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Student: Chun-Shu Wei Advisor: Dr. Jyh-Yeong Chang

Institute of Electrical and Control Engineering
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Abstract

Motion sickness is a common symptom that occursnwiie brain receives
conflicting information about the sensation of masmt. Many motion sickness
biomarkers have been identified,—and electroendegteem (EEG)-based motion
sickness level estimation was found feasible in previous study. Radial basis
function neural network (RBFNN) and support vectmgression (SVR) were adopted
in this work to approach better motion sicknessimegion comparing to the
traditional linear regression. This study employis@pal component analysis (PCA)
and genetic feature selection (GFS) to find usagBEG features that can further
improve estimation performance over the correlabased method reported in the
previous studies. Results of this study demonstthte these feature selection
techniqgues and regression methods are effectiveptomize the estimation of
motion-sickness level. This work could lead to agtical system for noninvasive

monitoring of the motion sickness of individualsr@al-world environments.

Keyword: EEG, Independent Component Analysis (ICA), RBFNMRSPCA, GFS
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1. Introduction

1-1. What IsMotion Sickness

Motion sickness (MS) is a usual response to reafcqgived, or even anticipated
movement. People tend to get motion sickness onoang boat, train, airplane, car, or
amusement park ride. The most common signs and teymspof motion sickness include
nausea, paleness of the skin, cold sweats, vomdiaginess, headache, increased salivation,

and fatigue.

1-2. Occurrence of Motion Sickness

The history of MS can be traced back to ancieneGxd1]. Hippocrates, one of the first
people to discuss motion sickness, mentioned tloéionms caused by the ocean disordered the
body. Until now, a boat is still the most commorwiesnment where motion sickness occurs,
because the exposure to motion sickness stimafiast extensive both with respect to time
and motion magnitude during sea travel [2]. Thed@ece of motion sickness can be as high
as 62% on a navy ship [3]. Motion sickness is alffen in ground transportation. In a

guestionnaire survey to identify passengers’ patsand environmental factors influencing
1



individual susceptibility to motion sickness durimrmpad transportation, 28.4% of passengers

reported feeling ill, 12.8% reported nausea an&lr&ported vomiting during travel [4]. The

malaise of MS may last for more than one hour ¢]even one day [6]. The occurrence of

motion sickness is relatively infrequent in an &ne, since modern airplanes are bigger and

operate on a higher altitude than previously, dmal lbetter weather forecast reduces the

chance of encountering with severe weather [1jnilitary domain, the increase of simulation

training has brought motion sickness problems. rAfaning in a flight simulator, 25% of the

air force pilots reported motion sickness sympt¢rijs

1-3. Motion Sickness-related EEG

Early studies [8] reported that MS will induce maphysiological signal changes

including electrogastrography (EGG) [9], galvankinsresponses (GSR) [10], and heart rate

variability (HRV) [11]. Recently, the rapid advanteneuroimaging technology has made it

able to examine MS-related neural dynamics with EBGe of the best methods for

monitoring the brain dynamics induced by motiorks&ss because of its high temporal

resolution and portability [8].

Many EEG indicators related motion sickness has lbeported in former studies. Delta

increase in temporal, frontal, and central arealdess found when sickness was induced in
2



cross-coupled angular stimulation [14], optokinetmtation drum [9], car-driving VR

experiment [16], and object-finding VR experimeb$]. Beta increase in fontal and temporal

area was induced in object-finding VR experimenhglwith motion sickness. Theta increase

in frontal, central, temporal, and central area bhasn reported in experiments of rotating

drum [13], parallel swing [12], cross-coupled areguktimulation [14], and optokinetic

rotating drum [9]. Nevertheless, theta decreaseemtral and frontal area was found in the

car-driving VR experiment [16].

Apparently, MS-related EEG power changes are nasistent among these cited studies,

which may be due to the wide range of paradigmsiaoconsistent stimulus inputs used to

induce motion sickness [8]. Another possible factaking these experiments unreal has been

the interruption due to the assessment of-theggaatit's motion sickness level (MSL). Many

scholars have adopted a motion-sickness questienbgi Kennedy et al. [17], a standard

rating system for comparing MS states among sufjjéatmeasure susceptibility of subjects

to MS. However, it demands interrupting the expents and asking the subjects to answer

few questions. How to provide both visual and \mg#r stimulation to induce motion

sickness more close to the real life experiencefuimpast study, Chen et al. performed their

experiment on a VR-based driving simulator on adagree-freedom motion platform [8].

