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Chinese Abstract 

中文摘要 

 在日常交通運輸中，最常伴隨的不適症狀即為人們熟知的暈車現象，是一種

當大腦接收到衝突的動作感知資訊時所引發的常見症狀。在許多已確認的暈車相

關的生理指標中，我們於先前的研究觀察發現以腦電波動態變化預估暈車程度的

可行性。相較於傳統的線性迴歸，我們採用輻射基底函數類神經網路(Radial 

basis function neural network)與支持向量迴歸(Support vector regression)

以得到更佳的暈車程度估計。本研究並使用主成分分析和基因特徵選取以提升估

計表現至優於過去所用的相關性分析之成效。研究結果顯出使用特徵選取和迴歸

方法可有效優化暈車程度之估計，並可引領後續非侵入式暈車監測系統在實際生

活之應用發展。 

 

關鍵字關鍵字關鍵字關鍵字：：：：腦電波、獨立成份分析、輻射基底函數類神經網路、支持向量迴歸、主

成分分析、基因特徵選取 
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English Abstract 

Abstract 

 Motion sickness is a common symptom that occurs when the brain receives 

conflicting information about the sensation of movement. Many motion sickness 

biomarkers have been identified, and electroencephalogram (EEG)-based motion 

sickness level estimation was found feasible in our previous study. Radial basis 

function neural network (RBFNN) and support vector regression (SVR) were adopted 

in this work to approach better motion sickness estimation comparing to the 

traditional linear regression. This study employs principal component analysis (PCA) 

and genetic feature selection (GFS) to find usage of EEG features that can further 

improve estimation performance over the correlation-based method reported in the 

previous studies. Results of this study demonstrate that these feature selection 

techniques and regression methods are effective to optimize the estimation of 

motion-sickness level. This work could lead to a practical system for noninvasive 

monitoring of the motion sickness of individuals in real-world environments. 

 

Keyword: EEG, Independent Component Analysis (ICA), RBFNN, SVR, PCA, GFS 
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1. Introduction 

 

1-1. What Is Motion Sickness 

 

Motion sickness (MS) is a usual response to real, perceived, or even anticipated 

movement. People tend to get motion sickness on a moving boat, train, airplane, car, or 

amusement park ride. The most common signs and symptoms of motion sickness include 

nausea, paleness of the skin, cold sweats, vomiting, dizziness, headache, increased salivation, 

and fatigue. 

 

1-2. Occurrence of Motion Sickness 

 

The history of MS can be traced back to ancient Greece [1]. Hippocrates, one of the first 

people to discuss motion sickness, mentioned that motions caused by the ocean disordered the 

body. Until now, a boat is still the most common environment where motion sickness occurs, 

because the exposure to motion sickness stimuli is most extensive both with respect to time 

and motion magnitude during sea travel [2]. The incidence of motion sickness can be as high 

as 62% on a navy ship [3]. Motion sickness is also often in ground transportation. In a 

questionnaire survey to identify passengers’ personal and environmental factors influencing 
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individual susceptibility to motion sickness during road transportation, 28.4% of passengers 

reported feeling ill, 12.8% reported nausea and 1.7% reported vomiting during travel [4]. The 

malaise of MS may last for more than one hour [5], or even one day [6]. The occurrence of 

motion sickness is relatively infrequent in an airplane, since modern airplanes are bigger and 

operate on a higher altitude than previously, and the better weather forecast reduces the 

chance of encountering with severe weather [1]. In military domain, the increase of simulation 

training has brought motion sickness problems. After training in a flight simulator, 25% of the 

air force pilots reported motion sickness symptoms [7]. 

 

1-3. Motion Sickness-related EEG 

 

Early studies [8] reported that MS will induce many physiological signal changes 

including electrogastrography (EGG) [9], galvanic skin responses (GSR) [10], and heart rate 

variability (HRV) [11]. Recently, the rapid advance in neuroimaging technology has made it 

able to examine MS-related neural dynamics with EEG, one of the best methods for 

monitoring the brain dynamics induced by motion-sickness because of its high temporal 

resolution and portability [8]. 

Many EEG indicators related motion sickness has been reported in former studies. Delta 

increase in temporal, frontal, and central area has been found when sickness was induced in 
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cross-coupled angular stimulation [14], optokinetic rotation drum [9], car-driving VR 

experiment [16], and object-finding VR experiment [15]. Beta increase in fontal and temporal 

area was induced in object-finding VR experiment along with motion sickness. Theta increase 

in frontal, central, temporal, and central area has been reported in experiments of rotating 

drum [13], parallel swing [12], cross-coupled angular stimulation [14], and optokinetic 

rotating drum [9]. Nevertheless, theta decrease in central and frontal area was found in the 

car-driving VR experiment [16]. 

