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摘要 

 

在本篇論文中，我們提出對於輸入端具關連性多輸入多輸出系統，其

位元配置與傳送器的設計方法。首先我們根據具關連性通道之錯誤變

異係數的統計特性推導出最佳位元配置與平均錯誤率下限，接著我們

設計出能最小化平均錯誤率下限之傳送器與最適合的通道數目。模擬

結果顯示我們所提出的方法可以有效降低具關連性多輸入多輸出系

統之錯誤率。 
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Joint Design of Statistical Precoder and
Statistical Bit Allocation for Correlated

MIMO Channels

Chunwei Hsiao

Advisor: Dr. Yuan-Pei Lin
Department of Electrical Engineering

National Chiao Tung University

Abstract

In this thesis we consider the design of statistical precoder and sta-
tistical bit allocation for multi-input multi-output (MIMO) systems
over correlated channels. We assume the correlated channel is slow
fading and full channel state information is available at the receiver,
while only the statistics of the correlated channels is assumed to be
known at transmitter. We will first derive the statistical bound of bit
error rate (BER) and the corresponding optimal real bit allocation.
Based on this statistical BER bound, the optimal unitary statisti-
cal precoder is derived both for linear and decision feedback receiver.
Second, the statistical integer bit allocation is designed the greedy al-
gorithm. Finally, different number of substreams will be considered
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and selected by statistical BER bound. Simulations show lower BER
can be achieved when optimal number of substreams is selected for
correlated channels.
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Chapter 1

Introductions

In recent years, MIMO wireless communication systems have received sub-
stantial attention. When full channel state information (CSI) is available at
transmitter and receiver, many criteria have been considered in the transceiver
designs, e.g., [1]- [19]. When the receiver is linear, optimal transceivers that
maximize the mutual information are proposed in [1]- [5], transceiver de-
signs that minimize mean square error are considered in [6]- [9] and optimal
transceivers that minimize the BER are derived in [10]- [13]. When the re-
ceiver is nonlinear, the Vertical Bell Labs Layered Space-Time (V-BLAST)
scheme [14] in which uncoded data streams are transmitted from each trans-
mitter antenna, and detected at the receiver using nulling and successive
interference cancellation. To minimize the probability of error, the order of
detection in V-BLAST is based on the post detection signal-to-noise ratio
(SNR) the calculation of which renders the reception procedure computa-
tionally demanding. In [15] and [16], a framework is developed for jointly
designing channel-dependent ordered decoding at the receiver and decoding
order-dependent rate/power allocation at the transmitter. In [14]- [16], the
designs are without precoding techniques. The precoding techniques for non-
linear receiver are considered in [17]- [19]. Precoder designs that minimizes
mean square error (MSE) are derived in [17]. Several precoder design criteria
are considered in [18], e.g., minimizing MSE or transmission power. In [19],
the precoder is jointly optimized with the bit allocation.

However, full CSI at the transmitter is often not possible. Instead, partial
CSI at the transmitter could be available by numerical channel realizations
or already known channel statistics, like approximate capacity distribution
in [20] and [21] or averaged mean square error in [22] and [24]. Based on this
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situation, there have been lots of research on optimizing system performance
with statistical transceiver or bit allocation design. In [25], the precoder de-
sign with linear receiver by minimizing the upper bound of statistical joint
error probability. In [29] and [30], a unified frame work considers the design
problem when imperfect CSI consists of the channel mean and covariance
matrix or, the channel estimate and the estimation error covariance matrix.
The transceiver design is based on a general cost function of the average
MSE as well as a design with individual MSE based constraints. In [31],
for given long term statistical channel information feedback and rank defi-
ciency MIMO channel, the precoder is constructed based on the criterion of
minimizing the pair-wise error probability bound. Also precoder for min-
imizing error probability is derived in [32]. In [33], the precoder designed
with decision feedback receiver is also based on minimizing sum of statistical
MSEs. Then the precoder design in [33] has been extended to more general
version in [35]. In [35], other kinds of design problems consist of minimizing
statistical symbol error rate, statistical bit error rate and statistical outage
probability error are considered and a closed form solution for the statistical
bit allocation weighted MSEs is derived to reduce the complexity. In these
precoder designs, an uniform or given bit allocation is assumed and sophis-
ticated convex optimization techniques or inequality properties are needed
in [36], [39], [37] and [38]. There are also some statistical bit allocation de-
signs without precoding technique. In [40], the statistical bit allocation is
considered by minimizing the statistical outage probability errors obtained
by numerical channel realizations. In [42], the optimal transmission antenna
subset is derived by maximizing the statistical minimum substream SNR.
After choosing the transmit antenna set, the bit allocation is obtained using
numerical channel realizations.

In this thesis, we consider the statistical design problem at the trans-
mitter. We assume the statistics of transmit correlation matrix is available
at transmitter and full CSI is available at receiver. Previous works have
shown the methods of statistical precoder design or statistical bit allocation
design. Our goal is jointly designing the optimal precoder, bit allocation
and number of substreams. Linear and decision feedback receiver are both
considered. For given number of substreams M , we derive the statistical
BER bound ϕM(b) first. The statistical BER bound ϕM(b) achieves the
minimum ΩM(b) while the optimal real bit allocation is used. Applying this
optimal bit allocation, the optimal precoder is derived by minimizing ΩM(b).
In practical applications, the bit allocation should be nonnegative integers.

2



After the convex property of statistical objective functions are examined,
greedy algorithm can be used to find the optimal nonnegative integer bit
allocation. It is clearly that the optimal nonnegative integer bit allocation
is close to the optimal real bit allocation. Also the statistical BER bound
ϕM(b) is useful for determining the optimal number of substreams. Thus
the optimal precoder, bit allocation and number of substreams are obtained.
Finally, simulations show our design have well performance.

1.1 Outline

• Chapter 2: The system model is presented.

• Chapter 3: Previous works are reviewed in this chapter. Optimum
statistical precoder with linear receiver [25] is reviewed in sec3.1. Op-
timum statistical precoders with decision feedback receiver [33] [35]
are given in sec3.2. Statistical bit allocations for decision feedback
receiver [40] [42] are reviewed in sec3.3.

• Chapter 4: The proposed staP-BA system for correlated channel is
given. The statistical BER bound and the optimal bit allocation are de-
rived in sec4.1. The optimal statistical precoder under transmit power
constraint is developed in sec4.2. Various statistical integer bit alloca-
tion design methods are presented in sc4.3.

• Chapter 5: Simulation examples are presented in this chapter.

• Chapter 6: A conclusion is given in this chapter.

1.2 Notations

• Boldfaced lower case letters represent vectors and boldfaced upper case
letters are reserved for matrices. The notation A† denotes transpose-
conjugate of A.

• The function E[y] denotes the expected value of a random variable y.

• The notation Im is used to represent the m×m identity matrix.

• The notation tr(A) denotes the trace of A.

