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ABSTRACT

Though the routing for high speed boards stays still a manual task by now,
people have realized the necessity of its-automation in recent years. Generally, such
routing problems are classified into twostages: escaping route and PCB area routing.
Plenty of works focusing on the former have been published, while the latter, a quite

practical problem, is not yet well addressed.

Sometimes, the packages/components vendorshave to start their design without
the specifications of board designers, and the 'boundary pins are therefore fixed or
advised to follow. This truth make previous works in escape routing can barely
used in practice. We will describe this inflexible boundary pin escaping problem in
this work, and propose an improved approach over one recent research [20]. Not
only can we have a way to address, but we also further plan the wires in a better
way to preserve the precious routing resources in limited number of layers on the
board, and to effectively deal with obstacles. Our approach has different feature
compared with conventional shortest-path based routing paradigm. In addition, we
consider length-matching requirement and wire shape resemblance for high speed
signal routes on board. Most existing matching algorithms are highly constrained

on routing directions, making them usable only for certain design patterns. Solution
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provided in this work aims to be free from such limitations. Our results show that
we can utilize routing resource very wisely, and can efficiently resemble nets in the

presence of the obstacles.
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Chapter 1

Introduction

The routing problem has been one of the major topic in the automation of
IC design for long time and is getting serious for PCBs when working frequencies
of chips are getting higher. We have increasing pin count on very dense boards,
while current CAD tools for board reuting are-imcapable of providing acceptable
solutions automatically. Explieitly, rather-than the overall wire length, the major
PCB routing issues lie in IR drop, crosstalk and impedance matching. All of these
effects are scaled up greatly than thatin IC. That.is why both the shape and length
of nets must be carefully controlled\by certain criteria in PCB routing. When the
length of routes are not matched, the impedance could result in skew on the arrival
time of signals. Detour of shorter nets is most common solution to such condition,
while it is not always plausible for nets which are completely enclosed by either
obstacles or other nets. Consequently, a key to board routing is the management of
spaces, the routing resources. Though PCB designs are not limited to single layer,
due to manufacturing cost, we should keep the number of layers used minimum,

which generates the problem of layer planning.



1.1 Contributions

In this thesis, we want to address a practical problem: how we can route the wires
or buses on the board with inflexible pins at package boundaries. To reduce time-
to-market, it is not uncommon for industry that boards are designed alongside with
packages by different groups. Since works are ran in parallel, after the negotiation
with package designers, it is impossible to make change on pin assignment anymore.
Another occasion is that components of area-1/Os like flip-chips may go through
escape routing ([16, 15]) before the board design. Under both situations, board
designers are advised to follow the given order of the boundary pins, and have no
privilege to rearrange the pins in their design. It is worth mentioning that the topic
in work [6] looks similar to this but is not really the same problem since its mission
is to solve the given order of the boundary pinsfor area routing on board, which is

on the opposite of the direction of wire-planning.

Considering the fixed boundary pin planar routing; our approach will try to
mitigate the aforementioned effects.  Our work-is a two-stage planner: the first
stage is to obtain a planar topology for.all the comheetions with more routing spaces
available in subsequent pin pair routing; the second stage is to obtain a refined
routing with awareness of length-matching constraint and wire shape resemblance.
In order to reserve the routing space for the rest of the nets and to avoid the
net crossing during board wire planning, our routing in first stage will optimize
the routing order to ensure nets are free from conflicts and consume least routing
resource, at the same time. During the second stage of refinement, we propose
length-constraint-aware heuristics utilizing the routing resources reserved before to
achieve min-max length bounds of nets. Our approach features a complete obstacle-

avoiding area routing on board design.



1.2 Organization of This Thesis

The remainder of this work is organized as follows. Chapter 2 describes the
board routing issues. Chapter 3 describes the first stage of our routing methodology
to obtain planar topology. Chapter 4 reveals a post-processing routing that targets
length constraints and wire shape resemblance. Chapter 5 shows our results followed

by the conclusion in Chapter 6.



