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Adaptive Beamformer for Speech Enhancement
Using Kalman Filter with Reference Signal Tracking

Student : Yu-Cheng Chu Advisor : Dr. Jwu-Sheng Hu

Institute of Electrical and Control Engineering

ABSTRACT

In this thesis, an algorithm that considers noise reduction and de-reverberation
simultaneously using microphone array is-proposed.-In many practical environments,
the desired speech signal-is usually contaminated-by stationary or non-stationary
noises and distorted by reverberation. When considering noise reduction only, the
desired speech signal could be distorted further due to the effect of desire signal
cancellation etc. The objective of this thesis is to design an adaptive beamformer to
incorporate de-reverberation into the noise reduction framework. The proposed
method tracks a pre-recorded reference signal to compensate the reverberation effect.
Consequently, the algorithm results in a trade-off between the two objectives. Further,
a voice activity detection (VAD) algorithm is proposed by slightly modifying the
proposed algorithm. An adequate VAD can help to identify the nature of signal and
noise and accelerate the convergence rate of Kalman filter. The experiments on real car
sound samples are processed. The performance of beamformer and voice activity

detection are both evaluated and compared with existing algorithms.
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Chapter 1. INTRODUCTION

1.1 Motivation and Objective

Our hearing is perhaps the the most useful sense except vision. However, the
information retrieved from hearing is usually contaminated by undesired sources.
Although human beings are able to recognize desired speeches under interferences, it
is still considered as a difficult task for computers or machines.

A common sensor for receiving sound wave is the microphone. Single
microphone can collect spectral information but not spatial information. To retrieve
more information among the sound wave, a collection of microphones, or microphone
array, is applied to catch not only-spectral information but also spatial information.
Among several existing microphone-array-based enhancement algorithms,
beamformer is one of the most popular-methods-and was extensively studied for
hands-free speech communication orrecognition:.

Background noise and reverberation are the most common origin to signal quality
degradation. The background noise is from undesired noise source or interferences.
The spectral and spatial likelihood between noise and desired source will determine
the difficulty of removing noise. The reverberation level will determine the distortion
to the desired source. The reverberation level is commonly affected by the reflection
ratio and openness of the environment.

The purpose of the thesis is to design a beamformer that handles both noise
reduction and dereverberation. A scenario like car environment is possible to occur in

real life, where the quality of sound is seriously deteriorated by engine noise and wind



noise and reverberation from the narrow space of cabin.

1.2 Literature Review

The beamformers can be categorized in two types, fix beamformers and adaptive
beamformers. Most of the fix beamformers are simpler than the adaptive beamformers.
The implementation costs of fix beamformers are often lower than the adaptive
counterparts.

Fix beamformers includes delay-and-sum beamformer (DSB) [11], constant
directivity beamformer (CDB) [12] and fixed superdirective beamformers [13]. They
utilize fixed coefficients to achieve.a desired spatial response. The DSB is the simplest
structure in fix beamformers..It first compensates to-the relative time delay between
distinct microphone signals-and then sums the steered signal to form a single output.
CDB is designed to maintain-the spatial response equal over a wide frequency band
while the fixed superdirective beamformer-attempts to suppress noise coming from all
directions without affecting the desired speech signal from a principal direction. Fix
beamformers generally assume the desired sound source, interference signals, and
noises are slowly varying and at known locations. Therefore, these algorithms are
sensitive to steering errors, which limit their noise suppression capability and give rise
to the desired signal distortion and cancellation. Furthermore, these algorithms also
have limited performance under highly reverberation environments.

Instead of using fixed coefficients to suppress noises and interference signals, an
adaptive beamformer can form its directivity beam-pattern to the desired signal and its

null beam-pattern to the undesired signals. In the fixed beamformers, the beam-pattern



of null only exists when the direction of noise is known and remains unchanged. To
cope with environmental changes, various adaptive beamformers were proposed to
improve the performance. One key issue in adaptive beamformers is the sensitivity due
to the mismatch between the actual desired signal steering vector and the presumed
one [10]. The mismatch can be induced by signal pointing errors [14], imperfect array
calibration [15], or channel effect. In the presence of these effects, an adaptive
beamformer can easily mix up the desired signal and interference components; that is,
it suppress the desired signal instead of maintaining distortionless response. This
phenomenon is commonly referred to signal self-nulling [16]. As a result, much effort
has been devoted to the noise reduction.and dereverberation.

Many adaptive beamformer technigues were extensively studied. The linearly
constrained minimum variance«(LCMV) beamformer was proposed in [17] to
minimize the array output power under a look direction constraint. A form similar to
LCMV is minimum variance distortionless response (MVDR) proposed by Capon in
[1]. Another popular technigue is the generalized sidelobe canceller (GSC) algorithm
which essentially transforms the LCMV constrained minimization problem into an
unconstrained one [18].

The formulation of MVDR is then revisited in [5] with Kalman filter by
introducing the concept of state space. To improve the robustness against steering
vector error, various methods are investigated [10]. The Kalman filter can be also
substituted by H-infinity filter or Second Order Kalman filter or Second Order
H-infinity filter [19] to enhance its robustness and reducing non-linearity.

Among adaptive beamformers, the usage of pre-recorded data is a solution to



solve channel effect. The algorithm by Dabhl et. al can be found in [20], which give rise

to the reference signal concept in proposed algorithm.

1.3 Thesis Subject and Contribution

The contribution of this thesis is to propose and implement an innovative
algorithm for speech enhancement. The subject of this thesis can be divided into two
parts. The first part is to formulate a new beamformer considering given the
information of pre-recorded data. The solution to the formulation is presented. The
second part is to handle the resulting voice activity detection problem by the same
formulation but only changes the parameters to.render different results.

In the first part, the formulation,using MVDR-with pre-recorded signal is given.
To solve the formulation, the linear first order Kalman filter is used. In the Kalman
filter, the selection of parameters will pose different.result among noise reduction and
dereverberation. The tradeoff effect is-discussed and explained.

In the second part, the same formulation is used to implement a voice activity
detector. The design and parameter choosing technique are explained and discussed.
Besides, the information given by the voice activity detector can be reused to finding
the appropriate parameter in beamforming.

The experiment results are shown to verify the performance of the proposed

algorithm, both in beamforming and voice activity detection.

1.4 Outlines of Thesis

The remainder of this thesis is organized as follows.



