H W X

HEAHM: 20 A St 288 2 i o ixasast

Joint Design of Statistical Precoder and Statistical Bit Allocation for Correlated
MIMO Channels

Fe p M =g 47
By o2 i EkEa

R HARR L




HEAHM: 200 A St 28t 2 oo o B ixgsast

Joint Design of Statistical Precoder and Statistical Bit Allocation for Correlated
MIMO Channels

Moy o4 i EERaR Student : Chun-Wei Hsiao

I ERE KRR Advisor : Yuan-Pei Lin

A Thesis
Submitted to Department of Control Engineering
College of Electrical Engineering
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Department of Electrical Engineering

November 2011

Hsinchu, Taiwan, Republic of China

S EAR-F L



HEREE A SRR AT Bes X 2saa T

M4 i EER

fEHE R B4

RN INE F ek i) =y I 44

HE

RS T AR R TIE s R SN JERS SR R

T
1

(!\

Fel g BiE Eemk b ko F AA P L B 2 B ER

LR SETE L L RN S

s A g BT IOMEE T L RF A

2r 21 s B
f'/{fz ﬂ'uﬂb

NTEFEEE L SR TR T ST T ="

RN A S R

il

B2/ Evﬁ"—w‘ °



e

FSLiEa & 5 %0 A 2 uE BA L POd SHVR B st ad §
TR Y EAEHAREIE RS o R FHM aR KL o oy Fop
PR SRR EREOFL A A DR L0 E I R & i RaR A
W LR g L RPEHE P OEE R M RIS

LA E AR A REIRRE S 4 A g

2 BRRAAAL T o F RAORPIGLE P ko FRA - Qe R D
W BAF PP 5P o B i B IS M S B - B R B A B X fE R

i e



Joint Design of Statistical Precoder and
Statistical Bit Allocation for Correlated
MIMO Channels

Chunwei Hsiao

Adyisor: Dr.Yuan-Pei Lin
Department of Electrical Engineering
National Chiao Tung University

Abstract

In this thesis we consider the design of statistical precoder and sta-
tistical bit allocation for multi-input multi-output (MIMO) systems
over correlated channels. We assume the correlated channel is slow
fading and full channel state information is available at the receiver,
while only the statistics of the correlated channels is assumed to be
known at transmitter. We will first derive the statistical bound of bit
error rate (BER) and the corresponding optimal real bit allocation.
Based on this statistical BER bound, the optimal unitary statisti-
cal precoder is derived both for linear and decision feedback receiver.
Second, the statistical integer bit allocation is designed the greedy al-
gorithm. Finally, different number of substreams will be considered



and selected by statistical BER bound. Simulations show lower BER
can be achieved when optimal number of substreams is selected for
correlated channels.
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Chapter 1

Introductions

In recent years, MIMO wireless communication systems have received sub-
stantial attention. When full channel state information (CSI) is available at
transmitter and receiver, many criteria have been considered in the transceiver
designs, e.g., [1]- [19]. When thereceiver is linear, optimal transceivers that
maximize the mutual information are preposed in [1]- [5], transceiver de-
signs that minimize mean‘square-error are considered in [6]- [9] and optimal
transceivers that minimize the BER are.derived in [10]- [13]. When the re-
ceiver is nonlinear, the Vertical Bell Labs Layered Space-Time (V-BLAST)
scheme [14] in which uncoded data streams are transmitted from each trans-
mitter antenna, and detected at the receiver using nulling and successive
interference cancellation. To minimize the probability of error, the order of
detection in V-BLAST is based on the post detection signal-to-noise ratio
(SNR) the calculation of which renders the reception procedure computa-
tionally demanding. In [15] and [16], a framework is developed for jointly
designing channel-dependent ordered decoding at the receiver and decoding
order-dependent rate/power allocation at the transmitter. In [14]- [16], the
designs are without precoding techniques. The precoding techniques for non-
linear receiver are considered in [17]- [19]. Precoder designs that minimizes
mean square error (MSE) are derived in [17]. Several precoder design criteria
are considered in [18], e.g., minimizing MSE or transmission power. In [19],
the precoder is jointly optimized with the bit allocation.

However, full CSI at the transmitter is often not possible. Instead, partial
CSI at the transmitter could be available by numerical channel realizations
or already known channel statistics, like approximate capacity distribution
in [20] and [21] or averaged mean square error in [22] and [24]. Based on this



situation, there have been lots of research on optimizing system performance
with statistical transceiver or bit allocation design. In [25], the precoder de-
sign with linear receiver by minimizing the upper bound of statistical joint
error probability. In [29] and [30], a unified frame work considers the design
problem when imperfect CSI consists of the channel mean and covariance
matrix or, the channel estimate and the estimation error covariance matrix.
The transceiver design is based on a general cost function of the average
MSE as well as a design with individual MSE based constraints. In [31],
for given long term statistical channel information feedback and rank defi-
ciency MIMO channel, the precoder is constructed based on the criterion of
minimizing the pair-wise error probability bound. Also precoder for min-
imizing error probability is derived in [32]. In [33], the precoder designed
with decision feedback receiver is also based on minimizing sum of statistical
MSEs. Then the precoder design in [33] has been extended to more general
version in [35]. In [35], other kinds of design problems consist of minimizing
statistical symbol error rate, statistical bit error rate and statistical outage
probability error are considered and-a closed form solution for the statistical
bit allocation weighted MSEs‘is derived to reduce the complexity. In these
precoder designs, an uniform or-given-bit allocation is assumed and sophis-
ticated convex optimization techniques-or inequality properties are needed
in [36], [39], [37] and [38]. There are also some statistical bit allocation de-
signs without precoding-technigue. -In [40], the statistical bit allocation is
considered by minimizing the statistical outage probability errors obtained
by numerical channel realizations. In [42]; the optimal transmission antenna
subset is derived by maximizing ‘the statistical minimum substream SNR.
After choosing the transmit antenna set, the bit allocation is obtained using
numerical channel realizations.

In this thesis, we consider the statistical design problem at the trans-
mitter. We assume the statistics of transmit correlation matrix is available
at transmitter and full CSI is available at receiver. Previous works have
shown the methods of statistical precoder design or statistical bit allocation
design. Our goal is jointly designing the optimal precoder, bit allocation
and number of substreams. Linear and decision feedback receiver are both
considered. For given number of substreams M, we derive the statistical
BER bound ¢y, (b) first. The statistical BER bound ¢,;(b) achieves the
minimum €2,,(b) while the optimal real bit allocation is used. Applying this
optimal bit allocation, the optimal precoder is derived by minimizing 2,,(b).
In practical applications, the bit allocation should be nonnegative integers.



