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基於邊緣偵測之短波紅外線影像壞點偵測與

校正 

 
學生:吳泳發            指導教授: 張志永博士 

 

國立交通大學電機與控制工程研究所 

 

摘要 

 

本論文使用邊緣偵測和模糊規則偵測短波紅外線影像壞點像素並藉由兩次

中值濾波器校正壞點像素。此外，對於短波紅外線影像像素非均勻現象，我們使

用兩點式校正方法。 

為了提高壞點校正效能，我們也提出改進基於向量次序統計之彩色邊緣偵測

技術的方法，我們的邊緣偵測方法包含兩個部份，第一部份，我們利用模糊梯度

的概念來估測每個處理像素的梯度方向，並且根據此方向來調整相對應的視窗方

位；第二部部分依向量次序統計計算向量平均距離(VMD)，如此一來，整合了向

量次序統計與模糊梯度的偵測方法，因此能夠產生更為穩健的邊緣偵測響應。更

進一步，我們將此技術整合到一個新的門檻偵測方法，此方法依據影像內容自動

作最佳化調整門檻，而不需要手動選取。由測試彩色合成影像與實際影像的數據

顯示，我們的自動彩色邊緣偵測是非常方便與可靠的，期許能夠更進一步提高紅

外線影像壞點偵測效能。 
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Edge Detection Based SWIR Image Bad Pixel Detection 

and Correction 
 

STUDENT: Yung-Fa Wu       ADVISOR: Dr. Jyh-Yeong Chang 
 

Institute of Electrical and Control Engineering 
National Chiao-Tung University 

 
ABSTRACT 

 
In this thesis, we first use edge detection and fuzzy rules to find bad pixel map of 

a SWIR sensor. Then we employ two median filters sequentially to correct them. 

Moreover, we apply two-point correction method to correct non-uniformity among 

pixels of SWIR sensor.  

To enhance the tools for bad pixel correction, we have also proposed a new color 

edge detector based on vector order statistics. The proposed detector consists of two 

stages. In the first stage, we use fuzzy gradient to estimate the direction of the 

gradient for every processing pixel in the image and adjust the corresponding 

processing window according to this detected direction for reliable edge detection 

setup. The second stage computes the vector mean distance (VMD) based on vector 

order statistics. Hence, the proposed detector, which integrates vector order statistics 

and fuzzy gradient, can provide more robust response for edge detection. Furthermore, 

we also combine the edge detector to our proposed thresholding method, which can 

automatically determine an optimal threshold and be adaptive to different image 

contents without manual intervention. Thus, the excellent results by our proposed 

edge detection scheme demonstrate that it is very user friendly and confident. This 

edge detection scheme could also be promising for better detecting bad pixels of a 

SWIR image sensor. 
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Chapter 1  Introduction 
 

1.1 Motivation 

 

With the rapid technological development, the wavelength of visible light has 

become familiar, and infrared sensing has also been widely applied in various fields 

of low/no light environments. One of infrared wavelength is short-wave infrared 

(SWIR), choose bandwidth is close to visible red light band, with a higher level of 

imaging performance. In addition, SWIR band also used in the following application 

providing high resolution images: military area, it can be used as the enemy 

recognition systems and surveillance systems, in low/no light or poor visibility (fog or 

smoke in the environment) cases the infrared image sensor can also be used to 

identify the surrounding environment. Health care, the 2003 global outbreak of Severe 

Acute Respiratory Syndrome (SARS) and the 2009 outbreak of new influenza (H1N1) 

caused global panic. By use of the infrared image sensor to detect body temperature, 

we not only can reduce the chance of infection but also can substantially increase the 

efficiency of body temperature measurement. When infrared sensor falls into the 

infrared spectral band images, it is known as thermal imaging. When the body of a 

person reflects the infrared band, we need some special infrared sensors to detect it, 

and then coupled with the infrared lens to compose. It is well known that infrared 

focal plane array (IRFPA) has non-uniformity and bad pixels in the produced sensor 

cell. Hence, the infrared image must do non-uniformity correction (NUC) and bad 

pixel correction. Bad pixel is the pixel that does not respond (non responsive) i.e., 

dark situation (commonly) or always responsive i.e. In the SWIR sensor bad pixel 

saturation is usually happened. 
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In the low light military operations situations, infrared image processing must be 

fast and high efficiency. Because military SWIR sensor has to be lightweight and easy 

to used. Therefore in NUC, the most popular reference-based correction method is the 

so-called “two-point” correction method where two uniform sources of known 

intensity are sequentially imaged [1], [2]. Edge detection plays an important role in 

bad pixel detection. In image processing, edge detection is also very useful on tasks 

such as segmentation, pattern recognition, object tracking, and image coding. The 

performance of these problems is greatly affected by good edge detection. In gray 

image edge detection, the Canny edge detector has become a standard [3]. Its 

non-maximal suppression and thresholding with hysteresis stages produce thin and 

well-connected edge maps. Edges will not be easily detected in grayscale images 

when different objects have different hues but have equal intensities. In this case, the 

color cue is lost during grayscale conversion. They are treated like one big object in 

the scene when they cannot be distinguished in grayscale. Moreover, edge detection is 

sometimes difficult in low contrast images but rather sufficient results can be obtained 

in color images.   

In order to produce more reliable edges, color edge detection has become popular. 

Humans can differentiate thousands of colors compared to about 256 shades of gray; 

hence, grayscale images do not carry all the edge information that human visual 

system (HVS) can detect. In [4], they indicate that luminance component makes up 

90% of all edge points in a color image but the remaining 10% can be crucial for 

subsequent techniques that rely on edges in an image; in some cases the additional 

information provided by color is of utmost importance. Multi-dimensional nature of 

color makes it more challenging to detect edges in color images, and often increases 

the computational complexity threefold compared to gray scale edge detection. Hence, 

color edge detection algorithms accept from the beginning that all of the efforts are to 
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find the remaining 10% of the edges.  

In this thesis, we use NUC to correct infrared image that has non-uniformity and 

correct bad pixel.  

In the companion edge detection scheme developed for better bad pixel detection, 

we propose an improvement of color edge detector based on vector order statistics 

(VOS) [5], [6]. We use the concept of fuzzy gradient [7], [8] to calculate the direction 

of the gradient for every pixel in the image. For using an adjustable window 

according to the direction of the gradient, it is more accurate to calculate the local 

maximum edge response for every pixel, and an automatic threshold technique is 

adaptive to threshold the local maximum edge response for the image content. 

 

1.2 NUC and Bad Pixel Correction 

 

Our SWIR sensor has to be fast, easy to use, and lightweight. Consequently, the 

two-point correction method is simple and thus will be useful. In bad pixel correction, 

we will find some bad pixel maps. The Sobel edge is easy to use and fast. Because of 

bad pixels include non-responsive, dark pixels or always responsive pixels. The 

completely off image and 75% exposure image should be used. We will use images 

which are completely off image and 75% exposure image to find bad pixel map. Then, 

we can correct the bad pixels from bad pixel map. Our SWIR sensor flowchart is 

illustrated in Fig. 1.1 below.  
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Read three raw images, completely off 
image, and 75% exposure image.

Use three raw images and 75% exposure 
image to find bad pixel map.

Non-uniformity correction (NUC).

Bad pixel correction.

 

Fig 1.1 The flowchart of our SWIR sensor. 

 

1.3 Color Edge Detection 

 

In the review paper on color image segmentation, Ruzon and Tomasi [9] go 

further and group color edge detection methods into three classifications: output 

fusion methods, multidimensional gradient methods and vector methods. Output 

fusion methods apply single-channel edge detection techniques to each color plane 

and then combine the results.  

In multidimensional gradient methods, the gradients from the individual channels 

are recombined before the edge decision, giving increase to a single edge calculation.   
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In [10], Scharcanski and Venetsanopoulos have proposed VOS-based approach. 

