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Correspondence

Multiple Stuck-Fault Detection and Location in Multivalued
Linear Circuits

CHUEN-LIANG CHEN AND MIN-WEN DU

Abstract-In this correspondence, we present procedures for construct-
ing universal fault detection test sets as well as fault location test sets for
multivalued linear circuits, under a multiple stuck-fault model. The bin
packing problem is involved in the procedures; The sizes of the fault
detection test set and the fault location test set constructed for an n-
variable v-valued linear tree circuit are 1 + Fn/(v - 1)1 and 1 + [n/
L10g2 uj ], respectively. It has been proved that the sizes listed above
are optimal for some cases.

Index Terms-Bin packing problem, linear circuit, multivalued logic,
stuck-fault detection/location, universal test set.

I. INTRODUCTION
Recently, more and more researchers have focused their attention

upon multivalued logic. It is now worth studying the reliability
problem of multivalued circuits as we have done for 2-valued
circuits. In this correspondence, we shall study the fault cetection
problem as well as the fault location problem in multivalued linear
circuits.
A v-valued logic functionf(xl, x2, * *, x,) is said to be linear if it

can be expressed as
ao @XIEXIe .. @X D,X 2 (X2 ' EDSX2 E

a, times a2 times

an times
where" a " is a mod-u-addition operator. For the sake of brevity, we
shall express it as

(ao+a,x, +a2x2+ **+anxn) mod u

in the remainder of this correspondence. A v-valued logic circuit is
said to be linear if it realizes a v-valued linear function. It is known
that a 2-valued linear circuit usually consists of some mod-2-adders
(EXCLUSIVE-OR gates). Similarly, we can construct a u-valued linear
circuit by using mod-u-adders.
We say that a line of a v-valued circuit has a stuck-at-s fault, 0 c s

. v - 1, if this line generates a constant value s for all input
combinations. Here, we shall consider multiple stuck fault model.
That is, some input/output lines of mod-u-adders may have stuck
faults.

II. PARAMETER VECTOR

In this section, the characteristics of a linear circuit will be utilized
to form a parameter vector which is to be used in constructing test
sets.
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Assume that C is a fault-free v-valued linear circuit with n input
lines and one output line; these input lines are driven by variables xl,
X2, '**,Xn-

Definition 1: The parameter vector of C, denoted as P(C), is an
(n + I)-tuple (ao, a1, ., an), where:

1)aO = 0;'
2) a, = the number of paths from input-line i to the output line, 1

. i . n.
Let fc(X), X = (xi, x2, * x), denote the function realized on

circuit C. We can get the following lemma straightforwardly.
Lemma 1: If P(C) = (ao, al, * *, an), then

fc(X) = (ao + alxl + a2x2 + + anXn) mod v.

Now, assume that m lines of circuit C, denoted as stuck-lines 1, 2,
, m, are, respectively, stuck at values sl, s2, * *, Sm where 0 < si

c u - 1 for 1 c i . m. Let C' denote this faulty circuit.
Definition 2: The parameter vector of a possibly faulty circuit

C', denoted as P(C'), is an (n + I)-tuple (a', a', -, a'), where:
1) a6 = (El7= b Si) mod v;
2) a/ - the number of paths from input-line i to the output-line

which do not pass through any stuck-line, I c i c n;
3) b/ = the number of paths from stuck-line i to the output-line

which have no other stuck-fault except that at stuck-line i itself, 1 < i
. m.
Letfc, (X) denote the function realized on circuit C'. We note that

it is still a linear function and also closely relates to P(C').
Lemma 2: If P(C') = (ad, a', ,an'), then

fc'(X) = (a + al'xl + a>x2 + + axxn) mod v.

From the above definitions, it can be proved that the parameter
vector P(C') needs to satisfy the following certain constraints:

Theorem 1: 0 c a' u-v I and 0 c a' < ai for I c i. n.
Example 1: Consider the 3-valued linear circuit C shown in Fig.

