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Design of statistical precoder for correlated
MIMO channel with limited feedback of bit
allocation

Shih-Jet Ou

Advisor: Dr. Yuan-Pei'Lin
Department of Electrical and Control Engineering
National Chiao Tung University

Abstract

In this thesis, we design statistical precoder for precoded MIMO sys-
tems over correlated Ricean channels with limited feedback of bit alloca-
tion. We assume a reverse link of very low rate is available so that the
receiver can send back the index of BA vector chosen from a codebook
known to both transmitter and receiver. Furthermore we assume the cor-
related channel is slow fading and the statistics of the channel are known
to the transmitter. Based on statistical of the channel, we derive the op-
timal statistical precoder so that bounds of the BER averaged over the
random correlated channel is minimized. We will consider both linear and
decision feedback receivers in the design of bit allocation codebook. The
distribution of the bit allocation is taken into consideration. As a result,
a nice tradeoff between performance and feedback rate can be achieved
for correlated channels. Simulations show very good performance can be
achieved when optimal precoder is used.
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Chapter 1

Introduction

MIMO systems with limited feedback have received great interest recently [1]-
[10]. The system performance in terms of transmission rate or error rate can be
improved significantly with limited amount. of feedback from the receiver through
a reverse channel [1]. It is generally assumed thatthe transmitter has no knowl-
edge of the forward link channel and only the receiver has knowledge of the
channel state information. The feedback of the complete channel information
to the transmitter will require infinite number of bits.~In practice the reverse
channel can support only a limited transmission rate and it is desirable to have
feedback rate as low as possible.

Recently precoded spatial multiplexing systems with finite-rate feedback have
been investigated extensively [2]- [10]. The receiver chooses the optimal precoder
from a codebook and sends the index back to the transmitter. Optimal codebook
designs of unitary precoders using Grassmannian subspace packing for different
criteria are developed in [2]. In [3], randomly generated codebooks known to
the transmitter and receiver a priori is proposed. The optimal unitary precoder
for minimizing BER (bit error rate) using infinite feedback rate, i.e., full channel
state information available to the transmitter, is given in [4] and generalized Lloyd
algorithm is used for constructing codebooks. Capacity loss due to quantized
feedback is thoroughly analyzed in [5]. A special form of precoding system is the
antenna selection system [6] that chooses the best subset of transmit antennas to

minimize BER. In this case the transmitter enjoys low complexity as the precoder



is a submatrix of the identity matrix. In multimode antenna selection [7], the
number of substreams M or mode is allowed to vary with the channel and the
bits are uniformly allocated to the M substreams. It is shown in [7] that with
M, bits of feedback, multimode antenna selection can achieve full diversity order
M, M;, where M; and M, are respectively the number of transmit and receive
antenna. In multimode precoding [8], the number of substreams M can also vary
with the channel. In addition, a precoder codebook is designed for each possible
M. The design of codebooks for multimode transmission over spatially correlated
channels is developed in [9]. Generalized Lloyd algorithm is used in [10] to design
capacity maximizing codebooks for multimode transmission.

Wireless communication over correlated fading be considered in [11]- [13].
The transmitter optimization be propose and determine a necessary and sufficient
condition for maximize capacity in11} and the special case that is used single
antenna at receiver in [12]. In [13]; & appreximate minimum average symbol error
rate precoder is designed for:spatial-multiplexing system with power allocation
in Ricean channel.

A particular useful class of spatial multiplexing transceiver is the V-BLAST
system that employs successive interference cancellation at the receiver [14]. The
conventional V-BLAST system uses uniform-bit/power allocation and thus no
feedback is needed. It has been extended by incorporating power allocation or bit
allocation when there is feedback [15]- [21]. In [15], approximate minimum BER
power allocation was derived and the feedback is the power allocation information.
An efficient algorithm for per antenna power and rate control of VBLAST system
is developed in [16]. Joint optimization of bit allocation and detection ordering
for minimizing outage probability is given in [17]. Successive quantization of
power and bit allocation is proposed in [18]. Through the feedback of power and
bit allocation, considerable gain can be achieved. Rate and power are optimized
for uncoded error probability in [19]. As the receiver feedbacks only the ordering
of detection to the transmitter, only a low feedback rate is needed. Average
error probability is analyzed in [20] when power and bit allocation are taken into

consideration. The optimal bit allocation is obtained by exhausting all possible



constellations subject to a sum rate constraint. Several optimal designs of MIMO
transceivers with decision feedback and bit loading are proposed in [21]. These
optimal designs have similar performance when the channel state information is
available to the transmitter. For the case of limited feedback, the use of identity
precoder combined with feedback of only bit allocation is suggested therein as
it intuitively requires less feedback. In earlier works of V-BLAST systems with
bit allocation and a sum rate constraint [16] [18] [21], an exhaustive listing of all
possible constellation combinations is used and thus a moderate feedback rate
may be needed. Using capacity as a criterion statistical bit loading is considered
in [22]. When the channel statistics are available to the transmitter but not
the current state of the channel, the precoder can be designed according to the
channel statistics. For example, optimal beamforming for maximizing average
capacity of correlated channels has:been designed in [23] [24]. There have also
been a lot of research on designing statistieal precoders of various design criteria
for spatial multiplexing. Precoder for minimizing error probability are derived
in [25] [26] [27]. The optimal precoder that minimizes the sum of mean squared
error is given in [28]. A unified framework for solving a number of transceiver
design problems for correlated channel is presented in [31]. The method can be
applied when the cost belongs to a useful.class of functions of subchannel mean
squared error. In these works, a uniform bit allocation is assumed. Optimization
of precoders with a fixed bit allocation vector have been considered in [29] [30].

In [45] the so called the BA system is proposed for the transmission over
uncorrelated MIMO channels with feedback of bit allocation. For a given channel,
a bit allocation vector is chosen from a codebook whose codewords (bit allocation
vectors) satisfy the target transmission rate. The index of the selected codeword
is feedback to the transmitter. The transmitter allocates bits to the modulation
symbols according to the bit allocation vector and perform spatial multiplexing
(precoding) using a precoder known to the transmitter and receiver a priori.
In [45] it is shown that a uncorrelated channel the optimal precoder can be an
arbitrarily unitary matrix for a uncorrelated channel and the BA system can

achieve full diversity order.



In this thesis, we consider the transmission for Ricean channel (mean and
covariance information) with feedback of bit allocation. Linear and decision
feedback receiver be considered. We assume transmitter knows statistics of the
correlated channel via a feedback link. We derive the optimal statistical precoder
to minimize the bounds of BER averaged over the random channel. Simulations
will show the BER performance is improved with optimal statistical precoder and

detection order.

1.1 Outline

e Chapter 2: General system model is presented.

e Chapter 3: Previous works are reviewed in this chapter. In section 3.1 we re-
view a spacial case of GTD based thatis QR based system by P.P Vaidyanathan
and C.C. Wang. Section 3:2 introduees-a BER criterion and optimal unitary
precoder for precoded spatial multiplexing system with infinite feedback

rate proposed by S. Zheu and B. Li.

e Chapter 4: The proposed BA system over-correlated channel for both co-
variance feedback and mean feedback are presented in this chapter. The
optimal bits and power allocation are derived in 4.1. optimal statistical
precoders are designed in 4.2. Feedback of bits allocation using a codebook

in 4.3. In 4.4, we show that BA system can achieve full diversity.

e Chapter 5: Simulation examples are presented in this chapter.

Chapter 6: A conclusion is given in this chapter.

1.2 Notations

1. Bold face upper case letters represents matrices. Bold face lower case letters
represents matrices. The notation AT denotes transpose-conjugate of A.

The notation AT denotes transpose of A.

10



2. The function E [y] denotes the expect value of a random variable y.
3. The notation I,, is used to represent the m x m identity matrix.