They also proposed an easy-to-operate online ratieghanism to obtain high temporal

resolution self-reporting motion sickness leveirmfividuals.
3



1-4. EEG Feature Spaces

According to previous review [18], a great varietiyfeatures have been employed in
EEG-based brain-computer interfaces (BCIs) suchnaglitude values of EEG signals [19],
band powers [20], power spectral density values, [24], autoregressive and adaptive
autoregressive parameters [23, 24], time-frequdeeyures [25] and inverse model-based
features [26-28]. Among these feature extracti@hnejues, power spectral density has been
considered as one of the most robust and consisteaktracting the distinctive spectral
patterns [29]. The spectrum is usually divided i@ canonical frequency bands, such as
delta ¢: 1-3 Hz), thetad; 4—7 Hz), alphad;. 8—-13 Hz), beta/f 14-30 Hz), and gamma: (
31-50 Hz) [30]. In this study, we further sepatadéa band into low-beta and high-beta bands.
Thus, the number of features is six times of theloer of electrodes being used. In many
such problems, a subset of features will often lgabetter dissociation between trial types
than the full set of features [31]. However, thentwer of unique feature subsets fbfeatures

is 2, a space that cannot be exhaustively exploret fgneater than about 25 [31].

1-5. Estimation and Feature Selection in EEG-Based BCI



Typically, the decoding part of BCI involves theheique of classification or estimation,
depending on the type of the output, discrete caieg or continuous degree. Either
classification or estimation, these problems neatlem recognition and machine learning
methods to approach highly accurate decoding pegnce. Since the decoding performance
Is sensitive to individual deviation and signal s&ithe performance of classification is
usually more robust than that of estimation in B@plications. Therefore most EEG-based
BCI research aims to decode the brain dynamicsseteral classes such as emotional states
[32] and movement directions [33], but still sontedées that focused on estimation problem
can achieve high accuracy in single- {34, 35}sasstsubject validation [36].

Prior research has shown the benefits of featuectsen in EEG feature space [36].
Among many ways to implement the feature-selecmarch [31, 37, 38], a popular choice is
genetic algorithm (GA) [39], which was designedatwid local optima and has been adopted
in EEG feature selection to enhance the performan8€l| applications [33, 40], and GA is

also a direct way to extract informative EEG feasufor experiment amelioration [40].

1-6. Aimsof This Study

This study aims to explore the feasibility of birigla BCI to continuously estimate the
motion sickness level based on the EEG. The straidliow chart is shown as



Figure 1-1.To optimize motion sickness estimati@rfgrmance, this study involves
state-of-art regression methods to improve thenagibn model, and applies genetic feature
selection to providing better performance througtarshing ‘good’ feature subsets. In
addition, this study also investigates the spatiad temporal dynamics of selected features

that support better motion sickness estimation.
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2. Material and Methods

2-1. Experiment Paradigm of M otion Sickness

Our previous studies [8] have designed and bui@Davirtual-reality (VR) dynamic
motion simulator as a test bed for studying (FiggeB driving cognition and motion sickness.
The environment provides both visual and vestibatanuli to participants through the VR
environment consisting of 360° projection of VR e and a six degree-of-freedom motion
platform to induce motion sickness. With such‘@aggive expected to induce motion sickness
in a manner that is close to what we experiencesai life. A three-section experimental
protocol was shown as Figure 2-2.

First 10 min is the baseline section involving aight-road driving. The next 40 min
involved driving on a long winding road which oft@mduced subject’s motion sickness.
Finally, a 15-min recovery section of a straigh&daodriving was used to help the subjects
recover from sickness and back to normal physitatus. Eighty percentages of subjects

reported motion sickness during the experiments.



Figure 2-1. The immersive VR driving scene with6®-8legree projection.

Motion Sickness
Questionnaire

Start
> - Y
L ] a a
ﬂ'\/‘\
|+ < > |
Baseline Motion sickness Rest
(10-min) (40-min) (15-min)

Figure 2-2. Experimental protocol of three-sectomo-driving.