After the convex property of statistical objective functions are examined,
greedy algorithm can be used to find the optimal nonnegative integer bit
allocation. It is clearly that the optimal nonnegative integer bit allocation
is close to the optimal real bit allocation. Also the statistical BER bound
¢ar(b) is useful for determining the optimal number of substreams. Thus
the optimal precoder, bit allocation and number of substreams are obtained.
Finally, simulations show our design have well performance.

1.1 Outline

e Chapter 2: The system model is presented.

e Chapter 3: Previous works are reviewed in this chapter. Optimum
statistical precoder with linear receiver [25] is reviewed in sec3.1. Op-
timum statistical precoders with decision feedback receiver [33] [35]
are given in sec3.2. Statistical bit allocations for decision feedback
receiver [40] [42] are reviewed-in sec3.3.

e Chapter 4: The proposed staP-BA system for correlated channel is
given. The statistical BER bound and the optimal bit allocation are de-
rived in sec4.1. The optimal statistical precoder under transmit power
constraint is developed in sec4.2. Various statistical integer bit alloca-
tion design methods-are! presented in sc4.3.

e Chapter 5: Simulation examples-are presented in this chapter.

e Chapter 6: A conclusion is given in this chapter.

1.2 Notations

e Boldfaced lower case letters represent vectors and boldfaced upper case
letters are reserved for matrices. The notation At denotes transpose-
conjugate of A.

e The function E[y] denotes the expected value of a random variable y.
e The notation I,, is used to represent the m x m identity matrix.

e The notation tr(A) denotes the trace of A.



Chapter 2

General System Model

2.1 Statistical Bit Allocation System Model

Consider the MIMO system with M, transmit antennas and M, receive an-
tennas in Figure 2.1. The channel'is-maodeled by an M, x M; memoryless
matrix H with M, x 1 channel noise vector q: We assume the channel is slow
fading so that the channel ‘does not change during each channel use. The
noise vector q is assumed to be additive white Gaussian with zero mean,
unit variance and E[qq'} = Nyl . The channel considered in this thesis is
of the form

H = H,R/? (2.1)

where H,, is an M, x M; matrix whose elements are independent Gaussian
random variables with zero mean and unit variance. The matrix Ry, of
dimensions M; x M;, is called the transmit correlation matrix. In this case,
the rows of H are independent and each has autocorrelation matrix equal to
R;. Let the eigen decomposition of R; be

R, = U/AU,,

where A; is a diagonal matrix and the diagonal elements A;; are the eigen-
values of R;. Let the diagonal elements of A\;; be ordered such that A,y >
Atg = . > Agm,—1 and assume Ay pr-1 > 0.
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Figure 2.1: The system model of MIMO transmission system.

Suppose the transmitter and receiver can process M substreams of symbols,
where M < min(M;, M, — 1). The spatial multiplexing precoder F is an
M; x M matrix with orthonormal columns. The input vector s is an M x 1
vector consisting of modulation symbols s, for £k =0,1,..., M — 1, carrying
by, bits. The number of bits transmitted per channel use is thus

M-—1
Ry = Z bi.
k=0

The symbols s, are assumed to be uncorrelated with zero mean and unit
variance, E[ss!] = I,;. The total transmission power is constrained to be P;.
Thus, we have tr(E[xx']) =#r(E[Fss'El])=tr(FF') < P,.

2.2 Receiver Design

In this thesis, we will consider two types of zero forcing receivers, linear and
decision feedback receivers.

2.2.1 Linear receiver

When the receiver is linear and zero forcing, the receiver is an M x M, matrix.
We denote it as G,
G = (F'TH'HF) 'F'H

[23] The receiver output is § = Gr. Define the error vector at the output of
the receiver as e = s — s. In this case, the error vector e has autocorrelation



matrix R, = NyE[eel] given by [23]
R, = No(FTH'HF) .

We can obtain the kth average subchannel error variance 5§k by averaging
the above error covariance matrix over the correlated channel. Let the ith
column of H%9 be g;, then the autocorrelation matrix of g; is equal to R,. It
is known that H'H = 22/[:61 gigj has a complex Wishart distribution with
M, degrees of freedom, denoted as Wy, (R, M,) [24]. If F is a nonsingular
matrix then the matrix R;! = N;'F'H'HF has a Wishart distribution
Wi (Ny 'FTR,F, M,). Tt has been shown in [22] that when a matrix C is of
Wishart distribution W, (A, t) with ¢ > p, then E[C~'] = ;- A~". Using this
result, R, = E[R,] is given by

No

Ee = m(FTRtF)il, where M, > M. (22)

2.2.2 Decision feedback receiver

s
AN W & detector M4 §

B

Figure 2.2: Block diagram of the decision feedback receiver based on QR
decomposition.

To consider a decision feedback receiver, we can use the receiver structure
in Figure 2.2 based on the QR decomposition of HF [33]. This corresponds
to the case of a reverse detection ordering which detects from the Mth to
the 1st subchannel. Let the QR decomposition of HF be QR, where Q is
an M, x M matrix with orthonormal columns and R is an M x M upper



triangular matrix with [R]; = r;. The feedforward matrix W and feedback
matrix B are given respectively by

Y -1 -1 ~1 t
W = diag (7”00 N ST ,TMLMl) Q',

_ -1 -1 -1
B = diag (7’00 Ty 7TM1,M1> R —1Iy.

Assuming there is no error propagation, the kth subchannel error e, =

s), — S has variance afk = N()'T’];I?, for k=0,1,..., M — 1. The error variance

averaged over the random channel is 2 = E[o?] = NoE[r;?]. The value

E[r;;?] has been shown to be related to the Cholesky decomposition of FIR;F

in [33] when M, > M. Let the Cholesky decomposition of FTR;F be LDLT,

where L is a lower triangular matrix with unity diagonal elements and D is
diagonal. Then

-1
o, = NoElr] :%, k=0,1,...,M —1, (2.3)

where dy; is the kth diagonal element-of D.

Bit Error Rate Theinputs sg are bp-bits QAM symbols, the kth symbol
error rate can be approximate by [47]

SERy = 4(1 = 2‘bk/2)Q( ﬁ) (2.4)

When gray code is used, then BER can be approximated by BER; =~

| M-l | Ml
BER ~ — by BER), ~ — SERy. 2.5
Ry kZ:O ) "“ R, kZ:O F (2:5)

Other Detection Orderings

e Forward ordering
Similar to the reverse ordering, the detection order of forward order-
ing is fixed but detection starts from the 1st to the Mth subchannel.

