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Abs t rac t - -A mathematical  model o f  buoyancy induced flows next to a vertical wall o f  ice melting in 
porous  media saturated with water is studied. With the boundary  layer approximation and a similarity 
t ransformation,  a two-point boundary  value problem (BVP) is formed and,  then, studied by the multiple 
shooting code BVPSOL. Numerical  solutions are found in two disjoint regions o f  ambient  water 
temperature for various salinity levels. In each region, solutions are obtained by applying the continuity 
process which gives, respectively, a smooth  bifurcation curve o f  the appropriate parameter.  Multiple 
solutions are found at some ambient  temperatures in these two regions. Some of  them are similar. The 
others indicate physically the potential existence o f  a large amoun t  o f  energy for any trend arising that  
drives one flow state to another.  

N O M E N C L A T U R E  

A, B, P, Q = Variables in buoyancy term 
cp = Specific heat 
D = Diffusivity 

E, H = Ancillary functions 
f = Similarity stream function 
g = Gravitational acceleration 

gJ,g2,g~ = Coefficients of  some expressions 
h~t = Latent  heat 
k -- Integration constant  

k 1, k2 = Functions in boundary  condition 
K = Permeability o f  porous media 
n - -Poros i ty  o f  porous  materials 
q = Exponent  in density relation 
R = Temperature ratio 

Ra~- -Loca l  Rayleigh number  
s = Salinity 
S = Similarity function o f  salinity 
t = Temperature 
u = Darcy velocity in x-direction 
v = Darcy velocity in y-direction 
V = Vector velocity 

W = Buoyancy function 
x = Coordinate tangent to the ice wall 
y = Coordinate normal  to the ice wall 

--Coefficient in density relation 
~t = Thermal-diffusivity ratio 
f l = ~ l -  1 
$ = Normalized similarity function o f  temperature 
t / =  Independent similarity variable 

= Thermal  conductivity 
/z = Viscosity o f  fluid 
p = Density 
z -- Time 

= Stream function 

Subscripts 

a = Motion o f  fluid 
e = Effective quantities of  porous media 
f - -  Quantities of  fluid 
i = Quantities o f  ice 
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m = Q u a n t i t i e s  a t  extreme 
r = Quantities at reference condition 
s = Quantities of porous material 

U,L = Upper and lower solutions at the same ambient temperature or R 
1, 2 = Lower and upper bound of the gap in R 

0 = Quantities at the interface 
oo = Quantities at infinity 

1. I N T R O D U C T I O N  

In the natural world, transport processes in fluids where the motion is driven by the interaction 
of  a difference in density in a gravitational field are common. Usually, density variation is caused 
by temperature differences. As in oceanic circulation, the differences in salinity may further affect 
the density. Therefore, the buoyancy force is the stimulus to the fluid flow, particularly in oceanic 
circulation. Such flows are called "natural  convection". 

The mechanisms of  such flows are complicated by the occurrence of  density extrema as the 
temperature varies [1]. It is known that a density extremum is reached at about 4°C in pure water 
at atmospheric pressure. A density extremum also occurs in saline water up to a salinity level of  
about  26 p.p.t. (parts per thousand) and at an elevated pressure up to 300 bars absolute. 

Such mechanisms also occur in fluid saturated porous media such as permeable soils flooded by 
cold lake or sea water, or water slurries, since density extrema may occur in this situation as well. 
Ramilison and G-ebhart [2] presented a study of  the problem of  transport of  porous media saturated 
with cold pure or saline water at a low temperature, with a density relation as in Ref. [3]. 
Meanwhile, a temperature ratio R was introduced, R = ( t i n - 4 o ) / ( 4 - t ~ o ) ,  with an ambient 
temperature t~, a density extremum temperature tm and a temperature at the vertical surface to. 
The reported that the existence of  a gap in R where no similarity steady state solution is obtained. 
Gebhart  e t  al.  [4] then presented a more delicate numerical study to obtain new solutions and 
improved the accuracy of  gap in R to appropriate parameters and multiple solutions with greatly 
different characteristics at the same R are found. These results were verified rigorously by Hastings 
and Kazarinoff [5]. 