4. The notation C'(n, k) is used to denote the chosen function of n and k.

11



Chapter 2

General System Model

Consider the wireless system with M, transmit antenna and M, receiver antenna

in Figure 2.1. The channel is modeled by an M, x M; memoryless matrix with

q

bit bits to S X r S tsyrtr;_?ols
! symbols F ; o bits
strear®] panoing 2> » H %i—bRecelver deman —P

Mt M, ping

T B bits feedback |

Figure 2.1: MIMO: system. with limited feedback

channel noise vector q of size M, x 1. The noise vector q is assumed to be
additive white Gaussian with zero mean and variance Ny. Suppose the system
can process M substreams where M < min(M,, M;). The input vector s is an
M x 1 vector which consists of M modulation symbols. The symbols s; are
assumed to be zero mean and uncorrelated, hence the autocorrelation matrix
R, = E[ss'] is a diagonal matrix. Assume the total transmission power is P, and
F is an unitary M, x M matrix. The total transmission power can be written as
Ex'x] = E[s'FIFs] = 3°,7' 02 , where we have used the fact that F'F = I,,.
We will consider linear and decision feedback receiver in this paper. Define the
error vector at the output of receiver as e = § — s. When the receiver is linear

and zero forcing, the receiver output § = Gr, where the M x M, receiver

12
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matrix is G = (FTH'HF)'FTH' [32]. The error vector at the output of G has

autocorrelation matrix R, = E[ee'] given by [32]
R, = Ny(FTH'HF)™! (2.1)

When there is decision feedback at the receiver, the part from previously detected
symbols are subtracted from the received signal and this is also called successive
interference cancellation. The decision feedback receiver can be described as a
recursive procedure [14]. First initializes ro = r, Ay = HF and ¢ = 0. The
steps in the recursions are as follows. (1) Let G; be the Moore-Penrose inverse
of A;. Find the row vector of G; that has the smallest 2-norm. Call the index of
the row vector w;. (2) Compute y; = w’r; , apply symbol detection on y;, and
call the output §;. (3) Subtract from r; the contribution of the k;th subchannel,
r; 1 = r; — Sg;ak;, where ay; is the kjth eolumn ‘of Ay and zero the k;th column
of A; to obtain A;,;. When all the subchannels are of the same constellation,

the post detection SNR of the k;th subchannel is pg; = Pi/M

Nolwil?" In this case, the

above procedure is optimal in the sense that the worst subchannel error rate is
minimized.

Assuming the inputs s, are bg-bit QAM symbols, the kth symbol error rate is
well approximated by [42].

_ ! 305

where Q(y) = \/% fyoo e~¥/2dt, y>0. Note that for the decision feedback
receiver ZL’; is the post detection SNR and (2.2) is the error rate assuming there
is no error in detecting previous symbols. When Gray code is used, the BER can
be approximated by BER), ~ SFE Ry /b;. Using this approximation, the BER for

a given channel H can be computed using

| M-l | M-l
BER ~ — b BER), = — SER 2.3
i ; k SR, ; k (2.3)

For a given channel H, the BER depends on the bit allocation and power allo-

cation, which will be optimized to minimize BER in chapter 4. The channel is

13



well known Ricean model [13] or mean information model [11]. In the Ricean
model, the flat fading channel is composed of a line-of-sight(LOS) component

and a Rayleigh component. We can express H as

K 1
H— /THHS,, + THHUJR}/?, (2.4)

where K is Ricean factor defined as the power ratio of LOS signal to diffused
scattered signal, H,, is an M, x M; matrix of i.i.d, zero mean, unit variance
complex Ganussion random variable and Ry is the M; x M, correlation matrix.

H;, can be expressed as

_ T
H,,=a, xa,,
where
a, = [ 1 ej27rd7n sin€, .. €j27rd7-(MT-—l)sin67- :|T
a, — [ 1 ei2ndrsinbe - o pi2ndd(Me—1) sin 6, }T

are the line-of-sight(LOS) array responses at receiver and transmitter with angle
of arrival 6, and angle of departure ; respectively and a Uniform Linear Array is
considered. If K is large thena pure LOS channel in environment. Such a model
assumes correlation only exists at transmitter, this assume is useful for downlink
transmission [33]. We also discuss two special case for (2.4) as follow.

1) No line of sight (K = 0)

In a Environment full of obstacles, the multipath components is enough then

ricean factor K will approach 0, thus the channel model becomes to
H=H,R,/~. (2.5)
It is well known covariance information model [11].

2) Rt - IMt

No correlation at transmitter assumption, the H becomes

K 1
H=,/ ——H, ——H,,. 2.
VK1 er\/K+1 (2.6)

For transmitter correlation matrix R;, we consider a uniform linear array of M,
antennas with spacing d;. The plane wave departure directions of these signals

span an angular spread 6, and uniformly distributed, we find [34] [35].

14



| =D/
[Rt]m,k _ Z e—2j7r(k—m)dt cos(540t,:) (27)
i=——(S—1)/2

where S is the number of scatterers with corresponding directions of arrival 6 ;

O =

ehxi, = —(S—1)/2.... (S —1)/2. (2.8)

when 6, or d; is large, R; will converge to the identity matrix which is uncorrelated
fading. When 6, or d; is small,the correlation matrix becomes rank deficient which

is full correlated fading.

dt

A

Tx

Figure 2.2: Propagation scenario for fading correlation.
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Chapter 3

Previous Works

In this chapter, we review two referred works in the literature. Section 3.1
presents a GTD based system for optimal transceiver design and a special case
is the QR based system proposed in [21]. Section 3.2 presents a limited feedback
precoder system with BER selection criterion-and codebook design proposed

in [4].

3.1 GTD Based -System

3.1.1 Formulating the Power Minimization Problem and
Solution

The generalized triangular decomposition (GTD), proposed in [21]. Let H be a
M x N rank-K matrix with singular values oy, 05 ...0k in descending order. let

h=[oy,09...0] and r = [ry, 75 ... 7| be a given vector which satisfies
r<xh (3.1)
Then there exist matrices R, Q, P such that
H = QRP' (3.2)

where <, is multiplicative majorization [36], R is a K x K upper triangular
matrix with diagonal terms equal to 74, and Q € CM*E P ¢ CV*K both have

orthonormal columns.

16



The problem of minimizing the transmitted power subject to the specified

BER and total bit rate constraints, and the ZF constraint can be written as

follows: o
EGm}gr}bk P, = ; 1 2P [F1F] o [GG . (3.3)

constrainted by S°p' b, = Ry and GHF—B = L. Where ¢, = 20(Q1(P.(k)/4))>.
The following are solution for GTD-based method to construct the transceiver

matrices F,G,B [21].

F = [Plyear (3.4)
G = (diag([R]arxm)) " [QMarx, (3.5)

B = (diag({R)arxar)) " Riagn — 1 (3.6)

by — log2(c—]\22Rb/M(ﬁ)l/M) “Aogy e tlog, (R)%) (3.7)

With above choice, the minimum transmission-power can be achieve.

3.1.2 QR Transceiver ZF-VBLAST

The QR Transceiver is a special case of GTD based system. Based on the general
system model at chapter 2, the system in [21] has decision feedback receiver and
precoder is identity. Assume the number of subchannels M are used. This system
has bit allocation, the optimal power loading is equally that R, = %I M- Because
the precoder matrix is identity and only bit allocation vector need to be known.
The channel matrix be written as H = QR., where Q has orthonormal columns,
and R is upper triangular. |R(k,k)|72 is error variance corresponding to kth

subchannel. The receiver can compute {by} from [21]

M
1 R
b= =7 ; log, |GGy — log, |GG + Mb (3.8)

17



(3.8) is called the optimal bit loading formula. we will quantize it to the bit
allocation vector nearest to the vector in pre-determined codebook Cj, and feed

back the index of that vector to the transmitter.

3.2 Precoder System

3.2.1 System Model

Based on the general system model at chapter 2, the system in [4] assumes the
number of subchannels M is fixed and all M subchannels are used. The system is
without bit allocation design. Thus, the bit loading is uniform and the target bit
rate R, is divisible for M. Each symbol carries % bits. The power is also equally
allocated for each symbols, Rg = %I - For the reverse channel, it is constrained
to send B bits. In this paper, the feedback information is the precoder matrix.
Therefore, a precoder codebook‘Cp of size 28 is prepared. After the estimation
of forward channel, a precoder matrix is ‘selected .using a BER-based selection
criterion from Cr and the corresponding index is fed back to the transmitter.

The BER-based selection criterion will be reviewed as follows.