Apparently, MS-related EEG power changes are not consistent among these cited studies, 

which may be due to the wide range of paradigms and inconsistent stimulus inputs used to 

induce motion sickness [8]. Another possible factor making these experiments unreal has been 

the interruption due to the assessment of the participant’s motion sickness level (MSL). Many 

scholars have adopted a motion-sickness questionnaire by Kennedy et al. [17], a standard 

rating system for comparing MS states among subjects, to measure susceptibility of subjects 

to MS. However, it demands interrupting the experiments and asking the subjects to answer 

few questions. How to provide both visual and vestibular stimulation to induce motion 

sickness more close to the real life experience? In our past study, Chen et al. performed their 

experiment on a VR-based driving simulator on a six-degree-freedom motion platform [8]. 

They also proposed an easy-to-operate online rating mechanism to obtain high temporal 

resolution self-reporting motion sickness level of individuals. 
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1-4. EEG Feature Spaces 

 

According to previous review [18], a great variety of features have been employed in 

EEG-based brain-computer interfaces (BCIs) such as amplitude values of EEG signals [19], 

band powers [20], power spectral density values [21, 22], autoregressive and adaptive 

autoregressive parameters [23, 24], time-frequency features [25] and inverse model-based 

features [26-28]. Among these feature extraction techniques, power spectral density has been 

considered as one of the most robust and consistent in extracting the distinctive spectral 

patterns [29]. The spectrum is usually divided into five canonical frequency bands, such as 

delta (δ: 1–3 Hz), theta (θ: 4–7 Hz), alpha (α: 8–13 Hz), beta (β: 14–30 Hz), and gamma (γ: 

31–50 Hz) [30]. In this study, we further separate beta band into low-beta and high-beta bands. 

Thus, the number of features is six times of the number of electrodes being used. In many 

such problems, a subset of features will often lead to better dissociation between trial types 

than the full set of features [31]. However, the number of unique feature subsets for N features 

is 2N, a space that cannot be exhaustively explored for N greater than about 25 [31]. 

 

1-5. Estimation and Feature Selection in EEG-Based BCI 
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Typically, the decoding part of BCI involves the technique of classification or estimation, 

depending on the type of the output, discrete categories or continuous degree. Either 

classification or estimation, these problems need pattern recognition and machine learning 

methods to approach highly accurate decoding performance. Since the decoding performance 

is sensitive to individual deviation and signal noise, the performance of classification is 

usually more robust than that of estimation in BCI applications. Therefore most EEG-based 

BCI research aims to decode the brain dynamics into several classes such as emotional states 

[32] and movement directions [33], but still some studies that focused on estimation problem 

can achieve high accuracy in single- [34, 35] or cross-subject validation [36]. 

Prior research has shown the benefits of feature selection in EEG feature space [36]. 

Among many ways to implement the feature selection search [31, 37, 38], a popular choice is 

genetic algorithm (GA) [39], which was designed to avoid local optima and has been adopted 

in EEG feature selection to enhance the performance in BCI applications [33, 40], and GA is 

also a direct way to extract informative EEG features for experiment amelioration [40]. 

 

1-6. Aims of This Study 

 

This study aims to explore the feasibility of building a BCI to continuously estimate the 

motion sickness level based on the EEG. The structure flow chart is shown as  
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Figure 1-1.To optimize motion sickness estimation performance, this study involves 

state-of-art regression methods to improve the estimation model, and applies genetic feature 

selection to providing better performance through searching ‘good’ feature subsets. In 

addition, this study also investigates the spatial and temporal dynamics of selected features 

that support better motion sickness estimation. 
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Figure 1-1. The flow chart of proposed motion sickness estimation system. 
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2. Material and Methods 

 

2-1. Experiment Paradigm of Motion Sickness 

 

Our previous studies [8] have designed and built a 3D virtual-reality (VR) dynamic 

motion simulator as a test bed for studying (Figure 2-1) driving cognition and motion sickness. 

The environment provides both visual and vestibular stimuli to participants through the VR 

environment consisting of 360° projection of VR scenes and a six degree-of-freedom motion 

platform to induce motion sickness. With such a setup, we expected to induce motion sickness 

in a manner that is close to what we experience in real life. A three-section experimental 

protocol was shown as Figure 2-2. 

First 10 min is the baseline section involving a straight-road driving. The next 40 min 

involved driving on a long winding road which often induced subject’s motion sickness. 

