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摘 要  

本論文提出一套利用麥克風陣列來降低噪音及迴響效應的演算法。在實際環

境中，目標音訊不只常受到穩態雜訊及非穩態雜訊的干擾，更常因為迴響效應而

使語音品質遭到破壞。因此，本論文期望設計一個能濾除雜訊並減少迴響影響的

適應性波束形成器。此演算法在波束形成器演算法中，引入參考訊號的觀念並輔

以 Kalman 濾波器來進行演算。此外，經過些微的修改，本演算法也可以利用於

偵測語音活動。藉由適當的語音活動偵測，可以幫助分辨目標與噪音在本質上的

不同，並且加速 Kalman 濾波器的收斂。利用實際在車上錄得的音檔進行的實驗

結果也在此篇論文中呈現。本論文並利用客觀的參數評估所提出的波束形成器與

語音活動偵測的效能，並與其他已知的方法進行比較分析。 
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ABSTRACT 

In this thesis, an algorithm that considers noise reduction and de-reverberation 

simultaneously using microphone array is proposed. In many practical environments, 

the desired speech signal is usually contaminated by stationary or non-stationary 

noises and distorted by reverberation. When considering noise reduction only, the 

desired speech signal could be distorted further due to the effect of desire signal 

cancellation etc. The objective of this thesis is to design an adaptive beamformer to 

incorporate de-reverberation into the noise reduction framework. The proposed 

method tracks a pre-recorded reference signal to compensate the reverberation effect. 

Consequently, the algorithm results in a trade-off between the two objectives. Further, 

a voice activity detection (VAD) algorithm is proposed by slightly modifying the 

proposed algorithm. An adequate VAD can help to identify the nature of signal and 

noise and accelerate the convergence rate of Kalman filter. The experiments on real car 

sound samples are processed. The performance of beamformer and voice activity 

detection are both evaluated and compared with existing algorithms. 
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Chapter 1. INTRODUCTION 

1.1 Motivation and Objective 

Our hearing is perhaps the the most useful sense except vision. However, the 

information retrieved from hearing is usually contaminated by undesired sources. 

Although human beings are able to recognize desired speeches under interferences, it 

is still considered as a difficult task for computers or machines.  

A common sensor for receiving sound wave is the microphone. Single 

microphone can collect spectral information but not spatial information. To retrieve 

more information among the sound wave, a collection of microphones, or microphone 

array, is applied to catch not only spectral information but also spatial information. 

Among several existing microphone-array-based enhancement algorithms, 

beamformer is one of the most popular methods and was extensively studied for 

hands-free speech communication or recognition. 

Background noise and reverberation are the most common origin to signal quality 

degradation. The background noise is from undesired noise source or interferences. 

The spectral and spatial likelihood between noise and desired source will determine 

the difficulty of removing noise. The reverberation level will determine the distortion 

to the desired source. The reverberation level is commonly affected by the reflection 

ratio and openness of the environment.  

The purpose of the thesis is to design a beamformer that handles both noise 

reduction and dereverberation. A scenario like car environment is possible to occur in 

real life, where the quality of sound is seriously deteriorated by engine noise and wind 
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noise and reverberation from the narrow space of cabin. 

 

1.2 Literature Review 

The beamformers can be categorized in two types, fix beamformers and adaptive 

beamformers. Most of the fix beamformers are simpler than the adaptive beamformers. 

The implementation costs of fix beamformers are often lower than the adaptive 

counterparts. 

Fix beamformers includes delay-and-sum beamformer (DSB) [11], constant 

directivity beamformer (CDB) [12] and fixed superdirective beamformers [13]. They 

utilize fixed coefficients to achieve a desired spatial response. The DSB is the simplest 

structure in fix beamformers. It first compensates to the relative time delay between 

distinct microphone signals and then sums the steered signal to form a single output. 

CDB is designed to maintain the spatial response equal over a wide frequency band 

while the fixed superdirective beamformer attempts to suppress noise coming from all 

directions without affecting the desired speech signal from a principal direction. Fix 

beamformers generally assume the desired sound source, interference signals, and 

noises are slowly varying and at known locations. Therefore, these algorithms are 

sensitive to steering errors, which limit their noise suppression capability and give rise 

to the desired signal distortion and cancellation. Furthermore, these algorithms also 

have limited performance under highly reverberation environments.  

Instead of using fixed coefficients to suppress noises and interference signals, an 

adaptive beamformer can form its directivity beam-pattern to the desired signal and its 

null beam-pattern to the undesired signals. In the fixed beamformers, the beam-pattern 
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of null only exists when the direction of noise is known and remains unchanged. To 

cope with environmental changes, various adaptive beamformers were proposed to 

improve the performance. One key issue in adaptive beamformers is the sensitivity due 

to the mismatch between the actual desired signal steering vector and the presumed 

one [10]. The mismatch can be induced by signal pointing errors [14], imperfect array 

calibration [15], or channel effect. In the presence of these effects, an adaptive 

beamformer can easily mix up the desired signal and interference components; that is, 

it suppress the desired signal instead of maintaining distortionless response. This 

phenomenon is commonly referred to signal self-nulling [16]. As a result, much effort 

has been devoted to the noise reduction and dereverberation. 

Many adaptive beamformer techniques were extensively studied. The linearly 

constrained minimum variance (LCMV) beamformer was proposed in [17] to 

minimize the array output power under a look direction constraint. A form similar to 

LCMV is minimum variance distortionless response (MVDR) proposed by Capon in 

[1]. Another popular technique is the generalized sidelobe canceller (GSC) algorithm 

which essentially transforms the LCMV constrained minimization problem into an 

unconstrained one [18].  

The formulation of MVDR is then revisited in [5] with Kalman filter by 

introducing the concept of state space. To improve the robustness against steering 

vector error, various methods are investigated [10]. The Kalman filter can be also 

substituted by H-infinity filter or Second Order Kalman filter or Second Order 

H-infinity filter [19] to enhance its robustness and reducing non-linearity.  

Among adaptive beamformers, the usage of pre-recorded data is a solution to 
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solve channel effect. The algorithm by Dahl et. al can be found in [20], which give rise 

to the reference signal concept in proposed algorithm.  

 

1.3 Thesis Subject and Contribution 

The contribution of this thesis is to propose and implement an innovative 

algorithm for speech enhancement. The subject of this thesis can be divided into two 

parts. The first part is to formulate a new beamformer considering given the 

information of pre-recorded data. The solution to the formulation is presented. The 

second part is to handle the resulting voice activity detection problem by the same 

formulation but only changes the parameters to render different results.  

In the first part, the formulation using MVDR with pre-recorded signal is given. 

To solve the formulation, the linear first order Kalman filter is used. In the Kalman 

filter, the selection of parameters will pose different result among noise reduction and 

dereverberation. The tradeoff effect is discussed and explained.  

