G N 1 2 = B

et e A ES S S R

(N

—\
‘7%
3
Yoy
i
—
\‘%

Edge Detection Based SWIR Image Bad Pixel Detection and

Correction



SR I SR EERCH Saad b

NN\

—\
‘7%
o
Yoy
i
—
\\'ST

Edge Detection Based SWIR Image Bad Pixel Detection and

Correction

5 4 &g Student : Yung-Fa Wu

Ry REA Advisor : Jyh-Yeong Chang

=

Rt ST U

T~

=

7l

N

2
i

3

A Thesis
Submitted to Department of Electrical Engineering
College of Electrical and Computer Engineering
National Chiao-Tung University
in Partial Fulfillment of the Requirements
for the Degree of Master in
Electrical and Control Engineering
July 2011

Hsinchu, Taiwan, Republic of China

oE LR - & - 0



CEREST By EAAEL

#F &

A i i R o AR R e AR IR Bk TR A =
POEA BRI REE G E ot B AR R e MR o AR
* 3 BRI 3 E o
TR BRI A A Y AT e B R R 2 F B R
e 2 > AP R 2GE e TARING S % - o AP WP R
SHEL KB RlE BASE G F R 3 e 8 950 S B KA ERH BT
PRI ke BB e B TEEEROMD) o Aot - k> LT

BB SRS R RS R T i AL {5 A

JENTN
C \
ra:
w%
&%
Yo
=
=g
G

{
W o AR AT S Tl - BATAAPHEM RIS 2 0 2 BN R p B
7

HEUE IR B R
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STUDENT: Yung-Fa Wu ADVISOR: Dr. Jyh-Yeong Chang

Institute of Electrical and Control Engineering

National Chiao-Tung University

ABSTRACT

In this thesis, we first use edge detection and fuzzy rules to find bad pixel map of
a SWIR sensor. Then we employ two median filters sequentially to correct them.
Moreover, we apply two-point correction method to correct non-uniformity among
pixels of SWIR sensor.

To enhance the tools for bad pixel correction, we have also proposed a new color
edge detector based on vector order statistics. The proposed detector consists of two
stages. In the first stage, we use.fuzzy gradient to estimate the direction of the
gradient for every processing pixel in the image and adjust the corresponding
processing window according to this detected direction for reliable edge detection
setup. The second stage computes the vector mean distance (VMD) based on vector
order statistics. Hence, the proposed detector, which integrates vector order statistics
and fuzzy gradient, can provide more robust response for edge detection. Furthermore,
we also combine the edge detector to our proposed thresholding method, which can
automatically determine an optimal threshold and be adaptive to different image
contents without manual intervention. Thus, the excellent results by our proposed
edge detection scheme demonstrate that it is very user friendly and confident. This
edge detection scheme could also be promising for better detecting bad pixels of a

SWIR image sensor.
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Chapter 1 Introduction

1.1 Motivation

With the rapid technological development, the wavelength of visible light has
become familiar, and infrared sensing has also been widely applied in various fields
of low/no light environments. One of infrared wavelength is short-wave infrared
(SWIR), choose bandwidth is close to visible red light band, with a higher level of
imaging performance. In addition, SWIR band also used in the following application
providing high resolution images: military area, it can be used as the enemy
recognition systems and surveillance systems, in low/no light or poor visibility (fog or
smoke in the environment) cases the infrared image sensor can also be used to
identify the surrounding environment. Health care, the 2003 global outbreak of Severe
Acute Respiratory Syndrome (SARS) and the 2009 outbreak of new influenza (HIN1)
caused global panic. By use of the ‘infrared image sensor to detect body temperature,
we not only can reduce the chance of infection but also can substantially increase the
efficiency of body temperature measurement. When infrared sensor falls into the
infrared spectral band images, it is known as thermal imaging. When the body of a
person reflects the infrared band, we need some special infrared sensors to detect it,
and then coupled with the infrared lens to compose. It is well known that infrared
focal plane array (IRFPA) has non-uniformity and bad pixels in the produced sensor
cell. Hence, the infrared image must do non-uniformity correction (NUC) and bad
pixel correction. Bad pixel is the pixel that does not respond (non responsive) i.e.,
dark situation (commonly) or always responsive i.e. In the SWIR sensor bad pixel

saturation is usually happened.



In the low light military operations situations, infrared image processing must be
fast and high efficiency. Because military SWIR sensor has to be lightweight and easy
to used. Therefore in NUC, the most popular reference-based correction method is the
so-called “two-point” correction method where two uniform sources of known
intensity are sequentially imaged [1], [2]. Edge detection plays an important role in
bad pixel detection. In image processing, edge detection is also very useful on tasks
such as segmentation, pattern recognition, object tracking, and image coding. The
performance of these problems is greatly affected by good edge detection. In gray
image edge detection, the Canny edge detector has become a standard [3]. Its
non-maximal suppression and thresholding with hysteresis stages produce thin and
well-connected edge maps. Edges will not be easily detected in grayscale images
when different objects have different hues but have equal intensities. In this case, the
color cue is lost during grayscale conversion. They are treated like one big object in
the scene when they cannot be distinguished in grayscale. Moreover, edge detection is
sometimes difficult in low contrast images but rather sufficient results can be obtained
in color images.

In order to produce more reliable edges, color edge detection has become popular.
Humans can differentiate thousands of colors compared to about 256 shades of gray;
hence, grayscale images do not carry all the edge information that human visual
system (HVS) can detect. In [4], they indicate that luminance component makes up
90% of all edge points in a color image but the remaining 10% can be crucial for
subsequent techniques that rely on edges in an image; in some cases the additional
information provided by color is of utmost importance. Multi-dimensional nature of
color makes it more challenging to detect edges in color images, and often increases
the computational complexity threefold compared to gray scale edge detection. Hence,

color edge detection algorithms accept from the beginning that all of the efforts are to
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find the remaining 10% of the edges.

In this thesis, we use NUC to correct infrared image that has non-uniformity and
correct bad pixel.

In the companion edge detection scheme developed for better bad pixel detection,
we propose an improvement of color edge detector based on vector order statistics
(VOS) [5], [6]. We use the concept of fuzzy gradient [7], [8] to calculate the direction
of the gradient for every pixel in the image. For using an adjustable window
according to the direction of the gradient, it is more accurate to calculate the local
maximum edge response for every pixel, and an automatic threshold technique is

adaptive to threshold the local maximum edge response for the image content.

1.2 NUC and Bad Pixel Correction

Our SWIR sensor has to be-fast, easy to use, and lightweight. Consequently, the
two-point correction method is simple-and thus-will be useful. In bad pixel correction,
we will find some bad pixel maps. The Sobel edge is easy to use and fast. Because of
bad pixels include non-responsive, dark pixels or always responsive pixels. The
completely off image and 75% exposure image should be used. We will use images
which are completely off image and 75% exposure image to find bad pixel map. Then,
we can correct the bad pixels from bad pixel map. Our SWIR sensor flowchart is

illustrated in Fig. 1.1 below.



Read three raw images, completely off
image, and 75% exposure image.

Use three raw images and 75% exposure
image to find bad pixel map.

Non-uniformity correction (NUC).

Bad pixel correction.

Fig 1.1 The flowchart of our'SWIR sensor.

1.3 Color Edge Detection

In the review paper on color image segmentation, Ruzon and Tomasi [9] go
further and group color edge detection methods into three classifications: output
fusion methods, multidimensional gradient methods and vector methods. Output
fusion methods apply single-channel edge detection techniques to each color plane
and then combine the results.

