
國 立 交 通 大 學

電子工程學系 電子研究所

碩 士 論 文

臉部偵測應用在共享記憶體多核心系統中的平行

度分析與資料地域性之研究

Parallelism and Data Locality Analysis of Face

Detection on a Shared Memory Multi-Core

System

研 究 生：江志軒

指導教授：賴伯承 教授

中 華 民 國 一○○年 九月

臉部偵測應用在共享記憶體多核心系統中的平行度分

析與資料地域性之研究

 Parallelism and Data Locality Analysis of Face

Detection on a Shared Memory Multi-Core System

研究生：江志軒 Student：Chih-Hsuan Chiang

指導教授：賴伯承 Advisor：Bo-Cheng Lai

國 立 交 通 大 學

電子工程學系 電子研究所

碩 士 論 文

A Thesis

Submitted to Department of Electronics Engineering and

Institute of Electronics

College of Electrical and Computer Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master of Science

in

Electronics Engineering

September 2011

Hsinchu, Taiwan, Republic of China

中華民國 一○○年 九月

II

臉部偵測應用在共享記憶體多核心系統中的平行度分

析與資料地域性之研究

研究生：江志軒 指導教授：賴伯承教授

國立交通大學

電子工程學系 電子研究所 碩士班

摘 要

人臉偵測在未來的智慧型裝置是一種重要的技術。然而，它的高運算量造成

其在嵌入式系統上難以實現。另一方面，平行處理和多核心架構已經成為未來高

性能計算系統的主流，將人臉偵測在多核心系統執行會是讓其在嵌入式系統上實

現的一個可行方案。要讓臉部偵測充分利用平行系統之前，我們必須把該應用的

平行度展開，才能使其應用充分的使用平行系統。本文第一部分分析人臉偵測在

該演算法不同層級的平行度。簡要介紹了臉部辨識不同層級的平行度、可拓展性

以及導致效能變差的因素，歸納分析找到提高系統整體性能的方法。根據分析結

果和設計經驗，提出了一種混合多層級平行方案，保留平行度的可擴展性和避開

會遇到的限制因素。

臉部偵測的平行度展開之後，多核心系統成了一個適當的平台，使得人臉偵

測的密集的計算量在資源受限的嵌入式系統不再是昂貴的應用。但是，大量的記

憶體存取成了運算瓶頸，限制了應用可擴展性，進一步可能使系統不能有效的運

用各核心的資源。提高資料在快取記憶體存取中的資料相依性成為一個重要的設

計問題。本文第二部分分析了維奧拉-瓊斯(Viola-Jones)演算法在平行系統的記憶

體行為，並提出了一個方案，以提高資料在快取記憶體存取時的資料相依性，減

少不必要的資料存取，降低處理器間資料網路負擔，也降低各處理器在記憶體資

源的競爭。

III

因為讓平行系統的各處理器都有相同的工作量可以使系統最有效率的運算，

細粒度的執行緒負載(fine-grained thread loading)可以讓系統較容易在各處理器間

取得工作量的平衡。而粗粒度的執行緒負載(coarse-grained thread loading)也有很

多好處，不過在細粒度的執行緒負載跟粗粒度的執行緒負載之間取得平衡會造成

程式設計師額外的負擔。本文的第三部分會提出一個偷工作量(steal work load)在

粗粒度的執行緒負載上的技術，幫助程式設計師較容易讓各處理器都有相同的工

作量，使得系統較有效率，而且不會造成程式設計師太多的負擔。

歸納本文的各個部分，第一部分混合多層級平行方案，如果在記憶體存取方

面不受限制的情況，可以在六十四核心系統達到三十七點五倍的加速。然而，記

憶體存取一直是多處理器系統的瓶頸，因此第二部分針對資料區域性進行優化，

相對於原混合多層級平行方案在正常十六核心的平台下，可以減少58%的運算時間。

本文最後部分提出的偷工作量技術，可以讓系統幫助未優化的程式去改善工作量

不平均的情形，其結果接近優化過的程式，進而使得程式設計師不用花太多額外

的力氣去優化程式。

IV

Parallelism and Data Locality Analysis of Face

Detection on a Shared Memory Multi-Core System

Student: Chih-Hsuan Chiang Advisor: Bo-Cheng Lai

Department of Electronics Engineering Institute of Electronics

National Chiao Tung University

ABSTRACT

Face detection is one of the fundamental technologies for future smart devices.

However, its high computation makes applying such technique to an embedded device

difficult to realize. Parallel processing and many-core architecture have become the

mainstream to achieve high performance in future computing systems. The

parallelism of an application needs to be exposed before being exploited by the

parallel architecture. The first part of this thesis performs a comprehensive analysis

on the parallelism of a face detection algorithm at different algorithmic levels. This

thesis demonstrates that each parallelism level has its own potential to enhance

performance, but also imposes some limitations. Based on the results and design

experience, this thesis proposes a multi-staged mixed-level parallelization scheme to

maintain the performance scalability and at the same time avoid the limiting factors.

The intensive computation requirements make the object detection an expensive

application running on the resource-constrained embedded device. Due to the

parallelism exposed in first part of this thesis, parallel processing on multi-core

systems boosts the overall system performance. However, the memory bottleneck

limits the performance scalability. Improving data locality of the on-chip cache has

therefore become a critical design concern. The second part of this thesis analyzes the

memory behavior of a parallel Viola-Jones algorithm, and proposes a scheme to

enhance the data locality of on-chip cache. The scheme reduces unnecessary data

accesses and the communication between processors and main memory.

V

Balancing the workload among processors of a parallel system enhances the

execution efficiency. Implementing fine-grained threads makes it easier to achieve

load balance between processors. However, using coarse-grained threads also poses

many advantages. Therefore, how to strike a balance between the two parallelization

schemes will become an additional burden of programmers. The third part of this

thesis proposes a work-stealing design which lowers the programming effort and

improves the system efficiency as well.

This paper dedicates its first part to discussing the multi -stage hybrid parallelism

which achieves 37.5x speed-up on a 64-core system. However, memory accessing is

an issue long existing in multi-core systems. Therefore, the second part of this paper

focuses on the optimization of data locality which brings 62% reduction of

computation time on a regular 16-core system. In the final part of this paper, we

propose the work steal technique to alleviate the load imbalance of an un-optimized

program. This mechanism can attain the similar performance to an optimized program

and save programmers‟ effort on program optimization.

VI

致謝

本篇論文得以完成，首先要感謝指導教授賴伯承博士不厭其煩的指導

跟督促，在兩年的過程中，有掙扎、有徬徨，教授總是適時地給予建

議和方向，教導我研究的態度和方法。也感謝實驗室的同學、學長、

學弟們的鼓勵和幫助，使得研究能夠順利進行，像是冠儒學弟總是默

默地幫忙數據的記錄跟查詢資料，另外，也很感謝晉誠和承穎幫忙論

文校稿，使得論文的完成更加順利，幫助我過了充實的兩年研究生的

生活。最後，當然也要謝謝一直在背後默默支持我的家人和朋友們，

尤其是父母，二十多年來都是默默的支持我，真的很感謝他們，也由

衷地感謝大家。

民國一百年九月

 研究生江志軒謹致於交通大學

VII

Contents

臉部偵測應用在共享記憶體多核心系統中的平行度分析與資料地域性之研究 II

Parallelism and Data Locality Analysis of Face Detection on a Shared Memory Multi -Core