7



The receiver structure is similar to that in Figure 2.2 and we use QL
decomposition to replace the QR decomposition. Let the QL decompo-
sition of HF be QL,, where Q is an M, x M matrix with orthonormal
columns and L, is an M x M lower triangular matrix with [Lg|; = ;-
The feedforward matrix W, feedback matrix B and -, in [35] are given
by

W = Q diag (lq 007 lq INERREE: l;]l\/[—lM—1> ’

B = diag (l;ém l;h? s 71;}/[—1M—1> L—1Iy

Let the Cholesky decomposition of FIR,F be LIDlLl, where L; is a
lower triangular matrix with unity diagonal elements and D; is diago-
nal. And the error variance averaged over the random channel is

Nody 4
MANSMEh 1

o, = NoE[l,7] = k=0,1,...,M—1, (26)

where d; i, is the kth diagonal element of D .

VBLAST ordering [14]

In the VBLAST system, the detection ordering is not fixed. It is based
on the current channel. The decision feedback receiver can be described
as a recursive procedure [14]. First initializes ro = r, Ay = HF and
i = 0. The steps in the recursions are as follows. (1) Let G; be the
Moore-Penrose inverse of A;. Find the row vector of G; that has the
smallest 2-norm. Call the index of the row vector n; and the row
vector w;. (2) Compute y; = w;r;, apply symbol detection on y;, and
call the output §,,. (3) Subtract from r; the contribution of the n;th
subchannel, r;y; = r; — 5,,a,,, where a,, is the n;th column of A,
and zero the n;th column of A; to obtain A;;1. p,, is maximized in
the nth stage and the post detection SNR of the n;th subchannel is
Pri = TN, HW TN Wi hen all the subchannels are of the same constellation.
In this case, tLe above procedure is optimal in the sense that the worst
subchannel error rate is minimized.

Rate-Normalized-SNR ordering
The detection procedure of rate-normalized-SNR ordering is similar to



that of VBLAST [14]. The only difference is that the rate normalized

SNR
P,

— MNy(2b — 1) || w2

Pn;
is maximized.

Greedy QR ordering [15]

The algorithm is proposed in [15] for efficient ordering using QRE de-
composition. The recursive procedure starts by minimizing the error
variance of last detection layer by a permutation matrix I'; and unitary
matrix Q;. Then we repeat the same procedure to find I's, ..., 'y,
and Qa,..., Q. At last, this ordered QR decomposition of H has
the following form HT' = QR, where I' = I''I's - - - 'y, is a permuta-
tion matrix, Q = Q1Q2 - - - Qyy, is an unitary matrix with orthonormal
columns and R is an upper triangular matrix. The permutation matrix
I' determines the detection ordering.



Chapter 3

Previous Works of Statistical
Designs

In this chapter, previous works on statistical precoder and bit allocation
are reviewed. Section 3.1 recaps the statistical prcoder design with linear
zero forcing receiver proposed in [25] and [26]. In section 3.2, we present
the method of designing ‘optimal statistical zero forcing decision feedback
precoder are proposed in [33] and [35] for equal or given bit allocation. In
section 3.3, the designs-of statistical bit allocation without precoder were
proposed in [40] and [42].  Incall sections, full knowledge of channel state
information is available at-receiver. At the transmitter, however, only statis-
tical characteristics of the channel are available.

3.1 Statistical Precoders for Linear Receivers

In this subsection, we review the statistical precoder proposed in [25] for
linear zero forcing receiver. In [25], the system model is the same as that
in section 2.2.1. The bit allocation is uniform and the target bit rate is a
multiple of M. Each symbol carries Ry,/M bits. Using the results from [27]
and [28], the average probability of a symbol error P, on subchannel k£ can
be bounded by

M, —M+1
P < B(NO[(FTRtF)l]kk) )

where [ is a constant depending on the modulation. In order to solve the
optimal F that optimizes the cumulative error probability of all subchannels,

10



the equivalent constrained optimization problem is formulated as

M,—M+1
miniFmize 24:61 [(FTR,F) i
subject to tr(FFT) = Pt
The optimal statistical precoder is of the form
P, _
Frsvr = —ilpUt,MAt,;/;4WMa (3.1)

Tr(At,M )

where W, is a normalized M x M DFT matrix and U, and Ay are
respectively submatrices of U, and A; consist of the first M columns of Uy,
and At.

3.2 Statistical Precoders for Decision Feed-
back Receivers

In this subsection, we introduce the statistical precoder design method for
zero forcing decision feedback systems that use convex optimization tech-
nique. The design method was first proposed in [33] considered equal bit
allocation and minimization of MSE. More general method was proposed
in [35] that considered different.types of-objective functions for a given bit
allocation. The system in [33] requires M = M; < M, and the system in [35]
requires M < min(My, M, — 1).

In [33], the optimal statistical precoder is designed by minimizing the
average arithmetic mean-squared error (MSE) subject to a constraint on
the total transmission power. The bit allocation here is uniform and the
optimization problem shown as follows:

minimize  Ep AP e
subject to tr(F'F) < Pt,

where r,;,f is the same as that in (2.3). Using the relationships between py ,

11



At and E [Tkk] the equivalent optimization problem is as follows.

L M-l 1 G,
minimize k=0 TL—FiC
dkzpk
,ﬁ“ P = = Pt
subject to ! 2 >

M]\(; lldk < ZMA}) 11_ + ZkM 1th, 1< Mo < M,
" Dm0 Pt 2t

where d), = log dy, D, = log py, and dy, is as the same as djy, in (2.3). The above
design problem is called Geometric Programming and is a convex optimiza-
tion problem that can be efficiently solved using an interior point method [38].