Chapter 2

Preliminaries

In this chapter, a list of surveyed works are briefed, and the main problem
formulation in this thesis is stated. There has been quite a few works addressed
routing problems on PCB, such as [3, 4, 7, 9, 10, 11, 12, 13, 14, 15, 6, 8]. Most of
board-level routings focus on escape rotting inchiding the escape from inner pins to
the boundary and from the boundary-to other-components. The first stage of escape
routing problem is to route the wires from the bump balls located close the center
of the component to the slots en thelcomponent-boundary [9, 12, 13, 6]. [6]proposed
a problem that has a constraintonpin ordering ftom the board designers. In the
second stage, which is also the focus in"this thesis, is the connection between the
escaped slots to other components or packages on the board [3, 11, 14]. Some refer

this step as PCB routing or area routing.

BSG-router [14] proposed an matching algorithm that applies to general designs
and is no longer limited to face-to-face buses. Through mathematical programming,
this work matches the net length precisely as well. However, its routes occupy
vast routing area and are in unnatural shapes composed of numerous short jogged
nets (net-jogging) which can cause serious signal integrity issues. Not all the works
focus on net-by-net routing, an automatic bus planner is proposed in [3] providing

good results in bus planning under fair pin assignment. But the fact that buses



are planned in bunches making it can easily be blocked by scattering obstacles. In
addition, those matching issues are not addressed and solved in the work. Many of
these routing algorithms are based on the concept of shortest path, which cannot
take the whole set of nets into account; only the target net is taken into consideration
in each iteration. As a result, the decision of routing order gets to affect the quality
of results tremendously, and a bad one can result in wasting time on rip up and
reroute. Several articles worked on more general routing problems are also inspiring
in giving a rough planning of routes. Work [1] provides a good framework for
topological routing, however the use of partitioning and Delaunay triangulation
increases the complexity, and it still suffers from net ordering problem. By solving
these two stages altogether, called “simultaneous escape routing”, some of the latest
work acquired even better solutions for enlarged solution spaces [7, 8]. [8] uses
negotiated congestion based router to achieve the'reuting, this technique is widely
used in modern academic global routers. Ou:the other-hand, [7] is featuring a new
concept “boundary routing” to solve simultaneous escape routing problem, but it

may be limited to certain escape patterns.

2.1 Problem Formulation

The input of our routing problem is a PCB design in arbitrary format where
the peripheral packages as well as border of the board are represented as simple
geometrical rectangles to which pins of signals attached. More generally, since chips
are not necessary to be peripheral, the component could be area I/O chips with their
signals escaped using methods proposed in [16] [15] before performing our algorithm.
Here, we further require that the net-list contains only one-to-one connection. Our
goal is to establish valid routes for each signal with proper layer assignment. Besides,

the mismatch in wire-length among signals of a bus should be minimized.



Chapter 3

Against-Wall Topology Routing

An algorithm is presented here to tackle the problem addressed in the previous
chapter. Since considering strict matching constraint in routing complicates the
problem, in this step, we will not strongly confine routes with that constraint. As
the name of this algorithm impliesgwe will try toroute the nets against the other one
so that wires share similar lengths. Against wall router,-however, requires the source
and target to have a certain block aside them,and the block must be consecutive.
This means that some earlier-nets ¢an not.success with this approach. To ensure
this, our flow of this chapter is to'connect separated components in design together
and then we start against wall routing to nets.” One more good thing about going

against walls is that it is less likely to block potential paths in routing future wires.

3.1 Dynamic Pin Sequences

When determining routing topology, we do not really care about physical posi-
tions of the pins and packages, only the relation between pins is concerned. This
implies that we may somehow model the input data into some simpler expressions.
A dynamic pin sequence(DPS) is defined to be a cyclic sequence composed of all the
pins in clockwise order along the boundary of a block. Here a block refer to an area

in random continuous shape that can not be used for routing. To be concrete, it



can be either a single component or multiple components connected by nets. In the
Fig.3.1, the DPS S; is an expression of component 1 by listing every pins following

the direction of the dashed arrow.

b . S1:CBA
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Figure 3.1: An illustration of pin-sequence generation of a component for PCB
routing.

At very beginning of our algorithm, eachseomponent is converted into a DPS, and
this is for two important purposes. First, based onour observation, the Lemma 3.1.1
which suggests DPS can be used to examine the compatibility of nets. Second, the
routing order for against-wall router can be determined efficiently with a polynomial-
time algorithm from DPS which-will be detailed in-Section 3.3. Both of the properties
exist only if pins are all on a single block. Consequéntly, before we can benefit from
these characters, we must figure out another mechanism to combine all the DPSes

into one; this is to connect of all the components together.

