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摘  要 

隨著數位電路設計以及製程的蓬勃發展，逐年增加的信號數量並不僅止於晶

片系統的內部，各個系統之間的信號傳輸也多於以往，這劇烈的增加了封裝以及

印刷電路板上的設計難度並導致傳統的手動設計成為瓶頸。設計師們在印刷電路

板繞線問題上所遭遇的困難和晶片上相當得不同，在晶片設計中自動繞線器的挑

戰主要在於總體的線長以及設計面積，另一方面，電路板設計者則需要考量排線

信號之間的偏移以保障系統的可靠度。有鑒於這項事實，這篇論文旨在提供一個

自動化演算法以有效率得協助電路板設計者完成排線的繞線。 

由於近年來這項議題逐漸被重視，近年也有不少相關的自動化作品被提出，

雖然都能夠在繞線時維持排線之間線長的匹配以達到控制偏移的效果，然而多數

抑或問題在定義上仍然不夠實際又或只能施行於特定的繞線模式，這些限制導致

他們難以被實際應用於真實的設計。 

本文中考慮到在實務設計上覆晶(flip-chip)脫逸繞線(escape routing)及封裝的

設計往往和電路板同步進行，這樣的情況下信號的腳位無法由電路板設計者自行

決定而必須經由所有設計團隊的討論所獲得，我們的演算法能夠依照給定的固定

腳位完成排線設計。藉著避免使用常見的最短路徑演算法，在能夠完成繞線之餘

我們的結果亦保留了相對完整的區塊，以供設計者之後自由運用。 
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ABSTRACT

Though the routing for high speed boards stays still a manual task by now,

people have realized the necessity of its automation in recent years. Generally, such

routing problems are classified into two stages: escaping route and PCB area routing.

Plenty of works focusing on the former have been published, while the latter, a quite

practical problem, is not yet well addressed.

Sometimes, the packages/components vendors have to start their design without

the specifications of board designers, and the boundary pins are therefore fixed or

advised to follow. This truth make previous works in escape routing can barely

used in practice. We will describe this inflexible boundary pin escaping problem in

this work, and propose an improved approach over one recent research [20]. Not

only can we have a way to address, but we also further plan the wires in a better

way to preserve the precious routing resources in limited number of layers on the

board, and to effectively deal with obstacles. Our approach has different feature

compared with conventional shortest-path based routing paradigm. In addition, we

consider length-matching requirement and wire shape resemblance for high speed

signal routes on board. Most existing matching algorithms are highly constrained

on routing directions, making them usable only for certain design patterns. Solution
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provided in this work aims to be free from such limitations. Our results show that

we can utilize routing resource very wisely, and can efficiently resemble nets in the

presence of the obstacles.
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Chapter 1

Introduction

The routing problem has been one of the major topic in the automation of

IC design for long time and is getting serious for PCBs when working frequencies

of chips are getting higher. We have increasing pin count on very dense boards,

while current CAD tools for board routing are incapable of providing acceptable

solutions automatically. Explicitly, rather than the overall wire length, the major

PCB routing issues lie in IR drop, crosstalk and impedance matching. All of these

effects are scaled up greatly than that in IC. That is why both the shape and length

of nets must be carefully controlled by certain criteria in PCB routing. When the

length of routes are not matched, the impedance could result in skew on the arrival

time of signals. Detour of shorter nets is most common solution to such condition,

while it is not always plausible for nets which are completely enclosed by either

obstacles or other nets. Consequently, a key to board routing is the management of

spaces, the routing resources. Though PCB designs are not limited to single layer,

due to manufacturing cost, we should keep the number of layers used minimum,

which generates the problem of layer planning.
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1.1 Contributions

In this thesis, we want to address a practical problem: how we can route the wires

or buses on the board with inflexible pins at package boundaries. To reduce time-

to-market, it is not uncommon for industry that boards are designed alongside with

packages by different groups. Since works are ran in parallel, after the negotiation

with package designers, it is impossible to make change on pin assignment anymore.

Another occasion is that components of area-I/Os like flip-chips may go through

escape routing ([16, 15]) before the board design. Under both situations, board

designers are advised to follow the given order of the boundary pins, and have no

privilege to rearrange the pins in their design. It is worth mentioning that the topic

in work [6] looks similar to this but is not really the same problem since its mission

is to solve the given order of the boundary pins for area routing on board, which is

on the opposite of the direction of wire planning.