3



Chapter 2

General System Model

2.1 Statistical Bit Allocation System Model

Consider the MIMO system with Mt transmit antennas and Mr receive an-
tennas in Figure 2.1. The channel is modeled by an Mr × Mt memoryless
matrix H with Mr×1 channel noise vector q. We assume the channel is slow
fading so that the channel does not change during each channel use. The
noise vector q is assumed to be additive white Gaussian with zero mean,
unit variance and E[qq†] = N0IMr . The channel considered in this thesis is
of the form

H = HwR
1/2
t , (2.1)

where Hw is an Mr ×Mt matrix whose elements are independent Gaussian
random variables with zero mean and unit variance. The matrix Rt, of
dimensions Mt ×Mt, is called the transmit correlation matrix. In this case,
the rows of H are independent and each has autocorrelation matrix equal to
Rt. Let the eigen decomposition of Rt be

Rt = U†
tΛtUt,

where Λt is a diagonal matrix and the diagonal elements λt,i are the eigen-
values of Rt. Let the diagonal elements of λt,i be ordered such that λt,0 ≥
λt,1 ≥ . . . ≥ λt,Mt−1 and assume λt,M−1 > 0.
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Figure 2.1: The system model of MIMO transmission system.

Suppose the transmitter and receiver can process M substreams of symbols,
where M ≤ min(Mt,Mr − 1). The spatial multiplexing precoder F is an
Mt ×M matrix with orthonormal columns. The input vector s is an M × 1
vector consisting of modulation symbols sk, for k = 0, 1, . . . ,M − 1, carrying
bk bits. The number of bits transmitted per channel use is thus

Rb =
M−1∑
k=0

bk.

The symbols sk are assumed to be uncorrelated with zero mean and unit
variance, E[ss†] = IM . The total transmission power is constrained to be Pt.
Thus, we have tr(E[xx†]) = tr(E[Fss†F†]) = tr(FF†) ≤ Pt.

2.2 Receiver Design

In this thesis, we will consider two types of zero forcing receivers, linear and
decision feedback receivers.

2.2.1 Linear receiver

When the receiver is linear and zero forcing, the receiver is anM×Mr matrix.
We denote it as G,

G = (F†H†HF)−1F†H†.

[23] The receiver output is s = Gr. Define the error vector at the output of
the receiver as e = s− s. In this case, the error vector e has autocorrelation

5



matrix Re = N0E[ee†] given by [23]

Re = N0(F
†H†HF)−1.

We can obtain the kth average subchannel error variance σ̄2
ek

by averaging
the above error covariance matrix over the correlated channel. Let the ith
column of Hdag be gi, then the autocorrelation matrix of gi is equal to Rt. It
is known that H†H =

∑M−1
k=0 gig

†
i has a complex Wishart distribution with

Mr degrees of freedom, denoted as WMt(Rt,Mr) [24]. If F is a nonsingular
matrix then the matrix R−1

e = N−1
0 F†H†HF has a Wishart distribution

WM(N−1
0 F†RtF,Mr). It has been shown in [22] that when a matrix C is of

Wishart distribution Wp(A, t) with t > p, then E[C−1] = 1
t−p

A−1. Using this

result, Re = E[Re] is given by

Re =
N0

Mr −M
(F†RtF)

−1, where Mr > M. (2.2)

2.2.2 Decision feedback receiver

M

r s′

Mr

detectorW

B

M -

_
s

Figure 2.2: Block diagram of the decision feedback receiver based on QR
decomposition.

To consider a decision feedback receiver, we can use the receiver structure
in Figure 2.2 based on the QR decomposition of HF [33]. This corresponds
to the case of a reverse detection ordering which detects from the Mth to
the 1st subchannel. Let the QR decomposition of HF be QR, where Q is
an Mr × M matrix with orthonormal columns and R is an M × M upper
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triangular matrix with [R]ii = rii. The feedforward matrix W and feedback
matrix B are given respectively by

W = diag

(
r−1
00 , r

−1
11 , . . . , r

−1
M−1,M−1

)
Q†,

B = diag

(
r−1
00 , r

−1
11 , . . . , r

−1
M−1,M−1

)
R− IM .

Assuming there is no error propagation, the kth subchannel error ek =
s′k − sk has variance σ2

ek
= N0r

−2
kk , for k = 0, 1, . . . ,M − 1. The error variance

averaged over the random channel is σ2
ek

= E[σ2
ek
] = N0E[r−2

kk ]. The value
E[r−2

kk ] has been shown to be related to the Cholesky decomposition of F†RtF
in [33] when Mr > M. Let the Cholesky decomposition of F†RtF be LDL†,
where L is a lower triangular matrix with unity diagonal elements and D is
diagonal. Then

σ2
ek

= N0E[r−2
kk ] =

N0d
−1
kk

Mr − k − 1
, k = 0, 1, . . . ,M − 1, (2.3)

where dkk is the kth diagonal element of D.

Bit Error Rate The inputs sk are bk-bits QAM symbols, the kth symbol
error rate can be approximate by [47]

SERk = 4(1− 2−bk/2)Q

(√
3

(2bk − 1)σ2
ek

)
. (2.4)

When gray code is used, then BER can be approximated by BERk ≈
SERk/bk. Then

BER ≈ 1

Rb

M−1∑
k=0

bkBERk ≈
1

Rb

M−1∑
k=0

SERk. (2.5)

Other Detection Orderings

• Forward ordering
Similar to the reverse ordering, the detection order of forward order-
ing is fixed but detection starts from the 1st to the Mth subchannel.
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The receiver structure is similar to that in Figure 2.2 and we use QL
decomposition to replace the QR decomposition. Let the QL decompo-
sition of HF be QLq, where Q is an Mr ×M matrix with orthonormal
columns and Lq is an M×M lower triangular matrix with [Lq]ii = lq,ii.
The feedforward matrixW, feedback matrix B and σ2

ek
in [35] are given

by

W = Q diag

(
l−1
q,00, l

−1
q,11, . . . , l

−1
q,M−1M−1

)
,

B = diag

(
l−1
q,00, l

−1
q,11, . . . , l

−1
q,M−1M−1

)
L− IM

Let the Cholesky decomposition of F†RtF be L†
1D1L1, where L1 is a

lower triangular matrix with unity diagonal elements and D1 is diago-
nal. And the error variance averaged over the random channel is

σ2
ek

= N0E[l−2
kk ] =

N0d
−1
1,kk

Mr −M + k + 1
, k = 0, 1, . . . ,M − 1, (2.6)

where d1,kk is the kth diagonal element of D1.