In the second part, the same formulation is used to implement a voice activity 

detector. The design and parameter choosing technique are explained and discussed. 

Besides, the information given by the voice activity detector can be reused to finding 

the appropriate parameter in beamforming. 

The experiment results are shown to verify the performance of the proposed 

algorithm, both in beamforming and voice activity detection. 

 

1.4 Outlines of Thesis 

The remainder of this thesis is organized as follows. 
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Chapter 2: The basic beamforming technique Minimum Variance Distortionless  

Response (MVDR) is introduced. The optimal solution of MVDR is  

presented. The method of incorporating state space formulation into solving  

MVDR and solve it with Kalman filter is investigated. These constructed  

the foundation of proposed algorithm. 

Chapter 3: The detailed concept of reference signal based Kalman filter for  

beamformer is stated. It includes the beamforming formulation and voice 

activity detection. In beamforming, the formulation and its solution are 

presented. The technique of choosing the parameter and its effect are also 

discussed. In voice activity detection (VAD), the design and implementation 

are investigated. The method of utilizing the information from VAD to 

decide the parameters in beamforming is also described. Finally, the overall 

architecture is illustrated and explained. 

Chapter 4: The experiment results are presented. It contains experiments regarding  

beamforming capability and voice activity detection. Some objective 

indices are calculated to compare the performance of proposed algorithm 

and former algorithms.  

Chapter 5: The conclusion of this thesis and some issue that is still not clear is       

discussed is this chapter. 
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Chapter 2. BEAMFORMER USING KALMAN FILTER 

2.1 Introduction 

Kalman filter is a well-known optimal estimation filter in control theory. In this 

thesis, the use of Kalman filter in signal processing is more concerned. To begin with, 

a conventional beamformer MVDR proposed by Capon [1] is introduced. The main 

idea of MVDR is to minimize undesired noise while maintaining desired signal with 

known DOA, or Direction of Arrival, distortionless. Such idea can be formulated as a 

minimization problem with certain constraints. Conventional way to solve it is using 

Lagrange Multiplier and achieves optimal solution. Its optimal solution is presented in 

Section 2.2. In Section 2.3, the technique of incorporating state space concept and 

Kalman filter to solve MVDR problem is presented. The solution can be found using 

conventional Kalman filter solution. In later sections, another formulation to maintain 

the distortionless constraint will be presented and investigated. 

 

2.2 Beamformer under MVDR Structure 

The minimum variance distortionless response (MVDR) beamformer, also known 

as Capon beamformer [1], minimizes the output power of the beamformer under a 

single linear constraint on the response of the array towards the desired signal.  

Consider the conventional signal model in which an M-element microphone array 

captures a convolved desired signal (speech source) in some noise field. The received 

signals are expressed as [2], [3], [4] 

1,2,...Mm        )()(*)(  kvksakx mmm ,       (2.1) 
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where  is the impulse response from the unknown (desired) source  to the 

 microphone, * stands for convolution, and  is the noise at the microphone 

. The signals  and  are assumed as uncorrelated and zero mean.  

ma )(ks

thm

m

)(kvm

)(ks )(kvm

 In the frequency domain, (2.1) can be written as  

1,2,...Mm        )()(*)()(  jwVjwSjwAjwX mmm ,        (2.2) 

where , , ,  are the discrete-time Fourier transforms 

(DTFTs) of , , , , respectively, at angular frequency 

)( jwAm

am

)

)( jwS

)k (ks

)( jwX m

)(kxm

)( jwVm

)(kvm( )

(    ww  and j  is the imaginary unit ( ). 12 j

 These M microphone signals in the frequency domain are summarized in a vector 

notation as 

      )()()()( jwjwSjwjw VAX  ,       (2.3) 

where  

T
M

M

T
M

(jw) V(jw)   (jw)  VVjw

(jw) A(jw)   (jw)  AA(jw)

jwXjwXjwXjw

][ )(

][   

 )](  )( )([)(

21

T
21

21













V

A

X

 

and superscript  denotes transpose of a vector or a matrix. T

Consider finding a weight vector  which satisfies the look 

direction constraint 

MVw

1),()( jwjw s
H
MV aw                            (2.4) 

while attempting to minimize beamformer output power 

)()()(})()({})({
22

jwjwjwjwjwEjwYE MVXX
H
MV

H
MV wRwXw       (2.5) 

in order to suppress undesired interference from s   and noise.  is the )( jwY
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beamformer output given by 

)( jwY = .                        (2.6) )( jwH
MVw )( jwX

),( jwsa  is the array manifold vector that points to the source direction. 

 With the consideration above, the following constrained optimization problem can 

be formulated: 

1),()(  subject to  )()()(min jwjwjwjwjw s
H
MVMVXX

H
MV awwRw         (2.7) 

 To solve this problem, the Lagrange Multiplier is incorporated.  








1),()(

0]1),()([)()()( )()(

jwjw

jwjwjwjwjw

s
H
MV

s
H
MVjwWMVXX

H
MVjwW MVMV




aw

awwRw
     (2.8) 

(2.8) can be reduced to  








1),()(

),()()(

jwjw

jwjwjw

s
H
MV

sMVXX




aw

awR
                  (2.9) 

 Assuming XXR  is nonsingular. Then  

,
),()(),(

),()(
)(

1

1

jwjwjw

jwjw
jw

sXXs
H

sXX
MV 


aRa

aR
w 



                   (2.10) 

which is the optimal solution to MVDR problem proposed by Capon[3] and is 

thoroughly evaluated in [4]. 

 

2.3 Beamformer Using Kalman Filter under MVDR Structure 

The traditional formulation and solution to MVDR is presented in Section 2.2. In 

this section, The Kalman filter is introduced to solve the MVDR problem in a new 

formulation by Y.H. Chen and C.T. Chiang [5]. 

With the same formulation as (2.7), the two equations are written in model 

measurement equation as
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where ,  and the input vector is given by T]10[Y











),(
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),(

jw

jwk
jwk

s
H

H
H

a

X
B                             (2.9) 

and the measurement noise vector is 











),(

),(
),(

2

1

jwkv

jwkv
jwkV .                              (2.10) 

Here,  is the residual error and  is the constraint error. By the 

assumption that  and  are uncorrelated, the correlation matrix of 

 can be written as 

),(1 jwkv

)jw

),(2 jwkv

),(1 jwkv ),(2 jwkv

,(kV












 2

2

2

1

0

0

v

vQ



                              (2.11) 

 Since the optimum-constrained weight vector  is a constant all the time 

for the stationary environment [6], the truth-model process equation of the constrained 

Kalman algorithm may be written as 

),( jwkw

).,1(),( jwkjwk  ww        (2.12) 

 With the process equation (2.12) and measurement equation (2.8), the constrained 

Kalman algorithm can minimize the residual error in the mean-square sense while 

maintaining a distortionless response along the look direction. 