In multidimensional gradient methods, the gradients from the individual channels

are recombined before the edge decision, giving increase to a single edge calculation.



In [10], Scharcanski and Venetsanopoulos have proposed VOS-based approach.
Trahanias and Venetsanopoulos used the reduced ordering (R-Ordering) by the VOS
edge detectors of [5], [6]. The robust color morphological gradient (RCMG) edge
detector [11] recognizes the maximum and minimum pixels in one process, however
it does not discriminate between them. It is in contrast to the VOS edge detectors that
sort the pixels in ascending order from the vector median to the vector extremum. The
matrices are summed over all channels and the edge magnitude and direction given by
the principal eigenvalue and the related eigenvector, respectively. Variations of this
approach have been used by Cumani [12].

The difficult problem is how to combine the channels to give a final result that is
with both output fusion and multidimensional ;gradient methods. For example, the
simplest VOS operator is the.vector range edge detector that measures the distance
between the lowest and highest ranked vectors, 1.e.; the vector median and the vector
extremum, respectively. The minimum vector dispersion (MVD) was proposed are
shown to be the most effective inincreasing the robustness to noise. However, the

MVD is unable to provide an estimate of edge direction.

1.4 Automatic Thresholding Technique

Thresholding is a fundamental technique applied in many image processing
applications. In robust machine vision systems, it would be important to automate the
edge thresholding process which is adaptive to different image contents without
manual interposition.

There are many thresholding algorithms published in the literature. The Otsu [13]

algorithm is based on discriminant analysis and uses the zeroth-order and the



first-order cumulative moments of the histogram for calculating the value of the
thresholding level. The Rosin algorithm [14] fits a straight line from the peak of the
intensity histogram to the last non-empty bin. The point of maximum deviation
between the line and the histogram curve will usually be located at a corner which is
selected as the threshold value. The new feature image proposed by Rakesh [15]
makes it easier to determine hysteresis thresholds.

It is a difficult assignment to selecting an appropriate thresholding. The problem
is that different algorithms typically produce different results since they make
different assumptions about the image content. Therefore, we will introduce an
automatic thresholding method that can find the best hysteresis thresholds from all

possible parameters.

1.5 Thesis Outline

The thesis is organized as follows. The basic concepts and technique concerning the
NUC and bad pixel correction introduced in Chapter 2. In Chapter 3, the results of our
SWIR sensor which is introduced in Chapter 2 are shown and compared. In Chapter 4,
we describe our edge detection and automatic thresholding method and compared the
experiment results of our automatic color edge detection techniques. At last, we

conclude this thesis with a discussion in Chapter 5.



Chapter 2 The Improvement of NUC and Bad

Pixel Correction

2.1 NUC

To implement two-point correction method for image sensor, we can assume

2.1)

Pzi :aiTZ +ﬁi
Ri=al +p

where P’ and P/ represents the i-th pixel value in completely off image and 75%
exposure image, respectively. The ¢4 tand . 3, represents gain and offset of i-th pixel.

The 7, and 7, represents illumination level: By wusing Eq. (2.1), we can assume

T, = kT, , then
P -P
7 22
e o
) Pi _Pi
pi=H = (Zk—li (2.3)

Calculate averages that completely off image and 75% exposure image which are

shown in Figs. 2.1(a)—(b) as P and P,, respectively.

(a) (b)
Fig. 2.1 (a) The completely off image. (b) The 75% exposure image.
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Assuming under 7; and 7,, all pixels output should be the same level. In other

word, P and P, after correction

P, =a. AT, + B.B.
_2 T2 ﬁl i (24)
E :aiAiTl + ﬁiBi
By using Eq. (2.2), and Eq. (2.3), then
_(r-7) _(A-P) (2.5)
" a(n-1) P-F
B = ﬁi(ﬁ, ~a,AT)) (2.6)

We want to correct infrared image which is under unknown illumination level T,
then

P! = o, T, + B, 2.7)
Consequently, corrected pixel output signal should be

Pi:a.A.Ti+ﬂ.B.:ﬁ+(P;_EiXF2_F1)
T TANNYEREED e R

(2.8)

Therefore, it can correct directly without-any other illumination level that have to

using laboratory for reference.

2.2 Bad Pixel Correction

In bad pixel correction, Sobel edge detection is very important which is fast and

easy. The masks show in Fig. 2.2, called the Sobel operators.



-1 0 | +1 +1 | +2 | +1

-2 | 0 [+2 0|00

A 0| +1 A |- |4

(a) x-direction. (b) y-direction.

Fig. 2.2 The Sobel operators.

The difference between the third and first columns of the 3x3 image region
approximates the derivative in the x-direction as shown in Fig. 2.2(a); and the
difference between the third and. fitst rows rapproximates the derivative in the
y-direction as shown in Fig. 2.2(b). The idea behind using a weight value of 2 is to
achieve some smoothing by giving more importance to the center point. Note that the
coefficients in all the masks shown in Fig. 2.1 sum to-0, indicating that they would
give a response of 0 in an area of constant gray level, as expected of a derivative
operator.

First, we want to detect bad pixel map by using Sobel edge detection. Consider a
grayscale image [ with size mxn be represented by vector [ (i, j). By using SWIR
sensor, we capture three different images. Therefore, three grayscale images /, (z’, j),
1, (z',j), and /, (i,j) with size mxn 1s shown in Figs. 2.3(a)—(c) which is called

raw images, which is non-uniform correction is not activated.



(b)

(©)

Fig. 2.3 (a) The “Monitor” image. (b) The “Words” image. (c) The
“Two-persons” image.

10



To obtain bad pixels of the image sensor, we first apply Sobel edge operation on

these three images. After the operation, we have obtained three edge map images,

which is shown in Figs. 2.4(a)—(c) and are called S,, §,,and S,, respectively.

Fig. 2.4 By Sobel edge detection, (a) “Monitor” image, (b) “Words” image, and

(c) “Two-persons” image.

Then, we calculate four-directional difference d(i, /) in the 3x3 window as

shown in Fig. 2.5. The value d(i, /) can be calculated by

11



d(i, j)=1G, )= 16 =1 j} +[1G. /)= 16 j =)+ 1 j) = 1G+1, j) +[1G /)= 10 j +1)
(2.9)
where || represents an absolute value operator and (i . J ) represents the i-th row and

Jj-th column in the grayscale image /.

0 -1 0
1 4 1
0 -1 0

Fig. 2.5 Four-directional neighborhood operator.

After calculating d (i ,J ), we will'select a threshold to pick up possible bad pixel
candidates. For the 75% exposure image which is'shown in Fig. 2.1 (a), we will find
bad pixels possibility by using Eq. (2.9) and thresholding, with threshold value =40,

which is shown in Fig. 2.6. And it called d, image.

Fig. 2.6 The result of four-directional neighborhood operator and thresholding.

12



Finally, we calculate the fuzzy derivative donated as S, (i, /) in each pixel

(i, 7). This is realized by the following fuzzy rule 1:

Fuzzy Rules 1.

IF S,(i,/) isanedge AND S,(i, ;) isanedge AND S,(i, /) isan edge
OR S,(i,/) isanedge AND S,(i, ;) is not an edge AND S,(i,j) isan edge
OR S,(i,/) isanedge AND S,(i,;) isanedge AND S,(i,/) isnotan edge

OR S,(i,/) isnot an edge AND S, (i, ) isanedge AND S,(i,j) isan edge

THEN S,,(i,) is an edge.