Finally, a 15-min recovery section of a straight-road driving was used to help the subjects 

recover from sickness and back to normal physical status. Eighty percentages of subjects 

reported motion sickness during the experiments. 
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2-2. Data Acqusition 

 

2-2-1. Behavior Data Recording 

 

 

Figure 2-1. The immersive VR driving scene with a 360-degree projection. 

  

 

Figure 2-2. Experimental protocol of three-section auto-driving. 
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Motion sickness level was continuously reported by the subject who adjusted a joystick 

with a continuous scale ranging 0 – 5 on its side. The subjects were asked to adjust the scale 

to a higher level according to their feelings of motion sickness. This continuous MSL was 

reported in real time without interrupting the experiment rather than the traditional 

motion-sickness questionnaire (MSQ) proposed in [8]. 

 

2-2-2. EEG Recording 

The EEG data were recorded from the 10 subjects to examine the brain dynamics during 

motion sickness. EEG signals were sampled with 500 Hz by a 32-channel NuAmps (BioLink 

Ltd., Australia). 

The acquired EEG signals were first inspected to remove bad EEG channels and then 

down-sampled to 250 Hz. A high-pass filter with a cut-off frequency at 1 Hz and transition 

band width 0.2 Hz was used to remove baseline-drifting artifacts and a low-pass filter with a 

cut-off frequency at 60 Hz and transition band width 7 Hz was used to remove muscular 

artifacts and line noise. The resultant EEG signals were then fed into the proposed evaluation 

system for further analysis and the whole process was illustrated by Figure 2-3. 

 



 

11 

 

 

 

2-3. Independent Component Analysis 

 

Independent Component Analysis (ICA) was applied to EEG recordings to remove 

various kinds of artifact, such as blink artifact and indoor power-line noise, and to extract 

features of human’s cognitive task. Independent component analysis is a novel statistical 

technique to find out the linear projections of the data that can maximize the mutual 

independences of estimated components, and has been proven as an effective technique to 

solve blind source separation (BSS) problem. Therefore, ICA decomposition is a usefully 

computational method for EEG signal processing. It can separate an observed multivariate 

 

Figure 2-3. The 32 channel EEG cap and electrodes placement of international 10–20 

system. 
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signal into several cumulative segments under the assumption of the mutual statistical 

independence of the non-Gaussian source signals. The general representation of ICA model 

can be simply denoted as XWS ×= , where T
nSSSSS ],...,,,[ 321= presents the n independent 

sources, W  is the weighting matrix, and T
nXXXXX ],...,,,[ 321=  is the n observed signals. 

The purpose of ICA algorithm is to find out a weighting matrix, W , to have a maximum 

statistically independency of the separated components. 

 

2-4. Component Clustering 

 

After doing ICA process, component clustering was analyzed using DIPFIT2 routines 

[41], a plug-in in EEGLAB [42], to find the 3D location of an equivalent dipole or dipoles 

based on a four-shell spherical head model. Among components from all subjects, those with 

similar scalp topographies, dipole locations and power spectra were clustered. Ten component 

clusters recruited more than 10 components from multiple subjects with similar topographic 

maps were regarded as robust component clusters. Figure 2-4 showed the five most 

MSL-related clusters were selected in our previous study [8]. The component usage sorted by 

subject was shown in Table 2-1. According to Table 2-1, we can find that not all subjects have 

every motion sickness related components because the level of motion sickness induced by 

vestibular and visual stimuli to each subject had the significant individual difference. 
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According to MSQ results and subject’s self-response of motion sickness, we can confirm that 

each subject indeed felt sickness during the whole experiment session. Consequently, these 

extracted components are correlated with motion sickness. Then we can feed the ICA signals 

into the evaluation system for next step, back projection. 
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Figure 2-4. Five component clusters highly correlated with motion sickness in our 

previous study [8]. 
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Table 2-1. Component separation of each subject. 

Subject 
Left 

motor 
Parietal 

Right 

motor 
Occipital 

Occipital 

Midline 

S1 ● ●   ● 

S2    ● ● 

S3 ●  ● ● ● 

S4 ●●  ●   

S5 ● ● ●  ● 

S6   ● ●●  

S7 ● ● ●  ● 

S8    ● ● 

S9 ● ●  ● ● 

S10 ●  ●   

●: One selected component; ●●: Two selected components. 
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2-5. Component Activities Back Projected to Channel Activities 

 

As previously mentioned, the extracted independent components are different in number 

and in location through subjects. To maintain the consistency of subject data, we proposed to 

project these components back on channel domain. The channels of interest (Fp1, Fp2, C3, C4, 

Pz, and Oz) in this study are those electrodes close to the MS-related component clusters 

stated in our previous study [8]. C3 and C4 are close to left and right motor region 

respectively. Pz and Oz mostly represent the activity of parietal, occipital, and occipital 

midline areas. Frontal electrodes (Fp1 and Fp2) are relatively distant from the MS-related 

component clusters, but they are included in the channels of interest. The reason is that 

forehead, which is not covered by hair, is a popular choice to place EEG sensors, and the 

state-of-art EEG-based BCI devices using dry sensor on forehead have been developed in 

recent years [43, 44]. 