Trahanias and Venetsanopoulos used the reduced ordering (R-Ordering) by the VOS 

edge detectors of [5], [6]. The robust color morphological gradient (RCMG) edge 

detector [11] recognizes the maximum and minimum pixels in one process, however 

it does not discriminate between them. It is in contrast to the VOS edge detectors that 

sort the pixels in ascending order from the vector median to the vector extremum. The 

matrices are summed over all channels and the edge magnitude and direction given by 

the principal eigenvalue and the related eigenvector, respectively. Variations of this 

approach have been used by Cumani [12]. 

    The difficult problem is how to combine the channels to give a final result that is 

with both output fusion and multidimensional gradient methods. For example, the 

simplest VOS operator is the vector range edge detector that measures the distance 

between the lowest and highest ranked vectors, i.e., the vector median and the vector 

extremum, respectively. The minimum vector dispersion (MVD) was proposed are 

shown to be the most effective in increasing the robustness to noise. However, the 

MVD is unable to provide an estimate of edge direction. 

 

1.4 Automatic Thresholding Technique 

 

Thresholding is a fundamental technique applied in many image processing 

applications. In robust machine vision systems, it would be important to automate the 

edge thresholding process which is adaptive to different image contents without 

manual interposition. 

There are many thresholding algorithms published in the literature. The Otsu [13] 

algorithm is based on discriminant analysis and uses the zeroth-order and the 
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first-order cumulative moments of the histogram for calculating the value of the 

thresholding level. The Rosin algorithm [14] fits a straight line from the peak of the 

intensity histogram to the last non-empty bin. The point of maximum deviation 

between the line and the histogram curve will usually be located at a corner which is 

selected as the threshold value. The new feature image proposed by Rakesh [15] 

makes it easier to determine hysteresis thresholds. 

It is a difficult assignment to selecting an appropriate thresholding. The problem 

is that different algorithms typically produce different results since they make 

different assumptions about the image content. Therefore, we will introduce an 

automatic thresholding method that can find the best hysteresis thresholds from all 

possible parameters. 

 

1.5 Thesis Outline 
 

The thesis is organized as follows. The basic concepts and technique concerning the 

NUC and bad pixel correction introduced in Chapter 2. In Chapter 3, the results of our 

SWIR sensor which is introduced in Chapter 2 are shown and compared. In Chapter 4, 

we describe our edge detection and automatic thresholding method and compared the 

experiment results of our automatic color edge detection techniques. At last, we 

conclude this thesis with a discussion in Chapter 5. 
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Chapter 2  The Improvement of NUC and Bad 

Pixel Correction 
 

2.1 NUC 

 

To implement two-point correction method for image sensor, we can assume  

                       










ii
i

ii
i

TP
TP





11

22 ,                        (2.1) 

where iP1  and iP2  represents the i-th pixel value in completely off image and 75% 

exposure image, respectively. The i  and i  represents gain and offset of i-th pixel. 

The 1T  and 2T  represents illumination level. By using Eq. (2.1), we can assume 

12 kTT  , then  

  1

12

1 Tk
PP ii

i 


                          (2.2) 

 1
12

1 



k

PPP
ii

i
i                       (2.3) 

Calculate averages that completely off image and 75% exposure image which are 

shown in Figs. 2.1(a) (b) as 1P  and 2P , respectively. 

  

                (a)                                (b) 

Fig. 2.1 (a) The completely off image. (b) The 75% exposure image. 
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Assuming under 1T  and 2T , all pixels output should be the same level. In other 

word, 1P  and 2P  after correction  

                             










iiii

iiii

BTAP
BTAP





11

22                     (2.4) 

 By using Eq. (2.2), and Eq. (2.3), then 
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 

 
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i PP
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TT
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12

12

12
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









                  (2.5) 

 11
1 TAPB ii

i
i 


                     (2.6) 

We want to correct infrared image which is under unknown illumination level xT , 

then  

i
i

xi
i

x TP                            (2.7) 

Consequently, corrected pixel output signal should be  

                
  

ii

ii
x

ii
i

xii
i

c PP
PPPP

PBTAP
12

121
1 


               (2.8) 

Therefore, it can correct directly without any other illumination level that have to 

using laboratory for reference. 

 

2.2 Bad Pixel Correction 

 

In bad pixel correction, Sobel edge detection is very important which is fast and 

easy. The masks show in Fig. 2.2, called the Sobel operators. 
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(a) x-direction.                       (b) y-direction. 

Fig. 2.2 The Sobel operators. 

 

The difference between the third and first columns of the 33  image region 

approximates the derivative in the x-direction as shown in Fig. 2.2(a); and the 

difference between the third and first rows approximates the derivative in the 

y-direction as shown in Fig. 2.2(b). The idea behind using a weight value of 2 is to 

achieve some smoothing by giving more importance to the center point. Note that the 

coefficients in all the masks shown in Fig. 2.1 sum to 0, indicating that they would 

give a response of 0 in an area of constant gray level, as expected of a derivative 

operator.  

First, we want to detect bad pixel map by using Sobel edge detection. Consider a 

grayscale image I with size nm  be represented by vector  jiI , . By using SWIR 

sensor, we capture three different images. Therefore, three grayscale images  jiI ,1 , 

 jiI ,2 , and  jiI ,3  with size nm  is shown in Figs. 2.3(a) (c) which is called 

raw images, which is non-uniform correction is not activated. 
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(a) 
 

 

(b) 
 

 

(c) 
 

Fig. 2.3 (a) The “Monitor” image. (b) The “Words” image. (c) The 

“Two-persons” image. 
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To obtain bad pixels of the image sensor, we first apply Sobel edge operation on 

these three images. After the operation, we have obtained three edge map images, 

which is shown in Figs. 2.4(a) (c) and are called 1S , 2S , and 3S , respectively. 

  

               (a)                                  (b) 
 

 

 (c) 
 

Fig. 2.4 By Sobel edge detection, (a) “Monitor” image, (b) “Words” image, and 

(c) “Two-persons” image. 

 

Then, we calculate four-directional difference  jid ,  in the 33  window as 

shown in Fig. 2.5. The value  jid ,  can be calculated by 
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                1,,,1,1,,,1,,  jiIjiIjiIjiIjiIjiIjiIjiIjid , 

(2.9) 

where   represents an absolute value operator and  ji,  represents the i-th row and 

j-th column in the grayscale image I. 

-1

-1

-1-1 4

0

0 0

0

 
Fig. 2.5 Four-directional neighborhood operator. 

 

 After calculating  jid , , we will select a threshold to pick up possible bad pixel 

candidates. For the 75% exposure image which is shown in Fig. 2.1 (a), we will find 

bad pixels possibility by using Eq. (2.9) and thresholding, with threshold 40v alue , 

which is shown in Fig. 2.6. And it called 4d  image. 

 

Fig. 2.6 The result of four-directional neighborhood operator and thresholding. 
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Finally, we calculate the fuzzy derivative donated as  jiSbp ,  in each pixel 

 ji, . This is realized by the following fuzzy rule 1: 

 

Fuzzy Rules 1. 

IF  jiS ,1  is an edge AND  jiS ,2  is an edge AND  jiS ,3  is an edge 

OR  jiS ,1  is an edge AND  jiS ,2  is not an edge AND  jiS ,3  is an edge 

OR  jiS ,1  is an edge AND  jiS ,2  is an edge AND  jiS ,3  is not an edge 

OR  jiS ,1  is not an edge AND  jiS ,2  is an edge AND  jiS ,3  is an edge 

THEN  jiSbp ,  is an edge. 

 

The AND operator (OR operator) can be the minimum (maximum) that are the 

well-known triangular norms (together with their dual co-norms) in the fuzzy logic. 

For the not operator, we use the standard negator   xxN 1  with ]1 ,0[x . The 

edge is the fuzzy set that was defined the point which is detected by Sobel edge 

detection. According to fuzzy rule 1, we have bpS  edge map is shown in Fig. 2.7. 