The AND operator (OR operator) can be the minimum (maximum) that are the
well-known triangular norms (together with-their dual co-norms) in the fuzzy logic.

For the not operator, we use the standard negator N (x): I1-x with xe[0,1]. The

edge is the fuzzy set that was defined the point which is detected by Sobel edge

detection. According to fuzzy rule I,'we have' S, ~edge map is shown in Fig. 2.7.

Fig. 2.7 The resulting image of at least two out of three images which is three

Sobel edge map images.

13



Therefore, we use a rule for each edge point. We have two images which are Fig. 2.6

and Fig. 2.7 can estimate BP,

.o 0ad pixel map following rule 2.

Fuzzy Rules 2.

IF d,(i,]) is an edge OR pr(i,j) 1s an edge.

THEN BP,, (i,j) is an edge.

map

The OR operator is the maximum in the fuzzy logic. The BP,,, is shown in Fig.

2.8.

Fig. 2.8 The bad pixel map by using fuzzy rule 2.

Consequently, we can use the bad pixel map which is shown in Fig. 2.8 to do bad

pixels correction with median filters shown in Chapter 3.

14



Chapter 3 Results of NUC and Bad Pixel

Correction

3.1 Results of NUC

First, we calculate standard deviation (STD) which is calculated by

where 7 is pixels number and x is

1 n
)?:—in
n

(3.1)

(3.2)

We will use STD to estimate-the performance of the NUC results. Therefore, we use

Fig. 2.1(b) as a sample and its STD is 0.1349. 1t is to be noted that detected bad

pixels shown in Fig. 2.8 are not included.in calculating STD. By using Eq. (2.8), the

result is shown in Fig. 3.1.

i |
Fig. 3.1 The resulting image of 75% exposure image after NUC.

15



The STD of Fig. 3.1 becomes 0, in which bad pixels are not included in
calculating STD. This great STD reduction after NUC shows its effectiveness in
reducing the non-uniformity response among the pixels of image sensors. Applying

NUC to “Monitor,” “Words,” and “Two-persons” images of Figs. 2.3(a)—(c), the

corrected images are shown in Figs. 3.2(a) —(c), respectively.

(a) (b)

Fig. 3.2 The resulting images after NUC. (a) “Monitor” image, (b) “Words”

image, and (c) “Two-persons” image.

To further validate the effectiveness of NUC, we exploit Sobel edge detection

with a sensitive threshold to test raw images and NUC corrected images above,
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leading to Figs. 3.3(a)— (), respectively.
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Fig. 3.3 Sobel edge map images of (a) “Monitor” raw image, (b) “Monitor”
image after NUC, (c) “Words” raw image, (d) “Words” image after NUC, (e)
“Two-persons” raw image, and (f) “Two-persons” image after NUC.
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From these figures in Fig. 3.3, it is easy to see the powerfulness of NUC in
reducing the excessive or un-necessary edges due to the non-uniformity of the image
sensors. Excessive lines in left-up corner of Fig. 3.3(a) is removed in Fig. 3.3(b),
NUC corrected counterpart. From Fig. 3.3(d), it is evident that removed of excessive
lines and edges, in tables, wafer, and hand right, of Fig. 3.3(c). Unnecessary lines and

edges of left person in Fig. 3.3(e) has been removed in NUC corrected image Fig.

3.3(9).

3.2 Results of Bad Pixel Correction

For the detected bad pixel map as-shown in Fig. 2.8, we can use median filters to
correct bad pixels. First, you can see-in Fig. 2.8 that four boundaries are prone to bad
pixels. If a boundary line is almost bad pixels, we employ neighborhood good row or
column to replace it. After a boundary line with bad pixel rate exceeding 25% has to
be replaced line wise. With this criterion. (ineffect), the three NUC corrected images
are boundary replaced and are shown in Fig. 3.4. Comparison results are as follows in

Fig. 3.4.
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Fig. 3.4 (a) “Monitor” raw image. (b) Four boundaries replaced of “Monitor”
image after NUC. (c¢) “Words” raw image. (d) Four boundaries replaced of
“Words” image after NUC. (e) “Two-persons” raw image. (f) Four boundaries

replaced of “Two-persons” image after NUC.
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Correcting four boundaries bad pixels, the bad pixel map will be updated as shown in

Fig. 3.5.

Fig. 3.5 The bad pixel map after correcting four boundaries bad pixels.

Second, we use a 5x5«median filter to correct bad pixels and the results are

shown in Figs. 3.6(a)—(c).
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(b)

(©)

Fig. 3.6 The resulting of 5x5 median filter corrected (a) “Monitor” image. (b)
“Words” image. (c) “Two-persons” image.

21



In Figs. 3.6(a)—(c), it can be easily seen that these still are bad pixels on the
lower right corner of images. Consequently, we only use Eq. (2.9), four-directional
neighborhood operator with threshold value =150, to calculate the bad pixel map

again. The bad pixel maps are shown in Figs. 3.7(a)—(c).

@ ®)

(©)

Fig. 3.7 The resulting images after four-directional neighborhood operator, on

Fig. 3.6 (a) “Monitor” image, (b) “Words” image, and (c) “Two-persons” image.

In the sequel, we use a 3x3 median filter on Fig. 3.6 to correct bad pixels of

Fig. 3.7 again. The resulting images are shown in Figs. 3.8(a)—(c).
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(b)

Fig. 3.8 The resulting images of 3x3 median filter corrected images of Fig. 3.6

(a) “Monitor” image, (b) “Words” image, and (c) “Two-persons” image.
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Notice that the median filter is useful on bad pixels correction. Moreover,
median filter is computational easy and is appropriate for a real-time ROIC
implementation. We have also applied bad pixel correction with 3x3 median filter
repeatedly for three times, whose results are similar to those obtained by 5x5
median filter and the 3x3 median filter. But it is need three times correction, and it
is waste time. Therefore, we try to use 5x5 median filter once and then 3x3
median filter again. The results are good and efficient. Finally, we choose 5x5
median filter once and the3x3 median filter again. For comparison, the raw images

and the corrected images are shown in Figs. 3.9(a)—(f).
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Fig. 3.9 (a) “Monitor” row image. (b) The resulting image of NUC and bad pixel
corrected image of “Monitor.” (c) “Words” row image. (d) The resulting image

of NUC and bad pixel corrected image of “Words.” (e) “Two-persons” row
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image. (f) The resulting image of NUC and bad pixel corrected image of

“Two-persons.”

The difference between the row images and the corrected images are tremendous. We
adjust the non-uniformity among image sensor pixels and correct bad pixels by using
fast and efficient algorithm. The processed images have been greatly improved by our

proposed efficient scheme.
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Chapter 4 Edge Detection Techniques for Bad

Pixel Detection

Edge detection plays an important role in bad pixel detection of optical sensor
chip. In image processing, edge detection is also very useful on tasks such as
segmentation, pattern recognition, object tracking, and 1image coding. The
performance of these problems is greatly affected by good edge detection. We use
Sobel edge detection and four-directional neighborhood operator to detect bad pixels
and test NUC in Chapters 2 and 3. These techniques are basic edge detection methods.
In Sobel edge detection and four-directional neighborhood operator, we calculate each
pixel’s edge level and select a threshold manually. However, the best edge detection
will use an automatic threshold technique to select the best threshold.