 

2-6. Time-Frequency Analysis 

 

Time-frequency analysis was applied to investigate the component dynamics in 

frequency domain. The spectra of the components from 1 Hz to 50 Hz were calculated using 

180-second window with 150-second overlap, and subdivided into several 250-point 
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sub-windows with 125-point overlaps. Each window was zero-padded to 256 points for using 

256-point fast Fourier transform (FFT) with ~1 Hz resolution in frequency. The 180-second 

window length is determined according to our previous study [35], where the estimation 

performance was improved by a 3-min smoothing window. The process of time-frequency 

analysis is illustrated in Figure 2-5. The time-frequency spectral power was then converted 

into decibel power, and the power during winding road section was further extracted and 

normalized using Z-score approach. The normalized spectral powers of 6 bands from 6 

channels, totally 36 features, were used as the input predictors in MSL estimation. 
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2-7. Motion Sickness Level Estimation 

 

This study investigates the feasibility of an EEG-based motion-sickness evaluation 

system, and compares the MSL estimation performance obtained by three different regression 

methods: 1) linear regression (LR), 2) radial basis function neural network (RBFNN), and 3) 

 

 

Figure 2-5. Time-frequency analysis procedure used to obtain dynamic EEG 

frequency responses during the experiments. 
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support vector regression (SVR).  Results of MSL estimation demonstrate the practical 

potential of accurate and continuous motion-sickness estimation based on non-invasive EEG. 

 

2-7-1. Radial Basis Function Neural Network 

 

Radial basis function neural network (RBFNN) is a feed-forward structure network 

consisting of three layers: input layer, one single hidden layer with a nonlinear activation 

function, and a linear output layer (Figure 2-6) [45]. 

 

The output outy  is defined as 

 

),,()(
1 kkk

M

k kout cxAwxy σϕ ∑ =
⋅==                                         (1) 

 

The activation function A is Gaussian radial basis function: 

 

22
2/),,( σσ cxecxA −−=                                                    (2) 
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where kw  is linear combinational weight, kc  is the centers of Gaussian radial basis 

function with variance kσ . The error cost function is: 

 

2

1
))(),,()(()( tycxAtwtE kkk

M

k k −⋅= ∑ =
σ                                     (3) 

 

which is minimized with orthogonal least-square and gradient descent learning 

algorithm. 
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2-7-2. Support Vector Regression 

 

Support vector machine (SVM) is a novel tool commonly applied for classification and 

regression by nonlinearly mapping labeled dataset to a higher dimensional feature space. In 

particular, ε-support vector regression (SVR) has been developed for solving regression 

 

Figure 2-6. Structure of RBF Neural Network. 
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problems [46]. Given a training data set  and output data set   , the problem is 

to minimize: 

 

( )∑ =
++ N

i iiCw
1

*2
)(

2

1 ζζ  

 

subject to  0,, *
*

≥




+≤−
+≤−

ii

iii

iii

yf

fy
ζζ

ζε
ζε

　　  

 

where C is a user-defined constant which was 1 is this work. The mapping function is: 
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where the kernel function  is: 
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Here we adopted Gaussian radial basis function kernel: 
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2-8. Genetic Feature Selection 

 

The selection problem in this study means searching a best feature subset from all 250 

possible combinations. A popular choice is genetic algorithm (GA) [39], which was designed 

to avoid local optima and has been adopted in EEG feature selection to enhance the 

performance in BCI applications [33, 40]. In this study, each chromosome of the population is 

assigned with a 50-bit sequence as the selection is among all 50 features, where 1 indicates 

the feature was selected and 0 indicates it was not selected. Here the genetic feature selection 

(GFS) was implemented under Matlab environment using stochastic uniform member 

selection and scattered crossover. Each bit in each chromosome is flipped with mutation rate 

0.01 to produce new selections. The fitness of a chromosome is defined as to the performance 

of estimation, which was the modified Akaike information criterion (AIC) [47] including 

correlation coefficient (CC), mean square error (MSE), and a penalty for large dimension size: 

 

                               (7) 
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where  is the number of selected features and , , and  are positive weights 

(0.01, 0.1, and 1) given according to the importance of each term. The feature selection 

system architecture is shown in Figure 2-7. The process involved 50 generations of 5-fold 

cross validation training by estimator with 20 individuals, and the performance of each 

individual was assessed by the CC and MSE between the actual MSL response and the 

estimated response obtained using estimator. 

