — 1. The

renumbered subcarrier pairs in the [th OFDMA symbol are denoted as

RSPFPZ‘J[U] = {SOgg@j,l[Qv], chggj’l[QU + 1]}, 0 S u < LDRU,FPiLSP,la (225)

where j = |u/Lgp;] and v = {u} mod (Lgpy).

3. Apply the subcarrier permutation formula to map RSPrp;; into the sth distributed

23

LRU, s =0,1,..., Lprurp; — 1, where the subcarrier permutation formula is given by
SCLEGsalm] = RSPppy[k], 0<m < Lgp, (2.26)

with

k = Lprurpi - f(m,s) + g(PermSeq(),s, m,l,t). (2.27)
In the above,

1. SCIR, [m] is the mth subcarrier pair in the /th OFDMA symbol in the sth distributed

LRU of the tth subframe;
2. m is the subcarrier pair index, 0 <m < Lgp; — 1;
3. [is the OFDMA symbol index, 0 <T<"Ngym = 1;
4. s is the distributed LRU index, 0 <s < Lprprpi —1;
5. t is the subframe index with respect to the frame;

6. PermSeq() is the permutation sequence of length Lpgrypp; and is determined by

SEED = IDcell - 343 mod 2'9;

7. g(PermSeq(),s,m,l,t) is a function with value in the range [0, Lpry rp; — 1], which

is defined according to

g(PermSeq(),s,m,l,t) = {PermSeq[{f(m,s) +s+1} mod {Lprurp:}]

+DL_PermBase} mod Lpryrpi- (2.28)

where DL_PermBase is set to preamble IDcell; and

8. f(m,s) = (m+ 13 x s)mod Lgp,.

24

2.4.3 Random Sequence Generation

The permutation sequence generation algorithm with 10-bit SEED (S,,_10, Sn_9, -+, Sn_1)

shall generate a permutation sequence of size M according to the following process:

e Initialization
1. Initialize the variables of the first order polynomial equation with the 10-bit seed,
SEED. Set d; = |[SEED/2°| + 1 and dy = SEED mod 25.
2. Initialize the maximum iteration number, N = 4.

3. Initialize an array A with size M to contents 0,1,..., M — 1 (i.e., A[i] = i, for
0<i< M)

4. Initialize the counter 7 to M —1.

5. Initialize x to —1.
e Repeat the following steps'if i > 0

1. Initialize the counter j to 0.
2. Loop as follows:
(a) Increment z and j by 1.
(b) Calculate the output variable of y = {(d; - © + d3) mod 1031} mod M.
(c) Repeat the above steps (a) and (b), if y <i and j < N.
(d) Ify <4, set y =y mod i.

(e) Swap the ith and the yth elements in the array, i.e., perform the steps Temp =
Afi], Ali] = Aly), and Aly) = Temp.

(f) Decrement ¢ by 1.

Then PermSeq(i) = Ali], where 0 < i < M.

25

Superframe : 20ms

SuU0 SUl SU2

| TDD frame : 5ms |

l FO I F1 I F2 I F3

DL [DL | .| DL uL |,..] uL
SF SF SF SF SF
I Superframe Header IPA—PreambIe ISA—PreambIe

I TIG |:| RTG

Figure 2.11: Location of the A-Preamble (re-arranged from Fig. 521 in [5]).

2.5 Advanced Preamble (A-Preamble) Structure [5]

The material in this subsection is mainly-taken from [5|. There are two types of Ad-
vanced Preamble (A-Preamble): primary advanced preamble (PA-Preamble) and secondary
advanced preamble (SA-Preamble). One PA-Preamble symbol and three SA-Preamble sym-
bols exist within the superframe. The location of an A-Preamble symbol the first symbol
of a frame. PA-Preamble is at the first symbol of second frame in a superframe while SA-
Preamble is at the first symbol of each of the remaining three frames. Fig. 2.11 depicts the

location of A-Preamble symbols.

2.5.1 Primary Advanced Preamble (PA-Preamble)

The length of sequence for PA-Preamble is 216 regardless of the FFT size. PA-Preamble

carries the information of advanced base station (ABS) type, system bandwidth, and carrier

26

T : PAPreambleCarrierSet

Figure 2.12: PA-Preamble symbol structure of 5-MHz system (Fig. 522 in [5]).

DC

NEEEEEE

297 299 301 509 511 513 515 723 725 727

Figure 2.13: PA-Preamble symbol structure of 10 MHz system [1].

configuration.
Take, for example, a 5-MHz system where the subcarrier index 256 is the DC subcarrier.
The set of PA-Preamble subcarriers are given-by

PAPreambleCarrierSet = 2 - k + 41, (2.29)

where k is a running index from 0 to 215. Figs. 2.12, 2.13, and 2.14 depict the structures
of the PA-Preamble in the frequency domain for systems of different bandwidths. The PA-
Preamble always occupies the middle 5-MHz bandwidth whose center is the DC subcarrier

and the outside subcarriers are all zero.

‘|| |||| ||‘

809 811 813 1021 1023 1025 1027 1235 1237 1239

|w)
(@)

>

Figure 2.14: PA-Preamble symbol structure of 20 MHz system [1].

27

Index | Carrier BW Series to modulate
0 5MHz 6DB4F3B16BCES9166CICEF7CICBCASEDFC16A9D1DCOLF2AEBAAOBF
1 787510 MHz | 1799628F3BOFBF3B22C1BA19EAFI4FECAD37DEESTEO27750D298AC
2 20 MHz 92161C7C19BB2FCOADESCEF3543AC1B6CE6BEICSDCABDDD319EAF7
3 reserved 6DE116E665C395ADCT0AB9716908620868A60340BF35ED547F8261
4 reserved BCFDF60DFAD6B027EAC39DB20D783COF4671551 79CBASLLISE2D04

Fully

5 | o reserved 7EF1379553F9641EEGECD BF5F144287E329606C616292A3CT7F928
6 reserved 8A9ICA262B3B3D37E3156A3B17BFA4CIFCFFAD3IED2A93DECSAOETC
7 reserved DABCE648727E4282780384A B53CEEBD1CBF79EOCSDATBABSDD3749
8 reserved 3A65D1E6042E8B8AADCT0LE210B5B4BE50B6ABILFTAI1B893FBO4A
9 reserved D46CFBGFES1B56B2CAABAF26F6F204428C1BD23F3D888737A0851C
10 | oy N/A 640267A0CODFL1EA75066F 1610054B5A ES5E189EA TE72EFD57240F

Figure 2.15: PA-Preamble Series (Table 815 in [5]).

Fig. 2.15 shows the PA-Preamble sequences in-hexadecimal format. The defined series is
mapped onto subcarriers in ascending order,obtained by eonverting the series to a binary
series and starting the series from.the most signification bit (MSB) up to 216 bits with 0

mapped to +1 and 1 mapped to —1.

The magnitude boosting levels for FFT sizes 512, 1024, 2048 are 1.9216, 2.6731, 4.6511,

respectively. For 512-FFT, as an example, the boosted PA-Preamble at kth subcarrier is
cr = 1.9216 - by, (2.30)

where by, represents the PA-Preamble value before boosting (+1 or —1).

2.5.2 Secondary Advanced Preamble (SA-Preamble)

The lengths of sequences for SA-Preamble are 144, 288, and 576 for 512-FFT, 1024-FFT,

and 2048-FFT, respectively, where subcarrier indexes 256, 512, and 1024, respectively, are

28

O
_______)O

_—
>

. .)
_—
s

A
|
i
i

Rt

R |

|
|
|
40 41 42 253 254 255 257 258 259 470 4

Subcarriers of segment 0

Subcarriers of segment 1

Subcarriers of segment 2

— > ——>

Figure 2.16: SA-Preamble symbol structure of 5 MHz.

the DC subcarrier. The set of SA-Preamble subcarriers are given by

Nsap 2-k

SAPreambleCarrierSet, = n + 3k 440 - o + |

, 2.31
Ngap (2:31)

where n is the index of the SA-Preamble carrier-set with n = 0, 1, or 2 representing
the segment ID, and £ is a running index from 0 to Nssp = 1 for each FFT size. Fig. 2.16

illustrates the allocation under 512-FET:

Each cell ID has an integer value IDcell from 0 to 767. The IDcell is defined as
[Dcell = 256n + Idz, (2.32)

where n is the segment ID and Idx = 2+ mod (q,128) + |¢/128] with ¢ being a running

index from 0 to 255.

For 512-FFT system, the 144-bit SA-Preamble sequence is divided into 8 main sub-
blocks, namely, A, B, C, D, E, F, G, and H. The length of each sub-block is 18 samples
(after modulation). Each segment ID has a different set of sequence sub-blocks. Tables 784
to 786 in [5] give the 8 sub-blocks of each segment ID, where 9 hexadecimal numbers are used
to represent the 36 bits that are mapped to a QPSK sequence in +1, +j, —1, and —7 for each

sub-block. Each table contains 128 sequences indexed by ¢ from 0 to 127. The modulation

29

o

| EFGH || ABCD | | EFGH | |.-5.ECI:I | EFGH | | ABCD | | EFGH || ABCD ‘

§1ZFFT

bl ™

1024 FFT

Iy
w

2048 FFT

¥

Figure 2.17: The allocation of sequence block for each FFT size (Fig. 524 in [5]).

sequence is obtained by converting each hexadecimal number Xi(q) into two QPSK symbols

vé‘f) and vggrl, where i=0, 1, ..., 7, 8. The converting equations are as follows:

LT T
o) = exp(ig (2o +H1), vy = exp(ig (2 b, 4 bly)), (2:33)

where Xi(q) =2 bﬁf’o) +2%. bz(?l) +2', bz(‘:12) +20 bgq??

The other 128 sequences indexed by ¢ from 128 to 255 are obtained by letting v,(f) =

(07 28) where ¢ = 128,129, ...:254, 255,

Fig. 2.17 shows how the sub-blocks are modulated and mapped (sequentially in ascending
order) onto the SA-Preamble subcarrier-set.. For-higher FFT sizes, the basic blocks (A, B,
C, D, E, F, G, H) are repeated in the same order. For instance, in the case of 1024-FFT,
sub-blocks E, F, G, H, A, B, C, D, E, F, G, H, A, B, C, and D are modulated and mapped
sequentially in ascending order onto the SA-Preamble subcarrier-set according to segment

ID.

For 512-FFT, the blocks (A, B, C, D, E, F, G, H) are subject to the following right
circular shifts (0, 2, 1, 0, 1, 0, 2, 1), respectively. Fig. 2.18 depicts the symbol structure
of SA-Preamble in the frequency domain for 512-FFT. For higher FFT sizes, the same rule

applies.

30

A ! C ! D
0(012) 2(120) : 1(201)

Yy AKAALAA A

| AR ¥

il il Pl H i
91 : 96 99

DC (256)
: 0(012) T

[}

[}

]

[}

[}

L, A

40 43 147I 149 152 200 | 202 205 253
e__SZ___ﬁe__SI___>;e__57___>;e__51___>
E i F i G : H
1(201) i 0(12), i = =2@20) |\« 1(201)

YTV TY B VY Y YYYY MikhAdi YTYYYVY S VY
] N
i) PlE R PLEL| Pifer | i1 | 1]
258 261 309 311 314 362 | 367 370 41.58 420 423 471

T : SAPreambleCarrierSety ‘ : SAPreambleCarrierSet; ? : SAPreambleCarrierSet,

Figure 2.18: SA-Preamble symbol structure for 512-FFT (Fig. 525 in [5]).

31

Chapter 3

Initial Downlink Synchronization

The downlink synchronization can be divided into two type: initial synchronization and
normal synchronization. When the advance mobile station (AMS) receiver enters the network
for the first time, it need to perform initial DL synchronization. Afterward, the AMS needs
to keep trading the carrier frequency, and the timing, and the power level, which constitutes
the work of normal DL synchronization. In this- thesis, our study focuses on initial DL
synchronization; so we discuss the initial DL synchronization problem of the IEEE 802.16m

TDD system and introduce the initial DL synchronization algorithm of [1,2].

3.1 The Initial Synchronization Problem [1, 2]

In DL signal reception, in principle, the receiver needs to estimate the carrier frequency
offset (CFO), carrier phase offset (CPO), sampling frequency offset (SFO), sampling phase
offset (SPO), and symbol time offset (STO). Some causes of CFO are mismatch of local
oscillators and Doppler shifts due to mobility, and a cause of CPO is phase mismatch in
local oscillators. Different sampling rates in the transmitter and the receiver bring about
SFO and different sampling phases in the transmitter and the receiver, i.e., SPO. The STO

can arise from the unknown propagation delay between the transmitter and the receiver.