Lemma 3.1.1. Arbitrary two nets having their tokens interleaving each other on a

DPS are incompatible on a single layer.

Before we introduce to our algorithm, we describe some operations of DPSes.
A DPS is a cyclic sequence which can be shifted, an operation removing the first
element and appending it to the end, illustrated at lower right of Fiig. 3.2. The shifted
DPS are still considered to be the same as the original DPS. The other operation,
combination, is described as follows. There is at least one token in common between

the two DPSes participating this operation. One of the common tokens is selected
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to be the Component Connection Pin(CCP). A DPS is then shifted so that the CCP
is at the front of the DPS and inserted before the CCP token found at the other
DPS. In Fig. 3.2, where S; and S2 are combined with token F' as the CCP. Once
the pin is connected, its two components will be bonded into one super component

whose DPS is exactly the final DPS( pins following the order of the dashed arrows

e Combination

EE- 4 | 4 e S2:GHIABCDEF
== Ly " sanDEF

b S24:GHIABCDEDEFF

Shift Operation
S1 :CBA
S1' = shift(S1)
S1':BAC
S1" = shift(S1')
S1":ACB

in Fig. 3.2).

Tow

—

==

Figure 3.2: Display two opetations-in-DPSs shifting and combination.

Here comes two questions:«in what order should DPSes be combined, and which
element should be the CCP ini each combination? A random selection can not be
good since these decisions will«directly influénce -how many layers are used in the

result.

About the first question, there are a few things to know. To combine a design
composed of m components, combination operations will be performed m — 1 times,
so all the components must be chosen at least for one time. By considering all the
components as nodes of a complete graph, the properties reminds us the algorithms
for minimum spanning tree(MST) which select m — 1 edges over a graph to span
its m elements with minimum cost. Here we let the weight of an edge to be the
number of connection between its two components. It is because we expect two
components sharing most nets having the greatest chance to generate pairs that
could be eliminated. For simplicity of implementation, Prim’s algorithm is used

here.



As in Algo. 1, Prim’s algorithm maintains its node in two sets, black and white.
The connected nodes are put into black set while unconnected nodes are in white,
and the edge of the largest weight from black set to white set are chosen every
iteration until the N — 1 iterations are done. Every time an edge is chosen, the DPS
of component belonging to white set are combined with the base DPS. Therefore,
the base which stores our final result will get longer and longer as the process going
on. It will eventually cover all the pins of the design before the process ends. This
heuristic does not guarantee the best combining order, but is generally good enough

in our approach.

Algorithm 1 Adapted-Prim-algorithm for DPS combination
Require: List of sequences S
Ensure: Combined DPS sequence base
d <= ARRAY (SIZE(S), —1) {The maximum weight from visited nodes}
u <= ARRAY (SIZE(S), white) {Nodes not yet:béen visited as white}
n < 0 { First node }
base <= S[n]
for i from 0 to SIZE(n) — L'do{Combines N - 1 times}
uln] < black
mar <= —1
for j from 0 to SIZE(S) =1\do
d[j] <= MAX(d[j], COMMON-PINS(base,S{7})) { Weight of edge in Prim’s
algo.}
if mazr < d[j] and u[j] = white then
c<=
n<-c
base <= COMBINE_DPS(S[n], base) { Node n Selected}

One thing to note is that obstacles can be considered as special components
having no pins on them; these components are converted into null DPSes. They

have nothing to connect with and should be dropped before our algorithm starts.

Next is the second question: how the CCP is selected? Our goal is to make the
final DPS containing as less interleaving nets as possible, and we have found some

special palindrome-like patterns in our manual trails. These palindromes occur when



some components of bus are connected with pins stand face-to-face(sometimes side-

by-side), as shown in Fig. 3.3, which is most desirable condition. In our example

Figure 3.3: An illustration of a component connecting pin(CCP), is chosen from the
pin-sequences, is the first connection among all nets in components. PinD is set to
be the CCP and connected to the corresponding component.