Considering the fixed boundary pin planar routing, our approach will try to

mitigate the aforementioned effects. Our work is a two-stage planner: the first

stage is to obtain a planar topology for all the connections with more routing spaces

available in subsequent pin pair routing; the second stage is to obtain a refined

routing with awareness of length-matching constraint and wire shape resemblance.

In order to reserve the routing space for the rest of the nets and to avoid the

net crossing during board wire planning, our routing in first stage will optimize

the routing order to ensure nets are free from conflicts and consume least routing

resource, at the same time. During the second stage of refinement, we propose

length-constraint-aware heuristics utilizing the routing resources reserved before to

achieve min-max length bounds of nets. Our approach features a complete obstacle-

avoiding area routing on board design.
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1.2 Organization of This Thesis

The remainder of this work is organized as follows. Chapter 2 describes the

board routing issues. Chapter 3 describes the first stage of our routing methodology

to obtain planar topology. Chapter 4 reveals a post-processing routing that targets

length constraints and wire shape resemblance. Chapter 5 shows our results followed

by the conclusion in Chapter 6.

3



Chapter 2

Preliminaries

In this chapter, a list of surveyed works are briefed, and the main problem

formulation in this thesis is stated. There has been quite a few works addressed

routing problems on PCB, such as [3, 4, 7, 9, 10, 11, 12, 13, 14, 15, 6, 8]. Most of

board-level routings focus on escape routing including the escape from inner pins to

the boundary and from the boundary to other components. The first stage of escape

routing problem is to route the wires from the bump balls located close the center

of the component to the slots on the component boundary [9, 12, 13, 6]. [6]proposed

a problem that has a constraint on pin ordering from the board designers. In the

second stage, which is also the focus in this thesis, is the connection between the

escaped slots to other components or packages on the board [3, 11, 14]. Some refer

this step as PCB routing or area routing.

BSG-router [14] proposed an matching algorithm that applies to general designs

and is no longer limited to face-to-face buses. Through mathematical programming,

this work matches the net length precisely as well. However, its routes occupy

vast routing area and are in unnatural shapes composed of numerous short jogged

nets (net-jogging) which can cause serious signal integrity issues. Not all the works

focus on net-by-net routing, an automatic bus planner is proposed in [3] providing

good results in bus planning under fair pin assignment. But the fact that buses
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are planned in bunches making it can easily be blocked by scattering obstacles. In

addition, those matching issues are not addressed and solved in the work. Many of

these routing algorithms are based on the concept of shortest path, which cannot

take the whole set of nets into account; only the target net is taken into consideration

in each iteration. As a result, the decision of routing order gets to affect the quality

of results tremendously, and a bad one can result in wasting time on rip up and

reroute. Several articles worked on more general routing problems are also inspiring

in giving a rough planning of routes. Work [1] provides a good framework for

topological routing, however the use of partitioning and Delaunay triangulation

increases the complexity, and it still suffers from net ordering problem. By solving

these two stages altogether, called “simultaneous escape routing”, some of the latest

work acquired even better solutions for enlarged solution spaces [7, 8]. [8] uses

negotiated congestion based router to achieve the routing, this technique is widely

used in modern academic global routers. On the other hand, [7] is featuring a new

concept “boundary routing” to solve simultaneous escape routing problem, but it

may be limited to certain escape patterns.

2.1 Problem Formulation

The input of our routing problem is a PCB design in arbitrary format where

the peripheral packages as well as border of the board are represented as simple

geometrical rectangles to which pins of signals attached. More generally, since chips

are not necessary to be peripheral, the component could be area I/O chips with their

signals escaped using methods proposed in [16] [15] before performing our algorithm.

Here, we further require that the net-list contains only one-to-one connection. Our

goal is to establish valid routes for each signal with proper layer assignment. Besides,

the mismatch in wire-length among signals of a bus should be minimized.

