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Eliminating the Drifting Problem with Background

Interference Reduction using Depth Information

Student: Kingming Huang Advisor: Dr. Yu-Lun Huang

Institute of Electrical Control Engineering

National Chiao Tung University

Abstract

Recently, tracking using adaptive appearance models is popular. Tracking algorithms
adopting an adaptive appearance model are simple and fast, but suffer from drifting problems
caused by background interference. The drifting problem, resulting in inaccuracy, comes from
the accumulation of slight labeling errors occur in updating model in each tracking iteration.
Taking online boosting for tracking (OBT) as the basis,-we introduce depth, multiple scales
and lifetimer to our algorithm (named-Enhanced OBT; also abbreviate to EOBT) and eliminate
drifting problems induced by background interference. In EOBT, depth can be used to filter out
the background data, the tracker with multiple scales can be used to improve the accuracy, and
dynamically adjusted lifetimer can be used to determine whether the object is temporarily oc-
cluded. Since conventional evaluation method of accuracy may derive a high accuracy when an
algorithm tracks a wrong target, we additionally design two ratios ('Ratio in Object' and "Ratio
in Tracker') to avoid such a problem and precisely evaluate the accuracy. In our method, "Ratio
in Object' shows the percentage of an object caught by a tracker, while the 'Ratio in Tracker' re-
flects the percentage of a tracker occupied by the object to be tracked. In this thesis, we conduct
several experiments to show that EOBT can effectively reduce drifting problems and improve

the accuracy of object tracking.
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Chapter 1

Introduction

Visual tracking, or object tracking, has been studied for decades. The object for visual
tracking is to continuously label objects of interest in video sequences. This is a prior step for
further image processes. Lots of applications, like video indexing, human-computer interaction
(HCI), traffic monitoring, augmented reality (AR), demand executions of visual tracking. For
example, automated surveillance needs information about suspicious human motion. To acquire
those information, human tracking shell be performed first, and then traces can be recorded for

further analysis.

In this chapter, challenges and issues of visual tracking are discussed first. Recent devel-
opments of object tracking come after. Contributions and synopsis of this paper are mentioned

at the end of this chapter.

1.1 Challenges

Tracking is continuously finding region of interest (ROI) in frame sequences. The most
intuitive tracking method is recording every pixel value of ROI at first frame. Then, tracking is
implemented as finding the most similar region as records in the succeeding frames. However,
in frame sequences, there are lots of variations need to be took into consideration. For example,
illumination, shape variations or occlusions. These variations make object tracking more diffi-

cult than imagination. Here, several challenges are summarized as follows [11].



Loss of Information
Images are formulated by projecting 3D real world on 2D sensors. Useful information

like spatial structures has been destroyed.

Noise
Noises occur from different sources, from hardware to software. From signal processing
viewpoint, when and where noises occur are unpredictable. To design a noise-sustained

system is challenging.

Complex Object Motion
Object motions vary diversely. Thought kinematics theorems can be used, object motion
in 3D environment is hard to predict. Some researchers have made use of this prediction
as context information [2].,Using this method, the false positive rate of tracking accuracy

decreases to an extent. However, computational cost.should pay at the same time.

Object Body
Object could be coarsely categorized in rigid, non-rigid or articulated body. Their prop-
erties are different from objects to objects, and the borderlines between them are vague.

Especially, articulating object has been independently addressed in recent research [3].

Occlusions
Due to loss of 3D information, partial or entire occlusions come up frequently. Recently,
some researchers use adaptive appearance models as a tracking method. Adaptive ap-
pearance model continuously learn new appearances, which has the ability to conquer
variations like illumination. Nevertheless, when occlusions happen, adaptive methods
learn wrong appearances. This problem is coined as template update problem, or drifting,

which is addressed in the rest of this thesis.



Complex Object Shapes
Object shapes cause problems. At first look, complex object shapes are hard to describe.
Usually, primitive geometry shapes are used to stand for objects, but in the meantime,
background is introduced. The drifting problem mentioned earlier also occurs in this sit-

uation.

Scene Illumination Changes
[Nlumination changes cause problems since object appearance learnt from previous frame
is different from now. Previous object appearance can not be completely trusted. Several

tracking methods have been proposed to solve this problem.

Processing Time Requirements
Though usually real-time; 20 frames per second (fps), is demanded, different situations
change this requirement. For example, in normal video surveillances, 7 fps is fast enough,
which eases time requirement. Trade-off between accuracy and processing time should

be taken into account.

1.2 Issues of Existing Tracking Methods

Challenges of visual tracking have been discussed in previous section. This section focuses
on issues of tracking methods. Each method has its applicability. For example, Kanade-Lucas-
Tomasi (KLT) tracker [4] is properly used in augmented reality (AR) field, because object mo-
tions could be detected precisely. However, for a 24 hour surveillance system, illumination
variation is one of main concerns. Cannons [5] and Yilmaz [|I] have discussed different track-
ing methods using their own taxonomy. Here these methods are classified in functional aspects.

First, the ways these methods represent ROI are described, with or without a priori model. Also,



their pros and cons are mentioned. Finally, comparisons on tracking methods and summary are

at the end of this section.

1.2.1 Object Representations

First of all, object representations are tightly related to tracking methods and their applica-
tions. Once an object representation is adopted, the applicability has also been fixed. Yilmaz []1]]
has made an extensive survey on his paper. However, for clarity, we adopt Cannons' catego-
rization [5]. He classifies these object representations into three main categories, points, edges

and lines, and regions. These categories are introduced respectively as follows.

Points
Points has been an excellent object representation since Harris interest point detector was
proposed [6]]. Nowadays, local invariant point feature, like SIFT [7] and SURF [8] ,has
gained lots of attention. Point representation-is popularly used in Augmented Reality and
other applications, because it possesses object orientations and can be computed very fast.
Point representation is a simple method to represent objects. However, due to this simpli-
fied representation, lots of objects would have similar representations. In this situation,
tracker might get confused and the odd of false positive is elevated. In reality, point repre-
sentation does not precisely learn objects. All information they held are points. Tougher

jobs like object recognition, point representation seems not applicable to.

Edges and Lines
Edge features are used in many tracking systems. An edge is defined as pixels lie on the
boundary between regions. Usually edges are grouped into lines, and an easy detection
using filter banks can be applied. Cannon has addressed three categories of line detectors,

including similarity according to two points, two parallel edges and 3D surface. Com-

4



monly used method is the famous Hough transform. In fact, due to discard too much

potential information, tracking using edges or lines is getting less attention.

Regions
Recently, using regional features for tracking becomes popular. There are two types of
regional descriptors, color histograms and histograms of gradients. Color histogram meth-
ods are invariant to translation and rotation. However, the spatial information collapses at
the same time. Also, depending on color, illumination variations severely damage color
histogram. On the other hand, histogram of gradients (HOGs) is robust to illumination
variations, but easily affected by cluttered background. Therefore, hybrid methods have
also been addressed. Because regional features have better ability to describe objects, they

are extensively used in object tracking.

1.2.2 Object Models

Object models help tracking in that shape variations are handled. Using object models,
object shape in three dimension space is revealed and predictable. In this way, more information
can be gathered using kinematics. However, model construction is the bottleneck. If every
object model is constructed before tracking, applicability is consequently reduced. In practical
applications, human tracking with models is the most common usage, like Microsoft®) XBOX

360. It is a trade off between tracking accuracy and applicability.

1.2.3 Tracking Methods

In Cannon's survey [3], four categories of tracking methods are classified. They are track-
ing using discrete features, tracking with contours, region-based trackers and combined track-

ers. In tracking using discrete features, analytic methods are used to match inter-frame relations.

5



Tracking with contours use methods like Snake [9] or level sets [[10]. Region-based trackers and
combined trackers are recently become popular. In region-based trackers, Cannon has addressed
blob trackers, pixel-wise template tracking, kernel histogram methods. These methods usually
use statistical methods to track. On combined trackers, methods of integrating above-mentioned
designs are discussed. Though tracking methods possess respective merits, drawbacks are ac-
companied with them. It is easy to see that, recent development walks towards methods using

higher dimensions to describe objects.

1.2.4 Motion Estimation

Some tracking methods use motion models to make searching efficient. Thanks to New-
tonian mechanics, object motion‘is predictable. . Nevertheless, in practical situations, noises
damage object motion estimation.. Once observation made in previous frame was mixed with
noises, estimation is then deviated. Finally, error accumulation breaks the system. Correct mo-
tion estimation helps object tracking.in computation reduction, but it also increases the risk of
false positive.

Several object tracking approaches have been addressed from object representations to
tracking methods. Different approaches are suitable for different applications. In next section,

developments of tracking methods are discussed.

1.3 Developments of Tracking Methods

Yang [|1 I]] has mentioned that conventional tracking methods use prediction and verification.
At previous frame, frame ¢ — 1, tracker makes predictions for next state. Sampling and particle

filtering are available prediction methods. At frame t, verification of previous predictions is



realized by observations. The overall architecture is just like recursive process of Kalman filter,
prediction and correction [|12]. Most of these methods require offline training and do not have
high-level notion of objects. Also, they possess the same appearance model throughout frame
sequences.

Recently, tracking algorithms are trying to break the limitation of using constant appear-
ance model. Continuously learning and updating appearance model have made trackers endure
large illumination and pose variation. In this way, tracking methods become more robust to en-
vironmental variation. Yang [|11] has pointed out that several tracking algorithms have applied
this concept, including generative or discriminative algorithm, multiple instance learning and

articulating object tracking. In this thesis, we describe some of them in related works.

1.4 Contribution

In this paper, we propose an enhanced tracking method called EOBT, which is based on
Online Boosting for Tracking (OBT)/[13][14]. OBT is an amazing tracking method which has
ability to adapt those variations between frames. It is also a model-less tracking methods without
motion estimation. However, the most crucial problem is also due to its excellent adaptability,
which is called the template update problem, or drifting. This is a stability-plasticity dilemma
and has been addressed in [15]. In short, increasing adaptive might causes stability drop. We
import depth information to enhance OBT on drifting-resistance ability. Also, we introduce
scalability for EOBT, hoping to reduce background noises caused by distance variations. To
solve temporary occlusion problem, we design a new mechanism called lifetimer for our tracker.
With lifetimer, tracker is able to stop updating when getting lost. Meanwhile, it differentiates
temporary occlusion from disappearance. This is important for practical usage to notify system

when should stop tracking.