It was concluded that, in Refs [2] and [4], both flow and buoyancy force are upward for R < 0 
and downward for R > 1/2. For  R ranging from 0 to 1/2, two distinct flow regimes with a local 
buoyancy force reversal across the thermal diffusion region have also been found. The flow is the 
first regime, for values of  R near 0, is mostly upward, as in Fig. l(a), and mostly downward in 
the second the regime with R close to 1/2, as in Fig. l(b). 

Note  that the studies of  Refs [2] and [4] have been restricted to the case of  an isolated vertical 
ice surface in the sense that none of  melting, freezing or salinity diffusion is allowed. Carey [6] 
presented experimental and numerical studies on the problem of  a vertical ice melting in saline 
water, and indicated the importance of  salinity diffusion when the melting process is taking place. 
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Fig. 1. Coordinate systems for two flow regimes (a) the mostly upward flow and (b) the mostly downward 
flow. 
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It is our purpose here to study the effect of salinity diffusion to a problem of a vertical ice wall 
melting in porous media saturated with water. 

2. MODEL AND ANALYSIS 

Consider a vertical wall of ice melting in an isotropic and homogenous porous medium. The 
concentration of salt s is assumed to be small comparing with the density of water. The Soret and 
Dufour effects are neglected. The cartesian coordinate system is taken with the origin at the leading 
edge of ice, where the x-direction is taken positive in the direction of upstream (or downstream) 
and the y-direction is taken normal to the ice surface, as Fig. l(a) [or Fig. l(b)]. When the 
coordinate system taken as stationary relative to the far ambient medium, the ice water interface 
moves in the negative y-direction with velocity Vi(x) as the ice melts. Thus, the flow field is time 
dependent and, by the order-of-magnitude argument, this time dependence has an effect O(1) even 
at low ambient temperature which results in low melting rate. 

Let u and v be vertical and horizontal components of the Darcy velocity: K be the permeability 
of the porous medium:/~, cp and Pr be the viscosity, specific heat and density of the convective fluid 
at the reference condition: ke and Dc be the effective thermal conductivity of the saturated porous 
medium and the effective diffusivity of salt in the porous medium saturated with saline water. Also 
the fluid pressure and the gravitational acceleration are denoted by p and g. 

As the Boussinesq approximation is applied, the governing time dependent equation, due to 
Ramilison and Gebhart [2], Carey [6], and Gebhart and Mollendorf [3] are given as follows: 

au av 

at dt 

as ~3s 

d-~+u = -  +_pg-- ; 

av K ap 
a-'-z + v . . . .  pay" 

at k~ Fa2t a2t 1 

a, ra,,  a ,l. 
+ _- + ay2_ ], 

p = p~(s,p)[1 - a(s,p)[t  - t.~(s,p)[q~'P)], 

(1) 

(2a) 

(2b) 

(3) 

(4) 

(5) 

where Pm is the extreme of the fluid density, tm is the temperature at which Pm occurs and z denotes 
the time. 

The phase change will cause the ambient fluid in the porous medium to move toward the ice 
wall with the constant velocity Va. But both Va and the interface velocity V~ are determined by 
melting rate, and related by 

1I, = Vi 1 p,(1 - so/lO00 ) ' 

where So is the salinity at the interface along with uniform temperature to. Meanwhile, Pi denotes 
the ice density and V~ is assumed to be independent of time and entire ice mass is at temperature 
to. The boundary conditions, at small time z > O, are 

at y = - V ~ r ;  ; u = 0 ,  t= to ,  s=s0;  

as y--.oo; u ~ O ,  t ~ t ~ ,  s~so~. (7) 

Now, the boundary conditions (7) is transformed to a fixed ice salined water boundary in time 
by letting 

x = ~ ,  y = y - V d ,  ~ = f ,  

u = a ,  v = ~ - V i ,  t = ? ,  s = £  
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It is assumed that the coordinate system is moving with the interface, the flow field is independent 
of  time and V~ -~ (dVi /dx )  is small and may be neglected. For the boundary layer approximation 
applied here, it is assumed that the convection takes place within a thin layer adjacent to y = 0. 
Hence, by neglecting changes of  physical quantities ~2/0x2, compared to those with respect to y, 
and by dropping the bars, the governing equations (1)-(4) become 