2-2. Data Acqusition

2-2-1. Behavior Data Recording



Motion sickness level was continuously reportedh®s subject who adjusted a joystick

with a continuous scale ranging 0 — 5 on its side subjects were asked to adjust the scale

to a higher level according to their feelings oftimo sickness. This continuous MSL was

reported in real time without interrupting the emnpeent rather than the traditional

motion-sickness questionnaire (MSQ) proposed in [8]

2-2-2. EEG Recording

The EEG data were recorded from the 10 subjeatsamine the brain dynamics during

motion sickness. EEG signals were sampledwithi50®y a 32-channel NuAmps (BioLink

Ltd., Australia).

The acquired EEG signals were first-inspected tooree bad EEG channels and then

down-sampled to 250 Hz. A high-pass filter withw-off frequency at 1 Hz and transition

band width 0.2 Hz was used to remove baselinehalyifartifacts and a low-pass filter with a

cut-off frequency at 60 Hz and transition band Wwidt Hz was used to remove muscular

artifacts and line noise. The resultant EEG sigmnadse then fed into the proposed evaluation

system for further analysis and the whole process lustrated by Figure 2-3.

10



Figure 2-3. The 32 channel EEG cap and electroteseiment of international 10-20

system.

2-3. Independent Component Analysis

Independent Component Analysis (ICA) was appliedEeG recordings to remove
various kinds of artifact, such as blink artifactdaindoor power-line noise, and to extract
features of human’s cognitive task. Independent pmormant analysis is a novel statistical
technique to find out the linear projections of thata that can maximize the mutual
independences of estimated components, and haspoeeen as an effective technique to
solve blind source separation (BSS) problem. TloeeefICA decomposition is a usefully

computational method for EEG signal processingalt separate an observed multivariate

11



signal into several cumulative segments under th®uraption of the mutual statistical
independence of the non-Gaussian source signaésg&heral representation of ICA model
can be simply denoted aS=W x X , where S=[S,S,,S,,...,S,]" presents the n independent
sources,W is the weighting matrix, andX =[X,, X,, X,,...,X,]" is the n observed signals.
The purpose of ICA algorithm is to find out a weigly matrix, W, to have a maximum

statistically independency of the separated compisne

2-4. Component Clustering

After doing ICA process, coamponent clustering waalgzed using DIPFIT2 routines
[41], a plug-in in EEGLAB [42], to find:the-3D lotan of an equivalent dipole or dipoles
based on a four-shell spherical head model. Amamgponents from all subjects, those with
similar scalp topographies, dipole locations andgrospectra were clustered. Ten component
clusters recruited more than 10 components frontiphellsubjects with similar topographic
maps were regarded as robust component clustegsireFi2-4 showed the five most
MSL-related clusters were selected in our previtusly [8]. The component usage sorted by
subject was shown in Table 2-1. According to Table we can find that not all subjects have
every motion sickness related components becawsievel of motion sickness induced by

vestibular and visual stimuli to each subject h&é significant individual difference.
12



According to MSQ results and subject’s self-respasfsmotion sickness, we can confirm that
each subject indeed felt sickness during the weafgeriment session. Consequently, these
extracted components are correlated with motiokngiss. Then we can feed the ICA signals

into the evaluation system for next step, backeqmtopn.

13
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Table 2-1. Component separation of each subject.

Subject

L eft
motor

Parietal

Right
motor

Occipital

Occipital
Midline

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

e: One selected componemte: Two selected components.
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2-5. Component Activities Back Projected to Channel Activities

As previously mentioned, the extracted independentponents are different in number
and in location through subjects. To maintain thesistency of subject data, we proposed to
project these components back on channel domamchannels of interest (Fpl, Fp2, C3, C4,
Pz, and Oz) in this study are those electrodesedosthe MS-related component clusters
stated in our previous study [8]. C3 and C4 areseldo left and right motor region
respectively. Pz and Oz mostly represent the agtiof parietal, occipital, and occipital
midline areas. Frontal electrodes (Fpl andsFp2)relaively distant from the MS-related
component clusters, but they are included in thanobls of interest. The reason is that
forehead, which is not covered by ‘hair;-is-a-popual@ice to place EEG sensors, and the
state-of-art EEG-based BCI devices using dry sepnsoforehead have been developed in

recent years [43, 44].

2-6. Time-Frequency Analysis

Time-frequency analysis was applied to investigdte component dynamics in
frequency domain. The spectra of the components ftdHz to 50 Hz were calculated using

180-second window with 150-second overlap, and isid&tl into several 250-point

16



sub-windows with 125-point overlaps. Each windowswaro-padded to 256 points for using

256-point fast Fourier transform (FFT) with ~1 Hzsolution in frequency. The 180-second

window length is determined according to our prasistudy [35], where the estimation

performance was improved by a 3-min smoothing wmddhe process of time-frequency

analysis is illustrated in Figure 2-5. The timeguency spectral power was then converted

into decibel power, and the power during windingdcsection was further extracted and

normalized using Z-score approach. The normalizeectsal powers of 6 bands from 6

channels, totally 36 features, were used as thé jmedictors in MSL estimation.