Edges will not be detected in grayscale images when neighboring objects have
different hues but equal intensities 'since the color cue is lost during grayscale
conversion. Such objects cannot be‘distinguished in grayscale images. Similar gray
tone objects are treated as one big object in the scene. Additionally, edge detection is
sometimes difficult in low contrast images but rather sufficient results can be obtained
in color images. To obtain more meaningful edges, there has been an increased
interest in color edge detection. Humans can differentiate thousands of colors
compared to about 256 shades of gray; hence, grayscale images do not carry all the
edge information that human visual system (HVS) can detect. In this chapter, we
propose an improvement of color edge detector based on vector order statistics. We
use the concept of fuzzy gradient to calculate the direction of the gradient for every
pixel in the image. For using an adjustable window according to the direction of the

gradient, it is more accurate to calculate the local maximum edge response for every
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pixel, and an automatic threshold technique is adaptive to threshold the local

maximum edge response for the image content.

4.1 Vector Order Statistics

4.1.1 Vector Order Statistics Review

Scalar order statistics have played an important role in the design of robust signal
analysis techniques. This is due to the fact that any outliers will be located in the
extreme ranks in the sorted data. Consequently, these outliers can be isolated and
filtered out before the signal is further processed. Ordering of univariate data is well
defined and has been extensively studied in order statistics [16]. Let the n random

variables X, i =1,2,...,7n, be arranged in ascending order of magnitude as

XX, <. 2X (4.1)

Then the i-th random variable X(l.) 1s the so-called ith order statistic. The

minimum Xm, the maximum X(n), and the median X(n/z)

are among the most
important order statistics, resulting the min, the max, and the median filters,
respectively.

The concepts are, however, not straightforwardly expanded to multivariate data
since there is not any universal way of defining an ordering in multivariate data.
There has been a number of ways proposed to perform multivariate data ordering that
are generally classified into the ordering of multivariate data [17]: marginal ordering

(M-ordering), reduced or aggregate ordering (R-ordering), partial ordering

(P-ordering), and conditional ordering (C-ordering).
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4.1.2 Characteristics of Vector Order Statistics

Let X represent a p-dimensional multivariate X :[X],Xz,...,Xp]T where

=1, 2, ..., p are random variables and let X', i=1, 2, ..., n be an
observation of X. Each X' isa p-dimensional vector X' :[X]i,X;,...,X;]T.

In M-ordering, the multivariate samples are ordered along each one of the

p-dimensions independently. For color signals, this is equivalent to the separable

method where each one of the colors is processed independently. The i-th marginal

order statistic is the vector X“ = [X]“),Xf),...,XI(f)]T, where X is the ith

largest element in the r-th channel. The marginal order statistic X may not

correspond to any of the original samples ~X", X* ..., X™ as it does in one dimension.
In R-ordering, each multivariate observation X' | is-reduced to a scalar value d,

according to a distance criterion: A metric that is often used is the generalized distance
to some point. The samples are often arranged in ascending order of magnitude of the
associated metric value d..

In P-ordering, the objective is to partition the data into groups or sets of samples,
such that the groups can be distinguished with respect to order, rank, or extremeness.
This type of ordering can be accomplished by using the notion of convex hulls.
However, the determination of the convex hull is difficult to do in more than two
dimensions. Other ways to achieve P-ordering are special partitioning procedures and
thus are not preferred. Another drawback associated with P-ordering is that there is no
ordering within the groups and thus it is not easily expressed in analytical terms.
These properties make P-ordering infeasible for implementation in digital image

processing.
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In C-ordering, the multivariate samples are ordered conditionally on one of the
marginal sets of observations. This has the disadvantage in digital image processing
that only the information in one component (channel) is used.

From the above, it is evident that R-ordering is more appropriate for color image
processing than the other vector ordering methods. If we employ as a distance metric

the aggregate distance of X' to the set of vectors X', X*,.... X", then

n

di:z

k=1

X -Xx"|, i=12, ...n 4.2)

where || . || represents an appropriate vector norm. The arrangement of the d s in

ascending order (d(]) Sd, <. < d(n)), associates the same ordering to the

multivariate X's.
AR XA\ 4.3)

In the ordered sequence,- X" (isthe vector median of the data samples which is
introduced by vector median filters.[18]. It is defined as the vector contained in the
given set whose distance to all other vectors is a minimum. Moreover, vectors
appearing in low ranks in the ordered sequence are vectors centrally located in the
population, whereas vectors appearing in high ranks are vectors that diverge mostly
from the data population. These samples are generally called “outliers.” It follows that
this ordering scheme gives a natural definition of the median of a population and of

the outliers of a population.
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4.2 VMD Detector

For a color image / of size m xn, each pixel location (z’, j) is represented by a
three-tuple color vector I(z',j):(ll G, j) 1,0, )) 13(1',]')) , In which Ip(z',j)
denoting the p-th component of a color space for i=1,2,...m and j=12,...,n.
For each pixel location (z’, j), by using a 3 x 3 window, we compute the local sum of
distances to describe the relationship between the current pixel vector [ (i, j) and its

neighboring pixel vectors. Let d, (i, j) be the local sum of distances for the current

pixel vector (i, j), then

i+l j+l
d(i,))= YN 4Gij)- 1k, ) | (4.4)
ke=i—1 h=j-1
where || . || represents a 2-norm. After we have computed the local sum of distances

d,(i,j) of the current pixél location {7, ), we sort the distance values in the

neighboring area in ascending’order d,, < dy5 <. < d,,. The distance values

d,,and d,, correspond to the minimum and the maximum of the nine distance

values, respectively.

By the concept of R-ordering, the ordering of d,, <d,, <..<d,

associates the same ordering to the pixel vectors, X < X < ... < X which

means that X"

is the pixel vector having the smallest local sum of distances and
X is the pixel vector having the largest local sum of distances. Therefore, if the
current pixel location (i, /) has an edge, the vector I(i,j) must have a larger
response of d, (i, j).

Although we now obtain the information on the smallest and the largest local

sum of distances, the information contained among vectors X, X® . X©
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should also be captured and be useful for edge detection. The maximal variation
among vectors is an indication of the distribution of the nine vectors. Since that
vectors X, X .. X correspond to the ordering of the aggregate distances,

the confined maximal variation MV, among these vectors can be simply defined as

MV, =max(| X" - x V] ), i=12,..8 (4.5)

When the value MV_ is determined, we can also determine the exact two
vectors X and X" which correspond to MV. X and X"*" further

suggest that X, X® .. X® can be classified into two clusters: (1) vectors,

X0 x® XY from smaller side of the edge, and (2) vectors,
X0 xD 0L X®, from larger side of the'edge. Let M, and M, be the mean

vector of the vectors X X X and the vectors X'V, X2 . x©

respectively. Thus, VMD can'be defined as
VMD = | M, - M| (4.6)

VMD detect the variation between two sides of edge (larger and smaller side) by
a distance measure. Consequently, in a uniform area, where all vector values are close
to each other, the output of VMD will be small. On the other hand, the output of VMD
will be large since M and M, are the mean vectors of two sides of the edge.

The VMD method suffers from the disadvantage of the weak ability for detecting
oblique edges due to the fact that its gradient magnitude is derived from the fixed
window with the distance between the mean vector of the large side and the mean
vector of the small side. In addition, in the presence of noise and for non-ideal edges,
the maximal variation that splits the window into the large side and small side may

not represent the distribution among the vectors in the fixed window, and then the
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VMD may produce an edge response that is not necessarily representative of the real
gradient.