System IV

致謝 VI

Contents VII

List of Tables X

List of Figures XI

Chapter 1 Introduction 1

Chapter 2 Viola-Jones Algorithm 5

2.1 Haar-Like Feature 5

2.2 Integral Table 5

2.3 Strong Classifier and Weak Classifier 7

2.4 Algorithm flow in OpenCV 8

Chapter 3 Multi-Level Parallelism of Face Detection on Multi -Core System 11

3.1 Related work 11

3.2 Parallelism at Different Algorithm Level 12

3.2.1 Top level parallelism 12

3.2.2 Detection level parallelism 13

3.2.3 Divided detection level parallelism 14

3.2.4 Weak classifier level 15

3.3 Procedure of Different Parallelism Level 16

VIII

3.3.1 Top level parallelism 16

3.3.2 Detection level parallelism 17

3.3.3 Divided detection level parallelism 18

3.3.4 Weak classifier level 18

3.4 Hybrid Parallel Scheme 19

3.4.1 2-stage hybrid parallel scheme 19

3.4.2 3-stage hybrid parallel scheme 21

3.5 Summary of parallelism on face detection 23

Chapter 4 Enhancing Data Reuse Of Local Cache For A Parallel Object Detection

Algorithm 24

4.1 Related work 25

4.2 Data-locality of classifier vs. data-locality of pixel 26

4.2.1 Data-locality of classifier 27

4.2.2 Data-locality of image pixel 28

4.3 Classifier-First Strategy Algorithm 30

4.3.1 Change loop level of Viola-Jones algorithm 30

4.3.2 Use queue storage to replace screen window location storage on

Classifier-first strategy 32

4.4 Mathematical Model Analysis 34

4.5 Mix Classifier-First Strategy and Screen-Window-First Strategy 34

4.6 Summary of Higher Data-Locality Algorithm 38

Chapter 5 Balance Thread Loading by Steal Work Load on Coarse-Grained Thread

Loading 39

IX

5.1 Related Work 39

5.2 Idea of Steal Work Load on Coarse-Grained Thread Loading 41

5.3 The SW/HW organization of Steal Work Load on Coarse-Grained Thread

Loading 42

5.4 Experiment Result 44

5.5 Summary of Steak Work Load on Coarse-Grained Thread Loading by Start

Value and End Value 47

Chapter 6 Platform and Other Discussion 48

6.1 Simulation Platform 48

6.2 Does Thread Scheduling improve the performance of Face Detection on

Multi-Core System? 49

6.3 The Contrast of Different Images Detect Faces on Multi-Core System 49

Chapter 7 Conclusion 55

Bibliography 56

X

List of Tables

Table 1: The computation of different strong classifiers when system detect

image “lena” from OpenCV ... 33

Table 2: Number of weak classifier which the strong classifier includes 35

Table 3: The comparison of original architecture and work steal technique with

latency 1/1 .. 46

Table 4: The comparison of original architecture and work steal technique

with latency 8/8 ... 47

Table 5: The computation of different strong classifiers when system detect

image “baboon” from OpenCV library ... 52

Table 6: The computation of different strong classifiers when system detect

image “airplane” from OpenCV library .. 53

Table 7: The computation of different strong classifiers when system detect

image “tasty”... 53

XI

List of Figures
Figure 1: Haar-like feature ... 5

Figure 2: Integrates the image to integral table .. 6

Figure 3: Use the integral table to compute sum of rectangle 7

Figure 4: The training process of Ada-boost ... 8

Figure 5: The procedure of face detection implementation 9

Figure 6: The parallel scheme of face detection at top level parallelism 13

Figure 7: The breakdown of total execution time ... 13

Figure 8: The parallel scheme of face detection at detection level parallelism .. 14

Figure 9: The parallel scheme of face detection at divided detection level

parallelism .. 15

Figure 10: The parallel scheme of face detection at weak classifier parallelism 15

Figure 11: The total execution time of different parallelism level with latency

1/1 ... 16

Figure 12: The behavior of top level .. 17

Figure 13: The behavior of detection level .. 18

Figure 14: The behavior of weak classifier level .. 19

Figure 15: 2-stage hybrid parallel scheme .. 20

Figure 16: The total execution time of 2-stage hybrid parallel scheme on

different number of core system with latency 1/1 21

Figure 17: The breakdown of total execution time with latency 22/33 22

Figure 18: 3-stage hybrid parallel scheme .. 22

Figure 19: The total execution time of 2-stage hybrid parallel scheme and

3-stage hybrid parallel scheme on different number of core system with

latency 1/1 .. 23

Figure 20: Total execution time of face detection on different number of core

system; this figure shows that bus traffic jams become the bottleneck when

the system has many cores. .. 24

Figure 21: Pseudo code of the Viola-Jones algorithm 27

Figure 22: Move the scan window to a new position, the image data covered by

the scan window will be checked by same cascaded classifiers. 28

XII

Figure 23: Location of weak classifiers of strong classifier 0 in the scan window 29

Figure 24: Location of first five weak classifiers of strong classifier 1 in the scan

window .. 29

Figure 25: The probability distribution of position is read by one weak

classifier ... 30

Figure 26: Pseudo code of the modified Viola-Jones algorithm 31

Figure 27: The total execution time of 3-stage parallel scheme and locality

optimization with latency 10/10.. 32

Figure 28: The total execution time of 3-stage parallel scheme and locality

optimization with use queue storage with latency 10/10 34

Figure 29: Pseudo code of the Viola-Jones algorithm cascade classifier0-3 and

cascade4-5 .. 35

Figure 30: Performance comparison between the 3-Staged Hybrid Scheme and

the proposed locality optimized scheme with latency 10/10 37

Figure 31: Distributed task queue .. 39

Figure 32: Pseudo code of steal work load on coarse-grained thread loading 42

Figure 33: The block diagram of work stealing on coarse-grained thread

loading by start-value and end-value. .. 43

Figure 34: The behavior of work stealing ... 44

Figure 35: The SW/HW organization of a multi-threaded shared-memory SMP

simulator. The system parameters are shown on the right hand side 48

Figure 36: The image “people_2” on the left hand side, and the image

“people_3” on the right hand side ... 50

Figure 37: The total execution time of different images with latency 10/10 51

Figure 38: Image “baboon” from OpenCV library whose size is 52

Figure 39: Image “airplane” from OpenCV library whose size is 52

Figure 40: Image “tasty” size is 912 .. 53

Figure 41: Ratio of passing first three classifiers ... 54

Figure 42: Ratio of passing first five classifiers ... 54

1

Chapter 1 Introduction

Intelligence has been considered as one of the most important features for

modern smart mobile devices. These devices are able to recognize the surrounding

environment through sensing various types of stimuli, including vibration, orientation,

temperature, sound, images, video, and etc [1]. With the awareness of the

surroundings, a smart device can make decision and react intelligently to specific

stimuli or events in real-time or within acceptable latencies. For example, modern

tablets can sense the orientation of the device through gyroscopes and adjust the

screen orientation for users [2]. The future smart application can perform even higher

levels of intelligence. For example, to automatically indentify different users, or even

search the customers‟ background in real-time during a business conference [3].

Among all the different types of stimuli, images and real -time video have the

richest information about the environment. Images and video contain information

close to the level of human eyes. A digital camera can identify human faces in the

target zoom and tune the best focus for the picture. A game console can recognize the

movement of players through the embedded image sensor, and let the player control

the console without a physical controller [4]. However, processing this information

requires an intensive computation capability. It is estimated to take about 2 seconds to

recognize an object in an image of 720*576 pixels on a 2.33GHz Intel® Core™ 2

Quad processor [5]. Even with such a powerful processor, the execution time is 50

times slower than the requirement of a real-time application (processing at least 25

frames per second). This computation requirement poses an even more difficult goal

for a portable embedded device, which is highly constrained in computation

resources.

Parallel processing and many-core architecture have become the mainstream to

achieve high performance in the future computing systems. Embedded processor

2

vendors, such as Tilera[6], ARM[7], MIPS[8], are also moving towards many-core

architectures. Even the desktop processor vendors, such as Intel[9] and AMD[10] are

proposing many-core products for embedded and mobile applications. The new

parallel embedded processors present opportunities to boost the raw computing

capability and achieve more energy efficient execution. However, three imperative

design aspects have to be concerned before the full advantages of many-core

processors can be transformed into superior system performance. First, the

algorithmic parallelism of applications needs to be explored and exposed. Second, the

characteristics of the highly integrated embedded system need to be analyzed. Third,

the possible system bottlenecks need to be identified.

Motivated by the three design aspects, this thesis performs a comprehensive

analysis on the potential parallelism of the widely used Viola-Jones face detection

algorithm [11]. The analysis explores the parallelism in different algorithmic levels.

By verifying the results on a multi-threaded cycle-accurate multi-core simulator, this

thesis demonstrates the significant computation parallelism inherited in the face

detection algorithm. However, the superior performance can only be obtained through

a careful co-design and optimization crossing four critical design issues, including

choosing appropriate parallelism level, balancing workload, reducing synchronization

overhead, and memory and interconnect bandwidth.

The limited off-chip memory bandwidth and long access latency have imposed a

limitation to the performance [12]. Efficient usage of the on-chip memory, especially

the cache of processors, has therefore become a critical design issue to achieve

performance scalability of embedded multi-core systems. This research analyzes the

data locality of an object detection algorithm on embedded multi-core systems.

Improving data locality can maximize the data reuse for on-chip caches. This can

effectively avoid the off-chip memory bottleneck, and significant enhance the system

performance.

3

Object detection is an indispensible function for smart embedded devices. By

extracting the features in a sensed image, it is among the first step for a device to

understand the surrounding environment. This thesis performed a comprehensive

analysis on a Viola-Jones-based parallel object detection algorithm [11]. The object

detection algorithm is parallelized by implementing the concurrent tasks with multiple

threads. These threads are managed by a centralized thread queue, and are executed

on an ARM-based cycle-accurate SMP (Symmetric Multi-Processing) simulator [13].