17
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Figure 2-5. Time-frequency analysis procedure useabtain dynamic EEG
frequency responses during the experiments.

2-7. Motion Sickness L evel Estimation

This study investigates the feasibility of an EE&éd motion-sickness evaluation
system, and compares the MSL estimation performahtaned by three different regression

methods: 1) linear regression (LR), 2) radial basmction neural network (RBFNN), and 3)

18



support vector regression (SVR). Results of MStinegtion demonstrate the practical

potential of accurate and continuous motion-sickresgimation based on non-invasive EEG.

2-7-1. Radial Basis Function Neural Networ k

Radial basis function neural network (RBFNN) is eed-forward structure network

consisting of three layers: input layer, one sinigiéden layer with a nonlinear activation

function, and a linear output layer (Figure 2-6][4

The output y,, is defined as

You =) =D W B(X,, Gy, 0 ) @)

The activation functio\ is Gaussian radial basis function:

A(x.c,0) = e 12

) (2

19



where w, is linear combinational weightg, is the centers of Gaussian radial basis

function with varianceo, . The error cost function is:

Et) = (O W, (t) B(X,, €, T}) — Y(1))? 3)

which is minimized with orthogonal least-square agdhdient descent learning

algorithm.

20
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Figure 2-6. Structure of RBF Neural Network.

2-7-2. Support Vector Regression

Support vector machine (SVM) is a novel tool comiyapplied for classification and

regression by nonlinearly mapping labeled dataset higher dimensional feature space. In

particular, e -support vector regression (SVR) has been develdpedolving regression

21



problems [46]. Given a training data st }}Z, and output data set{y,}iL, , the problem is

i=1 >

to minimize:
U+l +20)

y, - fise+d]

subject to ,
fi-y e+

whereC is a user-defined constant which was 1 is thiskkw®dhe mapping function is:
f(0 =Y, —a)k(x, ) +b (4)

where the kernel functior is:

k(. %;) = (@x) [(x,)) ) (5

Here we adopted Gaussian radial basis functionekern

-| x—sz 120°

k(x.y)=e (6)
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2-8. Genetic Featur e Selection

The selection problem in this study means searchibgst feature subset from all 250
possible combinations. A popular choice is genggorithm (GA) [39], which was designed
to avoid local optima and has been adopted in EE&ufe selection to enhance the
performance in BCI applications [33, 40]. In thiady, each chromosome of the population is
assigned with a 50-bit sequence as the selectiamang all 50 features, where 1 indicates
the feature was selected and 0O indicates it waseletted. Here the genetic feature selection
(GFS) was implemented under Matlab environment gusstochastic uniform member
selection and scattered crossover. Each bit in eagtmosome is flipped with mutation rate
0.01 to produce new selections. The fitness ofrarnbsome is defined as to the performance
of estimation, which was the modified Akaike infaton criterion (AIC) [47] including

correlation coefficient (CC), mean square error BY1Sand a penalty for large dimension size:

AIC = W,N; + W_In(MSE) + W_In (1 — CC?) (7)

23



where N; is the number of selected features aig W,., and W, are positive weights
(0.01, 0.1, and 1) given according to the importan€ each term. The feature selection
system architecture is shown in Figure 2-7. Thecgge involved 50 generations of 5-fold
cross validation training by estimator with 20 widuals, and the performance of each
individual was assessed by the CC and MSE betweenattual MSL response and the

estimated response obtained using estimator.

Feature Selection
Subset with lowest AIC

All Final
feature Subset selection —»  Estimator > feature
set A | subset

Genetic Algorithm

Figure 2-7. The process of genetic feature selectio

2-9. Principal Component Analysis

24



When using EEG spectral power as features, oneurgeaiends to have similar
fluctuations with those at its neighboring frequesc and it could be redundant to include
features with adjacent frequencies [36]. A simpid @opular solution is to apply principal
component analysis (PCA), which has been widelyduge a tool to reduce the data
dimension and to extract eigenvectors in EEG-b&&dapplications [35, 48, 49].