To avoid these problems, we use an adjustable window that can rotate its
orientation according to the direction of the gradient. In the 3x3 window, we
classify the direction of the gradient to four orientations, i.e., W—FE direction (0°),
SW—NE direction (45°), S—N direction (90°), and SE — NW direction (135°) that can
be determined by the fuzzy gradient value which is introduced by the fuzzy image
filter [7] and the fuzzy random impulse noise reduction method (FRINR) [8]. Thus,
the new proposed method will combine VMD with the fuzzy image filter and FRINR
that have the ability to estimate the direction of the gradient for each pixel and adjust
the window for more exactly detecting edge response.

In our approach, there are two steps that are used to define the direction of the

gradient for each pixel in the color image. First, consider a color image [/ with size
mxn be represented by color vector I(i,j): (I] (i,j), Iz(z',j), I, (z',j)), in which
1 p(z', j) denoting the p-th component of-a color space, we calculate g(i, j) and

mg(i, j) inthe 3x3 window as

1 1

) ZH 1i+k,j+h)-10,)) H

gli, j) === : (4.7)
1
> Y| gli+kj+r)-g6)) |
mg(i,j) = k=1l 2 (4.8)
where || . || represents a 2-norm and (i, j) represents the i-th row and j-th column

in the color image /. Because edge pixels and corrupted impulse noise pixels generally
cause large g(i, j) value, we also calculate mg(i, j) that can help us to distinguish
edge pixels and noise pixels. To discriminate edge pixels and noise pixels, we can

define a fuzzy set denoted as /arge, and it corresponds to the membership function
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which is shown in Fig. 4.1. We see that we have to determine two important

parameters a and b. The parameters a and b can be defined as

ali, j)=mgli. j) 4.9)
b(i, j) = ali, j)+0.2a(i, j) (4.10)
A
1 |
—>
0 a b

Fig. 4.1 The membership function corresponds to large.

Second, we consider a 3x3 mneighborhood around the central pixel [ (i, j).
Each of the eight neighbors of 7 (i, j) corresponds to. one direction {North West
(NW), North (N), North East (NE), East (£), South East(SE), South (S), South West
(SW), West (W)} that is displayed in Fig. 4.2(a). We use the concept of the fuzzy
gradient value which contains the basic gradient value and the related gradient value.
The basic gradient value is donated as V (i, /) of pixel position (i, /) in direction

set D(D e {NW,N,NE,W,E,SE,S,SW}).
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For example,

V(i j)=1G=1,7-1)-1(, j)

V1, j)=10.j-1)-1. )

NW N NE
W (i) E
SW S SE
(a)
-2,)
NW N NE
G2 | W G| E
SW S SE
(b)

(4.11)

(4.12)

Fig. 4.2 (a) The neighborhood around the central pixel I(i, j). (b) Pixel

indicated in gray are used to compute the fuzzy gradient value of pixel 7 (i, j)

for NW direction.
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TABLE 4.1

The fuzzy gradient in each direction

D | Basic gradient Related gradient Correspond direction
N | Vadlig) | Vg lli+1,7-1), Vg 1li-1j+1) SW—NE (45°)
N | VI Vol j=1), V10, j+1) W-E(0)

NE | Vyl@j) | Vylli=1j-1), V 1+ +1) SE-NW (135%)
w | v,167) vV, A(i-1,7), V,I(+1,/) S—N(90%)

E v, 1(i, f) vV I(i-17), VIl+1,j) S—N(90%)
sw | VI, j) Vo, Ii-1,j-1), Vy,I(i+1,j+1) SE—-NW (135°)
s | VslG)) Vl(i,j=1), VIl j+1) W—E(0°)
SE () sl (i=1,7+1), Vg I(i+1,j-1) SW—NE (45°)

Next, we also calculate the related gradient value which corresponds to each of eight
directions. For example, Fig: 4.2(b) shows the related gradient of the NI direction

and it can be expressed as

Vi d(i, /) =V 141, =) =1, 7 - 2) - 1(i + 1,/ 1) (4.13)

Vi I, j) =V IG=1,j+1) =1 =2, )= 1(i =1, +1) (4.14)

In Table 4.1, we show a detail of the eight directions in the column 1, the basic
gradient corresponds to each direction in column 2, the two related gradients
correspond to each direction in column 3, and the correspond perpendicular direction
in column 4. Actually, in the3x3 window, the direction of the gradient only belong
to W—E direction (0°), SW—NE direction (45°), S—N direction (90°), and SE—-NW
direction (135%). Thus, we can only compute the fuzzy gradient for the direction set
ED where ED < {N W,N,NE ,W} that contains all the orientations in the 3x3
window. For example, computing the fuzzy gradient for the NW direction and SE

direction are both equivalent to computing the gradient for the SW—NE direction
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(45%).
For each direction of the direction set ED, we calculate the fuzzy derivative

donated as y,(i,j) in each pixel (i,j) for direction P, where P € ED . This is

realized by the following fuzzy rule 3.

Fuzzy Rules 3.
IF |V,1(, /)| islarge AND |V'7,1(i, j)| is large AND | V7310, j)| is large

OR |V,1(i, /)| islarge AND |V,I(i, j)| is not large AND |V}1(i, j)| is large
OR |V, 1(i, /)| is large AND |V,I(i, j)| is large AND |V31(i, j)| is not large

THEN y,(i,j) is large in direction P

The AND operator (OR operator) can be the minimum (maximum) that are the
well-known triangular norms. (together with their dual co-norms) in the fuzzy logic.

For the not operator, we use the standard negator N (x): I-x with xe[0,1]. The

large is the fuzzy set corresponds the membership function LARGE that was defined

above. The idea of this rule is to consider an edge passing though the pixel 7 (i, j)
and its neighborhood for the direction, i.e. SW-NE direction (45°), not only the basic

gradient value |V I | will be large, but also the related gradient |V I j)| or

|V';,I (i, J )| can expect to be large. Therefore, if two out of three gradient values are

small, it is safe to assume that no edge exists in the considered direction.
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L

Fig. 4.3 The membership function corresponds to absolute value.

Next, we again use a rule for each direction. The idea behind the rule is that if a
pixel is assumed to be large in rule 3, then it probably can be consider as an edge for

direction P, and the derivative value will be used to estimate the gradient direction of

P

this pixel. Thus, we use the following tule 4 to compute D, ., -

Fuzzy Rules 4.
IF y,(i, ) is large AND VPI(i,j) is absolute value

THEN D?

eradiens 1S @bsolute value in direction P
Where the fuzzy set absolute value corresponds to the membership function which is
shown in Fig. 4.3 and the parameter L =255 is used in the experiment. The AND
operator is also the minimum in the fuzzy logic.

The final step in the computation of the fuzzy gradient is the defuzzification. We

are interested in obtaining the direction that has maximum value ofD;adim. P,

which is estimated to be the gradient direction in pixel (z’ ,J ), is determined by

P =argmaxD? ,...1(i. ) (4.15)

PeED

Finally, we rotate the window with the angle that corresponds to P . For using
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the adjustable window, the VMD method will be more robust for detecting the edge

response. The experiment will be discussed in Chapter 4.4.

