BRATE T BHE2 27

Parallelism and Data Locality Analysis of Face
Detection on a Shared Memory Multi-Core

System

'fﬂ %?Iix 95? (12 EEN :?Ii’::

Parallelism and Data Locality Analysis of Face
Detection on a Shared Memory Multi-Core System

G R S A Student : Chih-Hsuan Chiang

I L O I Advisor : Bo-Cheng Lai

A Thesis
Submitted to Department of Electronics‘Engineering and
Institute of Electronics
College of Electrical.and-Computer Engineering
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master of Science
in

Electronics Engineering

September 2011

Hsinchu, Taiwan, Republic of China

dEAR - O0& {7

£ 2

SRR R A RDFEALE L - L& DI B e

«3\
<
&
do
(g
P 1
e

Hpgr 8 J PSR e B e 2 G 0 Tt e S e e SR A KR
PLat - B kSl Gh AR ORI B S P h S LR g 8 ks

Ry R

A

Heh— B ¥ (73 %l BOR G ICHIR o I T 3k shoa o AP
TERER >4 @ BR® LA * T (T it o & — WA o7 A G R A
GFEEIRRENT AR PR ALAGIIERY B RS chT TR T IE M
MR R R ADF R R AT RIRF R EM R P R st
FfeRPEHR ORI -FEREIRA LT F S D EPTEFRDTHESIfoER

§ BT U T F -

=
4
=
=
X
2]
I
P
pal
E]
{w

S5 PEC iR - BRE AT LR

T3
>~
Pl

L5

BB Ea FE AT RL et » X A0 F L o m i x g

B P2 T FEAGE TR VBEL B BT R LR R

—=\
"
A
t)
(i

FEPCOT R RF TSI EREEY DRSS - BE R SR
PR A KA A4 B -5 #r(Viola-Jones)iw ¥ 2 BT 7k M i
MES 2RI - B2 R RFFTHEEPTRUGEFOT A R R

,I;Z:J.Qm FLgF By E i@g%@?ﬁi:&ﬁ%g% y 4 “é‘f"&é@;ﬁé_?cﬁ%ﬁ?

Flo BT EARDEALEIG F DL FET R kb aFnE o

Sk P37 4§ (fine-grained thread loading) @ r 3 k St 7 5 A 2 B/

W

»
1

B f FEhT e @ ogek R hf (7 4§ §* (coarse-grained thread loading)~ 7 %

!
[

e
&
3
&
>
&

Rl RO TR PRI TR PP E RS

s

R L g o A ek 2 0 g4 - B i1 7 £ (steal work load)

7

i

AR DR TR P FT R RSN R R S

*
&

PJLETF AR 0

2R

T8 > R 17 AMBG 2 o m T % € AR KIS Fe

a\
&

Eff?p\ Z R S

\4
=
Ry

by

!

\4
=
&

Rl

w
AN

s
*
f

oy
A
_HL

de ke e iR Al B

N
“

BAERPPFR T A L e g sE P2 L BT Bepdeid o Koo e

R FP- 2 L7 B RS FIN e oA ST R R EEFEN

WHRRE S A LTE S R AT F LA PS T 0T T R S 5R%eniE B pF
Y BN R A 1 (REPN T O L sl A e e o ie g

d Loy Be % TRt Eafrst o &a @ W AR K EF A R s F g

L_'ff’j .]ﬁ]b ﬁi‘\ o

Parallelism and Data Locality Analysis of Face
Detection on a Shared Memory Multi-Core System

Student: Chih-Hsuan Chiang Advisor: Bo-Cheng Lai

Department of Electronics Engineering Institute of Electronics

National Chiao Tung University

ABSTRACT

Face detection is one ‘of the fundamental-technologies for future smart devices.
However, its high computation makes applyingsuch technique to an embedded device
difficult to realize. Parallel processing-and.many-core architecture have become the
mainstream to achieve high performance in future computing systems. The
parallelism of an.application needs to be exposed before being exploited by the
parallel architecture. The first part-of this thesis performs a.comprehensive analysis
on the parallelism of a face detection algorithm .at different algorithmic levels. This
thesis demonstrates that each<parallelism level has its.own potential to enhance
performance, but also imposes.some limitations. Based on the results and design
experience, this thesis proposes a multi-staged mixed-level parallelization scheme to

maintain the performance scalability and at the same time avoid the limiting factors.

The intensive computation requirements make the object detection an expensive
application running on the resource-constrained embedded device. Due to the
parallelism exposed in first part of this thesis, parallel processing on multi-core
systems boosts the overall system performance. However, the memory bottleneck
limits the performance scalability. Improving data locality of the on-chip cache has
therefore become a critical design concern. The second part of this thesis analyzes the
memory behavior of a parallel Viola-Jones algorithm, and proposes a scheme to
enhance the data locality of on-chip cache. The scheme reduces unnecessary data

accesses and the communication between processors and main memory.
\Y

Balancing the workload among processors of a parallel system enhances the
execution efficiency. Implementing fine-grained threads makes it easier to achieve
load balance between processors. However, using coarse-grained threads also poses
many advantages. Therefore, how to strike a balance between the two parallelization
schemes will become an additional burden of programmers. The third part of this
thesis proposes a work-stealing design which lowers the programming effort and
improves the system efficiency as well.

This paper dedicates its first part to discussing the multi-stage hybrid parallelism
which achieves 37.5x speed-up on a 64-core system. However, memory accessing is
an issue long existing in multi-core systems. Therefore, the second part of this paper
focuses on the optimization of data locality which brings 62% reduction of
computation time on a regular 16-core-system. In.the final part of this paper, we
propose the work steal technique to alleviate the loead imbalance of an un-optimized
program. This mechanism can-attain the similar performance to an optimized program

and save programmers’ effort on-program optimization.

/.

3R

AGme B d o F AR R Sy g ok L2 RE R i #
BB Ad EhiEAEY 0 EP L RRJEGER B2
B e KEAFLDOER S ZE s RHTHZTORFE - FE
Fodmrapp{ofle > g @Ay yufler A5F8 5 L4
By FIb el A EN 0 Vo s REBHEF LR
TR R EHmT R L A FIE AT LG e BT A

A e Bt R B E AT BB FA DR AR P

o
frt.
fs
<
I
Iy
|
e
-h_‘\
v
=
flm
B
i)
B\
b
pr
4

VOB B o 2

TR-FEL
Frairod@Epianitiid«g

VI

Contents

IR ORI kRl Y T ERAFETRE B AY I

F_L

Parallelism and Data Locality Analysis of Face Detection on a Shared Memory Multi-Core

System v
R} B Vi
Contents Vil
List of Tables X
List of Figures XI
Chapter 1 Introduction 1
Chapter 2 Viola-Jones Algorithm 5
2.1 Haar-Like Feature 5
2.2 Integral Table 5
2.3 Strong Classifier and Weak Classifier 7
2.4 Algorithm flow in OpenCV 8
Chapter 3 Multi-Level Parallelism of Face Detection on Multi-Core System 11
3.1 Related work 11
3.2 Parallelism at Different Algorithm Level 12
3.2.1 Top level parallelism 12

3.2.2 Detection level parallelism 13

3.2.3 Divided detection level parallelism 14

3.2.4 Weak classifier level 15

3.3 Procedure of Different Parallelism Level 16

Vil

3.4

3.5

Chapter

Algorithm
4.1

4.2

4.3

4.4
4.5
4.6

Chapter

Loading

3.3.1 Top level parallelism
3.3.2 Detection level parallelism
3.3.3 Divided detection level parallelism
3.3.4 Weak classifier level
Hybrid Parallel Scheme
3.4.1 2-stage hybrid parallel scheme
3.4.2 3-stage hybrid parallel scheme
Summary of parallelism on face detection

4 Enhancing DataReuse Of Local Cache For A Parallel Object Detection

24

Related.work

Data-locality of classifier vs. data=locality of pixel
4.2.1 Data-locality of classifier
4.2.2 Data-locality of image pixel

Classifier-First Strategy Algorithm
4.3.1 Change loop level of Viola-Jones algorithm

4.3.2 Use queue storage to replace screen window location storage on

Classifier-first strategy

Mathematical Model Analysis

Mix Classifier-First Strategy and Screen-Window-First Strategy
Summary of Higher Data-Locality Algorithm

5 Balance Thread Loading by Steal Work Load on Coarse-Grained Thread

39

VI

16

17

18

18

19

19

21

23

25

26

27

28

30

30

32

34

34

38

5.1 Related Work

5.3 The SW/HW organization of Steal Work Load on Coarse-Grained Thread

5.2 Idea of Steal Work Load on Coarse-Grained Thread Loading
Loading 42
5.4 Experiment Result

5.5 Summary of Steak Work Load on Coarse-Grained Thread Loading by Start

Value and End Value
Chapter 6 Platform and Other Discussion

6.1 Simulation Platform

6.2 Does Thread Scheduling improve the performance of Face Detection on

Multi-Core System?