1.5 Synopsis

The remaining part of this paper is organized as follows. Chapter 2 introduces OBT in
details. Related works designed to solve drifting problem are described in chapter 3, including
online semi-supervised boosting for tracking [16], beyond semi-supervised tracking [|17] and
tracking with online multiple instance learning [[18]. In chapter 4 and 5, we propose our enhanced
tracking method and demonstrate some experiments. Chapter 6 discusses and compares our
methods with those in related works. Finally, conclusion summarizes our research in chapter
7. More information about boosting, online boosting, semi-supervised learning and multiple

instance learning are attached in appendices.



Chapter 2

Background

In this chapter, the tracking method, OBT, is described in detail. It has been used in related
works and proposed method. The reason why the online boosting algorithm is adopted in pro-
posed method is mentioned first. Then, the online boosting algorithm used for feature selection
and object tracking comes after. For more information about the boosting and online boosting

algorithm, please refer to appendices.

2.1 Preliminary

Boosting is an ensemble learning algorithm used to distinguish one category from another.
It has been researched theoretically and experimentally for past two decades [[19] [20]. Research
shows that, boosting can be interpreted as additive logistic regression [20], which means that the
loss function of boosting is an exponential function and boosting can be regarded as a greedy
learning method. Also, in the boosting algorithm, margins between categories keep increasing
during consecutive iterations even when classification is finished. These two merits have made
boosting widely applied into diverse research areas. For example, Viola and Jones [21] apply
boosting algorithm to face detection and achieve remarkable success.

Originally, the boosting algorithm ,also known as batch boosting, uses all training samples
in one iteration. To increasing its applicability, the batch boosting algorithm has been further
developed in an online manner, called online boosting. In the online boosting algorithm, a train-

ing sample is only used once and discarded forever. In this manner, online boosting algorithm



is appropriate for real-time applications. However, the major challenge is that, the hypothe-
ses returned from online boosting algorithm may not be identical to those returned from batch

boosting algorithm.

To solve this inconsistency, Oza [22] modifies the weight adjustment scheme in batch boost-
ing algorithm and proves that using /ossless learning algorithm as base model, the hypotheses
returned from online boosting would converge to those returned from batch boosting. Lossless
learning algorithms are described in appendices. Concerning about theories of convergence,
please refer to Oza's PhD thesis [22]. With Oza's achievement, Grabner and Bischof [[13] lever-

age the online boosting algorithm for feature selection and object tracking, as described in 2.2

and 2.3.

2.2 Online Boosting for Feature Selection

In 2006, Grabner and Bischof have pointed out that, in the online boosting algorithm, the
importance adjustment of samples is' modified. Single sample is propagated through all base
models. This modification solved the crucial problem of unknown weight distributions of en-
tire training samples. Therefore, Grabner and Bischof applied online boosting algorithm and
proposed a novel feature selection method.

Grabner et al. [[14] [[13] have introduced selectors into their algorithm. The selector selects
the best weak classifier from global weak classifier pool [[14]. In [[13], several local weak classi-
fier pools are used for determining a selector, while the local weak classifier pools are replaced
with one global weak classifier pool in [[14] for better performance. Please refer to the illustra-
tion shown in Figure 2.2J. We consider that, the mechanism provided by selectors is similar to

cascade structure designed by Viola and Jones [21]]. See Figure R.1].

10



Further

All Sub-windows .
processing

Rejected Sub-windows

CIf: Classifier

Figure 2.1: Scheme of detection cascade. Every sub-window is detected by every classifier
(CIf). If it does not conform detection rules of classifiers, it is rejected right away and never be
used again.

The importance of sample () is initialized to 1. When one sample enters, all weak classifiers
are used to judge this sample. After judgement, errors of weak classifiers (e, e ... €,) are
evaluated. The weak classifier with the lowest error is selected as the first selector. Then, the
voting weight (a;, where ¢ is the index of the selector) of the selector is calculated according to
its error-and can be represented as

1 1-— €;

Oéi:—XlIl(

: ei) 2.1)

Next, the importance of the sample is adjusted for the next selector (see the following equa-

tions) according to the error e;_; of the previous selector.

if the judgement of previous selector is correct,

1
= S 2.2
A=A T = e 22)
else
A=A X L (2.3)
N 2 X (62) '
end if

After calculating its voting weight and adjusting importance, the sample with the adjusted

importance is propagated to the next selector. When completing selecting weak classifiers for

11



Global Weak Classifier Pool
Training a1 || a2 || a3 || crsa || afas || afze CIf#N
sample

- )
Training a2 || cafs3 cifs || cif#e
sample

CIf#1
Sample Use training sample to
weight (A) adjust two parameters,
o sample weight (A) and
classifier classifier weight (a)
weight (a) :

J
Training CIf#1 CIf#3 CIf#5 || CIf#6
sample

Tra"“”g afs | afs2 || ares || arsa || arss || arse CIF#N
sample
Classifiers with higher classifier
CIf#1 || CIf#3 || CIf#4 || CIf#8 || CIf#9 CIf#X Ji| weightsare integrated as a strong
classifier.

Figure 2.2: The online boosting algorithm for feature selection. Every classifier in global weak
classifier pool are trained using training samples. ' The sample weight and classifier weights are
adjusted during training. Eventually, those classifiers with higher classifier weights are selected
and integrated as a strong classifier.

all selectors, these selectors (h3¢!) are then merged to form a strong classifier (h*!"°"9).

N
hstrond — sign(z a; x hi(x)), (2.4)

i=1

where q; is the voting weight of the i ™ selector, and sign function is defined as

(
-1, ifx <0,
sign(z) = 0, ifzx=0, (2.5)
1, ifx > 0.

\
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2.3 Online Boosting for Tracking

To make use of online boosting for object tracking, Grabner et al. have designed a new
procedure. There are two stages in this procedure, training stage and tracking stage. We illustrate

them separately as follows.

2.3.1 Training Stage

Search region I—;ﬁ‘ ~
| . & ﬂl‘.‘i negative  negative
Object region g | sample sample

ook

positive

sample

negative negative
sample sample

Figure 2.3: Tracking by classification. The objectregion is selected as a positive sample. Neigh-
bouring regions in search region is selected as negative samples.

The goal for training stage is to build a tracker for tracking. To answer the needs of object
tracking, Grabner et al. [[13] use the tracked object as a positive sample and surrounding back-
ground as negative samples. See Figure R.3. They only use first frame for training because the
ROI is decided by user and can be fully trusted. Since online boosting is a kind of supervised
learning, the first frame is regarded as his teacher for tracking on next frame. After using online
boosting for feature selection, a strong classifier distinguishes tracked object from background

is made. This strong classifier could be regarded as a tracker for further usage.
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2.3.2 Tracking Stage

After constructing the strong classifier for tracked object, first frame is then discarded. On
next frame, search region is specified according to the previous tracked object position. See
Figure P.4 for better illustration. The tracker created by previous frame is used scanning every
position in the search region. While scanning, the tracker evaluates every position and produce
hypotheses. These hypotheses estimate in what degree of confidence that the corresponding
position is the tracked object. In other words, hypothesis is a kind of similarity estimation. A
confidence map is created after scanning, see right image on second row of Figure R.4. The

position with highest confidence is chosen as new object position. This procedure is iteratively

object region

Update classifier Set new object position Build confidence map

Figure 2.4: Algorithm of online boosting for tracking. The classifier is updated every time the
picture is captured and the update method is based on confidence map.
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(a) frame #199

s

frame #200 (c) frame #201 (d) frame #202

(b)
Figure 2.5: Example of drifting problem. From [a) to [d) are consecutive frames. From [b) to
[c), the tracker drifts because the tracked lady slightly moves away from camera.

applied to every consecutive frame. Hence, object tracking could be achieved.

Before tracking on next frame, the tracker should be updated according to new object po-
sition. This step makes tracker has adaptability to adapt variations. Another thought is that,
in training stage, a tracker is made by constructing an internal appearance model. The tracker
uses this internal appearance model to match with new coming frames. Since online boosting
for tracking is a supervised learning process, the tracker should trust new object position deter-
mined by itself. New object position is regarded as a new-teacher and used to update tracker's
internal appearance model. This step is also the reason why drifting problem occurred. Because
position estimation is not always correct, slight etrors come in. These slight errors are learnt
by tracker. Hence, errors are accumulated during object tracking, causing tracker lost or to be

mistrusted. See Figure 2.3,

For better illustration of online boosting for tracking, we put a system overview in Fig-
ure. .. Two stages form the system, training stage and tracking stage. In training stage, first
gray image is used to generate a tracker. This tracker is then used to track on the first image
several times for training. Number of training iteration can be set by user. In tracking stage,
the trained tracker is used on succeeding frame sequence. Similar process is carried out on all
frame sequence. If confidence of tracker is under 0, that means the tracker is lost. The tracking

process exit if tracker lost or all frames are been tracked.
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Training stage

First gray image

START Tracker
generation

tracking stage

Tracking stage

Gray image
Training stage —» Obje‘ct _’D|s‘appearance ‘Object END
tracking judgment | disappears
Tracker
generation

Figure 2.6: System overview of online boosting for tracking.

2.4 Summary

In summary, online boosting for tracking is a two-stage tracking method. First, internal
template is constructed in training stage. Online boosting for feature selection is used to train
the tracker. Next, in tracking stage, the tracker.isused to search new object position by selecting
the position with best confidence. Then tracker fully trusts this new object position and update
internal appearance model according to it. This self learning is classified as supervised learning
strategy. One of the key problems of this strategy is error accumulation. In object tracking
applications, error accumulation causes drifting. In next chapter, several researches on drifting
are stated in company with pros and cons. Different learning strategies are also been used to

suppress drifting.
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Chapter 3

Related Work

In this chapter, three drifting-suppressing methods are introduced. Our scope is limited
in model-less tracking methods without motion estimation, and including appearance updating
skills. Specifically, we adopt discriminative tracking methods, not generative ones. For gener-
ative tracking methods, please refer to [23] or [24]. Here in this chapter, we introduce online
semi-supervised boosting for tracking [[16], beyond semi-supervised tracking [[1 7], and tracking

with online multiple instance learning [[18] as follows.