5



Chapter 3

Against-Wall Topology Routing

An algorithm is presented here to tackle the problem addressed in the previous

chapter. Since considering strict matching constraint in routing complicates the

problem, in this step, we will not strongly confine routes with that constraint. As

the name of this algorithm implies, we will try to route the nets against the other one

so that wires share similar lengths. Against wall router, however, requires the source

and target to have a certain block aside them, and the block must be consecutive.

This means that some earlier nets can not success with this approach. To ensure

this, our flow of this chapter is to connect separated components in design together

and then we start against wall routing to nets. One more good thing about going

against walls is that it is less likely to block potential paths in routing future wires.

3.1 Dynamic Pin Sequences

When determining routing topology, we do not really care about physical posi-

tions of the pins and packages, only the relation between pins is concerned. This

implies that we may somehow model the input data into some simpler expressions.

A dynamic pin sequence(DPS) is defined to be a cyclic sequence composed of all the

pins in clockwise order along the boundary of a block. Here a block refer to an area

in random continuous shape that can not be used for routing. To be concrete, it
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can be either a single component or multiple components connected by nets. In the

Fig.3.1, the DPS S1 is an expression of component 1 by listing every pins following

the direction of the dashed arrow.

Figure 3.1: An illustration of pin-sequence generation of a component for PCB
routing.

At very beginning of our algorithm, each component is converted into a DPS, and

this is for two important purposes. First, based on our observation, the Lemma 3.1.1

which suggests DPS can be used to examine the compatibility of nets. Second, the

routing order for against-wall router can be determined efficiently with a polynomial-

time algorithm from DPS which will be detailed in Section 3.3. Both of the properties

exist only if pins are all on a single block. Consequently, before we can benefit from

these characters, we must figure out another mechanism to combine all the DPSes

into one; this is to connect of all the components together.

Lemma 3.1.1. Arbitrary two nets having their tokens interleaving each other on a

DPS are incompatible on a single layer.

Before we introduce to our algorithm, we describe some operations of DPSes.

A DPS is a cyclic sequence which can be shifted, an operation removing the first

element and appending it to the end, illustrated at lower right of Fig. 3.2. The shifted

DPS are still considered to be the same as the original DPS. The other operation,

combination, is described as follows. There is at least one token in common between

the two DPSes participating this operation. One of the common tokens is selected

7



to be the Component Connection Pin(CCP). A DPS is then shifted so that the CCP

is at the front of the DPS and inserted before the CCP token found at the other

DPS. In Fig. 3.2, where S1 and S2 are combined with token F as the CCP. Once

the pin is connected, its two components will be bonded into one super component

whose DPS is exactly the final DPS( pins following the order of the dashed arrows

in Fig. 3.2).

Figure 3.2: Display two operations in DPS: shifting and combination.

Here comes two questions: in what order should DPSes be combined, and which

element should be the CCP in each combination? A random selection can not be

good since these decisions will directly influence how many layers are used in the

result.

About the first question, there are a few things to know. To combine a design

composed of m components, combination operations will be performed m−1 times,

so all the components must be chosen at least for one time. By considering all the

components as nodes of a complete graph, the properties reminds us the algorithms

for minimum spanning tree(MST) which select m − 1 edges over a graph to span

its m elements with minimum cost. Here we let the weight of an edge to be the

number of connection between its two components. It is because we expect two

components sharing most nets having the greatest chance to generate pairs that

could be eliminated. For simplicity of implementation, Prim’s algorithm is used

here.
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As in Algo. 1, Prim’s algorithm maintains its node in two sets, black and white.

The connected nodes are put into black set while unconnected nodes are in white,

and the edge of the largest weight from black set to white set are chosen every

iteration until the N −1 iterations are done. Every time an edge is chosen, the DPS

of component belonging to white set are combined with the base DPS. Therefore,

the base which stores our final result will get longer and longer as the process going

on. It will eventually cover all the pins of the design before the process ends. This

heuristic does not guarantee the best combining order, but is generally good enough

in our approach.