6.3 The Contrast'of Different Images Detect-Faces on Multi-Core System

Chapter 7 Conclusion

Bibliography

39

41

44

47

48

48

49

49

55

56

List of Tables

Table 1: The computation of different strong classifiers when system detect
image “lena” from OpenCVoiiiiii 33
Table 2: Number of weak classifier which the strong classifier includes 35
Table 3: The comparison of original architecture and work steal technique with
LAEENCY L/ L o 46
Table 4: The comparison of original architecture and work steal technique
WIth 1atenCy 8/8 .o 47
Table 5: The computation of different strong classifiers when system detect
image “baboon” from OpenCV library .. o i, 52
Table 6: The computation of different strong classifiers when system detect
image “airplane” from-OpenCV library.......o.... ot 53
Table 7: The computation-of-different strong classifiers when system detect

110 EE Yot 7 T 5 A PP PP 53

List of Figures

Figure 1: Haar-like FeatUreoinii e 5
Figure 2: Integrates the image to integral table..................c 6
Figure 3: Use the integral table to compute sum of rectangle 7
Figure 4: The training process of Ada-boost ... 8
Figure 5: The procedure of face detection implementation 9
Figure 6: The parallel scheme of face detection at top level parallelism 13
Figure 7: The breakdown of total execution time ..., 13

Figure 8: The parallel scheme of face detection at detection level parallelism .. 14
Figure 9: The parallel scheme of face detection at divided detection level

0L 1 1= 1] 1 PP 15
Figure 10: The parallel.scheme of face detection-at weak classifier parallelism 15

Figure 11: The total execution time of different'parallelism level with latency

Ul N A AP . N W e, 16
Figure 12: The behavior of top level. oo o 17
Figure 13: The behavior of detection level. ... 18
Figure 14: The behavior of weak classifier level.............00..........oo. 19
Figure 15: 2-stage hybrid parallel scheme oo, ..o 20
Figure 16: The total execution time of 2-stage hybrid parallel scheme on

different number of core system with latency 1/2 ..., 21
Figure 17: The breakdown of total execution time with latency 22/33............. 22
Figure 18: 3-stage hybrid parallel scheme ... 22

Figure 19: The total execution time of 2-stage hybrid parallel scheme and
3-stage hybrid parallel scheme on different number of core system with
LALENCY L/ o e 23
Figure 20: Total execution time of face detection on different number of core
system; this figure shows that bus traffic jams become the bottleneck when
the System has Many COIeS. ..o 24
Figure 21: Pseudo code of the Viola-Jones algorithm..................oo, 27
Figure 22: Move the scan window to a new position, the image data covered by

the scan window will be checked by same cascaded classifiers. 28

Xl

Figure 23: Location of weak classifiers of strong classifier 0 in the scan window 29
Figure 24: Location of first five weak classifiers of strong classifier 1 in the scan
WINGOW ettt 29
Figure 25: The probability distribution of position is read by one weak
ClaS S T T 30
Figure 26: Pseudo code of the modified Viola-Jones algorithm 31
Figure 27: The total execution time of 3-stage parallel scheme and locality
optimization with latency 10/10.........coiiiii e 32
Figure 28: The total execution time of 3-stage parallel scheme and locality
optimization with use queue storage with latency 10/10ccoeeneen. 34
Figure 29: Pseudo code of the Viola-Jones algorithm cascade classifier0-3 and
CASCAURA-D ..ot et et T e s e e et 35

Figure 30: Performance comparison between the 3-Staged Hybrid Scheme and

the proposed locality optimized scheme with latency 10/10 37
Figure 31: Distributed task QUEUE .. et tiuweten it Sttt e 39
Figure 32: Pseudo code of steal work load on coarse-grained thread loading 42

Figure 33: Theblock diagram of work stealing on coarse-grained thread

loading by start-value and end-value: .o bl i 43
Figure 34: The behavior of work stealing ..c.coi. . i 44
Figure 35: The SW/HW organization of a multi-threaded shared-memory SMP

simulator. The system parameters.are shown on the right hand side............ 48
Figure 36: The image “people 2” on the left hand side, and the image

“people_3” on the right hand side ..., 50
Figure 37: The total execution time of different images with latency 10/10...... 51
Figure 38: Image “baboon” from OpenCV library whose size is 512 X 512........ 52
Figure 39: Image “airplane” from OpenCV library whose size is 512 X 512 52

Figure 40: Image “tasty” size is 912X 684iviiiiniiiiiiiiiiii e 53
Figure 41: Ratio of passing first three classifiersccocoiiiiiiiiiiiinnn, 54
Figure 42: Ratio of passing first five classifiers................oocoiiii, 54

X1

Chapter 1 Introduction

Intelligence has been considered as one of the most important features for
modern smart mobile devices. These devices are able to recognize the surrounding
environment through sensing various types of stimuli, including vibration, orientation,
temperature, sound, images, video, and etc [1]. With the awareness of the
surroundings, a smart device can make decision and react intelligently to specific
stimuli or events in real-time or within acceptable latencies. For example, modern
tablets can sense the orientation of the device through gyroscopes and adjust the
screen orientation for users [2]: The future smart application can perform even higher
levels of intelligence. For example, to automatically indentify different users, or even

search the customers® background-in real-time during a business conference [3].

Among all the different types of stimuli, images and real-time video have the
richest information. about the environment. Images and video contain information
close to the level of human/eyes. A digital camera can identify human faces in the
target zoom and tune the best focus for the picture. A game console can recognize the
movement of players through the embedded image sensor, and let the player control
the console without a physical controller [4]. However, processing this information
requires an intensive computation capability. It is estimated to take about 2 seconds to
recognize an object in an image of 720*576 pixels on a 2.33GHz Intel® Core™ 2
Quad processor [5]. Even with such a powerful processor, the execution time is 50
times slower than the requirement of a real-time application (processing at least 25
frames per second). This computation requirement poses an even more difficult goal
for a portable embedded device, which is highly constrained in computation

resources.

Parallel processing and many-core architecture have become the mainstream to
achieve high performance in the future computing systems. Embedded processor

1

vendors, such as Tilera[6], ARM[7], MIPS[8], are also moving towards many-core
architectures. Even the desktop processor vendors, such as Intel[9] and AMD[10] are
proposing many-core products for embedded and mobile applications. The new
parallel embedded processors present opportunities to boost the raw computing
capability and achieve more energy efficient execution. However, three imperative
design aspects have to be concerned before the full advantages of many-core
processors can be transformed into superior system performance. First, the
algorithmic parallelism of applications needs to be explored and exposed. Second, the
characteristics of the highly integrated embedded system need to be analyzed. Third,

the possible system bottlenecks-need to be identified.

Motivated by the ‘three design aspects, this thesis.performs a comprehensive
analysis on the potential parallelism of the widely used Viola-Jones face detection
algorithm [11]. The-analysis explores the parallelism in different algorithmic levels.
By verifying the results on a multi-threaded cycle-accurate multi-core simulator, this
thesis demonstrates the significant-computation parallelism inherited in the face
detection algorithm. However, the superior performance can only be obtained through
a careful co-design and optimization crossing four critical design issues, including
choosing appropriate parallelism level, balancing workload, reducing synchronization

overhead, and memory and interconnect bandwidth.

The limited off-chip memory bandwidth and long access latency have imposed a
limitation to the performance [12]. Efficient usage of the on-chip memory, especially
the cache of processors, has therefore become a critical design issue to achieve
performance scalability of embedded multi-core systems. This research analyzes the
data locality of an object detection algorithm on embedded multi-core systems.
Improving data locality can maximize the data reuse for on-chip caches. This can
effectively avoid the off-chip memory bottleneck, and significant enhance the system

performance.

Object detection is an indispensible function for smart embedded devices. By
extracting the features in a sensed image, it is among the first step for a device to
understand the surrounding environment. This thesis performed a comprehensive
analysis on a Viola-Jones-based parallel object detection algorithm [11]. The object
detection algorithm is parallelized by implementing the concurrent tasks with multiple
threads. These threads are managed by a centralized thread queue, and are executed

on an ARM-based cycle-accurate SMP (Symmetric Multi-Processing) simulator [13].

Systems with load imbalance issues are inefficient because some processors are
idle while others keep executing programs. Fine-grained thread loading helps system
achieve load balance among processors.. It has' three advantages compared with
fine-grained. Firstly, coarse-grained has fewer threads; leading to less expenditure on
overhead of creating threads -and-reading thread from thread queues. Secondly, big
threads usually iterate the same loop more times than small threads do which indicates
that the branch prediction in the coarse-grained would be more accurate than that in
the fine-grained; Thirdly, because coarse-grained usually iterate same loop more
times, that makes .coarse-grained have higher data-locality between different
iterations than fine-grained.. Striking a balance Dbetween coarse-grained and
fine-grained thread loading /necessitates “more efforts from programmers. The
technique of steal work load on coarse-grained thread loading helps programmers to

balance loading among processors.

the contributions of this these can be separated into three parts. The first part
discusses the multi-stage hybrid parallelism which achieves 37.5X speed-up on a
64-core system. However, memory accessing is an imperative design issue long
existing in multi-core systems. Therefore, the second part of this thesis focuses on
the optimization of data locality which brings 62% reduction of computation time on
a regular 16-core system. In the final part of this thesis, we propose a work steal

technique to alleviate load imbalance of an unoptimized program. This mechanism

can attain the similar performance to an optimized program and save programmers’

effort on program optimization.

This thesis is organized as follows. Chapter 2 introduces Viola-Jones-based
object detection algorithm. Chapter 3 shows the multi-level parallelism analysis of
face detection on a shared memory multi-core system. Chapter 4 proposes a design
which enhances the data reuse of local cache for a parallel face detection algorithm.
Chapter 5 shows a technique of work-stealing on a coarse-grained multi-threaded
design. Chapter 6 introduces the simulation platform and discusses some related

design issues. At last, Chapter 7 draws the conclusion.

Chapter 2 Viola-Jones Algorithm

If one were asked to name a single face detection algorithm that has the most
impact in the 2000’s, it will most likely be the seminal work by Viola and Jones. The
Viola-Jones face detector contains three main ideas that make it possible to build a
successful face detector that can run in real time: the integral image, classifier

learning with AdaBoost, and the attention cascade structure [11].