3.1 Online Semi-Supervised Boosting for Tracking (OSSB)

Semi-supervised learning is a learning strategy exploiting not only known data, but also un-
known data for learning. Recently semi-supervised learning has gained a lot of attention because
known data collection is always a tedious work. For tracking applications like human tracking
for example, labelling people in every frame is an inevitable preprocessing work. To exploit
known data, researchers have proposed many methods to bridge the gap between known and
unknown data. Xiaojin has maintained a comprehensive survey about semi-supervised learning
on his website I [25]. Since Mallapragada's version [26] of semi-supervised learning has been
adopted by Grabner [[16], we illustrate Mallapragada's theory in appendices. Here we only in-
troduce how Grabner et al. [L6] make use of their semi-supervised learning strategy on object

tracking.

The key problem Grabner et al. solved is drifting problem. Grabner believes that, for-

Thttp://pages.cs.wisc.edu/ jerryzhu/research/ssl/semireview.html
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mulating the update process in a semi-supervised fashion could significantly alleviate drifting
problem [[16]. They combine decision of a given prior classifier, H” (z), and an online classifier,
H,(x), to estimate object position. On the first frame, the prior classifier is trained using method
of original OBT. This prior classifier can be regarded as the teacher in all tracking process. Other
frames are belongs to unknown data, which needs to be classified using semi-supervised learn-
ing. Formally, the Mallapragada's deduction on SemiBoost told us that the best weak classifier

could be obtained using

. 1
hn:arghrnln (m Z wn(z,y) | U| Z (pn(z) — gn(z)) nhn(x)>, (3.1
" mEx

zexV
hn(x)Zy

where

pu(z) = e 2= 1(f’3 L| Z x, 17) l U| Z S(z, z;)efn—1@)—Hn1(@) (3.2)

z;ext xz; ExU
qn(z) = - 1 L‘ Z S(z, ;) | U’ Z S(x, z;)etn- (@)= Hn—1(2:) (3.3)
TiEXT ziex?
and
wn(z,y) = e~ 2yHn1(z), (3.4)

The weight o, can be obtained by taking derivative of Eq..1 with respect to o, and setting it

to zero [27], where

XY

: (z e D@4 e qn<w>) b T e (o)
> (3.5)

ay = Z1n : n ()71 fin(2)=—1 , @)=y
(e 00T e 2i®) + T e wnley
X (@)= hn(@)=—1 XT1 ha @)y
Especially, similarity could be made by a boosting classifier, where
S(s,y;) = H™ (1, ;). (3.6)
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For positive samples, > H*™(x, ;) is a probability measure that = corresponds to the

zext

positive class. We could express as

S @, 2) ~ HY (2), (3.7)
I»;EX"'

also,
> Bz )~ H (x). (3.8)
T, EXT

Here, Grabner et al. use the prior classifier to measure similarity, so the probability measure
of positive and negative samples is directly replaced by H” (z), i.e., H"(z) ~ H(z) and
H~(z) ~ 1— H"(x). On the other hand, since boosting could be viewed as additive logistic re-

gression by stage wise minimization of the exponential loss L = >___ , e~ and confidence

TEX
measure is
eH(z)
Therefore, Eq.3.2 and Eq.8.3 are simplified as
—Hyp—1(x) ,HE ()
5 (1) ms o Hn—1(@) N g e Hn @) () o © €
pn(x) ~e Z+ S<x7$z) ~e H (SC) HP () + e—HP (z) (310)
TiEX
and
anl(.l’) —HP(JJ)
() my eHno1(@) Y ay Ho 1@ () o & €
Qn(x) ~e Z S(x>$z) ~ € H (CL‘) GHP(:B) + e_HP(m) (311)
T, EXT

Because discriminative classifier is used, the interest would be put on their difference, z,(z),

which Grabner et al. named as "pseudo-soft-label."

3 3 sinh(H? () — H,,_1)
Zn<ZL') = pn(x) - Qn($) = COSh(HP x )

= tanh(H” (x)) — tanh(H,_1(z)). (3.12)

We put the algorithm of online semi-supervised boosting for feature selection in Algorithm 1.

Also, for better illustration, we adopt the SemiBoost concept from [27] in Figure..1].
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Algorithm 1 Algorithm 1. On-line Semi-supervised Boosting for feature selection

Require: training (labeled or unlabeled) example <x,y>, z €
Require: prior classifier 7 (can be initialized by training on \*)
Require: strong classifier / (initialized randomly)
Require: weights A} |, AP (initialized with 1)
forn=1,2,.... N do
if x € ! then
Yn =Yy An = exp(_yanl(x))
else
Yn = sign(p(z) — q(x)), \n = [p(x) — q()|
end if
for m=1,2,....M do
B = update(hp, m, < z,y >, \)
if 7% (x) = y then
A = Anm T An

else
)\ori,m = Aﬁ,m + )\n
end if
Anm
Cnm = X AN
end for

m* = argmin,(€nm), €n = Cnim+, N3 = Iy mé
if e, = Oore,, > % then
exit
end if
a, = 3 X In{+z%}
end for

Using semi-supervised boosting for tracking does help alleviate drifting. However, the
problem is its applicability seems also been limited. The reason is that, the prior classifier is
fixed throughout the frame sequence. Each time when position estimation is needed, the prior
classifier is recalled to mutually decide position. However, if a rotating object is tracked, this
limited applicability breaks the tracking system. Tracker gets lost once the tracked object starts
to rotate. Therefore, semi-supervised tracker gets lost in this situation. We may conclude that,
when appearance of tracked object is always the same, online semi-supervised tracking method

is robust. While rotating object is tracked, this tracking method might be no longer applicable.
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’» Semi-Boost i Similarity Hsim(x)
Learning similarity
i Semi-Boost i y = sign(HP(x) + H(x))
Improving classifier

Figure 3.1: SemiBoost used for object tracking. Originally, semi-boost is used for machine
learning via calculating similarity. The author makes use of similarity on object tracking.

3.2 Beyond Semi-Supervised Tracking (BSST)

Beyond semi-supervised tracking is proposed by Stalder et al. in 2009 [[17]. Basically, they
focused on extending semi-supervised learning.-They pointed out that OSSB has two drawbacks.

We list them as follows.

e Influence of prior classifier might not be optimal, especially in the case of partial occlu-

sion.

e The prior classifier does not specialize to a specific object, i.e., it cannot recognize similar

objects.

These two problems have been properly solved by Stalder's architecture. Please refer to Fig-
ure B.2.
In Figure 3.2, (a) is a pure detection process. A filled circle is represented as one detection.

Since the appearance model used to detect is unchanged, no drifting occurred. In (b), conven-
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(¢) Semi-supervised tracking (d) Our Approach

Figure 3.2: Different adaptation strategies. Adopted from [[17].

tional supervised learning strategy is applied.The same route as its counterpart in (a) is ideal
object track. However, supervised tracking is suffered from drifting problem. In (b), the tortu-
ous route represents drifting situation. In (¢), semi-supervised learning strategy corrects drifting
by fixed prior classifier. The filled circle is regarded as prior classifier training, and the other
unfilled circles are viewed as semi-supervised learning. Nevertheless, limited adaptability of
fixed prior classifier hurts its plasticity. In (d), Stalder et al. have made prior classifier adaptive
conservatively. Those filled circles are tracking with updating both prior classifier and online
classifier. Unfilled circles are tracking with only updating online classifier.

The overall architecture could be divided into three parts, detector, recognizer and tracker,
as Figure B.3 shown. All of them are classifiers with different level of adaptability. The detector
is offline trained classifier and without updating while tracking. The recognizer is a supervised
online classifier with conservative updating. Here we briefly introduce overall mechanism of
beyond semi-supervised tracking. During initialization, detector, recognizer and tracker are

trained using first frame. During object tracking, semi-supervised tracking process is applied
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Recognition

Tracking

Detection (object #1)

HOFF

(object #N)

Figure 3.3: Architecture of beyond semi-supervised tracking.

with recognizer and tracker, which recognizer is acted as prior classifier and tracker is as online
classifier. If tracking is successful, prior and online classifier are not updated directly. They
use detector to examine the same position again-to verify if it is an appropriate appearance. If
so, prior and online classifiers are updated.-If not, only online classifier is updated. On the
other hand, if tracking failed, prior and online classifier are recreated. Then, detector is used
to find a potential position on the next frame. If detector found, the prior and online classifiers
are reinitialized again. If not, this frame is discarded and keeps detecting until tracked object is

found. We have summarized their tracking process in Figure B.4. Please refer.

Because detector guarantees a fixed false positive and detection rate, drifting could be de-
tected during tracking. We consider that, detector is as a supervisor, which suppresses drift-
ing probability. However, beyond semi-supervised tracking has the same limitation as semi-
supervised tracking. Though beyond semi-supervised tracking does extend semi-supervised
tracking, the overall bottleneck is locked by detector. If arbitrary object tracking is asked, con-
structing specific detector is still a tedious work. This tracking method is applicable for conven-
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tional object tracking, like human tracking.

3.3 Online Multiple Instance Learning (OMIL)

Multiple instance learning (MIL) has been studied for decades. MIL learns a concept from
multiple instances, whereas conventional object tracking methods directly learn from instances.
MIL learning strategy is fairly reasonable because it contains a certain degree of ambiguities.
For example, see Figure B.5. These labellings are part of correct tracked object, but with different
level of label noises. The ambiguity causes target to drift.

The most substantial contribution is that MIL offers bag probabilities. Here, bag could be
regarded as concept described before. Bag-is-a set.of instances and defined according to its

labelling as follows.

A bag is labelled positive even if only one of the instances in it falls within the

concept. A bag is labellednegative only if all the instances in it are negative [2§].

We describe theories of multiple instance learning in appendices. Here, we briefly illustrate how

Trackine . NO Re-initialize
SUCCSSS§ » prior & online

: classifiers

YES
Y
Detect? Update online Detect? ~NO .
ROD) classifier only (image) Keep looping
ES

v
Update prior & Train prior &
online classifiers online classifiers

Figure 3.4: Tracking process of beyond semi-supervised tracking.
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Babenko et al. modify MIL so as to apply it on object tracking.