 

Fig. 2.7 The resulting image of at least two out of three images which is three 

Sobel edge map images. 
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Therefore, we use a rule for each edge point. We have two images which are Fig. 2.6 

and Fig. 2.7 can estimate mapBP  bad pixel map following rule 2.  

 

Fuzzy Rules 2. 

IF  jid ,4  is an edge OR  jiSbp ,  is an edge. 

THEN  jiBPmap ,  is an edge. 

 

The OR operator is the maximum in the fuzzy logic. The mapBP  is shown in Fig. 

2.8. 

 

Fig. 2.8 The bad pixel map by using fuzzy rule 2. 

 

Consequently, we can use the bad pixel map which is shown in Fig. 2.8 to do bad 

pixels correction with median filters shown in Chapter 3. 
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Chapter 3  Results of NUC and Bad Pixel 

Correction 

 

3.1  Results of NUC 

 

First, we calculate standard deviation (STD) which is calculated by 

                         ,
1

1 2
1

1

2 










 



n

i
i xx

n
s                (3.1) 

where n is pixels number and x  is 

                           



n

i
ix

n
x

1

1
                          (3.2) 

We will use STD to estimate the performance of the NUC results. Therefore, we use 

Fig. 2.1(b) as a sample and its STD is 0.1349. It is to be noted that detected bad 

pixels shown in Fig. 2.8 are not included in calculating STD. By using Eq. (2.8), the 

result is shown in Fig. 3.1. 

 
Fig. 3.1 The resulting image of 75% exposure image after NUC. 
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The STD of Fig. 3.1 becomes 0, in which bad pixels are not included in 

calculating STD. This great STD reduction after NUC shows its effectiveness in 

reducing the non-uniformity response among the pixels of image sensors. Applying 

NUC to “Monitor,” “Words,” and “Two-persons” images of Figs. 2.3(a)  (c), the 

corrected images are shown in Figs. 3.2(a) (c), respectively. 

  

               (a)                                  (b) 
 

 
(c) 

 

Fig. 3.2 The resulting images after NUC. (a) “Monitor” image, (b) “Words” 

image, and (c) “Two-persons” image. 

 

To further validate the effectiveness of NUC, we exploit Sobel edge detection 

with a sensitive threshold to test raw images and NUC corrected images above, 
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leading to Figs. 3.3(a) (f), respectively. 

  
   (a)           (b) 

 

  
   (c)           (d) 

 

  
   (e)           (f) 

 

Fig. 3.3 Sobel edge map images of (a) “Monitor” raw image, (b) “Monitor” 

image after NUC, (c) “Words” raw image, (d) “Words” image after NUC, (e) 

“Two-persons” raw image, and (f) “Two-persons” image after NUC. 
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From these figures in Fig. 3.3, it is easy to see the powerfulness of NUC in 

reducing the excessive or un-necessary edges due to the non-uniformity of the image 

sensors. Excessive lines in left-up corner of Fig. 3.3(a) is removed in Fig. 3.3(b), 

NUC corrected counterpart. From Fig. 3.3(d), it is evident that removed of excessive 

lines and edges, in tables, wafer, and hand right, of Fig. 3.3(c). Unnecessary lines and 

edges of left person in Fig. 3.3(e) has been removed in NUC corrected image Fig. 

3.3(f). 

 

3.2  Results of Bad Pixel Correction 
 

For the detected bad pixel map as shown in Fig. 2.8, we can use median filters to 

correct bad pixels. First, you can see in Fig. 2.8 that four boundaries are prone to bad 

pixels. If a boundary line is almost bad pixels, we employ neighborhood good row or 

column to replace it. After a boundary line with bad pixel rate exceeding 25% has to 

be replaced line wise. With this criterion (in effect), the three NUC corrected images 

are boundary replaced and are shown in Fig. 3.4. Comparison results are as follows in 

Fig. 3.4. 
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(a) (b) 

 

  
    (c)                          (d) 
 

  
(e)          (f) 

 

Fig. 3.4 (a) “Monitor” raw image. (b) Four boundaries replaced of “Monitor” 

image after NUC. (c) “Words” raw image. (d) Four boundaries replaced of 

“Words” image after NUC. (e) “Two-persons” raw image. (f) Four boundaries 

replaced of “Two-persons” image after NUC. 
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Correcting four boundaries bad pixels, the bad pixel map will be updated as shown in 

Fig. 3.5. 

 

Fig. 3.5 The bad pixel map after correcting four boundaries bad pixels. 

 

Second, we use a 55  median filter to correct bad pixels and the results are 

shown in Figs. 3.6(a) (c). 
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(a) 

 

 
(b) 

 

 
(c) 

 

Fig. 3.6 The resulting of 55  median filter corrected (a) “Monitor” image. (b) 

“Words” image. (c) “Two-persons” image. 
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In Figs. 3.6(a) (c), it can be easily seen that these still are bad pixels on the 

lower right corner of images. Consequently, we only use Eq. (2.9), four-directional 

neighborhood operator with threshold 150v alue , to calculate the bad pixel map 

again. The bad pixel maps are shown in Figs. 3.7(a)  (c). 

  
               (a)                                  (b) 
 

 
 (c) 

 

Fig. 3.7 The resulting images after four-directional neighborhood operator, on 

Fig. 3.6 (a) “Monitor” image, (b) “Words” image, and (c) “Two-persons” image. 

 

In the sequel, we use a 33  median filter on Fig. 3.6 to correct bad pixels of 

Fig. 3.7 again. The resulting images are shown in Figs. 3.8(a) (c). 
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(a) 

 

 
(b) 

 

 
(c) 

 

Fig. 3.8 The resulting images of 33  median filter corrected images of Fig. 3.6 

(a) “Monitor” image, (b) “Words” image, and (c) “Two-persons” image. 
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Notice that the median filter is useful on bad pixels correction. Moreover, 

median filter is computational easy and is appropriate for a real-time ROIC 

implementation. We have also applied bad pixel correction with 33  median filter 

repeatedly for three times, whose results are similar to those obtained by 55  

median filter and the 33  median filter. But it is need three times correction, and it 

is waste time. Therefore, we try to use 55  median filter once and then 33  

median filter again. The results are good and efficient. Finally, we choose 55  

median filter once and the 33  median filter again. For comparison, the raw images 

and the corrected images are shown in Figs. 3.9(a) (f). 
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(a)         (b) 

 

  
 (c)          (d) 

 

  
    (e)                          (f) 
 

Fig. 3.9 (a) “Monitor” row image. (b) The resulting image of NUC and bad pixel 

corrected image of “Monitor.” (c) “Words” row image. (d) The resulting image 

of NUC and bad pixel corrected image of “Words.” (e) “Two-persons” row 
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image. (f) The resulting image of NUC and bad pixel corrected image of 

“Two-persons.” 

 

The difference between the row images and the corrected images are tremendous. We 

adjust the non-uniformity among image sensor pixels and correct bad pixels by using 

fast and efficient algorithm. The processed images have been greatly improved by our 

proposed efficient scheme. 
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Chapter 4  Edge Detection Techniques for Bad 

Pixel Detection 
 

Edge detection plays an important role in bad pixel detection of optical sensor 

chip. In image processing, edge detection is also very useful on tasks such as 

segmentation, pattern recognition, object tracking, and image coding. The 

performance of these problems is greatly affected by good edge detection. We use 

Sobel edge detection and four-directional neighborhood operator to detect bad pixels 

and test NUC in Chapters 2 and 3. These techniques are basic edge detection methods. 

In Sobel edge detection and four-directional neighborhood operator, we calculate each 

pixel’s edge level and select a threshold manually. However, the best edge detection 

will use an automatic threshold technique to select the best threshold. 

