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I 

 

三維積體電路在通用圖形處理器裡基於 

力使量法的平行分割演算法 

 

研究生：陳琬菁              指導教授：賴伯承教授 

國立交通大學 

電子工程學系 電子研究所 碩士班 

 

摘 要 

 

本 論 文 提 出 一 個 創 新 的 平 行 演 算 法 (稱 為 FDPrior) ， 利 用 力 使 量 法

(force-directed)解決在3DIC中的多層次分割問題(multilayer partitioning 

problem)，我們的研究主要提供一個全新的角度去思考如何解決分割問題；由於

3DIC技術中層次架構及規模日益擴大，需要昂貴的計算過程才能達到優化目的，

利用多核心架構的平行性將成為關鍵，並可縮短運行時間，我們研究目標是盡量

減少TSV的總數量，且同時滿足每一層晶片的面積限制。藉由N-body simulation

方案及新技術達到減少不必要的同步次數，FDPrior成功地在通用圖形處理器

(GPGPU)架構裡開發出大量平行度；使用ISPD98當作輸入並做實驗測試，FDPrior

平均上比傳統FM演算法獲得5.95倍更好的實驗結果，並加速高達303.66倍的運行

時間；而跟PP3D相比，FDPrior平均仍然可達到7.71倍更好的結果，和增強3.35

倍的運行時間。 

近年來，多階層超圖(multilevel hypergraph)分割演算法比非多階層的方法

可得到更好性能。因此，該論文也提出一個新的演算法稱為MFDPrior，它是使用

之前所提的FDPrior當作基本分割演算法，採用多階層演算法作為骨架，跟之前所

提的FDPrior演算法相比，MFDPrior平均可獲取1.46倍更好的實驗結果，和贏得

1.44倍的時間加速。  
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A Force-Directed Based Parallel Partitioning  

Algorithm for Three Dimensional Integrated Circuits  

on GPGPU 

 

Student: Wan-Jing Chen            Advisor: Bo-Cheng Lai 

Department of Electronics Engineering  

Institute of Electronics 

National Chiao Tung University 

 

ABSTRACT 

 

This thesis proposes an innovative force-directed parallel algorithm, FDPrior, to 

solve the multilayer partitioning problem of 3DICs. The purpose of our research is 

providing a new field of vision in the partition problem of 3DICs. The growing scale 

and multi-layered structure of the 3DIC technology make it computational ly 

expensive for EDA tools to achieve optimization goals. Exploiting the algorithmic 

parallelism on multi-core architectures becomes the key to attain scalable runtime. 

The objective is to minimize the total number of Through Silicon Vias (TSVs) while 

meeting the area constraint for each layer.  By adopting the N-body simulation scheme 

and novel techniques to reduce synchronization overhead, FDPrior successfully 

exposes the massive parallelism on the multi-core GPGPU architecture. The 

experimental results on ISPD98 benchmark show that FDPrior outperforms the 

conventional FM algorithm by achieving in average 5.95X better TSVs and up to 

303.66X runtime speedup. Compared with PP3D, a paral lel 3DIC partitioning 

algorithm, FDPrior achieves 7.71X better TSVs with 3.35 X runtime enhancements.  

 In recent years, the multilevel hypergraph partitioning algorithms could earn 

better performances than non-multilevel methods. This is why our thesis also 

proposes an algorithm, MFDPrior, which fulfills the multilevel framework. MFDPrior 

exercises the FDPrior as the essential partitioning part. When comparing with the 

single level FDPrior, MFDPrior demonstrates an average of 1.46X better solution 

quality and earns 1.44X speedup.   
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Chapter  1   Introduction 

Introduction 

 

A Graphics Processing Unit (GPU) is a multi-processor which is used to offload 

intensive computations. Authentic speedups can be achieved by controlling the power 

on certain compute-intensive applications. The advantages of GPU technologies have 

propelled the GPU into a sea change in computer architecture due to the impending 

ubiquity of multi-processors. However, programmer’s traditional algorithms and the 

selection of algorithms being used for problems require changes to utilize GPUs [1]. 

This paper adopts a highly parallel N-body simulation scheme on EDA problems and 

maps on a GPGPU to benefit from its massive parallel computation capability.  

    N-body simulation can describe the interaction of N particles in a system. Each 

of N particles affects others according to a function of their separation distances [2]. 

In computational physics, N-body algorithms are usually relative to many common 

problems in gravitation, fluid dynamics and electrostatics. The all-pairs direct 

approach to N-body simulation is a straightforward method that sum of all pair-wise 

interactions among the N particles. This naïve method requires O (N 2
) computational 

complexity, which is clearly not fast enough in the simulation of large systems. 

Parallel computation is considered as a good solution to speed calculations. Nvidia 

had researched in N-body problem and discovered that all-pairs N-body algorithm is 

special suited to execute on GPU platforms [3].  

Our research provides three contributions. The first important contribution is the 

translation from exploring electronic design automation (EDA) field into applications 

of N-body algorithm [4]. Besides, our research attempts to transfer interaction model 
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from traditional all-pairs into partial-pairs, which is more proper to electric circuits 

and real-world algorithms.  

The second strength is to reduce the number of synchronizations by our proposed 

algorithm, FDPrior. Three-dimensional integrated circuits (3DICs) technology has 

been considered as a solution to the challenges of large die area and long global wire 

delay in the advanced semiconductor technology [5]. Accordingly, we deliberate a 

study case in the partitioning problem on 3DICs by N-body algorithm. Under these 

considerations, we proposed a novel multi-layer partitioning algorithm on GPU 

platforms, which is called FDPrior. FDPrior can efficiently reduce the unnecessary 

synchronizations by implying bottom-up layer constructions. 

The third contribution is to join a multilevel structure on FDPrior and improve 

the solution qualities. Multilevel approach is one of famous algorithms to solve 

partitioning problems. Multilevel method can coarsen the size of original hypergraph 

and solve each level hierarchically. Because of the enhancement of solutions by 

multilevel methods, we also implements multilevel methodologies on the proposed 

FDPrior algorithm, and called this modification algorithm as MFDPrior.  

The rest of this thesis is organized as follows. Chapter 2 introduces the 

traditional N-body simulation in detail. Chapter 3 provides the GPU platform 

architecture, detailed optimization steps and parallel design methodology on a GPU. 

Chapter 4 presents the related work on partitioning problems and problem formulation. 

The overview of the proposed FDPrior algorithm flow, the experiment results on 

ISPD98 benchmark and probably issues about FDPrior are discussed in Chapter 5. 

Chapter 6 focuses on the multilevel approach of FDPrior algorithm, MFDPrior. 

Besides, the discussion of MFDPrior and experimental results also are provided in 

Chapter 6. Finally, the conclusions are drawn in Chapter 7.  



3 

 

Chapter  2   N-body Simulation 

Introduction of N-body Problem 

 

N-body simulation is a simulation of N particles in a dynamical system, and is 

usually under the influence of physical forces, such as gravity. In Chapter 2, we 

introduce some basic concepts for helping to understand the fundamental of N-body 

problems. 

 

2.1 Definition of N-body Problem 

Formally, N-body problem is a problem which describes the motion of N 

particles that interacts with others [6]. Each particle affects all others according to a 

function of their separation distance. The informal version of the N-body problem is 

described as following [7]:  

In a dynamical system, there have N particles in space which masses are m1 … 

mN . In the beginning, only the present conditions and initial positions for every 

particle are specified at the current instant. Then determine the position of each 

particle for the future time or even past time in this system. In mathematical terms, 

the N-body problem describes the process of finding a global solution of the initial 

value problem. 

N-body algorithms have numerous applications such as astrophysics, molecular 

dynamics and plasma physics. The all-pairs method is a brute-force approach that 

evaluates all pair-wise interactions among the N particles. The direct method is a 
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naïve solution to solve N-body problem, which sums the individually-computed 

forces on a given particle over all the mutual interactions [8]. However, this all-pairs 

directed technique requires O(N 2
) computational effort for the interaction of N 

particles among a system. Due to the required intensive mathematical computations, 

N-body problem encounters a formidable challenge to the numerical analysis and 

computer hardware. 

The force of attraction experienced between each pair of particles is a constant 

Newtonian force. In the view of physics, N-body problem determines the motion of N 

particles attracting one another in pairs according to the Newton law of gravity under 

a given initial condition which contains their positions and velocities.  In the current 

popular models, the interactions between particles essentially concentrate only on 

their self-gravity. The N-body simulation provides an evolution of a self-gravitating 

finite system. In the view of a self-gravitating system, each particle feels the force 

attraction of all the other particles and interests primarily in the dynamics system 

which is developed from initial states [9]. The lack of anti-gravity or reaction is the 

mainly arduous issue in simulating systems. 

We believe that the equations of motion are not purely gravity in N-body 

problem. If the definitions of force attraction between each pair of particles are 

applicable, the problems could be handled properly. The numerous applications in 

N-body problems are not only on physics but also on electronic design automation 

(EDA). We are primarily interested in the modified equations of the interactions, as 

opposed to the original Newton’s Law of Gravity. In this thesis, our research 

presented an approach to provide an insight about the nature of existing 

approximations to self-action systems instead of self-gravitating systems.   
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2.2 Difference Formation of Newton N-body Problem 

Isaac Newton’s monograph was published in 1687and comprised the foundations 

for most of classical mechanics. Since gravity is responsible for the motion of starts 

and planets, Newton is among the first who completed the mathematical formulation 

which presents gravitational interactions in terms of differential equations in a 

system.  