If CFO estimation is accurate enough and if STO estimation and correction is constantly

performed, then SFO estimation may be unnecessary, because from the beginning of an

32

Data Symbol RTG PA-Preamble Data Symbol
| 00.....000004 cP | | ‘

320 256 64 512 : 576

— : l Window Sliding - - i
Window size = 576 samples Window size = 576 samples

Figure 3.1: Window sliding structure [1].

OFDMA symbol to the end of it the SPO may change very little. The CPO and the SPO
can be considered part of channel response and dealt with in channel estimation. As a result,
only two issues yet need to be solved, i.e., CFO estimation and STO estimation. These are

the focus of the present chapter.

Moreover, because the PA-Preamble in IEEE 802.16m also carries information about the
system bandwidth, there is a need to identify it also in the synchronization stage. Our

synchronization design thus also takes.this into consideration.

3.2 Derivation of the Initial- Synchronization Proce-
dure [1,2]

There are three possible PA-Preamble series, as shownin Fig. 2.15. Because the PA-Pramble
series are known, we utilize this knowledge to derive the initial DL synchronization algorithm.
Although there are three different PA-Preambles with different bandwidth, 5, 10, and 20
MHz, but the commonality is that all three PA-Preambles, whose length is all 216 points,
locate in the middle part of the bandwidth. Therefore, when the MS receives the signal, it
only need to observe a 5-MHz bandwidth because there is no PA-Preamble signal outside
this bandwidth, whatever the system bandwidth. In other words, we can do downsampling
for the 10-MHz and the 20-MHz signal to the 5SMHz bandwidth without losing information
on PA-Preamble.

The received PA-Preamble (including CP) can be represented as

Vs76 = I'(6) - Ts76 - hsze + 1576 (3.1)

33

where Y576 = [y4487 Y449, -+, Y511, Yo, Y15 -+ -, y511]/, the received PA-Preamble Symbol, 0 is the

normalized carrier frequency offset (what the normalization is whit respect to subcarrier

spacing), Ts76 is the 576 x 576 Toeplitz matrix of the transmitted PA-Preamble symbol as

T512 0 0
513 Ts12 0
513 Zs12 O
T513 Ts512
575 0
Torg — Lo Ts75 . . - Ts512
I Lo Ts7s
I i R 0
1 . . Ty74 T512 0
T509 . . . - Ts75 Ts74 X573 - - . Ts512
Ts510 Ts509 . . - To Tsrs Tsr4o - - . T513
L T511 510 L509 . - To Tsrs - - Ts15 U514

, (32)

hs7¢ is the channel response vector, I'(§) is the 576 x 576 diagonal matrix summarizing the

effect of the CFO as

R
eXp—]-5T7T2- .

exp(—j -

and 7576 is the additive white Gaussian noise (AWGN) vector.

3.2.1 Coarse Timing Synchronization

2T .5 - 575

Fig. 3.1 depicts a model about the 576-points power sum with the window sliding. We know

the information of TTG + RTG =165 us in [5], so it is reasonable to suppose RTG is 45

us, about 256 sampling periods, and CP factor is 1/8 in our study. We can also know the

power of PA-Preamble is larger than the common data symbol because the amplitude of

PA-Preamble is boosted before transmitting [5].

When the MS receives the PA-Preamble signal subject to delay, multipath propagation,

and additive noise, the first task is to estimate the coarse timing to facilitate later work.

34

576 points moving power sum under AWGN channel with 0 dB
2000 ‘

1800

1600

1400

Power

1200

1000

800

600 | | | | |
0 200 400 600 800 1000 1200

timing index

Figure 3.2: 576 points power sum under AWGN in 0 dB [1].

Refer to Fig. 3.1. We consider summing thesignal power in a 576-point window. With the
window sliding, we can decide the coarse timing as the point with the maximum power sum.
This technique can actually be interpreted as quasi-maximum likelihood (ML) noncoherent

detection of the preamble timing.

According to [1], Figs. 3.2 and 3.3 show the results of power sum with the window sliding
in 0 dB of signal-to-noise ratio (SNR), under the AWGN channel and the SUI-5 channel
with mobility 350 km/h. The rayleighchan, a Matlab function, leads to an initial delay of
the generated channel, even if we set the delay of the direct path zero. Figs. 3.5 depict this

phenomenon and we must compensate it in [1].

Note that the PA-Preamble timing we get by the above method has an offset to the real
PA-Preamble timing due to multipath and noise effects. We will handle these problems in

fine timing synchronization.

35

576 points moving power sum under SUI-5 channel with mobility 350km/h in 0 dB
2000 T ‘ ‘ ‘ ‘

1800

1600

1400

Power

1200

1000

800

600 | | | | |
0 200 400 600 800 1000 1200

timing index

Figure 3.3: 576 points power sum under. SUI-5 at mobility 350 km/h in 0 dB [1].

3.2.2 Estimation of Fractional Carrier Frequency Offset

Eq. (3.1) gives the received PA-Preamble signal.-We attempt an ML estimation of § from
it. It turns out that a truly ML estimation is quite complex because T574 is not circulant.
However, if the coarse timing lands us in the CP and if we sacrifice the available signal power
in the CP, then we can obtain a reduced-complexity solution. Let ys5i2 denote the received

PA-Preamble symbol after removal of the CP. It is given by
ys12 = ['(9) - Ty, - h+ 1, (3.4)

where x,, = [20,%1,...,2511] (the transmitted PA-Preamble symbol), T,, is a 512 x 512

circulant matrix given by

36

Bandlimited impulse response

Magnitude
o] —_ o]
I m m -
T T T

=
(8]

o

Figure 3.4: Channel impulse response of PB channel [1].

To T511 T510 L5009 - N () T

I Ty Ts11 Ts100 - S O T2
X1 o T511 . . . T3 To

T3 . T .)

Txn = . T3 . . . d . . . y (35)
Ts10
T509 . . 5 . . . Is11 Is10
Ts510 Ts509 . . Te3 . - To Tsu
| Ts511 T510 T509 . - Tez - I Zo |

h is the channel impulse response vector,

[exp(—j - §5-6-0)
exp(—j - 2= -§-1) 0

512

I exp(—j - 25 -6 -511) |
and 7 is an AWGN vector. Due to possibly incorrect identification of the PA-Preamble
starting time from the coarse timing synchronization, there may be a circular shift of the

elements in the h vector from their original positions.

37

Bandlimited impulse response

Magnitude
T

Delay (s)

Figure 3.5: Channel impulseresponse of SUI-5 channel [1].

Eq. (3.4) can then be rewritten as:

ysi2 = L@)-FEF-T, - FY:F-h+n (3.7)
= T(0) B(F-Tp-P")- (F-h)+7 (3.8)
= T'(0)-F7.D,-H+n, (3.9)

where F is the normalized 512 x 512 FFT matrix, F is the corresponding normalized IFFT
matrix, H is the channel frequency response vector, and Dj is a diagonal matrix of the

PA-Preamble sequence in the frequency domain, with k& being the PA-Preamble index.

The likelihood function of ys512 can be written as:

1

1
(2mo2)siz eXp(_@Hsz —T(6)-F"-D,-H|]?), (3.10)
n n

p(y512|5, H, k) =

in the likelihood function, there are three unknowns, namely §, H and k. The ML estimation

is thus given by

38

arg gl}%%p(yg,lgw,H, k) (3.11)

= arg ?ﬁ% lysiz — T(6) - F¥ - D, - H||? (3.12)

— in mi —T()-Ff . D, -H|? 1
arg min min [[ysi2 — T() w - H (3.13)

= argr%lianymg —T'(9) -F1.D, -DkH-F-I‘H(é) -y512H2. (3.14)

Note that (3.14) arises because the inner minimization of (3.13) is achieved with H =
DI .F-TH(§)-ys12 as can be obtained via standard least-square estimation technique. Since
Dy, - D¥ is the same whatever for add k, we cannot solve for the optimal &k from (3.14), but
must find it through above other means, In addition, the minimization target in (3.14) is a

function of 0 only. Thus it is equivalent to:

arg min ||ys1> — T(8) - P4 Dy - D F - TH(0) - ysno (3.15)
— argmin [() FE D DY - FAT7 ()] -yl (3.16)
= arg m(sinyEﬁQ ISR FT DDy -F-TH(6)] - yao (3.17)
= argmaxyg, - T'(9) - F" - Dy - D' - F-T7(0) - yso (3.18)
= arg méax’yH((D YR -FH.Dy-DI-F-Y]-v(6) (3.19)

where (6) = [exp(—j - 25 -0-0),exp(—j- 2= -0-1),...,exp(—j- &5 -0-511)], and Y is a

diagonal matrix whose ¢th diagonal element is the ith element in ysis.

Since the quantity Dy, - D is the same for all three PA-Preamble series, the bracketed
term in (3.19) is a known quantity for a given received PA-Preamble signal. Let M =

YZ.FH.D;,-DF -F-Y. Then the quantity to be maximized can be expressed as

39

mo,0 mo,1 mMo,511
mio min mi2 mi 511
mao man Mmoo Ma3

mM509,0
mMs510,0 M510,1 . . mMs510,511
| Ms11,0 MMs11,1 M511,2 . Mms511,510 MM511,511
=(moo+e * - myg+..+ eoHta. ms110) + (Mo1 +e % -myg + ...+ e—ota. ms11,1) - €
o4 (mosin + €% - migin + ... + e gy 5pq) - €2
= (m070 + mi + ...+ m511,511) . 60 -+ (m071 + mi2 + ...+ m5107511) - e? + ...+ (m0’511 .

6511a)

6510a
e511a

+(m1g + mag + ... + Ms11510) - €+ (Mo +ma1 + ... + Ms11500) - € 2%+ ... + (Ms110 - €7°119)

U 276 /512
= M, - eF2mnd/siz,
n:;ﬂl
(3.20)
511
where a = j-2-7-0/512, m,, is the (p;q)th element of M, and M,, = z_:()mmn, the sum of

the nth diagonal of M.

Note that since Dy, - D is diagonal, W = F#.D, - D/~ F is a circulant matrix. Indeed,
because Dy, - D is nearly periodic (with mostly-every other element equal to 1 while others
equal to zero) along the diagonal, W"is nearly. tri-diagonal and so is M. The three diagonal

sums are given by
511

My = Zwi,i"yi,i|27 (3.21)
i=0

511

M 256 = Z yff " Wi i—256 * Yi—256,i—256 (3.22)

1=256
511

H
Mase = E Yi—256,i—256 * Wi—256,i " Yi,i (3.23)
=256

where y; ; is the ith diagonal element of Y, and w;; is the ith diagonal of W. Note that
M_956 = M. Substituting (3.21)—(3.23) into (3.20) with all other terms set to null in
order to reduce the effect of noise. We utilize the mathematic format of FFT of these three
dominant terms to estimate fractional carrier frequency (FCFO) by finding the peak value

and derive as

40

511

X[f] = Z M, - e~ i2mnf/512 (3.24)
n=0
N Migg+ Mo - e 722 4 My o o7 4TI /512 (3.25)
= e IETIZ (€g eI L N My - e 2 /512 (3.26)
= ¢TI (2 R Mysg - eI FTIO12) 4) (3.27)
. 2-
= IR 2 (R Mase} - cos(—— - f)
512
2T
-+ %{Mgg)ﬁ} . Sln(m . f)) + Mo] (328)
_ R{ M.
= eI [SR Mg} + S{Mase) - (W)
\/%{MQB(S}Z + %{M256}2
9. S Morgs 2.
cos(_51;T f) + S{ Mg} - sin(51; 1) + M) (3.29)
\/%{M256}2 + %{M%G}Z
_ pirmf/512 [2 - || Mg =(e0s(f = %)) + M), (3.30)
S{ M.
where 0 = — arctan \9{—256} =.0 : m. Therefore, the peak value happens when 6 — % =
R { Mase }
o-m— 72% = 0, and then, § =0.0039 -"f. Note-that the FFT size corresponds to the

resolution of estimating ¢ and the resolution of this derivation is 0.0039. Moreover, we can
S{ Mose }
R{ Mase}’

conclude § = —% arctan and this final result is quite similar to that of the Moose

algorithm [8].