Edges will not be detected in grayscale images when neighboring objects have 

different hues but equal intensities since the color cue is lost during grayscale 

conversion. Such objects cannot be distinguished in grayscale images. Similar gray 

tone objects are treated as one big object in the scene. Additionally, edge detection is 

sometimes difficult in low contrast images but rather sufficient results can be obtained 

in color images. To obtain more meaningful edges, there has been an increased 

interest in color edge detection. Humans can differentiate thousands of colors 

compared to about 256 shades of gray; hence, grayscale images do not carry all the 

edge information that human visual system (HVS) can detect. In this chapter, we 

propose an improvement of color edge detector based on vector order statistics. We 

use the concept of fuzzy gradient to calculate the direction of the gradient for every 

pixel in the image. For using an adjustable window according to the direction of the 

gradient, it is more accurate to calculate the local maximum edge response for every 
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pixel, and an automatic threshold technique is adaptive to threshold the local 

maximum edge response for the image content. 

 

4.1 Vector Order Statistics 
 

4.1.1  Vector Order Statistics Review 

 

Scalar order statistics have played an important role in the design of robust signal 

analysis techniques. This is due to the fact that any outliers will be located in the 

extreme ranks in the sorted data. Consequently, these outliers can be isolated and 

filtered out before the signal is further processed. Ordering of univariate data is well 

defined and has been extensively studied in order statistics [16]. Let the n  random 

variables iX , i  = 1, 2, …, n , be arranged in ascending order of magnitude as 

                    (1) (2) ( )... nX X X                         (4.1)    

Then the i-th random variable ( )iX  is the so-called thi  order statistic. The 

minimum (1)X , the maximum ( )nX , and the median ( 2)nX  are among the most 

important order statistics, resulting the min, the max, and the median filters, 

respectively. 

The concepts are, however, not straightforwardly expanded to multivariate data 

since there is not any universal way of defining an ordering in multivariate data. 

There has been a number of ways proposed to perform multivariate data ordering that 

are generally classified into the ordering of multivariate data [17]: marginal ordering 

(M-ordering), reduced or aggregate ordering (R-ordering), partial ordering 

(P-ordering), and conditional ordering (C-ordering). 
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4.1.2  Characteristics of Vector Order Statistics 

 

Let X  represent a -dimensionalp  multivariate X  1 2[ , ,..., ]T
pX X X  where 

,lX  l  1, 2, …, p  are random variables and let ,iX  i  1, 2, …, n  be an 

observation of .X  Each iX  is a -dimensionalp  vector iX  1 2[ , ,..., ] .i i i T
pX X X  

In M-ordering, the multivariate samples are ordered along each one of the 

-dimensionsp  independently. For color signals, this is equivalent to the separable 

method where each one of the colors is processed independently. The i-th marginal 

order statistic is the vector ( ) ( ) ( ) ( )
1 2[ , ,..., ] ,i i i i T

pX X X X  where ( )i
rX  is the thi  

largest element in the r-th channel. The marginal order statistic ( )iX  may not 

correspond to any of the original samples 1 2, ,..., nX X X  as it does in one dimension. 

In R-ordering, each multivariate observation iX  is reduced to a scalar value id  

according to a distance criterion. A metric that is often used is the generalized distance 

to some point. The samples are often arranged in ascending order of magnitude of the 

associated metric value .id  

In P-ordering, the objective is to partition the data into groups or sets of samples, 

such that the groups can be distinguished with respect to order, rank, or extremeness. 

This type of ordering can be accomplished by using the notion of convex hulls. 

However, the determination of the convex hull is difficult to do in more than two 

dimensions. Other ways to achieve P-ordering are special partitioning procedures and 

thus are not preferred. Another drawback associated with P-ordering is that there is no 

ordering within the groups and thus it is not easily expressed in analytical terms. 

These properties make P-ordering infeasible for implementation in digital image 

processing. 
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In C-ordering, the multivariate samples are ordered conditionally on one of the 

marginal sets of observations. This has the disadvantage in digital image processing 

that only the information in one component (channel) is used. 

From the above, it is evident that R-ordering is more appropriate for color image 

processing than the other vector ordering methods. If we employ as a distance metric 

the aggregate distance of iX  to the set of vectors 1 2, ,..., nX X X , then 

                 
1

  ,
n

i k
i

k
d X X



   1,  2, ..., i n               (4.2) 

where     represents an appropriate vector norm. The arrangement of the id s in 

ascending order  (1) (2) ( )... nd d d   , associates the same ordering to the 

multivariate iX s. 

     (1) (2) ( )... nX X X                       (4.3) 

In the ordered sequence, (1)X  is the vector median of the data samples which is 

introduced by vector median filters [18]. It is defined as the vector contained in the 

given set whose distance to all other vectors is a minimum. Moreover, vectors 

appearing in low ranks in the ordered sequence are vectors centrally located in the 

population, whereas vectors appearing in high ranks are vectors that diverge mostly 

from the data population. These samples are generally called “outliers.” It follows that 

this ordering scheme gives a natural definition of the median of a population and of 

the outliers of a population. 
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4.2 VMD Detector 

 

For a color image I of size nm , each pixel location  ji,  is represented by a 

three-tuple color vector         jiIjiIjiIjiI ,,,,,, 321 , in which  jiI p ,  

denoting the p-th component of a color space for mi ...,,2,1  and nj ...,,2,1 . 

For each pixel location  ji, , by using a 3 3  window, we compute the local sum of 

distances to describe the relationship between the current pixel vector  jiI ,  and its 

neighboring pixel vectors. Let  jid l ,  be the local sum of distances for the current 

pixel vector  jiI , , then 

      









1

1

1

1
,,,

i

ik

j

jh
l hkIjiIjid              (4.4) 

where     represents a 2-norm. After we have computed the local sum of distances 

 jidl ,  of the current pixel location  ji, , we sort the distance values in the 

neighboring area in ascending order (1) (2) (9)... .l l ld d d    The distance values 

(1)ld and (9)ld  correspond to the minimum and the maximum of the nine distance 

values, respectively. 

By the concept of R-ordering, the ordering of (1) (2) (9)...l l ld d d    

associates the same ordering to the pixel vectors, (1) (2) (9)... ,X X X   which 

means that (1)X  is the pixel vector having the smallest local sum of distances and 

(9)X  is the pixel vector having the largest local sum of distances. Therefore, if the 

current pixel location  ji,  has an edge, the vector  jiI ,  must have a larger 

response of  jidl , . 

Although we now obtain the information on the smallest and the largest local 

sum of distances, the information contained among vectors (1) (2) (9),  ,  ...,  X X X  
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should also be captured and be useful for edge detection. The maximal variation 

among vectors is an indication of the distribution of the nine vectors. Since that 

vectors (1) (2) (9),  ,  ...,  X X X  correspond to the ordering of the aggregate distances, 

the confined maximal variation cMV  among these vectors can be simply defined as 

                     1max  ii
c XXMV , 1,  2, ..., 8i              (4.5) 

When the value cMV  is determined, we can also determine the exact two 

vectors ( )iX  and ( 1)iX   which correspond to cMV .  ( )iX  and ( 1)iX   further 

suggest that (1) (2) (9),  ,  ...,  X X X  can be classified into two clusters: (1) vectors, 

(1) (2) ( ),  ,  ...,  ,iX X X  from smaller side of the edge, and (2) vectors, 

( 1) ( 2) (9),  ,  ...,  ,i iX X X   from larger side of the edge. Let sM  and lM  be the mean 

vector of the vectors (1) (2) ( ),  ,  ...,  ,iX X X  and the vectors ( 1) ( 2) (9),  ,  ...,  i iX X X   

respectively. Thus, VMD can be defined as 

                            l sVMD M M                        (4.6) 

VMD detect the variation between two sides of edge (larger and smaller side) by 

a distance measure. Consequently, in a uniform area, where all vector values are close 

to each other, the output of VMD will be small. On the other hand, the output of VMD 

will be large since sM  and lM  are the mean vectors of two sides of the edge. 