4.3 Automatic Threshold Selection

To automatically obtain the best threshold that is adaptive to the image contents,
we propose a new method for hysteresis thresholding method combining the merits of
Yitzhaky and Peli [19] and Medina et al. [20] methods. Yitzhaky and Peli can find the
best thresholds within a set of possible values, but the performance will depend on the
set of possible values chosen. On the other hand Medina ef al. method is similar to
Yitzhaky and Peli, but the performance will depend.on one’s choice of the subset and
the overset. In the following, we-will introduce how to apply the thresholding

methods to VMD method.

4.3.1 Determine Parameter Set

Fig. 4.4 shows the symbolic graphic of the choice of parameter set. For an image /,
let £, be the unknown true edge points set of the image / with the condition

A, c E, c B, where A4, and B, are the subset and the overset of the image /. For

a possible hysteresis thresholds set C, for example
C = { (tlow’thigh) ‘ tlow’thigh < [0’ 1]’ tlow < thigh }
we want to find the parameter set 7 in the region between the subset A, and the

overset B,. Thus, we will get the best edge map £, , = determined by hysteresis

thresholds ¢, and ¢,., with (¢,,.7,,) €T inthe next section.
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OVERSET B,

TRUE EDGE POINTS SET E;

1 i
low “high

SUBSET A,

E

1 t
low  high

Fig. 4.4 The symbolic graphic of the choice of parameter set [20].

Considering the feature image histogram is usually unimodal, we use the Otsu
method [13] and the Rosin method [14] to determine the subset A, and the overset
B,. The Otsu method is not.very sensitive. on unimodal histograms and performs
rigorously on detecting edge points for edge detection, but edge pixels detected by the
Otsu method have a high probability of being true edge points. Thus, the edge map

E can be utilized as the subset of the image. The Rosin method is very sensitive

Otsu

on unimodal histograms and it can be noisy for edge detection, but the Rosin method

can usually detect the true edge pixels together with many fakery ones. Thus, the edge

map FE, . can be employed as the overset of the image. If the conditions
ot < E kosin and E,, C E, v hold, then the following expression can easily
be proved
FP(E, tygn ERosin )=0
FN (E,Whigh ,Ep,)=0 (4.16)

where FP and FN are False Positive and False Negative in ROC analysis [21]. Here,

and coincide with

FP indicates that the points were decided as edges in E,
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non-edge points in £ FN indicates that the points were decided as non-edges in

Rosin *

E and coincide with edge pointsin £, .

Liow s Lhigh

Actually, there is some error probability may exist between £, and E, .

such that we can not find any hysteresis thresholds ¢, ~and ¢,, with

ow

(7N Lig ) €C and satisfying FP(E% i Eqn)=0 and FN (E,Io g E,,)=0.
For this case, we can consider whether the following expressions are true or not.
FN(E, ., , " Eiin) %0
FP(E% s Ep)#0 (4.17)

FN(E ) #0 implies that therejare negatives in the edge map E, i that

tow L high ° Ro sin

and—FP(E )#0 implies that there are

are positives in the set E, &, ooty Eodt

positives in the edge map E, . ‘that are negatives in the set E,, . Thus, let C,

and C, be the sets that define as

Cyy =1 (Upoty) [ G030 € C | with the condition (4.16)
Cy =1 (utig) | tinstig €C | with the condition (4.17)

The parameter set 7 can be determined by
If C,#d
Then the parameter set 7 =C,,
Elseif C,  ®
Then the parameter set 7 =C,
Else

Then the parameter set 7' =C
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4.3.2 The Best Threshold Selection

Here, we will find the best hysteresis thresholds within the parameter set 7'

determined above. For a parameter set 7, in the first, we can construct an image map

PGT (potential ground truth) using all edge maps E, that determined by the

L nigh

hysteresis thresholds with (z,,,.7,,,) €T . Defining an edge pixel as “I1” and a

low?

non-edge pixel as “0” for all edge maps E, " each pixel of the PGT image will get

i

a value from the sum of the correspond pixel of all edge maps E, | " For example,

oAy

consider a pixel pel, there are g different edge maps E, = with different

high

hysteresis thresholds ¢, and. . ;-where (7,,.7,,,)€ T, detect the pixel p as an

low?

edge pixel, then we mark the value of g to this pixel in the PGT image. It means that
there are g hysteresis threshold sets support the pixel p to be an edge.

Second, we will compute” the maximum-value of the PGT image. If the
maximum value is L, then the PG7, can be obtained by threshold the PGT image

with possible thresholds i=0, 1, ..., L—1. For each PGT, edge map, we calculate 7P,

TN, FP and FN that indicate True Positive, True Negative, False Positive and False

Negative from comparing with each E, " and the average of all the probabilities

oy

resulting are computed by

1
TPPGTi - z TPPGTiE with =0, 1, ..., L-1 (4.18)

> tlow st high
(llnw,lhigh el )

1
INpor, =+ 2. ™Weare, . with i=0,1, ., L=1  (4.19)

([lnmlhigh er )
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1

FPPGT,. =N Z FPPGTI»,E,ZUW’,mgh with i =0, 1, ..., L-1 (4.20)
(tluw,thigheT)
1 .
FNpgr =~ 2, FNpgre . with i=0,1, ., L=1  (421)

([lnw,thigh GT)

where TP, , indicates the pixels are edges in the PGT, and coincide with

tlow high

edges in the E, TN por i indicates the pixels are non-edges in the PGT,

towsthigh How st high

and coincide with non-edges in the £, . FP,; . indicates the pixels are

high tow »thigh

edges in the PGT, but detected as non-edges in the £, . FNp; . indicates

high tlowthigh

the pixels are non-edges in the PGT, but detected as edges in the E, o N represents

i

the cardinality of the parameter set 7. Next, the ‘Chi-square test of the optimal

threshold can be calculated by

> St =Oper, SP par, —(I_QPGTf)

e\ (4.22)
i A Q PGT, Q PGT;

where

Opar :TPPGTI- +FPPGTI.

i

TP

PGT,

" TPy + FNpg,

TN p;
IN ,, + FP

PGT,

Sp PGT, —

Finally, a higher lﬁcr,. can obtain a better threshold. The best threshold in

parameter set T is correspond to the value of i that maximizes y,;, . Thus, we have

the following conclusion: If k= argmax y,., , then the hysteresis thresholds
i{0,1,...L—1} '
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(t* t ):argmaxy(E

oL ) = T8 M ) will be the best choice, where
low L high )€

Liow Lhigh

‘Lt (E[lnw,lhigh )

2
XE PGT,

How thigh’

* * * *
_ Sn PGTEihign Q PGT Ey,, thigh Sp PGBy thign — (1 — Q PCTiEnon g )
= - * (4.23)
1 - Q PGnaEtzow,f11igh Q PGTk’E’IOW,’high

and

£
Q PGT}"’Ellavtf,lllig/1 = TPPGU :Et + FPPGU :Ez

low,thigh low,thigh

TP,

%
S n p GT; sEtlow thigh = POk Bt
' TP, + FN
PGTy ’E’[ow,’higly PGT} ’E’[ow,’higly
* TN
PGT, ’E’Iow L
— Lhigh
Sp rer, Eyoniigs = N7 e
PGTy ’Ef/ow,thigh PGTy ’Etzow,rmgh

One of the drawbacks of Yitzhaky and Peli-method is that the result depends on
the parameter set we choose. For different parameter sets, very different results will
be obtained. Thus, after the improvement of the choice of the parameter set, a more

reliable result will be obtained.