Systems with load imbalance issues are inefficient because some processors are

idle while others keep executing programs. Fine-grained thread loading helps system

achieve load balance among processors. It has three advantages compared with

fine-grained. Firstly, coarse-grained has fewer threads, leading to less expenditure on

overhead of creating threads and reading thread from thread queues. Secondly, big

threads usually iterate the same loop more times than small threads do which indicates

that the branch prediction in the coarse-grained would be more accurate than that in

the fine-grained; Thirdly, because coarse-grained usually iterate same loop more

times, that makes coarse-grained have higher data-locality between different

iterations than fine-grained. Striking a balance between coarse-grained and

fine-grained thread loading necessitates more efforts from programmers. The

technique of steal work load on coarse-grained thread loading helps programmers to

balance loading among processors.

the contributions of this these can be separated into three parts. The first part

discusses the multi-stage hybrid parallelism which achieves 37.5X speed-up on a

64-core system. However, memory accessing is an imperative design issue long

existing in multi-core systems. Therefore, the second part of this thesis focuses on

the optimization of data locality which brings 62% reduction of computation time on

a regular 16-core system. In the final part of this thesis, we propose a work steal

technique to alleviate load imbalance of an unoptimized program. This mechanism

4

can attain the similar performance to an optimized program and save programmers ’

effort on program optimization.

This thesis is organized as follows. Chapter 2 introduces Viola-Jones-based

object detection algorithm. Chapter 3 shows the multi-level parallelism analysis of

face detection on a shared memory multi-core system. Chapter 4 proposes a design

which enhances the data reuse of local cache for a parallel face detection algorithm.

Chapter 5 shows a technique of work-stealing on a coarse-grained multi-threaded

design. Chapter 6 introduces the simulation platform and discusses some related

design issues. At last, Chapter 7 draws the conclusion.

5

Chapter 2 Viola-Jones Algorithm

If one were asked to name a single face detection algorithm that has the most

impact in the 2000‟s, it will most likely be the seminal work by Viola and Jones. The

Viola-Jones face detector contains three main ideas that make it possible to build a

successful face detector that can run in real time: the integral image, classifier

learning with AdaBoost, and the attention cascade structure [11].

2.1 Haar-Like Feature

Figure 1 : Haar-like feature

Viola-Jones algorithm uses haar-like feature to classify objects. Haar-like feature

is defined as the intensity difference between rectangles. For instance, the feature

value in the left half of Figure 1 is the sum of the white rectangle pixels and the sub

sum of the black rectangle pixels. As for the right half of Figure 1, the feature is the

sum of upper white rectangle pixels and lower white rectangle pixels, and then the sub

sum of the black rectangle pixels.

2.2 Integral Table

One of Viola-Jones algorithm‟s distinguishing characteristic is its use of integral

image for computing the sum of value in the rectangle quickly and efficiently.

Integral image, or a summed area table, was firstly introduced to the digital image

processing by Crow [5] for use in mipmaps. In Viola and Jones face detection, the

integral image is used for rapid computation of Haar-like features. The integral image

6

is constructed as follows.

For example, the left half of Figure 2 is the image pixel, and the right half is the

integral table.

Figure 2 : Integrates the image to integral table

We would find that pixel 15 in right half of Figure 2 is the sum of 1, 8 and 6 in

the left half Figure 2 and pixel 20 in right half Figure 2 is the sum of 1, 7, 8, and 4.

After integrating an image, the algorithm computes Haar-like feature like Figure

3. In Figure 3, assume that the sum of block D is the result we want. We can use the

value of point 4, the sum of block A and B and C and D, sub value of point 3, the sum

of block A and B, sub value of point 2, the sum of block A and C, and then add value

of point 1, the sum of block A. And final answer is equal to sum of block D.

7

Figure 3 : Use the integral table to compute sum of rectangle

2.3 Strong Classifier and Weak Classifier

The classifier in this algorithm can be divided into two parts: strong classifiers

and weak classifiers. Strong classifiers have high accuracy, so they are used in

cascade architecture. When data is sent to the classifier, the first strong classifier

would classify this data into true or false. If data is classified as false, it is not the

target object; if data is classified as true, then it is sent to the next classifier and

category. If data passes all classifiers, it includes the target object.

The result of a strong classifier depends on its own weak classifiers; in other

words, weak classifiers are the elements of a strong classifier. When data is sent to a

strong classifier, all of its weak classifiers compute the data to judge whether it

contains a target object. If the weight of weak classifiers which return true is larger

than that of the weak classifiers which return false, then the strong classifier returns

true; if not, the strong classifier return false.

The weight of each weak classifier is trained by Ada-boost, and the main idea of

Ada-boost is shown in Figure 4. In this figure, one strong classifier has four weak

classifiers: W1, W2, W3 and W4. Now, we send one pattern to the classifiers, and the

system knows the answer of pattern is true.

W1 and W3 return true and the response matches the correct answer; therefore

8

the system tunes the weight of them larger. W2 and W4 return false, and the response

mismatches the correct answer; the system hence tunes the weight of them smaller.

Figure 4 : The training process of Ada-boost

2.4 Algorithm flow in OpenCV

The face detection algorithm is divided into three blocks: “resize”, “integral” and

“detect”.

The resize block changes the sizes of images. Because sizes of face are different,

we need to change the image size. In real-life applications, the size of a face is not

constant, so resizing is necessary. Consequently, the ratio of the scan window to the

whole image needs to be modified so that the scan window can capture different sizes

9

of face.

The integral block integrates an image to a table, and the integral image helps

classifier computes the feature quickly and efficiently. The procedure was introduced

in Section 2.2.

Figure 5 : The procedure of face detection implementation

As the detect block moves the scan window through the image, the sub-image is

sent into the cascade classifier structure to detect the location of a face. The result of

strong classifier depends on weak classifiers, so the strong classifier has higher

10

accuracy. Therefore, it is used in cascade architecture. If the sub-image of scan

window passes all strong classifiers, it means that the scan window includes the face;

if it doesn‟t pass all of the strong classifiers that mean the scan window doesn‟t

include a face.

11

Chapter 3 Multi-Level Parallelism of

Face Detection on Multi-Core System

The focus of chapter 3 falls on the parallelism of the face detection application.

We would be more interested in the intrinsic computation parallelism which can be

exposed through parallelization. To minimize the impact of communication bottleneck,

the memory/bus latency is set to 1 cycle. The rest of the chapter 3 will use this system

scheme to explore the parallelism of the application.

3.1 Related work

Face detection is extensively studied used in many smart object applications [3].

The Viola and Jones algorithm is one of the most widely used face detection schemes

[11]. It provides high accuracy and fast computation. Since the algorithm is so

popular, many research efforts have been spent on enhancing the performance of the

Viola-Jones algorithm. Wei et al.[19] and Yang et al.[20] realized parallelism of the

algorithm by using a specific HW design in a FPGA. Theocharides [21] also proposed

a scalable parallel architecture for face detection on FPGA. Gao [22] presented a

novel approach to use FPGA to accelerate the Haar-classifier based face detection

algorithm with highly pipelined micro-architecture and utilizes abundant parallel

arithmetic units in an embedded system. Most of the methods focus on using

innovative HW architecture or specific HW accelerator to enhance the performance.

This chapter concentrates on achieving better performance through exploiting the

algorithm parallelism on multi-core systems. It is different from building a specific

hardware accelerator to speed up the critical computation in the algorithm. The

proposed design can be easily applied to an SMP system without any extra HW

implementations.

12

Chen„s research [5] is among the first to explore the algorithmic parallelism of

face detection algorithm, and is similar to the work done in this thesis. The author

analyzed the potential parallelism of Viola-Jones algorithm and executed on

multi-core systems with 4 to 8 processors. A 5.5X performance enhancement was

demonstrated by adopting a hybrid scheme of both coarse-grain and fine-grain TLP.

This chapter differs from [5] in two aspects: (1) this chapter not only explores the

algorithm parallelism in different levels, but also shows the impact of different design

issues; (2) the analysis is extended to a larger scale (64 cores) of multi-processor

which demonstrates a significant computation parallelism in the face detection

algorithm.

3.2 Parallelism at Different Algorithm Level

The parallelism of the face detection exists in different algorithmic levels. This

section discusses the potential parallelism at different levels of the face detection

implementation. The face detection implementation is adopted and modified from

OpenCV library[14], which applies the idea of Viola-Jones face detection algorithm.

To take the advantage of multi-core platform, we need to analysis the inherent

parallelism of face detection. In this algorithm, the parallelism level is divided into

four levels: top level, detection level, divided detection level and weak classifier level.

Detail discussions about each level can be found in following sections.

3.2.1 Top level parallelism

In top level parallelism, images with different sizes are processed by different

threads. As illustrated in Figure 6, the first thread resizes the original image to the

biggest image, and then integrates and detects this image. The second thread resizes

the original image to a smaller image, and then integrates and detects the smaller

image. And the final thread resizes the original image to the smallest image, and then

13

integrates and detects this image.

Figure 6 : The parallel scheme of face detection at top level parallelism

3.2.2 Detection level parallelism

Figure 7 : The breakdown of total execution time

Figure 7 is the breakdown of total execution time. And the number is simulated

by cycle-accurate SMP simulator based on ARM ISA. We can find that the detection

block is the significant part of total execution time, so this thesis tries to parallelize

the execution of the “detect” block.