In a system which contains N particles, the equations of motion for a particle of 

index i can be described in the following form: 

        
         

       
 

 

       

          (1) 

Equation 1 is Newton's second law of motion. For a particle of index j,    is the 

mass and    is the coordinates. For convenience, the gravitational constant G usually 

scales to one unit (that means G is equal to one). The power in the denominator is 

three instead of two to balance the vector difference and be used to specify the 

direction of the force.  

Equation 2 is a modified expression including a softening parameter ( ) [10]. 

         
         

         
 
        

 

       

 (2) 

The softening parameter is introduced in the modified equation on account of 

preventing the force singularity as the separation distance       0. Informally, a 

self-gravitating system is called collision-less system if and only if the mass 

distribution does not influence its evaluation. However, pure Newtonian interactions 

listed in Equation 1 (   =0) are used for most applications. 
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2.3 General Considerations: Solving the N-body problem 

Newton describes the three laws of motion and the law of gravity. These 

Principia is generally considered to be one of the greatest scientific accomplishments 

of all times. In the N-body problem, N defines the number of bodies in a system.  

With these principles, Newton completely demonstrated that the two-body (N = 2) 

problem deriving Kepler’s laws of planetary motion and his theory of gravitation. 

The two-body problem could be completely solved by Johann Bernoulli [11]. In 

the case of N = 3 (called three-body problem), strict solutions only exist in some 

special cases. The N-body problem only confesses the exact solutions in the case of 

two interacting particles. It has been widely known that the N-body problem in 

Equation 1 for N ≥ 3 cannot be solved in the same sense as the two-body problem. 

Some physic literature even concluded the impossibility of solving the N-body 

problem when the number of bodies is bigger and equal than three (N ≥ 3) [12].  
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Chapter  3   N-body Simulation on GPU 

N-body Simulation on GPUs 

  

Chapter 3 mainly illustrates how N-body simulation is implemented on a GPGPU. 

Since our experiments are implemented on this platform, GPGPU architecture of 

Nvidia Geforce 9800GT is provided below. Chapter 3 presents the parallel design 

methodology which guides optimizations from a parallel algorithm to a parallel 

architecture. And following sections discuss design considerations on GPUs, required 

optimization steps, and translation of hypergraph for collecting mutual forces in 

N-body simulation. Besides, memory restrictions on multi-core systems are discussed. 

 

3.1   The GPGPU Parallel Platform 

Our algorithms are implemented on the Nvidia Geforce 9800GT and the 

architecture is shown in Fig 1. The 9800GT includes 64 streaming processors (SP) 

which is grouped into 8 streaming multiprocessors (SM). Instructions will be fetched 

and decoded by SM and executed by eight SPs in the SM. In addition, each 

multiprocessor also has 8192 registers, 16KB share memory, the texture cache and 

constant cache.  

The following section will introduce about GPU platform in detail. Section 3.1.1 

introduces CUDA (Compute Unified Device Architecture) structure. CUDA is 

Nvidia’s parallel platform which provides several APIs to make parallel programming 

easier. In CUDA, most essential operations are executed by SPs. And Section 3.1.2 

enumerates GPU’s benefits.  
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3.1.1  CUDA 

CUDA is mainly based on the C-language which can let programmers quickly 

learn programming language. In CUDA structure, the region of executable program is 

dividing into two parts: Host and Device. In substance, host refers to the CPU side 

and device is the GPU platform. Usually the program will prepare ready information 

on the host and copy these data into memory of the GPU, and the GPU executes 

calculations on the device. Then the program on the host accesses completely data 

back from memory of the GPU. This memory translation takes extremely long latency 

as a result of only passing through PCI Express interface on a CPU. The above 

memory translation cannot be accessed too often for avoiding reducing efficiency.  

 

 Streaming Processor 

(SP)   Shared 

Memory 
  

Texture Memory 

L/S Load/Store 

Unit 

Figure 1: The architecture of Nvidia’s Geforce 9800GT. 
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CUDA platform uses SIMT (Single Instruction Multiple Thread) technique to 

exploit the parallelism of a program. In a SIMT program, every thread executes the 

same instructions on different data regions. In the CUDA architecture, minimum 

execution unit on a GPU is a thread. Many threads are grouped into a thread block, 

and thread blocks are grouped into a grid. Each thread has own space of registers and 

local memory. All threads in a thread block are executed by a SM, and share the same 

resources within the SM. But threads in different thread blocks cannot access the 

same shared memory and cannot communicate directly or synchronization.  Therefore, 

the extent of cooperation of threads is relatively low with different thread blocks. The 

CUPA program is based on the units of warp in implementation. A warp currently has 

32 threads which divided into two groups of 16 threads (half -warp). 

 

3.1.2  Comparison between A GPU and A CPU  

Compared with CPUs, using GPUs has a few major benefits to operate works. 

Above all, a GPU has numerous execution units but lower clock rate. On the contrary, 

a CPU usually has less execution units but higher clock rate. Since the numerous 

execution units on a GPU, a GPU cannot bring much help for works with low degree 

of parallel. Besides, a GPU normally does not own complex flow control units, 

efficiency will be relatively poor when draw on high degree of branching programs. 

And a GPU usually possesses more memory bandwidth, such as the memory 

bandwidth on Nvidia’s Geforce 9800GT is around 57 (GB/sec) and the currently 

high-class CPU just has around 10 (GB/sec). Moreover, the price of a GPU is cheaper 

than the price of a high-class CPU. However, current GPU programming model is still 

not mature and not yet recognized standards. Overall, a GPU platform is similar to a 

stream processor and is suitable to conduct a great deal of the same works. A CPU is 

more flexible which can conduct more various works simultaneously. 
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3.2   Design Methodology 

 
Figure 2: Parallel design methodology which guides the design optimization from 

algorithm to the parallel platform 

For achieving faster runtime, an appropriately co-optimized technique is 

demanded to handle the communications between the parallelized algorithm and the 

characteristics of the parallel execution platform. The parallel design methodology, 

which widely used to algorithms in this thesis, is introduced in this section. In spite of 

our case study only focuses on 3DIC partitioning on GPGPU, we believe that this 

design methodology can be applied for other algorithms as well as different parallel 

architectures. 

Fig.2 shows the flow of the parallel design methodology. This parallel design 

methodology can be divided into three fundamental phases. At first, the parallelize 

algorithm phase identifies a set of independent parallel tasks from the original 
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sequential algorithm. This first phase can expose the latent parallelism which could 

assist with speeding up the runtime of the architecture. Secondly, the quality aware 

legalization part can relax the synchronization criteria among parallel tasks within a 

certain execution period. The relaxed synchronization criteria allow the parallel tas ks 

to search even larger problem space for high quality results. Afterwards, specific 

mechanisms are added to coordinate concurrent execution of the parallel tasks without 

violating constraints while considering the quality of the solution. Finally, the last 

part performs a seamless mapping of parallel tasks to the underlying parallel 

execution platform. In the last part, taking advantages of the useful features of 

parallel platform and avoid architectural bottlenecks is the major work. For example, 

memory conflicts, which are caused by massive communication among parallel tasks, 

could be the common bottleneck without careful designs. The dashed lines on the 

right side of Fig.2 illustrated the circumstances that several iterations usually are 

required between exposing the parallelism and appropriate optimizations in the 

parallel platform. Based on this design methodology, the following chapters discuss 

about how algorithms are designed as well as optimized for GPGPU in detail. 

 

3.3   Design Considerations On GPGPUs 

Section 3.3.1 clarifies coalescing of a half warp of threads, and discusses a 

specified amount of data which are loaded from threads. In Section 3.3.2, the number 

of threads per block and the number of blocks per grid are determined .  

3.3.1  The Amount of Data Used by Threads 

In the present CUDA architecture, coalescing global memory accesses is one of 

the most important performance considerations in programming. Coalescing access is 

quite useful to possess some local coherence in the texture. When definite access 
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requirements are met, global memory loads and stores by threads of a half warp (or a 

warp) are coalesced into few transactions by the device [13]. Global memory should 

be aligned segments of 16- and 32- words to confirm these access requirements: for 

instance, if every thread all access 32-bits data, then the address which is accessed by 

the first thread must is a multiple of 64-bytes (16*4 bytes). Fig. 3 explains coalescing 

of a half warp of threads, such as floats are 32-bit words, and shows global memory as 

rows of 64-byte aligned segments.  

Figure 3: Memory segments and thread in a half warp of thread 

In current CUDA devices, an amount of data which is loaded from every thread 

can be 32-bites, 64- bits or 128-bits. If this amount of data does not meet the 

requirements, you can use the __align (n) __ instruction to solve problems. However, 

using 32-bits is the best efficiency. The used data types in our algorithms are integer 

or float types which all are 32-bit words. Because a GPU normally support 32-bits 

float type and probably not fully support IEEE 754 specification,  some operations 

may be less accuracy.  

 

3.3.2  The Determined Number of Threads 

In CUDA thread hierarchy, threads are grouped into a thread block, and thread 

blocks are grouped into a grid. The number of threads per block and the number of 

blocks per grid may affect the performance. How to determine these numbers is 

depended on algorithms. The number of threads per block multiplied by the number of 

blocks per grid is the totally number of threads that executes on a GPGPU. 