Babenko et al. modify MIL to online MIL (OMIL) for object tracking, which combines
online boosting [22] and MIL [29]. For online boosting, since we have described some of them in
Background and introduced them in detail in appendices, we solely focus on revisions they made.
The authors choose MILBoost [29] as their MIL learning strategy. Deducted from MILBoost,
since boosting can be viewed as an additive logistic regression, the log likelihood of bag of

MILBoost is,
log £ = Z (logp(yi|Xi))' (3.13)

The bag probability model they used is Noisy-OR model, which adopted from [29], is as follows.

pluilXs) =1-=]1 ( D(yi|z) > (3.14)

J

where p(y;|X;) is a bag probability, and p(y; |z;;) 1s probability of instances.
Because the logistic regression is executed by weak classifiers, they choose weak classifiers

according to loss function 7, i.e.,

(hy, ) = argmax J (Hy_; + oh), (3.15)

heH,a

Figure 3.5: Different labellings (instances) for the same target.
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Algorithm 2 Algorithm 2. Online Multiple Instance Learning (OMIL)

Input: Dataset { X;, y; } ¥, whereX; = {x;1, x40, ...}, y; € {0, 1}
Update all M weak classifiers in the pool with data {x;;, y; }.
Initialize H,; = 0 for all ¢, j
for k. =1to K do
for m = 1to M do
pit =1 —=1L;(1 = pij)
L =3 (yilog(pf") + (1 — yi) log(1 — pi"))
end for
m* = argmax,, L™
hy(z) < hps ()
Hij = Hij + hi(x)
Output: Classifier H(z) = X;hy(z), wherep(y|z) = o(H(x))
end for

where Hj._; is a strong classifier made by previous (k-1) weak classifiers, and H is all possible

weak classifiers. They model instance probability using sigmoid function as

plyle) = o(h(z)); (3.16)

where o () is a sigmoid function. The bag probability isdirectly adopted from Eq. Here
they have slightly modified Eq. B.13; which absorbed scalar weight cv. The overall online MIL-
Boost algorithm is depicted in Algorithm ).

OMIL algorithm also uses architecture of online boosting for feature selection. The inner
for-loop evaluates on entire global weak classifier pool, which contains M weak classifiers. The
p;j and pi" correspond to instance probability and bag probability. After evaluation on all weak
classifiers, h,(z) picks the weak classifier with maximum loss, see Eq. B.13. Here, hy(z) could
be viewed as a selector. The selector is combined into stage-wise strong classifier H;;. After
deciding all & selectors, the strong classifier H(z) is a linear combination of & selectors and bag
probability p(y|x) is directly obtained using sigmoid function o (z).

Babenko et al. use Haar-like feature with four parameters (p1, 01, o, 00). The weak clas-
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sifier is defined as

2) = log | Pt = 1 fx(2))
() = log {pxy:om(a:))}’ G.17)

where p;(f;(x)|y = 1) ~ N (u1,01). Their update rules are

pr e+ (=) Y ful) (3.18)
ily;=1
o1 0+ (=) [ ST (fulw) — u)? (.19)
ilyi=1

Similar manner is applied on y = 0.

OMIL is an excellent object tracking in that, it interprets object from the notion of object.
This means that it has excellent performance on temporary partial occlusion and maintain at
good object position. This tracking method. is.especially applicable for human tracking while
appearance changes, like wearing a hat, is normally happened. Another merit is that, this track-
ing method seems have the ability returning to correct position. Please refer to their website B
seeing the experimental video 'David.'. Their trackeris not correctly aligned with David's face at
frame #300. However, at frame #406 when David wears back his glasses, the tracker is aligned
correctly again. On the other side, drifting can still be found in experimental videos, like 'Oc-
cluded Face.' We consider that OMIL has turned its attention to the book at frame #670 to #720.
The same stability-plasticity problem has also struck at OMIL. Especially, in 'Coke Can', OMIL
has already out of focus and turned its attention to operator's hand. This problem cannot be

found from the position error on error plot in [[18].

In next chapter, we proposed our own tracking method with depth info. We also proposed

our evaluation method to repair shortcomings of position error.

Zhttp://vision.ucsd.edu/ bbabenko/project_miltrack.shtml
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Chapter 4

Enhanced OBT

In this paper, we propose a novel method for eliminating drifting problem. Since all related
works are developed from OBT, and OBT has the ability to get through manifold problem, we
choose OBT as our tracking method and enhance it. We illustrate proposed method in this
chapter and discuss manifold consideration in discussion. Our approach, EOBT, consists of
three mechanisms, which introduces depth, multiple scales and lifetimer to OBT. We describe

them separately in the following sections.

4.1 Depth

We enhance original OBT 'with depth info. Thanks to Microsoft®XBOX 360, a compact
solution on both color and depth info can be caught simultaneously using Kinect. The origi-
nal OBT does not include depth information. We introduce depth to distinguish object from
background, hoping to eliminate background interference.

In addition, the precision of depth info returned from Kinect is 16 powers of 2. We have
normalized to 0-255 for convenience, not only for human reading but also stable for machine
processing. We called this normalized depth values as a depth image. For succeeding paragraph,
we use the word, depth images, to represent depth info.

Our goal is to exploit depth info. We consider that direct acquiring image within specific
depth range helps reducing the complexity of tracking environment. Hence, according to the

depth of tracked object, we can take images out with the same depth and track only on these
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Found Find ROl in Truncate to Cutting gray
ROI depth image Bitmap image

Figure 4.1: Truncation process of EOBT.

segmented images. This filtering process is illustrated in Figure [.1].

In the beginning, tracked object, the ROI, is set by user. Next, find the same ROI on depth
image. Use truncation methods to isolated tracked object from background and transform this
concept into a filter. Finally, use this filter to filter out tracked object. Here, truncation method

is a critical problem. Figure illustrates this problem:  In Figure#.2, the top plot is depth

2500 . y . i g
2000 | Dist.value distribution in ROI
£ 1500 -
g 1000 -
o
500 - :I [
o B B8 BE

Figure 4.2: Truncation problem.

29



» Tracker generation of OBT

, IRandom feature | Classifier Tracker
Gray image —» : L . > . —» Tracker
| generation : selection production

Random I

Gray image —P»| Object —b: feature I,—> Classifier > Tracker —» Tracker
y imag filtration I generation | selection production
[
- AT S0

Depth image L Depth image

Depth image — o :
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Figure 4.3: Tracker generation of OBT and EOBT.

histogram of ROI. Depth range between 110 and 129 is desired truncation range. Middle image
shows truncation result. Below 110 or over129 gives bad truncation results, as shown in left and
right images. There are several different truncation methods, such as fixed boundary, average
value, statistics and value at middle point, etcetera. Since truncation methods could be taken as
an optional choice, we let user selects his/her favour.

To show which part we revised, Figure .3 compares tracker generation of EOBT with OBT.
EOBT has inserted object filtration to gray image. The object filtration uses the filter produced
by binarizing depth image. The other parts of tracker generation remain the same. This slight

revision promises that processing speed is not diminished too much.
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Previous tracker size

Figure 4.4: The need for scalability.

4.2 Multiple scales

If tracker size remains unchanged, it increases probability of drifting because of too much
background interferences in tracker. This problem is hard for OBT since there is no clue for
distinguishing appearance changes from object distance change. See Figure #.4. Since EOBT
has exploited depth info and isolated tracked object from background, we add scalability for

EOBT.

Figure 4.5: Scalable adjustment using multiple scales.

31



» Object tracking of OBT

Patch size Patches
Setting generation selection
» Object tracking of EOBT
Patch size Patches Patches YES Scale
generation generation selection selection

X O

Figure 4.6: Revised tracking process of EOBT.

Normal scale adjustment is used on'EOBT as Figure shows. Multiple scales can be
chosen by tracker's confidence value. The higher confidence, the more likely that guessing is
correct. This is still a crucial-problem since tracking accuracy is sometimes not so correct to
judge object size. Once tracking accuracy is-stable enough, tracker size could be stabilized.

Hence, adding scalability on EOBT alse.exams stability and credibility of EOBT.

Since adding scalability to EOBT only revised tracking process of the overall system, we
focus on this division to illustrate our revision. See Figure.6. Tracking process in OBT consists
of four parts. First, set patch size the same as tracker size. Next, according to search region size
and overlapped percentage, generate each patch one after another. These patches are selected by
tracker. The one with highest confidence is object's new position. After object's new position is
settled down, the tracker is then updated based on appearance of this new position. On the other
hand, tracking process of EOBT modifies patch size setting and adds scale selection. In patch
size generation, generate multiple scales for tracker. Each scale is evaluated and produced re-
spective confidences. These confidences are used to estimate new object size in scale selection.

Finally, classifier adaptation make tracker adapts to new appearance with the chosen scale.
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4.3 Enhanced OBT with Lifetimer

If object is temporary occluded, conventional tracker exits and regards that tracked object
is lost. However, in practical applications, there is no endless trail for real condition. Tracker
has to inform succeeding processes that tracked object is lost or just temporary occluded. We
consider that, the higher the number of successful tracking means the object is tracked tightly.
Chances are that, abruptly zero confidence may be viewed as temporary occlusion after several
successful tracking. Hence, we design a new mechanism for EOBT called /ifetimer to make
judgements. This mechanism is mainly designed to distinguish temporary occlusion from dis-
appearance and can be implemented using different methods. Here, we use sigmoid function
for example, because we should refer to the total. number of its successful tracking. Sigmoid
function, which is defined in Background, is rapid increasing or decreasing around the origin.
This property answers our needs.

In Figure 4.7, the x-axis is tracker's lifetime. We use y-axis value to decide when disappear-
ance occurred. Initial lifetime could be set any value, here we set it 0 for example. When tracking

activated, every track returns a confidence value. In original design in OBT, once returned con-

1
Sigmoid function P(t) = T3t
« -

Increase lifetime while

Initial tracker life " tracking successful

Decrease lifetime while
tracking failed

Threshold
' L—o ! ' ' (Disappear condition)
6

Lifetime (t)

Figure 4.7: EOBT implemented with sigmoid function.
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fidence is 0, the tracker is recognized as lost. However, in our design, when confidence is more
than 0, tracker's lifetime increases. When confidence is stuck at 0, tracker's lifetime starts to
decrease. Also, in case that the tracker has retained successful tracking for a long time and sud-
denly encountered disappearance, tracker needs to waste lots of time decreasing lifetime. The
upmost value of lifetime can be set. Through lifetime design, tracker has authority to decide

when to give up.