1(a). Its parameter vector P(C) is (0, 1, 4, 1, 1). Here, a2 = 4
because there are four paths from line b to line m, they are

(1)b-* c-- e-*f--+ij- m

b--+c-*e-+g--*j-4 m

b-*d-*e-jf-+i-+m

(2)

(3)

(4)

Now, assume that both lines d and j are stuck at 2. Let C' denote the
faulty circuit; its equivalent fault-free circuit is shown in Fig. 1(b).
Name lines d and j as stuck-lines 1 and 2. Then, P(C') can be
derived as

1) bl = 1 because there are two paths from line d to line m, i.e., d
e -f - i -- m and d -+ e - g j m, but the second path has

other stuck fault on line ];
2)b; = 1;
3)ag = (1 x 2 + 1 x 2) mod 3 = 1;
4) al = 1, because paths (2), (3), and (4) are stuck;
5) a = Obecause the only possible path h j - m is stuck;
6)a = a4 = 1.
Totally speaking, P(C') = (1, 1, 1, 0, 1).
We can now formulate the fault detection problem and fault

When some input lines of the circuit concerned are driven by constants, ao
maybe not be equal to 0. We do not consider this case here. In fact, it can be
shown that this feature will not affect the construction of test sets.
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(a)

Xl x2 X4

(b)

Fig. 1. Example of circuits.

location problem by using the notation of parameter vectors. Such
formulations will isolate our problems from the structures of the
circuits. Hence, the test sets constructed by our procedures will be
universal test sets [1]. In the following discussion, we will use the
"congruence" notation. We say that a is congruent to a' modulo u,

denoted as a-a' (modulo v), if (a mod u) = (a' mod v). And, P(C)
is congruent to P(C') modulo v, denoted as P(C) P(C') (modulo
v), if a, =a,' (modulo u) for 0 c i c n.

Originally, the fault detection problem is to examine whether
fc' (X) = fc(X). Because fc(X) and fc' (X) closely relate to P(C)
and P(C') (stated in Lemmas 1 and 2), we may roughly imagine the
fault detection problem as determining whether P(C') = P(C).
However, sometimes a faulty circuit may produce an undetectable
fault with respect to the fault-free function. For example, considering
circuit C shown in Fig. 1(a), P(C') will be (0, 1, 1, 1, 1) if both lines
d and g are stuck at 0. We see that P(C') * P(C) but C and C' in
fact realize the same function. This is due to the fact that P(C')
P(C) (modulo 3). In order to take care of this situation, the fault
detection problem needs to be formulated as "to examine whether
P(C) _ P(C') (modulo v)."
As to the fault location problem, originally it is to determine which

fault class the circuit under test C' belongs to, i.e., to determine what
fC' (X) is. Similarly, we may imagine the fault location problem as to
see what P(C') is. However, sometimes two different faults may be
undistinguishable. For example, considering circuit C again, assume

that lines d, g, and h of faulty circuit C' are all stuck at 0, while line
h of faulty circuit C" is stuck at 0. It is easy to see that P(C') *
P(C") but they are in fact the same in the sense of "congruence."
Hence, the fault location problem needs to be formulated as "to
determine which parameter vector P(C') is congruent to."

III. FAULT DETECTION PROCEDURE
In this section, we shall use parameter vectors to solve the fault

detection problem. The test sets can be obtained by solving a bin
packing problem [2].
The so-called bin packing problem is, given the bin capacity B > 0

and a set E of "weighted elements" (the weight of each element is

between 0 and B), to find a partition ofE into disjoint subsets El, E2,
* * *, EN such that the sum of the weights of the elements in each E, is
not more than B and such that N is as small as possible.

Let ai and a;. be defined as in Definitions 1 and 2.
Lemma 3: When E a, < v - 1, if

fc(,( , 1, 0, ,0 =ao+ a,3 mod v

k times

then al. a, (modulo v) for I s is k.

Proof: If aj' * aj (modulo v) for a certain 1 c j c k, then 0 c
k a' < Sk a, because of Theorem 1, and then k a' * k11i i=1

k i=1 =
ai (modulo u) because *=l ai ' u - 1. Therefore,

fc,k(1, 1, O, ,) ao + a' mod t

k times

* [a ( ai)] mod v. Q.E.D.

Lemma 4: Whena, > v - 1, iffc,(1, 0, 0, ,0) - (a' + a,)
mod u then a' a, (modulo u).

Proof: If al E a, (modulo v), thenfc,(1, 0, 0, *, 0) = (a'
+ a') mod v * (a' + a,) mod u. Q.E.D.

In fact, the proposition ofLemma 4 "a1 > v - 1" is unnecessary.
However, we still write it down to emphasize the different opportuni-
ties when we adopt Lemmas 3 or 4.