Chapter 2:

Chapter 3:

Chapter 4:

Chapter 5

The basic beamforming technique Minimum Variance Distortionless
Response (MVDR) is introduced. The optimal solution of MVDR is
presented. The method of incorporating state space formulation into solving
MVDR and solve it with Kalman filter is investigated. These constructed
the foundation of proposed algorithm.

The detailed concept of reference signal based Kalman filter for
beamformer is stated. It includes the beamforming formulation and voice
activity detection. In beamforming, the formulation and its solution are
presented. The technique of choosing the parameter and its effect are also
discussed. In voice activity.detection (VAD), the design and implementation
are investigated. The method.of utilizing the information from VAD to
decide the parameters-in-beamforming.is also described. Finally, the overall
architecture is illustrated and explained.

The experiment results.are presented. It contains experiments regarding
beamforming capability and voice activity detection. Some objective
indices are calculated to compare the performance of proposed algorithm

and former algorithms.

: The conclusion of this thesis and some issue that is still not clear is

discussed is this chapter.



Chapter 2. BEAMFORMER USING KALMAN FILTER

2.1 Introduction

Kalman filter is a well-known optimal estimation filter in control theory. In this
thesis, the use of Kalman filter in signal processing is more concerned. To begin with,
a conventional beamformer MVDR proposed by Capon [1] is introduced. The main
idea of MVDR is to minimize undesired noise while maintaining desired signal with
known DOA, or Direction of Arrival, distortionless. Such idea can be formulated as a
minimization problem with certain constraints. Conventional way to solve it is using
Lagrange Multiplier and achieves_optimal solution. Its optimal solution is presented in
Section 2.2. In Section 2.3,.the technique of incorporating state space concept and
Kalman filter to solve MVDR problem is presented. The solution can be found using
conventional Kalman filter solution. In later sections, another formulation to maintain

the distortionless constraint will be presented and investigated.

2.2 Beamformer under MVDR Structure

The minimum variance distortionless response (MVDR) beamformer, also known
as Capon beamformer [1], minimizes the output power of the beamformer under a
single linear constraint on the response of the array towards the desired signal.

Consider the conventional signal model in which an M-element microphone array
captures a convolved desired signal (speech source) in some noise field. The received
signals are expressed as [2], [3], [4]

x (k)=a, *sk)+v, (k) m=12..M, (2.1)



where a, is the impulse response from the unknown (desired) source s(k) to the
m,, microphone, * stands for convolution, and v_(k) is the noise at the microphone
m. The signals s(k) and v_(k) are assumed as uncorrelated and zero mean.
In the frequency domain, (2.1) can be written as
X, (w) = A, (Jw) *S(jw) +V,, (jw) m=1.2,..M, (2.2)
where A, (jw), S(jw), X, (jw), V,(jw) are the discrete-time Fourier transforms
(DTFTs) of a_(k), s(k), x,(k), v,(k), respectively, at angular frequency
W (-r<w<zx) and j istheimaginary unit (j*=-1).
These M microphone signals in the frequency domain are summarized in a vector
notation as
X(jw) =A(WS(jw)+V(jw) (2.3)
where

X(wW)=[X, (jw) X, (iw) < X, (W)T'
AGwW) =[AGW) AGW) - Ay GW)I'
V(iw) = [V,(w) Vo(iw) -+ Vo Gw)I'

and superscript T denotes transpose of a vector or a matrix.

Consider finding a weight vector w,,, which satisfies the look
direction constraint
Wy (Iw)a(d,, jw) =1 (2.4)
while attempting to minimize beamformer output power
EQY (W)} = Eqwiy ((WX(w)| 3= Wiy, (MR o (W)W, (W) (25)

in order to suppress undesired interference from 6 =6, and noise. Y (jw) is the



beamformer output given by
Y (jw) =wiyy (jw) X(jw) . (2.6)
a(d,, jw) is the array manifold vector that points to the source direction.

With the consideration above, the following constrained optimization problem can
be formulated:
min Wy, (JW)R o (jW)w,, (jw) subject to wy, (jw)a(d,, jw) =1 (2.7)

To solve this problem, the Lagrange Multiplier is incorporated.

{VWW (jw)Wav (JW)R y (JW)W , (JW) — AVWMV (iw) [w I\H/IV (jw)a(d,, jw) -1 =0 (2.8)
H ¢ ; )
Wy (Jw)a(d;, jw) =1
(2.8) can be reduced to
R XX (jW)W MV (JW) = )«a(es J JW)
= |E . (2.9)
Wy (IW)a(d,; jw) =1
Assuming R,, isnonsingular. Then
-1 - .
Wy, (jw) = R« (iw)a(by; jw) (2.10)

a™ (6, WIRS (w)a(d,, jw)’
which is the optimal solution to MVVDR problem proposed by Capon[3] and is

thoroughly evaluated in [4].

2.3 Beamformer Using Kalman Filter under MVDR Structure

The traditional formulation and solution to MVDR is presented in Section 2.2. In
this section, The Kalman filter is introduced to solve the MVDR problem in a new
formulation by Y.H. Chen and C.T. Chiang [5].

With the same formulation as (2.7), the two equations are written in model

measurement equation as



0] [X"(k, jw) : v, (k, jw) o _ -
L} a LH ©., jw)}w(k’ jw) + {vz(k, jw)} orY =B" (k, w)w(k, jw)+V(k, jw), (2.8)

where Y =[0 1]', and the input vector is given by

B (k. jw) = {:HH(S(' JJ\\IIVV))} (2.9)

and the measurement noise vector is

¢
VK, jw) =[\‘/’1Ek m (2.10)

Here, v,(k, jw) is the residual error and v, (k, jw) is the constraint error. By the
assumption that v, (k, jw) and v,(k, jw) are uncorrelated, the correlation matrix of

V(k, jw) can be written as
= L]
Q= {% } (2.11)

Since the optimum-constrained. weight vector w(k, jw) is a constant all the time
for the stationary environment [6], ‘the truth-model process equation of the constrained
Kalman algorithm may be written as

w(k, jw) =w(k -1, jw). (2.12)

With the process equation (2.12) and measurement equation (2.8), the constrained
Kalman algorithm can minimize the residual error in the mean-square sense while
maintaining a distortionless response along the look direction.