The VMD method suffers from the disadvantage of the weak ability for detecting 

oblique edges due to the fact that its gradient magnitude is derived from the fixed 

window with the distance between the mean vector of the large side and the mean 

vector of the small side. In addition, in the presence of noise and for non-ideal edges, 

the maximal variation that splits the window into the large side and small side may 

not represent the distribution among the vectors in the fixed window, and then the 
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VMD may produce an edge response that is not necessarily representative of the real 

gradient.  

To avoid these problems, we use an adjustable window that can rotate its 

orientation according to the direction of the gradient. In the 33  window, we 

classify the direction of the gradient to four orientations, i.e., WE direction ( 0 ), 

SW NE direction ( 45 ), SN direction ( 90 ), and SE NW direction ( 135 ) that can 

be determined by the fuzzy gradient value which is introduced by the fuzzy image 

filter [7] and the fuzzy random impulse noise reduction method (FRINR) [8]. Thus, 

the new proposed method will combine VMD with the fuzzy image filter and FRINR 

that have the ability to estimate the direction of the gradient for each pixel and adjust 

the window for more exactly detecting edge response. 

In our approach, there are two steps that are used to define the direction of the 

gradient for each pixel in the color image. First, consider a color image I with size 

nm  be represented by color vector         jiIjiIjiIjiI ,,,,,, 321 , in which 

 jiI p ,  denoting the p-th component of a color space, we calculate  jig ,  and 

 jimg ,  in the 33  window as 

                  
   

8

,,
,

1

1

1

1

 


 k h

jiIhjkiI
jig                (4.7) 
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
 k h

jighjkig
jimg               (4.8) 

where     represents a 2-norm and  ji,  represents the i-th row and j-th column 

in the color image I. Because edge pixels and corrupted impulse noise pixels generally 

cause large  jig ,  value, we also calculate  jimg ,  that can help us to distinguish 

edge pixels and noise pixels. To discriminate edge pixels and noise pixels, we can 

define a fuzzy set denoted as large, and it corresponds to the membership function 
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which is shown in Fig. 4.1. We see that we have to determine two important 

parameters a and b. The parameters a and b can be defined as 

                              jimgjia ,,                          (4.9) 

                             jiajiajib ,2.0,,                    (4.10) 

 

Fig. 4.1 The membership function corresponds to large. 

 

Second, we consider a 33  neighborhood around the central pixel  jiI , . 

Each of the eight neighbors of  jiI ,  corresponds to one direction {North West 

(NW), North (N), North East (NE), East (E), South East (SE), South (S), South West 

(SW), West (W)} that is displayed in Fig. 4.2(a). We use the concept of the fuzzy 

gradient value which contains the basic gradient value and the related gradient value. 

The basic gradient value is donated as  jiID ,  of pixel position  ji,  in direction 

set D (  SWSSEEWNENNWD ,,,,,,, ). 
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For example, 

                          jiIjiIjiINW ,1,1,                   (4.11) 

                            jiIjiIjiIN ,1,,                    (4.12) 

N

S

EW (i,j)

NW NE

SW SE

 
(a) 

 

 
(b) 

 

Fig. 4.2 (a) The neighborhood around the central pixel  jiI , . (b) Pixel 

indicated in gray are used to compute the fuzzy gradient value of pixel  jiI ,  

for NW direction. 
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TABLE 4.1 
The fuzzy gradient in each direction 

D Basic gradient Related gradient Correspond direction 

NW 

N 

NE 

W 

E 

SW 

S 

SE 

 jiINW ,  

 jiIN ,  

 jiINE ,  

 jiIW ,  

 jiIE ,  

 jiISW ,  

 jiIS ,  

 jiISE ,  

 1,1  jiINW ,  1,1  jiINW  

 1,  jiIN ,  1,  jiIN  

 1,1  jiINE ,  1,1  jiINE  

 jiIW ,1 ,  jiIW ,1  

 jiIE ,1 ,  jiIE ,1  

 1,1  jiISW ,  1,1  jiISW  

 1,  jiIS ,  1,  jiIS  

 1,1  jiISE ,  1,1  jiISE  

SW NE ( 45 ) 

W E ( 0 ) 

SE NW ( 135 ) 

SN ( 90 ) 

SN ( 90 ) 

SE NW ( 135 ) 

W E ( 0 ) 

SW NE ( 45 ) 

 

Next, we also calculate the related gradient value which corresponds to each of eight 

directions. For example, Fig. 4.2(b) shows the related gradient of the NW direction 

and it can be expressed as 

                1,12,1,1,  jiIjiIjiIjiI NWNW        (4.13) 

       1,1,21,1,   jiIjiIjiIjiI NWNW        (4.14) 

In Table 4.1, we show a detail of the eight directions in the column 1, the basic 

gradient corresponds to each direction in column 2, the two related gradients 

correspond to each direction in column 3, and the correspond perpendicular direction 

in column 4. Actually, in the 33  window, the direction of the gradient only belong 

to WE direction ( 0 ), SWNE direction ( 45 ), SN direction ( 90 ), and SENW 

direction ( 135 ). Thus, we can only compute the fuzzy gradient for the direction set 

ED where  WNENNWED ,,,  that contains all the orientations in the 33  

window. For example, computing the fuzzy gradient for the NW direction and SE 

direction are both equivalent to computing the gradient for the SWNE direction 
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( 45 ). 

For each direction of the direction set ED, we calculate the fuzzy derivative 

donated as  jiP ,  in each pixel  ji,  for direction P, where EDP . This is 

realized by the following fuzzy rule 3. 

 

Fuzzy Rules 3. 

IF  jiIP ,  is large AND  jiIP ,  is large AND  jiIP ,   is large 

OR  jiIP ,  is large AND  jiIP ,  is not large AND  jiIP ,   is large 

OR  jiIP ,  is large AND  jiIP ,  is large AND  jiIP ,   is not large 

THEN  jiP ,  is large in direction P. 

 

The AND operator (OR operator) can be the minimum (maximum) that are the 

well-known triangular norms (together with their dual co-norms) in the fuzzy logic. 

For the not operator, we use the standard negator   xxN 1  with ]1,0[x . The 

large is the fuzzy set corresponds the membership function LARGE that was defined 

above. The idea of this rule is to consider an edge passing though the pixel  jiI ,  

and its neighborhood for the direction, i.e. SW-NE direction ( 45 ), not only the basic 

gradient value  jiIP ,  will be large, but also the related gradient  jiIP ,  or 

 jiIP ,   can expect to be large. Therefore, if two out of three gradient values are 

small, it is safe to assume that no edge exists in the considered direction. 
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Fig. 4.3 The membership function corresponds to absolute value. 

 

Next, we again use a rule for each direction. The idea behind the rule is that if a 

pixel is assumed to be large in rule 3, then it probably can be consider as an edge for 

direction P, and the derivative value will be used to estimate the gradient direction of 

this pixel. Thus, we use the following rule 4 to compute P
gradientD . 

 

Fuzzy Rules 4. 

IF  jiP ,  is large AND  jiIP ,  is absolute value 

THEN P
gradientD  is absolute value in direction P. 

 

Where the fuzzy set absolute value corresponds to the membership function which is 

shown in Fig. 4.3 and the parameter 255L  is used in the experiment. The AND 

operator is also the minimum in the fuzzy logic. 

    The final step in the computation of the fuzzy gradient is the defuzzification. We 

are interested in obtaining the direction that has maximum value of P
gradientD . *P , 

which is estimated to be the gradient direction in pixel  ji, , is determined by 

                          jiIDP P
gradientEDP

,maxarg


                   (4.15) 

Finally, we rotate the window with the angle that corresponds to *P . For using 
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the adjustable window, the VMD method will be more robust for detecting the edge 

response. The experiment will be discussed in Chapter 4.4. 

 

4.3 Automatic Threshold Selection 

 

To automatically obtain the best threshold that is adaptive to the image contents, 

we propose a new method for hysteresis thresholding method combining the merits of 

Yitzhaky and Peli [19] and Medina et al. [20] methods. Yitzhaky and Peli can find the 

best thresholds within a set of possible values, but the performance will depend on the 

set of possible values chosen. On the other hand Medina et al. method is similar to 

Yitzhaky and Peli, but the performance will depend on one’s choice of the subset and 

the overset. In the following, we will introduce how to apply the thresholding 

methods to VMD method. 