2.1 Haar-Like Feature

Figure 1. Haar-like feature

Viola-Jones algorithm uses haar-like feature:to classify objects. Haar-like feature
is defined as the intensity difference between rectangles. For instance, the feature
value in the left half of Figure 1 is the sum of the white rectangle pixels and the sub
sum of the black rectangle pixels. As for the right half of Figure 1, the feature is the
sum of upper white rectangle pixels and lower white rectangle pixels, and then the sub

sum of the black rectangle pixels.

2.2 Integral Table

One of Viola-Jones algorithm’s distinguishing characteristic is its use of integral
image for computing the sum of value in the rectangle quickly and efficiently.
Integral image, or a summed area table, was firstly introduced to the digital image
processing by Crow [5] for use in mipmaps. In Viola and Jones face detection, the
integral image is used for rapid computation of Haar-like features. The integral image

5

is constructed as follows.

k)=) iy

x'<x,y<y’

For example, the left half of Figure 2 is the image pixel, and the right half is the

integral table.

h O 0O =
N © & =~
- =~ n M
L W O o

Figure 2:, Integrates the image to integral table

We would find that pixel+15 in right half of Figure 2 is the sum of 1, 8 and 6 in

the left half Figure 2 and pixel“20 in right half Figure 2 is the sum of 1, 7, 8, and 4.

After integrating an image, the algorithm computes Haar-like feature like Figure
3. In Figure 3, assume that the sum of block D is the result we want. We can use the
value of point 4, the sum of block A and B and C and D, sub value of point 3, the sum
of block A and B, sub value of point 2, the sum of block A and C, and then add value

of point 1, the sum of block A. And final answer is equal to sum of block D.

Figure 3: Use the integral table to compute sum of rectangle

2.3 Strong Classifier and Weak Classifier

The classifier in this algorithm can be divided into two parts: strong classifiers
and weak classifiers. Strong classifiers have high accuracy, so they are used in
cascade architecture. When data is sent to the classifier, the first strong classifier
would classify this.data_into true-or false. If data is classified as false, it is not the
target object; if data is classified as true, then it is sent to-the next classifier and

category. If data passes all classifiers, it includes the target object.

The result of a strong classifier depends on its‘own weak classifiers; in other
words, weak classifiers are the elements of a strong classifier. When data is sent to a
strong classifier, all of its weak classifiers compute the data to judge whether it
contains a target object. If the weight of weak classifiers which return true is larger
than that of the weak classifiers which return false, then the strong classifier returns

true; if not, the strong classifier return false.

The weight of each weak classifier is trained by Ada-boost, and the main idea of
Ada-boost is shown in Figure 4. In this figure, one strong classifier has four weak
classifiers: W1, W2, W3 and W4. Now, we send one pattern to the classifiers, and the

system knows the answer of pattern is true.

W1 and W3 return true and the response matches the correct answer; therefore

the system tunes the weight of them larger. W2 and W4 return false, and the response

mismatches the correct answer; the system hence tunes the weight of them smaller.

True Pattern New weight
WA True WA
W2 False W2
weight —
W3 True W3
w4 —\als W4

Weak classifier
response

Figure 4: The training process of Ada-boost

2.4 Algorithm flow in OpenCV

99 6y

The face detection algorithm is divided into three blocks: “resize”, “integral” and

“detect”.

The resize block changes the sizes of images. Because sizes of face are different,
we need to change the image size. In real-life applications, the size of a face is not
constant, so resizing is necessary. Consequently, the ratio of the scan window to the

whole image needs to be modified so that the scan window can capture different sizes

of face.

The integral block integrates an image to a table, and the integral image helps

classifier computes the feature quickly and efficiently. The procedure was introduced

in Section 2.2.
Resize

11104 11213
nt) | 1M1[1|—|2/4|6
ntedra 1l [3]s]9

Strong
Classifier

A 4

Detect

Xz O___ O i 0]
Weak Classifier

Figure 5: The procedure of face detection implementation

As the detect block moves the scan window through the image, the sub-image is
sent into the cascade classifier structure to detect the location of a face. The result of

strong classifier depends on weak classifiers, so the strong classifier has higher

accuracy. Therefore, it is used in cascade architecture. If the sub-image of scan
window passes all strong classifiers, it means that the scan window includes the face;

if it doesn’t pass all of the strong classifiers that mean the scan window doesn’t

include a face.

10

Chapter 3 Multi-Level Parallelism of

Face Detection on Multi-Core System

The focus of chapter 3 falls on the parallelism of the face detection application.
We would be more interested in the intrinsic computation parallelism which can be
exposed through parallelization. To minimize the impact of communication bottleneck,
the memory/bus latency is set to 1 cycle. The rest of the chapter 3 will use this system

scheme to explore the parallelism of the application.

3.1 Related work

Face detection is‘extensively studied used in. many smart object applications [3].
The Viola and Jones algorithm-is-one of the most widely used face detection schemes
[11]. It provides ;high accuracy and fast computation. Since the algorithm is so
popular, many research efforts have been spent on enhancingthe performance of the
Viola-Jones algorithm. Wei et al.[19] and Yang et al.[20] realized parallelism of the
algorithm by using a specific HW design in a FPGA. Theocharides [21] also proposed
a scalable parallel architecture for face detection on FPGA. Gao [22] presented a
novel approach to use FPGA to accelerate the Haar-classifier based face detection
algorithm with highly pipelined micro-architecture and utilizes abundant parallel
arithmetic units in an embedded system. Most of the methods focus on using
innovative HW architecture or specific HW accelerator to enhance the performance.
This chapter concentrates on achieving better performance through exploiting the
algorithm parallelism on multi-core systems. It is different from building a specific
hardware accelerator to speed up the critical computation in the algorithm. The
proposed design can be easily applied to an SMP system without any extra HW

implementations.

11

Chen‘s research [5] is among the first to explore the algorithmic parallelism of
face detection algorithm, and is similar to the work done in this thesis. The author
analyzed the potential parallelism of Viola-Jones algorithm and executed on
multi-core systems with 4 to 8 processors. A 5.5X performance enhancement was
demonstrated by adopting a hybrid scheme of both coarse-grain and fine-grain TLP.
This chapter differs from [5] in two aspects: (1) this chapter not only explores the
algorithm parallelism in different levels, but also shows the impact of different design
issues; (2) the analysis is extended to a larger scale (64 cores) of multi-processor
which demonstrates a significant computation parallelism in the face detection

algorithm.

3.2 Parallelism at Different Algorithm Level

The parallelism.of the face-detection exists in different-algorithmic levels. This
section discusses ithe potential parallelism at different levels of the face detection
implementation. The face detection implementation is adopted and modified from

OpenCV library[14], which applies the idea of Viola-Jones face detection algorithm.

To take the advantage of multi-core platform; we need to analysis the inherent
parallelism of face detection. In this algorithm, the parallelism level is divided into
four levels: top level, detection level, divided detection level and weak classifier level.

Detail discussions about each level can be found in following sections.
3.2.1 Top level parallelism

In top level parallelism, images with different sizes are processed by different
threads. As illustrated in Figure 6, the first thread resizes the original image to the
biggest image, and then integrates and detects this image. The second thread resizes
the original image to a smaller image, and then integrates and detects the smaller

image. And the final thread resizes the original image to the smallest image, and then

12

integrates and detects this image.

IntegE'—PDeteCt

kel > il iresrat-paes p

2 |Resizd—ﬂ—'llntegEI—*IDetectl/ﬂ >

Figure 6: The sche e top level parallelism
3.2.2 Detectio el p%[
/<4

EImage Resizing

OIntegral Image

4%

Figure 7: The breakdown of total execution time

O Classifier Detection

Figure 7 is the breakdown of total execution time. And the number is simulated

by cycle-accurate SMP simulator based on ARM ISA. We can find that the detection

block is the significant part of total execution time, so this thesis tries to parallelize

the execution of the “detect” block.

13

In detection level parallelism, the program detects different images by different
threads. As in Figure 8, the “resize” and “integral” blocks are executed sequentially.
After integrates image, the biggest image is detected by the first thread. At the same
time, the program keeps resizing and integrating the smaller image. After integrates
image, put the image into this thread to detect and keep resizing. The computation

loads are different due to different sizes of images.

[Resize>lIntegral—/Resize {Integral>Resizelntegrall

|Detect

Detect

Detect W

Figure 8: The parallel scheme of face detection at detection level parallelism
3.2.3 Divided detection level.parallelism

To balance the computation loads between different threads, the program divides
an image into several sub-images in the divided detection level. Big images are
divided into many parts while small images are divided into fewer parts. After that,
the program detects different sub-images by different threads. Program Detects a
sub-image means that a thread detects all scan windows at their upper left corner in
the sub-image. The program still reads pixel data from the entire image, so the final
result is unchanged from that of the program which is executed sequentially, even if
some scan windows cover different sub-images. The behavior of this level is shown in

Figure 9. The program resizes and integrates an image sequentially. After the program

14

finishes integrating an image, the program divides the biggest image into several
sub-images and then detects each sub-image by different threads. At the same time,
the program keeps resizing and integrating smaller images. Again, after finishing
integrating an image, the program divides the smaller image into several sub-images

and then detects each sub-image by different threads and keeps resizing.

[Resizels{integral |—»|Resizg—»{Integral | >/Resizg->|Integral]|

Divided
Detection
level

Figure 9: The parallel scheme of face detection at divided detection level

parallelism

3.2.4 Weak classifierlevel

As introduced before, the classifiers-are further divided into two categories:
Strong classifier and weak classifier. A strong classifier contains several weak
classifiers, and the result of strong classifier depends on its own weak classifiers. In
weak classifier level, weak classifiers are executed by different threads when the

program sends the image into the strong classifier.