Let Dp = dmg(po/ 7pi/27 s ap}\gf—l) and
L, = diag(poreo, P1Aets - - -, Pr—1 e —1)-

Let the generalized triangular decomposition [34] of L;/ % be NTI'ST, where
N and S are two M, x M, matrices~with orthonormal columns and I is an
upper triangular matrix with diag(T') = diag(do, d1, . .., dp,—1). The optimal
statistical precoder has the following form

Frzw = UD,S. (3.2)

In [35], the optimal statistical precoderis designed by minimizing a convex
cost function subject to a constraint on the total transmission power. The
convex cost function can be the sum of average MSE, average joint error
probability and average outage probability function. The bit allocation is
not necessarily uniform. The case of is sum of average MSE is reviewed
below. The optimization problem is formulated as

minimize Zk 0 =)
NPk M1
Py —
peo € =Pt

subject to Mo—1 ﬁ1>p%\/1 1 - = Pu -
% e < Do _k—l—zk )\tk, 1< My< M

k=
—1_ e
Zkonk Ekopk+2k0)‘tk

where g denotes the gth norm of average mean square error, o = lo _ 2%l
) q q g q y Gk 25 M,—M+k—1 |

A = log, A\ and 7, = log, m.. As in [35], this optimization problem can be

12



solved by the interior point method [38]. Let

A= diag(PoAto, P1 AL, - - - s DM—1 A M—1)5

dzag(Rl) - diag(n()a Niyee anM—l)

and take the generalized triangular decomposition on (1~X1/ T = ZR,I', where
Z and I are two M x M matrices with orthonormal columns and R; is an
upper triangular matrix. Then the optimal statistical precoder is given by

Fjor=U;uD,Z. (3.3)

3.3 Statistical Bit Allocation with Decision
Feedback Receiver

In this subsection, we recaps two_methods for finding statistical bit alloca-
tion in [40] and [42] . In [40], the-bits-aré¢ allocated based on statistics for
an ii.d. channel. In [42].the number of transmit antennas together with
the transmit symbol constellations ‘are determined using the knowledge of
channel correlation matrices.

3.3.1 Statistical bit allocation fori.i.d. channel

For a flat-fading MIMO channel-H,,(My < M, ) assumed in (2.1), the rela-
tionship between transmitted symbol 's and received symbol r is

r:HwS+qa

where q is the noise vector which has the same definition in Chapter 2.
Assuming that each transmit antenna has equal transmit power and forward
detection ordering is used, the instantaneous transmission rate to be allocated
to transmit antenna [ is

By
M; Ny

P
H,_H ) — log, det(I,;, + W;VOHZH}),

C) = log, det(I, +
where H; = [h;,1hy 5. .. hy,] and P, is the total transmission power. It has

been observed that the distribution of the capacity of a MIMO Rayleigh chan-
nel can be accurately approximated by a Gaussian distribution at medium

13



and high SNR [20] [21], denoted as C; ~ N(n;, 0;), where n; and o; are the
mean and variance of the [th transmission rate. In order to select data rates
for different antennas, the outage probability of the whole system is mini-
mized. It is equivalent to maximizing the probability when no subchannel
have transmission rate greater than the respective subchannel capacities and
the optimization problem is as follows

—(t—np)?
.. . Mt 1 o2
minimize fb e ki dt
bER 1 \[ 20k, ,
. M1y
subject to Z Ry,
where ox; = 0;/K, K is the number of independent channel realizations.

Then, the optimum bit allocation for the /th antenna is

b=m+ g Rb Z Thm)- (3.4)
Zm 1

3.3.2 Statistical bit allocation for correlated channel

In [42], the author proposed a selection criteria to-choose the optimal transmit
antenna set v which maximize the minimum subchannel SNR given by

Mt My—j
(1,0) = arg | = (W Ry, +ZZ__R,,1H2)_1HMJ,
t

(M¢,0) =1 =1
(3.5)
where ]\Z is the number of active antennas of the transmit antenna set v.
After the optimal transmit antenna set v is chosen, the real bit allocation is

derived by assuming post detection SNR are all the same and the statistical
bit allocation is obtained by the below equation

R 1
bij,, = Mi + 2log | M:(R)| — iA log, det(R'R), (3.6)

where R is obtained from the QR decomposition of H,, = QR and X\;(R)
denotes the ith largest eigenvalue of R.
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Chapter 4

Statistical Precoder Design

For a given precoder, we will first derive the statistical BER bound and the
optimal real bit allocation. Based on the BER bounds, we can obtain the
optimal precoder under the transmission power constraint. At last, we will
discuss methods for finding statistical integer bit allocation.

4.1 Derivation of Statistical BER Bound and
Optimal Real Bit Allocation

The BER can be computed. using (2:4)-and (2.5). For the convenience of
derivation, we define the function

fly) =Q1/vy),y > 0.

The function f(y) is monotone increasing and it can be verified that f(y) is
convex for y < 1/3 and concave for y > 1/3.

High SNR case Let us consider the high SNR case in which the con-
b 0_2
vexity of f(.) holds. Using f(.), we have SER, = 4(1 — 557) f <(2 - )

(2% —1)02,

and BER = Rib ZkM:BIQ_ Qbim )f( 3 ) . The averaged BER is given by
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M-1 b .

E[BER) z%b 41— ﬁ)E[f (%)] (4.1)
4= (25 —1)52,

= ; 26&/2 ( 3 ) (4.2)

2 éu(b), (4.3)

where b = [by by ...by—1] is the bit allocation vector. The inequality in (4.1)
is obtained using Jensen’s inequality. Assume b, is large enough so that
(1 —27%/2) ~ 1 and 2% — 1 ~ 2% then

onb) = > f(=5)
k=0
4 LA /otnG2
> B \az 2 <T)) (44)
A M

1 =1 1/M
5( 2’%&;) > (4.5)
k

The inequality in (4.4) is due to the convexity of f(.). The inequality in
(4.5) is due to AM-GM (arithmetic mean-geometric mean) inequality and
the monotone increasing property of f(.). Due to the convexity of f(.), the
inequality in (4.4) holds if and only if 2°%57 are of the same value for all k

and S0 ' by = Ry. The optimal bit allocation for minimizing ¢ (b) is thus

R M—
b
bk:M_IOgQ EZO ng _0,1,...,M—1. (46)

For convenience, we call the above optimal real bit allocation as byeq as-

16



Low SNR case Using a similar procedure, we can derive the statistical
BER bound for the low SNR case in which the concavity of f(.) holds.

BIBER < 1 kZ_Ou -t (T —oum) @)

In this case, ¢y (b) is an upper bound of averaged BER. Assume as in the
high SNR case that each subchannel transmission rate by is high enough so
that (1 —27%/2) ~ 1 and 2% — 1 ~ 2% then

4~ 2GR 4 1 = 262

k=0 k=0

That is ¢ps(b) has minimum equal to Q,;. The minimum achieved when
bit allocation is as given in (4.6). In this case, the equality in (4.8) becomes
an equality and we have ¢;(b) & Q- as in the high SNR case. Therefore
Qs is a lower bound of averaged BER in the high SNR case and a upper
bound in the low SNR case: For bothhigh and low SNR cases, we would like
to have the bound ¢, (b) minimized. The minimization of the lower bound
in high SNR case is also-important because the averaged BER can not be
small if the lower bound’is large.