Let d, = min (ai, v - 1) for 1 c i c n; and let b(C) denote the
size of the optimal fault detection test set for a u-valued linear circuit
C.
Theorem 2: b(C) < N + 1, if {dal, d2, a,' } can be partitioned

into N disjoint subsets, say {a^(=k0+ 1), d2, k1}, {dkl + 1, ak1+2,

**a2 akN- I + I{ akN- 1+2 **, an.=kN)} after renaming all
-a, such that

kj
a cuv-1 for 1 j'N.

i= kj_ I + I

Proof: A possible test set with size N + 1 is { Yj 10 c j c NJ,
where

1) Yo= (0, 0, ** 0);

2) Yj =(0, * , 0, 1, *z1, 0, * 0) forlIc j <N..t t
(kj1- + I)-th kj-th

First, becausefc'(Yo) = a>, we use Yo to see what a' is. Then,
we use other Yj to examine whether a,' ai (modulo v) for 1 c i c
n, according to Lemmas 3 and 4. Q.E.D.
Theorem 2 suggests a procedure for constructing fault detection

test sets. Surely, we will get a smaller test set if we can partition {I ,
a2, a,a} in as few subsets as possible. In fact, this is the bin
packing problem. Bin packing problem has been proved to be NP-
hard [2]. However, some heuristic methods for solving it have been
proposed and were summarized in [2]. We can use these well-
developed methods to help our constructions of the test sets.
Procedure 1:

Input: An n-variable u-valued linear circuit C, whose parameter
vector P(C) = (ao, al,, *, an).

Output: A multiple stuck fault detection test set S for this circuit
C.

Step 1: Solve the following bin packing problem: the bin
capacity B = v - 1; the set of elements E = {ei, e2, *, en} where

1069



IEEE TRANSACTIONS ON COMPUTERS, VOL. C-35, NO. 12, DECEMBER 1986

the weight of ei is w(ei) = di = min (al, v - 1), 1 c i c n. Assu
that the solution is {Ej II s j c N}.

Step 2: Let S = {(0, 0, **,O)}.
Step 3: For each EJ, 1 < j C N, add n-tuple (Y1, Y2, *,

into S where

(0 if eieE1;
' I if eiEEj.

Example 2: Consider a 10-valued linear circuit C with P(C) =
2, 3, 3, 4, 12, 2). Then, the associated bin packing problem is to p
the set of elements E = {ei, e2, e3, e4, e5, e6} with weights {2, 3
4, 9, 2} (note that w(e5) = a5 = min (12, 9) = 9) into some bins v
capacity B = 9. One of the optimal partitions is as follows: El =
e4, e6}, E2 = {e2, e3} and E3 = {e5}. Thus,

{(0, 0, 0, 0, 0,), (1, 0, 0, 1, 0, 1),(0, 1, 1,0,0,0 ),

(0, 0, 0, 0, 1,

will be a test set.

IV. FAULT LOCATION PROCEDURE

Now, let us discuss how to construct fault location test sets.
derive two lemmas first. The first lemma is related to the "mi
radix number system" [3]. It is known that any integer I, 0 c I
(fk= ri) - 1, can be uniquely represented as a k-tuple (di, d2,
dk) with respect to a set of radices {rl, r2, * rk} where I = d]
d2r, + d3rIr2 + + dkrlr2 ...rk-land 0 c di < ri- 1 f
c i c k.
Lemma 5: When H = 1(ai + 1) S v, iffc'(RI, Rk, 09 ...

= [aO + (YL, diRi)]modvwhereRi = Hi7 I(aj + 1)and0 <

. ai for 1 c i s k, then al -di (modulo u) for 1 c i c k.
Proof: We prove it by contradiction. We know that 0 ' di,

c v - 1 and 0 c al ' a ' v -1, by the proposition and Theo
1. Hence, ifa,'a dj (modulo u) for a certain 1 c j c k, then a'
dj, and then 'k aRi * Ek

I diRi because of the property
mixed radix number system.
And, it is easy to derive that Sk=1 aiRi = [1k= I (ai + 1)] - I

- 1. Thus,0 < aRv1a' - and o < diRi < v

Combining the result of the above paragraph, we know that E
ai'Ri, i= I diRi (modulo u) if ay' # dj (modulo u) for a certai
. j c k. Therefore, fc'(RI, R2, * Rk, 0, * , 0) = [aO
(k a'Ri)] mod v * [a' + (Ef I diRi)] mod v. Q.E
Lemma 5 illustrates the kernel idea of our procedure. We

interpret it as that all values of a' 1 < i c k, can be uniqu
determined in the sense of congruence when we know the value:
aO and fc'(Ri,JR2, * Rk, 0, 00).
Lemma 6: When a > u - l,iffc,(1,0, 0, ,0)= (a' +

mod u where 0 c d c v - 1, then al' d (modulo u).
Proof: It can be proved as Lemma 4. Q.E