Weak O—U—{()___Strong classifier
Classifier
level CHOHOHO) weak classifier

Figure 10: The parallel scheme of face detection at weak classifier parallelism

15

3.3 Procedure of Different Parallelism Level

Simulation results are shown in Fig. 11 where the horizontal axis represents the
number of cores, and the vertical axis represents the total execution time. In the top
level parallelism, the execution time is improved as the number of cores increases.
However, the increase rate slows when there are more than 8 cores. In detection level
and divided detection level parallelism, the execution time is not improved when the
system has more than 4 processors. In the weak classifier level, since the total

execution time is too long, we don’t show it in this figure.

Time(Sec) Execute Time
4
2
W top
2
_ m detect

1 ll l I ' I ' mdivide_detect
0 | i

1 2 4 8 16 CORE_NUM

Figure 11: The total execution time of different parallelism level with latency 1/1
3.3.1 Top level parallelism

In the top level, almost the entire application is parallelized, and the sequential
part is minimized. However, due to different sizes of images, loadings of threads are
not equal. As Figure 12 shows, some processors already finish their own program
while some still need more time. That means that processors having finished their own
program still need to wait for other processors, which leads to the system’s inefficient

use of its processors.

16

Sequential part

\':-.. Thread 1 Thread 4 Idle
Core1 > >
1 1 |
Core 2 - Thread 2) Thread 5 > Idle >I
11 |
Core3 - Thread 3 > Thread 6 >
>
Time

Figure 12: = The behavior of top level

3.3.2 Detection level parallelism

In the detection level, the sequential part becomes the eritical path. As Figure 13
shows, assume that:core 1 resizes and integrates image sequentially and that core 2,
core 3, and core 4'execute the detect block in parallel. We find that core 2, core 3 and
core 4 finished their own program quickly, but the sequential part does not create new
threads in time. Thisresults in idle processors which await new threads. Therefore,

the system does not use processors-efficiently:

Sequential part

Core1)I)I
|

Idlel Idle |

Core2 | Thread1 J > Thread4 5!
|

idle | Thread5 I

Core3 : Thread 2 S > > IdI(-:->I

Idle | |

Core4 | Thread 3 >—3 Thread 6 > Idle)__

- >

Time

17

Figure 13: The behavior of detection level
3.3.3 Divided detection level parallelism

In the divided detection level, fine-grained thread loading makes the system
easier to achieve load balance between processors. However, similar to the situations

in the detection level, the sequential part becomes the critical path.

As shown in Figure 13. The parallel parts finish their own program quickly, but
the sequential part does not create new threads in time. That causes these processors
idle to wait for new threads to create and causes the system not use processors

efficiently.
3.3.4 Weak classifier level

In weak classifier level, the-overhead on creating a thread becomes the limiting
factor of performance enhancement. In Figure 14, W1, W2 and W3 are the total
sequential execution time, and the green arrow is the overhead on creating threads. In
evidence, the overhead is much bigger than the total sequential execution time. That

causes the performance in parallel worse than in sequentially.

Sequential
W1 W2 W3
Core1 > > >
Parallel
The overhead of creating thread w1 _ldle
Core1 g >
Idle I w2 |
Core?2)I)l
I o] I
Core3 dle SRLEGE
>
Time

18

Figure 14: The behavior of weak classifier level

3.4 Hybrid Parallel Scheme

According to the result and the above discussion, we find that in the top level,
almost the entire application is parallelized, and the sequential part is minimized. But
the imbalanced loading of the threads causes the system use processors inefficiently.
In the divided detection level, fine-grained thread loading makes the system easier to
achieve load balance between processers, but the sequential parts become the critical

path.

So this thesis proposes _the hybrid parallel'scheme to avoid the limiting factor,
and to retain the advantages of different levels. By minimizing the sequential part in
programs and using fine-grained-thread loading, it is easier for the system to achieve

load balance between the processors.
3.4.1 2-stage hybrid parallel scheme

In 2-stage hybrid parallel scheme, the program resizes and integrates different
images with different'threads in the first stage. Then the scheme divides image into
several sub-images. After that, the-program detects each sub-image by different

threads in the second stage.

As shown in Figure 15, in the first stage, the first thread resizes and integrates
the biggest image, the second thread resizes and integrates the smaller image, and the
final thread resizes and integrates the smallest image. In the second stage, the
program divides the biggest image into four sub-images, and detects each sub-image
by different threads. And then the program divides smaller image into three

sub-images, and detect each sub-images by different threads.

19

Firststage Second stage

Integral Detect

~
“[Resize m—’ Integral Detect
J

80 183

{Resize—m—)lnteg ral Detect

Figure 15:—2-stage hybrid parallel scheme

Figure 16 shows the total execution time of the 2-stage hybrid parallel scheme.
The horizontal axis represents the number of cores and the vertical axis represents the
total execution time. We find in the 2-stage hybrid parallel scheme, the execution time
is improved as the number of cores increases. This scheme can achieve a 15x
speed-up on a 16-core system..However, the-rate of improvement slows down when
there are more than 16 cores. The reason is that the first stage in this scheme still

has load imbalance problem when the system has more than 16 cores.

20

time(sec) Run Time
3.5

1.5 N\
0.5 S~

o I I I I I I |

1 2 4 8 16 32 64
CORE_NUM

Figure 16: The tota

3 v allel scheme on different

3.4.2 3-stage [
Recall the bree k al executio he block “resize” also
consumes a considerable ¢

e e efore, the new scheme tries
oT i

to parallelize the executio

EImage Resizing
OIntegral Image

4% o .
O Classifier Detection

21

Figure 17: The breakdown of total execution time with latency 22/33

This thesis modifies the 2-stage hybrid parallel scheme and separates the block
“resize” and “integral” into different stages. Then the new scheme divides image into
several sub-images, and resizes each sub-image by different threads to balance the
loading of threads in the first stage. Different images are then integrated by different
threads in the second stage. Finally, the program detects different sub-images by

different threads in the third stage.

First stage Secondstage Third stage

Integral Detect

Integral |—)Detec:t

Integral|le>Detect

A
0
@,
N
()]

Figure 18: 3-stage hybrid parallel scheme

Figure 19 shows the execution time of 3-stage hybrid parallel scheme. The
horizontal axis represents the number of core, and the vertical axis represents the total
execution time. We find that this scheme can achieve a 27.5x speed-up on the 32-core

system, and achieve a 37.5x speed-up on the 64-core system.

22

time(sec) Execute Time

3.5

3

2.5
3 28X_38X

1.5

1

0.5
0 Al e é @

CORENUM | 1 2 4 8 16 32 | 64

W 2stage| 3.02 1.494|0.754 0.381/0.203/0.185/0.193
W 3stage 3.016 1.484/0.7440.376 0.1940.1080.081

(sec/image)

Figure 19: The total execution time of 2-stage hybrid parallel scheme and 3-stage

hybrid parallel scheme on different number of core system with latency 1/1

3.5 Summary of parallelism. on face detection

In higher algorithm level, loadings of threads are imbalanced. That causes system
to use processors inefficiently. In lower-algorithm level, too many sequential parts
and overheads deteriorate performance."We propose multi-staged hybrid scheme that
strikes the balance between higher algorithm level and lower algorithm level. This

scheme avoids the limiting factor and achieves superior performance.

23

Chapter 4 Enhancing Data Reuse Of
Local Cache For A Parallel Object

Detection Algorithm

In Chapter 3, the 3-stage hybrid parallel scheme achieved a 37.5x speed-up on 64

core system. However, Chapter 3 focuses more on the parallelism of face detection

application. There are more interested in the intrinsic computation parallelism which

can be exposed through parallelization.. To.minimize the impact of communication

bottleneck, the memory/bus latency-is set to'1.cycle.

Time(sec)

6

latency 20 RunTime

latency 10 RunTime

e=fl==|atency 5 RunTime

5 \ latency 20

A 4 Care 8 Care

bus activity | 83.91% 949 90%

latency 10| B Core 16 Care

1 bus activity | 89.22% | 93.95%

‘\ latency % Care 16 Care

0 bus activity | 65.43% 33.00%
1 2 4 8 16 CoreNum

Figure 20: Total execution time of face detection on different number of core system;

this figure shows that bus traffic jams become the bottleneck when the system has

many cores.

But in real system, the memory/bus latency cannot be neglected, and the

communication traffic jams definitely occur. As shown in Figure 20, bus traffic jams

24

become the bottleneck when the system has many cores. Significant enhancements of
performance were observable until the number of cores was up to eight. Improving
data locality of the on-chip cache has therefore become a critical design concern.
Improved data locality increases cache hit rate. Increased cache hit rate lowers the
frequency of memory access. Lowered frequency of memory access reduces total
memory access time and consequently improves the total execution time. This chapter
analyzed the memory behavior of a parallel Viola-Jones algorithm, and proposed a

scheme to enhance the data locality of on-chip cache.

4.1 Related work

Data locality optimization is a critical design issue for computing systems and
has been studied for decades [23]. However, most of the previous research focused on
single core systems. Locality-issues of multi-core systems.are recently emerging as
essential design concerns when parallel platforms become the mainstream of the
computing architecture [24]. 'In a shared memory multi-core system, the design
needs to be balanced between parallelism and locality in order to achieve the best

overall performance.