BER selection criterion.  Under the assumption-of uniform bit allocation, the
average BER for each precoder matrix in Cz can be computed by (2.3). The

BER-base selection criterion is

o~

F = arg min BER(F, H). (3.9)

FeCp

To choose a precoder matrix by BER selection criterion, we need to compute the
BER formula (2.3) for each precoder matrix in Cr. Therefore, 28 computations

of (2.3) are required to complete BER selection criterion.

3.2.2 Optimal Precoder for infinite-feedback rate

With infinite feedback bits, it can be assumed that the transmitter has full chan-
nel knowledge. The optimal precoder F,, with BER-based criterion can be

derived directly from H. The optimal precoder F,, can provide a benchmark

18



performance for finite-rate precoder feedback system. Assuming the singular
value decomposition of H = UAVT, where U and V are respectively M, x M,
and M, x M, unitary matrices. The M, x M, matrix A is a diagonal matrix whose
diagonal elements are the singular values of H in a nonincreasing order. And let
Ok be the k-th largest subchannel SNR. The optimal precoders for zero forcing

and MMSE receiver are given respectively as follows.

Zero-forcing case. Consider a rectangular /square QAM constellation with size

M is applied for b. Constellation-specific threshold I'y, is shown in table 3.2.2.

1. When 8y < Ty, Fopr = Vi, where Vi, is the M, x M matrix obtained by
keeping the first M columns of V.

2. When By > 'y, Fopr = VirQar, where Qs is an M x M unitary that has
equal magnitude property, ey, {{Qlmn| = 1/A/M, for 0 < m,n < M — 1.

3. When conditions in 1 or.2'do not hold; the optimal precoder F,, can’t be
found analytically. Suppose that K; subchannels’ SNR are larger than I'y,.
Then one suboptimal precoder that'is better than 'V, can be constructed

as

F= Vi [le IMO_ k] (3.10)

MMSE case. Consider a rectangular/square QAM constellation with size M is
applied for b. Two constellation-specific thresholds Lin g, Tin,p, are shown in table

3.2.2.
1. When I'y,; < By and By < Ty, Fopr = V.
2. When 3y <T'yyor By 2> Dippy Fopr = VrQar.

3. When conditions in 1 or 2 do not hold, the optimal precoder F,, can’t be
found analytically. Suppose that K3 subchannels’ SNR are larger than Iy, j,
and K5 subchannel SNRs are smaller than I'(th,l). Then one suboptimal

19



precoder that is better than V), can be constructed as

Qx, 0 0
F=Vy| 0 Iygx_x, O (3.11)
0 0 Qx,

M| 2 (4| 8 16 32 64 128 256
Iy, | 1.5 319.01 | 14.93 | 38.46 | 62.50 | 166.7 | 250.0

Table 3.1: Table of I'y,

M |24 8 16 32 64 128 | 256
Ly 010.579 | 0.247 | 0.326 | 0.264 | 0.330 | 0.271
Fynp |00 7.621 | 13.72 | 37.46 | 61.50 | 165.7 | 249.0

o

Table 3.2: Table of I'y,; and 'y,

3.2.3 Codebook construction

From [2] it is shown that the precoder codebookdesign problem can be related to
Grassmanian subspace packing. Thus, in [4]; generalized-Lloyd algorithm is used
to construct a precoder codebook by minimizing a chordal distance cost function.

The chordal distance between two unitary M; by M matrices, F; and F; is

1
_ i T
d.(F;,F;) = 7 ‘ F,F; — F,F; o (3.12)
where || - || denotes Frobenius norm. Suppose that V is an isotropically dis-

tributed M, x M matrix. The following algorithm quantizes V to 27 matrices.
Starting with an initial codebook Cr = {F¢,F1, -+ ,Fys_;} (obtained from ran-
dom computer search or using the currently best codebook if available), the

codebook design steps are as follows.

Ntr'
n=1"

1. Generate a training set with N;. samples {V,}
2. Iterate following steps until it converges.
(a) Assign V,, to one of the regions {RZ}ZZZBO_ ! using the rule

V,eR,;, if d(V,,F;) <d.(V,,F;),Vj#i. (3.13)

20



(b) For each region R;, find the centroid as

3 EVaF)

tr Vn eRi

1
Z trace(In; — FT'V, VIF)

tr Vn eRi

Fgentrozd = arg min
F

— arg min
& F

= argmax trace(FTRF)

where R is defined as

1
_Ntr

R > V. Vi

Vi,€R;

Let the eigendecomposition of R as

R=UzAzU".

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

AR is a diagonal matrix whose diagonal elements are in nonincreasing

order. Tt is easy t0 show that Fém s a M, x M matrix obtained

by keeping the first M columns of Ug.

(c) Set Cp = {Ffemmid}fjl_ ! During each-iteration, The codebook will be

record if the minimum chordal distance of Cg

min_ d.(F;, Fy)

0<i<j<2B-1

is larger than the currently best.

3. Go back to 1, generate another training set, then execute the next steps.

The algorithm will stop if there is no further improvement on the minimum

chordal distance.
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Chapter 4

The proposed BA system

In this chapter we propose the design of statistical precoder for correlated MIMO
channel with limited feedback of bit allocation . The proposed system will be
termed a BA system. We will derive optimal unconstrained bit allocation and
statistical precoders for both linear and decision feedback receiver for minimizing

BER. We also show that proposed BA system can achieve full diversity.

4.1 Optimal Bit-and Power Allocation

In this section, we will consider the BA system when there is no integer constraint
on bit allocation. For a given precoder, we-will derive the optimal bit allocation
that minimizes the BER. We will see that the solution has the same form as that
given in [21] in which the bit allocation is optimized for minimum transmission
power. The BER obtained with optimal bit allocation will be used in the next
section to design statistical precoders for minimum BER. The results derived
in this chapter are valid at linear and decision feedback receivers for correlated
channel in chapter 2. The optimal bit allocation will also be useful in chapter
5 for efficient codeword selection in practical applications where feedback rate is
limited.

Assume the transmission rate is high and the number of bits loaded on the

kth subchannel by is large enough so that 1 —27%/2 ~ 1 and 1 — 27% ~ 1, then
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the symbol error rate expression in (2.2) can be approximated by

SERy, ~ 4Q ( iﬁk) (4.1)

by 2
2% og,

For the convenience of derivation, we define the function

fly) =Q01/ ), y=0, (4.2)

The function f(y) is monotone increasing and it can be verified that f(y) is
convex for y < 1/3 and concave for y > 1/3. Using f(-), we have SERy =
Af(2%a? /(302)). Therefore the BER in (2.3) can be written as

BER~ — Zf 2%52 /(302)) (4.3)

Let us consider the high SNR case in which the eonvexity of f(-) holds and the
low SNR case in which the concavity-of f(:) holds.
High SNR case

Assume SNR is large enough so that the arguments.of f(-) are smaller than

1/3 and the convexity of f(-) holds. Using the convexity of f(-), we have

1 X, bk 2 o2
BER ~ Rb/M ; f(2 2)) (4.4)
> 1 ! Angka Ja?) (4.5)
(Rb/M) (a1 s ‘
4 2Rb/M o 1/M Tl 1/M
> (Rb/M)f< 3 (k 00 Y (k:0 ng)/ ) (4.6)
4 2f/M = 2 \1/M
= woaly! <3Pt/M(l£[oaek)/ ) (47)
£ BER, (4.8)

The second inequality is obtained by using the fact that ZM "b; = Ry, and the
AM-GM (arithmetic mean-geometric mean) inequality and also using the mono-

tone increasing property of f(-). We can obtain the third inequality using the

23



AM-GM inequality (JTi oo VM <1 /M oM 02 = P,/M and the monotone
increasing property of f(-). Notice that the lower bound BERy in (4.8) is in-
dependent of bit allocation and power allocation. The optimal bit allocation
and power allocation are such that the three inequalities in (4.8) become equal-
ities. Due to the convexity of f(+), the first equality in (4.5) holds if and only if
2%g? [o? are of the same value for all k. The same set of conditions is also neces-
sary and sufficient for equality to hold in the second inequality as f(+) is monotone
2 2

increasing. The third equality is achieved if 02 =02 = ... =0 = P/M.