Let X(C) denote the size of the optimal fault location test set ft
v-valued linear circuit C.
Theorem 3: X(C) < M + 1, if {a,, 2, aa} can

partitioned into M disjoint subsets, say {la,(=ko+ 1, a2, - a,
{k+,ak, +2, , k} s{k_+,akm_+,*s an(= k

after renaming all da, such that:

kj

1I (aid+ 1)cv for 1 .j.M.
i = kj 1 + 1

Proof: A possible test set with sizeM + I is {Zj IO < j M}
where

1) Zo= (01 0) ..

I* 0)

2) Zj=(0,0. , 0)Rkj-,+ Rkj-1+2)
(k,_ 1+ 1) - th

Rkj , , 0), I0j<M,
kj. th

i- I

yn) R,= || (dh+l) for kj_1+1li.kj.
h =kjl+l

We use Z0 to see what a' is; then use other Zj's to determine which
values the other a, 's are congruent to, according to Lemmas 5 and
6. Q.E.D.

(0, As does Theorem 2, Theorem 3 suggests a procedure for
sack constructing fault location test sets. This procedure is very similar to
3, Procedure 1; we do not write it down explicitly here. Instead, we just

vith point out their differences:
{ei, 1) In Step 1, the encountered bin packing problem is based on

kj

S log (d+1)slog v

O)} i=kj-I+I

which is obtained by performing the "logarithm" operation on both
sides of (5).

2) In Step 3, the construction of test is according to Theorem 3 not

We Theorem 2.
ixed Example 3: Consider a 10-valued linear circuit C with P(C) = (0,
c 1, 2, 1, 2, 15, 1). Then, the associated bin packing problem is to pack
., the set of elements E = {el, e2, e3, e4, e5, e6} with weights {log 2,
+ log 3, log 2, log 3, log 10, tog 2} (note that w(e5) = log (d5 + 1) =

)r 1 log (min (15, 9) + 1) = log 10) into some bins with capacity B =

log 10. We may partition E into E1 = {ei, e3, e6}, E2 = {e2, e4}, and
0) E3 = {e5}. Then, one of the possible test sets is
ddi

{(0, 0, 0, 0, 0, 0), (1, 0, 2, 0, 0, 4),(0, 1, 0, 3, 0, 0),
5 ai
rem (0, O, O, O, 1, 0)}.

I of If the corresponding output values are 4, 9, 2, and 0, we can

< v
guarantee that P(C') (4, 1, 2, 0, 2, 6, 1) (modulo 10), by solving

1 the following.

'=1 fc (°, 0, 0, 0, 0, 0)=4=aain 1

.D. fc'(1, 0, 2, 0, 0, 4)=9=(a +a +2a3.+4a') mod 10
can

lselyf fc' (0, 1, 0, 3, 0, 0)=2=(a' +a' +3a') mod 10
s of 2 4

d) fc (O, 0, 0, 0, 1, 0)=o=(a' +a') mod 10.

.D. V. A SPECIAL CASE-LINEAR TREE CIRCUITS
or a A linear circuit is palled a linear tree circuit if it is constructed in a

be tree structure. In this section, we shall focus our attention upon linear
tree circuits.

ki } Let T be an n variable v-valued linear tree circuit. It is clear that
'M)} each parameter ai of P(T) is always equal to 1 for 1 < i c n. This

fact simplifies the construction of test sets greatly because the
involved bin packing problems in Theorems 2 and 3 degenerate to

(5) trivial cases. And, we have the following theorem.
Theorem 4:

6(T)<1+ [ni

and

X(T)<I+ Lo~u
Whe L22 V(I

When v is 2 (i.e., considering 2-valued circuits), it can be seen that
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the test sets constructed by Fujiwara [4] and those constructed by us
are the same. We may treat Fujiwara's methods as special cases of
ours. In [4], Fujiwara also illustrated that b(T) = X(T) = 1 + n
when u = 2. It seems that such optimality can be extended to other
cases. In fact, we have examined that 6(T) is 1 + rn/(v - 1)]
when n c 2 (v - 1). We strongly conjecture that b(T) is exactly 1 +
rn/(v - 1)1 for all n and v.
As to X(T), we also can prove that X(T) is exactly 1 + rn/

Llog2 vj 1 for certain cases, particularly for the case that v is a
power of 2.
Lemma 7: Consider linear tree circuit T. For any (n + I)-tuple

(as, al', * - *, an) such that:

1) Ocaf.1 for lcicn

2) fa=O= if a'=l for all lcicn
(05a' <v- I otherwise

there exists a possibly faulty circuit T' such that

P(T')=(a>, a>, aAn)*

Proof: We can prove it by constructing a corresponding T' for
each tuple. Q.E.D.