After applying the discrete Kalman filter theory with (2.12) and (2.8), the filtered
estimate of the weight vector is recursively given by [6]

WK, jw) =W(k -1, jw) + K(K, jW)[Y (K, jw) - B" (k, jw)W(k -1, jw)], (2.13)

where the Kalman Gain K(k, jw) can be calculated recursively by



K(k, jw) =R, (k -1, jw)B(k, jw)[B" (k, jW)R,.(k -1, jw)B(K, jw) + Q™.  (2.14)
Here the filtered weight-error correlation matrix R.,(k, jw) Is
R, (k, jw) =1 = K(k, jw)B" (k, jw)]R . (k —1, jw), (2.15)
where 1 isan m-by-m identity matrix. Using (2.8), (2.12), (2.13), the signal-flow

graph of the constrained Kalman algorithm can be plotted as Fig. 1 [5].

— I
V(k, jw)
+
& 4+— B” (k, jw) < Delay ——
w(k, jw) w(k+1, jw)
=R a(a"R a)" =R a(a"R'a)"
Y=[0 1] ) :
+
3 —— B (k, jw) < I -
+
1, Y
K(k, jw) e Y e Delay =
w(k, jw) w(k -1, jw)

Fig. 1 Block diagram of the constrained Kalman algorithm without prior estimation of
the desired signal
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Chapter 3. REFERENCE-SIGNAL-BASED BEAMFORMER

3.1 Introduction

The MVDR structure can be modified by exploiting the distortionless response.
To maintain desired signal distortionless, the algorithm incorporating pre-recorded
signal as reference signal is proposed. The reference signal enhances the distortionless
constraint by using more information and reduces the loading of carefully estimating
the system parameters of the environment. More detailed explanation will be presented
in this chapter.

In this chapter, the main algorithm .of using reference signal to merge with
MVDR and Kalman filter is. presented. In-Section 3.2, the formulation under that
concept is proposed and described. In Section 3.3, the solution to solving proposed
formulation is thoroughly investigated. In Section 3.4, the know-how of how to choose
the parameters of the Kalman filter_is discussed. The tradeoff phenomenon between
the parameters is introduced and explained also in Section 3.4. The design and
implementation of voice activity detection elaborating the same Kalman filter is
presented in Section 3.5. The threshold decision method and parameter selection
method is introduced in Section 3.6. The overall system architecture is illustrated and

explained in Section 3.7.

3.2 Formulation of Referenced-Signal-Based Beamformer Using

Kalman Filter

In this section, the proposed reference-signal-based beamformer using Kalman

11



filter is presented.

In MVDR beamformer, the distortionless requirement is achieved by add a
constraint that maintains the signal from a known direction unchanged. This constraint
also avoids choosing the naive solution of zero during the minimization process. In
addition, this constraint also achieves the requirement of dereverberation since it not
only preserves signal from desired direction, but also drop reverberation signals from
other directions during the minimization process.

Another approach to maintain distortionless requirement is to estimate the
acoustic transfer function (ATF) from the desired signal source to the microphone
array. The ATFs can specifically describe the relationship from desired source to the
microphone array including the effect.of reverberation. With the ATFs, source signal
can be regenerated with low distortion as long as the ATFs are estimated correctly and
the surrounding environment is (inearly time-invariant (LTI) and does not change
during the filtering process.

However, estimating the ATFs is a cumbersome and tedious work. To avoid such
process but still get useful knowledge of the environment, the concept of
reference-signal is incorporated. The reference-signal is acquired by recording the
signal while playing a known clip at the position of source. The received signal can be
considered as the output of the known input processed by the surrounding environment
functioned as the system. With the input and output information of the system, it can
be considered as a reference to the environment and thus achieving the requirement of
distortionless better and easier.

The conventional formulation of MVVDR in Section 2.2 is

12



minw}, (W)R . (W)w,,, (jw) subject to w'h, (jw)a(é,, w) =1. (2.7)
To incorporate the reference-signal, the formulation can be used to substitute the
distortionless constraint and becomes

minwy, (JW)R o (W)W, (jw) (3.)
subject to wyj, (jw)X, (jw) =, (jw), '

where s, (jw) is the discrete-time Fourier transforms (DTFTs) of the played known
clip and X, (jw) is discrete-time Fourier transforms (DTFTs) of the received signal
while playing the known clip. X, (jw)=[X,, X,, - X,,]", where X, is the
discrete-time Fourier transforms (DTFTs) of received signal at the m, microphone.

The subscript “,” implies “pre-recorded” since.the reference signal is recorded before

the filtering process.

3.3 Solution to the Proposed Formulation

With the formulation above,

minw iy, (W)R o (W)W, (jW)

subject to i, (jw)X, (jw) =, (jw), 3.1)
the solution to the formulation will be presented in this section [2].
From (3.1), state equations describing such formulation can be written as
Measurement Equation:
Lr (E’ WJ _ K: Et:xﬂw(k,w) V(K W) (3.2)
Process Equation:
w(k +1, w) =w(k,w) +Q(k, w), (3.3)

13



where k is the frame index and the superscript “" ” means conjugate-transpose. The

noise V(k,w) and Q(k,w) are assumed with Gaussian distribution and thus the

covariance matrix can be written as
Q(k,w) ~ N(0,0,1)

{1 0} (3.4)
V(kw)~ N0, ),

'

where “N” means Normal Distribution and Oo1 O

., p, are parameter to be chosen.
X(k,w) is the received signal when desired signal is inactive, since the desired signal

cannot always be guaranteed uncorrelated with the reference-signal. Once desired
signal is correlated with reference signal, the phenomenon “desired signal cancelation”
will occur and yield huge degradation to the desired signal.
Let the state estimation-error is
e(k|k -1, w) = w(k, W) - W(kk =1,w), (3.5)
and the error covariance matrix is
R (k|k —1,w) = E[e(k|k 1, w)e" (k|k —1,w)] (3.6)
In the first step, no new observation is used. To predict w(k) using the state
equation, the best possible predictor given no new information is available would be
W(k[k —1,w) = W(k -1k -1, w). (3.7)
The estimation error is

e(klk —1,w) = w(k, w) - W(k|k —1, w)
= w(k —1,w) + Q(k, W) - W(k —1k -1, w) (3.8)
=e(k -1k -1, w) + Q(k,w)

If requiring that E[e(k —ij —1,w)] =0 (this zero-mean condition states that there is no

14



constant bias in the optimal linear estimation [7]), E[e(k|k —1,w)]=0. Since
e(k -1k —1,w) is uncorrelated with Q(k,w),
Re.(kk -1, w) =R (k —1k =1, W) + . (3.9)

This is the Riccati Equation.