14

In detection level parallelism, the program detects different images by different

threads. As in Figure 8, the “resize” and “integral” blocks are executed sequentially.

After integrates image, the biggest image is detected by the first thread. At the same

time, the program keeps resizing and integrating the smaller image. After integrates

image, put the image into this thread to detect and keep resiz ing. The computation

loads are different due to different sizes of images.

Figure 8 : The parallel scheme of face detection at detection level parallelism

3.2.3 Divided detection level parallelism

To balance the computation loads between different threads, the program divides

an image into several sub-images in the divided detection level. Big images are

divided into many parts while small images are divided into fewer parts. After that,

the program detects different sub-images by different threads. Program Detects a

sub-image means that a thread detects all scan windows at their upper left corner in

the sub-image. The program still reads pixel data from the entire image, so the final

result is unchanged from that of the program which is executed sequentially, even if

some scan windows cover different sub-images. The behavior of this level is shown in

Figure 9. The program resizes and integrates an image sequentially. After the program

15

finishes integrating an image, the program divides the biggest image into several

sub-images and then detects each sub-image by different threads. At the same time,

the program keeps resizing and integrating smaller images. Again, after finishing

integrating an image, the program divides the smaller image into several sub-images

and then detects each sub-image by different threads and keeps resizing.

Figure 9 : The parallel scheme of face detection at divided detection level

parallelism

3.2.4 Weak classifier level

As introduced before, the classifiers are further divided into two categories:

Strong classifier and weak classifier. A strong classifier contains several weak

classifiers, and the result of strong classifier depends on its own weak classifiers. In

weak classifier level, weak classifiers are executed by different threads when the

program sends the image into the strong classifier.

Figure 10 : The parallel scheme of face detection at weak classifier parallelism

16

3.3 Procedure of Different Parallelism Level

Simulation results are shown in Fig. 11 where the horizontal axis represents the

number of cores, and the vertical axis represents the total execution time. In the top

level parallelism, the execution time is improved as the number of cores increases.

However, the increase rate slows when there are more than 8 cores. In detection level

and divided detection level parallelism, the execution time is not improved when the

system has more than 4 processors. In the weak classifier level, since the total

execution time is too long, we don‟t show it in this figure.

Figure 11 : The total execution time of different parallelism level with latency 1/1

3.3.1 Top level parallelism

In the top level, almost the entire application is parallelized, and the sequential

part is minimized. However, due to different sizes of images, loadings of threads are

not equal. As Figure 12 shows, some processors already finish their own program

while some still need more time. That means that processors having finished their own

program still need to wait for other processors, which leads to the system‟s inefficient

use of its processors.

17

Figure 12 : The behavior of top level

3.3.2 Detection level parallelism

In the detection level, the sequential part becomes the critical path. As Figure 13

shows, assume that core 1 resizes and integrates image sequentially and that core 2,

core 3, and core 4 execute the detect block in parallel. We find that core 2, core 3 and

core 4 finished their own program quickly, but the sequential part does not create new

threads in time. This results in idle processors which await new threads. Therefore,

the system does not use processors efficiently.

18

Figure 13 : The behavior of detection level

3.3.3 Divided detection level parallelism

In the divided detection level, fine-grained thread loading makes the system

easier to achieve load balance between processors. However, similar to the situations

in the detection level, the sequential part becomes the critical path.

As shown in Figure 13. The parallel parts finish their own program quickly, but

the sequential part does not create new threads in time. That causes these processors

idle to wait for new threads to create and causes the system not use processors

efficiently.

3.3.4 Weak classifier level

In weak classifier level, the overhead on creating a thread becomes the limiting

factor of performance enhancement. In Figure 14, W1, W2 and W3 are the total

sequential execution time, and the green arrow is the overhead on creating threads. In

evidence, the overhead is much bigger than the total sequential execution time. That

causes the performance in parallel worse than in sequentially.

19

Figure 14 : The behavior of weak classifier level

3.4 Hybrid Parallel Scheme

According to the result and the above discussion, we find that in the top level,

almost the entire application is parallelized, and the sequential part is minimized. But

the imbalanced loading of the threads causes the system use processors inefficiently.

In the divided detection level, fine-grained thread loading makes the system easier to

achieve load balance between processers, but the sequential part s become the critical

path.

So this thesis proposes the hybrid parallel scheme to avoid the limiting factor,

and to retain the advantages of different levels. By minimizing the sequential part in

programs and using fine-grained thread loading, it is easier for the system to achieve

load balance between the processors.

3.4.1 2-stage hybrid parallel scheme

In 2-stage hybrid parallel scheme, the program resizes and integrates different

images with different threads in the first stage. Then the scheme divides image into

several sub-images. After that, the program detects each sub-image by different

threads in the second stage.

As shown in Figure 15, in the first stage, the first thread resizes and integrates

the biggest image, the second thread resizes and integrates the smaller image, and the

final thread resizes and integrates the smallest image. In the second stage, the

program divides the biggest image into four sub-images, and detects each sub-image

by different threads. And then the program divides smaller image into three

sub-images, and detect each sub-images by different threads.

20

Figure 15 : 2-stage hybrid parallel scheme

Figure 16 shows the total execution time of the 2-stage hybrid parallel scheme.

The horizontal axis represents the number of cores and the vertical axis represents the

total execution time. We find in the 2-stage hybrid parallel scheme, the execution time

is improved as the number of cores increases. This scheme can achieve a 15x

speed-up on a 16-core system. However, the rate of improvement slows down when

there are more than 16 cores. The reason is that the first stage in this scheme still

has load imbalance problem when the system has more than 16 cores.

21

Figure 16 : The total execution time of 2-stage hybrid parallel scheme on different

number of core system with latency 1/1

3.4.2 3-stage hybrid parallel scheme

Recall the breakdown of the total execution time. The block “resize” also

consumes a considerable part of the execution time. Therefore, the new scheme tries

to parallelize the execution of this block.

0

0.5

1

1.5

2

2.5

3

3.5

1 2 4 8 16 32 64

Run Time

CORE_NUM

time(sec)

22

Figure 17 : The breakdown of total execution time with latency 22/33

This thesis modifies the 2-stage hybrid parallel scheme and separates the block

“resize” and “integral” into different stages. Then the new scheme divides image into

several sub-images, and resizes each sub-image by different threads to balance the

loading of threads in the first stage. Different images are then integrated by different

threads in the second stage. Finally, the program detects different sub-images by

different threads in the third stage.

Figure 18 : 3-stage hybrid parallel scheme

Figure 19 shows the execution time of 3-stage hybrid parallel scheme. The

horizontal axis represents the number of core, and the vertical axis represents the total

execution time. We find that this scheme can achieve a 27.5x speed-up on the 32-core

system, and achieve a 37.5x speed-up on the 64-core system.

23

Figure 19 : The total execution time of 2-stage hybrid parallel scheme and 3-stage

hybrid parallel scheme on different number of core system with latency 1/1

3.5 Summary of parallelism on face detection

In higher algorithm level, loadings of threads are imbalanced. That causes system

to use processors inefficiently. In lower algorithm level, too many sequential parts

and overheads deteriorate performance. We propose multi-staged hybrid scheme that

strikes the balance between higher algorithm level and lower algorithm level. This

scheme avoids the limiting factor and achieves superior performance.

24

Chapter 4 Enhancing Data Reuse Of

Local Cache For A Parallel Object

Detection Algorithm

In Chapter 3, the 3-stage hybrid parallel scheme achieved a 37.5x speed-up on 64

core system. However, Chapter 3 focuses more on the parallelism of face detection

application. There are more interested in the intrinsic computation parallelism which

can be exposed through parallelization. To minimize the impact of communication

bottleneck, the memory/bus latency is set to 1 cycle.

Figure 20: Total execution time of face detection on different number of core system ;

this figure shows that bus traffic jams become the bottleneck when the system has

many cores.

But in real system, the memory/bus latency cannot be neglected, and the

communication traffic jams definitely occur. As shown in Figure 20, bus traffic jams

0

1

2

3

4

5

6

1 2 4 8 16

latency 20 RunTime

latency 10 RunTime

latency 5 RunTime

Time(sec)Time(sec)

25

become the bottleneck when the system has many cores. Significant enhancements of

performance were observable until the number of cores was up to eight. Improving

data locality of the on-chip cache has therefore become a critical design concern.

Improved data locality increases cache hit rate. Increased cache hit rate lowers the

frequency of memory access. Lowered frequency of memory access reduces total

memory access time and consequently improves the total execution time. This chapter

analyzed the memory behavior of a parallel Viola-Jones algorithm, and proposed a

scheme to enhance the data locality of on-chip cache.