in Fig. 3.2, a good case could be DPS2:GHIABCDEF merging DPS1: BAC'. They
can be combined perfectly and generate a palindrome subsequence ABCCBA! as
long as C' is selected as CCP. The palindrome/can be generated when opposite
subsequences exist, like ABC' inn DPS2-versus CBA\in DPS1. Sometimes the best
solution is not obvious; shifts.must be applied to find them. From this example, we
realize that finding a good CCP. seemsto'be a sort of string comparison problem,
if we reverse one DPS. We therefore manage it with‘ar classic algorithm for longest
common sequence(LCS) problem [18].0 This problem is proved to be NP-hard in
general form, while it is polynomial-time solvable for fixed number of sequences.
To fit the problem here, LCS algorithm need some modification. Another slightly
changed version of LCS problem called longest common cyclic subsequence(LCCS)
is already stated in [19] which still returns the longest common subsequence, only
that the inputs sequences are allowed to rotate. Algorithm for this problem can be
implemented similarly to the traditional LCS with one of the sequences has to be

duplicated twice before comparing 2. The duplication does scale up the problem

! According to the definition of combination, for certain CCP, the resultant compatible pins are
the same whether you decide to shift first sequence or not.

2The complete implementation of LCCS is not as easy as described here. We are allowed to do
this way without loss of correctness is because our sequences can have at most two instances for
each unique symbol. DPSes are not general strings as defined in LCCS problem.

10



size of LCS, while by only a constant factor 2, which does not increase the time
complexity dramatically. This process is shown in Fig. 3.4. Note that it is a heuristic
since the optimality in Lemma 3.1.2 is ruined in the presence of more than two
components. After the common cyclic sequence is selected, all of these signals are
valid candidate for CCP. In our experiments, we select the net having physically

closest pins as our CCP.

Lemma 3.1.2. For two DPSes, after one of them inverted, the subsequence found
by performing LCS algorithm contains maximum number of non-interleaving pins

between these two sequences.

DPS Combination

DPS,:BAC DPS,: GHIABCDEF
One-side_Reversion
DPS, :CAB DPS43»GHIABCDEF
Duplication
DPS, : CABCAB DPS,: GHIABCDEF
Conventional LCS
DPS, : CABCAB DPS, : GHIABCDEF
UndosDuplication
DPS, : €ABCAB DES,: GHIABCDEF
Undo. Revsersion
DPS,:CBA DPS,: GHIABCDEF

Sequences Insertion
DPS,,: GHIABCCBADEF

Figure 3.4: LCCS algorithm is used here which find out most compatible pins be-
tween two DPSes.

3.2 CCP Routing

After we locate the CCPs, we can start to connect our components, since the
priority among them is as the order they are picked. CCPs suffer little from routing
order because their route span a tree and a tree on plan will not form any closed

region and hence will not block each other. A special router is designed for CCPs

11



which is very different from the router used for other nets. This is because the
routing of these nets have a great influence on solution qualities. If some of them
are too close to each other or to obstacles, the remaining nets will easily failed due
to the lack of capacities at narrow channels when performing against-wall routing.
As a result, their routing policy is right opposite to other nets: they tend to travel

away from the obstacles.

Through some trials, a general A* router [2] guided by the bus planner proposed
in [3] is chosen for this task. On the Hanan grid, points are allowed to move when
new points are inserted, and we make the space This making all the nodes evenly
occupy the bin in Hanan grid so that generated routes are guaranteed to have some
spaces with obstacles around. Then, a monotonic router is in charge of connecting
these nodes and finishing the entire CCP routel With these spared margin, existing
routes will less likely to trap those non-CCP mets: This, however, may not eliminate
all the hazards, especially in xegions with a-large amount of obstacles. Updating
congestion cost and rerouting”CCPs may still needed in some sceneries. Fig. 3.5

shows the result of the connections.

3.3 Layer Assignment and Routing Order

The final result of combination leave us a long DPS containing all the nets in
design; all the components are turned into a super component by CCPs. A notable
fact is that the DPS should still hold the character of being a clockwise-ordered pin
sequence of the design. To assign the layer of nets, we must select the maximum
pin set from the DPS that can be routed without crossing. As the shapes of the
blockage do not really matter in finding the routing topology, we can treat it as a
circle, and the blank area outside this circle is our routing resource, as shown in
Fig. 3.5. Applying a rough against wall route on the circle generate those stroked

arcs around. We can also found D causes a conflict with £ in Fig. 3.5, as suggested