 

4.3.1  Determine Parameter Set 

 

   Fig. 4.4 shows the symbolic graphic of the choice of parameter set. For an image I, 

let IE  be the unknown true edge points set of the image I with the condition 

III BEA   where IA  and IB  are the subset and the overset of the image I. For 

a possible hysteresis thresholds set C, for example 

 highlowhighlowhighlow ttttttC  ],1,0[,),(  

we want to find the parameter set T in the region between the subset IA  and the 

overset IB . Thus, we will get the best edge map 
highlow ttE ,  determined by hysteresis 

thresholds lowt  and hight  with Ttt highlow ),(  in the next section. 
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Fig. 4.4 The symbolic graphic of the choice of parameter set [20]. 

 

    Considering the feature image histogram is usually unimodal, we use the Otsu 

method [13] and the Rosin method [14] to determine the subset IA  and the overset 

IB . The Otsu method is not very sensitive on unimodal histograms and performs 

rigorously on detecting edge points for edge detection, but edge pixels detected by the 

Otsu method have a high probability of being true edge points. Thus, the edge map 

OtsuE  can be utilized as the subset of the image. The Rosin method is very sensitive 

on unimodal histograms and it can be noisy for edge detection, but the Rosin method 

can usually detect the true edge pixels together with many fakery ones. Thus, the edge 

map sinRoE  can be employed as the overset of the image. If the conditions 

sin, Rott EE
highlow

  and 
highlow ttOstu EE , hold, then the following expression can easily 

be proved  

0),( sin, Rott EEFP
highlow

 

                         0),( , Ostutt EEFN
highlow

                     (4.16) 

where FP and FN are False Positive and False Negative in ROC analysis [21]. Here, 

FP indicates that the points were decided as edges in 
highlow ttE ,  and coincide with 
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non-edge points in sinRoE . FN indicates that the points were decided as non-edges in 

highlow ttE , and coincide with edge points in OstuE . 

    Actually, there is some error probability may exist between OtsuE  and sinRoE  

such that we can not find any hysteresis thresholds lowt  and hight  with 

Ctt highlow ),(  and satisfying 0),( sin, Rott EEFP
highlow

 and 0),( , Ostutt EEFN
highlow

. 

For this case, we can consider whether the following expressions are true or not. 

0),( sin, Rott EEFN
highlow

 

                        0),( , Ostutt EEFP
highlow

                     (4.17) 

0),( sin, Rott EEFN
highlow

 implies that there are negatives in the edge map 
highlow ttE , that 

are positives in the set sinRoE , and 0),( , Ostutt EEFP
highlow

 implies that there are 

positives in the edge map 
highlow ttE , that are negatives in the set OtsuE . Thus, let HC  

and KC  be the sets that define as 

 CttttC highlowhighlowH  ,),(  with the condition (4.16) 

 CttttC highlowhighlowK  ,),(  with the condition (4.17) 

The parameter set T can be determined by 

               If HC  

Then the parameter set HCT   

               Else if KC  

Then the parameter set KCT   

Else 

          Then the parameter set CT   
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4.3.2  The Best Threshold Selection 

 

Here, we will find the best hysteresis thresholds within the parameter set T 

determined above. For a parameter set T, in the first, we can construct an image map 

PGT (potential ground truth) using all edge maps 
highlow ttE ,  that determined by the 

hysteresis thresholds with Ttt highlow ),( . Defining an edge pixel as “1” and a 

non-edge pixel as “0” for all edge maps 
highlow ttE , , each pixel of the PGT image will get 

a value from the sum of the correspond pixel of all edge maps 
highlow ttE , . For example, 

consider a pixel Ip , there are q different edge maps 
highlow ttE ,  with different 

hysteresis thresholds lowt  and hight , where Ttt highlow ),( , detect the pixel p as an 

edge pixel, then we mark the value of q to this pixel in the PGT image. It means that 

there are q hysteresis threshold sets support the pixel p to be an edge. 

Second, we will compute the maximum value of the PGT image. If the 

maximum value is L, then the iPGT  can be obtained by threshold the PGT image 

with possible thresholds 1...,,1,0  Li . For each iPGT  edge map, we calculate TP, 

TN, FP and FN that indicate True Positive, True Negative, False Positive and False 

Negative from comparing with each 
highlow ttE , , and the average of all the probabilities 

resulting are computed by 

 



)(

,
,

,

1
Ttt

EPGTPGT
highlow

hightlowtii
TP

N
TP   with 1...,,1,0  Li      (4.18) 





)(

,
,

,

1
Ttt

EPGTPGT
highlow

hightlowtii
TN

N
TN   with 1...,,1,0  Li      (4.19) 
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



)(

,
,

,

1
Ttt

EPGTPGT
highlow

hightlowtii
FP

N
FP   with 1...,,1,0  Li      (4.20) 

       



)(

,
,

,

1
Ttt

EPGTPGT
highlow

hightlowtii
FN

N
FN   with 1...,,1,0  Li      (4.21) 

where 
hightlowti EPGTTP

,, indicates the pixels are edges in the iPGT  and coincide with 

edges in the
highlow ttE , .  

hightlowti EPGTTN
,, indicates the pixels are non-edges in the iPGT  

and coincide with non-edges in the
highlow ttE , . 

hightlowti EPGTFP
,,  indicates the pixels are 

edges in the iPGT  but detected as non-edges in the
highlow ttE , . 

hightlowti EPGTFN
,,  indicates 

the pixels are non-edges in the iPGT  but detected as edges in the
highlow ttE , . N represents 

the cardinality of the parameter set T. Next, the Chi-square test of the optimal 

threshold can be calculated by 

                    
 

i

ii

i

ii

i
PGT

PGTPGT

PGT

PGTPGT
PGT Q

QSp
Q

QSn 






1
1

2            (4.22) 

where 

        
iii PGTPGTPGT FPTPQ   

        
ii

i

i

PGTPGT

PGT
PGT FNTP

TP
Sn


  

ii

i

i

PGTPGT

PGT
PGT FPTN

TN
Sp


  

    Finally, a higher 2
iPGT  can obtain a better threshold. The best threshold in 

parameter set T is correspond to the value of i that maximizes 2
iPGT . Thus, we have 

the following conclusion: If 
 

2

1,...,1,0
maxarg

iPGT
Li

k 


 , then the hysteresis thresholds 



 

44 

 
 

 
highlow

highlow

tt
Ttt

thightlow Ett
,

,

** maxarg, 


  will be the best choice, where 

 
highlow ttE

,
  

2
,, khightlowt PGTE  

 
hightlowtk

hightlowtkhightlowtk

hightlowtk

hightlowtkhightlowtk

EPGT

EPGTEPGT

EPGT

EPGTEPGT

Q
QSp

Q
QSn

,

,,

,

,,

,
*

,
*

,
*

,
*

,
*

,
* 1

1





   (4.23) 

and 

hightlowtkhightlowtkhightlowtk EPGTEPGTEPGT FPTPQ
,,, ,,,

*   

hightlowtk EPGTSn
,,

*


hightlowtkhightlowtk

hightlowtk

EPGTEPGT

EPGT

FNTP

TP

,,

,

,,

,


 

hightlowtk EPGTSp
,,

*


hightlowtkhightlowtk

hightlowtk

EPGTEPGT

EPGT

FPTN

TN

,,

,

,,

,


 

 

One of the drawbacks of Yitzhaky and Peli method is that the result depends on 

the parameter set we choose. For different parameter sets, very different results will 

be obtained. Thus, after the improvement of the choice of the parameter set, a more 

reliable result will be obtained. 