• VBLAST ordering [14]
In the VBLAST system, the detection ordering is not fixed. It is based
on the current channel. The decision feedback receiver can be described
as a recursive procedure [14]. First initializes r0 = r, A0 = HF and
i = 0. The steps in the recursions are as follows. (1) Let Gi be the
Moore-Penrose inverse of Ai. Find the row vector of Gi that has the
smallest 2-norm. Call the index of the row vector ni and the row
vector wi. (2) Compute yi = wiri, apply symbol detection on yi, and
call the output sni

. (3) Subtract from ri the contribution of the nith
subchannel, ri+1 = ri − sni

ani
, where ani

is the nith column of A0,
and zero the nith column of Ai to obtain Ai+1. ρni

is maximized in
the nth stage and the post detection SNR of the nith subchannel is
ρni

= Pt

MN0||wi||2 , hen all the subchannels are of the same constellation.
In this case, the above procedure is optimal in the sense that the worst
subchannel error rate is minimized.

• Rate-Normalized-SNR ordering
The detection procedure of rate-normalized-SNR ordering is similar to
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that of VBLAST [14]. The only difference is that the rate normalized
SNR

ρni
=

Pt

MN0(2bni − 1)||wi||2

is maximized.

• Greedy QR ordering [15]
The algorithm is proposed in [15] for efficient ordering using QRE de-
composition. The recursive procedure starts by minimizing the error
variance of last detection layer by a permutation matrix Γ1 and unitary
matrix Q1. Then we repeat the same procedure to find Γ2, . . . ,ΓMt

and Q2, . . . ,QMt . At last, this ordered QR decomposition of H has
the following form HΓ = QR, where Γ = Γ1Γ2 · · ·ΓMt is a permuta-
tion matrix, Q = Q1Q2 · · ·QMt is an unitary matrix with orthonormal
columns and R is an upper triangular matrix. The permutation matrix
Γ determines the detection ordering.

9



Chapter 3

Previous Works of Statistical
Designs

In this chapter, previous works on statistical precoder and bit allocation
are reviewed. Section 3.1 recaps the statistical prcoder design with linear
zero forcing receiver proposed in [25] and [26]. In section 3.2, we present
the method of designing optimal statistical zero forcing decision feedback
precoder are proposed in [33] and [35] for equal or given bit allocation. In
section 3.3, the designs of statistical bit allocation without precoder were
proposed in [40] and [42]. In all sections, full knowledge of channel state
information is available at receiver. At the transmitter, however, only statis-
tical characteristics of the channel are available.

3.1 Statistical Precoders for Linear Receivers

In this subsection, we review the statistical precoder proposed in [25] for
linear zero forcing receiver. In [25], the system model is the same as that
in section 2.2.1. The bit allocation is uniform and the target bit rate is a
multiple of M . Each symbol carries Rb/M bits. Using the results from [27]
and [28], the average probability of a symbol error Pe,k on subchannel k can
be bounded by

Pe,k ≤ β

(
N0[(F

†RtF)
−1]kk

)Mr−M+1

,

where β is a constant depending on the modulation. In order to solve the
optimal F that optimizes the cumulative error probability of all subchannels,

10



the equivalent constrained optimization problem is formulated as

minimize
F

∑M−1
k=0

(
[(F†RtF)

−1]kk

)Mr−M+1

subject to tr(FF†) = Pt

The optimal statistical precoder is of the form

FKSV R =

√
Pt

Tr(Λ
−1/2
t,M )

Ut,MΛ
−1/4
t,M WM , (3.1)

where WM is a normalized M × M DFT matrix and Ut,M and Λt,M are
respectively submatrices of Ut and Λt consist of the first M columns of Ut

and Λt.

3.2 Statistical Precoders for Decision Feed-

back Receivers

In this subsection, we introduce the statistical precoder design method for
zero forcing decision feedback systems that use convex optimization tech-
nique. The design method was first proposed in [33] considered equal bit
allocation and minimization of MSE. More general method was proposed
in [35] that considered different types of objective functions for a given bit
allocation. The system in [33] requires M = Mt < Mr and the system in [35]
requires M ≤ min(Mt,Mr − 1).

In [33], the optimal statistical precoder is designed by minimizing the
average arithmetic mean-squared error (MSE) subject to a constraint on
the total transmission power. The bit allocation here is uniform and the
optimization problem shown as follows:

minimize
F

EH

[∑Mt−1
k=0 r−2

kk

]
subject to tr(F†F) ≤ Pt,

where r−2
kk is the same as that in (2.3). Using the relationships between pk ,

11



λt,k and E[r−2
kk ], the equivalent optimization problem is as follows.

minimize
dk,pk

∑Mt−1
k=0

1
Mr−k+1

e−dk

subject to


∑Mt−1

k=0 epk = Pt
p1 ≥ p2 ≥ . . . ≥ pMt∑M0−1

k=0 dk ≤
∑M0−1

k=0 pk +
∑M0−1

k=1 λt,k, 1 ≤ M0 < Mt∑Mt−1
k=0 dk =

∑Mt−1
k=0 pk +

∑Mt−1
k=0 λk

,

where dk = log dk, pk = log pk and dk is as the same as dkk in (2.3). The above
design problem is called Geometric Programming and is a convex optimiza-
tion problem that can be efficiently solved using an interior point method [38].

Let Dp = diag(p
1/2
0 , p

1/2
1 , . . . , p

1/2
Mt−1) and

Lg = diag(p0λt,0, p1λt,1, . . . , pMt−1λt,Mt−1).

Let the generalized triangular decomposition [34] of L
1/2
g be NΓS†, where

N and S are two Mt ×Mt matrices with orthonormal columns and Γ is an
upper triangular matrix with diag(Γ) = diag(d0, d1, . . . , dMt−1). The optimal
statistical precoder has the following form

FLZW = UtDpS. (3.2)

In [35], the optimal statistical precoder is designed by minimizing a convex
cost function subject to a constraint on the total transmission power. The
convex cost function can be the sum of average MSE, average joint error
probability and average outage probability function. The bit allocation is
not necessarily uniform. The case of is sum of average MSE is reviewed
below. The optimization problem is formulated as

minimize
ηk,pk

∑M−1
k=0 e−q(ηk−αk)

subject to


∑M−1

k=0 epk = Pt
p1 ≥ p2 ≥ . . . ≥ pM∑M0−1

k=0 ηk ≤
∑M0−1

k=0 pk +
∑M0−1

k=1 λt,k, 1 ≤ M0 < M∑M−1
k=0 ηk =

∑M−1
k=0 pk +

∑M−1
k=0 λt,k

,where q denotes the qth norm of average mean square error, αk = log2

(
2bk−1

Mr−M+k−1

)
,

λk = log2 λk and ηk = log2 ηk. As in [35], this optimization problem can be

12



solved by the interior point method [38]. Let

Λ̃ = diag(p0λt,0, p1λt,1, . . . , pM−1λt,M−1),

diag(R1) = diag(η0, η1, . . . , ηM−1)

and take the generalized triangular decomposition on (Λ̃1/2)† = ZR1I
†, where

Z and I are two M × M matrices with orthonormal columns and R1 is an
upper triangular matrix. Then the optimal statistical precoder is given by

FJOJ = Ut,MDpZ. (3.3)

3.3 Statistical Bit Allocation with Decision

Feedback Receiver

In this subsection, we recaps two methods for finding statistical bit alloca-
tion in [40] and [42] . In [40], the bits are allocated based on statistics for
an i.i.d. channel. In [42], the number of transmit antennas together with
the transmit symbol constellations are determined using the knowledge of
channel correlation matrices.