In the second step, the new observation, { =Y(k,w) is incorporated to

)
s, (k,w)
estimate w(k,w). A linear estimate that is based on W(klk—1,w) and Y(k,w) has the
form
W(k|k, w) = K* (k, w)W(k|k -1, w) + Kk (k, W)Y (k, w), (3.10)
where K'(k,w) and k(k,w) aresome matrix and vector to be determined. The vector
k(k,w) is called the Kalman gain.-Now, the estimation error is

e(k[k, w) = w(k, w) —R(K[K,w)
— w(k, w) — K (k, Wikl =1, w) =Kk, w) Y(k, )
= w(k, ) — K" (K, W) [k, w)— e (k=1 w)] — k (k, W)X ™ (k, w)w(k, w) + V (K, w)]
— [1 =K (k, w) — K (k, w) X " Tw(k, w) + K (k, w)e(k [k — 1, w) —k (K, W)V (k, ),

(3.11)
where XH(k,w)z{X:(k’W)}.
X (k,w)
Since E[e(klk-1,w)]=0, then E[e(klk,w)]=0 only if
K (k,w) = I —k(k, w) X" (3.12)
With this constraint, it follows that
W(k[k, w) =1 -k (k, w) X " W(k|k —2,w) + k(k, w)Y (k, w) (3.13)

— W[k =1, w) + K (k, WY (K, ) — X " W(k|k =1, w)],

and
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e(k[k, w) = K" (k, w)e(k|k -1, w) — k (k, W)V (k, w)
= [1—K(k, w) X " Te(k |k -1, w) —K (K, W)V (K, w).

(3.14)
Since V(k,w) isuncorrelated with Q(k,w) and with Y(k-1,w), then V(k,w) will
be uncorrelated with w(k,w) and with W(k|k —1,w); as a result E[e(k|k, w)V (k,w)]=0.

Therefore, the error covariance matrix for e(k|k,w) is

R, (k|k,w) = E[e(k|k, w)e" (kk, w)]

(3.15)
= [1 =k (kW) X IR, (k| —Lw)[1 =k (k,w) X H T +k(k, W)R,, (k, Wk (K, ),

Where R, (k,w)= av[cl) 0]

\'

The final task is to find the Kalman gain vector k(k,w), that minimizes the MSE
J (k) =tr[R.. (k|k, w)] (3.16)
Differentiating J(k) with respectto k(k,w), we get

83 (k)
ok (K, w)

= —2[1 -k (k, W) X "R o (K| =1, w) X+ 2k (k, W)R, (K, W) (3.17)
and equating it to zero, we deduce the Kalman gain

K(k,w) = R, (kKk L w) XX "R, (kk =L w) X +R, (k,w)]" (3.18)

The expression for the error covariance matrix can be simplified as

Ree(k|k,w) =[I —k(k,W)XH]Ree(k|k -1 w)-

3.19
1=Kk, w) X "IR . (K|k =L w)[1 —k(k, w) X "1+ R, (k, w)k (k, w) K" (k, w)> (3.19)

Where, by using (3.17), the second term in (3.19) is equal to zero. Hence
R.. (K|k, w)=[1—k(k,w) X " IR, (k|k -1, w) (3.20)

In conclusion, the Kalman filter can be summarized as
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State Equation:
Wk +1k, w) = W(k|k, w) + Q(k, w)

Observation Equation (or Measurement Equation):

Y (k,w) :[ 0 } = {XH (k’W)}W(k,W) +V(k,w)=X"(k, w)w(k,w) + V(k,w)

s (k,w) || X[ (k,w)
Initialization:
W(0[0, w) = E[w(0,w)] R..(00,w) = E[w(0)w' (0)]

Computation for k=12,

W(klk —1 w) = W(k —1k -1, w)

R.. (Kk =1, w) =R, (k 1k =1, w) + gl

The Kalman gain:

k(k,w) = R, (kk —Lw) X [XH*R , (Kk=Lw)X + R, (k,w)]|"

W (k[k, w) = W(k|k — L w) +k(k, WEY.(K, w) — X ™ (k, w)wr(k[k —1,w)]

R, (K[k, w) = [1 =k (k, w) X " (k, W)]R,,, (k|k =1, w)

One more point needs to be mentioned is that the weighting retrieved in proposed

formulation is not normalized yet. It makes the weighting differs in length and gain

among each frame. The result is the output waveform looks blurred in frequency

spectrum. To solve this problem, the weighting has to be normalized before

multiplying the input.

3.4 Parameter Selection and Tradeoff

In the formulation above, three parameters are to be determined: o,, o, and

p,. oo control the error covariance of the Process Equation. o, control the error
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covariance of the Measurement Equation. p, control the error proportion between the

upper line and lower line of the Measurement Equation.

Process Equation:

w(k +1, w) = w(k, w) +Q(k, w), (3.2)
Measurement Equation:
0 XM (k,w)
Lr (k,w)} = {Xr (k,w)}w(k'w) +V(k,w) (3.3)

Q(k,w) ~ N(0,0,1)

3.4
1 0}) (3.4)

V(k, W) ~ N(O,a{o

\

The value 2%, which is the ratio between o, and o,, controls the adaption

Oy

speed. If =< is large, the filter adapts to the variation in environment faster. By (3.2),

O,
Oy

it can be observed that if oy is large, the change between w(k,w) and w(k +1,w)

will be larger and leads to faster adaption in w(k,w). By (3.3), it can be observed that

if o, issmall, the V(k,w), or the Measurement Error, has small variations between

X" (k,w

y ' )} varies fast .
W

r

each step, which means w(k,w) has to adapt fast if {

In the case of the environment is a Linearly Time-Invariant (LTI) system, there is

no need to do adaption to those variations in the system. Therefore, the best choose of

92 will be zero by setting o, to zero.

O,

The parameter p, controls the tradeoff between noise reduction and

dereverberation. Large p, leads to strong noise reduction and little dereverberation
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while small p, leads to strong dereverberation and little noise reduction. If p, is

small, that means the error variation in the lower line of (3.4) is relatively small
compared with the upper line, which leads to closer tracing in the lower line and looser
tracing in the upper line, achieving strong dereverberation and weak noise reduction. If

p, 1S large, that means the error variation in the upper line of (3.4) is relatively small

compared with the lower line, which leads to closer tracing in the upper line and looser
tracing in the lower line, achieving strong noise reduction and weak dereverberation.