 After applying the discrete Kalman filter theory with (2.12) and (2.8), the filtered 

estimate of the weight vector is recursively given by [6] 

)],,1(ˆ),(),()[,(),1(ˆ),(ˆ jwkjwkjwkjwkjwkjwk H  wBYKww       (2.13) 

where the Kalman Gain  can be calculated recursively by ),( jwkK
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.]),(),1(),()[,(),1(),( 1 Qjwkjwkjwkjwkjwkjwk ee
H

ee BRBBRK    (2.14) 

Here the filtered weight-error correlation matrix  is ),( jwkeeR

),,1()],(),([),( jwkjwkjwkjwk ee
H

ee  RBKIR                      (2.15) 

where  is an  identity matrix. Using (2.8), (2.12), (2.13), the signal-flow 

graph of the constrained Kalman algorithm can be plotted as Fig. 1 [5]. 

I mm  -by-

 
Fig. 1 Block diagram of the constrained Kalman algorithm without prior estimation of 

the desired signal 
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Chapter 3. REFERENCE-SIGNAL-BASED BEAMFORMER 

3.1 Introduction 

The MVDR structure can be modified by exploiting the distortionless response. 

To maintain desired signal distortionless, the algorithm incorporating pre-recorded 

signal as reference signal is proposed. The reference signal enhances the distortionless 

constraint by using more information and reduces the loading of carefully estimating 

the system parameters of the environment. More detailed explanation will be presented 

in this chapter. 

In this chapter, the main algorithm of using reference signal to merge with 

MVDR and Kalman filter is presented. In Section 3.2, the formulation under that 

concept is proposed and described. In Section 3.3, the solution to solving proposed 

formulation is thoroughly investigated. In Section 3.4, the know-how of how to choose 

the parameters of the Kalman filter is discussed. The tradeoff phenomenon between 

the parameters is introduced and explained also in Section 3.4. The design and 

implementation of voice activity detection elaborating the same Kalman filter is 

presented in Section 3.5. The threshold decision method and parameter selection 

method is introduced in Section 3.6. The overall system architecture is illustrated and 

explained in Section 3.7.  

 

3.2 Formulation of Referenced-Signal-Based Beamformer Using 

Kalman Filter 

In this section, the proposed reference-signal-based beamformer using Kalman 
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filter is presented. 

In MVDR beamformer, the distortionless requirement is achieved by add a 

constraint that maintains the signal from a known direction unchanged. This constraint 

also avoids choosing the naïve solution of zero during the minimization process. In 

addition, this constraint also achieves the requirement of dereverberation since it not 

only preserves signal from desired direction, but also drop reverberation signals from 

other directions during the minimization process. 

Another approach to maintain distortionless requirement is to estimate the 

acoustic transfer function (ATF) from the desired signal source to the microphone 

array. The ATFs can specifically describe the relationship from desired source to the 

microphone array including the effect of reverberation. With the ATFs, source signal 

can be regenerated with low distortion as long as the ATFs are estimated correctly and 

the surrounding environment is linearly time-invariant (LTI) and does not change 

during the filtering process. 

However, estimating the ATFs is a cumbersome and tedious work. To avoid such 

process but still get useful knowledge of the environment, the concept of 

reference-signal is incorporated. The reference-signal is acquired by recording the 

signal while playing a known clip at the position of source. The received signal can be 

considered as the output of the known input processed by the surrounding environment 

functioned as the system. With the input and output information of the system, it can 

be considered as a reference to the environment and thus achieving the requirement of 

distortionless better and easier.  

The conventional formulation of MVDR in Section 2.2 is  

12



.1),()(  subject to  )()()(min wjwjwjwjw s
H
MVMVXX

H
MV awwRw       (2.7) 

To incorporate the reference-signal, the formulation can be used to substitute the 

distortionless constraint and becomes 

),()()(  subject to

  )()()(min

jwsjwjw

jwjwjw

rr
H
MV

MVXX
H
MV

Xw

wRw
                        (3.1) 

where  is the discrete-time Fourier transforms (DTFTs) of the played known 

clip and  is discrete-time Fourier transforms (DTFTs) of the received signal 

while playing the known clip. , where  is the 

discrete-time Fourier transforms (DTFTs) of received signal at the  microphone. 

The subscript “r” implies “pre-recorded” since the reference signal is recorded before 

the filtering process. 

)( jwsr

(rX )jw

T
Mrrrr XXXjw ][)( ,2,1, X mrX ,

thm

 

3.3 Solution to the Proposed Formulation 

With the formulation above, 

),()()(  subject to

  )()()(min

jwsjwjw

jwjwjw

rr
H
MV

MVXX
H
MV

Xw

wRw
                        (3.1) 

the solution to the formulation will be presented in this section [2]. 

 From (3.1), state equations describing such formulation can be written as 

Measurement Equation: 

),(),(
),(

),(

),(

0
wkwk

wk

wk

wks H
r

H

r

Vw
X

X


















                     (3.2) 

Process Equation: 

 ),,(),(),1( wkwkwk Qww                              (3.3) 

13



where  is the frame index and the superscript “ H ” means conjugate-transpose. The 

noise  and  are assumed with Gaussian distribution and thus the 

covariance matrix can be written as 

k

(V ), wk ),( wkQ

),
0

01
,0(~),(

),0(~),(










v
v

Q

Nwk

INwk






V

Q

                             (3.4) 

where “N” means Normal Distribution and Q , v , v  are parameter to be chosen. 

 is the received signal when desired signal is inactive, since the desired signal 

cannot always be guaranteed uncorrelated with the reference-signal. Once desired 

signal is correlated with reference signal, the phenomenon “desired signal cancelation” 

will occur and yield huge degradation to the desired signal. 

),( wkX

 Let the state estimation error is 

 ),,1(ˆ),(),1( wkkwkwkk  wwe                                (3.5) 

and the error covariance matrix is 

)],1(),1([),1( wkkwkkEwkk T
ee  eeR                          (3.6) 

In the first step, no new observation is used. To predict  using the state 

equation, the best possible predictor given no new information is available would be  

)(kw

).,11(ˆ),1(ˆ wkkwkk  ww                                     (3.7) 

The estimation error is 

),(),11(    

),11(ˆ),(),1(    

),1(ˆ),(),1(

wkwkk

wkkwkwk

wkkwkwkk

Qe

wQw

wwe







　　　　

　　　　                     (3.8) 

If requiring that 0)],11([  wkkE e (this zero-mean condition states that there is no 
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constant bias in the optimal linear estimation [7]), .0)],1([  wkkE e  Since 

),11( wkk e  is uncorrelated with ,  ),( wkQ

 ),1( wkkee R = ),1 w 1( kkeeR

),( wkY

.2IQ                             (3.9) 

This is the Riccati Equation. 