3.3.1 Statistical bit allocation for i.i.d. channel

For a flat-fading MIMO channel Hw(Mt ≤ Mr) assumed in (2.1), the rela-
tionship between transmitted symbol s and received symbol r is

r = Hws+ q,

where q is the noise vector which has the same definition in Chapter 2.
Assuming that each transmit antenna has equal transmit power and forward
detection ordering is used, the instantaneous transmission rate to be allocated
to transmit antenna l is

Cl = log2 det(IMr +
Pt

MtN0

Hl−1H
†
l−1)− log2 det(IMr +

Pt

MtN0

HlH
†
l ),

where Hl = [hl+1hl+2 . . .hMt ] and Pt is the total transmission power. It has
been observed that the distribution of the capacity of a MIMO Rayleigh chan-
nel can be accurately approximated by a Gaussian distribution at medium

13



and high SNR [20] [21], denoted as Cl ∼ N(ηl, σl), where ηl and σl are the
mean and variance of the lth transmission rate. In order to select data rates
for different antennas, the outage probability of the whole system is mini-
mized. It is equivalent to maximizing the probability when no subchannel
have transmission rate greater than the respective subchannel capacities and
the optimization problem is as follows

minimize
bl∈R

∏Mt−1
l=0

∫∞
bl

1√
2σK,l

e
−(t−ηl)

2

2σ2
K,l dt

subject to
∑Mt−1

l=0 bl = Rb

,

where σK,l = σl/K, K is the number of independent channel realizations.
Then, the optimum bit allocation for the lth antenna is

bl ≈ ηl +
σl∑Mt

m=1 σm

(Rb −
Mt∑
m=1

ηm). (3.4)

3.3.2 Statistical bit allocation for correlated channel

In [42], the author proposed a selection criteria to choose the optimal transmit
antenna set υ which maximize the minimum subchannel SNR given by

(Mt, υ) = arg max
(M̃t,υ̃)

[
1

M̃t

(
ln det(Rt(M̃t,υ̃)

) +
M̃t∑
j=1

Mr−j∑
i=1

1

i
−Rb ln 2

)
− ln M̃t

]
,

(3.5)

where M̃t is the number of active antennas of the transmit antenna set υ̃.
After the optimal transmit antenna set υ is chosen, the real bit allocation is
derived by assuming post detection SNR are all the same and the statistical
bit allocation is obtained by the below equation

bi|Hw =
Rb

Mt

+ 2 log |λi(R)| − 1

Mt

log2 det(R
†R), (3.6)

where R is obtained from the QR decomposition of Hw = QR and λi(R)
denotes the ith largest eigenvalue of R.
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Chapter 4

Statistical Precoder Design

For a given precoder, we will first derive the statistical BER bound and the
optimal real bit allocation. Based on the BER bounds, we can obtain the
optimal precoder under the transmission power constraint. At last, we will
discuss methods for finding statistical integer bit allocation.

4.1 Derivation of Statistical BER Bound and

Optimal Real Bit Allocation

The BER can be computed using (2.4) and (2.5). For the convenience of
derivation, we define the function

f(y) = Q(1/
√
y), y > 0.

The function f(y) is monotone increasing and it can be verified that f(y) is
convex for y ≤ 1/3 and concave for y ≥ 1/3.

High SNR case Let us consider the high SNR case in which the con-

vexity of f(.) holds. Using f(.), we have SERk = 4(1 − 1
2bk/2 )f

(
(2bk−1)σ2

ek

3

)
and BER = 4

Rb

∑M−1
k=0 (1− 1

2bk/2 )f

(
(2bk−1)σ2

ek

3

)
. The averaged BER is given by
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E[BER] ≈
1

Rb

M−1∑
k=0

4(1− 1

2bk/2
)E[f

(
(2bk − 1)σ2

ek

3

)
] (4.1)

≥ 4

Rb

M−1∑
k=0

(1− 1

2bk/2
)f

(
(2bk − 1)σ̄2

ek

3

)
(4.2)

, ϕM(b), (4.3)

where b = [b0 b1 . . . bM−1] is the bit allocation vector. The inequality in (4.1)
is obtained using Jensen’s inequality. Assume bk is large enough so that
(1− 2−bk/2) ≈ 1 and 2bk − 1 ≈ 2bk , then

ϕM(b) ≈ 4

Rb

M−1∑
k=0

f(
2bk σ̄2

ek

3
)

≥ 4

Rb/M
f

(
1

M

M−1∑
k=0

(
2bk σ̄2

ek

3

))
(4.4)

≥ 4

Rb/M
f

(
1

3

(M−1∏
k=0

2bk σ̄2
ek

)1/M)
(4.5)

=
4

Rb/M
f

(
2Rb/M

3

(M−1∏
k=0

σ̄2
ek

)1/M)
, ΩM .

The inequality in (4.4) is due to the convexity of f(.). The inequality in
(4.5) is due to AM-GM (arithmetic mean-geometric mean) inequality and
the monotone increasing property of f(.). Due to the convexity of f(.), the
inequality in (4.4) holds if and only if 2bk σ̄2

ek
are of the same value for all k

and
∑M−1

k=0 bk = Rb. The optimal bit allocation for minimizing ϕM(b) is thus

bk =
Rb

M
− log2(σ̄

2
ek
) +

1

M

M−1∑
j=0

log2(σ̄
2
ej
), k = 0, 1, . . . ,M − 1. (4.6)

For convenience, we call the above optimal real bit allocation as breal,M .
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Low SNR case Using a similar procedure, we can derive the statistical
BER bound for the low SNR case in which the concavity of f(.) holds.

E[BER] ≤ 4

Rb

M−1∑
k=0

(1− 1

2bk/2
)f

(
(2bk − 1)σ̄2

ek

3

)
= ϕM(b) (4.7)

In this case, ϕM(b) is an upper bound of averaged BER. Assume as in the
high SNR case that each subchannel transmission rate bk is high enough so
that (1− 2−bk/2) ≈ 1 and 2bk − 1 ≈ 2bk , then

ϕM(b) ≈ 4

Rb

M−1∑
k=0

f

(
2bk σ̄2

ek

3

)
≥ 4

Rb/M
f

(
1

M

M−1∑
k=0

(
2bk σ̄2

ek

3
)

)
= ΩM . (4.8)

That is ϕM(b) has minimum equal to ΩM . The minimum achieved when
bit allocation is as given in (4.6). In this case, the equality in (4.8) becomes
an equality and we have ϕM(b) ≈ ΩM as in the high SNR case. Therefore
ΩM is a lower bound of averaged BER in the high SNR case and a upper
bound in the low SNR case. For both high and low SNR cases, we would like
to have the bound ϕM(b) minimized. The minimization of the lower bound
in high SNR case is also important because the averaged BER can not be
small if the lower bound is large.