Algorithm 1 Adapted-Prim-algorithm for DPS combination

Require: List of sequences S
Ensure: Combined DPS sequence base

d⇐ ARRAY(SIZE(S),−1) {The maximum weight from visited nodes}
u ⇐ ARRAY(SIZE(S), white) {Nodes not yet been visited as white}
n ⇐ 0 { First node }
base ⇐ S[n]
for i from 0 to SIZE(n)− 1 do {Combines N - 1 times}

u[n] ⇐ black
max ⇐ −1
for j from 0 to SIZE(S)− 1 do

d[j] ⇐ MAX(d[j], COMMON PINS(base, S[j])) { Weight of edge in Prim’s
algo.}
if max < d[j] and u[j] = white then

c ⇐ j
n ⇐ c
base ⇐ COMBINE DPS(S[n], base) { Node n Selected}

One thing to note is that obstacles can be considered as special components

having no pins on them; these components are converted into null DPSes. They

have nothing to connect with and should be dropped before our algorithm starts.

Next is the second question: how the CCP is selected? Our goal is to make the

final DPS containing as less interleaving nets as possible, and we have found some

special palindrome-like patterns in our manual trails. These palindromes occur when

9



some components of bus are connected with pins stand face-to-face(sometimes side-

by-side), as shown in Fig. 3.3, which is most desirable condition. In our example

Figure 3.3: An illustration of a component connecting pin(CCP), is chosen from the
pin-sequences, is the first connection among all nets in components. PinD is set to
be the CCP and connected to the corresponding component.

in Fig. 3.2, a good case could be DPS2:GHIABCDEF merging DPS1:BAC. They

can be combined perfectly and generate a palindrome subsequence ABCCBA1 as

long as C is selected as CCP. The palindrome can be generated when opposite

subsequences exist, like ABC in DPS2 versus CBA in DPS1. Sometimes the best

solution is not obvious; shifts must be applied to find them. From this example, we

realize that finding a good CCP seems to be a sort of string comparison problem,

if we reverse one DPS. We therefore manage it with a classic algorithm for longest

common sequence(LCS) problem [18]. This problem is proved to be NP-hard in

general form, while it is polynomial-time solvable for fixed number of sequences.

To fit the problem here, LCS algorithm need some modification. Another slightly

changed version of LCS problem called longest common cyclic subsequence(LCCS)

is already stated in [19] which still returns the longest common subsequence, only

that the inputs sequences are allowed to rotate. Algorithm for this problem can be

implemented similarly to the traditional LCS with one of the sequences has to be

duplicated twice before comparing 2. The duplication does scale up the problem

1According to the definition of combination, for certain CCP, the resultant compatible pins are
the same whether you decide to shift first sequence or not.

2The complete implementation of LCCS is not as easy as described here. We are allowed to do
this way without loss of correctness is because our sequences can have at most two instances for
each unique symbol. DPSes are not general strings as defined in LCCS problem.
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size of LCS, while by only a constant factor 2, which does not increase the time

complexity dramatically. This process is shown in Fig. 3.4. Note that it is a heuristic

since the optimality in Lemma 3.1.2 is ruined in the presence of more than two

components. After the common cyclic sequence is selected, all of these signals are

valid candidate for CCP. In our experiments, we select the net having physically

closest pins as our CCP.

Lemma 3.1.2. For two DPSes, after one of them inverted, the subsequence found

by performing LCS algorithm contains maximum number of non-interleaving pins

between these two sequences.

Figure 3.4: LCCS algorithm is used here which find out most compatible pins be-
tween two DPSes.

3.2 CCP Routing

After we locate the CCPs, we can start to connect our components, since the

priority among them is as the order they are picked. CCPs suffer little from routing

order because their route span a tree and a tree on plan will not form any closed

region and hence will not block each other. A special router is designed for CCPs
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which is very different from the router used for other nets. This is because the

routing of these nets have a great influence on solution qualities. If some of them

are too close to each other or to obstacles, the remaining nets will easily failed due

to the lack of capacities at narrow channels when performing against-wall routing.

As a result, their routing policy is right opposite to other nets: they tend to travel

away from the obstacles.

Through some trials, a general A* router [2] guided by the bus planner proposed

in [3] is chosen for this task. On the Hanan grid, points are allowed to move when

new points are inserted, and we make the space This making all the nodes evenly

occupy the bin in Hanan grid so that generated routes are guaranteed to have some

spaces with obstacles around. Then, a monotonic router is in charge of connecting

these nodes and finishing the entire CCP route. With these spared margin, existing

routes will less likely to trap those non-CCP nets. This, however, may not eliminate

all the hazards, especially in regions with a large amount of obstacles. Updating

congestion cost and rerouting CCPs may still needed in some sceneries. Fig. 3.5

shows the result of the connections.