The Viola-Jones algorithm is-one of the most widely adopted object detection
schemes [11]. It was first proposed to detect human faces in an image. Due to the high
accuracy and fast computation, the algorithm has also been extended to detect other
objects in an image or video, such as hands, eyes [25], pedestrians [26], and cars [27].
Many research efforts have focused on enhancing the performance by exploiting the
algorithmic parallelism on specific HW accelerators [21]. With the increasing amount
of non-recurring-cost of implementing a pure HW solution, exploiting the parallelism
on a programmable multi-processor system has become cost attractive in designing

future intelligent algorithms.

Chen‘s research [5] is among the first to explore the algorithmic parallelism of

25

the Viola-Jones-based detection algorithm on programmable processors. This work
analyzed the potential parallelism of the Ada-boost algorithm and executed on
multi-core systems with 4 to 8 processors. A 5.5X performance enhancement was
demonstrated by adopting a hybrid scheme of both coarse-grained and fine-grained
TLP. Chiang [28] investigated the characteristics of different parallelism levels of a
Viola-Jones algorithm. The authors have proposed a three-staged parallelization
scheme to improve the load balance of the algorithm and achieve 37X performance

improvement.

This chapter differs from the previous works in two aspects: (1) the target
platform of this work focuses on . embedded multi-core systems, where each processor
is a simple single issue RISC core with relatively small on-chip caches; (2) this work
concentrates on the data locality optimization for the parallel object detection
algorithm and proposes.a design to improve the memory access behavior as well as

overall performance.

4.2 Data-locality of classifier vs. data-locality of pixel

As shown Figure 21, the.implementation of Viola-Jones algorithm can be divided
into three parts. (1) Resize. The implementation uses the fixed-size scan window with
a well-trained classifier library in the Ada-boost algorithm. Since the scan window
size is fixed, an image needs to be resized into different resolutions. (2) Integral. This
part performs the evaluation of the Haar-like features by using the integral image
method. (3) Detect. By moving the scan window through the image, the sub-image is

sent into the cascade classifier structure to detect the location of an object.

26

for all WZ /[l WZ: window size
Resize image;

Integral image;

for all WP /I WP: window position
Detect {
for all SC /I SC: strong classifier

for all WC /I WC: weak classifier
If failed, label the position as negative; jump to the next WP;

If passed all the SCs, label the position as positive;

Figure 21:Pseudo code of the Viola-Jones algorithm
4.2.1 Data-locality of classifier

The detect block contains a list of cascaded strong-.classifiers. Each strong
classifier is compaosed of a series of weak classifiers. When moving the scan window
to a new position, the image data covered inthe scan window will be checked by these
cascaded classifiers. 1f-the.image data passes all the classifiers, this window position
will be marked positive, indicating the existence of a target object. In the process, the
program load different pixels, but computed by same classifier. As shown in Figure

22.

Each weak classifier is responsible for checking one specific feature of the target
object. Thus each weak classifier contains the associated information about this
feature, including classifier types, location in the scan window, weighting factor, and
the decision threshold. After the first usage of a weak classifier, the feature
information will be stored temporarily in the local cache. This boosts system
performance if a processor can find this information from its local cache when the

next time it is trying to use the same weak classifier.

27

Strong classifier

O— O Weak classifier O— O— O— O Weak classifier
A A

Same cascade classifier

Figure 22: Move the scan window to a new position, the image data covered by the

scan window will-be-checked by same cascaded classifiers.
4.2.2 Data-locality of image pixel

From another point of view, classifiers load different collections of pixels even if
they employ the same'scan window. A simple illustration can be found in Fig. 23 and
Fig. 24. The program only loads the pixels on the corners to compute the intensity
differences between rectangles.. As shown in Figure 23, Figure 24, each weak
classifier includes two or three rectangular Haar-like features. Viola-Jones algorithm
uses the integral image to efficiently compute the target features. Thus each classifier
only loads the corner integral data points of a Haar-like feature rectangle and
computes the intensity difference between sub-rectangles. The possibility that the
corners of these rectangles fall on the same data position of an integral image is fairly

low.

28

Figure 24: Location of first five weak classifiers of strong classifier 1 in the scan

window

29

Figure 25 shows the probability that points in a scan window are loaded by
weak classifiers. The average probability that a point is loaded is merely 2%, and the
maximal probability is 6%. This discloses the fact that the probability of reusing a

pixel is rather low. On the contrary, parameters of a classifier are definitely reusable.

The probahility distribution of position be read by one weak classifier

‘_U_ T T | T 5_;-""I T e T s T
2P0l

e
T

(g

Figure 25: The probability distribution of positionisread by one weak classifier

4.3 Classifier-First Strategy - Algorithm

Generally, object detection is realized by a scan window browsing through the
whole image, and the sub-image contained in the window is sent to the cascade
classifier. This is an intuitive combination of a cascade classifier and scanning
through the whole image. However, to deal with data locality and the issue of bus

traffic jams, classifier-first strategy is a better scheme.
4.3.1 Change loop level of Viola-Jones algorithm

Based on the analysis from the previous section, we proposed a new design
scheme to enhance data locality for an embedded multi-core system. Figure 26 shows

the pseudo code of this new design. Different from the original algorithm flow, the

30

new design relocates Loop WP, which changes the position of the scan window, next

to Loop SC (Strong Classifier).

This design improves data locality of the feature information of weak classifiers.
Moving the WP loop after the SC loop can reduce the possibility for the
already-cached feature information being replaced by the subsequent strong
classifiers which would be loaded right after the usage of the current strong classifier

in the original design.

for all WZ I WZ: window size
Resize image;
Integral image;
Detect {
for all SC /I SC: strong classifier
for all WP // WP: window position (New position of WP loop)
for all WC /I WC: weak classifier
If failed, label the position as negative; jump to the next WP;
/] processor can better reuse the WC data stored in the cache
/I which significantly increases the data locality

If passed all the SCs, label the position as positive;

Figure 26: Pseudo code of the modified Viola-Jones algorithm

Figure 27 compares the runtime between the original algorithm and the proposed
design. The cycle-accurate simulation was performed on systems with different
numbers of processors (indicated by the x-axis of Figure 27). The proposed design has
better performance at all the multi-core schemes. This is because the numbers of
external memory accesses are reduced significantly due to the better data locality at
the local cache. The 16-processor scheme has the maximum performance

enhancement of 53%. This is mainly because, for the original design, the potential

31

performance enhancement of the original design enabled by more processors is
compromised by the enormous memory access time. The memory bottleneck becomes
the limiting factor of the system performance. Hence the performance stops improving
when there are more than eight processors. However, the proposed design
significantly reduces the number of memory accesses. The performance continues to

scale when there are more processors (8, and 16 processors).

Run time(sec)

4.5

4 -
3.5 -
3 -
2.5 4 M 3-Staged Hybrid(original)
2 change loop
1.5
1 -
B
0 - T T T T)

1 Core 2 Core 4 Core 8 Core 16 Core Number of Core

Figure 27: The total execution time of 3-stage parallel scheme and locality

optimization with latency 10/10

4.3.2 Use queue storage to replace screen window location storage on

Classifier-first strategy

In order to change loop level, a strong classifier is first selected and it processes
each sub-image of the moving scan window. The classifier decides whether a
sub-image contains the target object and the decision is stored in memory. Later,
when another classifier is selected, it only reads sub-images which were decided

positive of containing a target object.

32

However, as shown in Table 1, most window position fails the feature check
during the first five strong classifiers that means some extra computation in change
loop algorithm when system check this position pass front classifier or not. Section
6.3 features more on the computation of different strong classifiers. We can optimize
the algorithm by only check pass position. So we modify algorithm, if the position
pass, record the position to a queue storage, when program execute next strong
classifier, load the position from queue not check all position in image, this method
help system read record table less time. The 16-processor scheme has the maximum

performance enhancement of 58%.

Classifierlevel 0 1 2 3 i | 5 6 7 8 9 10
Numberof 220714 138126 69152 36613 30117 20225 10332 5558 2857 1821 1345
location pass

ST TR T 12 13 14 15 16 17 18 19 20 21
Mumberof B47 541 306 184 133 102 BG 68 62 56 46
location pass

Number of total location : 293375

Table 1: The computation of different strong classifiers when system detect image

“lena” from OpenCV

Run time(sec)

4.5

4 -
3.5 -

3 -
2.5 ~ m 3-Staged Hybrid(original)

2 M Locality Optimized(propose)
15 -

1 -
e

0 - . T T .

1 Core 2 Core 4 Core 8 Core 16 Core Number of Core

33

Figure 28: The total execution time of 3-stage parallel scheme and locality

optimization with use queue storage with latency 10/10

4.4 Mathematical Model Analysis

Section 4.1 already explained why the times of memory access of classifier-first
strategy is less than that of screen-window-first strategy. In this section, we adopt a
mathematical point of view to explain the results. Assume one weak classifier classes
one location need to read C. size data (weight threshold...etc), and C, size pixel.
And one strong classifier has N weak classifiers. In screen-window-first strategy, one
strong classifier detects one location needs to load N X(C. + Cp); Assume this image
has M locations should he detected, in classifier-first strategy, because all location
use same classifier, one strong classifier detects all location needs to load N x C. +
M X(Load Queue + N'X C,,), in-other word, ‘one strong classifier classes one location
have to load N x C./M +(Load Queue + N X C), the size of the data used (read) by
each weak classifier 'is weak classifier weight*2(true or false) + weak classifier
threshold + rectangle weight*x + pixel*4*x, here x is the number of rectangle which
weak classifier had, and “Load Queue” only one access, M usually is a large number,
as the model shows, the number.of classifier-first'strategy algorithm read memory less

than the number of screen-window-first strategy algorithm read memory.