4.2 Precoder Design

Our goal now is to find the optimum precoder =F that to minimize ΩM .
This optimization problem is as follows:

minimize
F

f

(
2Rb/M

3

(M−1∏
k=0

σ̄2
ek

)1/M)
(4.9)

subject to Tr(F†F) ≤ Pt.

• Decision feedback receiver:
Since f(.) is a monotone increasing function, minimizing (4.9) is equiv-
alent to minimizing (

∏M−1
k=0 σ̄2

ek
)1/M . Here, we will find the precoder F

which minimizes (
∏M−1

k=0 σ̄2
ek
)1/M .

17



Using (2.3), we have
∏M−1

k=0 σ̄2
ek

=
∏M−1

k=0

N0d
−1
kk

Mr−k−1
. Note that

∏M−1
k=0 d−1

kk =

det(F†RtF). Let the singular decomposition of F be

F = UfΣfV
†
f ,

where Uf is Mt × M with U†
fUf = IM , Vf is M × M unitary with

V†
fVf = IM and Σf is an M ×M diagonal matrix. Then

det(F†RtF) = det(Σf ) det(U
†
fRtUf ).

It follows that

M−1∏
k=0

σ̄2
ek

=
1

det(F†RtF)

M−1∏
k=0

N0

(Mr − k − 1)

=
1

det(Σf ) det(U
†
fRtUf )

M−1∏
k=0

N0

(Mr − k − 1).

As Uf has orthonormal columns, we can apply the Poincare separa-

tion theorem [43] to bound det(U†
fRtUf ) using the eigenvalues of Rt.

Poincare separation theorem says λi(B) ≥ λi(C
†BC), i = 0, 1, . . . , r−

1, for any n× n Hermitian matrix B and any n× r unitary matrix C
with C†C = Ir. Using this theorem, we have

det(U†
fRtUf ) ≤

M−1∏
i=0

λt,i.

On the other hand

det(Σ2
f ) =

M−1∏
i=0

[Σ2
f ]ii ≤

(
tr(Σ2

f )/M

)M

=

(
tr(F†F)/M

)M

≤ (Pt/M)M .

Thus det(F†RtF) ≤ (Pt/M)M
∏M−1

i=0 λt,i and the product of averaged
error variance satisfies

M−1∏
k=0

σ̄2
ek

≥ 1

det(Σf )

M−1∏
k=0

N0

λt,i(Mr − k − 1)
≥

M−1∏
k=0

MN0

Ptλt,i(Mr − k − 1)
.

(4.10)
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Because the choice of unitary matrix Vf does not effect the value
det(F†RtF), we choose Vf = IM without loss of generality. The equal-
ity (4.10) holds if F = Ut,M and the diagonal element of Σf are iden-
tical. Therefore the optimal precoder

F =

√
Pt

M
Ut,M . (4.11)

• Linear receiver:
From [36], we know an increasing function of a Schur-concave function is
Schur-concave. Because (

∏M−1
k=0 σ̄2

ek
)1/M is a Schur-concave function and

f(.) is monotone increasing function, the objective function in (4.9) is
Schur-concave. Using the result of [29], the optimal precoder for Schur-
concave objective function under total transmission power constraint
has the form Fop = Ut,MΣp, where Ut,M ∈ CMt×M has as columns
the eigenvectors of Rt corresponding to the M largest eigenvalues in
decreasing order and Σp = diag(p1, p2, . . . , pM) ∈ CM×M . In this case,
the product of the averaged error variance is given by

M−1∏
k=0

σ̄2
ek

=

(
N0

Mr −M

)M M−1∏
k=0

λ−1
t,k

M−1∏
k=0

p−2
k (4.12)

Furthermore the constraint in (4.9) can be simplified as follows:

Tr(F†
opFop) = Tr(Σ†

pU
†
t,MUt,MΣp) =

M−1∑
k=0

p2k ≤ Pt.

Since f(.) is a monotone increasing function, minimizing (4.9) is equiv-
alent to minimizing (

∏M−1
k=0 σ̄2

ek
)1/M , which, due to (4.12), is equivalent

to minimizing
∏M−1

k=0 p−2
k . The original problem can be reduced to the

equivalent one shown below.

minimize
pk

M−1∏
k=0

p−2
k

subject to
M−1∑
k=0

p2k ≤ Pt.

19



By using AM-GM inequality, the above problem can be solved easily

and the optimal power allocation is pk =
√

Pt

M
, k = 1, 2, . . . ,M . There-

fore we obtain the optimal precoder as

Fopt =

√
Pt

M
Ut,M ,

which is the same as the optimal precoder for the decision feedback
receiver.

4.3 Design of Integer Bit Allocation

The optimal bit allocation compared in (4.6) has real entries. In prac-
tical applications, bk should be nonnegative integers. In this section, we
will present methods for designing integer bit allocation with given precoder

F =
√

Pt

M
Ut,M . First, we will introduce two numerical methods of integer bit

allocation design. Second, we will present two methods based on the statisti-
cal BER bound. At last, we will consider the optimal number of subchannel
used. The methods given in this section can be applied for both linear and
decision feedback receiver. All bit allocations discussed here have positive
entries.

4.3.1 Minimum BER bit allocation (bmber)

We denote Cb,M as a bit allocation codebook which contains all length equal to

or less than M positive integer bit allocation vectors such that
∑M−1

k=0 bk = Rb.
For each bit allocation in codebook Cb,M , we calculate its corresponding aver-
age BER performance using a large number of random channels. The vector
that has the smallest average BER performance is denoted as bmber and it
represents the best bit allocation in BER performance.

4.3.2 Most probable bit allocation (bprob)

First, we generate a large number of training channels. For each training
channel, we can find the corresponding BER-minimizing bit allocation vector
in Cb,M . The vector bprob is the most probable bit allocation.
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4.3.3 Bit allocation using greedy algorithm (bgr,M)

When the transmission power Pt is large enough so that all argument of f(.)
in ϕM(b) are smaller than 1/3 and f(.) is operating at the convex region. We
can use the greedy algorithm to solve this allocation problem efficiently. The
solution of this kind of optimization problem was first proposed in [44]. This
algorithm is also called ”marginal allocation” or ”incremental” algorithm.
More detailed analysis was proposed in [45].

In [45], the allocation problem has the following form.

minimize
xk∈{0,1,...,M}

∑M−1
k=0 Fk(xk)

subject to
∑M−1

k=0 xk = N
,

where N is a positive integer and the function Fk(.) is convex in xk.

The optimal x is determined as follows.

• Step 1 Let x = (0, 0, . . . , 0) be a M × 1 vector and r = 0.

• Step 2 Let

v = arg min
j∈{0,1,...,M}

(
Fj(xj + 1)− Fj(xj)

)
,

then xv = xv + 1.