4.1 Related work

Data locality optimization is a critical design issue for computing systems and

has been studied for decades [23]. However, most of the previous research focused on

single core systems. Locality issues of multi-core systems are recently emerging as

essential design concerns when parallel platforms become the mainstream of the

computing architecture [24]. In a shared memory multi-core system, the design

needs to be balanced between parallelism and locality in order to achieve the best

overall performance.

The Viola-Jones algorithm is one of the most widely adopted object detection

schemes [11]. It was first proposed to detect human faces in an image. Due to the high

accuracy and fast computation, the algorithm has also been extended to detect other

objects in an image or video, such as hands, eyes [25], pedestrians [26], and cars [27].

Many research efforts have focused on enhancing the performance by exploiting the

algorithmic parallelism on specific HW accelerators [21]. With the increasing amount

of non-recurring-cost of implementing a pure HW solution, exploiting the parallelism

on a programmable multi-processor system has become cost attractive in designing

future intelligent algorithms.

Chen„s research [5] is among the first to explore the algorithmic parallelism of

26

the Viola-Jones-based detection algorithm on programmable processors. This work

analyzed the potential parallelism of the Ada-boost algorithm and executed on

multi-core systems with 4 to 8 processors. A 5.5X performance enhancement was

demonstrated by adopting a hybrid scheme of both coarse-grained and fine-grained

TLP. Chiang [28] investigated the characteristics of different parallelism levels of a

Viola-Jones algorithm. The authors have proposed a three-staged parallelization

scheme to improve the load balance of the algorithm and achieve 37X performance

improvement.

This chapter differs from the previous works in two aspects: (1) the target

platform of this work focuses on embedded multi-core systems, where each processor

is a simple single issue RISC core with relatively small on-chip caches; (2) this work

concentrates on the data locality optimization for the parallel object detection

algorithm and proposes a design to improve the memory access behavior as well as

overall performance.

4.2 Data-locality of classifier vs. data-locality of pixel

As shown Figure 21, the implementation of Viola-Jones algorithm can be divided

into three parts. (1) Resize. The implementation uses the fixed-size scan window with

a well-trained classifier library in the Ada-boost algorithm. Since the scan window

size is fixed, an image needs to be resized into different resolutions. (2) Integral. This

part performs the evaluation of the Haar-like features by using the integral image

method. (3) Detect. By moving the scan window through the image, the sub-image is

sent into the cascade classifier structure to detect the location of an object.

27

Figure 21 : Pseudo code of the Viola-Jones algorithm

4.2.1 Data-locality of classifier

The detect block contains a list of cascaded strong classifiers. Each strong

classifier is composed of a series of weak classifiers. When moving the scan window

to a new position, the image data covered in the scan window will be checked by these

cascaded classifiers. If the image data passes all the classifiers, this window position

will be marked positive, indicating the existence of a target object. In the process, the

program load different pixels, but computed by same classifier. As shown in Figure

22.

Each weak classifier is responsible for checking one specific feature of the target

object. Thus each weak classifier contains the associated information about this

feature, including classifier types, location in the scan window, weighting factor, and

the decision threshold. After the first usage of a weak classifier, the feature

information will be stored temporarily in the local cache. This boosts system

performance if a processor can find this information from its local cache when the

next time it is trying to use the same weak classifier.

for all WZ // WZ: window size

 Resize image;

 Integral image;

 for all WP // WP: window position

 Detect {

 for all SC // SC: strong classifier

 for all WC // WC: weak classifier

 If failed, label the position as negative; jump to the next WP;

 If passed all the SCs, label the position as positive;

 }

28

Figure 22 : Move the scan window to a new position, the image data covered by the

scan window will be checked by same cascaded classifiers.

4.2.2 Data-locality of image pixel

From another point of view, classifiers load different collections of pixels even if

they employ the same scan window. A simple illustration can be found in Fig. 23 and

Fig. 24. The program only loads the pixels on the corners to compute the intensity

differences between rectangles. As shown in Figure 23, Figure 24, each weak

classifier includes two or three rectangular Haar-like features. Viola-Jones algorithm

uses the integral image to efficiently compute the target features. Thus each classifier

only loads the corner integral data points of a Haar-like feature rectangle and

computes the intensity difference between sub-rectangles. The possibility that the

corners of these rectangles fall on the same data position of an integral image is fairly

low.

29

 Figure 23 : Location of weak classifiers of strong classifier 0 in the scan window

Figure 24 : Location of first five weak classifiers of strong classifier 1 in the scan

window

30

 Figure 25 shows the probability that points in a scan window are loaded by

weak classifiers. The average probability that a point is loaded is merely 2%, and the

maximal probability is 6%. This discloses the fact that the probability of reusing a

pixel is rather low. On the contrary, parameters of a classifier are definitely reusable.

Figure 25: The probability distribution of position is read by one weak classifier

4.3 Classifier-First Strategy Algorithm

 Generally, object detection is realized by a scan window browsing through the

whole image, and the sub-image contained in the window is sent to the cascade

classifier. This is an intuitive combination of a cascade classifier and scanning

through the whole image. However, to deal with data locality and the issue of bus

traffic jams, classifier-first strategy is a better scheme.

4.3.1 Change loop level of Viola-Jones algorithm

Based on the analysis from the previous section, we proposed a new design

scheme to enhance data locality for an embedded multi -core system. Figure 26 shows

the pseudo code of this new design. Different from the original algorithm flow, the

31

new design relocates Loop WP, which changes the position of the scan window, next

to Loop SC (Strong Classifier).

This design improves data locality of the feature information of weak classifiers.

Moving the WP loop after the SC loop can reduce the possibility for the

already-cached feature information being replaced by the subsequent strong

classifiers which would be loaded right after the usage of the current strong classifier

in the original design.

Figure 26 : Pseudo code of the modified Viola-Jones algorithm

Figure 27 compares the runtime between the original algorithm and the proposed

design. The cycle-accurate simulation was performed on systems with different

numbers of processors (indicated by the x-axis of Figure 27). The proposed design has

better performance at all the multi-core schemes. This is because the numbers of

external memory accesses are reduced significantly due to the bet ter data locality at

the local cache. The 16-processor scheme has the maximum performance

enhancement of 53%. This is mainly because, for the original design, the potential

for all WZ // WZ: window size

 Resize image;

 Integral image;

 Detect {

 for all SC // SC: strong classifier

for all WP // WP: window position (New position of WP loop)

 for all WC // WC: weak classifier

 If failed, label the position as negative; jump to the next WP;

 // processor can better reuse the WC data stored in the cache

 // which significantly increases the data locality

 If passed all the SCs, label the position as positive;

 }

32

performance enhancement of the original design enabled by more processors is

compromised by the enormous memory access time. The memory bottleneck becomes

the limiting factor of the system performance. Hence the performance stops improving

when there are more than eight processors. However, the proposed design

significantly reduces the number of memory accesses. The performance continues to

scale when there are more processors (8, and 16 processors).

Figure 27 : The total execution time of 3-stage parallel scheme and locality

optimization with latency 10/10

4.3.2 Use queue storage to replace screen window location storage on

Classifier-first strategy

 In order to change loop level, a strong classifier is first selected and it processes

each sub-image of the moving scan window. The classifier decides whether a

sub-image contains the target object and the decision is stored in memory. Later,

when another classifier is selected, it only reads sub-images which were decided

positive of containing a target object.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 Core 2 Core 4 Core 8 Core 16 Core

3-Staged Hybrid(original)

change loop

Run time(sec)

Number of Core

33

However, as shown in Table 1, most window position fails the feature check

during the first five strong classifiers that means some extra computation in change

loop algorithm when system check this position pass front classifier or not. Section

6.3 features more on the computation of different strong classifiers. We can optimize

the algorithm by only check pass position. So we modify algorithm, if the position

pass, record the position to a queue storage, when program execute next strong

classifier, load the position from queue not check all position in image, this method

help system read record table less time. The 16-processor scheme has the maximum

performance enhancement of 58%.

Table 1 : The computation of different strong classifiers when system detect image

“lena” from OpenCV

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 Core 2 Core 4 Core 8 Core 16 Core

3-Staged Hybrid(original)

Locality Optimized(propose)

Run time(sec)

Number of Core

34

Figure 28: The total execution time of 3-stage parallel scheme and locality

optimization with use queue storage with latency 10/10

4.4 Mathematical Model Analysis

 Section 4.1 already explained why the times of memory access of classifier -first

strategy is less than that of screen-window-first strategy. In this section, we adopt a

mathematical point of view to explain the results . Assume one weak classifier classes

one location need to read size data (weight threshold…etc), and size pixel.

And one strong classifier has N weak classifiers. In screen-window-first strategy, one

strong classifier detects one location needs to load (); Assume this image

has M locations should be detected, in classifier-first strategy, because all location

use same classifier, one strong classifier detects all location needs to load

 (), in other word, one strong classifier classes one location

have to load (), the size of the data used (read) by

each weak classifier is weak classifier weight*2(true or false) + weak classifier

threshold + rectangle weight*x + pixel*4*x, here x is the number of rectangle which

weak classifier had, and “Load Queue” only one access, M usually is a large number,

as the model shows, the number of classifier-first strategy algorithm read memory less

than the number of screen-window-first strategy algorithm read memory.