3.2.3 Jointly Integral CFO, PA-Preamble Index, Channel Estima-
tion and Fine Timing Offset Searching

CFO is separated into two parts, FCFO and integral carrier frequency offset (ICFO), and
the former have been estimation in the previous subsection. We can expect that the power
of channel impulse response (CIR), the inverse fourier transform of H as obtained in (3.14),
will be more concentrated if we compensate with the accurate CFO and use the correct one
of the three possible PA-Preamble symbols. For example, Figs. 3.6 and 3.7 depict two CIRs

obtained from using a combination of correct CFO and correct PA-Preamble index and from

41

using a combination of incorrect values. The simulation environment we choose in Figs. 3.6
and 3.7 is PB channel, 120 km/h, 0 dB in SNR, the correct ICFO 8, the correct PID 1
(10-MHz), the wrong ICFO 6, and the wrong PID 0 (5-MHz). We consider there are 21
possible ICFO explained in the Eq. (3.31), 3 PA-Preamble symbols and 256 timing locations
in CIR, therefore, 21 x 3 x 64 = 16128 candidates in total. The method we use here is to do
64 points sum of squared CIR for these candidates and find out one which has the maximum
of power sum. The reason why we choose the searching range of ICFO from —20 to 20 is
that we assume a maximum mismatch of the local oscillator frequency of £80 ppm, so that
a wireless system with carrier frequency 2.5 GHz £18.28 subcarriers of offset at the 10.9375

kHz subcarrier spacing of IEEE 802.16m, as given by

2.5G.- 80ppm

~18.28. 31
10.94K 7 (3.31)

For the fine timing, since it is.reasonable to assume that the CIR is mostly concentrated
over a length not exceeding the GP length, we decide the ICFO, the PA-Preamble index and
the fine timing offset by finding which one of all candidates has the maximum power sum

over the CP length.

3.2.4 Overall Block Diagram

In summary, Fig. 3.8 shows the resulting overall block diagram of the derived initial DL

synchronization method.

42

x 10

0 TS ST A AA T Nl %4
0 100 200 300 400 500 600

Figure 3.6: The estimated CIR with accurate ICFO, 8, compensating and correct PA-
Preamble index, 1, under PB channel with 120 km/h, 0dB in SNR.

43

X

10

2.5

0.5}

0

0

! | !
100 200 300

| |
400 500 600

Figure 3.7: The CIR with the inaccurate ICFO, 6, compensating and incorrect PA-Preamble
index, 0, under PB channel with 120 km/h, 0dB in SNR.

Received _,}

Sgnal

Coarsetiming Ve Quasi-ML Estimation
synchronization of FCFO

»FCFO

—‘—’ Hkicro = Di*F* /"(rcrosicro)* Y12

Time-Domain Processing

Freqguency-Domain Processing

— Finetiming
—1CFO

_ PA-preamble

arg max Mean square value of IFFT(H,)[t: t+63]

Dy ICFOt

Joint ICFO ,PID and finetiming Searching

" Index

CIR

Figure 3.8: Block diagram of algorithm for initial DL synchronization [1].

44

Chapter 4

Introduction to the DSP
Implementation Platform

In this chapter, we introduce the architecture of the DSP chip because we implement the ini-
tial synchronization on DSP chip. We use the DSP chip on the module is the TMS320C6416T
made by Texas Instrument (TT). We introduce and the DSP chip, and what is more, we
present the software development tool; Code Composer Studio (CCS), the code development

technique.

4.1 The DSP Chip [11]

The TMS320C6416T DSP is a fixed-point DSP in the TMS320C64x series of the TMS320C6000
DSP platform family. It is based on the advanced VelociTI very-long-instruction-word
(VLIW) architecture developed by TI. A functional block and DSP core diagram of TMS320C64x

series is shown in Fig. 4.1.

The C64x core CPU consists of 64 general-purpose 32-bit registers and eight functional

units. Features of C6000 device include the following.

e FEight functional units, including two multipliers and six arithmetic-logic units

— Executes up to eight instructions per cycle

— Allows designers to develop effective RISC-like code for fast development time

45

Instruction packing

— Gives code size equivalence for eight instructions executed serially or in parallel

— Reduces code size, program fetches, and power consumption
Conditional execution of all instructions

— Reduces costly branching

— Increases parallelism for higher sustained performance
Efficient code execution on independent functional units

— Efficient C complier on DSP benchmark suite

— Assembly optimizer for fast development, and improved parallelization

8/16/32-bit data support, providing efficient memory support for a variety of applica-

tions

40-bit arithmetic options add extra precision for vocoders

32 x 32-bit integer multiply with 32- or 64-bit result

Saturation and normalization provide support for key arithmetic operations

Field manipulation and instruction extract, set, clear, and bit counting support com-

mon operation found in control and data manipulation applications

Each multiplier can perform two 16 x 16-bit or four 8 x 8 bit multiplies every clock

cycle
Quad 8-bit and dual 16-bit instruction set extensions with data flow support

Support for non-aligned 32-bit (word) and 64-bit (double word) memory accesses

46

CB4x Digital Signal Proceszor

vept
LiP Cache
" TCP! Direct-Mapped
16K Bytes Total
[_soram__Jer S LT EmFa ool
SBS 16
S bt | -—I EMIF B I¢+
| ZBT SRAM I-G—F C64x DSP Core
|_|‘+ | Timer 2 |<+ Instruction Fetch Control
HED Registers
Instruction Dispatch
S
L_sRAM_Jer Timer 1 Advanced Instruction Packet
Control
I ROM/FLASH I"—F i
- Instruction Decode Logic
| Timer 0 | Data Path A Data Path B
. Test
A Register File B Register File
[AB1-ATE I B31-816 |
—5
1] meBsPz |es] I A15-A0 il B15-B0 ||| in-circuit [«
e t t t t t t Emulation
1 —i | i) s1] mi] or]|] .oz me] 2] 2]| mterrum
.] t3
UTOPIA: — UTOPIA; | Enhanced L2 Control
Up to 400 Mbps DMA Memos
Master ATMC or | Y
Gontroller 1024K
| |isa-channer Bytes
McBSPs: 1 & L
Framing Chips:] McBSP1# [
H.100, MVIP,
SCSA.T1. E1 { Jl
ﬂglg[?) Devices. | " L1D Cache
; - Bl 2-Way Set-Associative
odecs — McesPo e 16K Bytes Total

15 GPIO[8:0
D § PR g
GPIO[15:9]¢ |
32 ‘
HPI} [+

or ‘
‘ Boot Configuration
PCI¥ | PLL Power-Down

(I —— 4 (ot 6, x12, Logic
and x20)

Interrupt
Selector

Figure 4.1: Functional block and CPU(DSP core) diagram [12].

e Special communication-specific instructions have been added to address common op-

erations in error-correcting codes

e Bit count and rotate hardware extends support for bit-level algorithms

In the follwing subsections, we introduce three parts of the TMS320C64x DSP including

CPU, memory, and peripherals.

4.1.1 Central Processing Unit

The C64x DSP core contains 64 32-bit general purpose registers, program fetch unit, instruc-

tion decode unit, two data paths each with four function units, control register, control logic,

47

advanced instruction packing, test unit, emulation logic and interrupt logic. The program
fetch, instruction fetch, and instruction decode units can arrange eight 32-bit instructions to
the eight function units every CPU clock cycle. The processing of instructions occurs in each
of the two data paths (A and B) shown in Fig. 4.1, each of which contains four functional
units and one register file. The four functional units are as follows: A multiplier (.M), a
arithmetic and logic operations (.L), a unit for branch, byte shifts, and arithmetic operations
(.S), and a unit for linear and circular address calculation to load and store with external

memory operations (.D). The details of the functional units are described in Table 4.1.

Each register file consists of 32 32-bit registers for each four functional units reads and
writes directly within its own data path. That is, the functional units .L1, .S1, .M1, .D1
can only write to register file A. The same condition occurs in register file B. However,
two cross-paths (1X and 2X) allow funetional units from one data path to access a 32-bit
operand from the opposite side register file. The cross path 1X allows data path A to read
their source from register file B. The cross path 2X allows data path B to read their source
from register file A. In the C64x, CPU pipelines data-cross-path accesses over multiple clock
cycles. This allows the same register to be used as a’data-cross-path operand by multiply

functional units in the same execute packet.

4.1.2 Memory Architecture and Peripherals

The C64x is a two-level cache-based architecture. The level 1 cache is separated into program
and data spaces. The level 1 program cache (L1P) is a 128 Kbit direct mapped cache and
the level 1 data cache (L1D) is a 128 Kbit 2-way set-associative mapped cache. The level
2 (L2) memory consists of 1 MB memory space for cache (up to 256 Kbytes) and unified

mapped memory.

The external memory interface (EMIF) provides interfaces for the DSP core and exter-
nal memory, such as synchronous-burst SRAM (SBSRAM), synchronous DRAM (SRAM),
SDRAM, FIFO and asynchronous memories (SRAM and EPROM). The EMIF also provides

48

Table 4.1: Functional Units and Operations Performed [11]

Parameter

Value

L unit(.L1, .L2)

32/40-bit arithmetic and compare operations
32-bit logical operations

Leftmost 1 or 0 counting for 32 bits
Normalization count for 32 and 40 bits

Byte shifts

Data packing/unpacking

5-bit constant generation

Dual 16-bit and Quad 8-bit arithmetic operations
Dual 16-bit and Quad 8-bit min/max operations

.S unit (.S1, .S2)

32-bit arithmetic operations

32/40-bit shifts and 32-bit bit-field operations

32-bit logical operations

Branches

Constant generation

Register transfers to/from control register file (.52 only)
Byte shifts

Data packing/unpacking

Dual 16-bit and Quad 8-bit compare operations

Dual 16-bit and Quad 8-bit saturated arithmetic operations

M unit (.M1, .M2)

16 x 16 multiply operations

16 x 32 multiply operations

Dual 16 x 16 and Quad 8 x 8 multiply operations
Dual 16 x 16 multiply with add/subtract operations
Quad 8 x 8 multiply with add operations

Bit expansion

Bit interleaving/de-interleaving

Variable shift operations

Rotation

Galois Field Multiply

.D unit (.D1, .D2)

32-bit add, subtract, linear and circular address calculation
Loads and stores with 5-bit constant offset

Loads and stores with 15-bit constant offset(.D2 only)
Loads and stores doubles words with 5-bit constant

Loads and store non-aligned words and double words

5-bit constant generation

32-bit logical operations

49

64-bit-wide (EMIFA) and 16-bit-wide (EMIFB) memory read capability.

The C64x contains some peripherals such as enhanced direct-memory-access (EDMA),
host-port interface (HPI), PCI, three multichannel buffered serial ports (McBSPs), three
32-bit general-purpose timers and sixteen general-purpose I/O pins. The EDMA controller
handles all data transfers between the level-two (L2) cache/memory and the device periph-
eral. The C64x has 64 independent channels. The HPT is a 32-/16-bit wide parallel port
through which a host processor can directly access the CPUs memory space. The PCI port
supports connection of the DSP to a PCI host via the integrated PCI master/slave bus

interface.

4.2 TI’s Code Development Environment [13]

The Code Composer Studio (CCS)uis‘a keyrelement of the DSP software and development
tools from Texas Instruments. The tutorial [14] introduces-the key features of CCS and the
programmer’s guide [15] gives a reference for programming TMS320C6000 DSP devices. A
programmer needs to be familiar with coding development flow and CCS for building a new

project on the DSP platform efficiently:

4.2.1 Code Composer Studio

The CCS combines the basic code generation tools with a set of debugging and real-time
analysis capabilities which supports all phases of the development cycle shown in Fig. 4.2.

Some main features of the CCS are listed below:

e Real-time analysis.
e Source code debugger common interface for both simulator and emulator targets.

— C/C++ assembly language support.

— Simple breakpoints.

20

Code & build Debug Analyze

Desi, : i al-ti
£n .| Create project, | Syntax checking, - Real Ume
Conceptual M Wi d ™ Probe poi B debugging,
lanning me. Source coae, robe point, Statistics,
. Configuration file Logging, etc. o
Tracing

Fy A 4

Figure 4.2: Code development cycle [14].

— Advanced watch window.

— Symbol browser.
e DSP/BIOS support.

— Pre-emptive multi-threading.
— Interthread communication.

— Interupt handing.

e Chip Support Libraries (CSIi) to simplify device configuration. CSL provides C-

program functions to configure and control on-chip peripherals.

e DSP libraries for optimum DSP functionality. The DSP library includes many C-
callable, assembly-optimized, general-purpose signal-processing and image/video pro-
cessing routines. These routines are typically used in computationally intensive real-
time applications where optimal execution speed is critical. The TMS320C64x digital

signal processor library (DSPLIB) provides some routines for:

Adaptive filtering.
— Correlation.