 In the second step, the new observation, =  is incorporated to 

estimate . A linear estimate that is based on 









),(

0

wksr

),( wkw ),1 w(ˆ kkw  and  has the 

form 

),( wkY

                (3.10) ),,(),((ˆ),('),(ˆ wkwkwkwkk YkwKw  ),1 wkk 

where  and  are some matrix and vector to be determined. The vector 

 is called the Kalman gain. Now, the estimation error is 

),(' wkK ),( wkk

),( wkk

),,(),(),1(),('),(]),(),('[   

)],(),(),()[,()],1(),()[,('),(   

),(),(),1(ˆ),('),(   

),(ˆ),(),(

wkwkwkkwkwkwkwk

wkwkwkwkwkkwkwkwk

wkwkwkkwkwk

wkkwkwkk

H

H

VkeKwkKI

VwkewKw

YkwKw

wwe









X

X

　　　　

　　　　

　　　　
 

(3.11) 

where . 









),(

),(
),(

wk

wk
wk

H
r

H
H

X

X
X

Since ,0)],1([  wkkE e  then 0)],([ wkkE e  only if 

Hwkwk X),(),(' kIK                               (3.12) 

With this constraint, it follows that  

)],,1(ˆ),()[,(),1(ˆ    

),(),(),1(ˆ]),([),(ˆ

wkkwkwkwkk

wkwkwkkwkwkk
H

H





wYkw

YkwkIw

X

X

　　　　
        (3.13) 

and  
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).,(),(),1(]),([   

),(),(),1(),('),(

wkwkwkkwk

wkwkwkkwkwkk
H VkekI

VkeKe





X　　　　
             (3.14) 

Since is uncorrelated with  and with ),( wkV  ),( wkQ ),1( wk Y , then  will ),( wkV

be uncorrelated with ),( wkw  and with ),1 wk  ; as(ˆ kw  a result )]([ wkkE e =0. 

Therefore, the error co e matrix for

,(), kw V

varianc  ),(e wkk  is 

),,(),(),(]),()[,1(]),([   

)],(),([),( wkkwkkEwkk T
ee eeR 

wkwkwkwkwkkwk T
v

TH
ee

H kRkkIRkI  XX
  (3.15) 

Where = . 

The final task is to find the Kalman gain vector , that minimizes the MSE 

),( wkvR 








v
v 


0

01

),( wkk

)],([)( wkktrkJ eeR                                (3.16) 

Differentiating with respect to )(kJ  ), w , we get (kk

),(),(2),1]),([2
(

wwk
kJ H RkI 

 XX (
),(

)
wkwkkk

wk vee Rk
k




        (3.17) 

and equating it to zero, we deduce the Kalman gain 

 ),1(),1(),(  wkkwkkwk vee
H

ee RRRk XXX  1
),(


wk                  (3.18) 

The expression for the error covariance matrix can be simplified as 

，　　｛ ),()},(),(]),()[,1(]),([

),1(]),([),( wkkwkwkk ee
H

ee RkIR  X

wkwkwkwkwkkwk T
v

H
ee

H kkRkIRkI  XX
   (3.19) 

Where, by using (3.17), the second term in (3.19) is equal to zero. Hence 

),1(]),([),( wkkwkwkk ee
H

ee  RkIR X＝                     (3.20) 

 In conclusion, the Kalman filter can be summarized as 
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State Equation: 

 ),(),(ˆ),1(ˆ wkkw  wkwkk Qw   

bservation Equation (or Measurement Equation): 

H

Initialization: 

O

),(),(
),(0

),( wkwk
wkHX

Y 





 = )
),(),( wkwks

wk
H
rr

Vw
X













,(),(),( wkwkwk Vw X  

)]0()0([),00( T
ee Ew wwR   )],0([),00(ˆ Ew ww  w       

Computation for ,2,1  k

)(ˆ),1(ˆ kwkk  ww ,11 wk   

IRR 2),11(),1( Qeeee wkkwkk   

The Kalman gain: 

  1
),(),1(),


 wkwkkw vee
H RR XXX  1(),(  kkwk eeRk

)],1(ˆ),(),()[,(),1(ˆ),(ˆ wkkwkwkwkwkkwkk H  wYkww X  

),1()],(),([),( wkkwkwkwkk ee
H

ee  RkIR X  

 One more point needs to be mentioned is

rm

lection and Tradeoff 

re to be determined: 

 that the weighting retrieved in proposed 

fo ulation is not normalized yet. It makes the weighting differs in length and gain 

among each frame. The result is the output waveform looks blurred in frequency 

spectrum. To solve this problem, the weighting has to be normalized before 

multiplying the input. 

3.4 Parameter Se

In the formulation above, three parameters a Q , v  and 

v . Q  control the error covariance of the Process Equation. v  control the error 
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co rianva ce of the Measurement Equation. v  control the error pro ortion between the 

upper line and lower line of the Measureme  Equation. 

Process Equation: 

p

nt

), w ),,((),1( wkkwk Qww                       (3.2) 

Measurement Equation: 

              (3.3) ),(),(
(

(

),(

0
wkwk

k

k

wks H
r

H

r

Vw
X

X


















),

),

w

w

0

1

)


)

0
,0(~),(

,0(~),(










v
v

Q

Nwk

INwk





V

Q

                          (3.4) 

The value 
v

Q




, which is the ratio between Q  and v , controls the adaption 

speed. If 
v

Q




 is large, the filter adapts ronment faster. By (3.2),  to the variation in envi

it can be observed that if Q  is large, the change between ),( wkw  and ),1( wk w  

will be larger and leads to faster adaption in ),( wkw . By (3.3), it can be observed that 

if v  is small, the ),( wkV , or the Measurem ror, has small variations between 

eac tep, which mea ), wk  has to adapt fast if 



 ),( wkHX

 varies fast . 

In the case of the environment is a Linearly Time-Invariant (LTI) system,

ent Er


h s ns w(

), w(kH
rX

 there is 

no need to do adaption to those variations in the system. Therefore, the best choose of 

v

Q




 will be zero by setting Q  to zero. 

The parameter v  controls the tradeoff between noise reduction and 

dereverberation. Large v  leads to strong noise reduction and little dereverberation 
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while small v  leads to strong dereverberation and little noise reduction. If v  is 

small, that means the error variation in the lower line of (3.4) is relatively small 

compared with the upper line, which leads to closer tracing in the lower line and looser 

tracing in the upper line, achieving strong dereverberation and weak noise reduction. If 

v  is large, that means the error variation in the upper line of (3.4) is relatively small 

pared with the lower line, which leads to closer tracing in the upper line and looser 

tracing in the lower line, achieving strong noise reduction and weak dereverberation. 