12



by Lemma 3.1.1. From the figure, it occurs to us that an algorithm for maximum
independent set(MIS) problem of string compatibility could be employed to solve the
layer assignment and routing ordering. A work [17] on channel routing happens to
satisfy our needs. The MIS problem on a general graph is an NP-complete problem,
while utilize special structure of arcs, [17] can acquire optimal solution with an
elegant dynamic programming(DP) algorithm. This algorithm was proposed to
solve the problem in channel routing by modeling the pins on both side of channel
as a closed ring; it finds maximum number of nets which can be routed inside single-
layer channel without crossing. In [17], MIS of an arc from element i to j is the
maximum number of cuts which can reside between 7 and j. It derived a recursive
relationship between MIS of the arcs® based on the property above where k is the
element such that j and k forms a cut.
0,ifi >y
MIS(7, j) = < MAX[MIS(7, j —1), MES(Z, k=—1) + MIS(A+ 1,7 — 1)+ 1], if i <k < j
MIS(7, 5 — 1), otherwise

Further, it can be solved with a dynamic programming in time complexity of O(n?),
where n is the number of elements in.given sequence. "Though our routing, opposite
to this work, is routing outside the circle; they are conceptually identical problem.
Inspect Fig.3.5 carefully, we can see that if signal H is in the MIS of signal I, H
must be routed before I, or it will be blocked; we say H is a prerequisite of I and
this relation forms a partial order. This observation is also consistent with the fact
that CCPs all have MIS of 0, they must be routed. Modifying the algorithm for
channel routing slightly by adding an extra field in the DP table storing the MIS,

we can simultaneously get the MIS of nets and serve them as our routing orders.

After order and layer assignment are figured out, we can finally apply the against

wall routing on the design. The router is in fact a shortest-path router, say, maze

3The first case is the boundary condition, the second stands cut;z has a chance to be selected
into MIS(, j), and the last case is when the cut,; is outside the range of i to j.

13



Figure 3.5: The left side is the design with all components connected. The right side
is the combined DPS of example design arranged as a ring. Following the dashed
arrow in both side, you will see they exactly express each other.

w >
N

F g B A IHG

oW

DPS:IHGGHIABBACEREDLEF.

Figure 3.6: The routing result of against-the-wall routing. All nets are connected in
order and routed against the “walls”. The results show that the nets will be close
to the wires of the connection of the CCPs and have resembled wire shape for bus
requirement.

router, which assigns strong costs on those grids not beside an obstacle. Despite
being a grid based router, this router has only two directions to go, it either goes
clockwise along border or inversely, and is hence very efficient in run time. In the
long run, all the nets have been connected, and the topology route is finished. The

example result is shown in Fig. 3.6.
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Chapter 4

Peripheral Matching

The results could be still far from desirable, even if we have tried to prevent
large skew by planing nets altogether in topology routing. As been discussed in
introduction, the presence of skews among signals may lead to undesired degrading
on signal integrity or, in extreme«cases, cause malfunction of chips. Here we pro-
pose a length-matching method.that could-enhance solution in terms of wire-length

variation by reassembling routes by a linear programming(LP) framework.

Since we have found that dominating mismatches in bus often occur on those
nets at a long distance from their groups members,our next algorithm focuses on
matching the routing around components. That is, we assume the route we get
from last step are virtually matched away from components. Usually, even if they
are not exactly matched, the experiences suggest the responsible skews will be small
relative to those caused by ill-placed pins. It is because our bus have been guided
by its CCP and had similar shapes and distances in topology routing. Nevertheless,
owing to the existence of obstacles, this assumption may fall impractical in some

cases. We will relax this assumption later in Section. 4.3.2.
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4.1 Preliminaries

Before we describe the algorithm, terms and notations that will be referred in

problem formulations and explanations of our algorithm are defined.

PV:0 W+y PV:W +y
Fecccccccc e e e ——- -a
\I\_‘_______________'i PV Axis

| |

¢ |

I WA

| IPerlpheraI

! | Point

|

| Component I

I I

! I

| X*WSI—T

| |

I I

| ITrack X

Figure 4.1: Map the points around the component info our custom coordinate sys-
tem.

Given a rectangle R, we say the rectangle having“the same center with both
width and height larger than R by X< 2W .S te“be the boxX relative to R, where

WS is the specified wire space of nets.