S1 SM—1

The optimal bit allocation for minimizing the BER is thus

R,
Z logy(o el — log,(o? )+ Wi (4.9)

With the above optimal bit allocation: and uniform power allocation, the lower
bound BE R, is achieved. We can see that the symbols with smaller error vari-
ances ng are allocated with amore bits. -When bits are allocated as in (4.9),
2bkafk / afk are the same for all £ This means the symbol error rates are equal-
ized for all transmitted symbols. The bit allocation formula in (4.9), derived
using the criterion of minimum BER, has the same form as that designed for
minimum transmission power in"[21]:
Low SNR case

Assume SNR is low enough so that the arguments of f(-) are larger than 1/3
and the concavity of f(-) holds.

M-
(4.10)
The inequality follows from the concavity of f(-). Similar to the high SNR case,
the quantity on the right hand side is minimized if uniform power allocation is
used and bit allocation is chosen according to (4.9). In this case the upper bound
on the right hand side is equal to BERy and at the same time the inequality in
(4.10) becomes an equality, ie., BER ~ BER,
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Summarizing, for both high and low SNR regions the BER with optimal bit
allocation and uniform power loading is approximately BERy. The results can
be used for both linear and decision feedback receivers. The quantity BE Ry is
different for different types of receivers. We will use BE Ry in the next section to

derive optimal statistical precoder of BA system over correlated channel.

4.2 Design of statistical precoders for minimum
BER

In this section we consider the design of optimal statistical precoders over cor-
related channels model described in chapter 2. Assume M, > M. To consider
the average BER performance, we average BE Ry computed in (4.8) over the

random channel H,

i) o

2Rb/M) To simplify the expression further, we define the

where we have used ¢ = 3

geometric mean function
M-1

y (4.12)
=0
y=1[w w - yu1] andy, > 0. Lety; = co?, then BER, = aant (h(y)).
To analyze BER,, we first derive the Hessian matrix of f(h(y)), which is an
M x M matrix with the (i, j)th entry given by [Hess)i; = 0*f(h(y))/0v:0y;,

for0 <14,j < M. We can verify that [H.);; is given by

o, — { g-g/sz:(h(y))yz (1= h(y))) AF (4.13)
5/M2f'(h(y))y; *(1 — (L +2M)h(y)), .i=]

It is derive in appendix. It is known that [37] a function is convex (concave) if and

only if the Hessian matrix is positive (negative) semi definite. In the following

we discuss the behavior of BER, for the high and low SNR cases.

High SNR case
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Consider P,/Ny > 1 such that the arguments of f(-) are much smaller than

2Ry/M M-1 2/M
3P/ Llk=0 Tex

element of the Hessian matrix in (4.13) as 1/(2M?2)f'(h(y))y; 2. Defining the
M x 1 vector u with ith element u; = 1/y;, we have H.,, ~ 1/(2M?) f'(h(y))uu?,

unity, ie., h(y) = < 1. We can approximate the ith diagonal

which is a positive semidefinite matrix. Applying Jensens inequality, we get
E[f(h(y))] Z f(h(E[y])). Therefore we have

E[BER)) = E

Rb/M ( H 52/M> =B
(4.14)

where 67 = E [aelf | is the kth error variance averaged over the channel H. The

right hand side BE R, is a lower bound of BER,,.

Low SNR case

A property of f(h(y)) that is useful for studying E[BF Ry in low SNR region is

Rb/M H 02/M

presented in the following lemma.

Lemma 1. Let f(x) and h(y) be as defined in (4.2).and (4.12), respectively.
Then the composite function f(h(y)) for y; > 0 is‘concave when h(y) > 1/3.

Proof. The Hessian matrix in (4.13) can be rewritten as
He = 1/M? f'(h(y)h(y)[0.5(1/h(y) — 1)uu” — MD]

, where u is M x 1 with ith element u; = 1/y;, and D is a diagonal matrix with
[D];; = 1/y?. We examine the quadratic form vIHv for an arbitrary M x 1

vector v. It can be rearranged as

vIiHv = # "(h(y))h(y)|[(vFuuTv — MvTDv) + 0.5(1/h(y) — 3)vTuurv].

The first term in the bracket vTuuT

v — MvTDv is equal to (Yo, vpug)? —
M Zk o Viug, which is always non positive due to Cauchy-Schwartz inequality.
The second term in the bracket, equal to 0.5(1/h(y) — 3)( 24:01 vrug)?, it is non

positive if (1/h(y) —3) < 0 ie., h(y) > 1/3. Therefore we can conclude that
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when h(y) > 1/3, the Hessian matrix of f(h(y)) is negative semidefinite and
thus f(h(y)) is concave. |

The above lemma means that BER, is concave in 02 when

Ry /M M-1 M
h(y) = QR/M (Hg ) >1/3, (4.15)

which holds in low SNR case, ie., small P,/Ny. When f(h(y)) is concave, we can
apply Jensens inequality E[f(h(y))] < f(h(E[y])) to obtain

E[BER,) < Rb/M < H 2/M> 2 BERy,. (4.16)

Now BE Ry, becomes an upper bound of BERy. In both high SNR and low SNR
regions, we would like to have the:bound BFE Ry minimized, which is discussed

for linear receivers and decision feedback receivers for Ricean channel.

4.2.1 Optimal precoders.design with Ricean channel

Suppose A is a M, x M; matrix.each row of which is.independently drawn from
a M;-variate normal distribution with zero-mean each row of A is independently
and let the ith column of A be g; , then the autocorrelation matrix of g; is equal
to R;. It is known that ATA = ZMT 1gigiT has a complex Wishart distribution
with M, degrees of freedom, denoted as Wy, (R¢, M,) [38]. When B has a Wishart
distribution, we say B~! has inverse Wishart distribution. For Ricean channel

model, the channel be considered as

K 1
— /THH” + /ﬁHwRi/z. (4.17)

It is known H'H has a complex non-central Wishart distribution N Wy, (R, M, M,.)
[39], where M =

expectation of H. M, is degree of freedom and Ry is the autocorrelation matrix

7 +1Hsp, is called non-centrality parameter matrix means the

of Hthl/ . This non-central Wishart distribution can be approximated by a
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Wishart distribution [39]
NWMt (Rt> M> MT) ~ WMt (ﬁ'ta MT)> (418)

where R, = R, + MTM/M, .

Linear receiver = We can obtain Egk by averaging the error covariance matrix
R. = No(FTH'HF)~! over the channel. If F is nonsingular matrix then the ma-
trix FTHTHF is WM(FTf{tF, M,) and so the matrix R;' = 1/N,FTH'HF has
a Wishart distribution Wy, (IVy 'FIR,F, M,). Then R, has an inverse Wishart
distribution. It has been shown in [43] that when a matrix B is Wishart distri-
bution W, (A, r) with r > p , then E[B™!] = 1/(r —p)A~!. Using this result and
assuming M, > M, R, = E[R,] is given by

_ Ny

R = s ®RE) (4.19)

Let the eigen decomposition of f{t be ﬁt = ﬁt&ﬁj ,. Where jAXt is a diagonal
matrix and the diagonal elements);; are the eigen value of f{t. Let the diagonal
elements of jAXt be ordered such that X\yg = Ay > .0 > A\ a—1 and assume

)\t,Mt—l >0

Theorem 1. For the linear receiver, the-BER bound BE Ry, in (4.14) satisfies

S AM 3P,/ M M m
BERy; > BERyqin, where BERyq jin, = EQ m(Mr - M) g Al
(4.20)

The inequality becomes an equality when F = IAJLM, where IAJLM is the submatriz

of ﬁt that consists of the first M column vectors of ﬁt.

Proof. Majorization theorem [36] will be used to prove the theorem. For com-

pleteness, some related definitions are given below.

(1)Given a sequence ay), apj, - - - , [p—1],the notation ap) refers to the permuted
sequence such that ag > ap; > ... > ap-1. (2) Given two real vectors
a = [ao ap -+ ap—1 ]T and b = [bo by -+ by_1 ]T, we say that a

majorizes b if the following two conditions are satisfied: > oo ar = Sony' by
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and Y p_oam > D op_obm » 0 <n < M —2. Let g(y) be a real-valued function
of a real vector y. We say that ¢(y) is Schur-concave if g(a) < g(b) whenever a
majorizes b.