— FFT.

— Filtering and convolution.

o1

— Math.
— Matrix functions.

— Miscellaneous.

Some of these routine is used in our implementation, such as FFT. We introduce it in a later

chapter.

4.2.2 Code Development Flow [15]

The recommended code development flow involves utilizing the C6000 code generation tools
to aid in optimization rather than forcing the programmer to code by hand in assembly.
Hence the programmer may let the compiler do all the laborious work of instruction selection,
parallelizing, pipelining, and register allocation. Thissimplifies the maintenance of the code,
as everything resides in a C framework that is simple to maintain, support, and upgrade.
Fig. 4.3 illustrates the three phases in the code development-flow. Because phase 3 is usually
too detailed and time consuming, most of the time aprogrammer will not go into phase 3 to
write linear assembly code unless the software pipelining efficiency is too bad or the resource

allocation is too unbalanced. In our work, we do not go to phase 3.

4.3 Code Optimization on TI DSP Platform [15,16]

In this section, we describe several methods that can accelerate our code and reduce the
execution time on the C64x DSP. First, we use the following techniques to analyze the

performance of specific code regions:

e One of the preliminary measures of code is the time it takes the code to run. Use
the clock() and printf() functions in C/C++ to time and display the performance of
specific code regions. We can use the stand-alone simulator (load6x) to run the code

for this purpose. We need to subtract out the overhead of calling the clock() function.

92

Phase 1:
Develop C Code

Write C code

¥

Compile

¥

Profile

Yes

No

Complete)

Refine C code

Phase 2:
Refine C Code

¥

Compile

¥

Profile

Yes
optimization?

Complete)

Phase 3:
Write Linear
Assembly

Write linear assembly

¥
Assembly optimize
Y
Profile
No
Yes

(Complete)

Figure 4.3: Code development flow for C6000 (from [15]).

93

e Use the profile mode of the stand-alone simulator. This can be done by executing
load6x with the —g option. The profile results will be stored in a file with the .vaa
extension. One may refer to the TMS320C6000 Optimizing Compiler Users Guide for

more information.

e Enable the clock and use profile points and theRUNcommandin theCode Composer
debugger to track the number of CPU clock cycles consumed by a particular section

of code. One may use View Statistics to view the number of cycles consumed.

e The critical performance areas in a code are most often loops. An easiest way to
optimize a loop is by extracting it into a separate file that can be rewritten, recompiled,

and run with the stand-alone simulator (load6x).

We can also evaluate the performance results by running the code and looking at the

instructions generated by the compiler.

4.3.1 Compiler Optimization Options

In this subsection, we introduce the: compiler options that control the operation of the
compiler. The C6000 compiler offers high-level language support by transforming a C/C++
code into more efficient assembly language source code. The compiler tools include a shell
program (cl6x), which can be used use to compile, assembly optimize, assemble, and link

programs in a single step. To compiler shell can be invoked by issuing the command
cl6x [options] [filenames| [-z [linker options] [object files]]

For a complete description of the C/C++ compiler and the options discussed in [15], see
the TMS320C6000 Optimizing Compiler User Guide [14]. The major compiler options we

use are -03, -k, -pm -op2, -mh<n>, -mw, and -mi.

e -on: The “n” denotes the level of optimization (0, 1, 2, and 3), which controls the type

and degree of optimization.

o4

— -03: highest level optimization, whose main features are:

x Performs software pipelining.
x Performs loop optimizations, and loop unrolling.
x Removes all functions that are never called.

* Reorders function declarations so that the attributes of called functions are

known when the caller is optimized.

x Propagates arguments into function bodies when all calls pass the same value

in the same argument position.

* Identifies file-level variable characteristics.
e -k: Keep the assembly file to analyze the compiler feedback.
e -pm -op2: In the CCS compiler option, -pm and -6p2 are combined into one option.
— -pm: Gives the compiler global access to the whole program or module and allows

it to be more aggressive in ruling out dependencies.

— -op2: Specifies that the module contains no functions or variables that are called
or modified from outside the source code provided to the compiler. This improves

variable analysis and allowed assumptions.

e -mh<n>: Allows speculative execution. The appropriate amount of padding, n, must
be available in data memory to insure correct execution. This is normally not a problem

but must be adhered to.

e -mw: Produce additional compiler feedback. This option has no performance or code

size impact.

e -mi: Describes the interrupt threshold to the compiler. If the compiler knows that no
interrupts will occur in the code, it can avoid enabling and disabling interrupts before

and after software-pipelined loops for improvement in code size and performance. In

95

A1
B1 A2
=i = = Pipelined-loop prolog
D1 c2 B3 Ad
E1 D2 C3 B4 A5 Kernel
E2 D3 C4 B5
E3 D4 C5
=2 o5 Pipelined-loop epilog
E5

Figure 4.4: Software-pipelined loop (from [11]).

addition, there is potential for performance improvement where interrupt registers may

be utilized in high register pressure loops.

4.3.2 Software Pipelining

Software pipelining is a technique used to schedule instructions from a loop so that multiple
iterations of the loop execute in parallel. When we use the -02 and -03 compiler options, the
compiler attempts to software pipeline the code with information that it gathers from the
program. Fig. 4.4 illustrates a software-pipelined loop. The stages of the loop are represented
by A, B, C, D, and E. In this figure, a maximum of five iterations of the loop can execute
at one time. The shaded area represents the loop kernel. In the loop kernel, all five stages
execute in parallel. The area above the kernel is known as the pipelined loop prolog, and

the area below the kernel is known as the pipelined loop epilog.

Because loops present critical performance areas in a code, the TT document advises one

to consider the following areas to improve the performance of the C code:

e Trip count.

e Redundant loops.

o6

e Loop unrolling.

e Speculative execution.

4.3.3 Loop Unrolling

Another technique that improves performance is unrolling the loop; that is, expanding small
loops so that each iteration of the loop appears in the code. This optimization increases
the number of instructions available to execute in parallel. We can use loop unrolling when
the operations in a single iteration do not use all of the resources of the C6000 architecture.

There are three ways loop unrolling can be performed:

e The compiler can automatically unroll the loop.

e The programmer can suggest.that the compiler unroll the loop using the UNROLL

pragma.

e The programmer can unroll-the G/C++ code by self

In our work, we use the compiler to help us-loop unrolling itself.

57

Chapter 5

Fixed-Point Implementation of Initial
Downlink Synchronization

In this chapter, we consider the fixed-point implementation of the initial downlink synchro-
nization algorithm on DSP, and we present the simulation results, including both floating-
point and fixed-point. Fig. 5.1 shows our-simulation process, we use Matlab to simulate the

wireless channel.

5.1 Floating-Point Simulation Results

In this section, we present the floating-point simulation results for C program, the system
parameters for our simulation are defined in Table 5.1, and we modify the C code form
Matlab code to do simulation under different channel environments and velocities. The power
delay profiles (PDPs) used include Standford University Interim (SUI) [17] and Pedestrian
B (PB) [9]. Our SNR values are from 0 to 20 dB, which is the ratio of the variance of
PA-Preamble samples to that of the noise samples. The mobile velocity is from 0 to 120
km/h, and the carrier frequency offset (CFO) is 8.42884 subcarrier spacings, so the integral
carrier frequency offset (ICFO) is 8 subcarrier spacings and fractional carrier frequency offset
(FCFO) is 0.42884 subcarrier spacings. The simulation results are obtained with 1000 runs

of simulation for each difference SNR.

o8

Channel
L . Simulator . =

C Matlab C

Figure 5.1: Block diagram of simulation procedure.

Table 5.1: System Parameters Used in Our Study

Parameters Values

System Channel Bandwidth (MHz) | 5 10 20

Sampling Frequency (MHz) 5.6 11.2 | 224
FFT Size 512 | 1024 | 2048
Subcarrier Spacing (kHz) 10.94 | 10.94 | 10.94
Useful Symbol Time (usec) 914 | 914 | 914
Guard Time (usec) 114 | 114 | 114
OFDMA Symbol Time (usec) 102.9 | 102.9 | 102.9

5.1.1 Coarse Timing Estimation

The target of coarse timing estimation is to find a staring timing sample for PA-Preamble,
and the correct PA-Preamble time index-is. 576-in our simulation. Figs. 5.2 shows the
histograms of coarse timing samples under AWGN channel at 0 dB and 10 dB, and it is clear
that the higher SNR gives a better performance. Figs. 5.3 and 5.4 illustrate the histograms
under SUI-1 at SNR values of 0 and 10 dB and velocities of 10 and 90 km /h, respectively. It
is seen that SNR affects the performance more than the velocity. Figs. 5.5 and 5.6 illustrate
the histograms under PB at similar SNR values and velocities. The correct timing index
under SUI-1 and PB channel is 583, where the 6 samples difference with AWGN is due to
the property of the Matlab function for simulating the multipath channel as discussed in

chapter 3. The accuracy of coarse timing estimation affects the MSE of FCFO estimation.

29

Coarse timing estimation under AWGN in 0dB.
250 T T T T T T

200

150

100

Cumulative amount

50

0 1
540 560 580 600 620 640 660 680
Estimated timing index

Coarse timing estimation under AWGN in 10dB.
900 T . .

800

700

600

500

400

Cumulative amount

300

200

100

575 576 577
Estimated timing index

Figure 5.2: Histograms of coarse timing estimation under AWGN channel in different SNR.

60

Coarse timing estimation under SUI1 at mobility 10 km/h in 0 dB.
250 T T T T T T T

200

150

100

Cumulative amount

50

0
550 560 570 580 590 600 610 620 630
Estimated timing index

Coarse timing estimation under SUI1 at mobility 10 km/h in 10 dB.
800 T T T T T T T T

700

600

500

400

300

Cumulative amount

200

100

0 Il I
578 579 580 581 582 583 584 585
Estimated timing index

Figure 5.3: Histograms of coarse timing estimation under SUI-1 channel in different SNR
value for a velocity of 10 km/h.

61

Coarse timing estimation under SUI1 at mobility 90 km/h in 0 dB.
250 T .

200

150

100

Cumulative amount

50

0
550 600 650 700
Estimated timing index

Coarse timing estimation under SUI1 at mobility 90 km/h in 10 dB.
800 T T T T T T T

700

600

500

400

300

Cumulative amount

200

100

579 580 581 582 583 584 585
Estimated timing index

Figure 5.4: Histograms of coarse timing estimation under SUI-1 channel in different SNR
value for a velocity of 90 km/h.

62

Coarse timing estimation under PB at mobility 10 km/h in O dB.
150 T T T T T T T T

Cumulative amount
|_\
(@]
o

a1
o

0
550 560 570 580 590 600 610 620 630 640
Estimated timing index

Coarse timing estimation under PB at mobility 10 km/h in 10 dB.
400 T T T T

350

300

250

200

150

Cumulative amount

100

50

0 1
575 580 585 590 595 600
Estimated timing index

Figure 5.5: Histograms of coarse timing estimation under PB channel in different SNR value
for a velocity of km/h.

63

Coarse timing estimation under PB at mobility 90 km/h in O dB.
160 T T T T T

140

120

100

80

60

Cumulative amount

40

20

0
540 560 580 600 620 640 660
Estimated timing index

Coarse timing estimation under PB at mobility 90 km/h in 10 dB.
400 T T T T T T T T T T T T T T T

350

300

250

200

150

Cumulative amount

100

50

.
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
Estimated timing index

Figure 5.6: Histograms of coarse timing estimation under PB channel in different SNR value
for a velocity of 90 km/h.

64

. MSE of FCFO Estimation AWGN
10— — ! SUI1 (10 km/h)
G ——— SUIL (30 kmi/h)
NS | 6 suIL (80 km/h)
‘‘‘‘‘‘ Ml S el = SUI1 (90 km/h)
\‘
..........
10_4'ZZIIZIIZZIIZIIZZI.I"ZIIZIIZIIZIIIIZII IIZII' """ 4
e N]
W N e
O L O T e
2 K
10_5'ZZIIZIIZZIIZIIZZIIZIIZZIIZIIZZIIZIIT:IIZIIZZIIZIIZZIIZIIZZ'I.I'ZZIIZIIZ'.
10_6 I I I
0 5 10 15 20

Preamble SNR (dB)

Figure 5.7: Mean square error.of FCFO estimation under SUI-1 and AWGN channels.

5.1.2 Fractional CFO Estimation

Figs. 5.7 to 5.9 show the mean square error of fractional carrier frequency offset estimation
under AWGN, SUI-1, SUI-3 and PB channels at different mobile velocities. The simulation
results perform similar to results of reference [2], because our SNR definition is the same

with [2].