4.5 Mix Classifier-First Strategy and Screen-Window-First
Strategy

Strong 0 1 2 3 4 5 6 7 8 9 | 10

Classifier

CALEE 3 16 |21 39|33 44 50 51 56 71 &80

Classifiers

Song 11 112 |13 |14 15 16 17 18 19 20 21

Classifier

#Weak | 103 1111|102 135 137 140 160 177 182 211 213

Classifiers

34

Table 2: Number of weak classifier which the strong classifier includes

To sum up, classifier-first strategy achieves better data locality at the expense
of extra computation and memory space for the results of previous classifier.
Scan-window-first strategy, on the other hand, does not have this downside because it

only comprises cascade classifiers.

for all WZ /[l WZ: window size
Resize image;

Integral image;

Detect {
for all WP // WP: window position
for SCO0:SC3 /I SC: strong classifier(cascade 0-3)

for all WC // WC: weak classifier
If failed, label the position as negative; jump to the next WP;
for all WP /I WP: window position
for SC4:SC5 /I SC: strong classifier(cascade 4-5)
for all WC // WC: weak classifier
If failed, label the position as negative; jump to the next WP;
for other SC /I SC: strong classifier
for all WP // WP: window position (New position of WP loop)
for all WC // WC: weak classifier
If failed, label the position as negative; jump to the next WP;
/I processor can better reuse the WC data stored in the cache
/I which significantly increases the data locality

If passed all the SCs, label the position as positive;

Figure 29: Pseudo code of the Viola-Jones algorithm cascade classifier0-3 and

cascade4-5

When old feature information of a weak classifier fill all cache, the feature

35

information of a weak classifier in the local cache is replaced by another weak
classifier. That means if the strong classifier not fills all cache, the system load other
appropriate classifier would keep the data locality possible and not replace the
original classifier. That means moving the scan window and send image data to
appropriate cascade classifier structure, the information of classifier would not

replace before all position load this classifier and reduce record pass position time.

According to our experiment result, we find about 80 weak classifiers would fit
the 16KB cache, as shown in Table 1, send position data to cascade classifier 0 to
classifier 3, then record the position pass those classifier, and then send position data
to cascade classifier 4 to classifier 5, then record the position pass those classifier,

and then use classifier-first strategy is the best'scheme when system has 16KB cache.

Dcache = 8KB m 3-Staged Hybrid(original)

B Locality Optimized(propose)

cascade SC 0-2

M cascade SC 0-3 4-5

Runtime (sec)
N
(6]

1 2 4 8 16

Number of processors

36

4 M 3-Staged Hybrid(original)
= 3.5 B Locality Optimized(propose)
3 3
b i cascade SC 0-2
£ 2.5
'g) M cascade SC 0-3 4-5
o 1.5
1
0.5
0
1 2 4 8 16
Number of processors
3.5
Dcache = 32KB M 3-Staged Hybrid(original)
3 M Locality Optimized(propose)
2.5 = cascade SC 0-2
2 B cascade SC 0-3 4-5

Runtime (sec)

1 2 4 8 16

Number of processors

Figure 30: Performance comparison between the 3-Staged Hybrid Scheme and

the proposed locality optimized scheme with latency 10/10

Because about 80 weak classifiers would fit all 16KB cache, that means 40 weak
classifiers would fit 8KB cache, as shown in Figure 30, the classifier 0 to classifier 2
fit the 8KB cache, and the classifier 3 almost replace all data of classifier 0 to
classifier 2 in cache, that cause the cascade 0-3 4-5 scheme performance close to
3-Stage Hybrid and worse than Locality Optimized but cascade 0-2 still better than
Locality Optimized.

When system has 32KB cache, the cache size is big, and the probability of new

data replaces old data becomes fewer, so the data-locality optimal effect becomes not

37

obvious, and then the total execution time of each scheme is closed to other.

4.6 Summary of Higher Data-Locality Algorithm

Object detection enables a smart embedded device to recognize the surrounding
environment and to react properly. Nonetheless, object detection requires parallel
algorithms to be executed on multi-core systems due to its high amount of
computation, the memory bottleneck makes it a critical design concern to improve
data locality and to take the full advantage of the on-chip cache. This thesis analyzed
the memory behavior of a parallel Viola-Jones algorithm, and proposed a scheme to
enhance data locality of an on-chip icache. By running a multi-threaded object
detection algorithm on a_cycle-accurate multi-core simulator, the proposed approach
can achieve up to 62% better performance compared with the original parallel
program. However, the modified-algorithm needs.extra room to record the positions
passed by sub-images. The best way to improve performance is selecting the exact

number of cascaded classifiers that fill up the cache before detecting the position.

38

Chapter 5 Balance Thread Loading by
Steal Work Load on Coarse-Grained
Thread Loading

In Chapter 3, we proposed a 3-stage hybrid parallel scheme which balanced the
loading of threads and thus achieved balanced work load among processors.
Nonetheless, adjust the size of a thread results in balanced work load for processors as
well as burdens for programmers. Accordingly, in this chapter, we proposed a

technique of "work steal” to mitigate the burdens.

5.1 Related Work

The distributed task queue technique [16][18][29][30] is one of the most
popular ways of implementing task queues. In this scheme, each processor has its own
thread queue. When-the processor is idle and needs a new thread to execute, it will
look at its own queue first. When a processor needs- a thread but its own queue is

empty, it will steal a thread from one of the other-queues.

Task Queue

L, b 1a

Figure 31: Distributed task queue

39

A hardware technique named "Carbon" [15] is proposed to improve the
mechanism of distributed task queue. Carbon, like most other distributed task queue
resolvers, provides better load balancing to programs using fine-grained thread
loading. In addition, Carbon uses pre-core task prefetchers that hide the latency of
accessing hardware queues because adopting fine-grained thread loading creates more

threads.

In [17], the thesis proposes a hardware/software support, same as distributed
task queue. It stores fine-grained threads in queue and each thread has its own thread
queue. In addition, this scheme uses DMA to send a request to reduce the total access

time.

The [31] implemented work steal on GPU [31];. results showed that for
applications with fine-grained-parallelism has better performance, Lauterback claims
other work steal techniques do not currently work well on GPUs for multiple reasons:
such as they are based on the assumption that low-latency communication between
cores is possible in_order to manage concurrent access to.shared structures or they
cannot make full use.of local ‘memory, the thesis implement local thread queue in
local memory, that would reduce.the latency from thread queue and lower the

communication between different cores.

Based on the above introduction, it is easier for the fine-grained thread loading
to approach load balance among processors, though the coarse-grained thread loading
also has many advantages. First of all, coarse-grained thread loading results in fewer
threads. Lower number of threads is equivalent to reduce overhead which is necessary
upon creating threads. Second, loops iterate for more times when the thread is larger;
therefore, the branches make more accurate predictions. Third, larger threads have
higher data- locality. For example, the classifier-first strategy which is proposed in

Chapter 4, classifier data have a high probability of being reused in one thread, and

40

that expressed the data-locality would become lower as the smaller thread.

In [32], the thesis first estimated the workload, and cut the total workload into
appropriately size in the beginning. If the case of load imbalance occurs, and then use
work steal technique to remedy. However, adjust the size of threads necessitates more

efforts from programmers.

According to the above discussion, this chapter proposed one idea of steal work
load on coarse-grained thread loading. This scheme maintains the advantages
of coarse-grained thread loading and can be implemented intuitively without adjusting

the size of threads.

5.2 ldea of Steal Work Load on Coarse-Grained Thread
Loading

Whereas fine-grained thread loading helps system achieve load balance among
processors, coarse=grained thread loading still has ‘many-advantages. The merit
coarse-grained thread loading brings includes-lower cost on creating threads, more
accurate prediction” _of branches, and higher data locality-- especially for
classifier-first strategy proposed..in Chapter 4. Programmers need extra efforts to
strike the balance between fine-grained thread loading and coarse-grained thread

loading.

This section would propose an idea of steal work load on coarse-grained thread
loading, and add extra two values, start-value and end-value, when program creates
thread. Start-value is used as a loop counter and end-value is used as the end
condition; these values will be updated with the program executes. By the way, the
iterations of the loop should be independent, and the system steal work load will not
go wrong. After adding these values, the system can know the work load of the

threads that still execute, and the idle processor can steal work load from other busy

41

processors to balance work loading between different threads.

Stp_create(fun,ptr,start_value,end_value); //create thread

fun() //use start_value and end_value help load balance

{
for(start_value;start_value<end_value;start_value++)
{
}

¥

Figure 32: Pseudo code of steal work load on coarse-grained thread loading

5.3 The SW/HW organization of Steal Work Load on
Coarse-Grained Thread Loading

This section ‘discusses the organization of stealing work load while adopting
coarse-grained thread-loading. In the beginning, processors can create and add new
threads to the tail of the queue. At the same time, function queue also stores the

thread’s function, start-value'and end-value:

42

Yes Is Function No

WW

N
Seand head Function
Queue be divided?
request
to
Function €&
Queue |yas
Divide
functionto
> Is Thread Queue new thread
Send a request to empty? and put new
Thread Queue to Thread
Queue

Finish
thread

Take a thread
to processor

Figure 33: The block diagram of work stealing-on coarse-grained thread loading by

start-value and end-value.

In general, idle processors request tasks from the head of the thread queue. If the
thread queue is empty, the processor remains idle. In this scheme, if one idle
processor sends request when thread queue is empty, the processor will checks the
function queue to see if any thread work on other processors can be shared by
start-value and end-value., If not, the idle processor awaits; if yes, the idle processor
steals the back half of thread which works on other processors to create new thread
and modify the counter of loop: start-value and end-value, the idle processor executes
the second half original thread. In other words, executes the same thread from
((end-value - start-value) / 2 + start-value) to end-value. The stolen processor

executes the first half of the original thread; in other word, executes thread from

43

start-value to ((end-value - start-value) / 2 + start-value), this scheme would help the

system achieve load balance between different processors.