A half warp  

                         

64-bytes segment                                
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Each multi-processor has 8192 registers in the current CUDA device. If each 

thread uses 32 registers, a multi-processor only can maintain up to executions of 256 

threads simultaneously. If the numbers of present threads more than this figure, it will 

reduce the efficiency of implementation when a part of data must is accessed in global 

memory. The maximum threads per blocks of the prevalent CUDA device are 512. For 

safety, the fixed number of threads per block on proposed programs is 256 when 

considering the limitation of registers.  

Owing to parallel whole particles in N-body simulation, the numbers of blocks 

per grid is decided the number of particles divide by 256 which presents the number 

of threads per block. The number of threads that executes on the GPGPU must is 

larger than the number of particles. Since Nvidia Geforce 9800GT furnishes 

maximum 65535 grid size, the maximum particles can reach around 16 million which 

is big enough in N-body simulation. If the number of particles is more than 16 million, 

the execution of threads may take extremely long latency and cause worst efficiency.  

 

3.4   Optimization Methods On GPGPUs 

Although GPGPU provides highly parallel computational capability, without 

careful designs, the architectural bottleneck can easily limit the potential performance 

enhancement.  Our programs apply two techniques to enhance performance. The first 

one is coalescing access to alleviate memory bottleneck and the second one is the 

parallel reduction to speed up the synchronization among all cells.  These common 

optimized topologies are also suitable to other wide-ranging applications.  

3.4.1  Coalescing Access 

If every multiprocessors have belong global memory caches in the GPU platform , 

it will need cache coherence protocols and substantially raise the complexity of 
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caches. Since multiprocessors do not do cache in the global memory, the accessed 

latencies in the global memory are very long. Because of the accessed characteristics 

of the DRAM, the access in global memory is as continuous as possible. 

 

For continuous access, cells are placed into an array where the addresses are 

continuous. As shown in Fig.4, we use two arrays to describe this data construction. 

The array, ptrc, is used to index ptrset array that stores the set of adjacent cells. Each 

cell is stored as a sequence of the cells that it spans, in consecutive locations in ptrset. 

When accessing all neighbors within a thread block, this data structure qual ifies the 

coalescing access. For shorten the memory access latency, all threads in a block 

coalescing access and use the shared memory as a manual controlled cache.   

 

3.4.2  Reduction Technology 

 
Figure 5: The simple parallel reduction technology 

Figure 4: Two arrays that are used to describe in Fig.9-1.  
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Even though we reduce the number of unnecessary synchronizations, the 

algorithm still requires some synchronization to collect and calculate information 

among cells. Therefore we use the parallel reduction technique  [14] to speedup these 

evaluations. As shown in Fig.5, the computation complexity of an array with size of n 

could be reduced from O(n) to O(log2 n) in the program. 
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__global__ void  Devaluate_TSVs(){  

    __shared__ int sdata[256];                   //declare shared memory 

  int tid = threadIdx.x;                          //threads id in a block 

  int i = blockIdx.x*256+ tid;  

    sdata[tid] = 0;                              //initial shared memory 

//each thread loads one element from global to shared memory 

  if(i<net_size)sdata[tid] = dnet_highlow[i];  

    __syncthreads();              

  if (tid<128) sdata[tid] += sdata[tid + 128]; //do reduction in shared memory  

    __syncthreads();    

  if (tid < 64) sdata[tid] += sdata[tid + 64];               

    __syncthreads();    

  if (tid < 32) warpReduce(sdata, tid);               //reduction in a warp 

//store result for this block to global memory 

    if (tid == 0) dodata[blockIdx.x] = sdata[0];  

} 

Table 1: The reduction technique in a warp 

Table 1 illustrates code of the reduction technique in our following programs. 

This code sums of data by threads. Using __shared__ instruction accesses the shared 

memory which access speed is quite fast, listed in line 2. In CUDA devices, 

__syncthreads() instruction, shown in line 8, is a built -in function and denotes that all 

threads of a block must are synchronized to this point. When the number of needful 

calculations is less than 32, we have only one warp left. We don’t need to 
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__syncthreads() for less 32 threads per block and saves lot of time.  Hence, we 

construct additional code to handle part in Table 1 line 13. Table 2 demonstrates the 

reduction technique in a warp.  
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8 

__device__ void  warpReduce ( volatile int *sdata, const int tid ) { 

    sdata[tid] += sdata[tid + 32]; 

    sdata[tid] += sdata[tid + 16]; 

    sdata[tid] += sdata[tid + 8]; 

    sdata[tid] += sdata[tid + 4]; 

    sdata[tid] += sdata[tid + 2]; 

    sdata[tid] += sdata[tid + 1]; 

} 

Table 2: Sums of data by using reduction technique 

 

3.5   Consideration of Memory Capacity 

The total amount of global memory available on the device is almost 1GB in 

Nvidia Geforce 9800GT. Even though the amount of available memory is big enough 

for our use in ISPD98 benchmark, the total amount of memory in GPU is still smaller 

than in CPU. We probe into memory problems when the amount of global memory is 

not big enough for applications. Because implementations on GPU are only for the 

N-body simulation of our proposed algorithms, we just discuss the configuration of 

memory in N-body simulation part. 

Finding out independent modules of a hypergraph is the first step . If the memory 

size of each independent module in a circuit is smaller than the maximum amount of 

global memory on a GPU, the order and association of the independent module can be 

easily arranged in the usable memory. These independent modules can practice 

individually in N-body simulation. Since these modules are self-reliant, there will not 

have any impact on forces between different independent modules and do not cause 
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influence on solutions. For example in Fig. 6, a given hypergraph is composed by 

three independent modules: module A, B and C. The total amount of required memory 

of each module is smaller than 1GB. At first, program performs movements of module 

A until completely exercising in N-body simulation phase. Then, the program replaces 

the required second data between CPU and GPU, as well as module B and C are 

accomplished finally.  

 

What if one of modules is larger than the maximum amount of global memory on 

a GPU? A casual solution is exchanging information between modules in each time 

steps. We could see Fig6-3 as an example. First of all, the program partitions the 

Module B.C exercise on GPU 

  A   C  B 
    

Replace the second 

data between CPU and 

GPU memories 

Module A exercises on GPU 

Figure 6-2: The total amount of memory of each module is smaller than 1GB  

 

  

  

A given hypergraph  

Independent modules 

The maximum amount of 

memory available on GPU 

Figure 6-1: Definition and initial hypergraph 
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CPU and GPU 

A     
  

Module B. C and redundant 

module A exercises on GPU 
Mainly Module A 

exercises on GPU 

Redundant part of A 

Figure 6-3: Module A is larger than 1GB 
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larger module A into main and redundant parts, minimize the size of cutline between 

these two parts, and copy the duplication between these two parts. Then the program 

starts to exercise mainly module A in N-body simulation. Since we also copy the 

duplication, the error between main and redundant parts of module A can be avoided. 

Next, global memory on a GPU substitutes for next required information, then module 

B, C and redundant part of module A are fulfilled and operated. Repeat the above 

steps until simulation terminates. Though the program can frequently substitute 

information between memories to avoid errors, eternally accessing data cause fiercely 

latency and lead to worst executed runtime. However, this situation is inevitable 

under memory limitation. Hence, we also provide second solution which transfers 

data by blocks instead of time steps and reduce frequently substitutions. The second 

solution may impact final solutions when main and redundant part of module A still 

have connections. To avoid likely inaccuracy, the number of connections between 

these two parts is as few as possible, which could handle by partitioning in the 

beginning. Consequently, the second solution runs faster than the first solution but 

gets worst solutions. It depends on the designer’s choice.  

 

3.6   Inter-cell Force Modeling 

Electronic circuits usually contain both 2-pin and multi-pin nets. Various models 

have been proposed to replace multi-pin nets by a group of 2-pin nets. For modeling 

forces in simulating, our research adopts the traditional model which replaces each 

net by a clique [15]. For example, for the 4-pin net in Fig.7-1, the clique model is 

shown in Fig.7-2.  

 

Figure 7-1: Multi-pin nets 
Figure7-2: Clique models for Fig.7-1 
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N-body simulation focuses on motions between cells instead situation of nets. To 

model the forces between cells, the given hypergraph is translated into a speci fic 

format. Each cell is affected by its own set     which is defined as a set of adjacent 

cells and pins to cell     . And    is the total number of elements in the set     . This 

following translation model is used for calculating mutual interactions in N-body 

simulation. For example, Fig.8 illustrates the problem translation into our required 

format. Fig.8-1 shows a given hypergraph G =(C, Net). Fig.8-2 shows the translation 

of the hypergraph by using the clique model, and then the interactions between cells 

are shown. Such as Cell B in Fig.8-3, Cell B is affected by the own set    that 

contains adjacent cells and pins including pin2, cell C, cell D, cell D and cell E.  

 

 

  

Figure 8-3: Cell B is affected by the set    and    =5. 
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Chapter  4   Case Study: 3D ICs Partitioning 

Case Study: 3DICs Partitioning 

  

The partitioning problem formulations and the related works are presented in 

Chapter 4. The related works are focused on the partitioning algorithms which have 

been proposed in the past decades. And some symbols used in the following content 

are also introduced. 