5.1.3 Joint Estimation of Integral Carrier Frequency Offset, PID
and Fine Timing

In this subsection, we present the simulation of ICFO estimation results in Figs. 5.10 to 5.12.

The simulation parameters are:

e ICFO: 8 subcarrier spacings.

65

MSE of FCFO Estimation

-3
O e AWGN
R R R P SUI3 (10 km/h)
N SRR —%— SUI3 (30 km/h)
N —©— SUI3 (60 km/h)
--- ——— SUI3 (90 km/h)
\e :

107 I TG i
w I S U G = SN
2 g
=

107°h R

10_6 I I I

0 5 10 15 20

Preamble SNR (dB)

Figure 5.8: Mean square error.of FCFO estimation under SUI-3 and AWGN channels.

PA-Preamble index (PID): 1"(10MHz).

Channel models: AWGN, SUI-1, PB.

Mobile velocities: 10 km/h, 90 km/h.

SNR value: 0 dB, 10 dB.

They illustrates the histograms under AWGN and SUI-1 channels at SNR values of 0 and
10 dB and velocities 10 and 90 km /h, respectively. Figs. 5.13 to 5.15 show the histograms of
PID detection under AWGN and SUI-1 channels at similar SNR and velocity setting. They
show that the ICFO and PID estimation are quite accurate at different SNR and channel
conditions. Figs. 5.16 to 5.20 illustrate the performance of fine timing estimation under
AWGN, SUI-1 and PB channels in 0 dB, 10 dB, and 20 dB of SNR at speeds 10 km/h

and 90 km/h, respectively. We define “error” to be that the estimated timing index does

66

MSE of FCFO Estimation

10_3‘.,‘.,.‘.,‘.,.‘.,! T
LI IR IRt TR LU SRR T ISR AWGN _
.. PB (10 km/h) |
oA ... |—*—PB(30kmnh)|
...................................... —6— PB (60 km/h) ||
—— PB (90 km/h)
10_4_ e T D

MSE

DO T E N T

10
10
Preamble SNR (dB)

20

Figure 5.9: Mean square error of FCFO estimation under PB and AWGN channels.

Table 5.2: The error rate of timing estimation.

AWGN | PB_10km |-PB_90km~}*SUI1_10km | SUI1_90km
0dB | 0.013 0.113 0.118 0.011 0.021
10 dB 0 0.001 0.005 0 0
20 dB 0 0 0 0 0

not locate between the boundary of delay spread and the right-hand end of CP. Then we
can calculate the error rate, show in Table 5.2. The simulation results of overall timing

estimation is similar with reference [1].

5.2 Fixed-Point Implementation

Usually, we use floating-point processing to verity the performance of the algorithms. But

fixed-point processing improves power efficiency, speed and hardware cost. Hance large-

67

ICFO estimation under AWGN in 0 dB.
1000 T T T T T T . T T T
Bin Count: 1e+003

900 Bin Center: 8)

Bin Edges: [7.5, 8.5]
800 .

700 .

600 |- 1

500 .

400 .

Cumulative amount

300 1

200 8

100 .

0 Il Il Il Il Il Il Il Il Il
-25 -20 -15 -10 -5 0 5 10 15 20 25

ICFO estimated index

ICFO estimation under AWGN in 10 dB.
1000 T T T T T T . T T T
Bin Count: 1e+003

900 Bin Center: 8)

Bin Edges: [7.5, 8.5]
800 - .

700 .

600 |- 1

500 .

400 4

Cumulative amount

300 1

200 8

100 .

0 I I I I I I I I I
-25 -20 -15 -10 -5 0 5 10 15 20 25

ICFO estimated index

Figure 5.10: Histograms of integer CFO estimation under AWGN channel in different SNR
values.

68

ICFO estimation under SUI1 at mobility 10 km/h in O dB.
1000 T T T T T T . T T T
Bin Count: 1e+003

900 Bin Center: 8)

Bin Edges: [7.5, 8.5]
800 .

700 .

600 |- .

500 .

400 .

Cumulative amount

300 .

200 .

100 .

0 Il Il Il Il Il Il Il Il Il
-25 -20 -15 -10 -5 0 5 10 15 20 25

ICFO estimated index

ICFO estimation under SUI1 at mobility 10 km/h in 10 dB.
1000 T T T T T T . T T T
Bin Count: 1e+003

900 Bin Center: 8)

Bin Edges: [7.5, 8.5]
800 - .

700 .

600 |- .

500 .

400 4

Cumulative amount

300 .

200 .

100 .

0 I I I I I I I I I
-25 -20 -15 -10 -5 0 5 10 15 20 25

ICFO estimated index

Figure 5.11: Histograms of integer CFO estimation under SUI-1 channel in different SNR
values at a velocity of 10 km /h.

69

ICFO estimation under SUI1 at mobility 90 km/h in O dB.
1000 T T T T T T . T T T
Bin Count: 1e+003

900 Bin Center: 8)

Bin Edges: [7.5, 8.5]
800 .

700 .

600 |- .

500 .

400 .

Cumulative amount

300 .

200 .

100 .

0 Il Il Il Il Il Il Il Il Il
-25 -20 -15 -10 -5 0 5 10 15 20 25

ICFO estimated index

ICFO estimation under SUI1 at mobility 90 km/h in 10 dB.
1000 T T T T T T . T T T
Bin Count: 1e+003

900 Bin Center: 8)

Bin Edges: [7.5, 8.5]
800 - .

700 .

600 |- .

500 .

400 4

Cumulative amount

300 .

200 .

100 .

0 I I I I I I I I I
-25 -20 -15 -10 -5 0 5 10 15 20 25

ICFO estimated index

Figure 5.12: Histograms of integer CFO estimation under SUI-1 channel in different SNR
values at a velocity of 90 km /h.

70

PID detection under AWGN in O dB.
1000 T

900

800 -

700

600 |-

500

400

Cumulative amount

300

200

100

0 1 2
PID index

PID detection under AWGN in 10 dB.

1000 .

900

800

700

600 |-

500

400

Cumulative amount

300

200

100

0 1 2
PID index

Figure 5.13: Histograms of PID detection under AWGN channel in different SNR, values.

71

PID detection under SUI1 at mobility 10 km/h in O dB.
1000 .

900

800 -

700

600 |-

500

400

Cumulative amount

300

200

100

0 1 2
PID index

PID detection under SUI1 at mobility 10 km/h in 10 dB.
1000 .

900

800

700

600 |-

500

400

Cumulative amount

300

200

100

0 1 2
PID index

Figure 5.14: Histograms of PID detection under SUI-1 channel in different SNR values at a
velocity of 10 km/h.

72

PID detection under SUI1 at mobility 90 km/h in O dB.
1000 .

900

800 -

700

600 |-

500

400

Cumulative amount

300

200

100

0 1 2
PID index

PID detection under SUI1 at mobility 90 km/h in 10 dB.
1000 .

900

800

700

600 |-

500

400

Cumulative amount

300

200

100

0 1 2
PID index

Figure 5.15: Histograms of PID detection under SUI-1 channel in different SNR values at a
velocity of 90 km/h.

73

Fine timing estimation under AWGN in 0dB.

80 T T T T T
€
5 4
o
£
<
Q
= 4
s
>
£
S 4
o
0 50 100 150 200 250 300
Estimated timing index
Fine timing estimation under AWGN in 10dB.
€
>
o
£
<
Q
=
8
>
€
>
O
5 10 15 20 25 30 35 40 45 50 55
Estimated timing index
Fine timing estimation under AWGN in 20 dB.
160
140
120
3 100
1S
a
£ 80
k=
g
S 60
O
40
20

20 25 30 35 40 45
Estimated timing index

Figure 5.16: Histograms of fine timing estimation under AWGN channel in the different SNR,
values.

74

Fine timing estimation under SUI1 at mobility 10 km/h in 0 dB.
60 T T T T T

a0t]

Cumulative amount
w
o
:
1

20 1

10 1
0 m ! ! ! A luwl
0 50 100 150 200 250 300
Estimated timing index
Fine timing estimation under SUI1 at mobility 10 km/h in 10 dB.
70 T T T T T T T T T
€
>
o
£
<
Q
=
8
>
€
>
O
5 10 15 20 25 30 35 40 45 50 55
Estimated timing index
Fine timing estimation under SUI1 at mobility 10 km/h in 20 dB.
150 T T T T T
= 100
>
o
1S
a
[}
2
kS
>
1S
35
© 50
0
15 20 25 30 35 40 45

Estimated timing index

Figure 5.17: Histograms of fine timing estimation under SUI-1 channel in different SNR
values at a velocity of 10 km/h.

5

Fine timing estimation under SUI1 at mobility 90 km/h in 0 dB.

60 r T T T T
€
>
o
£
<
Q
=
s
>
£
=
o
0 50 100 150 200 250 300
Estimated timing index
Fine timing estimation under SUI1 at mobility 90 km/h in 10 dB.
60 T T T T T T T T T
€
>
o
£
<
Q
=
k|
>
€
>
O
5 10 15 20 25 30 35 40 45 50 55
Estimated timing index
Fine timing estimation under SUI1 at mobility 90 km/h in 20 dB.
150 T T T T T
= 100
>
o
1S
a
[}
2
kS
>
1S
35
© 50
0
15 20 25 30 35 40 45

Estimated timing index

Figure 5.18: Histograms of fine timing estimation under SUI-1 channel in different SNR
values at a velocity of is 90 km/h.

76

Fine timing estimation under PB at mobility 10 km/h in 0 dB.

90 T T T T T
= 4
>
o
£
g 4
Q
=
s A
>
£
=
o 4
. . L _an N T
0 50 100 150 200 250 300
Estimated timing index
Fine timing estimation under PB at mobility 10 km/h in 10 dB.
70 T T T T
€
>
o
£
<
Q
=
8
>
€
>
O
10 20 30 40 50 60
Estimated timing index
Fine timing estimation under PB at mobility 10 km/h in 20 dB.
120 T T T T T T
100
= 80
>
o
1S
a
2 60
kS
>
1S
35
O 40
20
0
20 25 30 35 40 45 50 55

Estimated timing index

Figure 5.19: Histograms of fine timing estimation under PB channel in different SNR values
at a velocity of 10 km/h.

7

Fine timing estimation under PB at mobility 90 km/h in 0 dB.

80 T T T T T
€
> 4
o
£
<
Q
= 4
s
>
£
S 4
o
‘ ‘ . a1
0 50 100 150 200 250 300
Estimated timing index
Fine timing estimation under PB at mobility 90 km/h in 10 dB.
€
>
o
£
<
Q
=
8
>
€
>
O
10 20 30 40 50 60
Estimated timing index
Fine timing estimation under PB at mobility 90 km/h in 20 dB.
140 T T T T T T T
120
100
€
>
£
g 80
[}
2
k]
S 60
1S
35
O
40
20
0
15 20 25 30 35 40 45 50 55

Estimated timing index

Figure 5.20: Histograms of fine timing estimation under PB channel in different SNR values
at a velocity of 90 km/h.

78

volume practical implementation normally employ fixed-point processing. In this section,
we present the initial downlink synchronization algorithm implementation in fixed-point
processing using TT’s TMS320C6416T DSP. We also try to utilize coding style and intrinsic

functions to reduce cycle counts on DSP.

According to chapter 4, we know that the C6416T CPU has a VLIW architecture that
contains 8 parallel 32-bits function units. The 8 units include two multipliers and six that
can do a number of arithmetic, logic and memory access operations, and it is flexible so
that each function unit can do double 16-bit or quadruple 8-bit operations. In our work, we
choose 16-bit data type mostly, because 16-bit computation has enough accuracy for most

of the functions we implement.

Fig. 5.21 shows the fixed-point data formats used in the different places in our algorithm,
where Qx.y means there are x bits before the binary points and y bits after. In our case, x+y
= 15 because the sign takes 1 bit.. We choose Q7.8 to be the data format at many places,
because coarse timing estimation-needs to accumulate the squared norm of data. The Q7.8
format can avoid overflow in coarse timing estimation. In.fact, we find that the Q7.8 data
format has enough accuracy for our experiment. In.the following subsections, we discuss the

details of the blocks in the algorithm.