Since EOBT has only changed on disappearance judgement of OBT, we discuss those mod-
ifications. See Figure {.8. In OBT, tracking is terminated if the tracker is lost or all frames are
carried out. While in EOBT, opportunity is preserved for tracker. First, setting parameters like
initial lifetime or disappear threshold. Then, lifetime is adjusted according to confidence of each

track. Also, in each track, disappearance condition is examined, as shown in Figure 4.8

» Disappearance judgment of OBT

Disappearance judgment
P ~

\
| """ |
Object I Object ! Tracking |
tracking idisappears | stage / END :
1 L
x ' |
Tracker
generation

» Disappearance judgment of EOBT

Update condition is unsatisfied

i mmmmm e

L
I ! r |
Object _l’ Lifetime L Disappearance ll Object ! Tracking 1
tracking 1 | adjustment judgment :disappears | stage / END :
I e |
+ \- -------------- - —— '
Cifetimer
Tracker
generation | Update condition is satisfied

Figure 4.8: Disappearance judgement of EOBT
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Figure 4.9: System overview of EOBT

To sum up, we have modified.on several parts of OBT. See Figure §.9 for better illustration.
First, EOBT enhances OBT with depth image, which modifies 'Tracker generation' in system.
Second, EOBT adds scalability on OBT using multiple scales, which modifies '"Tracking' part.
Third, EOBT with lifetimer modifies disappearance.condition to decide when should give up.
These three mechanisms enhance original OBT in different parts, and the most important, we
think these enhancements increase object integrity. We design three experiments to exam our
proposal on next chapter. In discussion chapter, we discuss our tracking method with others and

give a vivid view on object tracking.
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Chapter 5

Experiments

In this chapter, we propose our evaluation method and use it to verify our proposal. First,
preliminary gives an overview on evaluation method and implementation details. Next, three
different experiments are carried out to test our proposal. Finally, summary is given in the last

section.

5.1 Preliminary

In this section, we point out two-drawbacks of conventional evaluation method and pro-
pose new evaluation method. ‘We use proposed evaluationto judge experimental results. Also,

implementation and assumption are mentioned in this section.

5.1.1 Evaluation Method

Recently, in several conference papers and journals, position error is a popular evaluation
method in object tracking. It is easy to implement, but less accuracy and credibility. Since
ground truth is labelled by human, variations of human labelling inevitably exist. If the variation
of examined tracking method is more than those of human labelling, it is still an applicable
evaluation. However, since these days tracking accuracy is promoted to certain level, chances
are that variations of human labelling may influence accuracy judgement. Another issue is that,
although better accuracy is shown on position error plot, the tracker already loses its focus. For

example, see Figure B.1|. Tracked object is the 'coke can' held by hand. In position error plot,
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Figure 5.1: Wrong target problem of position error. Frame 183 in 'Coke Can' video. Adopted

from [|18]

MILTrack remains the best at frame #183. Nevertheless, the tracker has lost its focus and drifted

to the wrist.

We think that tracked object pixels-should be used to judge tracking results. These pixels
represent area tracked object projects on to. If tracker has partially caught tracked object, it
means the tracker is not lost. We. illustrate this-concept'in Figure 5.2. There are two factors
to judge tracking results. One factor. is obviously, the percentage of tracked object in tracker,
named RIO. This factor reflects the amount of tracked object area that tracker put attention on it.

In addition, since scalable tracking method changes tracker size, percentage of tracked object in

Correctly tracked object

Tracker To be tracked object ~ Tracker To be tracked object

Figure 5.2: New evaluation method.
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(b)

Figure 5.3: Example of ground truth construction.

tracker should be took into consideration. This is the purpose of our second factor, RIT. These

two factors can be expressed using following equations.

RIO — Pixels of correctly tracked object

5.1
Total pixels of target object S

RIT - Pixels of correctly tracked object

5.2
Pixels of tracker area (5-2)

Proposed evaluation method may have problem on feasibility. Fortunately, thanks to the
invention of Kinect, counting object total pixels becomes feasible. See Figure 5.3. Figure

(a) and are images gathered by Kinect. Figure is intercepted and binarized from
depth image. Additional retouching is needed but not laborious. We use Figure as ground

truth for accuracy judgement.

5.1.2 Implementation
Here we list our experimental environment as follows.
1. PC

(a) CPU: Intel®Core 2 DuoE7500 2.93 GHz
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(b) RAM: 1.96 GB
2. Images from Microsoft®XBOX 360 Kinect

(a) Color image: 640 x 480 resolution

(b) Depth image: normalized depth values to 0-255

3. Libraries

(a) OpenNI ver. 1.1.0.41 for image capture

(b) OpenCV ver. 2.1 for image processing

5.1.3 Assumption

In our experiments, since features-are generated randomly, every experiment is conducted
100 times and comparison is on their average performance. Our analysis method is different
from Babenko's research [18]. Their comparisonis based on the same features and only learning
algorithm have been changed. Since stability of tracking methods is also one of our concerns,
we choose statistical analysis. In experiments, number of weak classifiers and base classifiers

are fixed. We list parameters of OBT and EOBT as follows.

Number of base classifiers: 50

Number of weak classifiers: 250

Four parameters for Kalman filter using Gaussian distribution:

pp = 500; op = 0.0005; ug = 500; og = 0.0005.

Search factor: 4.0

Self-defined parameters are,
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1. Tracker generation

(a) Truncation method and its parameters
For example, if fixed boundary is used, upper bound and lower bound value should

be settled.

(b) Background color
This parameter is for tracking dark objects. Using light background color for dark

objects is more appropriate.

2. Object tracking

(a) Number of scales

Set for number of scales:

(b) Multiplying factor

Multiplying factor of different scales according to previous tracker size.

3. Disappearance judgement

(a) Initial lifetime
(b) Increment

Each time when tracking success, increase increment of lifetime.

(c) Decrement

Each time when tracking lost, decrease decrement of lifetime.

(d) Disappearance threshold

Threshold value for signifying tracked object disappear.

Especially, OMIL uses different weak classifier updating method. In our experiment, their

updating method is remained. We briefly describe two different updating methods here. OMIL
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uses,

e = Y1 + (1 — ’V)% Z fi(:) (5.3)
ilyi=1
and
o=+ (=), [ S (el — ) 54
ilyi=1

with Bayes rule to determine threshold of Haar-like features. On the other hand, OBT and EOBT
use more complex updating method. State space model and Kalman filter is used. State space
18,
ot = f—1 + Vg, (5.5)
2

a2 262 5t vy (5.6)

Parameters of Kalman filter are determined by,

K; = Pif(Pi1 + R): (57)
pe = K fi(x) + (1 = K) -, (5.8)

o7 = Ki(fi(w) — p)” + (1= Kp)opy, (5.9)
P =(1-K,)P,_,. (5.10)

The hypothesis returned from weak classifier is defined as,

h?’e“k(x) =p; X sign(fj(x) - 19j), (5.11)
where the threshold ¥; and parity p;are,

Oy = | +p7]/2 (5.12)
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and,

+

pj = sz'gn(,u — /f). (5.13)

The p is for positive samples and p~ for negative samples.

Totally, there are three experiments, drifting, scalability and temporary occlusion. In each
experiment, OBT, OMIL and EOBT are verified. Due to limitations of OSSB and BSST, they
are not examined in our experiment. However, a comprehensive description is given in next

chapter.

5.2 Drifting

In this experiment, Objective is to exam that EOBT helps to eliminate drifting. The scenario
of experimental video is that ene person does translation and rotation in frame sequence. It
contains 360 rotation and translation at the same time. If adaptability and drifting-resistance
of tracking methods are insufficient, drifting may occur in frame sequences. There are some
examples of experimental video in Figure 5.4 Especially, color of frontal view and rear view is

different. Therefore, color histogram-based tracking method might get lost in this situation.

Experimental results are depicted in Figure 5.3. Compared with OBT, OMIL and EOBT
have great performance. Especially, Object that EOBT has tracked almost maintains more than

80% and after frame #130, EOBT has better performance than OMIL. Since tracker size of

S e
el
S S| ¥

Frame #25 Frame #37 Frame #49 Frame #61 Frame #73 Frame #85 Frame #97

Figure 5.4: Experimental video for experiment on drifting.
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Figure 5.5: Experimental results on drifting.

all tracking methods remains the same in entire frame sequence, the tendency of RIO and RIT
are similar. Difference is that, RIT curves become fluctuated. Reason of this phenomenon is
caused by rotation of tracked person. Frontal view of tracked person is with the biggest area,
which means more pixels are used to-describe. “On the other hand, lateral view is with the
smallest area. Be aware that,-in all of experiments, only frames have been tracked are took
into consideration. Our purpose is to reveal actual tracking results. In this manner, the tracker's

ability of judgements on missing condition is also correctly revealed from RIO and RIT curves.

Best case

Worse case

Frame#| Frame®7 Frame#| 3 Frame#|9

Figure 5.6: Best case and one of worse cases of our experimental results.
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Some results are shown in Figure b.6. Experimental results which are lost in half of frame
sequence are not took here. In best case, focus of tracker is always on the tracked person. In

worse case, however, focus in only put on upper part of the tracked person.

5.3 Scalability

In this experiment, tracking verification is on scalability. This verification is divided into
two parts. First, tracked person moves from far to near. Second, this experimental video is
played backward, so that different object motion can be evaluated. Thus, tracking ability on
scalability is examined in two manners. One is from far to near. The other is from near to far.
Figure shows some example of experimental video. In addition, because OMIL does not

adapt scale variation, we only compare EOBT with OBT here.

5.3.1 Moving Forwards

Experimental results are shown in Figure 5.§. From frame #1 to #3 in RIO, a drop on
performance has occurred. This is caused by severe rotation of tracked person. Also, from
frame #25 to #27 in RIT, performance is decreasing because of fragmented depth information.
See Figure .9. In entire frame sequence, performance of EOBT is better than that of OBT.

Especially, RIT has revealed that, in varied tracker size, EOBT has remained stable around 0.7.

Figure 5.7: Experimental video for experiment on scales.