Extreme choose of v

com

  in either cases will decrease the signal quality since too 

cmu h distortion or too m h noise are both degrading reasons to the quality of the 

signal. The optimal choose of v

uc

  should be related to the signal-to-noise ratio (SNR) 

since v  can be treated as a leverage that distributes the total effort of filtering 

between signal dereverberation and noise reduction. If the noise level is relatively 

small to the signal, or the SNR is high, more effort should be emphasized on signal 

dereverberation while if the noise level is relatively large to the signal, or the SNR is 

low, more effort should be emphasized on noise reduction. Experiments on this 

tradeoff will be presented in Section 4. 

 

3.5

wh

 Voice Activity Detection under Proposed Formulation 

 re ed 

en nal cancelation phenomenon will 

parameters during the filtering procedure can be utilized to implement as voice activity 

As mentioned before in Section 3.3, the vector ),( wkX  is the data cord

 the desired signal is inactive, or desired sig

occur. Thus, a voice activity detector is required. A feasible option is to incorporate 

other algorithm that detects voice activity or signal activity. However, some 
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detector. The procedure regarding such implementation will be presented in this 

section. 

Starting again from the formulation: 

Mea

                     (3.2) 

Process Equation: 

surement Equation: 

),(),(
),(

),(

),(
wkwk

wk

wk

wks H
r

H

r

Vw
X

X

















0

 w ).,(),(),1( wkwkwk Qw                              (3.3) 

The vector  is the Measurement E

 as a feature to 

rror. By observing the value of the ),( wkV

Error, tMeasurement he voice activity detector can be implemented. In (3.2), the upper 

line can be regarded as suppressing noise while the lower line can be regarded as 

preserving the desired signal. If ),( wkX is purely noise, it will be minimized by both 

the upper line and lower line of he Measurement Error with such ),( wkX  is 

small and has low variance. If ),( wkX  contains desired signal, it is prone to be 

preserved by the lower line but also prone to be minimized by the upper line, which 

constitutes a dilemma. The filtering result is that the first element of the Measurement 

Error, corresponding to the error in the upper line, is large, which means such ),( wkX  

cannot be minimized by the upper line and leads to large residual error. 

 In summary, the Measurement Error of noise reduction is employed

(3.2). T

detect voice activity under this algorithm. It can be considered as a data rejection 

procedure before filtering [8]. If the Measurement Error is larger than the threshold, 

the current frame is regarded as voice activity and thus the parameters update is 

abandoned with respect to current frame. If the Measurement Error is smaller than the 
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threshold, the current frame is regarded as voice inactivity and thus the parameters 

update is preserved with respect to current frame. The flow chart of the voice activity 

detection procedure is as Fig 2.  

 

Fig. 2 Flow Chart of Voice Activity Detection Procedure 

It has to be note v  

ise

d that the Measurement Error is not discriminative enough if 

is ill-chosen. Since the the critical error term is the Measurement Error on no  

reduction, v  should be chosen large enough to spare efforts on noise reduction. 

However, the best v  should consider both noise reduction and dereverberation, so 

the appropriate v  ould not be chosen extremely large. To overcome such dilemma, 

two Kalman filters should be executed, one with large v

sh

  that executing noise 

reduction and detecting signal activity while another one with medium v  that 

computes optimal weight ),( wkw  to achieve best tradeoff between noise reduction 
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and dereverberation. 

 

3.6 Threshold Decision and SINR Estimation 

e voice activity is not 

deter

In Section 3.5, the threshold that discriminates th

mined. In Section 3.6.1, the procedure that determines the threshold will be 

presented. In Section 3.6.2, the result of the detection procedure can be further reused 

to estimated current SINR and help choosing the best v , which is undetermined in 

Section 3.4. 

 

3.6.1 Gaussian Mixture Model and EM Algorithm 

orated to guide the data 

class

p

 

The Gaussian Mixture Model (GMM) is incorp

ification [9]. The distribution of Measurement Error when signal is inactive is 

modeled as a Gaussian distribution and the distribution of Measurement Error when 

signal is active is modeled as another Gaussian distribution as Fig. 3. This model is 

described by the following equations. Let kx  denote the first element of the 

Measurement Error at time k . z  is the speech/nonspeech label, }1,0{z , where 0 

denotes nonspeech and 1 for s eech. According to Bayes’ Rule, it can be written that  

),(),(),()( zpzxpzxpxp kkk
zz
                    (3.21) 

where is the prior probability of speech/nonspeech, and is)(zp  

coeff

 actually equal to the 

weight icient zw   ( 110  ww ). ),( zxp k  represents the likelihood of kx  

given speech/nonsp ch mee odel. 
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}2/)(exp{
2

1
),( 2

zzk

z

k xzxp 


                   (3.22) 

where z  and z  denotes the mean and variance respectively. }1,0,,{  zwzzz   

is the parameter set of the GMM. 

 
Fig. 3 Schematic illustration of error distribution: (a) Distribution of noisy speech; (b) 

Distributions of speech and nonspeech (This Figure is modified from [9]) 

 Let  be a sequence of the first element of the Measurement 

Error. The probability density function (PDF) is given by 

},,{ 210 Mxxxx x





M

k
kxpp

0

)()( x  .                                (3.23) 

The parameter set   is estimated by maximizing the above PDF function. 

 From the GMM, both of the PDFs of speech and nonspeech can be obtained, 

namely )1(),1(  zpzp   and )0(),0(  zpzp  . These two PDFs are shown in 

Fig. 3(b). From the two PDFs, the optimal threshold   can be obtained to minimize 

the classification error. The threshold   satisfies  

)0(),0()1(),1(  zpzpzpzp                     (3.24) 

Eq. (3.24) is a quadratic equation with one unknown  . The threshold is one of its 

roots location between the two means, namely 01   . The samples with error less 

than   are determined as nonspeech, and otherwise as speech. The shadow in Fig. 

23



3(b) denotes the classification error. 

 The crucial issue of the above model is to estimate the parameter set  . The 

estimation consists of an initialization and a sequential updating process. The initial 

GMM is first established by the EM algorithm, and then incrementally updated with 

coming data. The parameter set at time  is denoted as k }1,0,,{ ,,,  zw zkzkzkk  . 

0  is the initial parameter set estimated from the first M  samples by EM algorithm. 