 

 

 

2-9. Principal Component Analysis 

 

Figure 2-7. The process of genetic feature selection. 
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When using EEG spectral power as features, one feature tends to have similar 

fluctuations with those at its neighboring frequencies, and it could be redundant to include 

features with adjacent frequencies [36]. A simple and popular solution is to apply principal 

component analysis (PCA), which has been widely used as a tool to reduce the data 

dimension and to extract eigenvectors in EEG-based BCI applications [35, 48, 49]. 

The goal of PCA [50] is to find a set of dp <  vectors in 
dℜ  space explaining the 

maximum amount of variance in the data. Suppose that the data has been centered in the 

original space and v  is an arbitrary normalized vector in 
dℜ . The first eigenvector can be 

found by 

 

Cvvv T

vv d 1,

maxarg
=ℜ∈

=
                                                   (8) 

 

where v  is the  dd ×  covariance matrix. The solution of the above equation is the 

eigenvector v  of C  with respect to the largest eigenvalue. One can seek the direction of the 

second eigenvector by looking for the second largest variance, and so on. Traditionally, the 

eigenvector is selected according to the order of eigenvalue from the largest to the smallest, 
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and the number of selected eigenvectors is a parameter which can be determined in training 

process. 

In this study, the number of selected eigenvector was determined in the PCA training 

process (Figure 2-8). Leave-one-subject-out (LOSO) cross validation was performed to 

evaluate the estimation performance. In LOSO cross validation, each subject’s data was 

prepared as the testing data, and the data from the other 9 subjects were collected as the 

training data. PCA was performed on the training data to extract the eigenvectors for selection 

and projection. And then in the training data, another LOSO cross validation was performed 

repeatedly using from 1 to all 36 eigenvectors. Finally, the number of eigenvectors that 

support the least average AIC across 9 training subjects in the training process was used in the 

testing process. 
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3. Experimental Results 

 

3-1. Comparison between Regression Methods 

 

The results of this study were processed by multiple comparison tests. Three-way 

analysis of variance (ANOVA) and Wilcoxon signed-rank test to examine whether the 

1 testing 

subject

9 training 

subjects

PCA

eigenvectors

LOSO CV

PCA-

based 

estimation

Number of 

eigenvectors with 

the lowest AIC

Estimated 

MSL
 

Figure 2-8. The training process of PCA-based methods. 
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difference is significant or not for the three factors: subjects, regression methods (LR, 

RBFNN, and SVR), and feature selection techniques (All-feature, PCA, GFS). After ANOVA, 

sign-rank test was performed to estimate the p-value for testing the significance of difference 

between pairs of techniques. The statistical results will be discussed in detail in the next 

chapter. 

In Figure 3-1, all of the estimation techniques consisting of different regression and 

feature selection methods were compare together in aspects of correlation coefficient (CC) 

and root-mean-square-error (RMSE) between the estimated and the actual MSL response. 

RBFNN and SVR both outperformed LR significantly in CC and RMSE under all-feature 

condition, increasing the average CC by 0.1385 and 0.1237 respectively, and reducing the 

average RMSE by 0.0743 and 0.0613 respectively. Most techniques showed significant 

difference from LR in estimation performance, except in the case using PCA+RBFNN was 

not significantly different in RMSE, and GFS+LR was not in both CC and RMSE (p > 0.05). 
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Figure 3-1. Comparison of the feature selection and regression techniques’ 

performance of (a) CC and (b) RMSE averaged over 10 subjects. Vertical lines 

denote the intersubject standard deviations of the respective mean CC and RMSE 

values. Wilcoxon signed-rank test was performed to evaluate the significant 

difference between LR and each other technique (*p < 0.05, **p < 0.01). 
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3-2. Comparison between Feature Selection Methods 

 

Figure 3-2 shows the number of eigenvectors used in PCA-based methods and the 

number of features selected in GFS-based methods. In Figure 3-2(a), the ability of PCA in 

dimension reduction was revealed by the small number of eigenvectors used by three 

techniques. In comparison, different regression methods show different demand for 

eigenvectors. Both RBFNN and SVR tend to adopt less eigenvectors than LR and show 

significant difference in the number of eigenvectors (p < 0.05), and the number is especially 

small in RBFNN (p < 0.01). In Figure 3-2(b), the number of feature selected by GFS-based 

methods are reduced, showing GFS also provide the benefit in dimension reduction. In the 

comparison of number of features selected in the three techniques, GFS+SVR tends to 

selected more features than GFS+LR (p < 0.05), while GFS+RBFNN has no significant 

difference in number of features with GFS+LR (p > 0.05). 