Ou dv 
+ = o, (8) 

c~y # 

Ot Ot k~ O2t 
= 2, (10) U -~X + V ~y prCp Oy 

Os Os OZs 
U -~x + V --~y = D~ ~y2, (11) 

with the associate boundary conditions 

at y -- O; u = O, v = V 0 ( x ) ,  t = to,  s = so; 

as y - ~ o o ;  u ~ O ,  t ~ t o o ,  s -~s®,  (12) 

were V0 is the blowing velocity at the interface. From the conservation of  mass and thermal energy 
at the interface, 

dt y=o 
Pi ke~yy (13) 

Vo = Vi PrO - so/lO00) = prhil(1 - so/lO00)' 

where hit, the latent heat of  fusion of  ice, is 79.77 cal/g. Moreover, the conservation of  salt and 
water at the interface should be included which yields 

keso at = Dcp, c~_s (14) 
hil Oy y=o 1 - (so/lO00) Oy y=O" 

Moreover, equation (9) is equivalent to 

- -u (x ,  y )  = -I-Kg(po~ - p),  (15) 
Iz 

by applying the integration along with the condition (12). As in Ref. [2], similarity independent 
variable t / =  t/(x, y)  and three similarity dependent variable f(r/), ~b (7) and S(t/) are introduced as 
follows: 

n(x,  y )  = y ~ - ~ / 2 x ,  f ( n )  = ~ (x ,  y)/(oq x/Rax), 

dp(rl) = (t(x,  y )  - t~)/(to - t~),  S(rl) = (s~o - s(x,  y ) /s  1, 

where s 1 = I p.p.t, and Ra~ is a local Raleigh number defined as 

Ra x = 2~ (s ~, p )Kpm (s ~, p )  gx  I t - t o~ I q~s~' p)/(laoq ), 

with 0q = kc/(cpp,). Also d / (x , y )  is the usual stream function with Od//Oy = u and O~//Ox = - v .  
Hence, u (x, y)  = (~t Rax/2x)f'(rl ), - v (x, y )  = (~q ~ /2x ( f  - nf ' ) .  Therefore, equations (5), (8), 
(10), (11) and (15) with boundary conditions (12)-(14) are transformed to an autonomous system 

f ' (q )  = _+ wok,  R, S), (16 ±) 

4'"(7) + f ( , ; ) ¢ ' ( ' ; )  = 0, (17) 

S"(t  l ) + (or , /D,) f (q)S ' (n)  = 0, (18) 

with boundary conditions 

~b(O) = 1, t~(c~)=0,  s ( o o ) = 0 ,  s ( O ) = ( s ~ - - S o ) / s l ,  
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Moreover, 

f (0)  = %(t= -- to)dP'(O)/[h,(1 -So /1000)  ], 

s'(0)/~b '(0) = k, (to - to)So/[hi, pr De (1 -- So / 1000)]. 

W(~b, R, S) = (1 + AS)(1 + BS)Idp - R - QSI  q - J R  [q - -  PS,  

where q = q(0, 1) = 1.894816 and R is defined as 

tm(&¢ ) - -  t o 
R =  

t o -  too 

with t=(Sm)= t=(0, 1)(1 + s~g3). Variables A, B, Q and P are defined by 

A = - g l / ( 1  + s=gl),  

B = -g2 / (1  + Sog2), 

Q = --g3tm(0, 1)/(to -- to) 

and 

(19) 

(20) 

P = A/[ct (0, 1)(1 + sccg2) [ t o - t o [¢], 

pm(0, 1) = 0.999972 gcm -3, at(0, 1) = 9.297173 × 10 -6 (°C) -qt°'l),tm(0, 1) = 4.029325°C, where 
gl =0.846157 x 10 -3, g2 = --0.2839092 X 10-2 and g3=-0 .5265509  x 10-'. Let P+ and P~- Soo 
denote the problems (16+)-(19) and (16-)-(19), respectively. 