4.2 Precoder Design

Our goal now is to find the optimum precoder =F' that to minimize €2,.
This optimization problem is as follows:

- 2R/M
minimize f( 5 (

subject to Tr(FiF) <

M-1 1/M

1T 5§k) ) (4.9)
k=0

P,

e Decision feedback receiver:
Since f(.) is a monotone increasing function, minimizing (4.9) is equiv-
alent to minimizing ( 2/[:_01 g2 )M Here, we will find the precoder F

. e M-1 —
which minimizes ([T,_, 62 )"/*.

17



1
Using (2.3), we have [[ry 7l = s ]\é\io_dzk_l- Note that [T,L;" dy =

det(FTR,F). Let the singular decomposition of F be
F=U;%,Vl

where Uy is M; x M with U}Uf = Iy, Vyis M x M unitary with
V}Vf = Iy and Xy is an M x M diagonal matrix. Then

det(FIR,F) = det(3;) det(ULR,Uy).

It follows that

M—-1 M—-1

1 N,
~2 0
]}_[0 et = det(FIR,F) kHO (M, —k—1)

1 M—1 Ny

N det(Ef)det(U}Rth) ]£[0 (M, —k—1).

As Uy has orthonormal columns, we can apply the Poincare separa-
tion theorem [43] to bound det(U}RtU 7)-using the eigenvalues of R.
Poincare separation theorem says \;(B) >\;(C'BC), i =0,1,...,7—
1, for any n x n Hermitian matrix B and any n x r unitary matrix C
with CTC = I,.. Using this theorem, we have

M—-1

det(UTR,U) < [] M-
=0

On the other hand

M-1 M

det(27) = [] (=7 < <tr(z§)/M)M = (tr(FT)/M) < (P,/M)M.

i=0
Thus det(F'R,F) < (P,/M)M Hi]\ial At; and the product of averaged
error variance satisfies

M-1 M-1 M-1
M N,

1 N,
52 > 0 > .
[ %> det(Xy) LIO MM, —k—1) ~ g Phi(M, —k—1)
(4.10)
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Because the choice of unitary matrix V; does not effect the value
det(FTR,F), we choose V; = I without loss of generality. The equal-
ity (4.10) holds if F = U, j; and the diagonal element of ¥ are iden-
tical. Therefore the optimal precoder

F = %UEM. (4.11)
Linear receiver:
From [36], we know an increasing function of a Schur-concave function is
Schur-concave. Because ([ L, 52,)"/M is a Schur-concave function and
f(.) is monotone increasing function, the objective function in (4.9) is
Schur-concave. Using the result of [29], the optimal precoder for Schur-
concave objective function under total transmission power constraint
has the form F,, = U, »3,, where U, € CM:xM has as columns
the eigenvectors of R; corresponding to the M largest eigenvalues in
decreasing order and X, = diag(pi, pa, - - -, pau) € CM*M . In this case,
the product of the averaged error variance is given by

M—1 N M M—1 M-1
& 0 — _
[12% = (m) IR (4.12)
k=0 " k=0 k=0

Furthermore the constraint in (4.9) can be simplified as follows:

M-1
Tr(Fi,F,,) = TiSiUl U v 2,) = > pi < P
k=0

Since f(.) is a monotone increasing function, minimizing (4.9) is equiv-
alent to minimizing ([T22," g2 )M which, due to (4.12), is equivalent
to minimizing HQZ)I plf. The original problem can be reduced to the

equivalent one shown below.

M-1
minimize H p,;Q
Pk
k=0
M-1
subject to Z pz < P,.
k=0
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By using AM-GM inequality, the above problem can be solved easily
and the optimal power allocation is pp = 4/ %, k=1,2,...,M. There-
fore we obtain the optimal precoder as

P,
Fopt = MtUt,M >

which is the same as the optimal precoder for the decision feedback
receiver.

4.3 Design of Integer Bit Allocation

The optimal bit allocation compared in (4.6) has real entries. In prac-
tical applications, b, should be nonnegative integers. In this section, we
will present methods for designing integer bit allocation with given precoder

F = \/%Ut, - First, we will introduce two numerical methods of integer bit
allocation design. Second, we will present two methods based on the statisti-
cal BER bound. At last, we will consider the optimal number of subchannel
used. The methods given in this section can be-applied for both linear and
decision feedback receiver. All bit allocations discussed here have positive
entries.

4.3.1 Minimum BER bit-allocation (b,,.,)

We denote Cp 5r as a bit allocation codebook which contains all length equal to
or less than M positive integer bit allocation vectors such that ZkMZBI b, = Ry.
For each bit allocation in codebook C; s, we calculate its corresponding aver-
age BER performance using a large number of random channels. The vector
that has the smallest average BER performance is denoted as b, and it
represents the best bit allocation in BER performance.

4.3.2 Most probable bit allocation (by.)

First, we generate a large number of training channels. For each training
channel, we can find the corresponding BER-minimizing bit allocation vector
in Cp ar. The vector by, is the most probable bit allocation.

20



4.3.3 Bit allocation using greedy algorithm (b, /)

When the transmission power P, is large enough so that all argument of f(.)
in ¢yr(b) are smaller than 1/3 and f(.) is operating at the convex region. We
can use the greedy algorithm to solve this allocation problem efficiently. The
solution of this kind of optimization problem was first proposed in [44]. This
algorithm is also called ”"marginal allocation” or ”incremental” algorithm.
More detailed analysis was proposed in [45].

In [45], the allocation problem has the following form.

. Mt
eoany k=0 Frlzk)
subject to 224:61 T =N

where N is a positive integer and the function Fy(.) is convex in xy.

Y

The optimal x is determined as_follows.

e Step 1 Let x = (0,0,...,0) be a M x 1 vector and r = 0.

o Step 2 Let
o= AR/ - P )

then z, = =, + 1.

e Step 3 If r = N, then stop. The current x is an optimal solution.
Otherwise, r = r 4+ 1 and return to step 2.

Ignoring the factor (1 —27%/2) then ¢5;(b) in (4.3) can be approximated
as
M-1

4

— F.(b
Rb k( k)7

k=0

¢u(b) =

(2K —1)52

where Fj(by) = f(T’“) Suppose SNR is high so that the argument

in f(.) is smaller than 1/3. In this case, Fy(by) is convex and the greedy
algorithm can be used. We denote this bit allocation as by, a.
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Remark In Section 4.1, we have obtained a optimal real bit allocation
byearnr- Then we can use the quantization method referred in [46] to get a
positive integer bit allocation denoted as b; ps. Because by.cq 1/ is also derived
by the convex assumption, b; 5 is the same as by, »s in our simulations.