The examples of the estimated MSL during the winding road section in the experiment 

from two subjects, S1 and S8, are presented in (a) and (b) respectively. In both plots the 

estimated MSL show the same ascendant tendency as the actual MSL does, but a difference is 

that the estimated MSL rise ahead of the actual MSL in these two cases. The best 

performances of subjects are summarized in Table 3-1. 
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Figure 3-2. Comparison of number of (a) eigenvectors and (b) features 

correspondent to the regression methods averaged over 10 subjects. Vertical lines 

denote the intersubject standard deviations of the respective mean eigenvector and 

feature values. Wilcoxon signed-rank test was performed to evaluate the 

significant difference between LR and each other technique (*p < 0.05, **p < 

0.01). 
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Figure 3- 3. Estimation results of (a) S1 using PCA+SVR, and (b) S8 using 

GFS+SVR. Black thick line is the actual MSL response during winding road 

section, and blue dotted line is the estimated MSL response. 
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3-3. The Eigenvectors in Principal Component Analysis 

 

Figure 3-4 shows the eigenvectors extracted in the training process for a single subject. 

The uniformity of all feature weights in first eigenvector reveals that the most principal 

component of the training data is the summation of all features. The second eigenvector has 

positive weights in lower frequency bands and negative weights in higher frequency bands, 

which means that the second principal component is the difference between lower and higher 

Table 3-1. The best performance and technique of each subject. 

SubjectSubjectSubjectSubject    CCCCCCCC    TechniqueTechniqueTechniqueTechnique    RMSERMSERMSERMSE    TechniqueTechniqueTechniqueTechnique    

1111    0.9008 GFS+RNN 0.1569 PCA+SVR 

2222    0.8638 GFS+SVR 0.1843 SVR 

3333    0.8503 SVR 0.1502 RNN 

4444    0.9198 GFS+RNN 0.1987 PCA+SVR 

5555    0.6605 PCA+LR 0.3327 PCA+LR 

6666    0.7494 PCA+LR 0.2302 PCA+LR 

7777    0.8804 GFS+RNN 0.2390 PCA+SVR 

8888    0.9036 GFS+SVR 0.1312 GFS+SVR 

9999    0.9220 GFS+SVR 0.1334 GFS+SVR 

10101010    0.6892 GFS+RNN 0.2365 RNN 

AverageAverageAverageAverage    0.8340 0.1993 

SDSDSDSD    0.0977 0.0625 
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frequency band powers. Likewise, the third principal component is the difference between 

delta- and theta- power, and so on. 
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Figure 3-4. The weights of eigenvectors extracted in the training process for S1. 

The first 9 of 36 eigenvectors ranked by the value of eigenvalue are shown here 

with the ratios of eigenvalue. In our experimental result, the first 7 eigenvectors 

were used for PCA+LR, 2 for PCA+RNN, and 5 for PCA+SVR. Bright pixels 

represent positive feature weights, and dark pixels represent negative feature 

weights. 
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3-4. Fitness Evolution in Genetic Feature Selection 

 

The evolution in GFS improved the fitness of the population every new generation, and 

the monotonic descend of AIC is illustrated in Figure 3-5(a). This sample process approached 

its best fitness within 20 generations and then optimized the whole population. The CC and 

RMSE performances in the evolution process are shown in Figure 3-5(b) and (c) respectively. 

As illustrated in Figure 3-5(b) and (c), the CC and RMSE performances obtained in the end of 

the evolution were not the best during the process of evolution. This phenomenon will be 

discussed in detail in the next chapter. 
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Figure 3-5. An evolution example of (a) Akaike information criterion (AIC), (b) 

correlation coefficient (CC), and (c) root-mean-square-error (RMSE) over 

generations in genetic feature selection (GFS). Thick line stands for the best 

fitness, and the thin line is for the average fitness. 

 



 

37 

 

 

3-5. The Selection Results of Genetic Feature Selection 

 

The results of feature selection by GFS-based methods are presented in Figure 3-6 with 

feature selection probability averaged across all subjects. The features with high selection 

probability are shown as bright pixels, and dark pixels represent those with low selection 

probability. Table 3-2 lists the top 6 frequently-selected features among all 36 features in 

these GFS-based methods. Three of these features are listed in the top 6 across all three 

GFS-based methods: alpha in Fp1, alpha in Oz, and high beta in Oz. 
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Figure 3-6. Average feature selection probability for the three regression methods 

combined with genetic feature selection. (a) GFS+LR, (b) GFS+RNN, and (c) 

GFS+SVR across 10 subjects. 
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4. Discussion 

 

4-1. Factors Affecting Estimation Performance 

 

The three-way ANOVA was performed to verify if difference is significant for the 

factors (subjects, regression methods, and feature selection techniques). All of the three 

factors were found to significantly affect the performance in CC (p < 0.05), but only two 

factors (subjects and regression methods) were found to significantly affect the performance 

in RMSE (p < 0.05). The factor of feature selection techniques did not show significance in 

affecting the RMSE performance. Comparing the affection to estimation performance 

Table 3-2. The top 6 popular feature selected in each GFS-based method. 