4.5 Mix Classifier-First Strategy and Screen-Window-First

Strategy

35

Table 2: Number of weak classifier which the strong classifier includes

 To sum up, classifier-first strategy achieves better data locality at the expense

of extra computation and memory space for the results of previous classifier.

Scan-window-first strategy, on the other hand, does not have this downside because it

only comprises cascade classifiers.

Figure 29: Pseudo code of the Viola-Jones algorithm cascade classifier0-3 and

cascade4-5

When old feature information of a weak classifier fill all cache, the feature

for all WZ // WZ: window size

 Resize image;

 Integral image;

 Detect {

 for all WP // WP: window position

for SC0:SC3 // SC: strong classifier(cascade 0-3)

 for all WC // WC: weak classifier

 If failed, label the position as negative; jump to the next WP;

for all WP // WP: window position

 for SC4:SC5 // SC: strong classifier(cascade 4-5)

 for all WC // WC: weak classifier

 If failed, label the position as negative; jump to the next WP;

for other SC // SC: strong classifier

for all WP // WP: window position (New position of WP loop)

 for all WC // WC: weak classifier

 If failed, label the position as negative; jump to the next WP;

 // processor can better reuse the WC data stored in the cache

 // which significantly increases the data locality

 If passed all the SCs, label the position as positive;

 }

36

information of a weak classifier in the local cache is replaced by another weak

classifier. That means if the strong classifier not fills all cache, the system load other

appropriate classifier would keep the data locality possible and not replace the

original classifier. That means moving the scan window and send image data to

appropriate cascade classifier structure, the information of classifier would not

replace before all position load this classifier and reduce record pass position time.

According to our experiment result, we find about 80 weak classifiers would fit

the 16KB cache, as shown in Table 1, send position data to cascade classifier 0 to

classifier 3, then record the position pass those classifier, and then send position data

to cascade classifier 4 to classifier 5, then record the position pass those classifier,

and then use classifier-first strategy is the best scheme when system has 16KB cache.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 4 8 16

3-Staged Hybrid(original)

Locality Optimized(propose)

cascade SC 0-2

cascade SC 0-3 4-5

Number of processors

R
u

n
ti

m
e

(s
e

c)

Dcache = 8KB

Number of processors

R
u

n
ti

m
e

(s
e

c)

Dcache = 8KB

37

Figure 30: Performance comparison between the 3 -Staged Hybrid Scheme and

the proposed locality optimized scheme with latency 10/10

Because about 80 weak classifiers would fit all 16KB cache, that means 40 weak

classifiers would fit 8KB cache, as shown in Figure 30, the classifier 0 to classifier 2

fit the 8KB cache, and the classifier 3 almost replace all data of classifier 0 to

classifier 2 in cache, that cause the cascade 0-3 4-5 scheme performance close to

3-Stage Hybrid and worse than Locality Optimized but cascade 0-2 still better than

Locality Optimized.

When system has 32KB cache, the cache size is big, and the probability of new

data replaces old data becomes fewer, so the data-locality optimal effect becomes not

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 4 8 16

3-Staged Hybrid(original)

Locality Optimized(propose)

cascade SC 0-2

cascade SC 0-3 4-5

Number of processors

R
u

n
ti

m
e

 (
se

c)
Dcache = 16KB

Number of processors

R
u

n
ti

m
e

 (
se

c)
Dcache = 16KB

Number of processors

R
u

n
ti

m
e

 (
se

c)
Dcache = 16KB

Number of processors

R
u

n
ti

m
e

 (
se

c)
Dcache = 16KB

0

0.5

1

1.5

2

2.5

3

3.5

1 2 4 8 16

3-Staged Hybrid(original)

Locality Optimized(propose)

cascade SC 0-2

cascade SC 0-3 4-5

Number of processors

R
u

n
ti

m
e

(s
e

c)

Number of processors

R
u

n
ti

m
e

(s
e

c)

Number of processors

R
u

n
ti

m
e

(s
e

c)

Number of processors

R
u

n
ti

m
e

(s
e

c)

Dcache = 32KB

38

obvious, and then the total execution time of each scheme is closed to other.

4.6 Summary of Higher Data-Locality Algorithm

Object detection enables a smart embedded device to recognize the surrounding

environment and to react properly. Nonetheless, object detection requires parallel

algorithms to be executed on multi-core systems due to its high amount of

computation, the memory bottleneck makes it a critical design concern to improve

data locality and to take the full advantage of the on-chip cache. This thesis analyzed

the memory behavior of a parallel Viola-Jones algorithm, and proposed a scheme to

enhance data locality of an on-chip cache. By running a multi-threaded object

detection algorithm on a cycle-accurate multi-core simulator, the proposed approach

can achieve up to 62% better performance compared with the original parallel

program. However, the modified algorithm needs extra room to record the positions

passed by sub-images. The best way to improve performance is selecting the exact

number of cascaded classifiers that fill up the cache before detecting the position.

39

Chapter 5 Balance Thread Loading by

Steal Work Load on Coarse-Grained

Thread Loading

 In Chapter 3, we proposed a 3-stage hybrid parallel scheme which balanced the

loading of threads and thus achieved balanced work load among processors.

Nonetheless, adjust the size of a thread results in balanced work load for processors as

well as burdens for programmers. Accordingly, in this chapter, we proposed a

technique of "work steal" to mitigate the burdens.

5.1 Related Work

The distributed task queue technique [16][18][29][30] is one of the most

popular ways of implementing task queues. In this scheme, each processor has its own

thread queue. When the processor is idle and needs a new thread to execute, it will

look at its own queue first. When a processor needs a thread but its own queue is

empty, it will steal a thread from one of the other queues.

Figure 31: Distributed task queue

40

 A hardware technique named "Carbon" [15] is proposed to improve the

mechanism of distributed task queue. Carbon, like most other distributed task queue

resolvers, provides better load balancing to programs using fine-grained thread

loading. In addition, Carbon uses pre-core task prefetchers that hide the latency of

accessing hardware queues because adopting fine-grained thread loading creates more

threads.

In [17], the thesis proposes a hardware/software support, same as distributed

task queue. It stores fine-grained threads in queue and each thread has its own thread

queue. In addition, this scheme uses DMA to send a request to reduce the total access

time.

The [31] implemented work steal on GPU [31]; results showed that for

applications with fine-grained parallelism has better performance, Lauterback claims

other work steal techniques do not currently work well on GPUs for multiple reasons:

such as they are based on the assumption that low-latency communication between

cores is possible in order to manage concurrent access to shared structures or they

cannot make full use of local memory, the thesis implement local thread queue in

local memory, that would reduce the latency from thread queue and lower the

communication between different cores.

Based on the above introduction, it is easier for the fine-grained thread loading

to approach load balance among processors, though the coarse-grained thread loading

also has many advantages. First of all, coarse-grained thread loading results in fewer

threads. Lower number of threads is equivalent to reduce overhead which is necessary

upon creating threads. Second, loops iterate for more times when the thread is larger;

therefore, the branches make more accurate predictions. Third, larger threads have

higher data- locality. For example, the classifier-first strategy which is proposed in

Chapter 4, classifier data have a high probability of being reused in one thread, and

41

that expressed the data-locality would become lower as the smaller thread.

In [32], the thesis first estimated the workload, and cut the total workload into

appropriately size in the beginning. If the case of load imbalance occurs, and then use

work steal technique to remedy. However, adjust the size of threads necessitates more

efforts from programmers.

According to the above discussion, this chapter proposed one idea of steal work

load on coarse-grained thread loading. This scheme maintains the advantages

of coarse-grained thread loading and can be implemented intuitively without adjusting

the size of threads.

5.2 Idea of Steal Work Load on Coarse-Grained Thread

Loading

 Whereas fine-grained thread loading helps system achieve load balance among

processors, coarse-grained thread loading still has many advantages. The merit

coarse-grained thread loading brings includes lower cost on creating threads, more

accurate prediction of branches, and higher data locality-- especially for

classifier-first strategy proposed in Chapter 4. Programmers need extra efforts to

strike the balance between fine-grained thread loading and coarse-grained thread

loading.

This section would propose an idea of steal work load on coarse-grained thread

loading, and add extra two values, start-value and end-value, when program creates

thread. Start-value is used as a loop counter and end-value is used as the end

condition; these values will be updated with the program executes. By the way, the

iterations of the loop should be independent, and the system steal work load will not

go wrong. After adding these values, the system can know the work load of the

threads that still execute, and the idle processor can steal work load from o ther busy

42

processors to balance work loading between different threads.