• Step 3 If r = N, then stop. The current x is an optimal solution.
Otherwise, r = r + 1 and return to step 2.

Ignoring the factor (1−2−bk/2), then ϕM(b) in (4.3) can be approximated
as

ϕM(b) =
4

Rb

M−1∑
k=0

Fk(bk),

where Fk(bk) = f

(
(2bk−1)σ̄2

e,k

3

)
. Suppose SNR is high so that the argument

in f(.) is smaller than 1/3. In this case, Fk(bk) is convex and the greedy
algorithm can be used. We denote this bit allocation as bgr,M .

21



Remark In Section 4.1, we have obtained a optimal real bit allocation
breal,M . Then we can use the quantization method referred in [46] to get a
positive integer bit allocation denoted as bi,M . Because breal,M is also derived
by the convex assumption, bi,M is the same as bgr,M in our simulations.

4.3.4 Bit allocation for minimizing statistical bound
(bd,M)

Here, we introduce the statistical integer bit allocation that minimizes ϕM(b).
We denote this statistical bit allocation as bd,M and is given by

bd,M = arg min
b ∈ Cb,M

ϕM(b). (4.13)

The vector bd,M can be obtained by an exhausted search. In Section 4.3.2,
we have shown greedy integer bit allocation is also optimal so these two
statistical integer bit allocations are the same in high SNR region. However,
if the arguments of f(.) for the optimal bit allocation are not all located at
convex or concave region, then the optimal bit allocation can not be found
by the greedy algorithm. In the simulations, the performance of bd,M is very
close to that of bmber. It can be used for all SNR region.

4.3.5 Optimal number of substream Mopt

The optimal precoder derived in Sec 4.2 is F =
√

Pt

M
Ut,M , which is obtained

under the high bit rate assumption bk ≫ 1. Implicity M substreams are
transmitted. We can also consider the transmission of fewer substreams. Let
M0 be the number of substreams transmitted. When we reduce M0, each
subchannel will be allocated more transmission power but more bits. Con-
versely, each subchannel is allocated less transmission power but fewer bits
when we choose larger M0. The tradeoff between different M0 has become an
interesting issue. Recently, there are several researchers (e.g. [42], [48], [49]
and [50]) mentioned that wireless MIMO system could have better perfor-
mance when the number of subchannels used is variable. In these papers, the
M0 selection function plays an important role on system performance. Here,
we choose ϕM0(b) we have derived earlier as our selection function. We can
find the best bit allocation to minimize ϕM(b) for each M0 and choose the
best one.
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• Step 1 For each M0 ∈ {1, 2, . . . ,M}, the corresponding optimal pre-

coder is F =
√

Pt

M0
Ut,M0 . Then we apply the greedy algorithm in Sec

4.3.3. to find bgr,M0 such that the statistical BER bound ϕM0(bgr,M0)
in (4.3) is minimized.

• Step 2 The optimum number of substreams is given by

Mopt =
arg min

i∈{1,2,...,M}
ϕi(bgr,i). (4.14)

and the corresponding optimal bit allocation is bgr,Mopt .

In a similar manner, we can obtain the bd,M0 for each M0 ∈ {1, 2, . . . ,M}.
Then we can also use ϕM0(b) as the selection function to find the best integer
bit allocations bd,Mopt .
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Chapter 5

Simulation Result

In this chapter, we present simulation results of our statistical precoder and
statistical bit allocation (staP-BA) system. In our simulations, we use the
exponential model for the channel correlation matrix Rt. A 4×4 example of
Rt is given below

Rt =


1 ρ ρ2 ρ3

ρ∗ 1 ρ ρ2

ρ∗2 ρ∗ 1 ρ
ρ∗3 ρ∗2 ρ∗ 1

 ,

where ρ∗ denotes the complex conjugate of ρ. We denote the uniform bit
allocation as buni. In all examples, bprob and bmber are found at the high
SNR region using 105 training channels. We have used 106 channels in the
simulation examples.

Example 1. Comparison of different integer bit allocation schemes.
In this example, we discuss the BER performance between different statisti-
cal bit allocation methods proposed in Chapter 4 and we use the proposed

precoder F =
√

Pt

M
Ut,M and reverse ordering detected from the Mth to the

1st substream.

A. For Mr = 4, Mt = 3, M = 3, Rb = 12, we show BER plots for
different ρ in Figure 5.1. We can see bgr,Mopt is the same as bd,Mopt and bmber

for the different correlation parameters. Also shown is the statistical BER
bound ϕMopt(bgr,Mopt) a lower bound in high SNR region and an upper bound
in low SNR region shown in Sec 4.1.
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Figure 5.1: Example 1.A. Different Integer Bit Allocation schemes (Mr =
4, Mt = 3, M = 3, Rb = 12) for (a) ρ =0, (b) ρ =0.5, and (c) ρ =0.9.
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B. For Mr = 6, Mt = 4, M = 4, Rb = 8, we can see the BER plots
in Figure 5.2. bgr,Mopt is still the same as bd,Mopt and bmber for different
correlation parameters. This corroborate our earlier observation that when
the transmission power is high enough so that all f(.) is operating at convex
region, bd,Mopt and bgr,Mopt should be the same. Figure 5.1 and 5.2 confirm
this conclusion.
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Figure 5.2: Example 1.B. Different Integer Bit Allocation schemes (Mr =
6, Mt = 4, M = 4, Rb = 8) for (a) ρ =0, (b) ρ =0.3, and (c) ρ =0.7.
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Example 2. Performance for different Vf . In this example, we dis-
cuss the BER performance between different Vf chosen in section 4.2. The
parameter settings are Mr = 6, Mt = 4, M = 4, Rb = 18. The proposed

precoder is F =
√

Pt

M
Ut,MVf and the reverse ordering is used. Five different

Vf are used

•
√

Pt

M
IMt,M .

• DFT matrix.

• DCT matrix.

• Random unitary matrix.

•
√

Pt

M
U′

t,M .

For each Vf , the corresponding breal,M and bgr,M can be found in Section 4.1
and 4.3.3. The BER performances and ϕM(b) are shown in Figure 5.3. In
Figure 5.3 (a), we can find there are only a little difference between different
Vf . In Figure 5.3 (b), the BER difference become smaller when breal,M

is used. Now we assume bk is large enough so that (1 − 2−bk/2) ≈ 1 and
2bk −1 ≈ 2bk , then the BER formula used in (2.5) for simulations is turned to

be BER ≈ 4
Rb

∑M−1
k=0 f

(
2bkσ2

ek

3

)
. The result is shown in Figure 5.3 (c). We

can find the BER performance between different Vf are all the same. For

convenience, we will all use Vf =
√

Pt

M
IMt,M in the later examples.
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Figure 5.3: Example 2.A. Performance for different Vf (Mr = 6, Mt =
4, M = 4, Rb = 18) for (a) bgr,4, (b) breal,4 and (c) breal,4 with high bit rate
assumption.
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Example 3. Performance for different M0. In this example, the pre-

coder used is F =
√

Pt

M
Ut,M . For a given M0, we find the optimal integer bit

allocation that minimizes ϕM0(b) using the greedy algorithm in Sec 4.3.3. By
calculating ϕM0(b) for each M0, we obtain the optimal number of substream
Mopt which has minimum ϕM0(b) in Sec 4.3.5.