4.3.4 Bit allocation for minimizing statistical bound
(ba,nr)

Here, we introduce the statistical integer bit allocation that minimizes ¢/ (b).
We denote this statistical bit allocation as by s and is given by

boy = 8 gjlgl ou(b). (4.13)
The vector by s can be obtained by an exhausted search. In Section 4.3.2,
we have shown greedy integer bit allocation is also optimal so these two
statistical integer bit allocations are the same in high SNR region. However,
if the arguments of f(.) for the optimal-bit allocation are not all located at
convex or concave region, then the optimal bit allocation can not be found
by the greedy algorithm.~In the simulations; the performance of by 5 is very
close to that of b,,;.,.. It"can be used for all SNR region.

4.3.5 Optimal number of substream M,

The optimal precoder derived in'Sec 4.2'is F = \/%Ut, v, which is obtained

under the high bit rate assumption b, > 1. Implicity M substreams are
transmitted. We can also consider the transmission of fewer substreams. Let
My be the number of substreams transmitted. When we reduce M, each
subchannel will be allocated more transmission power but more bits. Con-
versely, each subchannel is allocated less transmission power but fewer bits
when we choose larger M. The tradeoff between different M, has become an
interesting issue. Recently, there are several researchers (e.g. [42], [48], [49]
and [50]) mentioned that wireless MIMO system could have better perfor-
mance when the number of subchannels used is variable. In these papers, the
My selection function plays an important role on system performance. Here,
we choose ¢y, (b) we have derived earlier as our selection function. We can
find the best bit allocation to minimize ¢,;(b) for each My and choose the
best one.
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e Step 1 For each M, € {1,2,..., M}, the corresponding optimal pre-
coder is F = | /%Ut, M,- Then we apply the greedy algorithm in Sec

4.3.3. to find by, a, such that the statistical BER bound ¢, (bgr az,)
in (4.3) is minimized.

e Step 2 The optimum number of substreams is given by

M= 2B b, ). (4.14)

and the corresponding optimal bit allocation is by, ar,,,-

In a similar manner, we can obtain the by sy, for each My € {1,2,..., M}.
Then we can also use ¢y, (b) as the selection function to find the best integer
bit allocations bg sz,
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Chapter 5

Simulation Result

In this chapter, we present simulation results of our statistical precoder and
statistical bit allocation (staP-BA) system. In our simulations, we use the
exponential model for the channel correlation matrix R;. A 4x4 example of
R, is given below

L p ey

p 1T
R 7 * * )
Y Sl A\ \¢

p*3 p*2 p* 1

where p* denotes the complex conjugate-of p. “We denote the uniform bit
allocation as by,;. In all"examples, b, and b, are found at the high
SNR region using 10° training channels«~We have used 10° channels in the
simulation examples.

Example 1. Comparison of different integer bit allocation schemes.
In this example, we discuss the BER performance between different statisti-
cal bit allocation methods proposed in Chapter 4 and we use the proposed

precoder F' = ,/%Ut, v and reverse ordering detected from the Mth to the
1st substream.

A. For M, =4, M, = 3, M = 3, R, = 12, we show BER plots for
different p in Figure 5.1. We can see by, ar,,, is the same as bg az,,, and by,
for the different correlation parameters. Also shown is the statistical BER
bound ¢y, (bgr.az,,,) & lower bound in high SNR region and an upper bound

in low SNR region shown in Sec 4.1.
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Figure 5.1: Example 1.A. Different Integer Bit Allocation schemes (M, =
4, My =3, M =3, R, =12) for (a) p =0, (b) p =0.5, and (c) p =0.9.
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B. For M, =6, M; =4, M = 4, R, = 8, we can see the BER plots
in Figure 5.2. by, is still the same as by, and by, for different
correlation parameters. This corroborate our earlier observation that when
the transmission power is high enough so that all f(.) is operating at convex
region, by, and by, should be the same. Figure 5.1 and 5.2 confirm
this conclusion.
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Figure 5.2: Example 1.B. Different Integer Bit Allocation schemes (M,
6, My =4, M =4, R, =238) for (a) p =0, (b) p=0.3, and (c) p =0.7.
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Example 2. Performance for different V. In this example, we dis-
cuss the BER performance between different V; chosen in section 4.2. The
parameter settings are M, = 6, M, =4, M = 4, R, = 18. The proposed

precoder is F' = 4/ %Ut’ m V¢ and the reverse ordering is used. Five different
V¢ are used

P
\/ s lase -

DFT matrix.

DCT matrix.

Random unitary matrix.
P /
[ J MUt,M .

For each V¢, the corresponding b,eqmz and by, ps can be found in Section 4.1
and 4.3.3. The BER performances and-¢ui(b) are shown in Figure 5.3. In
Figure 5.3 (a), we can findthere are only a little difference between different
V. In Figure 5.3 (b),-the BER difference become smaller when b,.cq
is used. Now we assume by is large enough so-that (1 — 27%/2) ~ 1 and
26k — 1 ~ 2% then the BER formula used in (2.5) for simulations is turned to

be BER ~ R%Zﬁiolf(

can find the BER performance between different V; are all the same. For

b 42
2 kag,
3

). The result is shown in Figure 5.3 (c¢). We

convenience, we will all use V; = ,/%I M in the later examples.
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Figure 5.3: Example 2.A. Performance for different Vy (M, = 6, M; =
4, M =4, R, =18) for (a) by 4, (b) byeara and (c) breq4 with high bit rate
assumption.
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Example 3. Performance for different M. In this example, the pre-
coder used is F = 4/ %Ut, u- For a given M, we find the optimal integer bit

allocation that minimizes ¢y, (b) using the greedy algorithm in Sec 4.3.3. By
calculating ¢y, (b) for each My, we obtain the optimal number of substream
M+ which has minimum ¢y, (b) in Sec 4.3.5.

A. For M, =4, M; =3, M = 3, R, = 12, the BER plots are shown
in Figure 5.4. In this case, M,y is 3 for p = 0, 0.5. We can see in Figure
5.4 (a) (b), the use of 3 substreams given a better performance for both
reverse ordering. For p = 0.9, the optimal number of substream M, is 2
and Figure 5.4 (c) shows that using 2 substreams yields a lower error rate.
This demonstrates that the statistical lower bound ¢y, (b) provides a useful
reference.