5.2.1 Coarse Timing Estimation and Removal of Cycle Prefix

The first step in the procedure is coarse timing estimation to find the approximate location
of PA-Preamble. Figs. 3.1 shows our signal structure, where we compute the signal power
in a finite window size and slide the window. According to the IEEE 802.16m standard,
the PA-Preamble magnitude is boosted by a factor of 1.9216, 2.6731 or 4.6511 compared to
regular data signal. To the maximum power position should be a good indicator of what
the PA-Preamble is. After coarse timing estimation, we remove the CP from the 576 points
starting at the estimated point to get 512 points of data. Actually, because the estimated

point by coarse timing estimation may be located within the CP, what we in fact do is to take

79

Received
; . 7.8 ; . i imin g Signal
ors FCFO Estimation |78 Q78 Remove CP 8 @18 Coars-eT. g 8 PEE
Estimation
QL4
Preamble FCFO
Data
Symbol
QL1 Timing
ICFO, PID
FCFO Sp g PID
. FFT Fine-Timing —— >
Q78 Q724 Q18 Q7.8 Q7.8 S
Compensation Estimation CFO
>

Figure 5.21: Fixed-point data formats used in DSP implementation.

the first 512 points starting from the coarse timing point, which is equivalent to discard the
last 64 point of the 576 points, because it is_more probable to get a complete PA-Preamble

this way.

5.2.2 Fractional Carrier Frequency Offset Estimation and Com-
pensation

FCFO estimation is the second step in the procedure. Fig. 5.22 shows that we correlate the
first 256 points and the last 256 points of PA-Preamble to calculate the FCFO, which is
obtained as the arc-tangent of the correlation. For efficiency in DSP implementation, we use
a lookup table to implement the arctan() function. For dynamic range, we create a table
for the arcsin() function to estimate the FCFO in place of a table of the arctan() function.
The table contains 2048 entries uniformly spanning the range [sin 0, sin 0.257), and the table

entries are normalized with respect 7 so that they span the range [0,0.25).

In frequency offset compensation, we create two lookup tables for the sin() and the cos()
functions, each containing 2048 entries uniformly spanning the range [0, 7 + 2). Since the

values of sin() and cos() are from —1 to 1, we choose Q.15 as the data format. Hence, when

30

256 points 256 points

PA-Preamble

Figure 5.22: Calculating the correlation in received PA-Preamble.

the FCFO is compensated, the data format becomes Q7.24. Then we change the data format

from Q7.24 to Q7.8 in order to avoid overflow in ICFO estimation.

5.2.3 Integer Carrier Frequency Offset Estimation and PID De-
tection

The last step of the procedure is ICFO estimation and PID detection. For this, we operate in
the frequency domain. Since ICFO.is just a shift in the subcarrier indexes in the frequency
domain, it is relatively simple to implement in € program. According to (3.14), we calculate
the channel frequency response and transform it to the time domain. Since the CIR length
is supposed be not exceeding 64 points, we can assume that the correct choice of ICFO and
PID should yield the maximum squared value, sum for the resulting CIR. The flow chart is

shown in Fig. 5.23.

5.3 Fixed-Point Simulation Results

In this section, we show the fixed-point simulation results and compare them with the
floating-point simulation results under different channel models. All simulation parameters

and environments are the same as those given in section 5.1.

81

FCFO

Compensation
Q7.24
Q7.8 l Q7.8 Q7.8
y A
Hi1cro = Dy # Y512 (81cro) Haicro = Dy * Y512 (Srcro) Hotcro = Do * Y12 (81cro)
A v A
IFFT IFFT IREI

Q7.8 Q7.3 Q7.8

A,
t+63

arg max 2

k £ 1cF0 2, [hxiceo G)]

]=t

ICFO = —20:2:20,t = 0: 255,k =10,1,2

ICFO, Bandwidth

Figure 5.23: ICFO estimation and PID detection flow chart.

5.3.1 Coarse Timing Estimation

Fig. 5.24 shows the histograms of coarse timing samples under AWGN channel with 0 and
10 dB of SNR. Figs. 5.25 and 5.26 show the histograms under SUI-1 at SNR values of 0 and
10 dB and velocities of 10 and 90 km/h, respectively. In Figs. 5.27 and 5.28, we show the
histograms under PB channel at SNR values of 0 and 10 dB and velocities of 10 and 90 km/h,
respectively. Note that the simulation results are almost the same with the floating-point

results shown in Figs. 5.2 to 5.6.

82

Coarse timing estimation under AWGN in 0dB with fixed—point implementation.

250 T | T T
Bin Count: 249
Bin Center: 576
Bin Edges: [576, 577]
200 R
€
3 150 -
e
©
o
=
8
=
g 100 i
S
O
50 R
0 |] 1
540 560 580 600 620 640
Estimated timing index
Coarse timing estimation under AWGN in 10dB with fixed—point implementation.
900 T T T
H e——
800 - Bin Count: 850 _
Bin Center: 576
700} Bin Edges: [576, 577]
= 600
S
o
& so0f
)
=
©
5 400 B
e
S
© 300t
200
100
0 L

575 576 577
Estimated timing index

Figure 5.24: Histograms of coarse timing estimation under AWGN channel in different SNR,
values.

33

Coarse timing estimation under SUI-1 at mobility 10 km/h in 0 dB with fixed—point implementati

250 T T
200} u .
Bin Count: 203
Bin Center: 580
- Bin Edges: [580, 581]
S
o B |
2 150
©
()
=
8
>
€ 100 i
S
O
50 7
0 e . 1
550 600 650 700

Estimated timing index

Coarse timing estimation under SUI-1 at mobility 10 km/h in 10 dB with fixed—point implementat

800 T . — T T T T T T
Bin Count: 788
700 Bin Center: 580 b

Bin Edges: [580, 581]

600

500

400

300

Cumulative amount

200

100

579 580 581 582 583 584 585 586
Estimated timing index

Figure 5.25: Histograms of coarse timing estimation under SUI-1 channel in different SNR,
values at a velocity of 10 km /h.

84

Coarse timing estimation under SUI-1 at mobility 90 km/h in 0 dB with fixed—point implementati
250 T T T T T T

|
200 Bin Count: 215

Bin Center: 580
Bin Edges: [580, 581]

150

100

Cumulative amount

50

0
540 560 580 600 620 640 660 680
Estimated timing index

Coarse timing estimation under SUI-1 at mobility 90 km/h in 10 dB with fixed—point implementat
800 T T T T T T T T T T T

H

Bin Count: 760

700
Bin Center: 580
Bin Edges: [580, 581]

600

500

400

300

Cumulative amount

200

100

579 580 581 582 583 584 585 586 587 588 589
Estimated timing index

Figure 5.26: Histograms of coarse timing estimation under SUI-1 channel in different SNR,
values at a velocity of 90 km /h.

85

Coarse timing estimation under PB at mobility 10 km/h in 0 dB with fixed—point implementatiol
140 T n . T .
Bin Count: 140

Bin Center: 581

120 Bin Edges: [581, 582]]

100

80

60

Cumulative amount

40

20

0
540 560 580 600 620 640 660
Estimated timing index

Coarse timing estimation under PB at mobility 10 km/h in 10 dB with fixed—point implementatic

400 T T T T T T T T
Hu
350 Bin Count: 368 i
Bin Center: 581
300 F Bin Edges: [581, 582] i

250

200

150

Cumulative amount

100

50

0 1
578 580 582 584 586 588 590 592 594 596
Estimated timing index

Figure 5.27: Histograms of coarse timing estimation under PB channel in different SNR
values at a velocity of 10 km /h.

36

Coarse timing estimation under PB at mobility 90 km/h in 0 dB with fixed—point implementatiol

140 T T T T T T T
[|
120+ Bin Count: 126 .
Bin Center: 581
Bin Edges: [581, 582]
100

80

60

Cumulative amount

40

20

0
540 560 580 600 620 640 660 680 700
Estimated timing index

Coarse timing estimation under PB at mobility 90 km/h in 10 dB with fixed—point implementatic

400 T T T T T T T T T
Hu

Bin Count: 384

350

Bin Center: 581
Bin Edges: [581, 582]

300

250

200

150

Cumulative amount

100

50

0
578 580 582 584 586 588 590 592 594 596 598
Estimated timing index

Figure 5.28: Histograms of coarse timing estimation under PB channel in different SNR
values at a velocity of 90 km /h.

87

MSE of FCFO Estimation

A0 h o NN T T e 3
T R RS FE R R Rt U T EEES TR,
(02 AN
=

— AWGN-Fixed
-5
10 °F SUI1 (10 km/h)
SUI1 (60 km/h)
SUI1 (90 km/h)]
— — — SUI1-Fixed (10 kKm/h)| - - .
— © — SUI1-Fixed (60 km/h)| .-« L]
— » — SUI1-Fixed (90 km/h)
-6
10 1 1 1
0 5 10 15 20

Preamble SNR (dB)

Figure 5.29: Mean square error of FCFO estimation under SUI-1 and AWGN channels with
fixed-point and floating-point computation.

5.3.2 Fractional CFO Estimation

Figs. 5.29 to 5.31 show the MSE of fractional CFO estimation in SUI-1, SUI-3, PB and
AWGN channels at speeds 10, 30, 60 and 90 km /h with fixed-point and floating-point compu-
tation. From the simulation results, we can see that the performance curves for floating-point

and fixed-point computation are only a little different.

5.3.3 Jointly Estimation of Integral Carrier Frequency Offset, PID
and Fine Timing

Figs. 5.32 to 5.34 show the estimation performance of integer CFO under AWGN and SUI-1
channels at speeds of 10 and 90 km/h at SNR of 0 and 10 dB, respectively, and Figs. 5.35 to

5.37 show the estimation performance of PID under AWGN and SUI-1 channels at speeds of

38

MSE of FCFO Estimation

W b U e
[0 T N T U
=
— — — AWGN-Fixed
-5
10 " SUI3 (10 km/h)
—&— SUI3 (60 km/h)
——— SUI3 (90 km/h)]
— — — SUI3-Fixed (10 km/h)| -~ :
— © — SUI3-Fixed (60 km/h)| -+ e]
— % — SUI3-Fixed (90 km/h)
-6
10 1 1 1
0 5 10 15 20

Preamble SNR (dB)

Figure 5.30: Mean square error of FCFO estimation under SUI-3 and AWGN channels with
fixed-point and floating-point computation.

10 and 90 km/h at SNR of 0 and 10 dB: Table 5.3-shows the error rate of timing estimation.
We can see that floating-point and fixed-point implementation have the same results shown

in Figs. 5.10 to 5.15, in all cases simulated.

Table 5.3: The error rate of timing estimation.

AWGN | PB_10km | PB_90km | SUI1_10km | SUI1_90km
0dB | 0.017 0.121 0.155 0.031 0.025
10 dB 0 0.002 0.001 0 0
20 dB 0 0 0 0 0

89

MSE of FCFO Estimation

AWGN
— — — AWGN-Fixed
PB (10 km/h)
PB (60 km/h)
— — — PB-Fixed (10 km/h)

MSE

0 5 10 15 20
Preamble SNR (dB)

Figure 5.31: Mean square error .of FCFO estimation under PB and AWGN channels with
fixed-point and floating-point computation.

5.4 Speeding Up of DSP._Implementation

In this section, we discuss how to reduce cycle counts in DSP implementation. The optimiza-
tion techniques used include compiler option, intrinsic functions and DSP library function.
We set the level of optimization of compiler option to -03, which performs software pipelining
and loop optimizations, and we do not perform loop unrolling ourselves. In the following,
we concentrate the discussion on the use of intrinsic functions and DSP library functions in

the function blocks.

5.4.1 Speeding Up of Coarse Timing Estimation

Calculating the magnitude-square of a complex number needs two multiplication, so accumu-

lating 576 magnitude-squares for 1152 time position would require 576 x2x 1152 = 1,327,104

90

ICFO estimation under AWGN in 0dB.
1000 T T T T T T . T T T
Bin Count: 1e+003

900

Bin Center: 8
Bin Edges: [7.5, 8.5]

800

700

600

500

400

Cumulative amount

300

200

100

0 Il Il Il Il Il Il Il Il Il
-25 -20 -15 -10 -5 0 5 10 15 20 25

ICFO estimated index

ICFO estimation under AWGN in 10dB.
1000 T T T T T T . T T T
Bin Count: 1e+003

900

Bin Center: 8
Bin Edges: [7.5, 8.5]

800

700

600

500

400

Cumulative amount

300

200

100

0 I I I I I I I I I
-25 -20 -15 -10 -5 0 5 10 15 20 25

ICFO estimated index

Figure 5.32: Histograms of integer CFO estimation under AWGN channel in different SNR
values with fixed-point implementation.