The function g(x) = [[;" @, for #; > 0 is known to be Schur concave [41].
As E are the dlagonal elements of R., the sequence {0 f‘/‘fol is majorized
by {)\( )M where we have used A;(A) to denote the i-th largest eigen
value of A. So HM 1532_ > Hi:O M\i(R.) and the equality holds when R,
is a diagonal matrix. The matrix ﬁe_l is the inverse of R., their eigen val-
ues are related by \(R.) = 1/ y1(R.). As R, = M"T_OMFTI?QF and F
is unitary, we can apply the Poincare separation theorem to bound the eigen
values of ﬁe_l using the eigen values of fit. Poincare separation theorem says

\(B) > N(C'BC),i = 0,1,...,7 — 1, for any n x n Hermitian matrix B and

any n x r unitary matrix C with.C1C =1,/ . Using this theorem, we have
12" A=A (Ry) > [T, MR, Y. Thus
M-1 M—1 M- M=1
N 1
7 > I MR . (4.21)
:zl;[ =0 ];JO: i e ) H M M)\ (Rt)
In (4.20),The lower bound [ 7 v X (R 5 can be achieved by choosing

F = Ut, m- Using the above inequality and the menotone increasing property of
f(+), we can establish the inequality in (4:20). Therefore, to minimize the BER
bound BE Ry the optimal precoder is F = ﬂ't’ M- [ |

r 7 - G’ detector S

Mr

B

Figure 4.1: Block diagram of the decision feedback receiver.

Decision feedback receiver To consider the precoder design for a decision

feedback receiver, we can use the receiver structure in Fig .4.1 based on the
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QR decomposition of HF [21] [28]. This corresponds to the case of a reverse
detection ordering. Let the QR decomposition of HF be QR, where Q is an
M, x M unitary matrix and R is an M x M upper triangular matrix with diagonal
element [R]; = r;;. The feedforward matrix G and feedback matrix B are given,

respectively, by [32]
G= (7’0_01 T1_11 TJT/II—I,M—l)QT (4.22)

B= (rog 71 - r;j_LM_l)R—IM (4.23)

Assuming there is no error propagation, the kth subchannel error e, = 5, — s;
has variance 02 = Norkk, k=0,1,...,M — 1. The average error variance is
o2 = NoE[r;;7]. The value E[ry;?] as been shown to be related to the Cholesky

decomposition of F'R,Fin [28]. The resultis summarized in the following lemma.

Lemma 2. /28] When K = 0, H = HyRy>,<the following result was derived.
Let the Cholesky decomposition of FTRGF be LDL where L is a lower triangular
matriz with umty diagonal elements and D is-diagonal.-For M, > M, E[r;;}] =
d (M, —k —1), for k=0,1,..., M~ 1 where dy is the kth diagonal element
of D.

Using lemma 2 and the approximation in (4.18), the results in Lemma 2 allows

us to establish the following bound for BE Ry

Theorem 2. For the decision feedback receiver with M, > M, the BER bound
BERy; in (4.14) satisfies

BERbd Z BERbd,df7

S— AM 3P,/M 15 e
BERuar = 1-Q\| sy H( — k- 1) H A (4.24)

where A\, = )\k(FTfA{tF). The inequality becomes an equality when F = ﬁt,M,
where IAJLM is the submatriz of ﬁt that consists of the first M column vectors of

U,
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Proof. Using Lemma 2, we can obtain 7., = Nodyt/(M, — k — 1) . Thus
M-1_9 _ 17M-1 -1 M-1  TTM-1 )
ke 0o, = [ljmo Nodyy /(M,.—k—1). Note that [T, —" dix = [,y M(FTR/F).

The BE Ry in(4.14) can be expressed as

AM M-1 M-1 N
BER,; = 7 f (CNO T4 k-1 I A;;/M(FTRtF)> (4.25)
k=0 k=0

Applying the Poincare separation theorem (also stated in the proof of Theorem

1), we have the inequality

AM M-1 M-1 N
BER,; = Fbf <cN0 T4 —k—1)=" ] A,;l/M(FTRtF)> (4.26)

k=0 k=0
AM M—1 M—1
v 1 \-1/M —1/M
> <cNo | I (AT SRR | B ) (4.27)
k=0 k=0
= BERyq,q (4.28)
The lower bound BE Ryqqr can be achieved when F = IAJt, M n

R; =1 case

In this special case, we assumeno correlation at transmitter and receiver. Channel
. . _ K 1 Iy T

is considered as H = |/ ZZ5Hg, 4/ 77 Hw, where Hy, = a,a;, a, and a, are
LOS array response at transmitter and receiver described in chapter 2. Let

HI H,, = VAV', we have

R, = Iy, + cH H,, = V(Iy, + cA)V, (4.29)
where ¢ = ﬁ Note that
Hl H,, = ajala.al = |a|*|a’a’"a" = vy,
where Ao = [la[*[la:|]?, & = 55, v = &, we can see that Ao is the only

nonzero eigenvalue, the other eigenvalues are 0 and the eigenspaces of A\g and
0 are othogonal. Because H,, = a,a] = [a,,a; aa;... aTNT.at]T, we can see
that when we take the hermitian of the first row and normalize, it is equal to z;f.

When R; =1, the first column of optimal precoder F is the hermitian of the first
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row of Hy, with normalization, the other columns of F can be arbitrarily chosen,

except for the restriction that the columns of F are orthonormal. That is
F=lig oo fu], (4.30)

where fy, - - - f); are arbitrarily vectors such that F is unitary. Such a precoder

has been shown in [11] to maximize capacity of a beamforming system.

No line of sight (K = 0) case
In this case, we consider the special case that K = 0 such that H in (4.17)

becomes to

H=H,R,"

it is known H'H has a complex Wishart. distribution with M, degree of freedom,
denoted as Wy, (R, M,.) instead of complex non-central Wishart distribution so
we don’t need take approximate. Let the eigen decomposition of R; be R; =
U;AU,, where A, is a diagonal-matrix and the diagonal elements),; are the
eigen value of R;. Let the diagonal elements of A, be ordered such that A,y >
A > oo 2> Apv—1 and assume A ar,—1 > 0.

Linear receiver Using the<property of Wishart distribution , the matrix
FTH'HF is Wy, (F'R,F, M,) and we have

No

R, = ——(F'R,F)™" 4.31
Re MT, — M(F RtF) ( 3 )
Using the proof of theorem 1 , we have
M-1 M-—1 M—-1 M—1
= 1 N, 1
Eg Z )\7«<R8) = > 0 I
211 L i=0 g )\z‘(Re_l) i=0 M, — M )‘z(Rt)
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thus

BERy; = H a2/M) (4.32)
M-1
> —f ( H AMER ) (4.33)
AM Ne HOO1
> 4.34
= Rb f (CMT M P A;/M(Rt)> ( )
— BERuqin. (4.35)

When F = U,y , the lower bound BERyq, can be achieved .

Decision feedback receiver We can use lemma 2 and theorem 2. Let the

Cholesky decomposition of FTR,F be LDL, thus we have

M—-1 M—1
BERy; = — f (cNo [, =t= 1 T A,;I/M(FTRtF)> (4.36)
k=0
AM M=1 M—1
> o (cNo [Ton k=0 T] A;g/M> (4.37)
b k=0 k=0
= BERyiqf (4.38)

With the same result as mean feedback, then F = U, j; the bound BER;; can

be minimized.

4.3 Feedback of bit allocation

In this proposed BA system, only bit allocation is adapted according to the vary-
ing random channel. The precoder is chosen as F = U, ;. based on the the
results in the previous section. Such a precoder depends only on the channel
statistics and the information of the precoder need not be fed back to the trans-
mitter frequently. The transmission power is uniformly distributed among the
subchannels loaded with nonzero bits. When we consider bit allocation in prac-
tical applications, the bits assigned to the symbols are typically integer-valued.

The components of the bit allocation vector b satisfy the sum rate constraint
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bg +bi + ...+ by_1 = R, where b € ZT and Z* denotes the set of nonneg-
ative integers. The number of such nonnegative integer bit allocation vectors
is C(Ry, + M — 1, Ry), where C(-,-) denotes the choose function. This requires
By = [log, C(Ry+ M — 1, Ry)] bits, where [z]| denotes the smallest integer larger
than or equal to x. For example R, = 8, M = M, = 4, the required number of
feedback bits is 8. The approach of using all possible constellation combinations
is adopted in earlier works that employs bit allocation subject to a sum rate
constraint [20] [21]. To reduce the feedback rate, the codebook is trimmed by
imposing some constraints on the vectors [21].