For an arbitrary rectangle R, we can define a coordinate system called peripheral
value(PV). PVs and peripheral points are one-to-one mapped, that is, there exists

exactly one point on R for every unique PV and vice versa.

4.2 Problem Formulation

Now we define our matching sub-problem as follows. Given one rectangle rep-
resenting the component, there are some fixed pins on it. The Nth box of the
component is given a special name “matching window”, where N = 2[l22N1 and N

is number of nets in the bus. The N can be depicted as the minimum value greater
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than N while is a power of 2. That is, if the number of nets is exactly a power
of 2, then N =N , as the case in illustrating example, it is two times N’s most
significant bit in two’s complement otherwise. Margins are reserved between sides
of the component and the matching window as shown in Fig. 4.2; our algorithm
will clean up all the existing routes inside and reroute them. The margin size is
determined for reasons explained in next section. On the matching window, there
is a point referred to as bus cut at which the bus generated from last step intersects
the matching window (the arrow labeled “Bus”). The goal is to reconnect the path

between the pins and the bus cut while keeping least length variations. Even though

~Mm
AN fi
— > Path Matched Bus

Matching Window. T

\ ' F
\ \
(Outter Rectangle) ,I Y \
o b ) \
i ll \\ \\
-
N x WS // / ] \
1
/

Figure 4.2: Outside the dashed horizontal line is planed bus and the curved paths
are part of traces to be rerouted.

not shown in Fig. 4.2, the pins may not all sit on the same edge of the component
so the routing region might be L shape or U shape as well. Although it is intuitive
and naive for the extension, for simplicity, we will not consider these cases here. To
make the whole idea more concrete, a simple example composed of only four nets in

Fig. 4.4 are illustrated.

17



4.3 Linear Programming in Matching Length

The idea of this approach is mainly inspired by clock synthesis, another well-
developed topic in IC design which also takes matching problem seriously, only that
rather than buses, a super huge multi-terminal net, clock, is routed. Most of this
collection of works treat their clock routing as a branched tree structure with clock
source as the root, and clock sinks as leaves of the tree. Their main objective for the
problem is hence balancing the delays for paths from root to all the leaves. With
this in mind, we may also regard the cut point and pins in our problem as the clock

source and clock sinks respectively.

Another feature of classic works in clock synthesis is that, due to the problem
scale, they tend to solve it in a bottom-up.manner so that the problem size is reduced.
Neighbor leaves are first grouped as asub-tree that.matches all the members locally,
and these minor trees are balanced when grouped into darger ones. Level by level,

the clock tree is built and balanced; we also borrow this“idea to our solution.

Level x-1

r.-.-.l.-r—

—o-o-l LO-O-

Level x

Figure 4.3: The Z-shape routing are used in connection between levels.

Instead of matching all net to the bus cut at once, the nets are required to
match another adjacent net and form new groups before they reach the second level
and the groups must be routed together thereafter. The router will route a group
together in Z shape from one level to next, therefore the number of box used between
levels equal to the group size of lower level as in Fig. 4.3. Before the group reaches

next level, it must match another adjacent group®. In this way, the bus can be

1Unless it is left unpaired at the level, in such situation, it can go straight to next one.
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represented as a tree whose height is [log, N| + 2; The added two represents the
layers of leaves and the root so that for a bus composed of only one net, there is
still a tree composed a root and a leave. In this manner, we can see the number of
boxes needed is at most 1 for first and second levels, 2 for level 3, 4 for level 4, ...,
and 2772 for level z, till level [log, N1+ 1. The last level is not considered because
it stands for the position of bus cut. The overall boxes must be used are therefore

can be obtained, which determines our window size.

[log2 NT+1
L+ Y 272 =14 1424 f2lenNmt < gfleeNT =
=2
Each node in the tree is turned into a PV and put into LP, and the overall problem is
to generate the constraints with these N +1 constants (root and leaves) and 2N — 2(
all other nodes) variables. By feeding theserequations to solvers, desired position for
nodes in PV can be figured out; wecan reshape themets based on these solutions.
The constraints can be classified into-three categories: tree-structure inequality,

path equality, and blockage constraints.

4.3.1 Tree Structure Imequalities

To reduce problem complexity, we forbid any route to go back toward the com-
ponent. More clearly, the route can only move toward the outer rectangle or stay
at the box it belong. Along with the definition of PV, we are able to transform the
matching problem from two-dimension to one-dimension. Because the length from
inner rectangle to outer rectangle is constant, the LP solver just needs to decide the

horizontal movement of routes.