The goal of PCA [50] is to find a set op <d vectors in nk space explaining the

maximum amount of variance in the data. Supposkthedata has been centered in the

. . . . .d : .
original space andv is an arbitrary normalized vector ih]” . The first eigenvector can be

found by

v= argmax V' Cv
vood, | v|=1

(8)

where v is the dxd covariance matrix. The solution of the above equais the
eigenvectorv of C with respect to the largest eigenvalue. One cak s direction of the
second eigenvector by looking for the second ldrgasance, and so on. Traditionally, the

eigenvector is selected according to the ordergdrevalue from the largest to the smallest,
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and the number of selected eigenvectors is a pasamich can be determined in training

process.

In this study, the number of selected eigenvectas determined in the PCA training

process (Figure 2-8). Leave-one-subject-out (LOS€ss validation was performed to

evaluate the estimation performance. In LOSO cnadglation, each subject’'s data was

prepared as the testing data, and the data fronottiexr 9 subjects were collected as the

training data. PCA was performed on the traininada extract the eigenvectors for selection

and projection. And then in the training data, &rotLOSO cross validation was performed

repeatedly using from 1 to all 36 eigenvectors.alfyn the number of eigenvectors that

support the least average AIC across 9 trainingestin the training process was used in the

testing process.
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Figure 2-8. The training process of PCA-based nmitho

3. Experimental Results

3-1. Comparison between Regression M ethods

The results of this study were processed by maeltippmparison tests. Three-way

analysis of variance (ANOVA) and Wilcoxon signedtkatest to examine whether the
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difference is significant or not for the three fast subjects, regression methods (LR,
RBFNN, and SVR), and feature selection technig@disféature, PCA, GFS). After ANOVA,
sign-rank test was performed to estimate the pevédutesting the significance of difference
between pairs of techniques. The statistical reswitl be discussed in detail in the next
chapter.

In Figure 3-1, all of the estimation techniques sisting of different regression and
feature selection methods were compare togethasppects of correlation coefficient (CC)
and root-mean-square-error (RMSE) between the astonand the actual MSL response.
RBFNN and SVR both outperformed_LRssignificantly @C and RMSE under all-feature
condition, increasing the average CC by 0.1385 @i@37 respectively, and reducing the
average RMSE by 0.0743 and 0.0613-respectively.t Meshniques showed significant
difference from LR in estimation performance, excepthe case using PCA+RBFNN was

not significantly different in RMSE, and GFS+LR wast in both CC and RMSE & 0.05).
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Figure 3-1. Comparison of the feature selection aegression techniques’

performance of (a) CC and (b) RMSE averaged ovesulflects. Vertical lines

denote the intersubject standard deviations oféspective mean CC and RMSE

values. Wilcoxon signed-rank test was performedewaluate the significant

difference between LR and each other technique (@5, **p < 0.01).
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3-2. Comparison between Feature Selection M ethods

Figure 3-2 shows the number of eigenvectors use®0A\-based methods and the
number of features selected in GFS-based methodsigure 3-2(a), the ability of PCA in
dimension reduction was revealed by the small nunddeeigenvectors used by three
techniques. In comparison, different regression howt show different demand for
eigenvectors. Both RBFNN and SVR tend to adopt Egenvectors than LR and show
significant difference in the number of eigenvest@r < 0.05), and the number is especially
small in RBFNN p < 0.01). In Figure 3-2(b), the number of featuetested by GFS-based
methods are reduced, showing GFS also provide ghefiy in dimension reduction. In the
comparison of number of features selected.in theethechniques, GFS+SVR tends to
selected more features than GFS+UR< 0.05), while GFS+RBFNN has no significant
difference in number of features with GFS+Lg=>0.05).

The examples of the estimated MSL during the wigdmad section in the experiment
from two subjects, S1 and S8, are presented irarfd) (b) respectively. In both plots the
estimated MSL show the same ascendant tendenbg astual MSL does, but a difference is
that the estimated MSL rise ahead of the actual M&Lthese two cases. The best

performances of subjects are summarized in Taldle 3-
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Figure 3-2. Comparison of number of (a) eigenvectand (b) features
correspondent to the regression methods averagadlOvsubjects. Vertical lines
denote the intersubject standard deviations ofébpective mean eigenvector and
feature values. Wilcoxon signed-rank test was perénl to evaluate the
significant difference between LR and each othehneue (*p < 0.05, **p <
0.01).
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Figure 3- 3. Estimation results of (a) S1 using RGXR, and (b) S8 using
GFS+SVR. Black thick line is the actual MSL resporduring winding road
section, and blue dotted line is the estimated M&iponse.
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Table 3-1. The best performance and techniqueaif sabject.