107 : :
—5— by =(543)
—6— by, ,~(66)
; ——ayb,,)
10 ¢ , —— 0,0, )
5107
(a) &
107}
1075 L L i L
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Figure 5.4: Example 3.A. Performance for different My (M, = 4, M, =
3, M =3, R,=12) for (a) p=0, Myy =3, (b) p=20.5, My, =3 and (c)
P = 09, Mopt = 2.
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B. For M, =6, M, =4, M =4, R, =8, the BER performance is shown
in Figure 5.5, M, is 3 for p = 0, 0.3 and M, is 2 for p = 0.7. Again, we can
see that using the statistical bound ¢y, (b) is a useful reference to determine
the number of substreams transmitted.
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Figure 5.5: Example 3.B. Performance for different M, (M, = 6, M, =

4, M =4, R, =38) for (a) p=0, My =3, (b) p=0.3, My, =3 and (c)
P = 07, Mopt = 2.
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Example 4. Different Precoders. In this example, we compare the
performance between different precoders for the same bit allocation and fixed
detection ordering. The parameter settings are M, = 4, M, = 3, M =
3, R, = 18. Four different precoders are used

o,/ %Ut, the precoder given in (4.11) for minimizing the BER statistical
bound.

e F;o;, the optimal statistical precoder derived in [35] for a given bit
allocation.

e F;,, the MSE-minimizing statistical precoder given in [33] for uni-
form bit allocation.

o /2Ty, 0, which consist of first M columns of Iy,

Reverse ordering is used for all precoders except F ;o s, for which forward
ordering is applied as F ;o ; istdesigned for.forward ordering. We show the
results for two different bit allocation, uniform bit allocation in Figure 5.6 and
by, ar in Figure 5.7. The vector-by, iz is computed using the greedy algorithm

in Sec 4.3.3. when the precoder is \/%Ut. We can see that for uniform bit
allocation, F;o; and Fpzy are better than the other two. As correlation
parameter p increases, the optimal bit allocation become more nonuniform
and Fpzy does not perform as well. This‘is because Fr i is designed for
uniform bit allocation. Notice'that F ;g performs better because its design
considers bit allocation.
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Figure 5.6: Example 4.A. Performance of different precoders for uniform bit
allocation. (a) p =0.5; (b) p =0.9.
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When the bit allocation is by, »s in Fig 5.7, the precoder \/%Ut become
the best of the four.
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Figure 5.7: Example 4.B. Performance of different precoders when the bit
allocation is by, r. (a) p =05, by, mr =[8 6-4}; (b) p =0.9, by, »r = [10 5 3].

Example 5. Performance for different p. In this example, we compare
our staP-BA system with the original system for different p. The parameter
settings are M, = 6, M; =4, M = 4. The original system is assumed
without precoding (F = I, ) and uniform bit allocation. The results are
shown in Figure 5.8 and 5.9. In Figure 5.8, the BER performance become
closer after applying our method. In Figure 5.9, we define the improvement
gain as the SNR difference between these two system. Then we can find the
improvement gain becomes larger when p increases. This demonstrates our
staP-BA system has better improvement for highly correlated channels.

39



—~
&3

~—
BER

T T

—<— p=0, original
—— p=0.3, original
—+— p=0.5, original
— — — p=0.7, original

— - — - p=0.9, original
—6— p=0, staP-BA
—&— p=0.3, staP-BA
—*— p=0.5, staP-BA

—— p=0.9, staP-BA

—4&— p=0.7, staP-BA| |

~~
o
N~—
BER
=
o

-4

—<— p=0, original
—>— p=0.3, original
—+— p=0.5, original
— — — p=0.7, original
— — p=0.9, original
—6— p=0, staP-BA
—8— p=0.3, staP-BA
—*%— p=0.5, staP-BA

—4&— p=0.7, staP-BA| |

— p=0.9, staP-BA

10 :
10 15 20

Figure 5.8: Example 5.A. Performance for different p (M, = 6, M,

4) for (a) R, =8, and (b) R, = 12.

40

40



—

®

N—
Improvement Gain (dB)

0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 01 02 03 04 05 06 07 08
p
12 :
—6— BER=10"? I
—A— BER=10"°
10} 4
—&— BER=10 3

~~

o

N~—
Improvement Gain (dB)

Figure 5.9: Example 5.B. Comparison of improvement gain (M, = 6, M, =
4, M =4) for (a) R, =8, and (b) R, = 12.

41



Example 6. Comparison of Different Detection Ordering. In this
example, we use the precoder F = ,/%Ut, m and compare the performance

of different detection orderings for the same bit allocation (uniform bit allo-
cation or by, ar,,,). The detection orderings considered are

e Reverse ordering

e VBLAST ordering [14]

Greedy QR ordering [15]

Rate-normalized-SNR ordering

Optimal ordering, which is obtained by an exhausted search of all de-
tection orderings for minimum BER.

A-. M, =4, M, =3, M =3, R, = 18, p = 0.5. The BER plots
are given for uniform bit allocation is in Figure 5.10 (a) and for by, , in
Figure 5.10 (b). For uniform bit allocation; rate-normalized-SNR ordering
and VBLAST ordering are the;same and the performance is indistinguishable
form the optimal ordering. The greedy QR ordering is slightly worse. The
selection criteria of greedy QR ordering is minimizing the error variance of
the last detected symbol for each recursive procedure and is different from the
VBLAST ordering. The reverse ordering has the worst performance because
it is a fixed detection ordering. We can not change the detection order to
improve the error rate when a’subchannel has low SNR.

When by, ,,, is used. We see in Figure 5.10 (b) that the BER perfor-
mance of rate-normalized-SNR ordering is very close to the optimal ordering
but the VBLAST ordering is not. This demonstrates the importance of tak-
ing bit allocation into consideration in determining detection ordering when
nonuniform bit allocation is used. In this case, reverse ordering performs
better than VBLAST and greedy QR ordering because by, ar,,, is designed
based on the reverse ordering.
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Figure 5.10: Example 6.A. Comparison of different detection orderings for
(M, =4, M, =3, M =3, R, =18, p=0.5) (a) uniform bit allocation, and
(b) bgT7Mopt = [8 6 4]
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B. M, =6, M;{ =4, M =4, R, = 8, p = 0. The BER plot is
given in Figure 5.11. For uniform bit allocation in Figure 5.11 (a), rate-
normalized-SNR and VBLAST ordering are the same and the performance
is indistinguishable for the optimal ordering. The greedy QR and reverse or-
dering performs worse. For by, s, . in Figure 5.11 (b), the BER performance
of Rate-normalized-SNR ordering is also very close to the optimal ordering.
Comparing with the previous case in Figure 5.10 (b), the optimal bit alloca-
tion by, ,,, is more uniform. The VBLAST ordering has less performance
loss. In this case, reverse ordering performs better than greedy QR ordering.
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Figure 5.11: Example 6.B. Comparison of different detection ordering (M, =
6, My =4, M =4, R, =8, p = 0) for(a) uniform bit allocation, and (b)
by, = [3 3 2].