 

4.1   Introduction Of the 3DIC Partitioning 

Moore’s Law enables the exponential growth of the chip scale. 3DIC technology 

enables the vertical integration of a large scale system onto the multiple layers of the 

same die or the same package [16]. The multilayer structure of the 3DIC technology 

makes it even more computational expensive for EDA tools to achieve optimization 

goals. The future EDA tools are required to handle the sheer amount of system 

complexity which requires enormous computation power to sustain the satisfactory 

performance. Parallel computing has been considered as a solution to meet the soaring 

requirement [ 17 ]. Multi-core architectures, such as general purpose graphic 

processing unit (GPGPU), have become the mainstream of the future computing 

systems. Through expanding parallelism in applications, GPGPU can exploit 

parallelism and achieve superior performance. 

Partitioning is in the first step of physical design optimization flow [18]. For a 

3DIC, partitioning divides cells into K sub-groups and assigns these groups to 

different layers. The signals between layers are connected by the Through Silicon 
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Vias (TSVs) which generally occupy larger chip area than conventional vias. Thus the 

optimization result of 3DIC partitioning determines the total number of TSVs between 

layers and has significant impact on several imperative design issues such as number 

of TSVs, footprint area constraint, timing, thermal distribution, as well as the 

fabrication yield. To reduce the cost, the goal in this study case is to minimize the 

number of TSVs under the footprint constraints. 

This thesis proposes FDPrior, a highly parallel 3DIC partitioning algorithm 

based on force-directed scheme with prioritized layering mechanism. FDPrior is 

among the first to adopt a non-heuristic technique by using force-directed [19] 

methods to approach 3DIC partitioning problems. These force-directed methods 

extend the conventional concepts of direct N-body simulation. Chapter 5 will 

introduce the flow of FDPrior in detail. 

 

4.2   Related Work: Partitioning Algorithms 

Partitioning has been extensively researched during the past decades. To resolve 

partitioning problems, various approaches have been proposed. We have surveyed the 

following four related works. 

The first group of algorithms adopted heuristic approaches to enable eas y 

implementation and return acceptable solution quality. The representative example of  

this group is the FM algorithm. FM was first proposed by Fiduccia and Mattheyses, 

and is widely used in solving various partitioning problems. FM used a greedy-like 

approach to move the cell which could return the maximum gain. However, the 

runtime of FM gets significantly worse with the increasing number of cells. Besides, 

the algorithm itself is prone to fall into a local optimum and returned a sub -optimal 

result. 
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The second group used deterministic approaches, such as ILP (Integer Linear 

Programming), to find out the optimal solution. Jiang et.al [20] used the ILP approach 

to formulate the 3DIC partitioning problem and was able to find the minimum number 

of TSVs with constrained footprint. The downside of this approach was the extremely 

long run time which was impractical for a system with a large number of cells.  

The third group used multilevel approach to solve the partitioning problem 

hierarchically. hMetis [21] is one of the most widely used algorithm in this group. 

hMetis started by repeatedly combining cells into groups of cells ( this process called 

coarsening). When the numbers of cells got smaller and reached an acceptable level, 

hMetis performed FM partitioning followed by un-coarsening the cell groups to a 

finer-grain level. The process was repeated until all the created cell groups were 

un-grouped to the finest level. 

With the soaring system complexity in the future 3DIC design, parallel 

processing on many-core architecture is considered as a solution to enable the 

scalable computing capability for future EDA tools. PP3D was proposed speed up the 

3DIC partitioning by adopting parallel processing scheme. PP3D extended the 

fundamental ideas of FM algorithm, and added the ability to identify the independent 

cells which could be moved simultaneously. Compared with the original FM, PP3D 

achieved one order of runtime speedup while returning the similar solution quality.  

 

4.3   3DIC Partitioning Problem Formulation 

This subsequent section will introduce how the 3DIC partitioning problem is 

modeled for FDPrior algorithm. The definitions of the partitioning problem and 

variables are described here. 
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4.3.1  The Structure of 3DICs 

    Fig.9. shows a simple example of the structure of a 3DIC [22]. All the layers are 

stacked up vertically. A TSV_IO connects the layer_1 to the bump of a package pin. A 

TSV, which consists of a TSV_CELL and a TSV_LAND, connects signals between 

two internal adjacent layers. A TSV_CELL connects to the upper metal layer and a 

TSV_LAND is a landing pad placed on the lower metal layer. In the partitioning, each 

TSV is modeled as a cutline between the neighboring layers. The total number of 

TSVs in this thesis contains both the TSV_IOs and TSVs. 

 

4.3.2  Variable Definitions 

1. A circuit is modeled by a hypergraph G=(C, Net) where with a set of nets Net 

that connect to two or more cells and a set of cells C that each cell     C. And 

        is the given area of cell   . 

TSV_CELL 

TSV_LAND 

layer3 

layer2 

layer1 

Stack

ed die 
Encapsulation 

TSV_IO 

Device layer 

Metal layer 
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Interlayer 
Dielectric 

Heat Sink 

Substrate wafer 

Figure 9: The structure of a 3DIC for vertical interconnects. 
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2.          is the total area of all cells in layer_j and     is the total area of the 

TSV_IO cells.      is the average layer area of a 3DIC. The area constraint of 

each layer is defined as follows:  

                 

 

   

         (3)  

                    ) (4) 

                      (5) 

The maximum and minimum bounds of layers are set as        and      

respectively.     is a given constant that decides the range of area bounds. The 

overflow area is that      multiplies the ratio of     . And the minimum and 

maximum area bounds are the average layer area of a 3DIC subtracted or added 

this overflow area. 

3. Equation 6 defines the displacement of the cell   .Where    represents the 

current position of    ,     
  represents the position of    from the previous 

optimization iteration, and        the displacement of    between two iterations. 

  
           (6) 

    ,     and    
  are all in the z-direction. The sign of     guides the direction 

of cell   .  

4. During the optimization, each cell can be in either the fixed state or mobile state. 

A cell in the mobile state can move freely in response to the inter-cell forces 

while a fixed cell stays at the current position.  

4.3.3  Problem Description 

The 3DIC partitioning problem can be formulated as a hypergraph multilayer 

partitioning problem. Given the hypergraph of a netlist and area constraint (     

             ), a partitioning algorithm divides the set of cells C into K layers 

(   ) with minimum number of TSVs.   
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Chapter  5   FDPrior Algorithm 

FDPrior Algorithm 

 

Chapter 5 introduces our proposed algorithm, FDPrior [ 23 ]. The main 

contributions of FDPrior could be categorized into three folds: 1) massive algorithmic 

parallelism exploited by multi-core GPGPU computing systems 2) a force-directed 

approach to achieve high result quality 3) bottom-up prioritized layer construction to 

minimize synchronization overhead.  

FDPrior enables a massive computation parallelism by N-Body simulation 

method which simulates motions of all cells independently. N-Body simulation phase 

adopts a non-heuristic approach of force-directed method to simulate forces among 

cells. However, N-body simulation needs fierce mathematical computations for 

interaction of N particles among a dynamic system. Such N-body problems encounter 

a formidable challenge to the numerical analysis and computer hardware.  Hence, the 

applications of N-body simulation are particularly suitable for modern multi-core 

platforms. In partitioning problem, conventional approaches usually define the layer 

space at first and then optimize solutions on pre-defined layer spaces. However, in 

parallel algorithm, this method would result in much synchronization which is used to 

obtain information among cells, such as the distribution. In third fold, FDPrior does 

not define the layer spaces in the beginning. Instead, the layer space is gradually 

stacked up by the bottom-up layer construction. This innovative method can 

significantly reduce the number of synchronizations and gain faster runtime.   

In addition to returning better results, FDPrior is designed to take advantage of 

the scalable computing capability enabled by multi-core computing systems. When 
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compared with PP3D [24] and the conventional FM  [25] algorithms, FDPrior can 

achieve up to 3.35X and 303.66X times faster runtime on ISPD98 benchmark. Not 

only finishing the execution faster, FDPrior also returns better results which are in 

average 7.71X and 5.95X better in terms of total TSV numbers. 

 

 

5.1   FDPrior algorithm 

The algorithm flow is illustrated in Fig.10. The orange parts implement on the 

GPU platform, as well as the white parts execute on CPU. The algorithm is composed 

of three phases, including N-body simulation, mapping cells to a layer, and escape 

Figure 10: The flow chart of FDPrior 

algorithm. 
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from local optimum. N-Body simulation phase simulates the movement of each 

mobile cell based on the forces impacted on it. The second phase picks appropriate 

cells and maps them to a layer. The first two phases limit the optimization search 

within a regional area and could fall into a local optimum. Thus the third phase 

enables a mechanism to escape from local optimum through disturbing the unfixed 

cells. The above phases will be repeated K-1 times to determine the lower K-1 layers. 

The remaining mobile cells after K-1 iterations are directly placed into the layer_K. 

Details of each phase are discussed in the below sections. 

 

5.1.1  Phase1: N-body Simulation 

FDPrior employs the non-heuristic approach to calculate the forces. N-body 

simulation numerically approximates the motion of each cell in a system. Each cell in 

a netlist is modeled as a body and be moved independently. Consequently, there has 

massive parallelism and exploits by the GPGPU platforms. We separate the force into 

two fundamental components. First, the hold force will give each cell a tendency to 

stay in the current position. The second component is an attractive force, which is 

induced by the inter-cell forces to move cells to towards the equilibrium position. 