Theorem 5: X(T) = 1 + rn/ [log2 uj 1 when Tis a v-valued
linear tree circuit and v is a power of 2.

Proof: A trivial lower bound of X(T) is Flog,G] where G is
the number of all possible distinguishable fault classes. By Lemma 7,
G > v(2n - 1) + 1. Thus, we have the following derivations:

\(T) - Flogv [v(2n- 1)+ 1]]

I + plog, (2n-1 v)

=1+ n - ] [where 0< e < 1]

=1+ [lg j 1 [note that log2 v= [log2 uJV.

And, by Theorem 4, we know that X(T) = 1 + [n/ Llog2
Vj 1. Q.E.D.

VI. CONCLUSION

We have discussed how to construct universal fault detection test
sets and fault location test sets for any multivalued linear circuits,
under multiple stuck-fault model. We also studied a special case-
linear tree circuits. The sizes of the fault detection test set and the
fault location test set constructed for an n variables v-valued linear
tree circuit are 1 + Fn/(v - 1)1 and 1 + Fn/ Llog2 Vj 1,
respectively. Besides, it has been proved that these sizes are optimal
for s,ome cases.
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A Special-Function Unit for Sorting and Sort-Based Database
Operations

L. RASCHID, T. FEI, H. LAM, AND STANLEY Y. W. SU

Abstract-Achieving efficiency in database management functions is a
fundamental problem underlying many computer applications. Efficiency
is difficult to achieve using the traditional general-purpose von Neumann
processors. Recent advances in microelectronic technologies have
prompted many new research activities in the design, implementation,
and application of database machines which are tailored for processing
database management functions. To build an efficient system, the
software algorithms designed for this type of system need to be tail9red to
take advantage of the hardware characteristics of these machines.
Furthermore, special hardware units should be used, if they are cost-
effective, to execute or to assist the execution of these software
algorithms.

In this correspondence, we present a special-function unit (SFU) which
provides efficient support to a hardware sorting algorithm and other sort-
based database operations. The main features of the SFU are the use of
an automatic retrieval memory (ARM), which automatically reduces the
memory space to only those "marked" locations that contain relevant
data, and the parallel operation of several memory units within the SFU
to support the sorting algorithm. The SFU-based sorting algorithm and
the other sort-based database operations have an order of complexity N
where N is the number of data words. The proposed hardware and
software algorithms can be used to support complex, nonnumeric
computational tasks found in many applications.

Index Terms-Database machines, hardware sorter, sort-based al-
gorithms for database operations, special-function processor.

I. INTRODUCTICN
In a computerized society, making decisions relies on efficient

access to large databases. There are two fundamental problems in
processing large databases, namely, the reduction of the search space
and the efficient execution of frequent, primitive database operations.
A. Reduction of Search Space
A database is an integration of information relevant to a community

of users. At any given time, a particular user is interested only in a
portion or a "view" of a database. The external model is a
mechanism for defining a view, and a retrieval query further reduces
the size of the database defined by the view.

Several software techniques have been used to localize a subdata-
base. One method of physically creating separate subdatabases for
different applications has prohibitive time and space requirements.
Another common method, which uses software indexing or clustering
techniques to directly access portions of a large database, involves
considerable software overhead.

Recent research in database machines has introduced several
hardware techniques, namely, the cellular logic approach used in
[10], [13], and [17], the database filter approach used in [1], [2], [9],
and [20], and the cache memory approach used in [3], [4], and [14].
The time for staging data into main memory in these systems is still
significant.

In our opinion, the ideal solution would be a memory that can
physically "shrink" in size each time a subdatabase is established so
that data elements in the subdatabase can be accessed directly and
irrelevant data can be bypassed by the hardware, thus effectively
shrinking the memory. This correspondence introduces a storage
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