Figure 32 : Pseudo code of steal work load on coarse-grained thread loading

5.3 The SW/HW organization of Steal Work Load on

Coarse-Grained Thread Loading

This section discusses the organization of stealing work load while adopting

coarse-grained thread loading. In the beginning, processors can create and add new

threads to the tail of the queue. At the same time, function queue also stores the

thread‟s function, start-value and end-value.

Stp_create(fun,ptr,start_value,end_value); //create thread

fun() //use start_value and end_value help load balance

{

 for(start_value;start_value<end_value;start_value++)

{

 ………….

}

}

43

Figure 33: The block diagram of work stealing on coarse-grained thread loading by

start-value and end-value.

In general, idle processors request tasks from the head of the thread queue. If the

thread queue is empty, the processor remains idle. In this scheme, if one idle

processor sends request when thread queue is empty, the processor will checks the

function queue to see if any thread work on other processors can be shared by

start-value and end-value., If not, the idle processor awaits; if yes, the idle processor

steals the back half of thread which works on other processors to create new thread

and modify the counter of loop: start-value and end-value, the idle processor executes

the second half original thread. In other words, executes the same thread from

((end-value - start-value) / 2 + start-value) to end-value. The stolen processor

executes the first half of the original thread; in other word, executes thread from

44

start-value to ((end-value - start-value) / 2 + start-value), this scheme would help the

system achieve load balance between different processors.

Figure 34 : The behavior of work stealing

5.4 Experiment Result

 We compared several cases of load imbalance which the work steal technique

aimed to solve.

Case 1:

Let the latency set to 1 cycle, the system have 16 cores, and the program be the

3-stage hybrid parallel scheme proposed in Chapter 3. The total execution time of the

original system is 0.2091 second. If the program is executed on a system supporting

work steal, the total execution time becomes 0.2192 second. Work steal technique

45

did not further improve the performance because 3-stage hybrid parallel scheme had

already been an optimized one. If start-value and end-value are updated more

frequently, the program needs more time to update the value in Function Queue, the

total execution time also increases, and more memory accesses of update Function

Queue even cause the system to have the traffic jam in communication. Another

possible bottleneck is the idle processor to poll Function Queue. If many processors

are idle, but only one processor is allowed to search the thread which works on other

processors, and many processors have to idle to wait for the processor to poll

Function Queue, and this makes these idle processors function inefficiently.

For another condition, the program is 3-stage hybrid parallel scheme but didn‟t divide

image into several sub-images in the “detect” stage. That means load imbalance

problem occurs. The total execution time of original system is 0.4082 second. The

reason is that some processors finish their own programs, but some processors still

need more time to execute, that causes system to use processors inefficiently. If the

program executes on system that supports work steal, the total execution time

becomes 0.2134 second. The result shows the work steal technique helps the

program balance loading between processors better, and make the execution time

close to 3-stage hybrid parallel scheme that divides image into several sub-images,

the execution time even better than 3-stage hybrid parallel scheme that divides image

into several sub-images executing on the system that supports work steal, speculated

that with the reduced number of the thread creation.

46

Table 3 : The comparison of original architecture and work steal technique with

latency 1/1

Case 2:

Let the latency set to 8 cycles, the system have 16 cores, and the program be a

mixed scheme of classifier-first strategy and scan window-first strategy, as described

in Chapter 4. The total execution time of the original system was 0.2067 second. If

the program was executed on a system supporting work steal, the total execution time

becomes 0.2192 second. This scheme did not improve performance because it was an

enhanced version of the scheme in Case 1. Besides, there was no load imbalance

problem that caused extra overhead like synchronization or communication between

main memory and processors. Detail explanations can be found in the discussion in

Case 1.

For another condition, let the program be the same scheme as in front Case 2 and

images remain undivided in the Detect stage. Load imbalance happened in this case.

The total execution time of original system was 0.4416 second. The reason is similar

to that in Case 1: some processors finished their own program, while others were still

executing. This led to poor performance. If the program executes on system

supporting work steal, the total execution time becomes 0.2184 second. The result

also shows that the work steal technique helps the program balance loading between

processors better, and makes the execution time close to mix classifier-first strategy

and screen-window-first strategy scheme that divide image into several sub-images in

the “detect” stage, the total execution time even better than screen-window-first

strategy scheme that divide image into several sub-images in the “detect” stage

executing on the system supporting work steal, speculated that with the number of

times to reduce the thread creation.

47

Table 4: The comparison of original architecture and work steal technique with

latency 8/8

5.5 Summary of Steak Work Load on Coarse-Grained

Thread Loading by Start Value and End Value

 Load imbalance is the cause of the fact that the system utilizes processors

inefficiently because some processors have to execute long threads while others finish

their tasks sooner. Although some techniques can alleviate the issue of load imbalance,

they may very well increase the difficulty of programming at the same time. Therefore,

this thesis proposed the technique of work steal to ease the burden of programmers.

This chapter proposes one steal work load technique on coarse -grained thread

loading, and the work steal technique helps the program balance loading among

processors better, make the total execution time of general code executing on

platform supporting steal work load on coarse-grained thread loading close to optimal

program.

48

Chapter 6 Platform and Other

Discussion

6.1 Simulation Platform

The experiments of this thesis are performed on a multi-threaded cycle-accurate

shared-memory SMP simulator [13]. The simulator executes HW/SW co-simulation of

both the multi-threading SW library and the cycle-accurate SMP hardware model.

Figure 35 illustrates the organization of the simulator. The threads are managed by a

FIFO queue. Processors can create and add new threads to the tail of the queue. Idle

processors will request tasks from the head the queue. The processing core models a

single-issue ARM v5 architecture. Each processor has its own data cache and

instruction cache. Processors are connected by a single-transaction shared-bus. The

latencies of bus transaction and memory access are configurable. The cache coherence

is implemented as a simple snooping-based protocol. The system parameters used in

the simulator are shown on the right hand side of Figure 35.

Figure 35 : The SW/HW organization of a multi-threaded shared-memory SMP

simulator. The system parameters are shown on the right hand side

49

6.2 Does Thread Scheduling improve the performance of

Face Detection on Multi-Core System?

Thread scheduling technique improves the performance of face detection on

multi-core system. It has two possible benefits-- data-locality and load balance.

However, although dividing threads into smaller ones simplifies load balancing, it

also lowers data-dependence between threads. One possible solution is to divide an

image into sub-images, to have different threads detect different sub-images, and to

have each thread use the same classifier. One possible solution to increase data

locality is to divide an image into sub-images, to have different threads detect

different sub-images, to have each thread use the same classifier, and to schedule

these threads to the same processor. Nonetheless, there are two reasons implying

that this method is inefficient under this circumstance. First, systems that do not

divide an image into smaller sub-images in the first place can have high data locality

and can reduce the overhead of creating threads. Second, scheduling a processor to

detect sub-image from the same image only reduce the number of reading a classifier

once. In effect, the benefit is fairly limited. Therefore, according to previous

discussion, thread scheduling does not improve data-locality and the performance of

face detection on a multi-core system.

Another possible issue is load balance. It is unable to estimate the execution time

accurately because which position can pass the strong classifier is not known in

advance. Therefore, even if the program strikes a balance by thread scheduling in one

image, this merit disappears when there comes a new image.

6.3 The Contrast of Different Images Detect Faces on

Multi-Core System

Positions that contain a face may pass more classifiers than positions that contain

no faces do. This means that a position that contains a face has longer execution time.

50

However, there are hundreds of thousands of scan windows varying in locations and

sizes. If, for example, only several dozens of the windows contain faces, it does not

affect the overall computing time. Or, from another perspective, if the scan window

does not contain a face, it can be regarded as a random data. Also, the computation

that classifiers spend on a position can be regarded as a probability distribution. If

there are many positions to be detected, the total execution time would be close to

expected value.

We also have tried different images that have many faces. The experiment result

is similar to the image have a face or no face. For example, as shown in Figure 36,

there two images that have many faces. The total execution time is shown in Figure 36.

The execution time is close. The experiment results fit previous speculation.

Figure 36 : The image “people_2” on the left hand side, and the image “people_3”

on the right hand side

51

Figure 37 : The total execution time of different images with latency 10/10

We also profiled the computation of different strong classifiers when the system

detected different images. The experiment results are shown in Table 3 and Table 4

and are similar to Table 1. About 40% positions pass the first two strong classifiers,

and about 5-7% pass the first five strong classifiers. This also matches previous

speculations: if the scan window does not contain a face, it can be regarded as a

random data. Also, the computation that classifiers spend on a position can be

regarded as a probability distribution. If there are many positions to be detected, the

total execution time would be close to expected value. That means the total execute

time would depend on image size.