Extreme choose of p, in either cases will decrease the signal quality since too

much distortion or too much noise are both degrading reasons to the quality of the
signal. The optimal choose of p,. should be related to the signal-to-noise ratio (SNR)
since p, can be treated as.a leverage that distributes the total effort of filtering
between signal dereverberation and noise reduction. If the noise level is relatively
small to the signal, or the SNR. is high, more effort should be emphasized on signal
dereverberation while if the noise level is relatively large to the signal, or the SNR is
low, more effort should be emphasized on noise reduction. Experiments on this

tradeoff will be presented in Section 4.

3.5 Voice Activity Detection under Proposed Formulation

As mentioned before in Section 3.3, the vector X(k,w) is the data recorded
when the desired signal is inactive, or desired signal cancelation phenomenon will
occur. Thus, a voice activity detector is required. A feasible option is to incorporate
other algorithm that detects voice activity or signal activity. However, some

parameters during the filtering procedure can be utilized to implement as voice activity
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detector. The procedure regarding such implementation will be presented in this
section.
Starting again from the formulation:

Measurement Equation:

0 | | X"(k,w)
|:Sr(k1w):|_|:xlr-| (k’W)}W(k,WHV(k,W) (3.2)
Process Equation:
w(k +1,w) = w(k, w) + Q(k, w). (3.3)

The vector V(k,w) is the Measurement Error. By observing the value of the
Measurement Error, the voice activity detector can be implemented. In (3.2), the upper
line can be regarded as suppressing noise while the lower line can be regarded as
preserving the desired signal.’ If.X(k,w) is purely noise, it will be minimized by both
the upper line and lower line of (3.2).-The Measurement Error with such X(k,w) is
small and has low variance. If X(k,w) contains desired signal, it is prone to be
preserved by the lower line but also prone to be minimized by the upper line, which
constitutes a dilemma. The filtering result is that the first element of the Measurement
Error, corresponding to the error in the upper line, is large, which means such X(k,w)
cannot be minimized by the upper line and leads to large residual error.

In summary, the Measurement Error of noise reduction is employed as a feature to
detect voice activity under this algorithm. It can be considered as a data rejection
procedure before filtering [8]. If the Measurement Error is larger than the threshold,
the current frame is regarded as voice activity and thus the parameters update is

abandoned with respect to current frame. If the Measurement Error is smaller than the

20



threshold, the current frame is regarded as voice inactivity and thus the parameters
update is preserved with respect to current frame. The flow chart of the voice activity

detection procedure is as Fig 2.

.| Run Kalman Filter |
w.I.l new input

A 4

Calculate ME w.r.t. new
weight w(k+1,w)

Marker as desired
signal inactive

A

Load filter
parameters back
before new input

Marker as desired
signal active

A4

Fig. 2 Flow Chart of Moice Activity Detection Procedure
It has to be noted that the Measurement Error is not discriminative enough if p,

is ill-chosen. Since the the critical error term is the Measurement Error on noise

reduction, p, should be chosen large enough to spare efforts on noise reduction.
However, the best p, should consider both noise reduction and dereverberation, so
the appropriate p, should not be chosen extremely large. To overcome such dilemma,
two Kalman filters should be executed, one with large p, that executing noise
reduction and detecting signal activity while another one with medium p, that

computes optimal weight w(k,w) to achieve best tradeoff between noise reduction
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and dereverberation.

3.6 Threshold Decision and SINR Estimation

In Section 3.5, the threshold that discriminates the voice activity is not
determined. In Section 3.6.1, the procedure that determines the threshold will be
presented. In Section 3.6.2, the result of the detection procedure can be further reused

to estimated current SINR and help choosing the best p,, which is undetermined in

Section 3.4.

3.6.1 Gaussian Mixture Model and EM Algorithm

The Gaussian Mixture "Model (GMM)..is incorporated to guide the data
classification [9]. The distribution of Measurement-Error when signal is inactive is
modeled as a Gaussian distribution and the distribution of Measurement Error when
signal is active is modeled as another'Gaussian distribution as Fig. 3. This model is

described by the following equations. Let x, denote the first element of the
Measurement Error at time k. z is the speech/nonspeech label, z<{01}, where 0

denotes nonspeech and 1 for speech. According to Bayes’ Rule, it can be written that

P(X|A) =D p(%. 7 A) =D p(x, |z, 2)p(2), (3.21)

where p(z) is the prior probability of speech/nonspeech, and is actually equal to the
weight coefficient w, (w,+w, =1). p(xz,4) represents the likelihood of x,

given speech/nonspeech model.
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p(x,[2,2) = le?exp{—m 1)1 26} (3.22)

where 4, and x, denotes the mean and variance respectively. A={u,,x,,w,|]z=01}

is the parameter set of the GMM.

(a) (b)

Nonspeech maode

— Nonspeech mode|
---Speech mode |

Speech mode

Threshold.~
’ A

Occurrence
Qccurrence

energy %] energy

Fig. 3 Schematic illustration of error distribution: (a) Distribution of noisy speech; (b)
Distributions of speech and.nonspeech (This Figure is modified from [9])

Let x={x,,%,X, X, } beasequence of the first element of the Measurement

Error. The probability density function (PDF) is given by
M
p(xA) =T ] p(x}2) - (3.23)
k=0

The parameter set A is estimated by 'maximizing the above PDF function.
From the GMM, both of the PDFs of speech and nonspeech can be obtained,

namely p(6z=124)p(z=1) and p(flz =0,1)p(z =0). These two PDFs are shown in

Fig. 3(b). From the two PDFs, the optimal threshold & can be obtained to minimize

the classification error. The threshold & satisfies
p(dlz=1,2)p(z=1) = p(6z=0,2)p(z =0) (3.24)
Eq. (3.24) is a quadratic equation with one unknown @. The threshold is one of its

roots location between the two means, namely s, >0 > u,. The samples with error less

than & are determined as nonspeech, and otherwise as speech. The shadow in Fig.
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3(b) denotes the classification error.

The crucial issue of the above model is to estimate the parameter set 1. The
estimation consists of an initialization and a sequential updating process. The initial
GMM is first established by the EM algorithm, and then incrementally updated with

coming data. The parameter set at time k is denoted as 4, ={x % ,,W, ,|z=01}.
4, isthe initial parameter set estimated from the first M samples by EM algorithm.