Note that the expressions for A, B, Q and P are slightly different from those in Ref. [6]. This 
is due to the different similarity dependent variable S(r/). Carey [6] defined it as 
S* 0 / ) =  (s(x, y ) -  s=) / (So -  so~) which leads to difficulty in continuing the ice melting in saline 
water from that in pure water. However, the system studying here will overcome such difficulty 
sing S(r/) is identically zero if So = so = 0. Hence, this enables us to study the case of saline water 
as a perturbation of  the pure water case. Moreover, due to Fujino et aL [7] and Carey [6], to is 
assumed to be in terms of  So and t0(0) = 0. Therefore, R, in terms of s~, to and So, should not be 
considered as a free parameter for the general case of s~o > 0. 

Similar to Ref. [4], ~(tl) can be taken as a new independent variable since it is strictly decreasing 
on (0, oo). Let E(~(t/)) = - ~ ' ( r / )  and H(t#(r/)) = S(r/). Then the system Ps~ can be transformed 
to Q,= 

E" (e~ ) = ~ W(e~, R, e~ )/E(e~ ), (21") 

n'(dp ) = f in"  (dp )E" (¢  )/E(dp ), (22) 

with the associated conditions 

E(0) = 0 ,  E' (1 )  =kl(s~o, t=,so)E(1),  

H(O) = O, H(1) = (So -- So)Is 1, 

H'(1) = k2(soo, to~, So), (23) 

where f l = ( ~ q / D c ) - l ,  k l ( s o , t o o , S o ) = - c p ( t = - t o ) / [ h , ( l - s o / l O 0 0 ) ]  and k2(soo,to~,so)= 
k , ( t ® -  to)So/[hijDcpr(1 -s0/1000)] .  The "shooting" method is used to study the system Q,® and, 
then, E '  (0), H'(0) and So are taken as free parameters to satisfy the conditions at $ = l, if so and 
too are given. Note that equation (22) is equivalent to 

H '  (~ ) = kE(d) )#, (24) 

with k as an integration constant which gives the propriate parameter to overcome the difficulty 
in requiring that H ' ( 0 ) = 0 .  Hence, the problems of (21+), (23) and (24), denoted by Q ~ ,  
respectively, will meet the requirement of  the shooting method. 

Furthermore, coefficients k, and D, depend on the type of  the porous medium. An isotropic 
porous medium may have several types of thermal conduction such as "parallel", "series" or even 
more complicated conditions. To simplify our study here, a series conduction is assumed for the 
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porous medium. Therefore, ke can be written as 

1 / k e = n / k r + ( l  - n ) / k ,  

where kr and k s are the thermal conductivity of the fluid and solid in such medium, and n denotes 
the porosity of the solid [8]. As to kr, an explicit form by Caldwell [9] is chosen to evaluate it. But 
we are unable to obtain any explicit form to evaluate ks. Nevertheless, Somerton [10] has presented 
some sample data for ks at the temperature 32°C. Hence, we have assumed that the porous medium 
is like well-distributed sandstone with the porosity n = 4 0 %  and set k~ to be 
0.9086 x 10 -2 cal/cm s °C. Meanwhile, De can be formulated by [8] D~ = k~/[(1 - n)pscs + np,%], 
where Ps and cs denote the density and specific heat of the solid in the given medium. As above 
we set, for such special medium, Ps = 1.8423 g/crn 3 and cs = 0.3742446 cal/g°C. Moreover, two 
explicit forms by Bromley et al. [11] and Gebhart and Mollendorf [3], respectively, are used to 
evaluate cp and p~ at the reference temperature tr = (too + t0)/2 and salinity sr = (so + s0)/2. 

3. N U M E R I C A L  S T U D Y  A N D  R E S U L T  

Numerical computations are performed on CYBER 730 at SUNY/Buffalo by using the code 
BVPSOL [12-15]. BUPSOL is a multiple shooting code for solving boundary value problem in 
ordinary differential equation. For dealing with the stiff system, and integrator subroutine 
METAN1 [16-18] is imposed which is based on the semi-implicit midpoint method associated with 
the step size controlled by the extrapolation method. 

To solve the problem Qs~, a local accuracy controlling parameter EPS is set to be 10 -g. The 
continuity process with an appropriate parameter is applied with the initial guesses are taken by 
the interpolation of data obtained from the previous three runs. Due to physical interest, too in 
ranging from the left end t~ = tm(S~), R --- O, for various level of salinity s~/> O. 