91

ICFO estimation under under SUI-1 at mobility 10 km/h in O dB.
1000 T T T T T T . T T T
Bin Count: 1e+003

900 Bin Center: 8)

Bin Edges: [7.5, 8.5]
800 .

700 .

600 |- a

500 .

400 .

Cumulative amount

300 a

200 1

100 .

0 Il Il Il Il Il Il Il Il Il
-25 -20 -15 -10 -5 0 5 10 15 20 25

ICFO estimated index

ICFO estimation under under SUI-1 at mobility 10 km/h in 10 dB.
1000 T T T T T T . T T T
Bin Count: 1e+003

900 Bin Center: 8)

Bin Edges: [7.5, 8.5]
800 - .

700 .

600 |- .

500 .

400 4

Cumulative amount

300 .

200 .

100 .

0 I I I I I I I I I
-25 -20 -15 -10 -5 0 5 10 15 20 25

ICFO estimated index

Figure 5.33: Histograms of integer CFO estimation under SUI-1 channel in different SNR
values at a velocity of 10 km/h with fixed-point implementation.

92

ICFO estimation under under SUI-1 at mobility 90 km/h in O dB.
1000 T T T T T T . T T T
Bin Count: 1e+003

900 Bin Center: 8)

Bin Edges: [7.5, 8.5]
800 .

700 .

600 |- a

500 .

400 .

Cumulative amount

300 a

200 1

100 .

0 Il Il Il Il Il Il Il Il Il
-25 -20 -15 -10 -5 0 5 10 15 20 25

ICFO estimated index

ICFO estimation under under SUI-1 at mobility 90 km/h in 10 dB.
1000 T T T T T T . T T T
Bin Count: 1e+003

900 Bin Center: 8)

Bin Edges: [7.5, 8.5]
800 - .

700 .

600 |- .

500 .

400 4

Cumulative amount

300 .

200 .

100 .

0 I I I I I I I I I
-25 -20 -15 -10 -5 0 5 10 15 20 25

ICFO estimated index

Figure 5.34: Histograms of integer CFO estimation under SUI-1 channel in different SNR
values at a velocity of 90 km/h with fixed-point implementation.

93

PID detection under AWGN in 0dB.
(]

1000 T

Bin Count; 1e+003

900 - Bin Center: 1

Bin Edges: [0.5, 1.5]
800 -

700

600 |-

500

400

Cumulative amount

300

200

100

0 1 2
PID index

PID detection under AWGN in 10dB.
(]

1000 T
Bin Count: 1e+003

900 - Bin Center: 1

Bin Edges: [0.5, 1.5]
800 -

700

600 |-

500

400

Cumulative amount

300

200

100

0 1 2
PID index

Figure 5.35: Histograms of PID detection estimation under AWGN channel in different SNR,
values with fixed-point implementation.

94

PID detection under under SUI-1 at mobility 10 km/h in O dB.
1000 . []

Bin Count; 1e+003

900 Bin Center: 1

Bin Edges: [0.5, 1.5]
800

700

600 |-

500

400

Cumulative amount

300

200

100

0 1 2
PID index

PID detection under under SUI-1 at mobility 10 km/h in 10 dB.
1000 . []

Bin Count; 1e+003

900 - Bin Center: 1

Bin Edges: [0.5, 1.5]
800 -

700

600 |-

500

400

Cumulative amount

300

200

100

0 1 2
PID index

Figure 5.36: Histograms of PID detection under SUI-1 channel in different SNR values at a
velocity of 10 km/h with fixed-point implementation.

95

PID detection under under SUI-1 at mobility 90 km/h in O dB.
1000 . []

Bin Count; 1e+003

900 Bin Center: 1

Bin Edges: [0.5, 1.5]
800

700

600 |-

500

400

Cumulative amount

300

200

100

0 1 2
PID index

PID detection under under SUI-1 at mobility 90 km/h in 10 dB.
1000 . []

Bin Count; 1e+003

900 - Bin Center: 1

Bin Edges: [0.5, 1.5]
800 -

700

600 |-

500

400

Cumulative amount

300

200

100

0 1 2
PID index

Figure 5.37: Histograms of PID detection under SUI-1 channel in different SNR values at a
velocity of 90 km/h with fixed-point implementation.

96

Table 5.4: Coarse Timing Estimation Results for Optimization Level 3

Functions Avg. Clock Cycles
Main Loop 7722
Initial Loop 139
Maximum PowerLevel 4756

Table 5.5: Coarse Timing Estimation Results for Optimization Level 1

Functions Avg. Clock Cycles
Main Loop 41448
Initial Loop 16140

Maximum PowerLevel 37026

multiplications. However, most of accumulated quantities appear repeatedly across succes-
sive time positions as shown in Fig. 5.38. Using this fact, we may compute the sum of

magnitude-squares as

Power(N + 1) = Power(N)—R(N) +R(N + 576), (5.1)
575
Power(0) = Z R(n), (5.2)
n=0
where R(N) is the magnitude-squares of the received signal sample at time N and Power(N)

is the sum as indicated in Fig. 5.38.

The compiler automatically utilizes the assembly instruction MPY2 that computes two
16 x 16 multiplication in parallel. We show the improved C code and the corresponding
assembly code in Figs. 5.39 to 5.41. Hence, the coarse timing estimation needs about 576 x
2 4+ 1152 x 4 = 5760 multiplications. According to Table 5.4, the efficiency of the coarse
timing estimation is (5760+4-+7861) x 100 = 18.3%, and Table 5.5 shows the cycle counts for
compiler option of optimization level 1, the efficiency is (5760 + 2 + 57588) x 100 = 5%. The
exection time of optimization level 1 is worse than optimization level 3 since the optimization
level 1 does not performs loop unloring, software-pipleining and call assembly instruction

MPY?2.

97

Power()

_

/ Power(m

NN
NNl oo @ 55

RIN) RIN+1) R(N+575) RIN+576)

Figure 5.38: Summation of magnitude-squares for coarse timing estimation.

5.4.2 Using DSP Library Function for FFT and IFFT [18]

TT supplies a DSP library that contains the FFT/IFFT function DSP_fft16x16r() that
implements a cache-optimized complex forward mixed radix FFT with scaling, rounding and
digit reversal. The input data x[], output data y[];and coefficients w[] are 16-bit numbers.
The output is returned in the array y[] in'normal order. Each complex value is stored
as interleaved 16-bit real and imaginary parts. The code-uses a special ordering of FFT
coefficients (also called twiddle factors). This DSP library function takes [log,(nz) — 1] x

(% X nx + 25) + % x nx + 26 cycles and the codesizeis 868 bytes, where nx is FF'T size.

5.4.3 Speeding Up of ICFO, PID, Fine Timing Estimation

In integer CFO estimation, we utilize the signal structure in the frequency domain, hence
we need not compute the CIR the corresponding with PA-Preamble subcarrier is 0. Further-
more, we use the same method with coarse timing estimation to calculate the sum of CIR.
Therefore, it is needs 216 x 2 x 3 x 21 = 27,216 multiplications to compute the CIR and

(64 x 24256 x 4) x 3 x 21 = 72,576 multiplications to compute the sum of CIR.

According to Table 5.6, the efficiency of sum of CIR is (72576 <4+ 75411) x 100 = 24.1%
and the efficiency of CIR computation is (27216 + 2 = 33705) x 100 = 40.4%. Table 5.7
shows the cycle counts for compiler option of optimization level 1, the efficiency of sum

of CIR is (72576 + 2 + 406602) x 100 = 8.9%, and the efficiency of CIR computation is

98

Table 5.6: ICFO, PID, Fine Timing Estimation Results for Optimization Level 3

Functions Avg. Clock Cycles
Sum of CIR 75411
CIR Computation 33705
MaxFixed 33453
Others 6042

Table 5.7: ICFO, PID, Fine Timing Estimation Results for Optimization Level 1

Functions Avg. Clock Cycles
Sum of CIR 406602
CIR Computation 326970
MaxFixed 547848
Others 340204

(27216 + 2 + 326970) x 100 = 4.16%.

5.5 DSP Optimization Results

Table 5.8 shows the number of clock for.each-function used in the initial DL synchronization
procedures, and number of clock cyeles.does not including 'T'T library in this table. Obviously,
IFFT function takes the most percentageof total ¢ycles, because number of IFFT times is the
21 (ICFO candidates) x3 (bandwidth) = 63 times, and IFFT function time positions would
require about 14,000 cycles per time. The DSP_fft16x16r() function is already highly
optimized. Table 5.9 shows the number of clock cycles including and excluding memory
access. Table 5.10 shows the code size of the program for different optimization levels. In

our system, the clock frequency of TMS320C6416T DSP is 1 GHz, so the total execution

time of initial DL synchronization procedures is 1.181 ms.

99

Table 5.8: DSP Optimization Results

Functions

Avg. Clock Cycles

Percentage of Total Cycles (%)

Coarse Timing Estimation 10239 0.96
FCFO Estimation 5911 0.554
Compensation 2141 0.2
FFT 14046 1.318
IFFT 884394 82.963
ICFO Estimation 148611 13.941
Remove CP 668 0.063
Total cycles 1066010 100

Table 5.9: DSP Optimization Results with Inclusion and Exclusion of Memory Access

Total Cycles

Avg. Clock Cycles

Exclude Memory Access

1066010

Include Memory Aeccess

1168531

Table 5.10: Code Size Results

Program Memory
Optimization Level 3 Program Code Size (-03) | 448.613 KB
Optimization Level 1 Program Code Size (-ol) | 439.781 KB
Data Memory Size 327.68KB

100

forik=1:k<(Ntotal -Window3ize) k++)

N00E7&545
OO0E7E4C
000B7&50
OO0B7E54
000B7aE58
0o00B785C
OO0E7 &R0
000B7564
NO00E7&6G
00oB7Eac
000B7870
O00E7E874
000B7a78
0o0E7&87C
OoO0E7EE0
000B7554
NO0EB7 &GS
oooB7Eac
0o00B7&890
O00E7E594
000B7E98
oooe7E9c
OO0E7EAD
000B7 544
N00E7BASG
000B75AC
000B78ED
O00EBE7EE4
000B75ES
OO0EB7SEC
OoO0E7ECO
000B75C4
NoO0E7&CH
Q0o0B7aCce
0o00E7SDO
OO0E7ED4
00oB7aEDE
QooE7&8DC
OO0E7EED
OO00B7EE4
NO0E7EES
000B7EEC
OO00B78FO
OO0B7EEF4
000B7aEFSE

oog0z041
oooogrzy
02385424
033C9C43
OF3BB4:zA
0A0403E3
0Z3rDC42
039518F1
0ZBAO4ZE
OED3CaFZ2
03109AF1
0ZBCBC43
00F403a2
921003E4
019818F1
O0BE444030
DANCROZ0
01A018F1
0z420030
nCoce0so
0192C8Co
018EZECO
01906840
01E06E40
91989675
01DCe3SED
018EABCO
01946840
03110943
D1E46840
919502F 4
03401643
931803E6
0913Cc032
054418F 3
08 1CED3Z
0413C032
03252032
031a48C2
031A0BC2
04z0C842
CO7CFO21
03190842
93184077
031ABEC2

Figure 5.39: Assembly code of the coarse timing estimation (1/3).