0

0.5

1

1.5

2

2.5

3

3.5

1 2 4 8 16

lena

people_2

people_3

Run time

Core Number

52

Figure 38 : Image “baboon” from OpenCV library whose size is

Table 5 : The computation of different strong classifiers when system detect image

“baboon” from OpenCV library

Figure 39 : Image “airplane” from OpenCV library whose size is

53

Table 6 : The computation of different strong classifiers when system detect image

“airplane” from OpenCV library

Figure 40 : Image “tasty” size is 912

Table 7 : The computation of different strong classifiers when system detect image

“tasty”

Figure 41 and Figure 42 show the ratio of positions passing the first three

classifiers and the ratio of positions passing the first five classifiers The results show

that different images have similar ratio. Ratios of passing the first three classifiers are

54

close to 25%; ratios of passing first five classifiers are close to 10%, even the sizes of

images size are different, such as image “tasty”.

Since there are many positions to be detected, the total execution time would be

close to expected value.

Figure 41: Ratio of passing first three classifiers

Figure 42: Ratio of passing first five classifiers

0

0.05

0.1

0.15

0.2

0.25

0.3

lena airplane baboon tasty

ratio of passing first three classifiers

ratio of passing first three
classifiers

0

0.02

0.04

0.06

0.08

0.1

0.12

lena airplane baboon tasty

ratio of passing first five classifiers

ratio of passing first five classifiers

55

Chapter 7 Conclusion

 This thesis performs a comprehensive analysis on the parallelism of a face

detection algorithm at different algorithmic levels. We have demonstrated that

although each parallelism level has its own potential to enhance performance, they

impose different limiting factors to the overall performance. The execution load

imbalance among threads adversely impacts the performance as well. Based on the

analysis results and design experience, this thesis proposes a multi -staged hybrid

scheme to retain the parallel performance and at the same time avoid the limiting

factor. With this scheme, we are able to achieve up to 37.5x performance enhancement

on a 64-core system.

However, the memory bottleneck makes it a critical design concern to improve

the data locality and take the full advantages of the on-chip cache. This thesis

analyzes the memory behavior of a parallel Viola-Jones algorithm, and proposes a

scheme to enhance the data locality of on-chip cache. By running a multi-threaded

object detection algorithm on a cycle-accurate multi-core simulator, the performance

was 62% better when compared with the original parallel program.

Systems with load imbalance issues are inefficient because some processors are

idle while others keep executing programs. Chapter 5 proposes a scheme of

work-stealing on coarse-grained threads which helps programmers to write program

easier. The work-stealing technique balances the execution loads of the parallel

program on different processors. Thus, the total execution time is close to the

hand-optimized program. Although the experiments of this thesis are conducted on a

cycle-accurate simulator, we envision the proposed techniques could enable an

efficient design of the face detection on a real embedded multi-core system.

56

Bibliography

[1] H.W. Gellersen, A. Schmidt and M.Beigl, "Multi-Sensor Context-Awareness in

Mobile Devices and Smart Artifacts," In Journal of Mobile Networks and

Applications, Vol.7, Num.5, pp.341-351. 2002.

[2] R. Colin Johnson, “First MEMS gyro smartphone to ship in June ,” EETimes,

May 2010, [Online]. Available:

http://www.eetimes.com/electronics-news/4199279/MEMS-Gyro-Smartphone

[3] SixthSense Project, MIT Media Lab. [Online]. Available:

http://www.pranavmistry.com/projects/sixthsense/

[4] Kinect for Microsoft Xbox, [Online]. Available:

http://www.xbox.com/en-GB/kinect

[5] Y. K. Chen, W. L. Li and X.F. Tong, "Parallelization of AdaBoost Algorithm

on Multi-Core Processors”, IEEE SiPS 2008, Washington DC, pp.275-280,

2008.

[6] The TILE-Gx™ processor family processor, [Online]. Available:

http://www.tilera.com/

[7] ARM cortex-A9 processor, [Online]. Available: http://www.arm.com/

[8] MIPS Technologies Announces Symmetric Multiprocessing (SMP) Support for

Android™ Platform on MIPS-Based™ SoCs,

[9] Intel multicore technology, [Online]. Available: http://www.intel.com/

[10] AMD multi-core processing, [Online]. Available: http://www.amd.com/

[11] C. Zhang and Z. Y. Zhang, "A Survey of Recent Advances in Face Detection,"

Microsoft Research, June 2010.

[12] S. Leibson, "Memory is the Future Bottleneck in Multicore Servers," EDN

News, March 2010.

http://www.eetimes.com/electronics-news/4199279/MEMS-Gyro-Smartphone
http://www.pranavmistry.com/projects/sixthsense/
http://www.xbox.com/en-GB/kinect
http://www.tilera.com/sites/default/files/productbriefs/PB025_TILE-Gx_Processor_A_v3.pdf
http://www.arm.com/products/processors/cortex-a/cortex-a9.php
http://www.intel.com/
http://www.amd.com/us/products/technologies/multi-core-processing/pages/multi-core-processing.aspx

57

[13] P. Schaumont, B. C. Lai, W. Qin, I. Verbauwhede, "Cooperative

Multithreading on Embedded Multiprocessor Architectures Enables

Energy-Scalable Design," Proceeding 2005 Design Automation Conference

(DAC), pp. 27-30, June 2005.

[14] Open Source Computer Vision, [Online]. Available:

http://opencv.willowgarage.com/

[15] Sanjeev Kumar, Christopher J. Hughes, Anthony Nguyen, "Carbon:

Architectural Support for Fine-Grained Parallelism on Chip Multiprocessors,"

International Symposium on Computer Architecture (ISCA), pp162-173, June

2007

[16] U. A. Acar, G. E. Blelloch, and R. D. Blumofe, "The Data Locality of Work

Stealing," In Proceedings of the ACM symposium on Parallel algorithms and

architectures, 2000.

[17] Quentin Meunier, Frederic Petrot, Jean-Louis Roch, "Hardware/software

Support for Adaptive Work-Stealing in On-Chip Multiprocessor," In Journal of

Systems Architecture, Vol. 56, pp392-406, 2010.

[18] D. Chase and Y. Lev. "Dynamic Circular Work-Stealing Dequeue," In

Proceedings of the seventeenth annual ACM symposium on Parallelism in

algorithms and architectures, 2005.

[19] Y. Wei, X. Bing, C. Chareonsak, "FPGA Implementation of AdaBoost

Algorithm for Detection of Face Biometrics", In Proc. IEEE International

Workshop Biomedical Circuits and Systems, 2004

[20] M. Yang, Y. Wu, J. Crenshaw, B. Augustine, R. Mareachen, "Face Detection

for Automatic Exposure Control in Handheld Camera", in Proc. IEEE

International Conference Computer Vision Systems , 2006.

[21] T. Theocharides, N. Vijaykrishnam and M. J. Irwin, "A parallel architecture

for hardware face detection," Symp. on Emerging VLSI Technologies and

Architectures, pp. 452-453, 2006.

[22] C. J. Gao and S. L. Lu, "Novel FPGA Based Haar Classifier Face Detection

Algorithm Acceleration," FPL 2008, Heidelberg, September 2008, pp.

373-378.

http://opencv.willowgarage.com/

58

[23] M. Wolf and Monica S. Lam. "A Data Locality Optimizing Algorithm." In

ACM SIGPLAN symposium on Programming Languages Design and

Implementation, pp. 30–44, 1991.

[24] Cade, M. J. Cade and A. Qasem, "Balancing Locality and Parallelism on

Shared-cache Multi-core Systems," 11th IEEE International Conference High

Performance Computing and Communications, 2009. HPCC ‟09, pp. 188 – 195,

June 2009

[25] M. Gaubatz, R.Ulichney, "Automatic Red-Eye Detection and Correction," In

Proc. IEEE Int. Conf. Image Processing, vol. 1, pp. 804–807, 2002

[26] M.J.Jones, D.Snow, “Pedestrian Detection Using Boosted Features over Many

Frames," 19th International Conference on Pattern Recognition , pp.1-4,

December 2008.

[27] T.T.Nguyen, H.Grabner, H.Bischof, B.Gruber, "On-line Boosting for Car

Detection from Aerial Images," IEEE International Conference on Research,

Innovation and Vision for the Future , pp.87-95, 2007

[28] C.H.Chiang, C.H.Kao, G.R. Li, B.C. Lai, "Multi-Level Parallelism Analysis

of Face Detection on a Shared Memory Multi-Core System," IEEE

International Symposium on VLSI Design, Automation and Test , April 2011.

[29] R. D. Blumofe and C. E. Leiserson. "Scheduling Multithreaded Computations

by Work Stealing" Journal of ACM, 46(5):720–748, 1999.

[30] D. Hendler and N. Shavit. "Non-Blocking Steal-Half Work Queues," In

Proceedings of the symposium on Principles of distributed computing, 2002.

[31] C. Lauterback, Q. Mo and D. Manocha, "Work distribution methods on

GPUs," Technical Report TR 009-16, 2009.

[32] Y. Kee, S. Ha, "A Robust Dynamic Load-balancing Scheme for Data Parallel

Application on Message Passing Architecture" International Conference on

Parallel and Distributed Processing Techniques and Applications, (PDPTA),

pp.974-980, July 1998.