Codeword selection. Suppose we are given B feedback bits and a code-
book C, of 2P bit allocation vectors. The vectors in C, satisfy the sum rate
constraint so that the number of bits transmitted for each channel use is Rj.
The BER expression in (2.3) is a function of bit,allocation vector. For a given
channel H, we can choose the best bit allocation vector be Cp that minimizes
the BER, b= arg minyec, BER(b, H), where BER(b, H) denotes the BER when
the channel is H and the bit allocation vector is b. To make codeword selection
more efficient, we can choosée (suboptimal) codewords based on the optimal bit
allocation given in (4.9). The criterion of minimizing the largest subchannel error
rate will be considered. Suppose the optimal-bit-allocation vector computed from
(4.9) is b*. Given a bit allocation vector b € Cp, the kth subchannel symbol error

rate associated with b is

2 2
3 Ty () B Ty (4.39)

~7 ¥
20k g2 2% o2
k €k

As shown in Sec. 4.1 the optimal bit allocation b* equalizes the quantity 3073, /(2%0?7 ).
Let us call this subchannel independent quantity A. Then we have SER; =
4Q(V/A2%i=br) | Therefore the largest subchannel error rate can be minimized by
choosing the bit allocation vector b € C, that has the largest ming(b; — b;).The
optimal bit allocation is derived under the assumption that all M subchannels are
loaded with nonzero bits. To remove the assumption, we can compute BE R, in
(4.8) for each My with 0 < My < M where M is the number of subchannels used,
and choose the M, that has the smallest BERy. We can then apply quantization
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(a) (b)

/
bit stream Bi S x bit stream ) S X
s;lltri:)(())Is / I F > N SB)I/trié?)Is / I F’' >
mapping M M mapping M M
t t

Figure 4.2: The transmitter of the BA system with (a) precoder F', and (b)
augmented precoder F”.

on the corresponding optimal bit allocation using the above maximin criterion
maxpec, Ming (b; — by) Such a suboptimal selection criterion does not require the
computation of BER for each bit allocation in the codebook. Simulations in chap-
terd will demonstrate that the use of the suboptimal maximin criterion leads to
only a minor degradation compared tothe optimal BER criterion

Augmented precoding [45]. We have used a fixed M; x M matrix F as
the precoder. When M < M, and the channel-matrix.is such that the column
space of F is contained in the null space of H, then there is zero signal power
at the receiver. This can be avoided by starting off with an augmented initial
precoder F’ of size M; x M;. For agiven M, we can‘choose M columns out of F’
to form the actual M, x M precoderF | ie., (M; = M) columns of F’ are removed.
The corresponding augmented input vector s’ and bit allocation vector b’ are of
size M; x 1.The entries of s’ and b’ corresponding to the removed columns of F’
are all equal to zero so that the transmitter output F’s’ is equal to Fs. As we
choose M columns from F’; there are C'(M,;, M) possible choices for precoder F.
The transmitter with the augmented precoding scheme is shown in Fig. 4.2(b).
The augmented bit allocation vector b’ satisfies by+b} +...+b,_, = Ry, b, € 27,
with the additional constraint that at most M of the components can be nonzero
as it is assumed that the transmitter and receiver can process at most M sub-

streams.It can be verified that the total number of possible integer bit allocation
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vectors satisfying the sum rate constraint is

M;—1

> C(M, k)C(Ry — 1, M, — 1 — k) (4.40)

k=M —M

As in the non augmented case we can design a smaller codebook C, b to have
a smaller feedback rate. There is no need to feedback the information of the
actual precoder F used. The information is embedded in the augmented bit
allocation vector b’. For i = 0,1,..., M; — 1, the transmitter removes the ith
column from F’ if b, = 0. The transmitter can then use the resulting M; x M,
submatrix as the precoder, where M, is the number of nonzero entries in b’.
Note that for a given channel, using augmented precoder F’ is not guaranteed
to be better than using a fixed F because the codebooks are different.Suppose
F is a submatrix of F'. Let us consider thesspecial case that the codewords
of C, is obtained by inserting appropriate zeros.in-the codewords of C,.Then
the system with augmented precoder-has the same performance as the one with
a fixed precoder, but not better. Nonetheless the simulations in chapter5 will
demonstrate that when M <.M; the system of augmented precoder outperforms
the one with a fixed precoder for .the same number of feedback bits.
Optimal detection ordering for decision feedback receiver. When all
the subchannels use the same constellation, the optimal detection ordering for
the decision feedback receiver is to maximize the post detection SNR p; in each
recursion [14]. Such an approach minimizes the worst subchannel error rate. It
is not same for the case with bit allocation and bit allocation needs to be taken
into consideration. Suppose the bit allocation is given. In the second step of the
recursive procedure we need to choose the nonzero row vector of G; to maximize

1
2% — 1)||w >’

Lk, = ( for k; €S8, (4.41)

where S = {j : b; > 0} is the collection of subchannels that are used for trans-
mission. This can be proved by following a procedure similar to that in [14]. The
maximization of y; (also called rate-normalized SNR) in each recursion has been

shown to minimize the outage probability in [17]. Note that there is no need
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for the receiver to feedback the detection order; the transmitter only needs to
know the bit allocation but not the detection ordering. For each bit allocation
in the codebook, we can perform the recursive procedure to maximize the rate-
normalized SNR. Then the best bit allocation and corresponding detection order

can be selected.

Y o (T

Figure 4.3: Block diagram of the decision feedback receiver based on cholesky
decomposition.

Reduce complexity for optimal ordering. Above detection ordering,
we need to take Moore-penrose inverse after each detected. It will raise complex-
ity. In [44] V-BLAST is propesed to reduce the complexity by applying cholesky
decomposition with symmetric- permutation. It derive new algorithm based on
a specific receiver structure in Figure4.3, where G is feedforward matrix, B is
feedback matrix and P is permutation matrix that recover original ordering. Let
the cholesky decomposition of R, be LDL', where L is a M, x M, unit lower
triangular matrix and D is a M; x M, diagonal matrix with diagonal element
[D];; = d;; and dj; is the error variance of the ith detected of subchannel input ;.

the feedforward matrix G and feedback matrix B are given, respectively, by [44]
B =L! (4.42)

G' = DL'PH'R;! (4.43)

where R, = No(FTH'HF) L.

The algorithm with maximizing rate-normalized SNR is shown as follow

o step 1: R, = No(FTH'HF)™! | P =1, ,D =0y,
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o step 2: fori = M, ..., 1
q = argming R.(q, ¢') (2% — 1)
P, =1,;,, whose ¢th and gth rows are exchanged
P=PP R.=P,RP/ b=Pb
D(i,i) = Re(i,1) , Re(i: Nyyi) = Re(i 2 Ny, 1) /D(i, 1)
foryg=di+1,..., M
Re(j: My, j) = Re(j : My, j) — Re(j - My, 1)RE(,4)D(i, 1)
R.(j,j: M) = Re(j : My, j)!
L = tril(R.)

o step 3: Bl =L~! , G = DLIPHR_!

By using this algorithm, we don’t need to take matrix inverse after each detection

so we can successfully reduce the complexity.

4.4 Diversity Gain of BA system [45]

we show that the BA system can achieve diversity order M, M, for a system
with M, receive antennas and M, transmit-antennas if the codebook is prop-
erly designed and has at least My codewords. Let the initial precoder F/ be an
M, x M, unitary matrix (F' = F‘and M = "M,). The number of bits to be
transmitted in each channel use is Rj, which is distributed among M symbols
(M < min(M;, M,)). The augmented bit allocation vector b’ is of size M; x 1.
It has at most M nonzero entries and Zf\fo_l b, = Ry. Suppose the bit allocation

codebook is C;. The minimum achievable BER is

BERum(H) = min BER(b', H), (4.44)

b’eC;
where BER(b',H) is the BER in (2.3) Assume the bit allocation codebook C;

contains the set of codewords
Cl;k = {Rbe()7 Rbela U 7RbeMt—l}7 (445)

where e; are standard vectors of size M, x 1, i.e., [e;; = 1 and [e;]; = 0 for j # 1.