Example 7. Comparison with other related works. In this example,
we compare our proposed staP-BA system with the methods reviewed in
Chapter 3. The following is a list of systems in the comparison.

e Vertical Bell Laboratories Layered Space-Time (V-BLAST) system [14].
It is a novel Multi-Input Multi-Output (MIMO) antenna scheme and
it focuses on the detection algorithms.

e Statistical bit allocation system (staBAp,) (reviewed in Sec 3.3.1). It
is designed by minimizing the outage probability error [40]. The in-
teger bit allocation used is obtained quantizing the bit allocation in
(3.4). The quantization method used is introduced in [46]. The reverse
ordering is used in staBAp,.

e Statistical bit allocation system (staBARgayi) (reviewed in Sec 3.3.2).
It designed by selecting the optimal antenna set [42]. The integer bit
allocation used is rounding the bit allocation in (3.6) The greedy QR
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ordering is used in staBAR,y;.

e Statistical precoder system (staPpzw) (reviewed in Sec 3.2). It is de-
signed by minimizing MSE for uniform bit allocation [33] and the re-
verse ordering is used in staPpzw.

e Statistical precoder system (staPjo;) (reviewed in Sec 3.2). It is de-
signed by minimizing bit allocation weighted MSE for a given bit alloca-
tion [35]. We use the optimal bit allocation by, which is introduced
in Section 4.3.1 to minimize BER for the precoder in staPjoj. The
forward ordering is used in staPjo;.

e Our proposed system (staP-BA), in which the precoder, bit allocation

and detection ordering used are 4/ %Ut, M, bgr 1, and rate-normalized-
SNR ordering.

The simulation results are shown in Figure 5.12, 5.13 and 5.14.

A. Figure 5.12 shows the BER performance when M, = 4, M, =
3, M = 3, R, = 12.. Note that :the bit. allocation in staBAp, is SNR-
dependent and performs.better for higher SNR. All the other bit allocations
does not change with SNR. We can see that the proposed combination of
statistical bit allocation ‘and statistical precoder has the smallest BER for
correlated channel. VBLAST system performs best for i.i.d. channels and
only worse than our staP-BA system-for correlated channels. This phe-
nomenon will be shown again with other channel parameters in the later two
examples.
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Figure 5.12: Example 7.A. Comparison with other related works (M, =
4, My = 3, M =3, Ry, = 12) for (a) p =0, by r,,,=(5 4 3) (b) p =0.5,
by, =(6 4 2) and (c) p =0.9, by, =(8 4).
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B. Figure 5.13 shows the BER performance when M, = 4, M, =
3, M =3, R, = 18. Comparing with the previous case, we only increase
Ry, to 18 and the optimal M,,; determined in (4.14) are all equal to M. We
can see staBAp, performs the worst and our staP-BA system performs well.
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Figure 5.13: Example 7.B. Comparison with other related works (M, =
4, My, =3, M =3, R, = 18) for (a) p =0, byr,,=(7 6 5), (b) p =0.5,
by a1, =(8 6 4) and (c) p =0.9, by, r,,,=(10 5 3).
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C. Figure 5.14 shows the BER performance when M, = 6, M, =
4, M = 4, R, = 8. Similar to the previous case, staBAp, and staBARga.
perform worse than other methods and the BER performance of staPpzw
and staPjoj are very close. Again, we can see staBAp, performs better for
i.i.d channel. For p = 0 and 0.3 at BER=10"%, staP;jo; performs best of
the four related statistical works and our proposed staP-BA system is about
1.5dB better than staP;o;. For p = 0.7, staPjo; performs best of the four
statistical related works and our proposed staP-BA system is about 1.5dB
better than staP;oj. The optimal bit allocation by, used for staPjo; is (5
3) and is the same as by, 5, in staP-BA. In staPyzyw, the bit allocation used
is (2 2 2 2). It has shown in Example 2.B. The optimal number of substream
M,y used is 2. We can see staP-BA and staP;o; has larger improvement
because M, is used.

— — — VBLAST [14]
—o— SIaBADu
—p— staBARﬁwi
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Example 8. Linear receiver. In this example, we present the result of
staP-BA system with a linear receiver and compare it with the statistical pre-
coder with linear receiver [25] mentioned in Section3.1. The result are shown
in Figure 5.15 and 5.16 when M,, =5, M; =4, M =4, R, = 12, p=0and 0.7.

A. Figure 5.15 are given by different types of integer bit allocation,
brbers Bprob, Pgrar and by, arope for statP-BA system. We can find the lowest
BER achieved when My = M,,. Also we can find by, rrop is equal to byper
in both correlated and uncorrelated channels.

10
—— bgr’4=(3 333)
A bgr,S:bgr,Mop'[:bmberszrobz(4 4 4)
1072k —a— bgr’2=(6 6)
—+— @0, )
—— 0 )
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Figure 5.15: Example 8.A. Linear receiver; Comparison of different integer
bit allocations (M, =5, M; =4, M =4, Ry= 12) for (a) p =0, My, =3
and (b) p =0.7, M, = 2.

Figure 5.16 shows the comparison of our staP-BA system with staPksvr
system introduced in Section 3.1. The statistical precoder system (staPrzw),
which is designed by minimizing the upper bound of statistical joint error
probability [25] and the allocation is uniform in staPrzw. We can find our
staP-BA system perform better than staPpzw. For p = 0, the proposed
staP-BA system is about 2.5dB better than staP;zw at BER=10"2 and this
BER gap is about 5.5dB at BER=10"°. For p = 0.7, the proposed staP-BA
system is about 6dB better than staPp w at BER=10"2 and this BER gap
is about 10dB at BER=1075.
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Figure 5.16: Example 8.B. Linear receiver, Comparison with other related
works (M, =5, My =4, M =4, R, =12) for (a) p =0 and (b) p =0.7.

95



Chapter 6

Conclusions

In this thesis, we proposed statistical precoder and bit allocation for MIMO
systems with correlated channel and this system is called the staP-BA sys-
tem. We first derived the statistical BER bound for real bit allocation.
Based on minimizing this bound; the optimal statistical precoder is derived
both for linear and decision feedback receivers. Second, we proposed design
methods for integer statistical bit-allocation.  In simulations, we have shown
our statistical bit allocation performs well and the BER performance can be
furthermore by using rate-normalized-SNR ordering.
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