To the pure water model, it is equivalent to study the reduced problem Q0 

E" = -T-w(Jp, R )/E(c~ ), (25 ±) 

E(0) = 0, E'(1) = k 1(0, t~, 0)e(1), (26) 

where w ( ~ b , R ) = l ~ b - R I q - I R I  q, since s ~ = s o = k = O .  The corrected condition at q~ = 0  is 
imposed and computations are facilitated by using the asymptotic value of E(ck), E(~b)~ E'(0)qb, 
for ~k small. When too is close to tin, a continuous family of solution of Q~- is obtained with the 
parameter E'(0) down to 4 × 10 -5. Moreover, a smooth curve which corresponds to solutions of 
Q~- has also found with the other parameter E(1) down to 10 -6 when to is close to 2tin(0), R ~ 1/2. 
It is found that a gap in t~ such that neither Qd- nor Q f  has a solution. 

The case so = 10 -4 has then been studied. Similar continuous families of  solutions for Qs~o are 
also obtained and the data agree with those in the pure water model to at least 4 digits. This 
suggests that the case of small s® is a perturbation of the pure water case. Bifurcation diagrams 
of to against f(oo), -~b'(0), k and So will not be shown here. But they are similar to those of the 
case soo = 25.4 [as Fig. 4(a)--4(d'), which will be discussed later] expect for differences of position. 
By setting a = E'(O)=f(oo) ,  the observed properties can be characterized, for sufficiently small 
so~ >i 0, as follows. 

1. There is a gap in t~, h(s~) < t~ < t2(so), on which neither P+ nor P~- has a s~ 
solution. 

2. There exists a smooth curve Co in the (s~, a, too, k, so) space such that every point 
on Co corresponds to a solution of P+ with too = tm(So~). s~ 

3. P+ has a unique solution when too is close to tm(soo). ,® 
4. It is conjectured that there is a curve F,~ in the (a, too, k, So) space such that each 

point on the curve corresponds to a solution of Ps~ + for each s~ > 0. Fs~ is of 
the form {(a, too(a), k(a), s0(a))[0 ~< a ~< a0(soo)}, where the endpoint or Fs~ with 
a = %(s~) corresponds to a unique solution of P+ if t® = tin(S®). s~ 

5. We also conjecture that there is curve Ct in the (soo, a, t®, k, So) space such that 
each point on C~ corresponds to a solution of P~+® whenf(oo) = 0. Furthermore, 
for each So P+ has multiple solutions with t~ =/ 'o(s~)  where /'o~ is the 
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. 

. 

too-component of a point on C1. In particular, P~ has infinitely many solutions 
at t= = t'= (0). 
There is a number /'oo(s=)> t2(s~o) such that P , -  has a unique solution if 
too 1>/'oo(soo), and has even number solutions for too in [t2(soo),/'oo(soo)] in a sense 
roughly equivalent to counting of roots of  a polynomial. 
By observing the bifurcation diagram -~b' (0)  vs too, [as Fig. 4(b) and 4(b')] the 
further conjecture should be noted here. At the left region of too, the bifurcation 
curve spirals inward and clockwise to a certain point. However, the lower branch 
of right hand bifurcation curve approaches to /'oo (soo) as -~b'(0) decreases to 
zero.  

Note that, by restating with the temperature ratio R, the result of soo = 0 is similar to the one 
in Ref. [4]. The correlation betwen Co, Cl, F,= and F0 can be exhibited by Fig. 2. This figure and 
some of above properties are justified mathematically by Wang [19]. 

To study the cases of moderate salinity, s® has been set to be 1, 10, 20 and 25. Two families 
of  solutions of P,= for each soo are obtained successfully with significant CPU time. For each soo, 
Properties l, 3, 4 and 6 are obtained. It is found that, as in Fig. 3(a), the width of  gap in too is 
increasing as soo increases. Meanwhile, the width of gap in R first vanishes at about soo = 25, see 
Fig. 3(b). Moreover, Property 6 is also true when replacing too by R for soo = 1, 10 and 20. But 
P~- has only one solution for each R in (R2 E)  at soo = 25. The bifurcation diagrams of f (oo) ,  
- t~ ' (0 ) ,  k and so against too are similar except for differences of the position. 