According to [9], the following are the typical EM re-estimation formulas, 




z
jz

jz
j zxpw

zxpw
xzp

),(

),(
),(




                       (3.25) 







1

0

),(
1

'
M

j
jz xzp

M
w                             (3.26) 
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),(

'

1

0

z

M

j
jj

z Mw

xzpx





                              (3.27) 

'

),()'(

'

1

0

2

z

M

j
jzj

z Mw

xzpx








                         (3.28) 

, where ' ~{ ',',' zzzw  } is the new parameter set re-estimated from  . In the next 

iteration,   is replaced by ' . This iteration continues until EM algorithm converges. 

The final '  is the initial parameter set 0  required to GMM initialization and the 

threshold   can be obtained by solving (3.24). 

 According to [9], it assumes the GMM varies with time slowly, 1 kk   at time 

. Accordingly, the relationship k 






k

Kkj
kj

k

Kkj
kj xzpxzp

1
1

1

),(),(  . The summation is 

24



approximated by the zero-order moment, zk

k

Kkj
kj Kwxzp ,

1

),( 


 , where K  is a 

parameter defined by user which determines the adaption speed. Therefore, the 

adaption formulas can be written as follows, 

),()1( 1,,1 kkzkzk xzpww                      (3.29) 

zk

kkkzkzk
zk w

xxzpw

,1

11,,
,1

),()1(










              (3.30) 

zk

zkkkkzkzk
zk w

xxzpw

,1

2
,111,,

,1

))(,()1(










 ,         (3.31) 

where  stands for forgetting factor. Besides, some constraints are required during the 

adaption process as follows. 

},max{ 0,1,1,   kkk                           (3.32) 

},max{ 1,0,1, kkk                               (3.33) 
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The reason for constraint (3.32) is based on the inspection that the mean of the 

Measurement Error when speech is always larger than nonspeech, thus a lower bound 

for 1,k  is implemented by adding a gap   to 0,k  and choose the larger one. The 

reason for constraint (3.33) is based on the inspection that the variance of the 

Measurement Error when speech is always not smaller than the the variance of the 

Measurement Error when nonspeech. The reason for constraint (3.34) is to stem the 

minimum prior probability of speech from becoming 0 and inducing no adaption 

afterwards, where   is also a parameter to be chosen.  

After building the GMM model, the threshold   can be determined after EM 
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initialization and adaption. The process of EM algorithm is written in Fig. 4 and the 

total procedure of VAD decision is written as Fig. 5. 

Initialize GMM by using unsupervised clustering 
while GMM likelihood is increasing 
  if 1,kw  

    1,kw  

    10,kw  

    break 
  end 
  Calculate ),( jxzp  for all  and  with (3.25) z jx

  Calculate new weights with (3.26) 
  Calculate new means with (3.27) 
  Constraint means with (3.32) 
  Calculate new variances with (3.28) 
  Constraint variances with (3.33) 
end

 

 

 

 

 

 

 

 

Fig. 4 EM algorithm with constraints (revised from [9])  

 
for the first M frames 
  Calculate the Measurement Error 
  Establish a GMM by EM with constraints 
  Determine the threshold from GMM using (3.24) 
  Classify M frames as speech/nonspeech 
  Discriminate speech/nonspeech by hangover scheme 
end 
for new frame at time 1k  

Calculate the Measurement Error 
  Calculate ),( jxzp  with (3.25) 

  Update the weight coefficients with (3.29) 
  Constraint the weight coefficient with (3.34) 
  Update the means with (3.30) 
  Constraint the means with (3.32) 

Update the variances with (3.31) 
  Constraint the variances with (3.33) 
  Determine the threshold from GMM using (3.24) 
  Determine  as speech/nonspeech 1kx

end 

 

 

 

 

 

 

 

 

 

 

Fig. 5 The process of VAD decision (revised from [9]) Fig. 5 The process of VAD decision (revised from [9])  
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3.6.2 SINR Estimation 

In Section 3.4, the best v  that determines the tradeoff between noise reduction 

and dereverberation is undetermined. It is mentioned that it should be related to the 

current SINR since v  leverages the effort to reduce noise and enhance signal while 

SINR stands for the ratio of signal power and noise power. From the result of Section 

3.6.1, the two Gaussian Models stand for the Measurement Error of signal part and 

noise part, which is also can be related to SINR. The mean of the Gaussian Model for 

signal and noise can be regarded as two indices describing the signal power and noise 

power after adaptive filtering. Therefore, the mean difference of the two Gaussian 

Models can be interpreted as an index describing current SINR. Fig. 6 shows the 

relationship from Mean Difference in VAD to the best estimation of v . 

v
v

 

Fig. 6 The relationship from Mean Difference in VAD to the best estimation of v  

 In Fig. 6, there are three blocks used to determine the best estimation of v . The 

first block is calculating the mean difference from current GMM, which is trivial after 

building the Gaussian Mixture Models. 

 The second block is estimating the current SINR by current Mean Difference. 

Although the conceptual relationship can be imagined, there is still no concrete 

equation to describe the relationship between them. To solve that problem, the 

relationship can be pre-trained. The curve, or the relationship, can be found by mixing 
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signal clip and noise clip recorded on testing scenario with various amplitudes to 

acquire clips with different SINRs. With those clips, the computation of computing 

Measurement Error with Kalman filter and perfect VAD are preceded. After the 

computation and building GMM modles, the Mean Difference can be found 

corresponding to the testing clips. Finally, rearranging the correspondence from SINR 

to Mean Difference, the relationship can be trained. An example showing the result of 

a series of training is in Fig. 7. With the relationship from SINR to Mean Difference, it 

can be used to inversely look up when requiring current SINR given Mean Difference.  

 

Fig. 7 An example of trained relationship from SINR to Mean Difference 

 The third block is estimating the best v  corresponding to current SINR. It can 

also be trained to build the relationship. The pre-training procedure is varying v  

from 0.01 to 100 with multiplication of 100.2 for each sample clip of different SINR 

and finding the best output. The “best output” can be measured by some combination 

of objective indices like output SINR or log spectrum distortion (LSD). An example of 
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giving the best output by minimizing the LSD through various v  and various SINR 

is presented in Fig. 8. Note that small LSD stands for less distortion and high signal 

quality. 

 

Fig. 8 SINR vs. the v  giving Best LSD 

 With the Gaussian Mixture Models and the two pre-trained blocks, the best v  

under that trained scenario can be founded. 

3.7 Overall System Architecture 

Combining the beamforming technique proposed in Section 3.3, the voice activity 

detection in Section 3.5 and the parameter determinism in Section 3.6, the overall 

system architecture is presented in this section.  

The flow chart Fig. 9 is plotted to elaborate the overall system architecture. The 

main processing can be separated to two Kalman filters, written as Kalman filter 1 and 

Kalman filter 2 in Fig. 9 The Kalman filter 1 is operated as the voice activity detector, 
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thus its v  should be chosen large enough to place appropriate efforts on noise 

reduction. By a large v , the Measurement Error will be discriminative enough to 

separate the signal part and noise part. The Kalman filter 2 serves as the beamformer, 

so its v  should be chosen appropriately to balance the tradeoff between noise 

reduction and dereverberation.  