Subject CC Technique RMSE Technique
1 0.9008 GFS+RNN 0.1569 PCA+SVR
2 0.8638 GFS+SVR 0.1843 SVR
3 0.8503 SVR 0.1502 RNN
4 0.9198 GFS+RNN 0.1987 PCA+SVR
5 0.6605 PCA+LR 0.3327 PCA+LR
6 0.7494 PCA+LR 0.2302 PCA+LR
7 0.8804 GFS+RNN 0.2390 PCA+SVR
8 0.9036 GFS+SVR 0.1312 GFS+SVR
9 0.9220 GFS+SVR 0.1334 GFS+SVR
10 0.6892 GFS+RNN 0.2365 RNN
Average 0.8340 0.1993
SD 0.0977 0.0625

3-3. The Eigenvectorsin Principal Component Analysis

Figure 3-4 shows the eigenvectors extracted irtréiaing process for a single subject.
The uniformity of all feature weights in first emeector reveals that the most principal
component of the training data is the summatioallbfeatures. The second eigenvector has
positive weights in lower frequency bands and riegaweights in higher frequency bands,

which means that the second principal componethteiglifference between lower and higher
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frequency band powers. Likewise, the third printipamponent is the difference between

delta- and theta- power, and so on.

Fodl
o2
c3
e’}
Pz
@z

RPQRQRFE
R

Eogenvector #1 (24%9 Egenvector #2 (11249 Egenvector #3 (929

d 6 a 3 d 6 a M
ol Fpl Fol
Fo2 Fp2 Fo2
3 3 3
(@7 (@7 (@7
Pz Pz Pz
Qz Qz Qz

BEgenvector #4 (620 Bgenector #5 (4% BEgenvector #6 (420

5 6 a H3h 3 6 a IB3h 5 6 o B h 01
Fpl Fpl Fpl
Fp2 Fp2 Fo2 0.6
3 3 3
(@] (@] (@] °
Pz Pz Pz -0.05
Qz Qz Qz

01
Egenvector #7 (329 Egenvector #3 (3%9 Egenvector #9 (329

Figure 3-4. The weights of eigenvectors extractethe training process for S1.
The first 9 of 36 eigenvectors ranked by the valtieigenvalue are shown here
with the ratios of eigenvalue. In our experimemtdult, the first 7 eigenvectors
were used for PCA+LR, 2 for PCA+RNN, and 5 for PGAAR. Bright pixels

represent positive feature weights, and dark pixejgresent negative feature

weights.
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3-4. Fitness Evolution in Genetic Featur e Selection

The evolution in GFS improved the fitness of th@uydation every new generation, and

the monotonic descend of AIC is illustrated in Fey8-5(a). This sample process approached

its best fithess within 20 generations and themnapéd the whole population. The CC and

RMSE performances in the evolution process are showigure 3-5(b) and (c) respectively.

As illustrated in Figure 3-5(b) and (c), the CC &M SE performances obtained in the end of

the evolution were not the best during the proadssvolution. This phenomenon will be

discussed in detail in the next chapter:.
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3-5. The Selection Results of Genetic Feature Selection

The results of feature selection by GFS-based misthee presented in Figure 3-6 with
feature selection probability averaged across w@jescts. The features with high selection
probability are shown as bright pixels, and darkefs represent those with low selection
probability. Table 3-2 lists the top 6 frequentblexted features among all 36 features in
these GFS-based methods. Three of these featurekstad in the top 6 across all three

GFS-based methods: alpha in Fpl, alpha’in Oz, @mddeta in Oz.

GFS+LR GFS+RNN GFS+SVR
a B hp y 5 6 o B hp y 5 6 o B hp y

(a) (b) (c)

5 ©

Fpl Fpl Fpl

Fp2 Fp2 Fp2

Cc3 C3 C3

Cc4 Cc4 Cc4

Pz Pz Pz

Oz Oz Oz

Figure 3-6. Average feature selection probabildy the three regression methods

combined with genetic feature selection. (a) GFS+{ GFS+RNN, and (c)
GFS+SVR across 10 subjects.
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Table 3-2. The top 6 popular feature selected ol €3-S-based method.