3.3 Layer Assignment and Routing Order

The final result of combination leave us a long DPS containing all the nets in

design; all the components are turned into a super component by CCPs. A notable

fact is that the DPS should still hold the character of being a clockwise-ordered pin

sequence of the design. To assign the layer of nets, we must select the maximum

pin set from the DPS that can be routed without crossing. As the shapes of the

blockage do not really matter in finding the routing topology, we can treat it as a

circle, and the blank area outside this circle is our routing resource, as shown in

Fig. 3.5. Applying a rough against wall route on the circle generate those stroked

arcs around. We can also found D causes a conflict with E in Fig. 3.5, as suggested
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by Lemma 3.1.1. From the figure, it occurs to us that an algorithm for maximum

independent set(MIS) problem of string compatibility could be employed to solve the

layer assignment and routing ordering. A work [17] on channel routing happens to

satisfy our needs. The MIS problem on a general graph is an NP-complete problem,

while utilize special structure of arcs, [17] can acquire optimal solution with an

elegant dynamic programming(DP) algorithm. This algorithm was proposed to

solve the problem in channel routing by modeling the pins on both side of channel

as a closed ring; it finds maximum number of nets which can be routed inside single-

layer channel without crossing. In [17], MIS of an arc from element i to j is the

maximum number of cuts which can reside between i and j. It derived a recursive

relationship between MIS of the arcs3 based on the property above where k is the

element such that j and k forms a cut.

MIS(i, j) =

⎧⎪⎨
⎪⎩

0, if i ≥ j

MAX[MIS(i, j − 1), MIS(i, k − 1) + MIS(k + 1, j − 1) + 1], if i ≤ k < j

MIS(i, j − 1), otherwise

Further, it can be solved with a dynamic programming in time complexity of O(n2),

where n is the number of elements in given sequence. Though our routing, opposite

to this work, is routing outside the circle, they are conceptually identical problem.

Inspect Fig.3.5 carefully, we can see that if signal H is in the MIS of signal I, H

must be routed before I, or it will be blocked; we say H is a prerequisite of I and

this relation forms a partial order. This observation is also consistent with the fact

that CCPs all have MIS of 0, they must be routed. Modifying the algorithm for

channel routing slightly by adding an extra field in the DP table storing the MIS,

we can simultaneously get the MIS of nets and serve them as our routing orders.

After order and layer assignment are figured out, we can finally apply the against

wall routing on the design. The router is in fact a shortest-path router, say, maze

3The first case is the boundary condition, the second stands cutjk has a chance to be selected
into MIS(i, j), and the last case is when the cutjk is outside the range of i to j.
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Figure 3.5: The left side is the design with all components connected. The right side
is the combined DPS of example design arranged as a ring. Following the dashed
arrow in both side, you will see they exactly express each other.

Figure 3.6: The routing result of against-the-wall routing. All nets are connected in
order and routed against the “walls”. The results show that the nets will be close
to the wires of the connection of the CCPs and have resembled wire shape for bus
requirement.

router, which assigns strong costs on those grids not beside an obstacle. Despite

being a grid based router, this router has only two directions to go, it either goes

clockwise along border or inversely, and is hence very efficient in run time. In the

long run, all the nets have been connected, and the topology route is finished. The

example result is shown in Fig. 3.6.
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Chapter 4

Peripheral Matching

The results could be still far from desirable, even if we have tried to prevent

large skew by planing nets altogether in topology routing. As been discussed in

introduction, the presence of skews among signals may lead to undesired degrading

on signal integrity or, in extreme cases, cause malfunction of chips. Here we pro-

pose a length-matching method that could enhance solution in terms of wire-length

variation by reassembling routes by a linear programming(LP) framework.

Since we have found that dominating mismatches in bus often occur on those

nets at a long distance from their groups members, our next algorithm focuses on

matching the routing around components. That is, we assume the route we get

from last step are virtually matched away from components. Usually, even if they

are not exactly matched, the experiences suggest the responsible skews will be small

relative to those caused by ill-placed pins. It is because our bus have been guided

by its CCP and had similar shapes and distances in topology routing. Nevertheless,

owing to the existence of obstacles, this assumption may fall impractical in some

cases. We will relax this assumption later in Section. 4.3.2.
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4.1 Preliminaries

Before we describe the algorithm, terms and notations that will be referred in

problem formulations and explanations of our algorithm are defined.