According to [9], the following are the typical EM re-estimation formulas,

w, p(x; |z, 2)
p(z|x;, 4) = : (3.25)
‘ ! > w, p(x;]z,4)
l M=1
W'~ p(z]x;:4) (3.26)
j=0
M -1
X; p(z‘xj,/i)
L\ 3.27
4, 3 (3.27)
M-1 .
205 =, 2)
K,'= 120 (3.28)
Mw., '

z

, where 2'~{w,", 1,",x,'} is the new parameter set re-estimated from A. In the next
iteration, A is replaced by A'. This iteration continues until EM algorithm converges.

The final 2' is the initial parameter set 4, required to GMM initialization and the

threshold & can be obtained by solving (3.24).

According to [9], it assumes the GMM varies with time slowly, 4, ~ 4., attime

k k
k. Accordingly, the relationship > p(zx;,4)~ " p(zx;,4,,). The summation is

J=k—K+1 j=k-K+1
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K
approximated by the zero-order moment, Zp(z‘xj,ﬂk)szklz, where K is a
j=k—K+1

parameter defined by user which determines the adaption speed. Therefore, the

adaption formulas can be written as follows,

Wk+1,z =0va,z +(1_a) p(z|xk+l'/1k) (329)
oW, , p, + (L= ) P(Z|Xyqs A ) X,
Mg, = —2 " et T (3.30)
k+1,z

1- A —~ 2
Kk+1yz :a\Nk,sz,z+( a)p(z|xk+l k)(Xk+l fuk+l,z) ’ (331)

Wk +1,z

where « stands for forgetting factor. Besides, some constraints are required during the

adaption process as follows.
M= max{luk,l! Hio T o} (3.32)
Kiq = MaX{x o, &1} (3.33)

Wy =max{w, ,, £} (3.34)
Wio = 1- Wit

The reason for constraint (3.32) is based on the inspection that the mean of the

Measurement Error when speech is always larger than nonspeech, thus a lower bound

for s, is implemented by adding a gap & to g, and choose the larger one. The

reason for constraint (3.33) is based on the inspection that the variance of the
Measurement Error when speech is always not smaller than the the variance of the
Measurement Error when nonspeech. The reason for constraint (3.34) is to stem the
minimum prior probability of speech from becoming 0 and inducing no adaption
afterwards, where ¢ is also a parameter to be chosen.

After building the GMM model, the threshold ¢ can be determined after EM
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initialization and adaption. The process of EM algorithm is written in Fig. 4 and the

total procedure of VAD decision is written as Fig. 5.

Initialize GMM by using unsupervised clustering
while GMM likelihood is increasing
if w,<e
W, =¢
W, =1-¢
break
end
Calculate p(zx;,2) forall z and x; with (3.25)

Calculate new weights with (3.26)
Calculate new means with (3.27)
Constraint means with (3.32)
Calculate new variances with (3.28)

Constraint variances with (3.33)
end

Fig. 4 EM algorithm with constraints (revised from [9])

for the first M frames
Calculate the Measurement Error
Establish a GMM by EM with constraints
Determine the threshold from GMM using (3.24)
Classify M frames as speech/nonspeech
Discriminate speech/nonspeech by hangover scheme
end
for new frame at time k+1
Calculate the Measurement Error

Calculate p(z|x;,4) with (3.25)

Update the weight coefficients with (3.29)
Constraint the weight coefficient with (3.34)
Update the means with (3.30)

Constraint the means with (3.32)

Update the variances with (3.31)

Constraint the variances with (3.33)

Determine the threshold from GMM using (3.24)
Determine x,,, as speech/nonspeech

end

Fig. 5 The process of VAD decision (revised from [9])
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3.6.2 SINR Estimation

In Section 3.4, the best p, that determines the tradeoff between noise reduction

and dereverberation is undetermined. It is mentioned that it should be related to the

current SINR since p, leverages the effort to reduce noise and enhance signal while

SINR stands for the ratio of signal power and noise power. From the result of Section
3.6.1, the two Gaussian Models stand for the Measurement Error of signal part and
noise part, which is also can be related to SINR. The mean of the Gaussian Model for
signal and noise can be regarded as two indices describing the signal power and noise
power after adaptive filtering. Therefore, the mean difference of the two Gaussian

Models can be interpreted as an index describing current SINR. Fig. 6 shows the

relationship from Mean Difference-in'VVAD to the best estimation of p, .

MNonspeech mode

Speech mode

A 4
Mean Difference

SINR

\ 4

Best A of tcurrent SINR

SINR

Fig. 6 The relationship from Mean Difference in VAD to the best estimation of p,

In Fig. 6, there are three blocks used to determine the best estimation of p,. The

first block is calculating the mean difference from current GMM, which is trivial after

building the Gaussian Mixture Models.

The second block is estimating the current SINR by current Mean Difference.
Although the conceptual relationship can be imagined, there is still no concrete
equation to describe the relationship between them. To solve that problem, the

relationship can be pre-trained. The curve, or the relationship, can be found by mixing
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signal clip and noise clip recorded on testing scenario with various amplitudes to
acquire clips with different SINRs. With those clips, the computation of computing
Measurement Error with Kalman filter and perfect VAD are preceded. After the
computation and building GMM modles, the Mean Difference can be found
corresponding to the testing clips. Finally, rearranging the correspondence from SINR
to Mean Difference, the relationship can be trained. An example showing the result of
a series of training is in Fig. 7. With the relationship from SINR to Mean Difference, it

can be used to inversely look up when requiring current SINR given Mean Difference.

IMean Difference with P, = 1000 under each SINR
3000

2500+

2000+

Mean Difference

1500 +

—=— Mean Difference

1000+

5|:]UIIIIIIIIIIIIIII
-0-9 -8 -7T 654321012 3 4 5

o
-
oo
w
—
)

Fig. 7 An example of trained relationship from SINR to Mean Difference
The third block is estimating the best p, corresponding to current SINR. It can
also be trained to build the relationship. The pre-training procedure is varying p,

from 0.01 to 100 with multiplication of 10%2 for each sample clip of different SINR
and finding the best output. The “best output” can be measured by some combination

of objective indices like output SINR or log spectrum distortion (LSD). An example of
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giving the best output by minimizing the LSD through various p, and various SINR

is presented in Fig. 8. Note that small LSD stands for less distortion and high signal

quality.
p,, with best LSD under each SINR
1[]:; : T T T T T T T T T T T T T T T T T T T
) —&— minlLSD

o 10 ¢ 4
D i
w [
E
=
E
=
E
=)
< 10° n =

107 ~/

Fig. 8 SINRvs. the p ~giving Best LSD
With the Gaussian Mixture Models and the two pre-trained blocks, the best p,

under that trained scenario can be founded.