These two forces pull each other until  the total force is zero; and the system reaches a 

static equilibrium. 

5.1.1.A Hooke’s Law 

Many problems seem new but actually not. The quadratic placement techniques 

had been used for the placement problem in a long time. We can refer the previous 

methods on placement and make modifications for solving partitioning in 3DICs. 

Accordingly, FDPrior adopts old solutions of the placement problems and assumes the 

Hooke’s law to describe the motions of force. In quadratic placement problem, many 
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algorithms use the springs or extra forces by Hooke’s law to obtain better solutions, 

e.g. Quinn published in 1975 [26]. This method is usually celled force-directed 

approach in the EDA field.  

Simulating mobile cells in a free space may appear vibration when applying 

gravitational forces that describes in Section 2.2. In our experience, the vibration 

could take a long time to reach a stable state by using Equation 1 as the force 

equations. We practice the general rectilinear motion formulae to describe the motion 

along a straight line. Since there are not frictions in simulation, the accumulated 

speed keeps each body moving even after they have arrived the meeting point, and 

results in a two-body vibration situation. According to practical implementations, f 

the vibration mode can rarely provide improvement on the solutions. In the simulation, 

the vibration mode happens when the direction of a body’s acceleration is opposite to 

its velocity. For this reason, spending too much time on the simulation of the 

vibration mode is unnecessary and considered redundant.  

In physics, Hooke's law of elasticity is an approximation that  expresses the 

extension of a spring with the load applied to it.  Hooke's law simply presents that 

strain is directly proportional to stress. The common application of Hooke’s law is 

spring application. To avoid vibration and obtain quick convergence, FDPrior adopts 

the forces exerted by the springs, which are defined by Hooke’s law. Hooke’s law 

states mathematically in Equation7 where F is the restoring force exerted by the 

spring. 

       (7) 

Where  x is the displacement of this spring's end from its equilibrium position; 

and k is the spring constant. A negative sign on the right hand side of Equation 7 

shows always opposite direction between displacement and restoring force. FDPrior 

perform force-directed method to solve equations of forces instead by linear solver. 
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5.1.1.B Hold Force 

The hold force is defined in Equation 8.         , defined by the area of cell   , is 

the spring constant which affects the strength of the hold force.  

  
            

     (8) 

The negative sign presents this cell want to stay in the current position. When the 

area of a cell is large, this cell has larger momentum and is more difficult to be 

moved.  

5.1.1.C Attractive Force 

Fig.11 illustrates the attractive force in z-direction on cell    by a spring joining 

cells    and    [27]. In a hypergraph, all of the 2-pin nets are exerted by the 

stretched springs in accordance with clique model.  

Figure 11: The force by a stretched spring joining cell i and j. 

The attraction force between two bodies forms a tendency to pull the bodies 

closer to each other at every simulation step. The attractive force between cells is 

defined in Equation 9. The final attractive force is the accumulated forces impacted 

on a cell   . 

  
             

       

  

   

             

  

   

       (9) 

In Chapter 3, we mentioned that FDPrior adhere the clique model to modify the 

given hypergraph, which is translated from the multi-pin nets to a group of 2-pin nets 

by clique model. All the weight of each 2-pin net is same and set to unit in a system. 

The formulation of the force in the clique by Hooke’s law is equivalent to Equation 8. 
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5.1.1.D Total Force 
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__global__ void  Dkernel_FDPrior_Force(){  

const int i = blockDim.x * blockIdx.x + threadIdx.x;  // create thread id in GPU 

bool active= true; 

float distance = 0; 

if ( i >= cell_size)        active = false;  

else if ( dcell_anneal[i]<=0 )active = false;   //these fixed cells in the system 

if ( active ){ 

float nowlayer = dcell_layer[i];    //the current position of cell with index 

for (int j=dc2c_nbegin[i];j<dc2c_nbegin[i+1];j++)    //the identified set i 

   distance+= dcell_layer[ dcell2cell[j] ] - nowlayer; 

dcell_force[i]= distance;   // the final attractive force of cell with index i 

}   

 __syncthreads();   

if ( active ){  

distance = __fdividef(dcell_force[i],dcell_area[i]); //calculate displacement 

dcell_layer[i]+= distance;            //update the new position of cell i  

if( dcell_layer[i] < 0 ) dcell_layer[i] = 0; 

}             

} 

Table 3: The code of the calculated forces in the N-body simulation phase 

The total force is the sum of the hold force and attractive force. The new cell 

positions are efficiently computed by solving Equation 10 for    . 

  
        

           
        (10) 

The N-Body Simulation phase terminates when the number of iterations reaches the 

threshold level or the total number of iterations exceeds a configured limit. In each 

layer space, configured limit is 2000 in our experimentation. The threshold level is 

defined as     * distribution ratio where      is an empirical number. The range used in 
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this algorithm is      = 0.95. And the distribution ratio is the total number of mobile 

cells which fall in the constructed layers divided by the rest of the mobile cells. In 

other words,     * distribution ratio means that the majority of cells exercise enough 

and already drop to the lower layer by the connected nets. 

Table 3 shows the calculations of forces in the N-body simulation phase. Line 6 

percolates already fixed cells in a system. Line 7-12 calculates each attractive force 

with cell    by creating a thread with index i. Because throughput of single-precision 

floating-point division takes some cycle, we use __fdividef function to accelerate for 

division, shown in line 15. This __fdividef(x,y) function means x divided by y and 

provides a faster math version. Both the regular floating-point division and 

__fdividef(x,y) have the same accuracy. But __fdividef(x,y) delivers a result of zero 

and cause inaccuracy when 2
126

 < y < 2
128

. 
 
Fortunately, the areas of every cells in the 

ISPD98 benchmark are not bigger than 2
126

. Line 14-18 arranges the data and updates 

the new positions of cells. Since the I/O pins are located in the bottom layer, the 

positions cannot be lower than 0. In case this situation occurs, we add a refinement in 

line 17. 

 

5.1.2  Phase 2: Mapping Cells To A Layer 

In the Mapping Cells To A Layer phase, the layer space is constructed by 

gradually stacking up cells from the bottom of a layer. Since it is a bottom-up 

approach, cells at lower positions have higher priorities to be included in this layer. 

When more cells are included in this layer, the area of this layer will increase. And 

FDPrior will search the best layer boundary (with minimal cutline) between the 

minimum layer area bound (    ) and maximum layer area bound (    ) which were 

defined in Chapter 3. These cells which are mapped into this layer will be changed 

into the fixed state, while others remain in mobile states. 
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 In other words, FDPrior will gradually search cells which are located in lower 

positions and straightly put them in this layer until the area of this layer reaches the 

minimum layer area bound. For example, these cells with index 1 … p are 

successively mapped into a layer. Then FDPrior estimates the cutline and save data in 

the buffer when each cell moves until the area of this layer reaches the maximum 

layer area bound. Suppose these cells with index p+1 … q are already handled and 

each cell has its own cutline. Finally, the program will seek out the minimum cutline 

between cells with index from p+1 to q, as well as set the appropriate cells into fixed 

states. If the cell with index g has the minimal cutline, cells with index g+1 … q will 

set to freedom in a system. In conclusion, only these cells with index 1 … p, p+1 … g 

are firmly mapped into these layer and turned states into the fixed states.  

 In the program beginning, there does not define any layer spaces. And all the 

cells of the given hypergraph are in the mobile states. Each layer space will be 

stacked up after repeating executes the Mapping Cells To A Layer phase. Until the 

lower K-1 layers all are successively implemented, the remaining mobile cells in the 

system will be directly placed into the layer_K. 

 

5.1.3  Phase 3: Escape From Local Optimum 

The previous two phases limit the optimization search within a regional area and 

the solution may fall into a local optimum. FDPrior adds an approach to escape from 

the possible local optimum by disturbing certain mobile cells based on Equation 10.  

        
        /                /      ) (11) 

The parameter      is the average of the summation of    .  
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5.2   Experimental Results 

The target GPGPU platform of FDPrior is Nvidia Geforce 9800GT [28]. All the 

experiments are conducted on a 2.66GHz Intel® Core(TM) i7-920 CPU sprinting 

CentOS 5.5 with 6GB of memory. This research adopts the ISPD98 benchmark suite 

to evaluate the algorithms [29]. ISPD98 contains a wide range of varieties, which is 

listed in Table 4. The     indicates the unbalance of layers and the area footprint 

constraint. The number of desired layers and     are different when considering 

characteristics in every case are distinct. If the chip area is immense, we donate this 

chip more freedom in the area bounds, such as the chip area in ibm18 is larger then 

the given constant     will be slightly great. The numbers of threads per block are 

256 in all cases when considering the limitation of registers. Consequently, the total 

number of threads that we implemented in the GPGPU platform is 256* the number of 

blocks per grid. 