 To start with, new speech samples in time domain are collected in frames with 

fixed overlap to the previous frame and transformed to frequency domain after zero 

padding and Hanning windowing. Before feeding the new frame to Kalman filter 1, 

the old parameters of Kalman filter 1 is preserved in case later the Measurement Error 

shows the Kalman filter 1 should not adapt to the new frame since it contains desired 

signal. After saving current parameters of Kalman filter 1, the Kalman filter 1 tries to 

adapt itself to the new frames and calculate the Measurement Error with respect to the 

new frame. The Measurement Error is compared with the threshold and used to 

determine the new frame is desired signal active or inactive.  

If the new frame is determined as desired signal active, it should be weighted and 

summed by the weightings given by Kalman filter 2. As mentioned before, the Kalman 

filter 2 serves as beamformer and filters out undesired noise and maintains desired 

signal undistorted. After giving filtered result, the parameters of Kalman filter 1 should 

be loaded by the parameters before adapting to new frame, since the new frame 

contains desired signal and should not be adapted by Kalman filter 1.  

 If the new frame is determined as desired signal inactive, it should be fed to 

Kalman filter 2 to adapt to the noise contained in the new frame. During the adaption 

phase, the parameters will be meanwhile updated. 
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v

Update Of 
Kalman Filter2
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Fig. 9 The Flowchart of Overall System 
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 After determining the voice activity, the new Measurement Error is used to update 

the GMM and calculate for new threshold. The Mean Difference of the two Gaussian 

Models can be used to look up for current SINR and the best v  for Kalman filter 2.  

 To sum up with, the overall algorithm contains two Kalman filters to handle the 

two issues of voice activity detection and beamforming respectively. The two Kalman 

filters differ in its crucial parameter v  and thus render different functions and 

scenarios. The GMM is incorporated to help detecting voice activity and separate the 

signal and noise as two groups, which gives more information to retrieve the best v  

corresponding to current SINR. 
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Chapter 4. EXPERIMENT RESULTS 

4.1 Introduction of the Experiment Condition 

In the experimental results presented afterward, the original sound samples are 

recorded in a Ford Fiesta car by a microphone array placed at the sun shield of driver’s 

seat. The desired male speech is played by the Head and Torso Simulator (HATS) by 

Brüel & Kjær on the driver’s seat. The speech data is extracted from a listening 

comprehension test by an English learning center, thus giving high SNR. The 

interfering female speech is played by the same HATS on the copilot’s seat. It is also 

extracted from an English listening comprehension test. The noise is recorded when 

the car is driving on road with speed at around 50 km/hr. More specifications about the 

experiment are presented in Table 1. The photos illustrating the recording environment 

are as Fig. 10 and Fig. 11. Fig. 12 and Fig. 13 are the time-frequency plots from the 

known clips played and the signal clips recorded, both of which are used as reference 

signal in this experiment. 

Microphone Number 4 Microphone Displacement 7 cm 

Sampling rate 8000 Hz FFT size 512 samples 

Shift number 160 samples Zero padding 32 samples 

Table 1 Parameters in experiment 

The sound data is recorded by a digital microphone array, which uses digital 

microphones to receive signal and collects 16-bits array data in an Altera FPGA 

development board. The received data is visible for an embedded network hardware 

NetBurner through shared memory. Finally, the array data is transferred to PC or 

Laptop through Local Area Network (LAN). 
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Fig. 10 The photo for the microphone array at the sun shield of the driver’s seat. 

 

 

Fig. 11 The photo for the HATS at the driver’s seat 
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Fig. 12 The time-frequency plot for original speech 

 

Fig. 13 The time-frequency plot for recorded speech 
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4.2 Experiments on Performance of Noise Reduction and Its 

Tradeoff with Dereverberation 

In this section, the tradeoff phenomenon between noise reduction and 

dereverberation is exhibited. The experiment environment is as mentioned in Section 

4.1. Three speech enhancement algorithms, MVDR, MVDR with Kalman filter 

solution, DSB (Delay and Sum Beamformer) are implemented to compare with 

proposed algorithm. In this section, perfect voice activity detection is assumed for 

MVDR, MVDR with Kalman filter and proposed algorithm to avoid sample matrix 

inverse (SMI) problem [10]. For the MVDR filter, the forgetting factor of sample 

covariance matrix is 0.99. In proposed beamformer, the parameter v  ranges from 

0.001 to 1000 with ration of increase 10.  

Two objective performance indices are used to measure the waveform property. 

The first is the average SINR (avgSINR) defined as  
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where  and  denote periods in time when only the desired speech is active and 

only the interference-plus-noise signals are active respectively. The second quality 

measure is log spectral distortion (LSD) defined as 
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where  is the Short-time Fourier transform (STFT) of the original sound 

played by HATS and  is the STFT of the beamformer output. LSD means the 

),( wksr

),( wkY

36



speech distortion in frequency domain. Note that a lower LSD level corresponds to 

better performance. 

In Fig. 14(a), Fig. 15(a) and Fig. 16(a), the effect of v  regarding SINR is as 

expected. Higher v  gives higher noise reduction level and thus giving better 

performance. In contrast, small v  gives low noise reduction level and thus giving 

bad result in LSD since noise and distortion both worsen the LSD. Since the perfect 

voice activity detection is assumed, other methods like MVDR and MVDR with 

Kalman filter both performs well. With perfect voice activity detection, the MVDR 

works on perfect situation that signal correlation matrix and noise correlation matrix 

are perfectly identified. In that case, its solution is close to optimal solution for 

maximizing output SINR. However, in Fig. 14(b), Fig. 15(b), Fig. 16(b) the LSD 

shows that MVDR and MVDR with Kalman filter are suffered from distortion while 

proposed algorithm works better if v  is chosen appropriately.  