3.7 Overall System Architecture

Combining the beamforming technique proposed in Section 3.3, the voice activity
detection in Section 3.5 and the parameter determinism in Section 3.6, the overall
system architecture is presented in this section.

The flow chart Fig. 9 is plotted to elaborate the overall system architecture. The
main processing can be separated to two Kalman filters, written as Kalman filter 1 and

Kalman filter 2 in Fig. 9 The Kalman filter 1 is operated as the voice activity detector,
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thus its p, should be chosen large enough to place appropriate efforts on noise
reduction. By a large p,, the Measurement Error will be discriminative enough to

separate the signal part and noise part. The Kalman filter 2 serves as the beamformer,

soits p, should be chosen appropriately to balance the tradeoff between noise

reduction and dereverberation.

To start with, new speech samples in time domain are collected in frames with
fixed overlap to the previous frame and transformed to frequency domain after zero
padding and Hanning windowing. Before feeding the new frame to Kalman filter 1,
the old parameters of Kalman filter 1 is preserved in case later the Measurement Error
shows the Kalman filter 1 should not adapt to the new frame since it contains desired
signal. After saving current parameters of Kalman filter 1, the Kalman filter 1 tries to
adapt itself to the new frames and calculate the Measurement Error with respect to the
new frame. The Measurement Error is compared with the threshold and used to
determine the new frame is desired signal-active or inactive.

If the new frame is determined as desired signal active, it should be weighted and
summed by the weightings given by Kalman filter 2. As mentioned before, the Kalman
filter 2 serves as beamformer and filters out undesired noise and maintains desired
signal undistorted. After giving filtered result, the parameters of Kalman filter 1 should
be loaded by the parameters before adapting to new frame, since the new frame
contains desired signal and should not be adapted by Kalman filter 1.

If the new frame is determined as desired signal inactive, it should be fed to
Kalman filter 2 to adapt to the noise contained in the new frame. During the adaption

phase, the parameters will be meanwhile updated.
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> New input

I

Save Current Parameters
of Kalman Filter 1

:

Run Kalman Filter 1
w.r.t. New Input

:

Calculate New
Measurement Error

If ME > threshold

Mark as desired Mark as desired

signal inactive signal active
Update Parameters Output Filtered Result by
Of Kalman Filter2 Weights from Kalman Filter 2

I

Load Parameters of
Kalman Filter 1

N Update GMM |

By new ME and calculate new threshold

:

Find the best 2,
by inverse look up

:

Update p, Of

Kalman Filter2

Fig. 9 The Flowchart of Overall System
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After determining the voice activity, the new Measurement Error is used to update
the GMM and calculate for new threshold. The Mean Difference of the two Gaussian
Models can be used to look up for current SINR and the best p, for Kalman filter 2.

To sum up with, the overall algorithm contains two Kalman filters to handle the
two issues of voice activity detection and beamforming respectively. The two Kalman
filters differ in its crucial parameter p, and thus render different functions and
scenarios. The GMM is incorporated to help detecting voice activity and separate the

signal and noise as two groups, which gives more information to retrieve the best p,

corresponding to current SINR.
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Chapter 4. EXPERIMENT RESULTS

4.1 Introduction of the Experiment Condition

In the experimental results presented afterward, the original sound samples are
recorded in a Ford Fiesta car by a microphone array placed at the sun shield of driver’s
seat. The desired male speech is played by the Head and Torso Simulator (HATS) by
Briel & Kjar on the driver’s seat. The speech data is extracted from a listening
comprehension test by an English learning center, thus giving high SNR. The
interfering female speech is played by the same HATS on the copilot’s seat. It is also
extracted from an English listening:comprehension test. The noise is recorded when
the car is driving on road with speed-at around 50 km/hr. More specifications about the
experiment are presented in-Table 1. The photos illustrating the recording environment
are as Fig. 10 and Fig. 11. Fig. 12 and Fig. 13 are the time-frequency plots from the
known clips played and the signal clips.recorded, both of which are used as reference

signal in this experiment.

Microphone Number 4 Microphone Displacement 7cm
Sampling rate 8000 Hz FFT size 512 samples
Shift number 160 samples Zero padding 32 samples

Table 1 Parameters in experiment
The sound data is recorded by a digital microphone array, which uses digital

microphones to receive signal and collects 16-bits array data in an Altera FPGA
development board. The received data is visible for an embedded network hardware
NetBurner through shared memory. Finally, the array data is transferred to PC or

Laptop through Local Area Network (LAN).
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Fig. 10 The photo for the microphone array at the sun shield of the driver’s seat.

Fig. 11 The photo for the HATS at the driver’s seat
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Fig. 12 The.time-frequency plot for original speech
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Fig. 13 The time-frequency plot for recorded speech
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4.2 Experiments on Performance of Noise Reduction and Its

Tradeoff with Dereverberation

In this section, the tradeoff phenomenon between noise reduction and
dereverberation is exhibited. The experiment environment is as mentioned in Section
4.1. Three speech enhancement algorithms, MVDR, MVDR with Kalman filter
solution, DSB (Delay and Sum Beamformer) are implemented to compare with
proposed algorithm. In this section, perfect voice activity detection is assumed for
MVDR, MVDR with Kalman filter and proposed algorithm to avoid sample matrix
inverse (SMI) problem [10]. For the MVDR filter, the forgetting factor of sample

covariance matrix is 0.99. In proposed-beamformer, the parameter p, ranges from
0.001 to 1000 with ration of increase 10.

Two objective performance indices are used to-measure the waveform property.
The first is the average SINR (avgSINR) defined.as

*ZX (t)——Zx (t)

avgSINR = T i T i, (4.1)

—Zx (t)

n teT,

where T, and T, denote periods in time when only the desired speech is active and

only the interference-plus-noise signals are active respectively. The second quality

measure is log spectral distortion (LSD) defined as

LSD:%ZK: \/ Z(lOIoglO|s (K, w)| ~1010g,o|Y (K, w))? (4.2)

where s (k,w) is the Short-time Fourier transform (STFT) of the original sound

played by HATS and Y (k,w) isthe STFT of the beamformer output. LSD means the
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speech distortion in frequency domain. Note that a lower LSD level corresponds to
better performance.