Bench #Block #cells #nets #I/Os #layers     

ibm01 56 12506 14111 246 4 10 

ibm02 78 19342 19584 259 4 10 

ibm03 108 22853 27401 283 4 10 

ibm04 126 27220 31970 287 4 10 

ibm05 112 28146 28446 1201 4 10 

ibm06 137 32332 34826 166 4 10 

ibm07 189 45639 48117 287 5 12 

ibm08 200 51023 50513 286 5 12 

ibm09 239 53110 60902 285 5 12 

ibm10 295 68685 75196 744 5 12 

ibm11 319 70152 81454 406 5 12 

ibm12 303 70439 77240 637 5 12 

ibm13 390 83709 99666 490 6 15 

ibm14 598 147088 152772 517 6 15 

ibm15 730 161187 186608 383 6 15 

ibm16 743 182980 190048 504 6 15 

ibm17 742 184752 189581 743 6 15 

ibm18 823 210341 201920 272 6 15 

Table 4: Characteristics in ISPD98 benchmark 
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Fig.12 compares the average number of TSVs generated by FDPrior, PP3D [22] 

and MLFM algorithms. PP3D leverages the fundamental ideas of FM algorithm, and 

adds the ability to identify the independent cells. MLFM represents the extended 

conventional FM algorithm which considers multilayer partitioning. FDPrior obtains 

much better qualities than PP3D and MLFM in every benchmark. The experimental 

numbers are the average of 30 runs. The average numbers of TSVs which execute on 

the algorithms in ISPD98 benchmark are listed in Table 5.  

Figure 12: Comparison of average solutions on the algorithms.  

When comparing with PP3D and MLFM, FDPrior demonstrates an average of  

7.71X and 5.95X better solution quality respectively. Since PP3D introduces the 

primary ideas of FM algorithm, the solutions of PP3D is a bit of near to the solutions 

of MLFM. FDPrior accomplishes an absolutely different algorithm by using N-body 

algorithm and creates coarser grain than others. That is the reason that FDPrior can 

perform better solution qualities.  

From the distribution of 30 runs, FDPrior is more stable on solution qualities 

than PP3D and MLFM algorithms. Fig.13 shows the solution qualities of PP3D are 

distributed across a wider range than FDPrior in ibm04. FDPrior also achieves 3.35X 
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and 303.66X runtime speedup than PP3D and MLFM, as illustrated in Table 6. 

Because PP3D also uses parallel techniques to achieve improved and scalable runtime, 

the runtime enhancement that compared with PP3D is not as significant as MLFM 

algorithm. Since FDPrior is the coarsest between these algorithms, the enhancements 

of runtime can reach more than the number of multiprocessors in a GPU. 

Bench FDPrior PP3D Improve MLFM Improve 

ibm01 1554 14061 9.05 X 9379 6.04 X 

ibm02 2788 17839 6.40 X 13711 4.92 X 

ibm03 4562 25411 5.57 X 17380 3.81 X 

ibm04 4558 30815 6.76 X 20051 4.40 X 

ibm05 16377 27886 1.70 X 23395 1.43 X 

ibm06 5769 32156 5.57 X 23532 4.08 X 

ibm07 6917 58173 8.41 X 44715 6.46 X 

ibm08 13841 49523 3.58 X 43202 3.12 X 

ibm09 6902 72548 10.51 X 51703 7.49 X 

ibm10 8772 73016 8.32 X 69933 7.97 X 

ibm11 9336 99497 10.66 X 70509 7.55 X 

ibm12 12125 82462 6.80 X 78490 6.47 X 

ibm13 12780 144566 11.31 X 111705 8.74 X 

ibm14 40104 223969 5.58 X 177402 4.42 X 

ibm15 34110 294835 8.64 X 204159 5.99 X 

ibm16 20969 275804 13.15 X 242433 11.56 X 

ibm17 38093 333851 8.76 X 261111 6.85 X 

ibm18 39787 320939 8.07 X 233465 5.87 X 

Average TSVs comparisons 7.71 X  5.95 X 

Table 5: The average number of TSVs execute on the algorithms in each case. 

 

Figure 13: The distribution of solution qualities of algorithms in ibm04 
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Bench FDPrior(s) PP3D(s) speedup MLFM(s) speedup 

ibm01 3.333 7.086 2.13 X 173.639 52.10 X 

ibm02 8.955 21.825 2.44 X 424.350 47.39 X 

ibm03 7.541 21.896 2.90 X 587.212 77.87 X 

ibm04 10.941 47.335 4.33 X 787.745 72.00 X 

ibm05 8.103 49.416 6.10 X 1122.722 138.56 X 

ibm06 9.374 40.063 4.27 X 1321.312 140.95 X 

ibm07 17.813 75.340 4.23 X 3203.600 179.85 X 

ibm08 39.532 185.079 4.68 X 4112.500 104.03 X 

ibm09 25.579 161.444 6.31 X 5139.150 200.91 X 

ibm10 42.190 240.582 5.70 X 12679.400 300.53 X 

ibm11 37.980 182.962 4.82 X 9515.250 250.53 X 

ibm12 52.766 262.594 4.98 X 10931.650 207.17 X 

ibm13 68.717 98.832 1.44 X 29764.550 433.15 X 

ibm14 168.460 231.254 1.37 X 87466.400 519.21 X 

ibm15 231.977 303.262 1.31 X 133523.250 575.59 X 

ibm16 271.378 311.795 1.15 X 178302.167 657.03 X 

ibm17 280.808 272.444 0.97 X 224073.400 797.96 X 

ibm18 286.660 326.624 1.14 X 203829.800 711.05 X 

Average runtime speedup 3.35X  303.66 X 

Table 6: Comparison of runtime on the algorithms 

(Speedup = execution time of PP3D or MLFM/execution time of FDPrior)  

The benchmark in ibm05 is a special case that has many I/O pins which may push 

connected cells to the bottom layer and return undesired solutions. Even though this 

case limits the improvement, FDPrior still obtains better quality on TSVs and runtime. 

We extend FDPrior to manage these types of special cases  by referring well-known 

multilevel mechanism. The solution for this special case is mentioned in Chapter 5. 

 

5.3   The Discussion of FDPrior 

This section discusses three issues on FDPrior algorithm. The first discussion 

focuses on the distinguishing characteristic of algorithms, which caused dissimilar 

experimental results. Secondly, the distributions of all layer spaces in a 3DIC are 

addressed. Finally, we investigate the difference of parallel and sequential schemes in 

N-body simulation phase, as well as provide experimentations. 
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5.3.1  Comparisons Between algorithms 

PP3D searched the independent groups of cells from the given circuit and 

parallelized these groups on the GPU platform. On account of adopting the essential 

FM algorithm to execute motions of these groups, solutions earned from PP3D are 

quite similar to solutions obtained from FM. Besides, PP3D accomplished the parallel 

techniques and performed coarser grain than FM. Hence, PP3D achieved acceleration 

than FM algorithm. 

Compared with PP3D and MLFM, FDPrior was a completely different algorithm 

including data structure, frame work of algorithm and parallel methodology. The 

attractive forces in our algorithm are able to pull related particles together. Cells in a 

circuit are separated into groups by attractive forces to achieve the purpose of 

minimizing TSVs. From Section 4.4, FDPrior demonstrated better performance not 

only on solutions but also on runtime. Besides, FDPrior possessed massive 

parallelism than PP3D and MLFM by using N-body simulation. Unlike only the 

independent groups are paralleled on PP3D, entire cells in a system are calculated and 

paralleled on FDPrior. Though PP3D also performed the parallel technique, FDPrior 

still was able to speedup runtime than PP3D. And that is also the reason that the 

runtime improvement of FDPrior could be achieved 303.66X than FM with only 64 

multi-cores. 

 

5.3.2  The Distribution Of Layer Spaces 

In virtue of using bottom-up method, the layer spaces in each layer of a 3DIC are 

somewhat of unbalance. This issue is inevitable when FDPrior fulfills the bottom-up 

prioritized layer construction in the mapping cells in a layer phase. Table 7 provides 

the area distribution of all layers in ISPD98 benchmark. μ is the mean(equal as      ). 
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σ is the standard deviation of all layer areas in the circuit. And CV presents the area 

coefficient of variation and gauges the standard deviation ration to mean.  