The following lemma shows that the BA system can achieve full diversity order
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using the bit allocation vectors in C;. Therefore to achieve a diversity order of
M, M; we can use a codebook of size M;, which requires only log, M; feedback

bits.

Lemma 3. For a finite-rate feedback MIMO channel with M, receive antennas
and M, transmit antennas, the BA system with an M; x M; augmented unitary
precoder F' achieves diversity order M, M, if the bit allocation codebook C; con-

tains the M, vectors in (4.44).

Proof. As Cj is a subset of C;, we have

BER,;,(H) = min BER(b',H) < min BER(b',H). (4.46)
b’eC; b’eCy

The average BER is bounded by

BER < Blmin BER(b'" H)].
= g

When the bit allocation b’ is chesen from Cjall the R, bits are allocated to
the same symbol and this system becomes a beamforming system. For example,
when b’ = [ R, 0 --- 0 ]%, the beamforming vector is the 0-th column of
F’. When we choose b’ € C; to minimize the BER, we are actually choosing
the best beamforming vector from the columns of F/ to maximize the received
SNR. In other words, the equivalent codebook of beamforming vectors is Cy =
{0, f1,- -+ £y, 1}, where f] is the i-th column of F’. From [40], we know such a
beamforming system has diversity order equal to M, M, if the span of C; is equal
to CMt | Because F’ is an M; x M, unitary matrix, the span of C; is the same
as CMt. Therefore the BA system has diversity order M, M; when codebook C;

contains the vectors in (4.44). [
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Chapter 5

Simulations

In our simulations, the channel is of the form

| K [ 1
H= THHsp—i— Ki_i_leRtl/2 for Ricean channel.

H= Hthl/2 for no-line of sight.

and

and

H=H, for uncorrelated channel.

Consider different channel case‘as following

Channel I Uncorrelated channel.

Channel IT No line of sight with low correlation for d, = 2, 6, = 40°.
Channel ITI No line of sight with high correlation for d; = 2, 6, = 8°.

Channel IV Ricean channel with low correlation for d; = 2, 6, = 40°, d, = 1,

6, =20°, K = 5.

Channel V Ricean channel with high correlation for d; = 1, 6§, = 20°, d, = 1,
0, =10°, K = 3.

We have used 10° channel realizations in the Monte Carlo simulations. The
error rates are computed using (2.3) for both linear and decision feedback re-

ceivers. For the decision feedback receiver, the detection order is determined
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using the criterion of maximizing the rate-normalized SNRs mentioned in Sec
4.3. Antennas with spacing d;, d, and plane-wave span an angular spread of 6;,

0, at transmitter and receiver respectively.

Example 1. Distribution of bit allocation vectors.

In this example, the Channel I is considered. The number of receive antennas
M, is 5, and the number of transmit antennas M, is 4. we compute the empirical
distribution of bit allocation vectors. For a given channel realization, the best bit
allocation vector in the codebook is chosen using the BER criterion. The number
of bits transmitted per channel use is R, = 12 and the number of substreams
that the transmitter and receiver can process is M = 4. The corresponding opti-
mal precoder F is the identity matrix and the receiver is linear. The number of
possible integer bit allocation vectors is 455. ‘We include in the codebook all 455
integer bit allocation vectors. Fig: 5.1(a)showsthe distribution of the bit alloca-
tion vectors, where the indexes of the vectors-are ordered:-so that the probabilities
are in decreasing order. The ¢df (cumulative distribution function) is shown in
Fig 5.1(b). We can see that some bit-allocation vectors are far more probable
than others. The probability ‘of the 53 most probable bit allocation vectors is
more than 99%. The distribution of the-bit-allocation vectors is highly skewed,
rather than uniform. In all following examples with quantize bit allocation, we
will choose the most probable 22 bit allocation vectors obtained in experiments
like this example and use them as codewords when the number of feedback bits

is B.
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Figure 5.1: (a) Probability mass function of the bit allocation vectors for
Channel I, M, =5, My =4, M =4, and Rb = 12; (b) corresponding cumulative
distribution function.

Example 2. Precoder and distribution of bit allocation.

The correlated Channel II with zero mean is considered for M, =4, M, =5, M =
4. The number of bits transmitted per channel use is R, = 8. We condider two
type of the precoder F = U, 3y and F = [I O} used, the receiver is linear. The
number of possible integer bit allocation vector is 460. The codebook contains
all 460 integer bit allocation vectors. Fig. 5.2(a) shows the distribution of the bit

allocation vectors. The cumulative distribution function (cdf) is shown in Fig.
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Figure 5.2: (a) Probability mass function of bit allocation vectors for Channel II,
M, =4,M, =5 M = 4 andR;, = 8; (b) Corresponding CDF.

5.2(b). From Fig. 5.2(a) we can see when F = U, ;, is used, the distribution of

bit allocation vectors is more concentrated.
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Example 3. BER bound.

In Fig. 5.3(a), Channel II is used. M, = 4, M, = 5, M = 3, R, = 10, the
precoder is F/ = U,;. We show the BER bounds B—ERbd,lm andB—ERbd7df. We
have also computed BE Ry in (4.8) over 10° channels for a linear receiver and for
a decision feedback receiver. The results are called, respectively, B—EROJm and
B—EIRQdf. The gap between B—ERbd,lm and B—ERbd7df is around 3.5dB. We can see
that the curve B—ERbd,df is an upper bound for B—ERQdf in low SNR and a lower
bound for BE Ry 4 in high SNR, consistent with what we have shown in Sec. 4.2.
The same can be observed for the case of linear receiver. In Fig. 5.3(b) Channel
IV with both mean and covariance information is used. M, =5, M; =4, M = 4,
R, = 12. We use the approximation in (4.18) and choose F' = U,. In. 5.4 shows
the same set of curves. We can have conclusions similar to those for correlated

Channel II with zero mean.
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Figure 5.3: (a) BER bound for M, =4, M; =5, M = 3 and R}, = 10 for Channel
IT (b) BER bound for M, = 5,M; = 4,M = 4 and R, = 12 for Channel IV
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Example 4. BER for different feedback bits.

In Fig. 5.4(a), M, = 4, M, = 5, M = 4, R, = 8, Channel II is considered,
the precoder is F' = U;. We shows the BER performance of the BA system
for different number of feedback bits. The codewords are selected to minimize
BER. The performance is shown for both linear and decision feedback receivers
for different number of feedback bits. The BER is improved when the number
of feedback bits B increases. We can see that BER of B = 5 is close to that of
B =9, in which case all the integer bit allocation codewords are used. Observe
that the curves correspond to B = 7 and B = 9, are indistinguishable in the
figure. We can understand this by examining the distribution plot in Fig. 5.2
The cdf is very close to one for £ > 150. When we increase B from 7 to 8
to 9, the added codewords are almost never chosen so the performance has no
improvement. Fig. 5.4(b) also shows BER of the BA system when Channel V is
considered with M, =5, M, = 4, M = 4 and. Ry ="12.- The precoder is chosen as
F = IAJt. For the case B = 9 which considers-all integer bit allocation codewords,
the gain of the decision feedback receiver over the linear receiver is around 3.5dB,

similar to the gap between BERy, 4 and BE Ry, ;, observed in Fig. 5.3(a).
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Figure 5.4: (a) Different feebback bits with M, =4, M, =5, M = 4, R, = 8 for
Channel IT (b) Different feebback bits with M, =5, My =4, M =4, R, = 12 for
Channel V
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Example 5. BER for different Precoders.

In Fig. 5.5(a), M, =4, M, =5 M = 4, R, = 8 B = 9 and channel III
be considered. The BER plots are given for four different types of M; x M,
precoders and decision feedback at receiver. (1) the identity matrix, (2) the
normalized DFT matrix , (3) the DCT matrix and (4) F = U, . We can see that
U, has the best performance among. Fig. 5.5(b) shows the same set of curves for
four precoders with linear receiver. Channel IV be considered. It has the same

result as covariance feedback case that optimal precoder is F = IAJt.
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Figure 5.5: (a) BER for different precoder M, =4, M, =5, M =4, R, = 8 for
Channel III. (b) BER for different precoder M, = 5, M, =4, M = 4, R, = 12
for Channel IV.
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Example 6. BER for different C,.