GFS+LR GFS+RBFNN GFS+SVR
channel band probability | channel band probability | channel band probability
Fpl a 0.67 Oz a 0.92 Fpl a 0.66
Oz a 0.59 Fpl a 0.82 Pz h-B 0.54
C3 h-8 0.43 Oz h-8 0.76 Oz a 0.49
Oz h-8 0.36 Fp2 a 0.76 C4 a 0.46
Fpl h-8 0.34 C4 a 0.75 C4 -8 0.44
C3 o 0.32 Pz h-gB 0.56 Oz h-8 0.43

4. Discussion

4-1. Factor s Affecting Estimation Performance

The three-way ANOVA was performed to verify if difence is significant for the
factors (subjects, regression methods, and feaalection techniques). All of the three
factors were found to significantly affect the penhance in CCg < 0.05), but only two
factors (subjects and regression methods) weredftairsignificantly affect the performance
in RMSE p < 0.05). The factor of feature selection technggdel not show significance in

affecting the RMSE performance. Comparing the &ffec to estimation performance
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produced by regression methods and feature satetdgchniques, the former seems to be

more deterministic since it significantly impacerformance in both CC and RMSE.

4-2. Comparison between Regression Methods

In this study, linear regression was employed baseline regression method and to be
compared with other two methods, RBFNN and SVR. rEselt shows that both RBFNN and
SVR provide better estimation performance with etéht types of feature selection in our
case. In comparison of RBFNN and:SVR, the latemshsignificant difference with LR no
matter using all-feature, PCA, or:GFS, while RBFfiN'to reduce RMSE significantly when
combining with PCA. However, RBENN shows’its unigciearacteristics in the usage of
features and eigenvectors. The number of eigenveetected by RBFNN is significantly less
than selected by other methods, implicating RBFNdks well with low-redundancy data.

SVM has been reported as a optimal classifier iG#Based BCI [18],[29]. Although
regression is not as commonly induced as classditan EEG-based BCI application, SVR
has been shown its benefit in optimizing the EEGelda2-dimentional movement control [51].
In our case, SVR enhanced the estimation perforenanceach combination of feature
selection type, and thus it is suggested as a lusef@ression method to improve the

performance.
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4-3. Comparison between Feature Selection M ethods

PCA and GFS are induced in this study to providermation about what kind of the
use of features optimizes the estimation resulttodgh PCA, the use of features is
determined by the selection of eigenvectors andfélagure weights in each eigenvector.
While all features are involved in PCA to extrdutde eigenvectors, GFS gives a direct view
by counting the selected times of each featurestiosvs which features are more popular in
MSL estimation. Overall, these two feature selectiechniques did not support better
estimation performance when combining with RBFNNI &VR. However, adding PCA in
LR significantly enhanced the estimation perforngabte be comparable with RBFNN and

SVR in MSL estimation.

4-4. Difficulty caused by Subject Variation

It has been shown the subject deviation signifigaaffects the estimation performance
in this study. Subject-to-subject variation hasrbesgarded as one of the major source of
error [18], and it is the most dominant factor irBMestimation. In our previous work on

MSL estimation using within-subject validation, tperformance in CC could reach 0.95
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without optimization of genetic algorithm, whichwbusly exceeds the performance using
cross-subject validation in this work where thetl8&S performance is around 0.92. However,
it is necessary for an EEG-based BCI applicatioriesi its performance in cross-subject
validation, which provides general examination arsdd more beneficial for future

implementation or other practical applications.

4-5. The Ben€fit of Principal Component Analysis

Our result shows the linear regression was.impraigdificantly when using PCA in
prior. In fact, this combination=-is a typical regs®n analysis as known as ‘principal
component regression (PCR)’ [52]. Instead of ughmg variables to estimate the regression
coefficients, PCR estimates with the principal comgnt of those variables. EEG spectral
power, although being regarded comparatively asbast feature type, has been reported its
redundancy caused by the correlation between frege [36]. A practical benefit of using
PCR is its ability to overcome the problems causgthe co-linearity between variables, and
thus PCR is a simple and useful tool to enhance es$tenation performance of BCI
applications based on EEG spectral power.

Instead of the purpose of improving the estimaperformance, PCA was employed as

tool to probe the property of the data. In our ¢cdbe most principal component is the
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summation of all features, and there is only appadéference between frequency bands but

no deviation between channels are revealed fromfelagure weights in the first four

eigenvectors. While through the estimation tech@ifd@CA+RBFNN can reach rather high

performance with about using only two eigenvecttns, suggests the obvious redundancy in

our data, and again, evidence the benefit of usBi@4.