C.A.M.W,A. 14/7---C 

,= =, .  

k l  $0o t So 

Fig. 2. The correlation between Co, Ct, F0 and F,®. 
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Fig. 3(a). The bounds o f  the gap in t=, t,(s=) < t= < t2(s=). 
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Fig. 3(b). The bounds of the gap in R, R,(s~) < a < R2(s®). 

Furthermore, it is found that tin(so) is decreasing in so and negative s~ is greater than 19 p.p.t. 
This enlarges the variable - P  in studying the problem P + For example, - P  is ranging from 8 soy" 

to 12.4 when s~ = 20. Thus,  the buoyancy  force term W is mainly driven by the term - P S ,  and 
then the numerical treatment becomes  unstable. The case o f  so = 25.4 is the highest level at which 

0 . 8 0  - 

%. 0.40 

0 ) 
-1.36 

I I I I I 
12.91 27.18 41.46 55.73 70. O0 
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Fig. 4(a). Bifurcation diagram of parameter space of representation of solutions of the problems P+ and 
P~-= in terms of f (D)  and too when s~ = 25.4. 
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Fig. 4(a'). Details of parameter space representation of multiple solutions to the problem P+,® in terms 

of f (w)  and t® when s® = 25.4. 
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Fig. 4(b). Bifurcation diagram of parameter space of representation of solutions of the problems P+  and 
P , :  in terms of -~b'(0) and too when s® = 25.4. 
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Fig. 4(b'). Details o f  parameter space representation o f  mult iple solutions to the problem P +  in terms 
of  -4 ) ' (0 )  and t= when s= = 25.4. 

-I¢ 

121.34 

97.07 

72.80 

48.53 

24.27 

0 -J I I I I I 
-1.36 12.91 27.18 41.46 55.73 70.00 

too 
Fig. 4(c). Bifurcation diagram o f  parameter space o f  repmscmation o f  solutions o f  the problems P+= and 

P,-= in terms of  k and too when s® = 25.4. 
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Fig. 4(c'). Details of parameter space representation of multiple solutions to the problem P+ in terms 
s o  

of k and t® when s® = 25,4. 
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Fig. 4(d). Bifurcation diagram of parameter space of representation of solutions of the problems P+  and 
P~-® in terms of so and too when s® = 25.4. 
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Fig. 4(d'). Details o f  parameter space representation o f  mulpitl¢ solutions to the problem P +  in terms 
of So and too when s® = 25.4. 
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Fig. 5. Selected vertical velocity component distribution, f ,  for the problems P +  and Pi-= when s® = 25.4. 
In the left region, at t® ffi 1.64034, U+ and L+ are the upper and lower solutions, respectively, 
~ ÷ ( 0 )  = - 1.321084 and ~ .  (0) = - 1.131652. In the right region, at t® = 55, U_ and L_ are the upper 

and lower solutions, respectively, 0~_(0)=  -0.378090 and O L ( 0 ) =  -0.001361. 

we have obtained both families of solutions for P,® + and P;-® successfully, and bifurcation diagrams 
are plotted in Figs 4(a-d'). Also, - P  ranges from 10 to 2.5 x 10 -6 for P+ at this salinity level. ,® 
To the problem P,+, the numerical instability seems to be overcome by reformulating the similarity 
transformation as in Ref. [9], but it is reported that the occurrence of tm exists only up to 26 p.p.t. 
for the problem P;-®, it is believed that the solutions are obtainable if s= is further increased up 
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Fig. 6. Selected horizontal velocity component distributions, f -qf ' ,  for the problems P,® + and P[® when 
so, = 25.4. In the left region, at t® ffi 1.64034, U+ and L+ are the upper and lower solutions, respectively 
0~÷(0)-1.321084 and 0L(0)ff i  -1.131652. In the right region, at t® ffi 55, U_ and L_ are the upper 

and lower solutions, respectively, ~_ (0 ) f f i  -0.378090 and O L ( 0 ) =  -0.001361. 
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Fig. 7. Selected temperature distributions, 4~, for the problems P+® and P,~ when s® = 25.4. In the left 
region, at t® = 1.64034, U+ and L+ are the upper and lower solutions, respectively, ~b~j. (0) = - 1.321084 
and 4)[.(0) = -1.1311652, In the risht rqIion, at t= = 55, U_ and L_ are the uper and lower solutions, 

respectively, 4,[~_ (0) = - 0.378090 and ~b [_ (0) --- 0.001361. 

to at least the sea water level 35 p.p.t, and the upper edge t2(s~) of the gap is much greater than 
40°C. However, it is not practical in nature. 