For subjective evaluations, Fig. 17, Fig. 18 and Fig. 19 show the waveforms and 

spectrograms at different SINR -2 dB, 4 dB and 7 dB. It can be observed that both in 

MVDR and DSB, the voice pattern in frequency domain is still preserved while 

proposed method and MVDR with Kalman filter somehow blurred the voice pattern in 

frequency domain. Regarding the noise reduction, it can be observed that most of the 

noises are eliminated in proposed method, MVDR and MVDR with Kalman filter. 
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           (a) avgSINR result                    (b) LSD result 

Fig. 14 Experiment results in car environment with input SNR 7 dB 

 

(a) avgSINR result                    (b) LSD result 

Fig. 15 Experiment results in car environment with input SNR 2 dB 

 

(a) avgSINR result                    (b) LSD result 

Fig. 16 Experiment results in car environment with input SNR -4 dB 
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(a) Original Speech                (b) Contaminated Speech 

 
(c) Proposed Algorithm                (d) MVDR+Kalman 

 
(e) MVDR                          (f) DSB 

Fig. 17 Experiment results in car environment with input SINR 7 dB 
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(a) Original Speech                (b) Contaminated Speech 

 
(c) Proposed Algorithm                (d) MVDR+Kalman 

 
 (e) MVDR                          (f) DSB 

Fig. 18 Experiment results in car environment with input SINR 2 dB 
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(a) Original Speech                (b) Contaminated Speech 

 
(c) Proposed Algorithm                (d) MVDR+Kalman 

 
 (e) MVDR                          (f) DSB 

Fig. 19 Experiment results in car environment with input SINR -4 dB 
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4.3 Performance on Voice Activity Detection 

In this section, experiments regarding voice activity detection are investigated. To 

compare the detection ability of proposed algorithm, the perfect voice activity 

detection is made artificially as base line. In addition, the Target-Jammer Ratio (TJR)   

and energy threshold algorithm are implemented for comparison. The TJR algorithm 

with target at the front is as follows 

2
3241
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, where M  is the microphone number and  is the data received at  

microphone at snapshot .The numerator is to form a beam toward target direction 

and thus representing the intensity of the target. The denominator is to form a null on 

target and thus retrieves the intensity of the noise. The energy algorithm calculates the 

energy in all frequency bands. The observation is calculated as 
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The proposed VAD, TJR VAD and energy VAD are then classified by the GMM 

model with EM initialization. The forgetting factor   is chosen as 0.999 among all of 

the three methods. In the proposed VAD, the parameter v  is chosen as 1000 to 

impose strong noise reduction. 

To measure the correctness of the detectors, the coverage with perfect detector is 

calculated for objective index. The correct rate, false positive rate and false negative 

rate can be calculated as 
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where )11(VAD  means given active by perfect VAD the detection is active. 

The result of correct rate, false positive rate and false negative rate under SINR 

from -5~10 are list in Table 2. 

In Table 2, it can be observed that proposed method performs better than TJR 

VAD and Energy VAD, especially under low SINR case. In high SINR case, all the 

algorithms can extract the voice activity and represent the activation by its feature. 

However, in low SINR case, it becomes tougher to separate signal and noise since the 

noise group and signal group are getting closer. In proposed method, high v  places 

much emphasis on noise reduction, so the Measurement Error is still distinguishable 

between signal and noise under low SINR case.  

The reason to choose   as 0.999, which is large than normal, is to avoid close 

tracking and over-damping for the threshold.  

From the amplitude of Fig. 20(a)~Fig. 24(a), it can be observed that the 

relationship between the Mean Difference and SINR is proportion. Such phenomenon 

exists throughout the figures from other algorithms. Actually, in situations of VAD 

using energy, the Mean Difference from energy after taking logarithm direct maps to 

SINR under each frequency band.  

In Fig. 20~Fig. 24, the Mean0 and Mean1 represents for the mean value of the 

Gaussian Model of noise and speech respectively.  
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It has to be mentioned that proposed algorithm is prone to crash down thoroughly 

under very low SINR like -15 dB. The reason is from the looping architecture of 

proposed algorithm. If a frame is detected as noise frame but actually signal, i.e. false 

negative case, the Kalman filter will adapt to minimize the signal term, which makes 

next signal frame more likely to be treated as noise frame and never come back. To get 

rid of such disaster, the forgetting factor should be chosen large to avoid close 

tracking.  

SINR=10 dB 

 Correct(%) False Positive(%) False Negative(%)

Proposed 90.08 9.92 0 

TJR 93.36 6.16 0.48 

Energy 89.92 10.08 0 

SNR= 5dB 

Proposed 90.24 9.36 0.40 

TJR 93.52 5.92 0.56 

Energy 87.68 12.32 0 

SNR= 0dB 

Proposed 90.88 8.64 0.48 

TJR 93.60 5.76 0.64 

Energy 68.80 31.20 0 

SNR= -5dB 

Proposed 95.28 4.24 0.48 

TJR 92.88 1.92 5.20 

Energy 67.28 30.80 1.92 

SNR= -10dB 
Proposed 95.20 3.76 1.04 

TJR 78.00 2.40 19.60 
Energy 53.28 14.00 32.72 

Table 2 Results for voice activity detection under various SINR 
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(a)VAD using Proposed Algorithm under v  = 1000 

 
 (b) VAD using TJR             

 
  (c) VAD using Energy 

Fig. 20 Voice Activity Detection under SINR = 10 dB 
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(a)VAD using Proposed Algorithm under v  = 1000 

 
(b) VAD using TJR 

 
 (c) VAD using Energy 

Fig. 21 Voice Activity Detection under SINR = 5 dB 
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(a)VAD using Proposed Algorithm under v  = 1000 

 
(b) VAD using TJR 

 
 (c) VAD using Energy 

Fig. 22 Voice Activity Detection under SINR = 0 dB 
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(a)VAD using Proposed Algorithm under v  = 1000 

 
(b) VAD using TJR 

 
 (c) VAD using Energy 

Fig. 23 Voice Activity Detection under SINR = -5 dB 
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(a)VAD using Proposed Algorithm under v  = 1000 

 
(b) VAD using TJR 

 

 (b) VAD using TJR  

Fig. 24 Voice Activity Detection under SINR = -10 dB 
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Chapter 5. CONCLUSION AND FUTURE STUDY 

The experiment results presented in Chapter 4 show that the algorithm is capable 

of processing noise reduction and dereverberation issues at the same time and 

performs better than general beamformers as in Fig. 14, Fig. 15 and Fig. 16. The 

capability of utilizing proposed algorithm to implement VAD is experimented in  

SNR= -10dB 
Proposed 95.20 3.76 1.04 

TJR 78.00 2.40 19.60 
Energy 53.28 14.00 32.72 

 and Fig. 20~Fig. 24. The correction rate shows it functions well under high SINR 

with correction rate 93.27%. It works better than other VAD algorithms under low 

SINR case with correction rate 96.11%. 

For choosing the best v , the strategy of train and look-up is used. However, the 

relationship requires more complicated training to ensure theresult is robust enough. 

Also, the intensity of how the reference signal contributes to maintaining the response 

distortionless seems crucial to the relationship, since the intensity will effect the 

decision of v .  

For the VAD, the robustness under very low SNR case is not strong enough. In 

low SNR case, once a few signal parts are treated as noise, the filter will take signal as 

noise and proceed on minimization. As a result, the desired signal cancellation 

phenomenon will occur and destroy the whole algorithm, which is totally undesired. 

To solve this problem, a more intelligent grouping method should be helpful to 

overcome such situation. 
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