Bench ibm01 ibm02 ibm03 ibm04 ibm05 ibm06 

Layer1 1018026 2165707 2409785 2303008 1050958 2055563 

Layer2 1140239 2181378 2395257 2432731 1200274 2183326 

Layer3 1085824 2119028 2602078 2413369 1226727 2158318 

Layer4 985927 1992223 2435761 2145837 993561 2180584 

μ (Mean) 1057504 2114584 2460720 2323736 1117880 2144448 

σ  (standard 
deviation) 

59852 74275 82893 114008 98197 52226 

CV=σ/μ 5.66% 3.51% 3.37% 4.91% 8.78% 2.44% 

Bench ibm07 ibm08 ibm09 ibm10 ibm11 ibm12 

Layer1 2284988 2583134 3378905 9267740 4262161 7440142 

Layer2 2301881 2537983 3595548 9372725 4092020 7331389 

Layer3 2406695 2958431 3596627 10407371 4407963 7837406 

Layer4 2573079 2941901 3627754 9532816 4567842 7388670 

Layer5 2263213 2428439 3330479 8953684 3907422 6977242 

μ (Mean) 2365971 2689978 3505862 9506867 4247482 7394970 

σ  (standard 
deviation) 

114697 218382 124913 488419 231693 274361 

CV=σ/μ 4.85% 8.12% 3.56% 5.14% 5.45% 3.71% 

Bench ibm13 ibm14 ibm15 ibm16 ibm17 ibm18 

Layer1 3895623 4665888 5456475 8316207 7888877 5235930 

Layer2 4201036 4357280 6025610 8827031 6974373 5634866 

Layer3 4243918 4361440 6071698 8950749 7745547 5605915 

Layer4 4492202 5211904 6593459 9718766 7496915 5702046 

Layer5 4538258 5027520 6779301 9587458 7762127 6084722 

Layer6 3690531 5103264 5608401 7192493 4319873 5423082 

μ (Mean) 4176928 4787883 6089157 8765451 7031285 5614427 

σ  (standard 
deviation) 

302969 346131 477210 846429 1248437 261157 

CV=σ/μ 7.25% 7.23% 7.84% 9.66% 17.76% 4.65% 

Table 7: The distribution of all layer areas of FDPrior in ISPD98 benchmark 

From Table 7, the average coefficient of variation is 6.33%, which depicts the 

area distribution of all layer space is not extremely uniform. The coefficients of 

variation also are related to the given parameter    . If      is bigger, the coefficient 
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may be bigger for allowing more unrestrained areas. When      is 10 and desired 

layer is 4, the average coefficient of variation is 4.78% in ibm01 ~ ibm06. The 

average coefficient of variation is 5.14% in ibm07 ~ ibm12 while     is 12 and 

desired layer is 5. When      is 15 and desired layer is 6, the average coefficient of 

variation is 9.07% in ibm13 ~ ibm18. Even though the unbalance circumstances are 

unavoidable, we ensure each layer can meet the area bounds  (                  ). 

 

5.3.3  Parallel And Sequential Schemes on N-body Simulation 

When N-body simulation provides coarse grain than other algorithms, the 

interactive forces are infected by the adjacent cells; nevertheless, there are different 

appearances between parallel and sequential schemes which may cause dissimilar 

solutions. Hence, we try to discover appearances between these schemes.  

 

Figure 14: Comparisons of the average solutions between parallel and sequential 

schemes of N-body simulation 
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In the sequential scheme of FDPrior, the own forces of a cell must are calculated 

under the current conditions. For convenience, we test the sequential scheme by 

moving mobile cells from index 1 to index n sequentially. In addition, FDPrior 

originally uses parallel concepts that all mobile cells in a system are moved in the 

meanwhile. That is the operation in the parallel scheme of FDPrior is as same as 

before.  

Fig. 14 illustrates the experimental results in ISPD98 between the parallel and 

sequential methods in FDPrior. The solutions between the parallel and sequential 

schemes of N-body simulation are not many differences from Fig.14. There is no 

doubt that the parallel method is a primary phenomenon of the nature. A scheme just 

determines the order of cells and provides the direction of motion in the future. Hence, 

we cannot say which scheme is better. In conclusion, no matter you choose which 

schemes to determine the order of movements of cells, the solutions are almost equal.  
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Chapter  6   MFDPrior: Multilevel Of FDPrior 

MFDPrior: Multilevel Of FDPrior 

 

Chapter 6 addresses the structure of multilevel and presents the modified 

algorithm MFDPrior. MFDPrior uses the basic concepts of multilevel to minimize the 

number of TSVs, as well as inherits the three main contributions of FDPrior. 

MFDPrior is designed to take advantage of the multilevel structure. Compared with 

prior algorithm FDPrior, MFDPrior can achieve up to 1.44X faster runtime and also 

returns average 1.46X better qualities in the ISPD98 benchmark. In the end, we also 

discuss the probably exerting influences on MFDPrior algorithm.  

 

6.1   Introduction of Multilevel  

    There are various proposed researches targeted on the partitioning problem 

during the past decades. A sequence of coarser hypergraph is formed in these 

published algorithms. Fig. 15 shows the simple flow of the multilevel mechanism. 

Coarsening is the process that repeatedly combines vertices into groups of vertices 

hierarchically, and then the multilevel system of a given hypergraph is constructed. 

When the size of vertices got smaller and reached an acceptable level, the program 

begins executing partitioning algorithm followed by un-coarsening these groups to a 

finer-grain level. The ordinary partitioning algorithm is used to iteratively improve 

solutions at each level. These processes are repeated until all the created groups are 

un-grouped to the finest level in a circuit system. 

    In recent years, 3DIC physical designs are more and more noticeable  in the EDA 
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filed. In the experimental results, the multilevel hypergraph partitioning algorithms 

could earn better performances than non-multilevel methods [30]. Therefore, we 

modify our proposed algorithm by adding a multilevel mechanism. In order to 

discriminate prior version, the proposed algorithm which fulfills the multilevel 

framework is called MFDPrior. And MFDPrior assumes previously FDPrior as the 

basic partitioning part.  

Figure 15: The simple phases of the multilevel partition algorithm 
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Fig.16 shows the tendered algorithm flow of MFDPrior. MFDPrior algorithm is 
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groups of vertices and decides coarser hypergraphs in each level. Hypergraph 

coarsening assists in reducing the sizes of hyperedges. Besides, multilevel coarsening 
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execute precisely and used for reducing runtime. After several levels of coarsening, 

the program will stop the multilevel coarsening phase and start to enforce the 

un-coarsening phase. The un-coarsening phase simply unloosens the groups of 

hyperedges in each level which permit the hypergraph become bigger until as same as 

the incipient hypergraph. Details of each phase of multilevel mechanism are discussed 

in the below sections. 

 

Figure 16: The flow chart of MFDPrior algorithm 
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6.2.1  Multilevel Coarsening Phase 

     Multilevel coarsening phase refers to the famous modified hyperedge 

coarsening (MHEC) scheme [31]. Fig. 17 presents the simple relationship of original 

hypergraph, as well as coarsens vertices into groups and composes a coarser 

hypergraph as a netlist of the next level. A black ball is a vertice and a ring is a net. 

Fig. 17 illustrates the evolution of a hypergraph by using MHEC scheme. MHEC 

scheme primarily selects which vertices should be merged together and forms a single 

vertice in the next level. MHEC could successively decrease the size of hyperedges, 

as well as avoid severely unbalance of the weight of the vertices in coarse graphs.  

We defines the maximum area of a group is 0.2*     [32]. When the area of a 

group reaches maximum bound, this group will stop coarsening in this level and stay 

the present status in the follow-up level. If a cell is larger than 0.2*     in the 

beginning, this cell will absolutely not be included in any groups and maintain as a 

single vertice all the time. The multilevel coarsening phase terminates un til none of 

the groups could be coarsened or a threshold level is met. The threshold level is 

specified as 0.084 * the size of C. When the hypergraph reaches the coarsest level, the 

program will begin to initialize an initial solution and assign these groups of the 

coarsest hypergraph to K layers randomly. These groups which associated to the pins 

are directly placed to the lowest layer.  

Figure 17: Simple diagram of modified hyperedge coarsening 
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6.2.2  Partitioning Phase 

During the partitioning phase, we separate the partitioning algorithms into two 

parts: FDPrior-based and FDPrior. FDPrior purely exercises when the hypergraph is 

un-coarsened into the finest level which is equal to the incipient hypergraph; 

otherwise FDPrior-based algorithm enforces the other levels. The application of 

FDPrior is same as mentioned algorithm in Chapter 4. 

Transferring memory between GPU and CPU sides is very time-consuming. 

Because FDPrior runs a lot of iterations in the N-body simulation phase, the 

transferring time between GPU’s and CPU’s memory can be effectively hided. 

However, running much iteration in simulating is unessential during the coarser 

hypergraph. Therefore a new approach, called FDPrior-based algorithm which is the 

fundamental scheme of FDPrior, is addressed.  

FDPrior-based algorithm eases the mapping cells into a layer phase instead of the 

mapping all cells into a 3DIC once. That is FDPrior-based merely performs two 

phases, including N-body simulation and mapping cells into a chip phases. These two 

phases execute once individually and do not repeat  again. More precisely, mapping 

cells into a chip is equal to the mapping cells into a layer phase of FDPrior with 

repetitions, but does not go through more simulation phase. FDPrior-based algorithm 

can return nice qualities and decrease the execution time during the coarser level.  

6.2.3  Multilevel Un-coarsening Phase 

An accomplished partitioning of the hypergraph is projected to the next 

hypergraph. Since the next level has finer hypergraph, more sizes of vertices and 

provides more freedom in a meanwhile, the partitioning phase can improve the 

solution qualities. The multilevel un-coarsening phase terminates when the level of 

primary hypergraph is met. 
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6.3   Experimental Results 

The experimental environment is as same as before mentioned in Section 4.4. 

The target GPGPU platform of MFDPrior is also Nvidia Geforce 9800GT. And 

ISPD98 benchmark suit, which contains a wide range of varieties and listed in Table 4, 

is used to evaluate the algorithms in this thesis. 