In Fig. 5.6, M, =5, M, =4, M = 4, R, = 12 and F = U,, Channel II and
linear receiver are considered. In this case we show BER for two codebook, one
trained using H and one trained using HF. Even though the precoder is chosen
as F = U, the performance of the codebook trained using HF is better than the
other for about 1dB for the same feedback rate. So we can conclude codebook

training is important for system performance.

10 T
10" 3
107 3
o
i
m
10°} 3
-4 N
10 —O— - trained using H, B=3 N E
trained using H, B=5
—©6— trained using HF, B=3 N
trained using HF, B=5 N
10’5 1 1 I I i Q
12 14 16 18 20 22 24

Pt/NO

5.6

Figure 5.6: BER with different C,, M, =5, M; =4, M = 4, R, = 12 for Channel
IT
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Example 7. BER for MMSE and ZF receivers.

In this case, M, = 5, My =4, M = 4, R, = 12 and F = I,;,, Channel I is
considered. We show the BER performance of MMSE and ZF receivers with
linear and decision feedback receivers. Fig. 5.7(a) is linear receiver. In each case,
the codebook is trained based the channel at receiver. From Fig. 5.7(a) we can
see the ZF receiver is close to that of MMSE receiver. Fig. 5.7(b) show the two
curves again when the receiver has decision feedback. We can draw conclusions

similar to that for the linear receiver case.
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Figure 5.7: (a) BER for linear receiver, M, = 5, M, = 4, M = 4, R, = 12 for
Channel I (b) BER for decision feedback receiver for Channel I.
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Example 8. Codeword selection criterion.

In this example, M, = 3, M; =4, M = 3, R, = 10, Channel II is considered and
linear receiver is used. We compare the results using the BER criterion and the
maximin criterion. In the first case, the codeword in the codebook that leads to
the minimum BER is chosen. In the second case, the suboptimal codeword is
chosen by quantizing the optimal bit allocation vector using the maximin criterion
b = arg maxg ., min(bj, — Zk) described in Sec. 4.3. The results for B = 8 are
shown in Fig. 5.8. The BER using the suboptimal maximin criterion is close to

that using the minimum BER criterion.

—+8— suboptimal
—%— optimal

BER

107 i i i i i i i
8 10 12 14 16 18 20 22 24

Pt/NO

5.8

Figure 5.8: BER of BA system for M, =3, M; =4, M =3, R, = 10, Channel II
is considered using the optimal BER criterion and suboptimal maximin criterion.
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Example 9. BER for different K and precoder.

In this example M, =3, M; =4, M = 3, R, = 8 and Channel IV with mean and
covariance information is considered. The feedback bits is 8 and receiver is linear
for Fig. 5.9. The BER plots are given for three types of M; x M, augmented
precoders, (1) F' = eig(R;) which is the best precoder when there is no mean
information. (2) The precoder is chosen as in (4.30), the optimal precoder when
there is no correlation at transmitter, i,e. R; = I)s case in section 4.2.1. (3)
F' = cig(R,). When the Ricean factor K is small, precoder 1 is better than
precoder 2 and precoder is not as good for o large K. We also show the decision
feedback receiver case in Fig. 5.10. The result is similar to Fig. 5.9. The BER
performance is close for precoder 1 and precoder 2 when the Ricean factor K is
small and precoder 2 is better than precoder 1 when the Ricean factor K is large.

We can see the precoder 3 is better.then the other two for small or large K.
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Channel IV.
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Example 10. Comparisons of BER for M, = M case.

M, =5 M, =4, M =4, R, = 12 and Channel II is considered. In Fig. 5.11(a)
we compare the BA system with the precoder system [4], in which the feedback
is the index of the optimal precoder in the codebook and bits are uniformly
loaded on all M symbols transmitted. In addition, we compare with the QR
based system with bit allocation (VBLAST},) [21], the VBLAST system with
feedback of ordering(VBLAST o 4ering) [19]. The VBLAST, 4ering System in [19]
feedback detection ordering for a fixed bit allocation. This is equivalent to having
a codebook of all permutation of a single bit allocation vector. We also compare
with VBLAST system with optimal precoder design (VBLAST,ccoaer) in [28].
The VBLAST ccoder in [28] requires no instant feedback. It designs for precoder
based on statistics of the channelfor minimizing MSE. We can see if system has no
bit allocation i.e. VBLAST,, ¢coder and the precoder system, the BER performance
is not as good. For VBLAST 4 gering, the required number of feedback bits is
log,(4!) ~ 5. The number of feedback bits is made as close to 5 as possible
except VBLAST ), ccoder system. For VBLASTY,; the original codebook containing
all integer vectors satisfying the sum rate-constraint is trimmed by setting b; > 2
and by, bz, by > 0 as in [21], which results in a codebook of 35 codewords. For the
precoder and BA systems, the codebook-size-is'32. The BER performance of the
BA system with linear receiver is much better than of the the precoder system
VBLAST ), ccoder and is comparable to VBLAST,gering With decision feedback
receiver. The VBLAST,, system has BER similar to the BA system with a
decision feedback receiver in low SNR. In Fig. 5.11(b) we show the result for
Channel V| high correlation case with mean information. We see that the BA

system achieve a good performance due to statistical precoder design.
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Example 11. Comparisons of BER for M, > M case.

M, =4, My = 4, M = 3, R, = 8 and Channel I is considered. In Fig.
5.12(a) we compare with VBLAST,, 4ering, VBLAST}, and precoder system. The
VBLAST ) ecoder System is not compared in this example because it can be used
only when M = M,. In the case, we use augmented precoder for BA system.
For VBLAST gering, the required number of feedback bits is log,(3!) ~ 3. The
number of feedback bits is made as close to 3 as possible for all other cases. For
VBLAST,,, the original codebook containing all integer vectors satisfying the
sum rate constraint is trimmed by setting b, > 2 and by, b3 > 0, which results in
a codebook of 10 codewords. The BER performance of BA system with linear
receiver is better than VBLAST,, due to the flexible codebook design and aug-
mented precoder is used. We can also see the BA system with linear receiver is
very close to VBLAST ;. 4ering Which aises more complex decision feedback receiver
in this case. Fig. 5.12(b) also show the high correlated case of Channel III. We

can have conclusions similar to In Fig-—5.12(a).
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Chapter 6

Conclusion

In this paper we considered the feedback of bit allocation for MIMO systems with
limited feedback and the system is called a BA system. We first introduced system
and channel model. Secondly, we derived the.optimal unconstrained bit allocation
for a given precoder. The optimal bit allocation'is treated as a vector signal.
Based on the results of optimal ‘bit allocation and statistical of the channel, we can
use a approximation distribution of statistical to design'the statistical precoder
for Ricean channel. For line of sight case; a non-approximate distribution of
statistical to design the optimal precoder. - Furthermore when the number of
transmit antenna is larger than the-number of symbols transmitted, augmented
precoding improve the performance and the use of augmented precoding does not
require additional feedback. We have also shown that the proposed BA system
can achieve full diversity order. Simulations have demonstrated the proposed BA

system achieves a nice good trade-off between performance and feedback rate.
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Appendix

We now derive [Hey); ; in (4.13).
Let h(y) = (TTM; ' %)M and Q(x) be defined as (2.2).

0 0 ) oo 1 2
oy ") = QIO =G | Ve
1 1
= “me h(v) 2L (]
3=t ) 2 )
. =

of(h(y) _ i@‘f(h(y»@h(y)) _ 9f(hly)) Ohly) | 0f(h(y)) Oh(y)
Oyidy;  Oy; Ohly) Oy Oy )0y 1Oy Oh(y) Oyi0y;

and 20 — f/(h(y)) 2 (S hly) Bt (i) h() 20y h(y) £/ ((y))

= f'(h(y)) (705 R (Y) = 55545 ),

of (h(y)) 1 3

S = ) g7z <y 15 AT () g0 95 )

substituting (6.1)

= 22 Py )iy (1 - Ay)

3

of (h(y)) 1
= h A

1

= f'(MY) 5770 (1= 3h(y) — 2Mh(y) + 2h(y))

F(hy) 301~ (2M + Dy)
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