However, to model our problem as a pure linear programming, one more challenge
to resolve is that taking absolute value in constraints is not allowed 2. For this reason,

we put some extra inequality constraints to pre-assign the order of variables, this can

2Absolute values between variables implies conditional operations which can be realized in
constraints only if extra binary variables are introduced.
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possibly shrink the solution spaces while considering the lost in efficiency from LP to
ILP, we take it as a fair trade-off. Plus, according to our experience, this compromise
seldom shrinks feasibility tremendously. The rules we made for variables are stated
as follow. The nodes in tree are given an index in the style of a traditional complete
tree. Namely, the root is indexed 1, a left child of nodex is node2x, and node2x + 1
is the right child. Nodes between root and leaves are variables. Constant location
of pins are at the leaves of the tree. We know there is 2N leaves for a complete
tree of [logy, N| + 2 in height, this mean half of the leaves would be left unused.
To prevent the nodes touch their siblings, they must be at least a wire space apart
from each other. The final rule is that, for all the nodes, constants or variables, they
must be greater than their left child and lesser than their right one. For instance,
V, are restrict to left side of Cy by thissconstraint, in Fig.4.4. We also assign the
location constant of the pink to he-at the jth nodeswhere the relation of j and k
is: j = ON — 2+ 2k + (k mod-2). This is intended to-make the range of variables

Constant P1=C1-V2+V2-V4+Co-V4
Varlable P2=C1-V2+V5-V2+V5-Cio
P3=V3-C1+V3-V6+ Ci3-Ve

Matching -P4=V3-C1+V7-V3+V7-Cl4

\' Window P1=P2=P3=P4
Piz 3, ~
1 I I Pa )

/
/
/

N

Figure 4.4: The equality constraints are described by the formulas on the right side
which contain only the horizontal distance of each segments, since the vertical parts
are identical to all paths.

not so limited by the final rule.

20



4.3.2 Path Length Equalities

Under the tree structure, you can know the distance from a certain pin point to
the bus cut. There is only one path from the leaf node to the root; summing up the
distances of all the variables you traveled plus the vertical distance is the matching
length. As can be seen at right side of Fig. 4.4, path length equivalent constraint
composed of N — 1 equations (by erasing variable Ps with substitution), and this
is our major objective. Because the vertical length is a constant for all the paths,

they canceled each other in the equations.

Though this LP could be a feasible problem, to make sure the solver will not
generate redundant detour, it is recommended to have one of the paths, say P, to
be minimized in the objective, along with other equation the overall length is also
minimized. In addition, when thissbus has nets that'have been assigned to multiple
layers by our topology routerj~an objective function is needed. In this situation,
rather than one LP, this bus will be solved by @ number of LPs depending on the
number of layers this bus arerassigned to.~Designers' may have to give a desirable

bounds for the bus, so that eachLP-confines their'paths to fit in the given range.

Previously, we have claimed that the routes outside the matching window are
almost matched while against wall routing might encounter obstacles and introduce
significant variations to bus that broke the assertion. However, this assumption
was actually made to describe our problem and can be relaxed by adding those
mismatches found in bus into the constant term of path equalities. More straight-
forward, if one net P; is longer than the other net P, by x units in the bus routing,

the equality between the two nets can be put like this.
Pl = P2 -+ .I'/Q

Where P; and P, is the overall path length of corresponding nets as in Fig. 4.4;

the x/2 means that nets have two terminals, and the mismatch can hence evenly
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distributed to both the terminals.

Level x-1 ApeofASARSWS
|
|
Levelx - 's

Figure 4.5: For the precision, the length calculation must consider space occupations
of wires as shown in figure.

The equations listed in Fig. 4.4 are for demonstration purpose only; they are
not complete. In reality, wires themselves do occupy some spaces, and our model
has neglected this fact by now, and considering these spaces brings out some more
constants in the equalities. An example in Fig. 4.5 reveals this, if we always use the
left most positions for our nodes, rather than node value A, A" is actually used in
calculation of the distance for the right branch in this level. The computation detail

of these constants is intuitive and frivial,jand-is"hence omitted here.