44



RIO RIT

12 0.8

L \ 07 7%@?
B 0.6
X v \
08 |4\ os |4
2 B 2 H
T 06 |- = 04 %
o o .
....... OBT . wrenass OBT
04 03— -
e, EOBT 0.2 e i EOBT
02 R 0.1
g LT, o
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Frame sequence Frame sequence

Figure 5.8: Experimental results on scalability. (From far to near)

Frame #02 Frame #06 Frame #14 Frame #25 Frame #26 Frame #27

Figure 5.9: Problems caused performance drops.

This means that tracker size adjustment catches up with moving speed of tracked object. If
tracker size could not adjust in.time, RIT curve becomes.a descending curve. This situation is
not happened to OBT since most trails of OBT.is lost.

Figure shows some of our experimental results. In best case, tracker size is catching
up with tracked person. Be aware that these are consecutive frames from left to right and from
first row to second row. In worse case, typical shrinking problem occurred just as tracking by
Mean Shift [30]. This problem is caused by the distribution of random features. If representative
features are gathered around at clothes of tracked person, smaller tracker gets higher confidence.

We discuss this part in next chapter.
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Worse case

Frame#| Frame#7 Frame#|3 Frame#|9

Figure 5.10: Best case and one of worse cases of our experimental results.(From far to near)

5.3.2 Moving Backwards

The experimental video is.played backward to verify scalability of EOBT in different man-
ner. Similar results are shown in Figute 5.11]. Difference isthat, previous mentioned descending
curve has appeared here. Because of diminished area of tracked person, the part caught by OBT
is decreased. If adjustment of tracker size caught up with tracked person, curves in both RIO
and RIT remain horizontal. See EOBT curve in Figure 5.11|. The ratio in RIO of EOBT remains

between 0.8 and 0.9 from frame #2 to #25. The ratio in RIT decreases at first, but remain stable

1 0.6
0.9
o
0.8 05 = \_\
0.7 0.4
0 06 \ o W/\
s 05 \ E 03 to
% g4 - n OBT e \ ....... 0BT
3 e e BTN
0.2 gogT T \ EOBT
. 01 ——————————————————————————
o1 T T,
0 0
1 3 5 7 9 1113 15 17 19 21 23 25 27 1 3 5 7 9 11 13 15 17 19 21 23 25 27
Frame sequence Frame seugence

Figure 5.11: Experimental results on scalability.(From near to far)
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Frame#| Frame#7 Frame#|3 Frame#|9

Figure 5.12: Best case and one of worse cases of our experimental results. (From near to far)

from frame #9 to #25. Drops of EOBT in both RIO-@and RIT are caused by severe rotation of
tracked person, which has been'mentioned before.

Experimental results are shown in Figure[5.12.. The best case consists of consecutive frames,
but worse case is not. In best case, the tracker has caughtup with tracked person. In worse case,

however, adjustment of tracker size is slower than the speed of variation of tracked target.

5.4 Temporary Occlusion

The third experiment verifies tracking methods on temporary occlusion. If object is oc-
cluded and tracker does not detect, the tracker then adapt on wrong target. Experimental video
is designed as follows. Two people dressed clothes with similar color. They walk towards each
other. The tracked person is the far one. When they pass each other, the tracked person is
then severely occluded. Usually, tracker gets confused in this situation. Without any limitation,

drifting occurred.
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Temporary occlusion

Figure 5.13: Experimental video for experiment on temporary occlusion.

Figure shows experimental results. Top row shows several critical frames in video.
OMIL and EOBT have better performance than OBT. From frame #62 to #67, the tracked per-
son makes a relative huge stride. OMIL curves in both RIO and RIT have dropped abruptly.
Performance of EOBT only decreases a little. From frame #77 to #83, the tracked person is
occluded by the others. OMIL curves have dropped to zero in both RIO and RIT. On the other
hand, EOBT curves only dropped at frame #80 and recovered after temporary occlusion. How-
ever, occlusion has destroyed tracker's inner object appearance model. Hence, some trails of
EOBT have drifted away. This is the reason that EOBT curves decrease to zero after temporary

occlusion. However, in our experiment; some EOBT does pass this situation. See Figure 5.13.
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Figure 5.14: Experimental results on scalability.(From near to far)
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Figure 5.15: Best case and one of worse cases of our experimental results.

In best case, the tracker focuses on correct person.-While in temporary occlusion, tracking and
updating are stopped. After that, tracker-appears again. Although, the left image in second row
of best case is not correct, however, after occlusion the tracker returns to correct person again.

In worse case, since the appearance model is destroyed, the tracker drifts away.

5.5 Summary

Experiments have examined tracking methods in three different aspects. First, rotation and
translation cause drifting. Second, distance variation between camera and tracked object causes
drifting. Third, drifting is caused by temporary occlusion. Experiments have shown that EOBT
has better drifting-resistance ability than OBT and OMIL. Especially, EOBT eliminates drifting
probability because it exploits depth information, which lowers background interference. In
fact, there are countless situations might cause drifting. We try to clarify these situations and

make a vivid understanding about object tracking in next chapter.
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Chapter 6

Discussion

In this chapter, object tracking and tracking methods are illustrated in details. Definition
of object tracking is always ambiguous, because it is highly coupled with object detection and
object recognition. We have made a new definition according to proposed evaluation method.
Also, tracking methods are discussed and difficulties are pointed out. We indicate contribu-
tions of related works and proposed method. In the meantime, roadmap of future work is also

illustrated.

6.1 Object Tracking

The objective of object tracking is to 1dentify object identity in the form of short-term mem-
ory. When one object comes in, visual system puts attention on it and perceives it as an indepen-
dent identity without any recall. On the other hand, object recognition is much like comparing
object with its long-term memory. To recognize it means to find the same object in memory.
Object detection is a pre-process of object recognition. The understandings of object detection
and recognition are in different levels. Applications like face detection find out where face is.

However, detection does not tell whose face is. The concept it possess is only face.

Similar concept has been identified by Yang in [31]. Though short-term or long-term mem-
ory seems only applicable for human, our main focus is on acquisition of object identity without

any recalls from stored datum. Challenge is that, one object consists of many appearances,
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which is regarded as manifold. Existing tracking methods assume that changes of appearances
are slow and continuous. They use adaptive appearance model to get through this challenge.
Problem is, when using adaptive appearance model without any knowledge of real appearances
of objects, drifting occurs. Similar problem has been addressed since 1996 in [32]. Research
on manifold is still in progress. In fact, we consider that this challenge is tightly connected with
semi-supervised learning [25]. Since semi-supervised learning is trying to bridge the gap be-
tween known data and unknown data, the maximum expandable knowledge of known data to

unknown data is one of the submanifolds.

See Figure . C1, Cia...Crg are submanifolds of M. One manifold can be regarded as
the set of all appearances of a single object. In figure, I is the image obtained from camera. The
challenge can be interpreted as to‘construct M. For every incoming image I, comparison is
made by estimating the distance between I and manifold #/;, as dy (M, I) shown in figure. If

M, could be constructed during tracking, drifting might not occur.

The ultimate goal of object tracking is that, both RIO and RIT are approaching to 1.0. Also,

every tracking result should be repeatable and variations between every trail should be as small

Figure 6.1: Concept of manifold. M, is a specific manifold and C};s are submonifolds of M.
I is some object. The distance dy is used to calculate the similarity or likelihood that object
belongs to Mj,.
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Figure 6.2: Integration of mentioned tracking methods

as possible. Repeatability and in-trail variations are described in next section.

6.2 Tracking Methods

In this section, illustration focuses on different aspects of tracking methods. Issues like

methodology and stability are taken into our discussion.

6.2.1 Methodology

Tracking methods which first proposed by Grabner [[13] can be divided into five segments
as in Figure 6.2 In each segments, several researches have been conducted according to each

part. Our discussion focus on these individual segments.

Image

Original design of OBT uses gray images as input. Gray images are also used as input
for another three related researches, OSSB, BSST and OMIL. In our proposed method, depth
image is used to distinguish object from background, lowering background interference at the
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Figure 6.3: Experimental results on drifting.

same time. Also, we have directly used depth image and combined them with gray images and
did experiments on drifting as stated before. Results are shown in Figure 6.3. It seems that direct
use does not help OBT a lot. In fact, it is even worse after frame #170. We consider that, because
Kinect use infrared ray to obtain depth information, reflected signal is not stable enough. We
are not sure about the experimental results when using laser. Another potential source is color
images. Color images possess three times information than gray image. They are more stable

than depth images. We leave it as future work.

-
1 1

Contour Haar-like feature Color histogram

Precise Ambiguous

Figure 6.4: Ambiguity of each feature.
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Feature

Related work and proposed method use Haar-like features. Since Viola and Jones exploit
this feature in [21] and gain great success, Haar-like feature has been applied into many ap-
plications. The most amazing mechanism it offers is that, Haar-like feature is not too precise,
but also preserves local characteristics. Color histogram, as mentioned in introduction, destroys
orientation information. However, point and contour features are too precise, so they cannot en-
dure large variations in physical environment. We believe that using Haar-like feature is part of
reasons why tracking methods have abilities to tolerate variations. Figure 6.4 shows ambiguity

of different features.

Generative appearance model

(,‘p é A ®

negative  negative
sample sample

positive

sample

negative  negative
sample sample

Figure 6.5: Two different appearance models.Generative model is adopted from [33]. Gener-
ative model is trained using object appearance directly. Discriminative model is trained using
differences between objects and neighbouring regions.
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Appearance Model

There are two different appearance models, generative appearance model and discrimina-
tive appearance model. Generative model collects data only from tracked object. On the other
hand, discriminative model collects from not only tracked object, but surrounding background.
Therefore, discriminative model can be regarded as combination of two generative models. One
is from tracked object. The other is from surrounding background. Both of them are used in

research. However, Yang has pointed out that,

many of the latter approaches have shown that training a model to separate the

object from background via a discriminative classifier can often achieve superior

results [31].

Since more information is gathered, cost of processing time is paid. Trade-off between accuracy

and time should be taken into consideration:

Learning Method

OBT, and also EOBT, are designed using supervised learning. They get through the mani-
fold challenge by adapting new appearance. Since the reason why drifting is still inevitable has
been mentioned, here we focus on semi-supervised learning and multiple instance learning.