Start-Value End-Value

M, e
5, o
5,
%,
",
5,

Work Load

®<_ Send Request (>)
Stolen processor

Send Steal Request

After Stolen

Stealing processor

Start-Value Start-Value+(End-Value-Start-Value)/2 End-Value
\\“\ / \\‘.“-\ ///
_WorkLoad
\‘\,\ / - _\\\ ///
Stolen processor Stealing processor

Figure 34:. The behavior-of work stealing

5.4 Experiment Result

We compared several cases of load imbalance which the work steal technique

aimed to solve.
Case 1:

Let the latency set to 1 cycle, the system have 16 cores, and the program be the
3-stage hybrid parallel scheme proposed in Chapter 3. The total execution time of the
original system is 0.2091 second. If the program is executed on a system supporting

work steal, the total execution time becomes 0.2192 second. Work steal technique

44

did not further improve the performance because 3-stage hybrid parallel scheme had
already been an optimized one. If start-value and end-value are updated more
frequently, the program needs more time to update the value in Function Queue, the
total execution time also increases, and more memory accesses of update Function
Queue even cause the system to have the traffic jam in communication. Another
possible bottleneck is the idle processor to poll Function Queue. If many processors
are idle, but only one processor is allowed to search the thread which works on other
processors, and many processors have to idle to wait for the processor to poll
Function Queue, and this makes these idle processors function inefficiently.
For another condition, the program is 3-stage hybrid parallel scheme but didn’t divide
image into several sub-images in the “detect™ stage. That means load imbalance
problem occurs. The total execution time of original system is 0.4082 second. The
reason is that some processors-finish their own programs, but some processors still
need more time to execute, that causes system to use processors inefficiently. If the
program executes_on system ‘that supports work steal, the total execution time
becomes 0.2134 second. The «result shows the work steal technique helps the
program balance loading between processors better, and make the execution time
close to 3-stage hybrid parallel scheme that divides image into several sub-images,
the execution time even better than 3-stage hybrid parallel scheme that divides image
into several sub-images executing on the system that supports work steal, speculated

that with the reduced number of the thread creation.

R T T

Load balance Load balance
Optimal? : . Loadimbalance Loadimbalance
optimal optimal
Technique Original SRS Original SEEEEREE
steal steal
Run time(sec) 0.2091 0.2192 0.4082 0.2134

45

Table 3: The comparison of original architecture and work steal technique with

latency 1/1

Case 2:

Let the latency set to 8 cycles, the system have 16 cores, and the program be a
mixed scheme of classifier-first strategy and scan window-first strategy, as described
in Chapter 4. The total execution time of the original system was 0.2067 second. If
the program was executed on a system supporting work steal, the total execution time
becomes 0.2192 second. This scheme did not improve performance because it was an
enhanced version of the scheme in Case 1. Besides, there was no load imbalance
problem that caused extra overhead like synchronization or communication between
main memory and processors. Detail explanations can be found in the discussion in

Case 1.

For another condition, let the program be the same scheme as in front Case 2 and
images remain undivided in the Detect stage. Load imbalance happened in this case.
The total execution<time of original system was 0.4416 second. The reason is similar
to that in Case 1: some processors finished their own program, while others were still
executing. This led to poor performance. If the program executes on system
supporting work steal, the total execution time becomes 0.2184 second. The result
also shows that the work steal technique helps the program balance loading between
processors better, and makes the execution time close to mix classifier-first strategy
and screen-window-first strategy scheme that divide image into several sub-images in
the “detect” stage, the total execution time even better than screen-window-first
strategy scheme that divide image into several sub-images in the “detect” stage
executing on the system supporting work steal, speculated that with the number of

times to reduce the thread creation.

46

m Cascade0-3 4-5 | Cascade0-3 4-5 | Cascade0-3 4-5 Cascade0-3 4-5

Load balance Load balance

Optimal? i i Loadimbalance Loadimbalance
optimal optimal
i . Supportwork . Supportwork
Technique Original steal Original steal
Run time(sec) 0.2067 0.2192 0.4416 0.2184

Table 4: The comparison of original architecture and work steal technique with

latency 8/8

5.5 Summary of Steak Work Load on Coarse-Grained
Thread Loading by Start VValue.and End Value

Load imbalance is the cause of the fact that the system utilizes processors
inefficiently because‘some processors have to execute longthreads while others finish
their tasks sooner. Although some-techniques can alleviate the issue of load imbalance,
they may very well increase the difficulty of programming at the same time. Therefore,

this thesis proposed- the technique of work steal to ease the burden of programmers.

This chapter proposes one steal work load technique on coarse-grained thread
loading, and the work steal.technique helps the program balance loading among
processors better, make the total execution time of general code executing on
platform supporting steal work load on coarse-grained thread loading close to optimal

program.

47

Chapter 6 Platform and Other

Discussion

6.1 Simulation Platform

The experiments of this thesis are performed on a multi-threaded cycle-accurate
shared-memory SMP simulator [13]. The simulator executes HW/SW co-simulation of
both the multi-threading SW library and the cycle-accurate SMP hardware model.
Figure 35 illustrates the organization of the simulator. The threads are managed by a
FIFO queue. Processors can create-and add new threads to the tail of the queue. Idle
processors will requesttasks from the head the queue. The processing core models a
single-issue ARM w5 architecture. Each_processor has its own data cache and
instruction cache. ;Processors are connected by a single-transaction shared-bus. The
latencies of bus transaction and memory access are configurable. The cache coherence
is implemented as'a simple snooping-based protocol. The system parameters used in

the simulator are shown on the right hand stdeof ‘Figure 35.

FIFO Thread Queue

T - -« [ARMv3ISA. Single ssue. S00MH:

g 4 idlle Cache 8KB, Full Assoctativity
Threads Processors - g) ! : ‘ .
NN Single transaction bus, Arbrtration: 2 cycles,
(o N+ Jijio 8 « o 8 jjf{o] i : '
b ¢ vesmnate | Stmal propagation: 2 cycles.
Shared Memory Memory acoess latency: 3 cycles,

Figure 35: The SW/HW organization of a multi-threaded shared-memory SMP

simulator. The system parameters are shown on the right hand side

48

6.2 Does Thread Scheduling improve the performance of
Face Detection on Multi-Core System?

Thread scheduling technique improves the performance of face detection on
multi-core system. It has two possible benefits-- data-locality and load balance.
However, although dividing threads into smaller ones simplifies load balancing, it
also lowers data-dependence between threads. One possible solution is to divide an
image into sub-images, to have different threads detect different sub-images, and to
have each thread use the same classifier. One possible solution to increase data
locality is to divide an image into sub-images, to have different threads detect
different sub-images, to have each thread use the same classifier, and to schedule
these threads to the same processor. _Nonetheless, there are two reasons implying
that this method isuinefficient-under this.circumstance. First, systems that do not
divide an image into smaller sub-images in the first place can have high data locality
and can reduce the overhead of creating threads. Second, scheduling a processor to
detect sub-image from the same image only reduce the number of reading a classifier
once. In effect, the benefit is. fairly limited. Therefore, according to previous
discussion, thread scheduling.does not improve data-locality and the performance of

face detection on a multi-core system:.

Another possible issue is load balance. It is unable to estimate the execution time
accurately because which position can pass the strong classifier is not known in
advance. Therefore, even if the program strikes a balance by thread scheduling in one

image, this merit disappears when there comes a new image.

6.3 The Contrast of Different Images Detect Faces on
Multi-Core System

Positions that contain a face may pass more classifiers than positions that contain

no faces do. This means that a position that contains a face has longer execution time.

49

However, there are hundreds of thousands of scan windows varying in locations and
sizes. If, for example, only several dozens of the windows contain faces, it does not
affect the overall computing time. Or, from another perspective, if the scan window
does not contain a face, it can be regarded as a random data. Also, the computation
that classifiers spend on a position can be regarded as a probability distribution. If
there are many positions to be detected, the total execution time would be close to

expected value.

We also have tried different images that have many faces. The experiment result
is similar to the image have a face or no face. For example, as shown in Figure 36,
there two images that have many faces. The total execution time is shown in Figure 36.

The execution time is close. The experiment results fit.previous speculation.

Figure 36: The image “people_2” on the left hand side, and the image “people_3”
on the right hand side

50

Run time

3.5
3
2.5
M lena

2

M people_2

15 W people_3
1
0.5
0

1 2 4 8 16 Core Number

Figure 37: The'total execution time of different images with latency 10/10

We also profiled the computation of different strong classifiers when the system
detected different.images. The experiment results are shown.in Table 3 and Table 4
and are similar toTable 1. About 40% positions pass the first two strong classifiers,
and about 5-7% pass the first five strong classifiers: This also matches previous
speculations: if the scan window does not contain a face, it can be regarded as a
random data. Also, the computation that classifiers spend on a position can be
regarded as a probability distribution. If there are many positions to be detected, the
total execution time would be close to expected value. That means the total execute

time would depend on image size.