4-6. The Ben€fit of Genetic Feature Selection

In the evolution process of GFSishown in-Figure 886 AIC descended monotonically

as expected. Meanwhile, CC and-RMSE reached tkstrduring the process of evolution but

did not persist until the end. Consider that thedifred AIC applied in this study was a

combination of CC performance, RMSE performance, d@imensional penalty; it is obvious

to see that the fithess was dependant on everyureeakherefore, the trade-off process was

involved in the evolution, and the final outcomesveaconsequence of compromise.

Although genetic algorithm is well-known for its ibly to avoid local optima, the

time-consuming evolution process forced us to lithé population size and generations in

our implementation, and thus our compromise sugpeshe average performance of 10

repeated runs of GFS-based methods. But still &s¢ performances in most subjects were

obtained by GFS-based methods. While the estimgigoformance was obviously improved
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by using RBFNN and SVR, the effects of PCA and @FSe not so apparent on optimizing

the regression methods. However, the benefit adtifeasselection was not only improving the

estimation performance, but also providing infornefteature selection result as an approach

to understand the property of the data used. Irfighieire selection results presented in Figure

3-6 and Table 3-2, the features most popularlycsedeacross different techniques are alpha

in Fpl, alpha in Oz, and high-beta in Oz.

In our previous study using ICA to extract MS-rethttomponent, the brain activity in

occipital midline was the most emphasized comporvenich showed significant power

difference between low and high ‘MSL coenditions asrbroad frequency band [8]. In the

same study, the secondary MS-related component aeagpital, which has particular

significant power difference in alpha:band reflegtichange in MSL. As mentioned

previously, Oz was chosen and expected to reprdbenbrain dynamics in occipital area.

Therefore, the high selection probability of alpinaOz meets our anticipation that it is

important in MSL estimation since it was integratadstly from the significant MS-related

components according to the previous findings.

High-beta band power, although was not emphasitedelation with motion sickness

was still revealed in the correlation analysis perfed in our previous study [8]. The

correlation around 20 to 25 Hz was shown highen thther frequency bands except of alpha

band in occipital and occipital midline component.
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Another finding in the feature selection is thatte in Fpl was almost as frequently

chosen as alpha in Oz. Although few researchers heported EEG increase in frontal area

during motion sickness [12, 14-16], we did not fikib-related component in frontal using

ICA and source localization. Since the Fpl and &gi#ity used in this study was extracted

from back projection using MS-related componenmiotor, parietal, and occipital areas, it is

not comparable with the frontal activity directgcorded by frontal electrodes in other studies.

For an electrode placed on frontal, it is diffictdt sense the brain activity in parietal and

occipital since the distance attenuates the anaditaf signal, and augments the noise.

However, the result in this study shows thatsaliphBpl may play an important role in MSL

estimation. If the technique of noise filteringsmurce separation is powerful enough to allow

frontal electrodes to detect the activities-frora-tthole brain, one will consider using frontal

electrodes to collect EEGs for motion sicknesavestiobn. The reason is that it is easier to fit

EEG electrodes on forehead because there is n@mdir Recently, the state-of-art wearable

and wireless EEG-based BCI devices using dry-@detion forehead have been developed

and demonstrated [43, 44].

5. Conclusion and Future Works
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This study showed that changes in the EEG speotnakr accompany fluctuations in

the level of motion sickness, as assessed by megssimultaneous changes in EEG and

self-reported motion-sickness level in a VR-basedrh task. We demonstrated the potential

of a BCI for continuously estimating motion sickedsased on EEG spectra, compared the

usability of feature selection techniques combinimigh different regression algorithms.

Results of MS estimation using the EEG featurescsetl by principal component analysis

and genetic feature selection compare favorablyrévious results using a correlation-based

method [35], but in this study the feature’s cdnmition to estimation is more emphasized.

The work is the first step towards developing a B@it can continuously monitor the

pre-cursor of motion sickness. If one could ac@&lyapredict motion sickness before its

occurrence, it would be possible to apply-certe@atiments to prevent iliness instead of taking

pills nowadays. The ultimate goal of our studyashelp people avoid motion sickness and

thus prevent individual’s iliness and derived darggrised by motion sickness.
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