GFS+LRGFS+LRGFS+LRGFS+LR    GFS+RGFS+RGFS+RGFS+RBFBFBFBFNNNNNNNN    GFS+SVRGFS+SVRGFS+SVRGFS+SVR    

channelchannelchannelchannel    bandbandbandband    probabilityprobabilityprobabilityprobability    channelchannelchannelchannel    bandbandbandband    probabilityprobabilityprobabilityprobability    channelchannelchannelchannel    bandbandbandband    probabilityprobabilityprobabilityprobability    

Fp1    α 0.67 Oz α 0.92 Fp1 α 0.66 

Oz    α 0.59 Fp1 α 0.82 Pz h-β 0.54 

C3    h-β 0.43 Oz h-β 0.76 Oz α 0.49 

Oz    h-β 0.36 Fp2 α 0.76 C4 α 0.46 

Fp1    h-β 0.34 C4 α 0.75 C4 l-β 0.44 

C3    δ 0.32 Pz h-β 0.56 Oz h-β 0.43 

 



 

39 

 

produced by regression methods and feature selection techniques, the former seems to be 

more deterministic since it significantly impacts performance in both CC and RMSE. 

 

4-2. Comparison between Regression Methods 

 

In this study, linear regression was employed as a baseline regression method and to be 

compared with other two methods, RBFNN and SVR. The result shows that both RBFNN and 

SVR provide better estimation performance with different types of feature selection in our 

case. In comparison of RBFNN and SVR, the later shows significant difference with LR no 

matter using all-feature, PCA, or GFS, while RBFNN fail to reduce RMSE significantly when 

combining with PCA. However, RBFNN shows its unique characteristics in the usage of 

features and eigenvectors. The number of eigenvector selected by RBFNN is significantly less 

than selected by other methods, implicating RBFNN works well with low-redundancy data. 

SVM has been reported as a optimal classifier in EEG-based BCI [18],[29]. Although 

regression is not as commonly induced as classification in EEG-based BCI application, SVR 

has been shown its benefit in optimizing the EEG-based 2-dimentional movement control [51]. 

In our case, SVR enhanced the estimation performance in each combination of feature 

selection type, and thus it is suggested as a useful regression method to improve the 

performance. 
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4-3. Comparison between Feature Selection Methods 

 

PCA and GFS are induced in this study to provide information about what kind of the 

use of features optimizes the estimation result. Through PCA, the use of features is 

determined by the selection of eigenvectors and the feature weights in each eigenvector. 

While all features are involved in PCA to extract these eigenvectors, GFS gives a direct view 

by counting the selected times of each feature and shows which features are more popular in 

MSL estimation. Overall, these two feature selection techniques did not support better 

estimation performance when combining with RBFNN and SVR. However, adding PCA in 

LR significantly enhanced the estimation performance to be comparable with RBFNN and 

SVR in MSL estimation. 

 

4-4. Difficulty caused by Subject Variation 

 

It has been shown the subject deviation significantly affects the estimation performance 

in this study. Subject-to-subject variation has been regarded as one of the major source of 

error [18], and it is the most dominant factor in MSL estimation. In our previous work on 

MSL estimation using within-subject validation, the performance in CC could reach 0.95 
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without optimization of genetic algorithm, which obviously exceeds the performance using 

cross-subject validation in this work where the best CC performance is around 0.92. However, 

it is necessary for an EEG-based BCI application to test its performance in cross-subject 

validation, which provides general examination and is more beneficial for future 

implementation or other practical applications. 

 

4-5. The Benefit of Principal Component Analysis 

 

Our result shows the linear regression was improved significantly when using PCA in 

prior. In fact, this combination is a typical regression analysis as known as ‘principal 

component regression (PCR)’ [52]. Instead of using the variables to estimate the regression 

coefficients, PCR estimates with the principal component of those variables. EEG spectral 

power, although being regarded comparatively as a robust feature type, has been reported its 

redundancy caused by the correlation between frequencies [36]. A practical benefit of using 

PCR is its ability to overcome the problems caused by the co-linearity between variables, and 

thus PCR is a simple and useful tool to enhance the estimation performance of BCI 

applications based on EEG spectral power. 