By treating P,® as an initial value problem, METAN1 is used to integrate the equations (16-18) 
on [0, 7] with the initial conditions obtained from the data of Q,®. Reasonable agreement is 
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Fig. 8. Selected salinity distributions, S, $(0) = (3® - so)/sl, for the problem P +  and Pi® when s= -- 25.4. 
In the left region, at t® = 1.64034, U+ and L+ are t h e u p p e r  and lower solutions, respectively, 
¢~+(0) = - 1.321084 and ~b[+(0) = - 1.131652. In the right region, at t® -- 55, U_ and L= are the upper 

and lower solutions, respectively, ~ _ ( 0 ) =  -0.378090 and ~b[_(0)= -0.001361. 
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gradually reached by increasing tloo from 80, 100, 200 . . . . .  800. Selected 
temperature and salinity profiles are plotted in Figs 5-8 at soo = 25.4. 
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graphs of velocity, 

4. C O N C L U S I O N S  A N D  A D D I T I O N A L  O B S E R V A T I O N S  

Numerical computations show that buoyancy force and flow reversals arise in a range 
tin(S0) ~< too ~< /'oo (Soo), where ~'oo(0) = 2tin(0). Although no experimental results have been reported 
on this subject, our result indicates that complicated mechanisms may arise and suggests that 
further experimental investigations are needed. 

It is found that the width of gap in too, t~ (soo) < too < t2 (soo), increases in soo. The bounds of the 
gap are about 4.9811 and 6.7429; 3.8463 and 9.3450; 2.5564 and 33; 1.8514 adn 37.5 for soo = 0, 
10, 20 and 25.4, respectively. Moreover, the mathematical verification has shown the existence of 
the gap for s® small. However, the boundary layer similarity transformations give no guidance in 
predicting buoyancy-driven transport for conditions that falls in this gap. A new formulation is 
necessary to describe such flows. Moreover, the phenomena to be described here are not known. 
Experimental study of such flows must guide the development of new mathematical model. Similar 
situation has occurs in the study presented by Gebhart et al. [4]. 

Multiple solution found here are remarkable in several respects. They appeared mainly outside 
the upper and lower bounds of gap. Pairs of multiple solutions in the left hand region, close to 
the lower edge of the gap, are very similar. These flows have a buoyancy reversal in the outer region 
of the layers. On the other hand, outside the upper edge of the gap, the upper and lower solutions 
are very different. The lower solution exhibits a thick layer near the interface surface. This insulates 
the surface, and results a huge decrease in heat transfer and interchange of mass of ice and salt 
at the interface. For example, -~b{j(0)/-~b[(0)~ 36321 at too ~ 7.3841 for the pure water case; 
~b~(0)/-q~[(0) ,~ 370 at too = 55 for the case soo = 25.4. Those quantities with subscripts U and L 
denote the upper and lower solution described above. It can be seen that the layer becomes thicker 
as too increases. This results the decrease of So of the lower solution since the fluid inside the layer 
is less saline due to the insulation. 

The multiple solutions have considerable different characteristics. This raises additional ques- 
tions in interpreting such results in relation to any actual circulation in a porous medium. The 
steady flow might actually rise matters later in the left region although the existence of two 

solutions probably means instability. However, in the right region, the difference in the effects of 
steady transport would be great. For example, the large differences in the ~b(~/) and s(r/) 
distributions mean large differences in the buoyancy force associated with the different flows at the 
same too. This means that a large amount of energy is potentially available for amplification for 
disturbance and vigorous effects may arise. 

Unfortunately, as in Ref. [4], we know of no data from experimental measurements concerning 
transports in porous medium. Therefore, further understandings concerning flow instability and 
more inclusive may require an experimental data base. 
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