 

4.4 Experimental Result of Comparison with Other 

Color Edge Detector 

 

4.4.1  Quantitative Evaluation 

 

The evaluations of edge detectors are usually subjective by observers [23]. Most 
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of the objective evaluation methods assume that the specific features of images are 

known such as boundaries in simple synthetic images. In such cases, for the known 

ideal edges considered to be the ground truth (GT), the quantitative of the edge 

detection can be measured. In nature images, Bowyer [24] manually created 

specification of the edges to form a GT, and Fernandez [25] used an automatic 

statistical method to generate GT images. However, for a quantitative evaluation, 

different criteria will produce different result. The approach adopted here is to use the 

GT images generated from synthetic image with the widely used performance 

measures, FOM [22] and ROC analysis [21].  

First, The FOM is defined by  

               
   2

1

1 1 100%
max ,  1

DI

iD I i

FOM
I I d

 


             (4.24) 

where DI  and II  are the number of detected and number of ideal edge points 

respectively,   >0  is a calibration constant, and id  is the edge deviation for the 

i-th detected edge pixel. In all cases 0 FOM 1;   for a perfect match between the 

detected and the ideal edges FOM 1  whereas the detected edges deviate more and 

more from the ideal ones FOM goes to zero. The scaling constant 2.0  proposed 

in [11] has been adopted.  

Next, we would like to introduce the True Positive Rate (TPR), True Negative 

Rate (TNR) and Normalized Accuracy (NACC) of ROC analysis. The TPR is defined 

by  

                        %100



FNTP

TPTPR                     (4.25) 

where TP represents the number of pixels which are detected as an edge pixel and 

belong to an ideal edge pixel, and FN represents the number of pixels which are 
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detected as an edge pixel but belong to an ideal non-edge pixel. On the other hand, the 

TNR is defined as  

                        100%TNTNR
TN FP

 


                   (4.26) 

where TN represents the number of pixels which are detected as an non-edge pixel 

and belong to an ideal non-edge pixel, and FP represents the number of pixels which 

are detected as an non-edge pixel but belong to an ideal edge pixel. Finally, we 

calculate the normalized accuracy (NACC) by 

                      100%
2

TPR TNRNACC 
                   (4.27) 

NACC = 100% corresponds to a perfect match between the ideal edge and detected 

edge points and as the deviation of the edge points increase, the NACC approaches to 

zero percentage. 

 

4.4.2  Quantitative Evaluation in Synthetic Color Images 

 

Canny [3] presented the very popular aspects that good edge detection must not 

miss the true edge nor detect non-edge points as the edge points and produce thin and 

continuous lines. For these criteria, we also use two kinds of 256×256 synthetic color 

images which are shown in Figs. 4.5(a)  (b) for quantitative evaluation of the color 

edge detectors. The performances of our automatic color edge detection techniques 

are compared to those by the compass operator of Ruzon and Tomasi [9], Canny edge 

detector [3], RCMG detector [11], and MVD edge detector [6].  
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(a) 

 

 

(b) 

Fig. 4.5 (a) One kind of original image. (b) One kind of original image. 

 

Fig. 4.6 show the edge detection results of 256×256 synthetic images which is 

Fig. 4.5(a) for comparison. For the Fig. 4.6(b), using the parameter 94.0 , adjust 

the Medina et al. thresolding method for the compass operator with NMS. We can see 

that the result in Figs. 4.6(b) detect much noise in the regions near the corners. For 

MVD detector, we use the parameter 2k , 4l , and thresholding by Medina et al. 

method with thinning process as shown in Fig 4.6(c). To apply Canny detector to 
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color images, a method named Color Canny individually use Canny detector to detect 

edges for three dimensions in the color space, and determine the edge result by the 

majority vote fusion rule. 

In the edge result detected by Color Canny detector, which is shown in Fig. 

4.6(d), the continuity of the edges performs worse than the others, especially in the 

corners. Fig. 4.8(e) shows the result detected by RCMG with the parameter 1s  in 

the 33  window. Fig. 4.6(f) shows the result with our method, and it detects less 

noise and produce continuous lines for edge detection. More results are shown in Figs. 

4.74.9. In Fig. 4.7(b) and Fig. 4.9(b), some ideal edges are missed by the compass 

operator thresholding by Medina et al. method. 
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(a) 

  
(b) (c) 

 

  

(d) (e) 
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(f) 

Fig. 4.6 Edge detection results of the 256×256 synthetic image Sample 1 detected by 

different color edge detectors. (a) Original image. (b) The compass operator with 

NMS and thresholding by Medina et al. method. (c) MVD with thinning process and 

thresholding by Medina et al. method. (d) Color Canny result. (e) RCMG with 

thinning process and thresholding by Medina et al. method. (f) Our automatic color 

edge detector. 
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(a) 

  
(b) (c) 

 

  

(d) (e) 
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(f) 

Fig. 4.7 Edge detection results of the 256×256 synthetic image Sample 2 detected by 

different color edge detectors. (a) Original image. (b) The compass operator with 

NMS and thresholding by Medina et al. method. (c) MVD with thinning process and 

thresholding by Medina et al. method. (d) Color Canny result. (e) RCMG with 

thinning process and thresholding by Medina et al. method. (f) Our automatic color 

edge detector. 
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(a) 

  
(b) (c) 

 

  

(d) (e) 



 

54 

 

(f) 

Fig. 4.8 Edge detection results of the 256×256 synthetic image Sample 3 detected by 

different color edge detectors. (a) Original image. (b) The compass operator with 

NMS and thresholding by Medina et al. method. (c) MVD with thinning process and 

thresholding by Medina et al. method. (d) Color Canny result. (e) RCMG with 

thinning process and thresholding by Medina et al. method. (f) Our automatic color 

edge detector. 
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(a) 

  
(b) (c) 

 

  

(d) (e) 



 

56 

 

(f) 

Fig. 4.9 Edge detection results of the 256×256 synthetic image Sample 4 detected by 

different color edge detectors. (a) Original image. (b) The compass operator with 

NMS and thresholding by Medina et al. method. (c) MVD with thinning process and 

thresholding by Medina et al. method. (d) Color Canny result. (e) RCMG with 

thinning process and thresholding by Medina et al. method. (f) Our automatic color 

edge detector. 

 

(A) Quantitative Performance Comparison 

 

Tables 4.2, 4.3 and 4.4 show the average performances of the thirteen 256×256, 

eleven 256×256 synthetic images, and the total images for the compared detector. The 

order of the column 1 are the compass operator with NMS and Medina et al. method, 

MVD detector with thinning process and Medina et al. method, Color Canny detector, 

RCMG detector with thinning process and Medina et al. method, and our automatic 

color edge detector. The column 2 to column 5 represents the quantitative evaluations 

of FOM, TPR, TNR, and NACC in percentage, respectively. For the criteria, a 

detector, which can detect less erroneous, thin, and continuous edges, will get high 
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values of the FOM and NACC. 

 

TABLE 4.2 
The average evaluation results of the thirteen 256×256 synthetic color images detected 

by the following detectors 
Method FOM (%) TPR (%) TNR (%) NACC (%) 

Compass with NMS and 
Medina et al. method 414.98  92.99 99.87 443.96  

MVD with thinning and 
Medina et al. method 270.99  98.54 99.91 322.99  

Color Canny with manual 
thresholding 556.86  68.48 98.29 536.83  

RCMG with thinning and 
Medina et al. method 179.99  98.98 99.94 246.99  

Our method 325.99  99.91 99.95 193.99  

 
TABLE 4.3 

The average evaluation results of the eleven 256×256 synthetic color images detected 
by the following detectors 

Method FOM (%) TPR (%) TNR (%) NACC (%) 
Compass with NMS and 

Medina et al. method 433.96  99.64 99.62 263.99  

MVD with thinning and 
Medina et al. method 261.99  97.65 99.93 479.98  

Color Canny with manual 
thresholding 582.88  96.29 99.10 570.97  

RCMG with thinning and 
Medina et al. method 165.99  97.92 99.91 392.98  

Our method 336.98  99.73 99.82 178.99  
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TABLE 4.4 
The average evaluation results of the total synthetic color images detected by the 

following detectors 
Method FOM (%) TPR (%) TNR (%) NACC (%) 

Compass with NMS and 
Medina et al. method 424.97  96.31 99.74 403.98  

MVD with thinning and 
Medina et al. method 266.99  98.10 99.92 301.99  

Color Canny with manual 
thresholding 569.87  82.39 98.70 553.90  

RCMG with thinning and 
Medina et al. method 172.99  98.45 99.93 219.99  

Our method 381.98  99.82 99.89 185.99  

 

A noisy edge map may be good performance in the FOM evaluation because of 

the FOM only considers the accuracy of edge points and uses a scaling constant α for 

the penalty between smeared and offset edges. In other hand, the NACC calculates 

not only the accuracy of edge points but also the accuracy of non-edge points and 

strictly forbids the deviation between ideal and detected edge (non-edge) points. 