Figure 4.1: Map the points around the component into our custom coordinate sys-
tem.

Given a rectangle R, we say the rectangle having the same center with both

width and height larger than R by X × 2WS to be the boxX relative to R, where

WS is the specified wire space of nets.

For an arbitrary rectangle R, we can define a coordinate system called peripheral

value(PV). PVs and peripheral points are one-to-one mapped, that is, there exists

exactly one point on R for every unique PV and vice versa.

4.2 Problem Formulation

Now we define our matching sub-problem as follows. Given one rectangle rep-

resenting the component, there are some fixed pins on it. The N̂th box of the

component is given a special name “matching window”, where N̂ = 2�log2N� and N

is number of nets in the bus. The N̂ can be depicted as the minimum value greater
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than N while is a power of 2. That is, if the number of nets is exactly a power

of 2, then N̂ = N , as the case in illustrating example, it is two times N ’s most

significant bit in two’s complement otherwise. Margins are reserved between sides

of the component and the matching window as shown in Fig. 4.2; our algorithm

will clean up all the existing routes inside and reroute them. The margin size is

determined for reasons explained in next section. On the matching window, there

is a point referred to as bus cut at which the bus generated from last step intersects

the matching window (the arrow labeled “Bus”). The goal is to reconnect the path

between the pins and the bus cut while keeping least length variations. Even though

Figure 4.2: Outside the dashed horizontal line is planed bus and the curved paths
are part of traces to be rerouted.

not shown in Fig. 4.2, the pins may not all sit on the same edge of the component

so the routing region might be L shape or U shape as well. Although it is intuitive

and naive for the extension, for simplicity, we will not consider these cases here. To

make the whole idea more concrete, a simple example composed of only four nets in

Fig. 4.4 are illustrated.
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4.3 Linear Programming in Matching Length

The idea of this approach is mainly inspired by clock synthesis, another well-

developed topic in IC design which also takes matching problem seriously, only that

rather than buses, a super huge multi-terminal net, clock, is routed. Most of this

collection of works treat their clock routing as a branched tree structure with clock

source as the root, and clock sinks as leaves of the tree. Their main objective for the

problem is hence balancing the delays for paths from root to all the leaves. With

this in mind, we may also regard the cut point and pins in our problem as the clock

source and clock sinks respectively.

Another feature of classic works in clock synthesis is that, due to the problem

scale, they tend to solve it in a bottom-up manner so that the problem size is reduced.

Neighbor leaves are first grouped as a sub-tree that matches all the members locally,

and these minor trees are balanced when grouped into larger ones. Level by level,

the clock tree is built and balanced; we also borrow this idea to our solution.

Figure 4.3: The Z-shape routing are used in connection between levels.

Instead of matching all net to the bus cut at once, the nets are required to

match another adjacent net and form new groups before they reach the second level

and the groups must be routed together thereafter. The router will route a group

together in Z shape from one level to next, therefore the number of box used between

levels equal to the group size of lower level as in Fig. 4.3. Before the group reaches

next level, it must match another adjacent group1. In this way, the bus can be

1Unless it is left unpaired at the level, in such situation, it can go straight to next one.
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represented as a tree whose height is �log2 N� + 2; The added two represents the

layers of leaves and the root so that for a bus composed of only one net, there is

still a tree composed a root and a leave. In this manner, we can see the number of

boxes needed is at most 1 for first and second levels, 2 for level 3, 4 for level 4, . . . ,

and 2x−2 for level x, till level �log2N̂�+ 1. The last level is not considered because

it stands for the position of bus cut. The overall boxes must be used are therefore

can be obtained, which determines our window size.

1 +

�log2N�+1∑
i=2

2i−2 = 1 + 1 + 2 + · · ·+ 2�log2N�−1 = 2�log2N� = N̂

Each node in the tree is turned into a PV and put into LP, and the overall problem is

to generate the constraints with these N̂ +1 constants (root and leaves) and 2N̂−2(

all other nodes) variables. By feeding these equations to solvers, desired position for

nodes in PV can be figured out; we can reshape the nets based on these solutions.