Figure 18: Comparisons of average number of TSVs with FDPrior and MFDPrior  

Fig.18 compares the average number of TSVs generated by MFDPrior and 

FDPrior. The experimental numbers are the average of 30 runs. The experiential 

results of FDPrior, PP3D and MLFM are same in the lecture 4.4. MFDPrior leverages 

the fundamental ideas of proposed FDPrior algorithm, and performs the multilevel 

methodology. MFDPrior obtains much better qualities than FDPrior in almost all 

cases. Table 8 lists the average numbers of TSVs of MFDPrior and FDPrior in 

ISPD98 benchmark. When comparing with incipient FDPrior, MFDPrior demonstrates 

an average of 1.46X better solution quality and earns 1.44X speedup. Since FDPrior 

had used the parallelism method, the runtime enhancement is not remarkable.  
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Due to the size of multilevel in ibm02 is a little more, it need more execution 

time to handle these multilevel structures. Though the average runtime of MFDPrior 

is slightly bigger than FDPrior in ibm02, the execution time is still faster than PP3D 

and MLFM. Furthermore, the benchmark in ibm05is a special case which has many 

I/O pins. The solutions of FDPrior in ibm05 are not distinguished for qualities, 

because ibm05 may push connected cells to the bottom layer quickly. Even though 

this special case limits the enhancement of FDPrior, MFDPrior can obtain better 

performances under quickly runtime. Generally, MFDPrior can require superior 

solution qualities under rapidly execution times than FDPrior. 

Bench 
MFDPrior 

TSVs 
FDPrior 

TSVs 
Improve 
on TSVs 

MFDPrior 
runtime(s) 

FDPrior 
runtime(s) 

Improve 
on runtime 

ibm01 1238 1554 1.26 X 1.916 3.333 1.74 X 

ibm02 2057 2788 1.36 X 9.470 8.955 0.95 X 

ibm03 3788 4562 1.20 X 4.699 7.541 1.60 X 

ibm04 4379 4558 1.04 X 5.440 10.941 2.01 X 

ibm05 8605 16377 1.90 X 5.983 8.103 1.35 X 

ibm06 4290 5769 1.34 X 6.521 9.374 1.44 X 

ibm07 5896 6917 1.17 X 14.089 17.813 1.26 X 

ibm08 7366 13841 1.88 X 24.873 39.532 1.59 X 

ibm09 5484 6902 1.26 X 17.871 25.579 1.43 X 

ibm10 8537 8772 1.03 X 31.014 42.190 1.36 X 

ibm11 6731 9336 1.39 X 24.145 37.980 1.57 X 

ibm12 11462 12125 1.06 X 34.822 52.766 1.52 X 

ibm13 9331 12780 1.37 X 46.917 68.717 1.46 X 

ibm14 18650 40104 2.15 X 119.887 168.460 1.41 X 

ibm15 18609 34110 1.83 X 167.998 231.977 1.38 X 

ibm16 17610 20969 1.19 X 194.814 271.378 1.39 X 

ibm17 21215 38093 1.80 X 219.653 280.808 1.28 X 

ibm18 19876 39787 2.00 X 229.676 286.660 1.25 X 

Average TSVs comparisons 1.46X 
Average runtime 

comparisons 
1.44X 

Table 8: Comparisons of average solutions and runtime with FDPrior and MFDPrior  
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6.4   Discussion of Issues 

MFDPrior not only inherits the properties of FDPrior but also creates probably 

occurrences. In these lectures, we share our practical experience and provide 

discussions about these issues. First one is the distribution topic of MFDPrior that 

inherits the characteristics from prior FDPrior. Finally, we compare the experimental 

results with the renowned algorithm. 

Benchmark ibm01 ibm02 ibm03 ibm04 ibm05 ibm06 

Layer1 1160642  2134166  2366627  2386170  1055382  2055417  

Layer2 1075524  2156400  2331876  2417590  1228538  2269601  

Layer3 1124381  2004218  2629262  2438889  1069225  2001606  

Layer4 869469  2163552  2515115  2052295  1118375  2251167  

μ (Mean) 1057504  2114584  2460720  2323736  1117880  2144448  

σ  (standard 
deviation) 112685  64635  119184  157834  68042  117667  

CV=σ/μ 10.66% 3.06% 4.84% 6.79% 6.09% 5.49% 

Benchmark ibm07 ibm08 ibm09 ibm10 ibm11 ibm12 

Layer1 2348790  2619671  3620334  9495844  4566129  7139564  

Layer2 2397711  2633680  3540201  9817553  4343167  7304691  

Layer3 2313189  2952016  3718369  9959926  4240479  7825616  

Layer4 2586682  2867053  3441861  9875606  4282647  7520189  

Layer5 2183484  2377468  3208547  8385406  3804986  7184788  

μ (Mean) 2365971  2689978  3505862  9506867  4247482  7394970  

σ  (standard 
deviation) 131227  202877  174318  582332  248105  252466  

CV=σ/μ 5.55% 7.54% 4.97% 6.13% 5.84% 3.41% 

Benchmark ibm13 ibm14 ibm15 ibm16 ibm17 ibm18 

Layer1 3859282  4356992  5865085  9036549  8072990  5973680  

Layer2 4253040  4354304  5877701  9491959  7078425  5685904  

Layer3 4228580  4357760  5973489  9033808  7465811  5850787  

Layer4 4236985  5505600  6381330  9556782  7568305  5961124  

Layer5 4586667  5505984  6727150  9514850  8077869  6018038  

Layer6 3897014  4646656  5710189  5958755  3924313  4197026  

μ (Mean) 4176928  4787883  6089157  8765451  7031285  5614427  

σ  (standard 
deviation) 244678  517912  352212  1274014  1432550  643191  

CV=σ/μ 5.86% 10.82% 5.78% 14.53% 20.37% 11.46% 

Table 9: The distribution of layer areas of MFDPrior in ISPD98 benchmark 
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6.4.1  The Distribution of Layer Spaces 

CV is the area coefficient of variation (CV = σ/μ) and is allied to the given 

parameter     and desired layer K. When the parameter      or K is larger to permit 

more freedom area space of a chip, CV probably is larger. The average coefficient of 

variation depicts the distributions of chip areas that we defined before .  

From Table 9, the average coefficient of variation of MFDPrior is 7.73%. This 

average coefficient of MFDPrior is 1.22X bigger than FDPrior and exhibits the 

distributions in MFDPrior are more uneven than in FDPrior algorithm.  In cases ibm01 

~ ibm06, the average coefficient of variation is 5.14%. While     is 12 and desired 

layer is 5, the average coefficient of variation is 5.57% in cases ibm07 ~ ibm12. And 

the average coefficient of variation is 11.47% in ibm13 ~ ibm18, when      is 15 and 

desired layer is 6. Because MFDPrior operates the modified bottom-up approach in 

the partitioning phase and revokes the mapping cells into a layer phase, instead of 

mapping all cells in to a chip at a time. This more unbalance circumstances are 

unavoidable due to accomplish the bottom-up methodology and mapping whole cells 

once. 

 

6.4.2  Compare Results with Multilevel of PP3D 

Using multilevel methods is one of well-known approaches to solve the 

partitioning problem. In the partitioning filed, multilevel of FM algorithm is a 

celebrated algorithm [33]. Hence, we organize the multilevel structure of PP3D as the 

multilevel topology of traditional algorithm. Fig. 19 shows and compares 

experimental results with the multilevel of PP3D and MFDPrior algorithms. 

Even though, our research accomplishes hierarchically multilevel structure to 

minimize the numbers of TSVs in MFDPrior. The advancements of MFDPrior are not 

as great as our exceptions, probably because the coarsening methods are not quite 

adequate under the uneven size of cells in a hypergraph. Therefore, applying which 
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type of coarsening methods is the significant topic in the multilevel techniques. 

Comparing with original PP3D that we have mentioned in Chapter 2, multilevel 

structure of PP3D earns superior solutions 3.25X in average. Fortunately, MFDPrior 

still obtains averagely 9.07X superior solution qualities than multilevel structure of 

PP3D.  

 

Figure 19: Comparison of average TSVs with Multilevel of PP3D 
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Chapter  7   Conclusion 

Conclusion 

 

The purpose of our research is providing a new field of vision by exploring the 

applications of N-body algorithms into EDA field. Since 3DICs technology has been 

considered as a solution to the challenges of large die area and long global wire delay , 

a  s t u d y  c a s e  i s  d e l i b e r a t e d  i n  t h e  p a r t i t i o n i n g  p r o b l e m  o n  a  3 D IC . 

This thesis proposes an innovative multilayer partitioning algorithm, FDPrior, 

for 3DICs. FDPrior is designed to take performance advantages of multi -core GPGPU 

systems and maintain the runtime scalability in the future large scaled 3DICs. In 

conclusion, FDPrior has three important strengths: 1) massive parallelism 2) better 

result quality by force-directed approach 3) bottom-up layer construction. The 

fundamental ideas are inspire a non-heuristic approach by the scalable force-directed 

concept based on N-body simulation. FDPrior merged these two methods and exposed 

the parallelism on GPGPU. Besides, FDPrior used the bottom-up prioritized layer 

construction to minimize synchronization overhead. On account of the bottom-up 

construction, the uneven distributions of layer area are inevasible. Compared with 

PP3D and conventional FM algorithms, FDPrior achieved 7.71X and 5.95X superior 

solution quality and attained 3.35X and 303.66X runtime speedup, respectively.  

This thesis also focuses on enhancing FDPrior engine by adopting the multilevel 

scheme, called MFDPrior. MFDPrior obtains 1.46X superior solution quality and 

r e a ch e s  1 . 4 4 X  s p e ed u p  a s  co m p a r e s  w i t h  f o r m er  FD P r i o r  a l g o r i t h m .  
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