Therefore, although both MVD and RCMG with thinning and Medina et al. method 

are better than our method for the FOM evaluation, TPR and TNR shows the fact that 

they produce more smeared edge points and misses more ideal edge points than our 

method. Indeed, the NACC evaluation supply more reliable results by using the TPR 

and TNR, and our method is the best one in the NACC evaluation. 

 

4.4.3  Comparison of Nature Color Images 

     

In this section, we will compare our method in nature color images with other 

detectors mentioned above. Unlike the synthetic images, we can not use the FOM 

evaluation or ROC analysis to provide the absolute quality measures when GT images 
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in real world images are both difficultly and subjectively chosen, but we can provide 

the information for relatively robustness and reliability. Several examples are shown 

to show the effectiveness of various methods. 

 

(A) Example 1, “papers” image 

 

Figs. 4.10 show the edge detection results of the “Peppers” image. For the Fig. 

4.10(b), using the parameter 94.0 , we adjust the Medina et al. thresolding method 

for the compass operator with NMS. For MVD detector, we use the parameter 2k , 

4l , and thresholding by Medina et al. method with thinning process as shown in 

Fig 4.10(c). Figs. 4.10(d) (f) show the result of Color Canny, RCMG and our method, 

respectively.   

The compass operator with NMS and thresholding by Medina et al. method 

produces very noisy edge as shown in Fig. 4.10(b). In Fig 4.10(c), MVD detects more 

true edges but less noise although it provides very thick edge responses. From Figs. 

4.10(d) (f), Color Canny and our method not only provide thinner and less noisy 

edges but also obtain the boundaries of the three difficult edges marked. 
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(a) 

  
(b) (c) 

 

  

(d) (e) 
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(f) 

Fig. 4.10 Edge detection results of the “Peppers” image detected by different color 

edge detectors. (a) Original image. (b) The compass operator with NMS and 

thresholding by Medina et al. method. (c) MVD with thinning process and 

thresholding by Medina et al. method. (d) Color Canny result. (e) RCMG with 

thinning process and thresholding by Medina et al. method. (f) Our automatic color 

edge detector. 

 

(B) Example 2, “Lena” image 

 

Figs. 4.11 show the edge detection results of the “Lena” image. For the Fig. 

4.11(b), using the parameter 94.0 , we adjust the Medina et al. thresolding method 

for the compass operator with NMS. For MVD detector, we use the parameter 2k , 

4l , and thresholding by Medina et al. method with thinning process as shown in 

Fig 4.11(c). Figs. 4.11(d) (f) show the result of Color Canny, RCMG and our method, 

respectively. 

We are interesting in comparing the marked rectangle regions. Figs. 4.11(b) and 

(c) detect more edge in these regions, but they also provide too much noise. In the 

regions of the middle and right rectangles, the results of Figs. 4.11(d) and (f) detected 



 

62 

by Color Canny and our method are provide thinner and less noisy edges. 

 

(a) 

  
(b) (c) 

 

  

(d) (e) 
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(f) 

Fig. 4.11 Edge detection results of the “Lena” image detected by different color edge 

detectors. (a) Original image. (b) The compass operator with NMS and thresholding 

by Medina et al. method. (c) MVD with thinning process and thresholding by Medina 

et al. method. (d) Color Canny result. (e) RCMG with thinning process and 

thresholding by Medina et al. method. (f) Our automatic color edge detector. 

 

(C) Example 3, “Road” image 

 

Fig. 4.12 shows the edge detection results of the low illumination image, in 

which the road has double yellow lines. 

We can see from Fig. 4.12(b) that the compass result detects much noisy image. 

Although Fig. 4.12(c) is cleaner than Figs. 4.12(b), it is still noisy in the output. In Fig. 

4.12(e), although the road region is clean, it looks very noisy outside the road and the 

boundaries are incomplete. In summary, Color Canny and our method provide 

complete road edges and less noisy, which are better than the compass operator. 
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(a) (a’) 

 

  
(b) (c) 

 

  
(d) (e) 
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(f) 

Fig. 4.12 Edge detection results of the “Road” image detected by different color edge 

detectors. (a) Original image. (a’) gray-level histogram equalized of image (a), used 

for visual aide and comparison only. (b) The compass operator with NMS and 

thresholding by Medina et al. method. (c) MVD with thinning process and 

thresholding by Medina et al. method. (d) Color Canny result. (e) RCMG with 

thinning process and thresholding by Medina et al. method. (f) Our automatic color 

edge detector. 

 
(D) Example 4, “Chair” image 

 

Figs. 4.13 show the edge detection results of the low illumination image, in 

which there is a chair. 

We are interesting in comparing the chair’s rectangle region. Fig. 4.13(b) detects 

a little edges in the regions, but its rectangle boundaries are incomplete and noisy. Fig. 

4.13(c) detects the rectangle region completely, but it is very noisy. In Fig. 4.13(e), it 

is too noisy outside of the rectangle region. The results of Figs. 4.13(d) and (f) 

detected by Color Canny and our method produce complete boundaries and less noisy 

edges. 
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(a) (a’) 

 

  
(b) (c) 

 

  
(d) (e) 
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(f) 

Fig. 4.13 Edge detection results of the “Chair” image detected by different color edge 

detectors. (a) Original image. (a’) gray-level histogram equalized of image (a), used 

for visual aide and comparison only. (b) The compass operator with NMS and 

thresholding by Medina et al. method. (c) MVD with thinning process and 

thresholding by Medina et al. method. (d) Color Canny result. (e) RCMG with 

thinning process and thresholding by Medina et al. method. (f) Our automatic color 

edge detector. 
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Chapter 5  Conclusion 

 

In this thesis, we use edge detection and fuzzy rules to find bad pixel map of a 

SWIR sensor. Although the bad pixel map obtains include some extra good pixels or 

edge points, the bad pixels can mostly detected. We use two median filters 

sequentially to correct them, while the extra good pixels can almost retain their 

original values. Furthermore, we employ two-point correction method to correct 

non-uniformity among pixels of SWIR sensor. In the future, more advanced NUC 

method will be investigated to improve SWIR sensor performance. Integration and 

co-design of our proposed algorithm in the ROIC design of SWIR sensor would be 

our future work. 

To enhance the tools for bad pixel correction, we have also proposed vector order 

statistics and fuzzy gradient to automatic color edge detection of images. By using the 

fuzzy derivative estimation, the fuzzy rules are fired to consider the gradient direction 

of every processing pixel. Additionally, the shape of the membership function is 

adapted to the local variation around the processing pixel. The proposed detector 

improves the drawbacks of the original VMD detector because the gradient directions 

can be better estimated. Moreover, our thresholding method can choose a reasonable 

parameter set from all possible attempts and then find the best hysteresis threshold set 

from them. 

Experimental results have shown that our automatic color edge detection 

techniques produce excellent edge detection accuracy in both the synthetic and 

real-world images. In this way, the performances of higher level image processing 

tasks such as bad pixel correction, segmentation and object recognition can be more 

powerful because of the improvement of our edge detection schemes. 
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