The constraints can be classified into three categories: tree-structure inequality,

path equality, and blockage constraints.

4.3.1 Tree Structure Inequalities

To reduce problem complexity, we forbid any route to go back toward the com-

ponent. More clearly, the route can only move toward the outer rectangle or stay

at the box it belong. Along with the definition of PV, we are able to transform the

matching problem from two-dimension to one-dimension. Because the length from

inner rectangle to outer rectangle is constant, the LP solver just needs to decide the

horizontal movement of routes.

However, to model our problem as a pure linear programming, one more challenge

to resolve is that taking absolute value in constraints is not allowed 2. For this reason,

we put some extra inequality constraints to pre-assign the order of variables, this can

2Absolute values between variables implies conditional operations which can be realized in
constraints only if extra binary variables are introduced.
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possibly shrink the solution spaces while considering the lost in efficiency from LP to

ILP, we take it as a fair trade-off. Plus, according to our experience, this compromise

seldom shrinks feasibility tremendously. The rules we made for variables are stated

as follow. The nodes in tree are given an index in the style of a traditional complete

tree. Namely, the root is indexed 1, a left child of nodex is node2x, and node2x + 1

is the right child. Nodes between root and leaves are variables. Constant location

of pins are at the leaves of the tree. We know there is 2N leaves for a complete

tree of �log2 N� + 2 in height, this mean half of the leaves would be left unused.

To prevent the nodes touch their siblings, they must be at least a wire space apart

from each other. The final rule is that, for all the nodes, constants or variables, they

must be greater than their left child and lesser than their right one. For instance,

V4 are restrict to left side of C9 by this constraint, in Fig.4.4. We also assign the

location constant of the pink to be at the jth node, where the relation of j and k

is: j = 2N̂ − 2 + 2k + (k mod 2). This is intended to make the range of variables

Figure 4.4: The equality constraints are described by the formulas on the right side
which contain only the horizontal distance of each segments, since the vertical parts
are identical to all paths.

not so limited by the final rule.
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4.3.2 Path Length Equalities

Under the tree structure, you can know the distance from a certain pin point to

the bus cut. There is only one path from the leaf node to the root; summing up the

distances of all the variables you traveled plus the vertical distance is the matching

length. As can be seen at right side of Fig. 4.4, path length equivalent constraint

composed of N − 1 equations (by erasing variable P s with substitution), and this

is our major objective. Because the vertical length is a constant for all the paths,

they canceled each other in the equations.

Though this LP could be a feasible problem, to make sure the solver will not

generate redundant detour, it is recommended to have one of the paths, say P1, to

be minimized in the objective, along with other equation the overall length is also

minimized. In addition, when this bus has nets that have been assigned to multiple

layers by our topology router, an objective function is needed. In this situation,

rather than one LP, this bus will be solved by a number of LPs depending on the

number of layers this bus are assigned to. Designers may have to give a desirable

bounds for the bus, so that each LP confines their paths to fit in the given range.

Previously, we have claimed that the routes outside the matching window are

almost matched while against wall routing might encounter obstacles and introduce

significant variations to bus that broke the assertion. However, this assumption

was actually made to describe our problem and can be relaxed by adding those

mismatches found in bus into the constant term of path equalities. More straight-

forward, if one net P1 is longer than the other net P2 by x units in the bus routing,

the equality between the two nets can be put like this.

P1 = P2 + x/2

Where P1 and P2 is the overall path length of corresponding nets as in Fig. 4.4;

the x/2 means that nets have two terminals, and the mismatch can hence evenly
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distributed to both the terminals.

Figure 4.5: For the precision, the length calculation must consider space occupations
of wires as shown in figure.

The equations listed in Fig. 4.4 are for demonstration purpose only; they are

not complete. In reality, wires themselves do occupy some spaces, and our model

has neglected this fact by now, and considering these spaces brings out some more

constants in the equalities. An example in Fig. 4.5 reveals this, if we always use the

left most positions for our nodes, rather than node value A, A′ is actually used in

calculation of the distance for the right branch in this level. The computation detail

of these constants is intuitive and trivial, and is hence omitted here.