Semi-supervised learning is a learning method that expands known data to those unknown.
It should be useful in object tracking. However, it fails in all of our experiments. It is reasonable
considering succeeding frames as unknown data. However, due to the characteristics of mani-
fold, we consider that semi-supervised learning using similarity may not cross the gap between
submanifolds. If tracking on similar appearances without changes on rotation and distance,

semi-supervised learning method is stable and sufficient.
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On the other hand, multiple instance learning modifies the sharp boundary between tracked
object and surrounding background. Figure 5.4 shows the reason why OMIL can tolerate partial
occlusion. We believe that, this is also the reason why OMIL is more stable than OBT. Next
section illustrates tracking methods on stability. In fact, Godec et al. have mentioned the influ-
ence of label noise in [34]. They made initial tracker position slightly misaligned, and drifting
occurred. However, label noise problem seems reduced in OMIL. Please refer to their web-
sitel and see their experimental video on David indoor. Integrating MIL and semi-supervised

learning might solve manifold problem.

Tracking Method

In all related works and proposed EOBT, they track without any motion model. However, it

is time-consuming to search all:position.-Godec et al. have exploited particle filtering to improve

Thttp://vision.ucsd.edu/ bbabenko/project_miltrack.shtml

Frame 1 CIf Initialize Frame 2 CIf Update
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R Ftr Pool: 24 Ftr Pool: Frame 3
= F 'M’- EIEES
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Example OAB CIf ={B } Example OAB CIf ={ E }

i |
®

Initial Positive Extracted Positive

Examples (a Bag)
s o () ety o)
[ [ e
CIf = Classifier ~Ftr = Feature OAB = Online AdaBoost

MiL

When updating, the classifiers try to pick the feature that best
discriminates the current example as well the ones previously
seen. OAB has trouble with this because the current and

Consider a simple case where the classifier is In the second frame there is some occlusion. In

allowed to only pick one feature from the pool. The particular, the mouth is occluded, and the X - -

first frame is labeled. One positive patch and several classifier trained in the previous step does not previous pos\tllve examplles are too different. .‘t cf.wo.oses abad
negative patches (not shown) are extracted, and the perform well. Thus, the most probable image feature. MILIs able to pick the feature that dls_cmmlnates_ t_he
classifiers are initialized. Both OAB and MIL result in patch is no longer centered on the object. OAB eyes of the face, because one of the examples in the positive
identical classifiers — both choose feature #1 because uses just this patch to update; MIL uses this patch bag was corr.ectly cropped (even though the moth was

it responds well with the mouth of the face (feature along with its neighbors. Note that MIL includes occluded). MIL is therefore able to successfully classify future

frames. Note that if we assign positive labels to the image
patches in the MIL bag and use these to train OAB, it would have
trouble picking a good feature.

#3 would have performed well also, but suppose #1 the "correct” image patch in the positive bag.
is slightly better).

Figure 6.6: Solve occlusion problem using MIL [[18]. Because MIL is trained from the con-
cept of bag, each part of object appearance can be recognized. This helps a lot while object is
occluded. Statements below the table describe how MIL works in detail.
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Figure 6.7: Experimental result on searching using particle filter. Adopted from [34].

search sampling. We adopted one of their experimental results in Figure 6.7. Their experiment
shows that, number of particles between 500 and 3500 is applicable. Especially, frame rate is

double when using 500 particles. Improve searching method also accelerates tracking perfor-

mance.
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Figure 6.8: Stability on drifting.

6.2.2 Stability

Since Haar-like features are generated randomly, variation of tracking results should be one
of considerations. Ultimate goal is the variation of tracking results approaches zero when using

certain amount of features. We define this variation of tracking results as stability. It seems
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Figure 6.10: Stability on scalability.(Backward)

that stability is seldom addressed in research. -Experimental results on stability are shown in
Figure [6.§ to Figure 6.11|. Especially, we use standard error to measure stability. Be aware that,
we only compare results which have been tracked. Those lost results are not taken into account
since we consider those are not reflected variations of tracking results on specific frame.
Experiment on drifting shows that, when tracked target is not lost, OMIL has the best sta-
bility. However, when drifting occurs, variation of OMIL rapidly increases. See Figure b.§ in
stability on RIT. When scalability is introduced into EOBT, stability decreases. Since multi-
ple scales increase the degree of freedom, variation of tracking results is inevitably rising. See
Figure 6.9 and Figure [6.10. When temporary occlusion is happened, stability of EOBT also de-
creases because occlusion destroys appearance models. It makes EOBT tracker unstable. Here,

OBT and OMIL seem better than EOBT. However, their RIO and RIT performance has dropped
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Figure 6.11: Stability on temporary occlusion.

to zero. Please refer to Figure [6.12. That means almost all trails are lost. EOBT with lifetimer

has potential to get through temporary occlusion.

6.3 Summary

In this chapter, we have made our definition for object tracking. The key point is to identify
object identity. Next, tracking methods using online boosting have been discussed from different
aspects. Meanwhile, some future works are-also-proposed. Though stability is not good enough,
experiments have shown that tracking using online boosting has excellent performance. We

conclude all our research in next chapter.
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Figure 6.12: Experimental results on temporary occlusion.

59



Chapter 7

Conclusion and Future Work

In this thesis, we have proposed three mechanisms to enhance OBT in drifting resistance.
First, we exploit depth information to lower background interference. Second, we introduce
scalability for EOBT to solve drifting caused by distance variation. Third, we design a lifetimer
so as to get through temporary occlusion. Also, we have proposed a new evaluation method to
avoid wrong target problem in original evaluation method. New evaluation method is composed
of two factors, RIO and RIT. RIQ is a ratio to reveal the percentage of object that tracker has
caught. RIT is used to reflect the area that tracker spends on tracking. Especially, RIT is used

when tracker size is changeable.

All three of proposed mechanisms have been examined. Experimental results show that,
EOBT does help to eliminate drifting probability. We also conduct research on stability, which is
seldom addressed in related literature. Discussions on object tracking and tracking methods are
described in previous chapter. Our future work will focus on solving manifold problem. Also,
introducing parallel computing into tracking methods seems appropriate and may substantially
accelerate performance. Improvements could be made in search sampling, and so on and so

forth. Tracking using online boosting is still a developing research!
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Appendix A

Appendices

Theories which used in this paper are describe here in detail. Because online boosting
is based on boosting, boosting is illustrated first, and then online boosting comes after. Next,
introduce semi-supervised learning, which is used in one of our related works. Last but not least,

we introduce multiple instance learning.

A.1 Boosting

Boosting is an ensemble learning algorithm. Its.goal is to combine several weak classifiers
into a strong classifier. Here; weak classifier means learning algorithm which is not correct
enough. Strong classifier, on the other hand, makes accuracy classification. This is the reason
why it called ensemble learning.

The main idea of boosting is to adjust weight distribution on samples. Boosting gives every
training sample a corresponding weight. At each round of learning, sample weight is adjusted so
that weak classifiers focus on those misclassified samples. There are several different versions
of boosting, like AdaBoost, GentleBoost, and so on. We choose AdaBoost in [22] for better
connection with online boosting. One may refer to [19] for detailed illustration in theories of
AdaBoost. See Figure

First, (x1, ;) is a pair of training sample. x; is a sample value and y; is its corresponding
categories. L; is any adopted weak learning algorithm and M is number of weak classifiers. In

initial stage, sample weight is given for every sample as ! /. When learning starts, each weak



AdaBoost({(z1,y1),---, (zn,yn)}, Lo, M)
Initialize Dy(n) = 1/N foralln € {1,2,... ,N}.
Form =1,2,..., M:
hen = Ly({(z1,91)5 -+ (@n,Un) s D)
Calculate the error of by = €y = 3y, ()1 Dp(n).
If ¢, > 1/2 then,
set M = m — 1 and abort this loop.

Update distribution D,,:

1 :
5T e it h ,(:1;,. ) =,
Dypyi(n) = Dy (n) 2(11 m.) m\Tn 0

2¢m

otherwise

Output the final hypothesis:
1

€m
€m

hyin(2) = argmax ey 3 op,, (2)=y 09

Figure A.1:-AdaBoost algorithm [22].

classifier learns from all samples using learning algorithm L, with the same weights. After
learned from all samples, classification errors €,, is summed. Classification error is number of
misclassified samples. If more than half samples were misclassified, it means that this learning
is worst than random guess and trained classifier is discarded. If classification error was less
than ! /5, sample weight is adjusted. Weights of those correctly classified samples are reduced.

Their previous weight is multiplied by . On the other hand, weights of misclassified

1
2(1 —€,)

samples are raised and their weights are multiplied by 5 In this manner, boosting focus on

€m
'hard' samples.
After M weak classifiers are finished learning, final strong classifier is linearly combined

by weak classifiers. Here, hypothesis means prediction made by classifiers. The final hypothesis

chooses the maximum value of combinations of weak hypotheses which voted for each category.



Here, if only two categories are in use, the final hypothesis is simpler as,

by = Y log i (A1)

€
m:hm (z)=y m

Be aware that, €, here is the hypothesis made by m weak classifier after learning.

Oza has explained why the combination factor of each weak hypothesis is

Y log L= em, (A.2)

€m
m:hp (z)=y
We extract his deduction as follows. If Bayes optimal decision rule is used as learning algorithm

and only two-category problem are dealt with, the reason we choose y; over ys is that,

According to Bayes rule, Eq. [A.3‘can be rewritten as,

P(Y =y1)P(hi(z), ..., harlz) Y= 1) - PY = y2)P(hi(x), ..., har(z)|Y = yo)
P(hy(x), ..., har(Z)) P(hi(x), ..., hp(z)) '

(A.4)

Since two denominators are same for all categories, we eliminate them together. Also, because
hy(x), ..., har(x) are independent events, Eq. ]A.4 is the same as
PY=y) J] e JI O-e)>P¥=w) ][] e [] C—en)
m:hm (z)#y1 m:hm (z)=y1 m:hm () #Y2 m:hm (2)=y2

(A.5)
Here, h,,(z) # y; is the same as h,,,(x) = y» because there are only two categories. P(Y = y;)
and P(Y = y,) are trivial since we can add a weak classifier which always predict y;. Then,
P(Y = y;) could be replaced by 1 — ¢y and P(Y = y5) is replaced by ¢,. We get,

I1 1jm> I1 126’”. (A.6)

m:hm (z)=y1 m m:hm (z)=y2

Taking logarithms, we get,

3 10g<1_6m>> 3 10g<1_6m). (A7)

€ €
m:hm (z)=y1 m m:hm (z)=y2 m
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Eq. [A.7 tells the reason why weights of each weak classifier is set as

<
<

Z log ! Z ‘. A8)
m:hm (x)=y m
Training
Examples o _ - )
O T -
o - L | i
O | [ i I
O I _
D‘\ —— — - —
: \ ] O ——
= -0 = =
D . -VXD D D D .....
O :g 1/2 = = =
.- " =T
= T B = B

Weighted
Combination

Figure A.2: AdaBoost inaction [22].