4.4 Experimental Result of Comparison with Other

Color Edge Detector

4.4.1 Quantitative Evaluation

The evaluations of edge detectors are usually subjective by observers [23]. Most
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of the objective evaluation methods assume that the specific features of images are
known such as boundaries in simple synthetic images. In such cases, for the known
ideal edges considered to be the ground truth (GT), the quantitative of the edge
detection can be measured. In nature images, Bowyer [24] manually created
specification of the edges to form a GT, and Fernandez [25] used an automatic
statistical method to generate GT images. However, for a quantitative evaluation,
different criteria will produce different result. The approach adopted here is to use the
GT images generated from synthetic image with the widely used performance
measures, FOM [22] and ROC analysis [21].

First, The FOM is defined by

1 & 1
FOM = 100% 4.24
maX{]D,I[};1+a(di)2 X 0 ( )

where 7, and /, are the number of detected and number of ideal edge points
respectively, « (>0) is a calibration constant, and d, is the edge deviation for the

i-th detected edge pixel. In all cases 0.< FOM <'1; for a perfect match between the
detected and the ideal edges FOM =1 whereas the detected edges deviate more and
more from the ideal ones FOM goes to zero. The scaling constant o = 0.2 proposed
in [11] has been adopted.

Next, we would like to introduce the True Positive Rate (TPR), True Negative
Rate (TNR) and Normalized Accuracy (NACC) of ROC analysis. The TPR is defined
by

TPR =—12 . 100% (4.25)
TP + FN

where TP represents the number of pixels which are detected as an edge pixel and

belong to an ideal edge pixel, and FN represents the number of pixels which are
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detected as an edge pixel but belong to an ideal non-edge pixel. On the other hand, the

TNR is defined as

TNR = — N 100% (4.26)
TN + FP

where TN represents the number of pixels which are detected as an non-edge pixel
and belong to an ideal non-edge pixel, and FP represents the number of pixels which
are detected as an non-edge pixel but belong to an ideal edge pixel. Finally, we

calculate the normalized accuracy (NACC) by

NACC = M x 100% (4.27)

NACC = 100% corresponds to a perfect match-between the ideal edge and detected
edge points and as the deviation of the edge points increase, the NACC approaches to

zero percentage.

4.4.2 Quantitative Evaluation in Synthetic Color Images

Canny [3] presented the very popular aspects that good edge detection must not
miss the true edge nor detect non-edge points as the edge points and produce thin and
continuous lines. For these criteria, we also use two kinds of 256x256 synthetic color
images which are shown in Figs. 4.5(a)—(b) for quantitative evaluation of the color
edge detectors. The performances of our automatic color edge detection techniques
are compared to those by the compass operator of Ruzon and Tomasi [9], Canny edge

detector [3], RCMG detector [11], and MVD edge detector [6].
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(b)

Fig. 4.5 (a) One kind of original image. (b) One kind of original image.

Fig. 4.6 show the edge detection results of 256x256 synthetic images which is
Fig. 4.5(a) for comparison. For the Fig. 4.6(b), using the parametero =0.94, adjust
the Medina et al. thresolding method for the compass operator with NMS. We can see
that the result in Figs. 4.6(b) detect much noise in the regions near the corners. For
MVD detector, we use the parameter k =2, [ =4, and thresholding by Medina et al.

method with thinning process as shown in Fig 4.6(c). To apply Canny detector to
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color images, a method named Color Canny individually use Canny detector to detect
edges for three dimensions in the color space, and determine the edge result by the
majority vote fusion rule.

In the edge result detected by Color Canny detector, which is shown in Fig.
4.6(d), the continuity of the edges performs worse than the others, especially in the
corners. Fig. 4.8(e) shows the result detected by RCMG with the parameter s =1 in
the 3x3 window. Fig. 4.6(f) shows the result with our method, and it detects less
noise and produce continuous lines for edge detection. More results are shown in Figs.
4.7—-4.9. In Fig. 4.7(b) and Fig. 4.9(b), some ideal edges are missed by the compass

operator thresholding by Medina et al. method.
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different color edge detectors. (a) Original image. (b) The compass operator with
NMS and thresholding by Medina et al. method. (¢) MVD with thinning process and
thresholding by Medina et al 'method. (d) Color Canny result. (¢) RCMG with

thinning process and thresholding by Medina et al. method. (f) Our automatic color

edge detector.

(H

Fig. 4.6 Edge detection results of the 256x256 synthetic image Sample 1 detected by
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Fig. 4.7 Edge detection results of the 256x256 synthetic image Sample 2 detected by
different color edge detectors. (a) Original image. (b) The compass operator with
NMS and thresholding by Medina et al. method. (¢) MVD with thinning process and
thresholding by Medina et al 'method. (d) Color Canny result. (¢) RCMG with
thinning process and thresholding by Medina et al. method. (f) Our automatic color

edge detector.
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Fig. 4.8 Edge detection results of the 256x256 synthetic image Sample 3 detected by
different color edge detectors. (a) Original image. (b) The compass operator with
NMS and thresholding by Medina et al. method. (¢) MVD with thinning process and
thresholding by Medina et al 'method. (d) Color Canny result. (¢) RCMG with
thinning process and thresholding by Medina et al. method. (f) Our automatic color

edge detector.
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Fig. 4.9 Edge detection results of the 256x256 synthetic image Sample 4 detected by
different color edge detectors. (a) Original image. (b) The compass operator with
NMS and thresholding by Medina et al. method. (¢) MVD with thinning process and
thresholding by Medina et al 'method. (d) Color Canny result. (¢) RCMG with
thinning process and thresholding by Medina et al. method. (f) Our automatic color

edge detector.

(A) Quantitative Performance Comparison

Tables 4.2, 4.3 and 4.4 show the average performances of the thirteen 256x256,
eleven 256x256 synthetic images, and the total images for the compared detector. The
order of the column 1 are the compass operator with NMS and Medina et al. method,
MVD detector with thinning process and Medina et al. method, Color Canny detector,
RCMG detector with thinning process and Medina ef al. method, and our automatic
color edge detector. The column 2 to column 5 represents the quantitative evaluations
of FOM, TPR, TNR, and NACC in percentage, respectively. For the criteria, a

detector, which can detect less erroneous, thin, and continuous edges, will get high
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values of the FOM and NACC.

TABLE 4.2
The average evaluation results of the thirteen 256x256 synthetic color images detected

by the following detectors

Method FOM (%) TPR (%) TNR (%) | NACC (%)
C ith NMS and
ompass wi an 98.14, 92.99 99.87 96.43,
Medina et al. method
MVD with thinni d
WIEH UHIHIS an 99.70, 98.54 99.91 99.22,
Medina et al. method
Color C ith 1
olor Canny with manua 86.56, 68.48 9% 26 83.36.
thresholding
RCMG with thinni d
With fhuning an 99.79, 98.98 99.94 99.46,
Medina et al. method
Our method 99.25; 99.91 99.95 99.93,
TABLE 4.3

The average evaluation results of the eleven 256x256 synthetic color images detected

by the following detectors

Method FOM (%) |- TPR (%) | TNR (%) | NACC (%)
ith NM
Compass with NMS and | “g0 35 99.64 99.62 99.63,
Medina et al. method
MVD with thinning and
With thiining an 99.61, 97.65 99.93 98.79,