4.3.3 Obstacle Constraints

The matching window is not necessary to be a free space. From time to time,
the region can be occupied with obstacles,-and plan our routes on them are illegal.
Consequently, some conditions are added to ensure valid routes in our solution. By
scanning through each box, we can identify a range in which our nodes can move
around. Suppose all the obstacles are in rectangle shapes, we may then determine
the position relative to the tree by examining their edges. According to the position,
we know which nodes are supposed to be bounded. Only the node closest to the
obstacle will be involved in such a constraint as tree structure inequalities are going

to take effect for other relevant nodes.
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A Pin
Variable

Matching
Window

Figure 4.6: The arrows between obstacles and nodes indicates the extra constraints
caused by the blocks.

4.4 Final Refinement

After the LP has been solved, the routes are retrieved by reversely converting
the solution from values to peints.. Regardlessof all the efforts, some final tunes
might need to get rid of those variations. These adjustments are performed locally by
adding bumps around those shorter wires. Therouting priority acquired in topology
routing can be reused here. By negating routing order, the nets will be tuned from
the inner most to outer most. This is reasonable and intuitive; those inner nets
have lesser routing around them, serving them first could prevent other nets from

occupying these critical regions.
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Chapter 5

Experiment Results

We have implemented our methodology in C++4 on a machine of quad Intel Xeon
CPUs cores with 32GB memory. Also, several cases shown in references (Test Cases
I and IT resemble the cases shown in [14] since the cases in [14] are not available;
Test Cases III to V are from [?].«provided from design houses) are served as our
benchmark. Table 5.1 exhibitsthe test-cases and run'time for our router. Nets and
Component indicate the nuniber of nets and components in test cases. Grid size
shows the size (the number of grid{eell-on.PCB,board)' of the routing problem,
Total Time includes the time for building the routing grid and the run time spent

by our router.

Fig. 5.1 shows the Test Case I which has five components. The routing result

!The grid sizes of the test cases in this work are larger than the BSG grid sizes in [14], which
shows the granularity of our approach.

Table 5.1: The summary of test cases and experimental results.

#Nets | #Components | Grid size | Total Time

Test Case 1 17 5 250 x 250 < 1 sec
Test Case 11 18 4 300 x 230 <1 sec
Test Case 111 57 5 300 x 230 <1 sec
Test Case IV 81 8 640 x 560 2 sec
Test Case V 104 9 900 x 900 2 sec
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Figure 5.1: The routing result of Test Case I. The result shows that the routing nets
are centralized as buses and the routing area is better utilized. The numbers beside
pins are the routing order automatically figured out by our topology router.

<

%@

Figure 5.2: The routing result of Test Case I with our own implementation of work
[14].

is quite different from that of [14] as can be seen in Fig.5.1 and Fig.5.2 2. The run
times can not be compared fairly for some efficiency considerations, e.g. variables
reduction, proposed in that work are not fully implemented in our reimplement ver-

sion. Comparison of the results show that almost all nets are routed in certain region

2They compete in same wire space with identical LP solver. BSG grid size is determined
dynamically according to topology as described in this work.
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Figure 5.3: The routing result.of Test Case IV. This'case has eight components and
the length constraints are confermed.

and the routing area is better utilized in‘our work. On the other hand, controlled
by the solver, there is no neat workaround to prevent those unnecessary snaking in
Fig. 5.2, and those irregular routing shape might result in certain undesired effects

under electromagnetic verification.

Fig. 5.3 shows Test Case IV which has more components than the case in Fig. 5.1.
The net distribution between each component are similar to the result of bus routing.
Our router can also detour the nets to avoid crossing and conform with the length
constraints. The top-left enlarged view shows our router can shift the nets in a
certain region to meet the length constraints. Moreover, many net-joggings are

avoided due to non-floorplan-based approach (area sizing). Even the components
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are not face to face, our router can still find a good solution.
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Chapter 6

Conclusion

In this work, we have proposed a board routing solution for a practical preas-
signed boundary pins problem. Instead of applying the shortest path algorithms like
conventional routers, we have discovered some special properties of component and
pins from cases and successfully utilized them into'our work. Our approach is good
in space management, and has. the ability to meet the wire length and shape re-
quirements at the same time. The experimental results show our work can preserve
routing space in sequential planar routing under-given boundary pins and conform

with the length constraints.
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