4.3.3 Obstacle Constraints

The matching window is not necessary to be a free space. From time to time,

the region can be occupied with obstacles, and plan our routes on them are illegal.

Consequently, some conditions are added to ensure valid routes in our solution. By

scanning through each box, we can identify a range in which our nodes can move

around. Suppose all the obstacles are in rectangle shapes, we may then determine

the position relative to the tree by examining their edges. According to the position,

we know which nodes are supposed to be bounded. Only the node closest to the

obstacle will be involved in such a constraint as tree structure inequalities are going

to take effect for other relevant nodes.
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Figure 4.6: The arrows between obstacles and nodes indicates the extra constraints
caused by the blocks.

4.4 Final Refinement

After the LP has been solved, the routes are retrieved by reversely converting

the solution from values to points. Regardless of all the efforts, some final tunes

might need to get rid of those variations. These adjustments are performed locally by

adding bumps around those shorter wires. The routing priority acquired in topology

routing can be reused here. By negating routing order, the nets will be tuned from

the inner most to outer most. This is reasonable and intuitive; those inner nets

have lesser routing around them, serving them first could prevent other nets from

occupying these critical regions.
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Chapter 5

Experiment Results

We have implemented our methodology in C++ on a machine of quad Intel Xeon

CPUs cores with 32GB memory. Also, several cases shown in references (Test Cases

I and II resemble the cases shown in [14] since the cases in [14] are not available;

Test Cases III to V are from [?], provided from design houses) are served as our

benchmark. Table 5.1 exhibits the test cases and run time for our router. Nets and

Component indicate the number of nets and components in test cases. Grid size

shows the size (the number of grid cell on PCB board)1 of the routing problem,

Total T ime includes the time for building the routing grid and the run time spent

by our router.

Fig. 5.1 shows the Test Case I which has five components. The routing result

1The grid sizes of the test cases in this work are larger than the BSG grid sizes in [14], which
shows the granularity of our approach.

Table 5.1: The summary of test cases and experimental results.

#Nets #Components Grid size Total Time

Test Case I 17 5 250 × 250 < 1 sec

Test Case II 18 4 300 × 230 < 1 sec

Test Case III 57 5 300 × 230 < 1 sec

Test Case IV 81 8 640 × 560 2 sec

Test Case V 104 9 900 × 900 2 sec
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Figure 5.1: The routing result of Test Case I. The result shows that the routing nets
are centralized as buses and the routing area is better utilized. The numbers beside
pins are the routing order automatically figured out by our topology router.

Figure 5.2: The routing result of Test Case I with our own implementation of work
[14].

is quite different from that of [14] as can be seen in Fig.5.1 and Fig.5.2 2. The run

times can not be compared fairly for some efficiency considerations, e.g. variables

reduction, proposed in that work are not fully implemented in our reimplement ver-

sion. Comparison of the results show that almost all nets are routed in certain region

2They compete in same wire space with identical LP solver. BSG grid size is determined
dynamically according to topology as described in this work.
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Figure 5.3: The routing result of Test Case IV. This case has eight components and
the length constraints are conformed.

and the routing area is better utilized in our work. On the other hand, controlled

by the solver, there is no neat workaround to prevent those unnecessary snaking in

Fig. 5.2, and those irregular routing shape might result in certain undesired effects

under electromagnetic verification.

Fig. 5.3 shows Test Case IV which has more components than the case in Fig. 5.1.

The net distribution between each component are similar to the result of bus routing.

Our router can also detour the nets to avoid crossing and conform with the length

constraints. The top-left enlarged view shows our router can shift the nets in a

certain region to meet the length constraints. Moreover, many net-joggings are

avoided due to non-floorplan-based approach (area sizing). Even the components
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are not face to face, our router can still find a good solution.
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Chapter 6

Conclusion

In this work, we have proposed a board routing solution for a practical preas-

signed boundary pins problem. Instead of applying the shortest path algorithms like

conventional routers, we have discovered some special properties of component and

pins from cases and successfully utilized them into our work. Our approach is good

in space management, and has the ability to meet the wire length and shape re-

quirements at the same time. The experimental results show our work can preserve

routing space in sequential planar routing under given boundary pins and conform

with the length constraints.
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