A. For Mr = 4, Mt = 3, M = 3, Rb = 12, the BER plots are shown
in Figure 5.4. In this case, Mopt is 3 for ρ = 0, 0.5. We can see in Figure
5.4 (a) (b), the use of 3 substreams given a better performance for both
reverse ordering. For ρ = 0.9, the optimal number of substream Mopt is 2
and Figure 5.4 (c) shows that using 2 substreams yields a lower error rate.
This demonstrates that the statistical lower bound ϕM0(b) provides a useful
reference.
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Figure 5.4: Example 3.A. Performance for different M0 (Mr = 4, Mt =
3, M = 3, Rb = 12) for (a) ρ = 0, Mopt = 3, (b) ρ = 0.5, Mopt = 3 and (c)
ρ = 0.9, Mopt = 2.
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B. For Mr = 6, Mt = 4, M = 4, Rb = 8, the BER performance is shown
in Figure 5.5, Mopt is 3 for ρ = 0, 0.3 and Mopt is 2 for ρ = 0.7. Again, we can
see that using the statistical bound ϕM0(b) is a useful reference to determine
the number of substreams transmitted.
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Figure 5.5: Example 3.B. Performance for different M0 (Mr = 6, Mt =
4, M = 4, Rb = 8) for (a) ρ = 0, Mopt = 3, (b) ρ = 0.3, Mopt = 3 and (c)
ρ = 0.7, Mopt = 2.
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Example 4. Different Precoders. In this example, we compare the
performance between different precoders for the same bit allocation and fixed
detection ordering. The parameter settings are Mr = 4, Mt = 3, M =
3, Rb = 18. Four different precoders are used

•
√

Pt

M
Ut, the precoder given in (4.11) for minimizing the BER statistical

bound.

• FJOJ , the optimal statistical precoder derived in [35] for a given bit
allocation.

• FLZW , the MSE-minimizing statistical precoder given in [33] for uni-
form bit allocation.

•
√

Pt

M
IMt,M , which consist of first M columns of IMt .

Reverse ordering is used for all precoders except FJOJ , for which forward
ordering is applied as FJOJ is designed for forward ordering. We show the
results for two different bit allocation, uniform bit allocation in Figure 5.6 and
bgr,M in Figure 5.7. The vector bgr,M is computed using the greedy algorithm

in Sec 4.3.3. when the precoder is
√

Pt

M
Ut. We can see that for uniform bit

allocation, FJOJ and FLZW are better than the other two. As correlation
parameter ρ increases, the optimal bit allocation become more nonuniform
and FLZW does not perform as well. This is because FLZW is designed for
uniform bit allocation. Notice that FJOJ performs better because its design
considers bit allocation.
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Figure 5.6: Example 4.A. Performance of different precoders for uniform bit
allocation. (a) ρ =0.5; (b) ρ =0.9.
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When the bit allocation is bgr,M in Fig 5.7, the precoder
√

Pt

M
Ut become

the best of the four.
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Figure 5.7: Example 4.B. Performance of different precoders when the bit
allocation is bgr,M . (a) ρ =0.5, bgr,M = [8 6 4]; (b) ρ =0.9, bgr,M = [10 5 3].

Example 5. Performance for different ρ. In this example, we compare
our staP-BA system with the original system for different ρ. The parameter
settings are Mr = 6, Mt = 4, M = 4. The original system is assumed
without precoding (F = IMt) and uniform bit allocation. The results are
shown in Figure 5.8 and 5.9. In Figure 5.8, the BER performance become
closer after applying our method. In Figure 5.9, we define the improvement
gain as the SNR difference between these two system. Then we can find the
improvement gain becomes larger when ρ increases. This demonstrates our
staP-BA system has better improvement for highly correlated channels.
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Figure 5.8: Example 5.A. Performance for different ρ (Mr = 6, Mt = 4, M =
4) for (a) Rb = 8, and (b) Rb = 12.
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Figure 5.9: Example 5.B. Comparison of improvement gain (Mr = 6, Mt =
4, M = 4) for (a) Rb = 8, and (b) Rb = 12.
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Example 6. Comparison of Different Detection Ordering. In this

example, we use the precoder F =
√

Pt

M
Ut,M and compare the performance

of different detection orderings for the same bit allocation (uniform bit allo-
cation or bgr,Mopt). The detection orderings considered are

• Reverse ordering

• VBLAST ordering [14]

• Greedy QR ordering [15]

• Rate-normalized-SNR ordering

• Optimal ordering, which is obtained by an exhausted search of all de-
tection orderings for minimum BER.

A. Mr = 4, Mt = 3, M = 3, Rb = 18, ρ = 0.5. The BER plots
are given for uniform bit allocation is in Figure 5.10 (a) and for bgr,Mopt in
Figure 5.10 (b). For uniform bit allocation, rate-normalized-SNR ordering
and VBLAST ordering are the same and the performance is indistinguishable
form the optimal ordering. The greedy QR ordering is slightly worse. The
selection criteria of greedy QR ordering is minimizing the error variance of
the last detected symbol for each recursive procedure and is different from the
VBLAST ordering. The reverse ordering has the worst performance because
it is a fixed detection ordering. We can not change the detection order to
improve the error rate when a subchannel has low SNR.

When bgr,Mopt is used. We see in Figure 5.10 (b) that the BER perfor-
mance of rate-normalized-SNR ordering is very close to the optimal ordering
but the VBLAST ordering is not. This demonstrates the importance of tak-
ing bit allocation into consideration in determining detection ordering when
nonuniform bit allocation is used. In this case, reverse ordering performs
better than VBLAST and greedy QR ordering because bgr,Mopt is designed
based on the reverse ordering.
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Figure 5.10: Example 6.A. Comparison of different detection orderings for
(Mr = 4, Mt = 3, M = 3, Rb = 18, ρ = 0.5) (a) uniform bit allocation, and
(b) bgr,Mopt = [8 6 4].
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B. Mr = 6, Mt = 4, M = 4, Rb = 8, ρ = 0. The BER plot is
given in Figure 5.11. For uniform bit allocation in Figure 5.11 (a), rate-
normalized-SNR and VBLAST ordering are the same and the performance
is indistinguishable for the optimal ordering. The greedy QR and reverse or-
dering performs worse. For bgr,Mopt in Figure 5.11 (b), the BER performance
of Rate-normalized-SNR ordering is also very close to the optimal ordering.
Comparing with the previous case in Figure 5.10 (b), the optimal bit alloca-
tion bgr,Mopt is more uniform. The VBLAST ordering has less performance
loss. In this case, reverse ordering performs better than greedy QR ordering.
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Figure 5.11: Example 6.B. Comparison of different detection ordering (Mr =
6, Mt = 4, M = 4, Rb = 8, ρ = 0) for (a) uniform bit allocation, and (b)
bgr,Mopt = [3 3 2].