In Fig. 14(a), Fig. 15(a) and Fig. 16(a), the effect of p, regarding SINR is as
expected. Higher p, gives higher noise reduction level and thus giving better
performance. In contrast, small p, gives low noise reduction level and thus giving

bad result in LSD since noise and distortion both worsen the LSD. Since the perfect
voice activity detection is assumed, other methods like MVDR and MVDR with
Kalman filter both performs well. With perfect voice activity detection, the MVDR
works on perfect situation that signal correlation matrix and noise correlation matrix
are perfectly identified. In that case, its solution is close to optimal solution for
maximizing output SINR. However,; in Fig. 14(b), Fig. 15(b), Fig. 16(b) the LSD
shows that MVDR and MVDR with Kalman filter are suffered from distortion while

proposed algorithm works better if o, Is chosen appropriately.

For subjective evaluations, Fig. 17, Fig. 18 and Fig. 19 show the waveforms and
spectrograms at different SINR -2 dB, 4 dB and 7 dB. It can be observed that both in
MVDR and DSB, the voice pattern in frequency domain is still preserved while
proposed method and MVDR with Kalman filter somehow blurred the voice pattern in
frequency domain. Regarding the noise reduction, it can be observed that most of the

noises are eliminated in proposed method, MVDR and MVDR with Kalman filter.
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4.3 Performance on Voice Activity Detection

In this section, experiments regarding voice activity detection are investigated. To
compare the detection ability of proposed algorithm, the perfect voice activity
detection is made artificially as base line. In addition, the Target-Jammer Ratio (TJR)
and energy threshold algorithm are implemented for comparison. The TJR algorithm

with target at the front is as follows

[Z Xy (K)I*

R e 00—, 00, 10— BT

(4.3)

, Where M is the microphone number and x,, (k) is the data received at m,

microphone at snapshot k .The numeratoris-to form a beam toward target direction
and thus representing the intensity of the target. The denominator is to form a null on
target and thus retrieves the.intensity of the noise. The energy algorithm calculates the

energy in all frequency bands. The observation‘is.calculated as
1Y 2
Energy(k) = WZ|X (k, W) (4.5)
w=1

The proposed VAD, TJR VAD and energy VAD are then classified by the GMM
model with EM initialization. The forgetting factor « is chosen as 0.999 among all of
the three methods. In the proposed VAD, the parameter p, is chosen as 1000 to
impose strong noise reduction.

To measure the correctness of the detectors, the coverage with perfect detector is
calculated for objective index. The correct rate, false positive rate and false negative

rate can be calculated as
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P = %ZK:[VAD(]Jl) +VAD(0/0)],

1 K
Py = EZVAD(JJO), (4.6)
k=1
1 K
Py =— > VAD(0[1),
K iz

where VAD(11) means given active by perfect VAD the detection is active.

The result of correct rate, false positive rate and false negative rate under SINR
from -5~10 are list in Table 2.

In Table 2, it can be observed that proposed method performs better than TJR
VAD and Energy VAD, especially under low SINR case. In high SINR case, all the
algorithms can extract the voice activity: and represent the activation by its feature.
However, in low SINR case,.it becomes tougher to separate signal and noise since the

noise group and signal group are getting closer. In proposed method, high p, places

much emphasis on noise reduction, so the Measurement Error is still distinguishable
between signal and noise under low SINR-case.

The reason to choose « as 0.999, which is large than normal, is to avoid close
tracking and over-damping for the threshold.

From the amplitude of Fig. 20(a)~Fig. 24(a), it can be observed that the
relationship between the Mean Difference and SINR is proportion. Such phenomenon
exists throughout the figures from other algorithms. Actually, in situations of VAD
using energy, the Mean Difference from energy after taking logarithm direct maps to
SINR under each frequency band.

In Fig. 20~Fig. 24, the Mean, and Mean; represents for the mean value of the

Gaussian Model of noise and speech respectively.
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It has to be mentioned that proposed algorithm is prone to crash down thoroughly
under very low SINR like -15 dB. The reason is from the looping architecture of
proposed algorithm. If a frame is detected as noise frame but actually signal, i.e. false
negative case, the Kalman filter will adapt to minimize the signal term, which makes
next signal frame more likely to be treated as noise frame and never come back. To get

rid of such disaster, the forgetting factor should be chosen large to avoid close

tracking.
SINR=10 dB
Correct(%) False Positive(%) | False Negative(%)
Proposed 90.08 9.92 0
TJR 93.36 6.16 0.48
Energy 89.92 10.08 0
SNR=5dB
Proposed 90.24 9.36 0.40
TJR 93.52 5.92 0.56
Energy 87.68 12.32 0
SNR=0dB
Proposed 90.88 8.64 0.48
TJR 93.60 5.76 0.64
Energy 68.80 31.20 0
SNR=-5dB
Proposed 95.28 4.24 0.48
TJR 92.88 1.92 5.20
Energy 67.28 30.80 1.92
SNR=-10dB
Proposed 95.20 3.76 1.04
TJR 78.00 2.40 19.60
Energy 53.28 14.00 32.72

Table 2 Results for voice activity detection under various SINR
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Chapter 5. CONCLUSION AND FUTURE STUDY

The experiment results presented in Chapter 4 show that the algorithm is capable
of processing noise reduction and dereverberation issues at the same time and
performs better than general beamformers as in Fig. 14, Fig. 15 and Fig. 16. The

capability of utilizing proposed algorithm to implement VAD is experimented in

SNR=-10dB
Proposed 95.20 3.76 1.04
TIR 78.00 2.40 19.60
Energy 53.28 14.00 32.72

and Fig. 20~Fig. 24. The correction rate shows it functions well under high SINR
with correction rate 93.27%. It works better than other VAD algorithms under low
SINR case with correction rate. 96.11%.

For choosing the best p,, the-strategy of train and look-up is used. However, the

relationship requires more complicated training to ensure theresult is robust enough.
Also, the intensity of how the reference signal contributes to maintaining the response
distortionless seems crucial to the relationship, since the intensity will effect the

decision of p, .

For the VAD, the robustness under very low SNR case is not strong enough. In
low SNR case, once a few signal parts are treated as noise, the filter will take signal as
noise and proceed on minimization. As a result, the desired signal cancellation
phenomenon will occur and destroy the whole algorithm, which is totally undesired.
To solve this problem, a more intelligent grouping method should be helpful to

overcome such situation.
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