Instead of the purpose of improving the estimation performance, PCA was employed as 

tool to probe the property of the data. In our case, the most principal component is the 
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summation of all features, and there is only apparent difference between frequency bands but 

no deviation between channels are revealed from the feature weights in the first four 

eigenvectors. While through the estimation technique PCA+RBFNN can reach rather high 

performance with about using only two eigenvectors, this suggests the obvious redundancy in 

our data, and again, evidence the benefit of using PCA. 

 

4-6. The Benefit of Genetic Feature Selection 

 

In the evolution process of GFS shown in Figure 3-5, the AIC descended monotonically 

as expected. Meanwhile, CC and RMSE reached their best during the process of evolution but 

did not persist until the end. Consider that the modified AIC applied in this study was a 

combination of CC performance, RMSE performance, and dimensional penalty; it is obvious 

to see that the fitness was dependant on every measure. Therefore, the trade-off process was 

involved in the evolution, and the final outcome was a consequence of compromise. 

Although genetic algorithm is well-known for its ability to avoid local optima, the 

time-consuming evolution process forced us to limit the population size and generations in 

our implementation, and thus our compromise suppressed the average performance of 10 

repeated runs of GFS-based methods. But still the best performances in most subjects were 

obtained by GFS-based methods. While the estimation performance was obviously improved 
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by using RBFNN and SVR, the effects of PCA and GFS were not so apparent on optimizing 

the regression methods. However, the benefit of feature selection was not only improving the 

estimation performance, but also providing informative feature selection result as an approach 

to understand the property of the data used. In the feature selection results presented in Figure 

3-6 and Table 3-2, the features most popularly selected across different techniques are alpha 

in Fp1, alpha in Oz, and high-beta in Oz. 

In our previous study using ICA to extract MS-related component, the brain activity in 

occipital midline was the most emphasized component which showed significant power 

difference between low and high MSL conditions across broad frequency band [8]. In the 

same study, the secondary MS-related component was occipital, which has particular 

significant power difference in alpha band reflecting change in MSL. As mentioned 

previously, Oz was chosen and expected to represent the brain dynamics in occipital area. 

Therefore, the high selection probability of alpha in Oz meets our anticipation that it is 

important in MSL estimation since it was integrated mostly from the significant MS-related 

components according to the previous findings. 

High-beta band power, although was not emphasized, its relation with motion sickness 

was still revealed in the correlation analysis performed in our previous study [8]. The 

correlation around 20 to 25 Hz was shown higher than other frequency bands except of alpha 

band in occipital and occipital midline component. 
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Another finding in the feature selection is that alpha in Fp1 was almost as frequently 

chosen as alpha in Oz. Although few researchers have reported EEG increase in frontal area 

during motion sickness [12, 14-16], we did not find MS-related component in frontal using 

ICA and source localization. Since the Fp1 and Fp2 activity used in this study was extracted 

from back projection using MS-related component in motor, parietal, and occipital areas, it is 

not comparable with the frontal activity directly recorded by frontal electrodes in other studies. 

For an electrode placed on frontal, it is difficult to sense the brain activity in parietal and 

occipital since the distance attenuates the amplitude of signal, and augments the noise. 

However, the result in this study shows that alpha in Fp1 may play an important role in MSL 

estimation. If the technique of noise filtering or source separation is powerful enough to allow 

frontal electrodes to detect the activities from the whole brain, one will consider using frontal 

electrodes to collect EEGs for motion sickness estimation. The reason is that it is easier to fit 

EEG electrodes on forehead because there is no hair on it. Recently, the state-of-art wearable 

and wireless EEG-based BCI devices using dry-electrode on forehead have been developed 

and demonstrated [43, 44]. 

 

5. Conclusion and Future Works 
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This study showed that changes in the EEG spectral power accompany fluctuations in 

the level of motion sickness, as assessed by measuring simultaneous changes in EEG and 

self-reported motion-sickness level in a VR-based driving task. We demonstrated the potential 

of a BCI for continuously estimating motion sickness based on EEG spectra, compared the 

usability of feature selection techniques combining with different regression algorithms. 

Results of MS estimation using the EEG features selected by principal component analysis 

and genetic feature selection compare favorably to previous results using a correlation-based 

method [35], but in this study the feature’s contribution to estimation is more emphasized. 

The work is the first step towards developing a BCI that can continuously monitor the 

pre-cursor of motion sickness. If one could accurately predict motion sickness before its 

occurrence, it would be possible to apply certain treatments to prevent illness instead of taking 

pills nowadays. The ultimate goal of our study is to help people avoid motion sickness and 

thus prevent individual’s illness and derived danger caused by motion sickness. 
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