[141]

[141]

[141]

[141]

[&0]

[141]

MVE.D1
MVE.Z1
MVE .22
ADDAW D2
MWE .32
MVC .52
ADDAW D2
OR.D1X
MVE.=2
AMND . DZ
ADD.D1X
ADDAW D2
MWC 32
LDDW.D2T1
OR.D1x
MPYZ . M1
MPY 2 . M1
OR.D1X
MPYZ . M1
MPYZ2 . M1
SUB.D1
SUE.D1
ADD.D1
ADD.D1
2w . D1T1
SUB. 31
SUB.D1
ADD.D1
ADD . DZ
ADD.D1

= DZT1
OR.52X
LDDW.D2T2
OR.D2X

MPYZ . M2
MPYZ . M2

MPY 2. M2

SUE.DZ2
SUE.DZ
ADD.DZ
BDEC.=1
ADD.DZ2
S D1TZ2
SUB.DZ

101

soCoarse Timing Estimation

1,41
0z01le,A0
0x70a5,E4
SFP,B4,B6
0x7765,B30
C'SR,EB20
SP,B30,B4
0,B6,A7
0x7408,E5
-2,B20,B29
4,B4,46
SP,BS,BS
B29,CSR
%+B4[0z0],A5:44
0,B6,A3
A18,A18,A23:A22
A3,A73,A21:420
0,B8,43
216,416,245 44
A3,A3,A25:474
A4,022 A3
A3,A20,A3
24,A3,473
24,43 ,43

A3, *AG++[0z4d]
A3,A23,A3
A3,A21,A3
A5,A3,A3
B4,0z8,B6
A25,A3,A3
A3,*+B6[020]
0,419,B6
=+B6[0z0],E7 :E6
B6,B6,B19:E18
0,417,B6
B7,B7,B17:B16
BG,E6,B9:B8
E9,E9,E7:E6
BE,B18,EB6
B6,E16,B6
ES,EB6,BE
L172,A0
BG6,E5,E6
BE,*-AF[0x2]
B6,B19,EB6

aooB7=00
oo0B7904
ao0B7908
aooB790c
gooB7910
O00B7914
oo0B7918
aooB791c
aooB7920
O00B7924
oooBE7928
aooB792c
aooB7930
O00B7934
oo00B7938
ao0B793c
oo0B7=40
O00B7944
o00B7948
O00B794C
aooB7950
O00B7954
O00BE7958
ao0B795c
oo00B7 960
O00B7964
O00B7968
a00B7 960
oooBE?970
O00B7974
oo00B7978
aooB797c
aooB7980
O00B7984
oo00B7988
ao0B798c
aooB7990
oo0B7994
oo00B79498
aooB799c
oo00B79A0
O00B79A4
O00B79AB
O00B79AC

031437E7
O81C3764
03z24C843
08203764
031CCE43
04243766
g05429C1
931092F6
021003E4
019518F1
OE424030
0A0CBE0O30
014018F1
0Z2420030
ococe030
o19z2caco
O13E3&C0
01906540
O1E0BG40
01DCe5EL
01989674
O13EAZCO
01946840
03110943
O1E46540
019802F4
034C16A3
031803E6
O918C032
034418F3
O81CEOD3Z
04180032
03252032
031A48C2
031A0BC2
ooDo03a3
04z0C542
03190542
031ABBC3
03184076
031AZ80C2
03z4Ca42
031CCa4z2
031092F6

[A1]
[121]

LDDW .DZTZ2
LDDW.D1T1
ADD.DZ
LDDW.D1T1
ADD.DZ
LDDW.D1TZ2
=UB.D1
S . D2T2
LDDW.DZT1
OR.D1X
MPYZ2 . M1
MEY 2 b1
OR.D1X
MPYZ2 . M1
MPY > M1
=UB.D1
=B .D1
ADD.D1
ADD.D1
=B .51
=w . D1T1
=UB.D1
ADD.D1
ADD.DZ
ADD.D1
=T 02T
OR.22¥
LDDW DT

OR . D2

MPY 2 . M2
MPY 2 . M2
MPY Y . M2

=UB.D2
=UB.D2
MVC . 32
ADD.DZ
ADD.DZ
=UB.D2
=w . D1TZ
=UB.D2
ADD.DZ
ADD.DZ
S . D2T2

#Bo++[0x1].B7:Bb
®A7++[0x1],A19:418
E9.Bb.B6
®#A0++[0x1] ., A17:A16
B7.Bb.B6
#289++[0x1].B9:B8
a1,0x1,481
Bo,*=++B4[0x4]
#=+H4 [0xz0],A5:84
0,B6,43
418,218,823 1822
A3, AZ AZL:IAZD
0,B8,43
A1b,AL1R, AT A4
A3, AZ AZEIAZY
A4, AP A3

A3, AZO,AS

A4, B3, A3

AZ24 B3, AT

A3 AZ3 AT

A3, =h0++[0xd]
A3, AT AT

A5, AT AT
EB4,0x53.B6
AZ5, AT AT

A3, *+BR[0=z0]
0,219,868
#=+HB6[0xz0].B7:Ba
Bo,.Bo, B19:E18
0,517,868
B7.B7.B17:Ela
B6.Bo,.BY9:EBE&
B9,.BY9.BY:Ba
B6.B15.E&
Bo.Bl6.Ba
B20,C5R
E3.Br. B3
E6.BS.B6
B6.B19.E&
Bo,*=-An[0x2]
Bo.B17 .Ba
E9.Bb.B6

B7.Bb BB
BE,=++B4[0x4]

Figure 5.40: Assembly code of the coarse timing estimation (2/3).

102

Powerlevel fined [k]=Powerlevel fived[k-1]-((RecevieRe_fized[k-1]*RecevieRe fixed[k-1])+(Recevialn_fized [k-1]*Recevieln_fized[k-1]))
(0067980 02397324 WE.32 0728654

(0067954 03BCOC43 LDD&R.D2 SF,B4,7
00067988 (2BEZ3L | WE.32 027766,
0006798 (FEEZ3ZE WE.32 0z7446,831
00067900 (4BCEC4Z | LDD&R.D2 5P, 59,59
00087504 (F3L032E W32 07406, 530
(00B79CH 029CO2EE || LDW.D2T2 HE7020], 55
0007507 (EBDE2ZE WE.32 0z7hed,B29
00067900 03367042 | LDD&R.D2 oF B3L.Bb
00067404 029802E4 LDW.DIT1 #B0[020],A2
(0067904 043FDC4Z LDD&R.D2 SF, 530,88
0006790 022002E4 LDW.D2T1 #ER[020],44
000B79E0 0914033 HPY2. M2 B5,55,B19:518
00067924 023F8C42 | LDD&R.D2 SF, 529,84
(00B7°E% 03100386 LOILDZTZ «+B4[050],B17:B15
O00B79ET 0414031 [HPY2.H1 £5,85,49: A8
O00B79%0 Q1A402E4 | LDW.DIT1 #EE020] A3
0006794 0F9C42C4 LIH.D2TL #E7022] 431
000B79Fs 0F1842C3 LIH.DIT1 #E0[0x2] A0
000B797C 03108030 || HPY2 M1 B4,24,A7 20
O00B7200 02204204 LDH.D2TI #ER[022] 420
(0067204 (E2442C5 LDH.D2TI #EE022] A28
(0067208 02CRDSEZ | SUB.52 B16,B18,89
000B7R0C 02006030 [12¥2.H1 £3,03,45:4
O00B7210 01951070 SUB. 51K 55, 46,43
000B7214 01986540 Il B6,03,83
00067218 00000000 Hoe

000B721T (DF3RCEL HPY ML B20,220, 527
00067420 04102840 | I B4,03,48
00067824 041022F% STW.DITL BB, x-B4[0z1]
00067828 O1CDISED || SB.51% B4,E19,23
000B782C Q1FFECAL HPY M1 B31A3143
00067230 020025C0 | SUB.01 £3,09,24
(0087234 027BCCHL HPY 1 B30,430,44
(0067238 031CE340 | Il £7,04,88
000B7237 0377ACE1 HPY ML 825,429, 20
(0067240 02940840 | Il £9,26,83
00067244 029042F4 STH.DAT1 B3, x+B4[0z2]
0006724 03102386 LDOW.D2TZ ++B4[(1), B7:B6
(006724 00006000 il 4

00067850 01987070 SB.51% B6,A3,43
00067854 Q1RCHACO SUB.01 £3,04,83
(0067258 01986840 .o B6,03,43
O00B7R5T Q1ECER40 Il 827.03.13
(0067260 019062F4 STW.DITL B3,%:B4[0z3]

+{(RecevieRe_fized[ktWindowSize-1]*RecevisRe [ized[kWindowSize-1])+ Recevialn Fived [ki¥indowdize-1)*Recevialn fizad [ktWindowdize-1]))

Figure 5.41: Assembly code of the coarse timing estimation (3/3).

103

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we first presented the overall procedure of initial DL synchronization of the
IEEE 802.16m TDD system, and verified them through floating-point computation. Second,
we implemented the initial DL symchronization to fixed-point computation and compared
the performance with floating-point computation. Finally, we optimized procedure of initial

DL synchronization on TI's C6416T digital signal-processor.

In the procedure of initial DL synchronization, we used coarse timing estimation to esti-
mate the PA-Preamble location, thus, we obtained the FCFO from the quasi-ML estimation.
In the end, we utilized the characteristic of the power centralization of CIR to estimate the

ICFO, PID and fine timing offset.

For DSP implementation, we chosen Q7.8 to be our data format, and verified the per-
formance through simulation results is close to the floating-point computation. We used
optimization techniques that including preamble character, intrinsic functions and DSP li-
brary function to reduce the computation time. According to Table 5.8, if the clock frequency
of TMS320C6416T DSP is 1 GHz, execution time of initial DL synchronization procedures

1s 1.181 ms.

104

6.2 Future Work

There are several possible extension for our research:

e Reduce codesize of procedure of initial DL synchronization since we do not discuss in

this thesis.

e Implement code of fixed-point vision on SMT395 board since we only use CCS simulator

in this thesis.
e Use intrinsic function to reduce more cycle count.

e Integration the system of overall procedure of DL communication such as channel

coding, synchronization and channel estimmation on DSP implementation.

105

Bibliography

1]

Kai-Wei Lu, “Initial downlink synchronization for IEEE 802.16m,” M.S. thesis, Indus-
trial Technology R&D Master Program on Communication Engineering, National Chiao

Tung University, Hsinchu, Taiwan, R.O.C., February 2010.

P.-S. Wang, K.-W. Lu, D. W. Lin, and P. Ting, “Quasi-maximum likelihood initial
downlink synchronization for IEEE 802.16m,” .in Proc. IEEE Int. Workshop Signal

Processing Advances Wirel. Commun., June 2011, pp. 506-510.

Man-On Pun, Michele Morelli, and C.-C. Jay Kuo, “Maximum-likelihood synchroniza-
tion and channel estimation for OFDMA- uplink transmissions,” IEEFE Trans. Commun.,

vol. 54, no. 4, pp. 726-736, Apr. 2006.

Lior Eldar, M. R. Raghavendra, S. Bhashyam, Ron Bercovich, and K. Giridhar, “Para-
metric channel estimation for pseudo-random user-allocation in uplink OFDMA” in

IEEFE Int. Conf. Commun., 2006, vol. 7, pp. 3035-3039.

IEEE 802.16 Task Group m Draft 9, Part 16: Air Interface for Fized and Mobile
Broadband Wireless Access Systems — Advanced Air Interface (working document).

IEEE 802.16m, Oct. 6, 2010.

K.-C. Hung and D. W. Lin, “Joint detection of integral carrier frequency offset and
preamble index in OFDMA WiMAX downlink synchronization,” in Proc. IEEE Wireless
Commun. Networking Conf., Mar. 2007, pp. 1959-1964.

106

[7]

[10]

[11]

[12]

[18]

R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications. Boston:

Artech House, 2000.

P.H. Moose, “A technique for orthogonal frequency division multiplexing frequency

offset correction,” IEEE Trans. Commun., vol. 42, no. 10, pp. 2908-2914, Oct. 1994.

Y. Chunxuan, A. Reznik, G. Sternberg, Y. Shah, “On the secrecy capabilities of I'TU
Channels,” in IEEE Vehicular Technology Conference, Oct. 2007, pp. 2030-2034.

Sundance home page: http://www.sundance.com

Texas Instruments, TMS320C6000 CPU and Instruction Set Reference Guide. Litera-
ture no. SPRU189F, Oct. 2000.

Texas Instruments, TMS320C6414 T, TMS320C6/15T, TMS320C6416T Fized-Point
Digital Signal Processors. Literature no. SPRS226A, Mar. 2004.

Texas Instruments, Code Composer Studio User’s Guide. Literature no. SPRU328B,

Feb. 2000.

Texas Instruments, TMS320C6000 CGode Composer Studio Tutorial. Literature no.

SPRU301CI, Feb. 2000.

Texas Instruments, TMS320C6000 Programmer’s Guide. Literature no. SPRU198J,
Apr. 2010.

Texas Instrument, TMS320C6000 Optimizing Compiler User Guide. Literature no.

SPRU187S, Mar. 2011.

V. Erceg et al., “Channel models for fixed wireless applications,” IEEE standards con-

tribution no. IEEE 802.16.3¢-01/29r4, July 2001.

Texas Instrument, TMS320C64x DSP Library Programmer’s Reference. Literature no.
SPRU565B, Oct. 2003.

107

[19] J. J. van de Beek et al., “ML estimation of time and frequency offset in OFDM systems,”
IEEFE Trans. Signal Processing, vol. 45, no. 7, pp. 1800-1805, July 1997.

108

	Cover.pdf
	Cover2.pdf
	abstract.pdf
	acknowledgement.pdf
	9811650_thesis.pdf