Figure shows AdaBoost in action. The rectangle is represented as sample weight. At
first, sample weights for each samples are the same. After learning by a weak classifier, sample
weights are adjusted according to hypotheses made by this weak classifier. This process executes

for several rounds until target classification error rate is reached.

AdaBoost is proved that the maximum error returned by strong classifier is bounded above

by
M
2" T Vem(1 —em). (A.9)
m=1

Please refer to [19] for details. Oza has pointed out that, according to several experiments,
adding more weak classifiers even after classification error of final strong has reached zero,

overfitting is not occurred and margin of samples continues to increase. Here margin of sam-
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ples is the total weighted vote for correct category minus the total weighted vote for incorrect
category. This experimental results and its excellent performance have made AdaBoost one of

the most popular learning algorithms.

A.2  Online Boosting

Oza has made boosting from batch processing into online processing. Online processing
means algorithm only learns each training sample once and discards it forever. To clarify, boost-
ing in section is rename as batch boosting. Online processing introduced by Oza is named
online boosting. To make batch boosting to become online, the concept of /ossless should be
mentioned beforehand. As defined in [22], a lossless online learning algorithm is an algorithm
that returns a hypothesis identical to what its corresponding batch algorithm would return given
the same training set. Several lossless online algorithms are decision trees, decision stumps and
Naive Bayes classifiers. Using lossless algorithm is one of key points which maintains online

boosting as good as batch boosting when training set is become huge.

See Figure [A.3, algorithm of online boosting. In previous section, we name every learning
algorithm as a weak classifier. Here, weak classifiers are regard as base of online boosting. So,
weak classifiers are named as base model. In essence, they are the same. First of all, decide
the amount of base models and set \J¢ and A\;" as zero. A\ defines as the sums of weight of
the currently classified examples, and \;" is of the currently misclassified examples. Initially,
example weight, which is the sample weight mentioned before, is set to one. Next, every base
model learns k£ times from the incoming example. Although £ is set according to Poisson dis-

tribution, £ — Possion()), defined as,

f(k,A) = , (A.10)



Initial conditions: Forallm € {1,2,..., M}, A& =0, A" = 0.
OnlineBoosting(h, L, (z,y))
Set the example’s “weight” A = 1.
For each base model h,,,, (m € {1,2,..., M})inh,
Set k according to Poisson(\g).
Do k times
hm = Lo(hm, (2, )
Ify = hy,(z)
then

A“i(‘ — A.’a‘(f + )\

n n

Asw
5 .
bm T XA

1

el G

else
s s
AN’L AN’L + )\

('TH, A:- ?

/\<—/\(f

To classify new examples:

l—em

Return h(z) = argmax ..y Zm:h.,,, (2)—c log

o

Figure A.3: Algorithm of online boosting [22]

practically we could set it as a constant. Then, verify this base model using current example.
If it does classify correctly, add example weight, A, to A\’¢ and calculate the error of this base

model by,
X

S — A1l
S+ Mg (a.11)

€m
The error calculation is the first difference compared with batch boosting. Another difference
is example weight adjustment. In batch boosting, this is done according to the overall training

set. While in online boosting, example weight adjustment is solely done according to error of

one base model, which defined as,

A=A —— (A.12)



However, example weight adjustment is operated as batch boosting in that, for misclassified
example, example weight is raised and for correctly classified example, example weight is re-
duced. The final strong classifier of online boosting is composed the same as its counterpart in

batch boosting. For more details and theories, please refer to Oza's ph.D. thesis [22].

To better illustrate, see Figure [A.4. In each row, every base model learns from only one
example. In first row from left to right, training example is learned by first base model. After
that, first base model returns an error according to its classification on this example. The error
returned by first base model is used to adjust example weight. Altered rectangle size shows ex-
ample weight adjustment. When all training set are learned, these base models are then weighted

combined according to its error.

Oza has claimed that, usingossless online algorithm to create base models, the perfor-

mances of online boosting is not far from batch boosting. This achievement is also the foothold

Training
Examples
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Figure A.4: Online boosting in action [22].



for successful applying online boosting to object tracking.

A.3 Semi-Supervised Learning

Semi-supervied learning exploits not only labeled data but also unlabeled data. Traditional
learning methods use only labeled training data, which are called supervised learning. Here,
labeled data means data is classified correctly by human. Sufficient labeled data is always a
problem for machine learning. Semi-supervised learning bridge the gap between labeled and
unlabeled data. There are many methods designed for semi-supervised learning, like EM with
generative mixture models, self-training, co-training, etc. Xiaojin [25] has made a comprehen-
sive survey on semi-supervised learning. ~Here since SemiBoost [26] is adopted by Grabner
for tracking in [[16], illustration focuses on SemiBoost. Especially, for better connection with
tracking, we adopt [27].

In [20], boosting is regarded as adaptive logistic regression which minimize an exponential
loss function on training data. Loss function could be viewed as objective function. Boosting

minimizes loss function,

Lpr = Z L(x,y) = Zx € DLevH®) (A.13)

xeDL

To exploit unlabeled data, loss function is modified to take both labeled and unlabeled data into
consideration. In SemiBoost [26], unlabeled data is connected with labeled data using similarity
measure, S(X;, X;). All loss function are list as follows.

For labeled samples,

LE(x;, ;) = e il (), (A.14)
For pair of labeled and unlabeled samples,

ﬁLU (Xz‘, Yi, Xj) = S(XZ', Xj)e_zyiH(xj). (AIS)
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For pair of two unlabeled samples
LYY (x;,%;) := S(xy,x;) cosh(H (x;) — H(x;)). (A.16)

The combined loss is,

—2yH(x)
|XL‘ Z '

XEXL
—2yH (x)
> D Sxixje (A.17)
\XL||Xul et
> 3 a0
(x;,X;)e
XU||XU| el

Now, semi-supervised learning has become an optimization problem by finding the best weak

classifier h,(x) and weight «,, which is,

(s By ) =-argmin (L). (A.18)

Qs hp

Hence, the best h,(x) is,

hny argmln (‘XlL’ %{:L wn (@, y) Z - ))anhn(:p)>, (A.19)

ex¥
hn(z)#y

where wy, (X, y), p,(X) and ¢, (x) are,

wWa(x,y) = e Wi, (A.20)

po(z) = e 2= 1(’” L| Z x,T;) | U| Z S(x, z;)en- L@i) = Hn—1() (A.21)

r;ext ziexU

and
1 1 o
gn(z) = 2@ _—_ E S(x,x;) + W E S(x, x;)etn—1@ = Hoa(zi) (A.22)

The weight ., can be got by taking derivative of Eq. [A.19, which is,

(z)=1 hn (z)= hn (2)=

AT Sy, 0+, o)) R e o

hn (2)=1 b (z)=—1 hn(x)#y

1
N <|X (e ) 1T e i)+ L,z wn<x,y>>.

(A.23)



Semi-supervised learning makes strong model assumption [25]. Those unlabeled data does
not always help [35]. The critical point is in the connection of labeled and unlabeled data. For
example, SemiBoost using similarity measure to cross the gap. Grabner et al. [16] then use
online version for object tracking. Limitations from tracking results show that, it does diminish

drifting problem, however, it also seriously reduce adaptability.

A.4 Multiple Instance Learning

Multiple instance learning (MIL) is also a research topic conducted for decades. The idea
of multiple instance learning is originally proposed in 1990 solving handwritten digit recog-
nition [29]. There are many solutions and our illumination focuses on [29] since Babenko et
al. [[18] chose this one. Viola et al. have proposed two. variants to solve the MIL problem,

Noisy-OR Boost and ISR Boost. We only describe Noisy-OR because of Babenko's choices.

Different from boosting, examples are not individually labeled. They reside in bags. An
example is indexed with two indices, bag indeXx ¢ and instance index j. The probability of an

example is positive is,

1

P A.24
1+ e Y ( )

Dij
Here y;; = C(x;;) is the score of the sample and C'(z;;) = X\ (x;;) is a weighted sum of

weak classifiers. The probability that the bag is positive is,

pi=1-]J —pi). (A.25)

JE

Under this model, the likelihood for training bags is,
L(C) =[] »" (1 = p)" ", (A.26)

where ¢; € {0, 1} is the categories of bag i. Eq. could be regarded as objective function.

According to AnyBoost approach,

10



the weight on each example is given as the derivative of the cost function with

respect to a change in the score of the example [29].

The derivative of the log likelihood is,

dlog L(C) ti — pi
— " =Wy = ——Piis A.27
3%‘;‘ ! Di ! ( )

which is the sample weight. Each round, boosting is searching for a classifier which maximizes
Yijc(zij)wij. To better illustrate, equation of step-wise loss function in online MILBoost is
adopted as,

e =5, (wlog )+ (1+ ) og(1 — 7)) (A28)
This is step-wise logistic loss function. Online MILBoost finds the weak classifier with the

maximum £”. Please refer to Eq. [A.26.

t; — pi

%

Observe Eq. [A.28. The example weight is consist of bag weight Whag = and in-

stance weight Wiy siance = Pije Whag fOr negative example-is always —1. The example weight
on positive instance is more complex. ‘When-mcoming sample is approaching the target, the
weight on entire bag is reduced, i.e.,Wjy4, 1s-increasing. In this manner, examples around target

is weighted higher than those which is more far away.

In conclusion, we have introduced four different learning methods. First, boosting is an
ensemble learning method. Online boosting is its online version. Modifications have made on
weight sample adjustment. The primary achievement is the convergence of online boosting to
batch boosting. Semi-supervised learning bridge the gap between labeled data and unlabeled
data. Finally, multiple instance learning provides the bag concept on target. Every profile from
different aspects are one of the target. MIL breaks the sharp boundary between positive samples
and negative sample. To sum up, different learning algorithms help object tracking. Although
not all of them are suitable in tracking field, we're approaching the ultimate goal of tracking,
identifying object identity.
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