51

Figure 38: Image “baboon” from OpenCV library whose size is 512 x 512

Classifierlevel | 1 2 3 4 5 6 7 8 9 10

Nur-nbero‘[228162 | 134147 | 75313 35339 22292 12537 8348 5985 2847 1804 1155
locations pass

Classifierlevel | 77 12 13 14 15 16 17 18 19 20 21

Number of
locations pass

627 379 197 109 63 36 24 12

Number of total locations : 293375

Table 5: The computation of different strong classifiers'when system detect image

“baboon” from OpenCV library

Figure 39: Image “airplane” from OpenCV library whose size is 512 x 512

52

Classifierlevel 0 1 2 3 il 5 6 7 8 9 10
NI.II'-I’IbEr of 219925 126451 67773 38029 28218 15176 9548 5511 2996 1445 740

locations pass

demmimedsizl Tl 12 13 14 15 16 17 18 19 20 21
Number of 407 250 142 83 51 24 14 9 2 1 1

locations pass

Number of total locations : 293375

Table 6: The computation of different strong classifiers when system detect image

“airplane” from OpenCV library

Classifier level 0 1 2 3 | 5 6 7 8 9 10
Number of 576023 | 343133 | 199910 | 97346 | 76225 | 43063 | 29326 | 18093 9589 6505 3385

locations pass

Classifier level 11 12 13 14 15 16 17 18 19 20 21
Number of 2056 820 536 323 202 153 118 98 90 87 80

locations pass

Number of total locations : 769187

Table 7: The computation of different strong classifiers when system detect image

“tasty”

Figure 41 and Figure 42 show the ratio of positions passing the first three
classifiers and the ratio of positions passing the first five classifiers The results show

that different images have similar ratio. Ratios of passing the first three classifiers are

53

close to 25%; ratios of passing first five classifiers are close to 10%, even the sizes of

images size are different, such as image “tasty”.

Since there are many positions to be detected, the total execution time would be

close to expected value.

0.3

0.25

0.2

0.15

0.1

0.05

0.12

0.1

0.08

0.06

0.04

0.02

ratio of passing first three classifiers

M ratio of passing first three
classifiers

lena airplane baboon tasty

Figure 41:.Ratio of passing first three classifiers

ratio of passing first five classifiers

I I I I M ratio of passing first five classifiers

lena airplane baboon tasty

Figure 42: Ratio of passing first five classifiers

54

Chapter 7 Conclusion

This thesis performs a comprehensive analysis on the parallelism of a face
detection algorithm at different algorithmic levels. We have demonstrated that
although each parallelism level has its own potential to enhance performance, they
impose different limiting factors to the overall performance. The execution load
imbalance among threads adversely impacts the performance as well. Based on the
analysis results and design experience, this thesis proposes a multi-staged hybrid
scheme to retain the parallel performance and at the same time avoid the limiting
factor. With this scheme, we are able to-achieve up to 37.5x performance enhancement

on a 64-core system.

However, the memory bottleneck makes it a.critical design concern to improve
the data locality and take the full advantages of the on-chip cache. This thesis
analyzes the memory behavior of a parallel Viola-Jones algorithm, and proposes a
scheme to enhance the data locality .of on-chip cache. By running a multi-threaded
object detection algorithm on a cycle-accurate multi-core simulator, the performance

was 62% better when compared with the original parallel program.

Systems with load imbalance issues.are inefficient because some processors are
idle while others keep executing programs. Chapter 5 proposes a scheme of
work-stealing on coarse-grained threads which helps programmers to write program
easier. The work-stealing technique balances the execution loads of the parallel
program on different processors. Thus, the total execution time is close to the
hand-optimized program. Although the experiments of this thesis are conducted on a
cycle-accurate simulator, we envision the proposed techniques could enable an

efficient design of the face detection on a real embedded multi-core system.

55

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]
[10]

[11]

[12]

H.W. Gellersen, A. Schmidt and M.Beigl, "Multi-Sensor Context-Awareness in
Mobile Devices and Smart Artifacts,” In Journal of Mobile Networks and
Applications, Vol.7, Num.5, pp.341-351. 2002.

R. Colin Johnson, “First MEMS gyro smartphone to ship in June,” EETimes,
May 2010, [Online]. Available:
http://www.eetimes.com/electronics-news/4199279/MEMS-Gyro-Smartphone

SixthSense Project, MIT Media Lab. [Online]. Available:

http://www.pranavmistryacomyprojects/sixéhsense/

Kinect for Microsoft Xbox, [Online]. Available:

http://www.xpoxteo m/en=&Bl/Kinect

Y. K. Chen,W. L Liand X.F. Tong, "Parallelization of AdaBoost Algorithm
on Multi-Core Processors”, IEEE SIPS 2008, Washington DC, pp.275-280,
2008.

The TILE-Gx™ processor family processor; [Online]. Available:

http://www.tilerdCom/

ARM cortex-A9 processor, [Online]. Available: http://www.arm.com/

MIPS Technologies Announces Symmetric Multiprocessing (SMP) Support for
Android™ Platform on MIPS-Based™ SoCs,

Intel multicore technology, [Online]. Available: http://www.intel.com/

AMD multi-core processing, [Online]. Available: http://www.amd.com/

C. Zhang and Z. Y. Zhang, "A Survey of Recent Advances in Face Detection,"
Microsoft Research, June 2010.

S. Leibson, "Memory is the Future Bottleneck in Multicore Servers,"” EDN
News, March 2010.

56

http://www.eetimes.com/electronics-news/4199279/MEMS-Gyro-Smartphone
http://www.pranavmistry.com/projects/sixthsense/
http://www.xbox.com/en-GB/kinect
http://www.tilera.com/sites/default/files/productbriefs/PB025_TILE-Gx_Processor_A_v3.pdf
http://www.arm.com/products/processors/cortex-a/cortex-a9.php
http://www.intel.com/
http://www.amd.com/us/products/technologies/multi-core-processing/pages/multi-core-processing.aspx

[13] P. Schaumont, B. C. Lai, W. Qin, I. Verbauwhede, "Cooperative
Multithreading on Embedded Multiprocessor Architectures Enables
Energy-Scalable Design,” Proceeding 2005 Design Automation Conference

(DAC), pp. 27-30, June 2005.

[14] Open Source Computer Vision, [Online]. Available:

[15] Sanjeev Kumar, Christopher J. Hughes, Anthony Nguyen, "Carbon:
Architectural Support for Fine-Grained Parallelism on Chip Multiprocessors,"
International Symposium on Computer Architecture (ISCA), pp162-173, June
2007

[16] U. A. Acar, G. E. Blelloch, and'R.-D. Blumofe, "The Data Locality of Work
Stealing,” In Proceedings of the ACM symposium on Parallel algorithms and
architectures, 2000.

[17] Quentin Meunier, Frederic Petrot, Jean-Louis Roch, "Hardware/software
Support for'Adaptive Work-Stealing in On-Chip Multiprocessor,” In Journal of
Systems Architecture, Vol. 56, pp392-406, 2010.

[18] D. Chase and Y. Lev. "Dynamic-Circular-Work-Stealing Dequeue,"” In
Proceedings of the seventeenth annual ACM symposium on Parallelism in
algorithms and architectures, 2005.

[19] Y. Wei, X. Bing, C. Chareonsak, "FPGA Implementation of AdaBoost
Algorithm for Detection of Face Biometrics"”, In Proc. IEEE International
Workshop Biomedical Circuits and Systems, 2004

[20] M. Yang, Y. Wu, J. Crenshaw, B. Augustine, R. Mareachen, "Face Detection
for Automatic Exposure Control in Handheld Camera™, in Proc. IEEE
International Conference Computer Vision Systems, 2006.

[21] T. Theocharides, N. Vijaykrishnam and M. J. Irwin, "A parallel architecture
for hardware face detection,” Symp. on Emerging VLSI Technologies and
Architectures, pp. 452-453, 2006.

[22] C.J. GaoandS. L. Lu, "Novel FPGA Based Haar Classifier Face Detection
Algorithm Acceleration,” FPL 2008, Heidelberg, September 2008, pp.
373-378.

57

http://opencv.willowgarage.com/

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

M. Wolf and Monica S. Lam. "A Data Locality Optimizing Algorithm." In
ACM SIGPLAN symposium on Programming Languages Design and
Implementation, pp. 30-44, 1991.

Cade, M. J. Cade and A. Qasem, "Balancing Locality and Parallelism on
Shared-cache Multi-core Systems,” 11th IEEE International Conference High
Performance Computing and Communications, 2009. HPCC ’09, pp. 188 — 195,
June 2009

M. Gaubatz, R.Ulichney, "Automatic Red-Eye Detection and Correction,"” In
Proc. IEEE Int. Conf. Image Processing, vol. 1, pp. 804-807, 2002

M.J.Jones, D.Snow, “Pedestrian Detection Using Boosted Features over Many
Frames," 19th International Conference on Pattern Recognition, pp.1-4,
December 2008.

T.T.Nguyen, H.Grabner, H.Bischof, B.Gruber, *On-line Boosting for Car
Detection from Aerial Images,” IEEE International Conference on Research,

Innovation and Vision for the Future, pp.87-95, 2007

C.H.Chiang, C.H.Kao, G.R. Li, B.C. Lai, "Multi-Level Parallelism Analysis
of Face Detection on a Shared Memory Multi-Core System," IEEE

International’Symposium on-VLSI.Design, Automation and Test, April 2011.

R. D. Blumofe and C. E.-Leiserson. “Scheduling Multithreaded Computations
by Work Stealing" Journal of ACM, 46(5):720-748, 1999.

D. Hendler and N. Shavit. "Non-Blocking Steal-Half Work Queues,” In
Proceedings of the symposium on Principles of distributed computing, 2002.

C. Lauterback, Q. Mo and D. Manocha, "Work distribution methods on
GPUs," Technical Report TR 009-16, 2009.

Y. Kee, S. Ha, "A Robust Dynamic Load-balancing Scheme for Data Parallel
Application on Message Passing Architecture" International Conference on
Parallel and Distributed Processing Techniques and Applications, (PDPTA),
pp.974-980, July 1998.

58