Medina et al. method

Color Canny with manual

88.82, 96.29 99.10 97.705
thresholding
RCMG with thinni d
With finning an 99.65, 97.92 99.91 98.92,
Medina et al. method
Our method 98.36, 99.73 99.82 99.78,
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TABLE 4.4
The average evaluation results of the total synthetic color images detected by the

following detectors

Method FOM (%) | TPR (%) | TNR (%) | NACC (%)
ith NM
Compass with NMS and ) 96.31 99.74 98.03,
Medina et al. method
MVD with thinning and
VD with thinning an 99.66, 98.10 99.92 99.01,

Medina et al. method

Color Canny with manual

87.69, 82.39 98.70 90.53;
thresholding
RCM ith thinni
CMG with thinning and | ) ) 98.45 99.93 99.19,
Medina et al. method
Our method 98.81, 99.82 99.89 99.85,

A noisy edge map may be good performance in the FOM evaluation because of
the FOM only considers the accuracy of edge points and uses a scaling constant a for
the penalty between smeared and offset edges. In other hand, the NACC calculates
not only the accuracy of edge points but also the accuracy of non-edge points and
strictly forbids the deviation between ideal and detected edge (non-edge) points.
Therefore, although both MVD and RCMG-with thinning and Medina et al. method
are better than our method for the FOM evaluation, TPR and TNR shows the fact that
they produce more smeared edge points and misses more ideal edge points than our
method. Indeed, the NACC evaluation supply more reliable results by using the TPR

and TNR, and our method is the best one in the NACC evaluation.

4.4.3 Comparison of Nature Color Images

In this section, we will compare our method in nature color images with other
detectors mentioned above. Unlike the synthetic images, we can not use the FOM

evaluation or ROC analysis to provide the absolute quality measures when GT images
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in real world images are both difficultly and subjectively chosen, but we can provide
the information for relatively robustness and reliability. Several examples are shown

to show the effectiveness of various methods.

(A) Example 1, “papers” image

Figs. 4.10 show the edge detection results of the “Peppers” image. For the Fig.
4.10(b), using the parameter o = 0.94 , we adjust the Medina ef al. thresolding method
for the compass operator with NMS. For MVD detector, we use the parameter &k =2,
[ =4, and thresholding by Medina et al. method with thinning process as shown in
Fig 4.10(c). Figs. 4.10(d) — (f) show._the result of Color Canny, RCMG and our method,
respectively.

The compass operator .with NMS and thresholding by Medina et al. method
produces very noisy edge as shown/in Fig. 4.10(b). In Fig 4.10(c), MVD detects more
true edges but less noise although it provides very thick edge responses. From Figs.
4.10(d)—-(f), Color Canny and our method not only provide thinner and less noisy

edges but also obtain the boundaries of the three difficult edges marked.
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Fig. 4.10 Edge detection results of the “Peppers” image detected by different color
edge detectors. (a) Original image. (b) The compass operator with NMS and
thresholding by Medina ef al. method. (c) MVD with thinning process and
thresholding by Medina et al+«method. (d) Color Canny result. (¢) RCMG with
thinning process and thresholding by Medina et al. method. (f) Our automatic color

edge detector.

(B) Example 2, “Lena” image

Figs. 4.11 show the edge detection results of the “Lena” image. For the Fig.
4.11(b), using the parameter o = 0.94 , we adjust the Medina et al. thresolding method
for the compass operator with NMS. For MVD detector, we use the parameter £ =2,
[ =4, and thresholding by Medina et al. method with thinning process as shown in
Fig 4.11(c). Figs. 4.11(d) - (f) show the result of Color Canny, RCMG and our method,
respectively.

We are interesting in comparing the marked rectangle regions. Figs. 4.11(b) and
(c) detect more edge in these regions, but they also provide too much noise. In the

regions of the middle and right rectangles, the results of Figs. 4.11(d) and (f) detected
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by Color Canny and our method are provide thinner and less noisy edges.
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Fig. 4.11 Edge detection results of the “Lena” image detected by different color edge

detectors. (a) Original image. (b) The compass operator with NMS and thresholding
by Medina et al. method. (¢) MVD with thinning process and thresholding by Medina
et al. method. (d) Color Canny Tresult. (¢) RCMG with thinning process and

thresholding by Medina et al. ' method. (f) Our automatic color edge detector.

(C) Example 3, “Road” image

Fig. 4.12 shows the edge detection results of the low illumination image, in
which the road has double yellow lines.

We can see from Fig. 4.12(b) that the compass result detects much noisy image.
Although Fig. 4.12(c) is cleaner than Figs. 4.12(b), it is still noisy in the output. In Fig.
4.12(e), although the road region is clean, it looks very noisy outside the road and the
boundaries are incomplete. In summary, Color Canny and our method provide

complete road edges and less noisy, which are better than the compass operator.
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Fig. 4.12 Edge detection results of the “Road” image detected by different color edge
detectors. (a) Original image. (a’) gray-level histogram equalized of image (a), used
for visual aide and comparison ‘only. (b) The' ¢ompass operator with NMS and
thresholding by Medina et~al. method. (c) MVD- with thinning process and
thresholding by Medina ef-al method. (d) Color Canny result. (¢) RCMG with
thinning process and thresholding by Medina ez al. method. (f) Our automatic color

edge detector.

(D) Example 4, “Chair” image

Figs. 4.13 show the edge detection results of the low illumination image, in
which there is a chair.

We are interesting in comparing the chair’s rectangle region. Fig. 4.13(b) detects
a little edges in the regions, but its rectangle boundaries are incomplete and noisy. Fig.
4.13(c) detects the rectangle region completely, but it is very noisy. In Fig. 4.13(e), it
is too noisy outside of the rectangle region. The results of Figs. 4.13(d) and (f)
detected by Color Canny and our method produce complete boundaries and less noisy

edges.
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Fig. 4.13 Edge detection results of the “Chair” image detected by different color edge
detectors. (a) Original image. (a’) gray-level histogram equalized of image (a), used
for visual aide and comparison ‘only. (b) The' ¢ompass operator with NMS and
thresholding by Medina et~al. method. (c) MVD- with thinning process and
thresholding by Medina et-al method. (d) Color Canny result. (¢) RCMG with
thinning process and thresholding by Medina ez al. method. (f) Our automatic color

edge detector.
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Chapter S Conclusion

In this thesis, we use edge detection and fuzzy rules to find bad pixel map of a
SWIR sensor. Although the bad pixel map obtains include some extra good pixels or
edge points, the bad pixels can mostly detected. We use two median filters
sequentially to correct them, while the extra good pixels can almost retain their
original values. Furthermore, we employ two-point correction method to correct
non-uniformity among pixels of SWIR sensor. In the future, more advanced NUC
method will be investigated to improve SWIR sensor performance. Integration and
co-design of our proposed algorithm in the ROIC design of SWIR sensor would be
our future work.

To enhance the tools for bad pixel-correction, we have also proposed vector order
statistics and fuzzy gradient to automatic color edge detection of images. By using the
fuzzy derivative estimation, the fuzzy rules are fired to consider the gradient direction
of every processing pixel. Additionally, the-shape of the membership function is
adapted to the local variation around the processing pixel. The proposed detector
improves the drawbacks of the original VMD detector because the gradient directions
can be better estimated. Moreover, our thresholding method can choose a reasonable
parameter set from all possible attempts and then find the best hysteresis threshold set
from them.

Experimental results have shown that our automatic color edge detection
techniques produce excellent edge detection accuracy in both the synthetic and
real-world images. In this way, the performances of higher level image processing
tasks such as bad pixel correction, segmentation and object recognition can be more

powerful because of the improvement of our edge detection schemes.
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