Example 7. Comparison with other related works. In this example,
we compare our proposed staP-BA system with the methods reviewed in
Chapter 3. The following is a list of systems in the comparison.

• Vertical Bell Laboratories Layered Space-Time (V-BLAST) system [14].
It is a novel Multi-Input Multi-Output (MIMO) antenna scheme and
it focuses on the detection algorithms.

• Statistical bit allocation system (staBADu) (reviewed in Sec 3.3.1). It
is designed by minimizing the outage probability error [40]. The in-
teger bit allocation used is obtained quantizing the bit allocation in
(3.4). The quantization method used is introduced in [46]. The reverse
ordering is used in staBADu.

• Statistical bit allocation system (staBARavi) (reviewed in Sec 3.3.2).
It designed by selecting the optimal antenna set [42]. The integer bit
allocation used is rounding the bit allocation in (3.6) The greedy QR
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ordering is used in staBARavi.

• Statistical precoder system (staPLZW) (reviewed in Sec 3.2). It is de-
signed by minimizing MSE for uniform bit allocation [33] and the re-
verse ordering is used in staPLZW.

• Statistical precoder system (staPJOJ) (reviewed in Sec 3.2). It is de-
signed by minimizing bit allocation weighted MSE for a given bit alloca-
tion [35]. We use the optimal bit allocation bmber which is introduced
in Section 4.3.1 to minimize BER for the precoder in staPJOJ. The
forward ordering is used in staPJOJ.

• Our proposed system (staP-BA), in which the precoder, bit allocation

and detection ordering used are
√

Pt

M
Ut,M , bgr,Mopt and rate-normalized-

SNR ordering.

The simulation results are shown in Figure 5.12, 5.13 and 5.14.

A. Figure 5.12 shows the BER performance when Mr = 4, Mt =
3, M = 3, Rb = 12.. Note that the bit allocation in staBADu is SNR-
dependent and performs better for higher SNR. All the other bit allocations
does not change with SNR. We can see that the proposed combination of
statistical bit allocation and statistical precoder has the smallest BER for
correlated channel. VBLAST system performs best for i.i.d. channels and
only worse than our staP-BA system for correlated channels. This phe-
nomenon will be shown again with other channel parameters in the later two
examples.
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(c)
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Figure 5.12: Example 7.A. Comparison with other related works (Mr =
4, Mt = 3, M = 3, Rb = 12) for (a) ρ =0, bgr,Mopt=(5 4 3) (b) ρ =0.5,
bgr,Mopt=(6 4 2) and (c) ρ =0.9, bgr,Mopt=(8 4).
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B. Figure 5.13 shows the BER performance when Mr = 4, Mt =
3, M = 3, Rb = 18. Comparing with the previous case, we only increase
Rb to 18 and the optimal Mopt determined in (4.14) are all equal to M . We
can see staBADu performs the worst and our staP-BA system performs well.
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Figure 5.13: Example 7.B. Comparison with other related works (Mr =
4, Mt = 3, M = 3, Rb = 18) for (a) ρ =0, bgr,Mopt=(7 6 5), (b) ρ =0.5,
bgr,Mopt=(8 6 4) and (c) ρ =0.9, bgr,Mopt=(10 5 3).
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C. Figure 5.14 shows the BER performance when Mr = 6, Mt =
4, M = 4, Rb = 8. Similar to the previous case, staBADu and staBARavi

perform worse than other methods and the BER performance of staPLZW

and staPJOJ are very close. Again, we can see staBADu performs better for
i.i.d channel. For ρ = 0 and 0.3 at BER=10−4, staPJOJ performs best of
the four related statistical works and our proposed staP-BA system is about
1.5dB better than staPJOJ. For ρ = 0.7, staPJOJ performs best of the four
statistical related works and our proposed staP-BA system is about 1.5dB
better than staPJOJ. The optimal bit allocation bmber used for staPJOJ is (5
3) and is the same as bgr,Mopt in staP-BA. In staPLZW, the bit allocation used
is (2 2 2 2). It has shown in Example 2.B. The optimal number of substream
Mopt used is 2. We can see staP-BA and staPJOJ has larger improvement
because Mopt is used.
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Figure 5.14: Example 7.C. Comparison with other related works (Mr =
6, Mt = 4, M = 4, Rb = 8) for (a) ρ =0, bgr,Mopt=(3 3 2), (b) ρ =0.3,
bgr,Mopt=(3 3 2) and (c) ρ =0.7, bgr,Mopt=(5 3).
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Example 8. Linear receiver. In this example, we present the result of
staP-BA system with a linear receiver and compare it with the statistical pre-
coder with linear receiver [25] mentioned in Section3.1. The result are shown
in Figure 5.15 and 5.16 whenMr = 5, Mt = 4, M = 4, Rb = 12, ρ=0 and 0.7.

A. Figure 5.15 are given by different types of integer bit allocation,
bmber, bprob, bgr,M and bgr,Mopt for statP-BA system. We can find the lowest
BER achieved when M0 = Mopt. Also we can find bgr,Mopt is equal to bmber

in both correlated and uncorrelated channels.
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(b)
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Figure 5.15: Example 8.A. Linear receiver, Comparison of different integer
bit allocations (Mr = 5, Mt = 4, M = 4, Rb = 12) for (a) ρ =0, Mopt = 3
and (b) ρ =0.7, Mopt = 2.

Figure 5.16 shows the comparison of our staP-BA system with staPKSVR

system introduced in Section 3.1. The statistical precoder system (staPLZW),
which is designed by minimizing the upper bound of statistical joint error
probability [25] and the allocation is uniform in staPLZW. We can find our
staP-BA system perform better than staPLZW. For ρ = 0, the proposed
staP-BA system is about 2.5dB better than staPLZW at BER=10−3 and this
BER gap is about 5.5dB at BER=10−5. For ρ = 0.7, the proposed staP-BA
system is about 6dB better than staPLZW at BER=10−3 and this BER gap
is about 10dB at BER=10−5.
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Figure 5.16: Example 8.B. Linear receiver, Comparison with other related
works (Mr = 5, Mt = 4, M = 4, Rb = 12) for (a) ρ =0 and (b) ρ =0.7.

55



Chapter 6

Conclusions

In this thesis, we proposed statistical precoder and bit allocation for MIMO
systems with correlated channel and this system is called the staP-BA sys-
tem. We first derived the statistical BER bound for real bit allocation.
Based on minimizing this bound, the optimal statistical precoder is derived
both for linear and decision feedback receivers. Second, we proposed design
methods for integer statistical bit allocation. In simulations, we have shown
our statistical bit allocation performs well and the BER performance can be
furthermore by using rate-normalized-SNR ordering.
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