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中文摘要 

 

 

光柵最常用的功能除了將入射波的能量耦合至介質波導中之外，還能將介質波導中

的表面波轉化成存在於自由空間中的漏波。由於近年來在光學積體電路中耦合元件的需

求增加，光柵耦合器扮演著重要的角色。然而，傳統的分析大多著重於在固定頻率條件

之下的耦合現象。因此在此文中，我們延續性地論述在寬頻操作的分析之下，對於多種

對稱式的光柵耦合器探討其出射光的光束寬度，將在 1µm 到 2µm 的波帶上維持的一平坦

趨勢。之所以選擇對稱形式的光柵，是由於該對稱形狀，將抑制第二諧振的激發，因此

在原本應該出現第二空間諧振（ 2−=n ）的波長處，其能量並沒有如預期般的被激發出

來，其光束寬度的寬頻表現也不會因而受到破壞。我們並更深一步地討論，在不同形狀

的光柵中，此一波帶在寬頻操作下平坦度的變化。我們發現，正規矩型式

( )的光柵耦合器，如預期地表現出最小平坦度差異，而三角式光柵則

顯示出差異性較大之特性。 

5.0// 21 == dddd
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ABSTRACT 
 

    The function of gratings is to couple the incident plane wave energy into the dielectric 

waveguide or to change the bound surface waves in the dielectric waveguide into leaky waves 

in free space, and this structure plays a significant role nowadays since the interfacial 

elements between optical integrated circuits is required urgently. However, the conventional 

analysis examines the coupling behavior at a fixed value of wavelength. This work, thereby, 

presents an extended analytical approach to the outgoing beam width on broadband operation, 

and reveals these properties are remained nearly constant over a wavelength band from 1µm 

to 2µm. The reason for choosing the symmetric structure is that symmetrical grating avoids 

excitation of the second ( ) space harmonic and therefore, the behavior of broadband 

would not be deteriorated. Moreover, we find the canonic rectangular (

2−=n

5.0// 21 == dddd ) 

gratings exhibit the smallest difference of flatness, but the symmetric triangular ones, however, 

present larger variation. 
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Chapter Ⅰ 

Introduction 
    Fine periodic structures such as gratings, implemented on an optical waveguide, are 

widely used as one of the most important elements for optical integrated circuits (OICs) 

construction. The understanding of the input or output thin-film dielectric grating couplers has 

been developed well for years. Figure 1-1 illustrates examples of grating couplers for 

integrated optics and they would change the direction of light as we observe. However, 

conventional analysis examines their coupling behavior at a fixed value of 

frequency/wavelength and emphasizes primarily the applications for a narrow wavelength 

band like frequency-selective devices. Nowadays, the operation over a wide wavelength band, 

such as spectrum analyzers, broadband fiber communication, and other applications, is more 

often seen than before. Meanwhile, the wideband laser system applies for the properties of  

 

    

(a) 

        

                        (b)                                      (c) 

Figure 1- 1 Grating coupler components for optical integrated circuits. (a) Input/output coupler. (b) Waveguide 

couplers. (c) Focusing coupler. 
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broader wavelength band as well. This work, therefore, presents the flatness behaviors of 

grating couplers with the beamwidth over a certain wavelength interval and furthermore 

provides a simple design procedure for broadband operation. 

    The following Chapter II is concerned with the method of analysis. The small 

perturbation method (SPM) is adopted here due to its simplicity of formulations and 

acceptable accuracy. Electromagnetic fields with a grating layer can be represented as 

distributed current and/or voltage sources within the transverse transmission-line network in 

the viewpoint of SPM, and thus a designer applies this method for acquisition of grating 

parameters.  

    Subsequently, the results of broadband behavior are explored and discussed in Chapter 

III, and we then observe the broadband coupling is realizable. While verifying the broadband 

properties of different types of grating profile, we find these behaviors at certain choices of tg 

remaining flat over a wavelength band from 1µm to 2µm with the central wavelength 

15500 =λ nm. Previous literature [7] has shown that, the curves of leakage factor α  versus 

the grating height tg can be roughly divided into the parabolic region and the bounded 

fluctuation region. In this work, we show the flatness appearance in the broadband operation 

region which is posited in the transition between those two regimes mentioned above. Also, a 

simple flatness criterion for determining parameters for gratings and discussion is then 

provided at the end of this chapter. 

    In Chapter IV, we summarize the conditions that a grating coupler is used on broadband 

operation and comment on the application of SPM approach to other related problems in the 

conclusion. In addition, the further work in grating couplers is mentioned as well. 
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Chapter Ⅱ 

Method of Analysis 

2.1 FLOQUET’S THEOREM 

2.2 STATEMENT OF THE PROBLEM AND BACKGROUND INFORMATION 

2.3 SMALL PERTURBATION METHOD WITH GREEN’S FUNCTION TECHNIQUE 

2.1 Floquet’s Theorem 

    The traveling waves guided in an axially periodic structure can be sufficiently 

represented from Floquet’s theorem. This theorem, has carried out by Bloch, generalizes a 

linear ordinary differential equation with periodic coefficients from a linear partial differential 

equation so as to solve Schrödinger’s equation, which is in connection with the propagation of 

electron waves in large but finite crystals. Consider a wave propagating in infinite periodic 

structures which periodical direction is along  axis. It is obviously true that the fields along 

x differ from the other one at a period d away by a complex number due to the infinity of 

periodicity. This complex constant can be separated to real and imaginary part, and they are 

so-called attenuation coefficients and phase constants and respectively. For the case of TE 

mode, this property satisfies the wave equation with the periodically variational permittivity 

x̂

( )xrεε 0  such as 

 

0)(2cos 2
01002
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Here we change  instead of dx + x , and then obtain 

 

0)()(2cos 2
01002

2

=+
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +++ dxkdx

ddx
d

rr ϕπεεε            (2.3)  

 

Since the cosine term in (2.3) is periodical as well, )( dx +ϕ is also a solution of (2.1). 

Note that )( xϕ is not a periodic function, i.e. )( )( dxx +≠ ϕϕ . 

Therefore, a time-harmonic electromagnetic field function )( xϕ and )( dx +ϕ  have 

the same manner as )( dx +ϕ  and )2( dx +ϕ . Mathematically, we write them as 
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where C is a constant. From the above equation, we obtain . Note that 

 is generally a complex number mentioned previously. Thus it would be written as 

, and the generally complex Floquet wave number 

)( )( xCmdx mϕϕ =+

mC

)exp( 0dikC x= αβ ikx += 00  is referred 

to as the fundamental propagation constant. Such as array antennas, the phase on each one 

periodical position differs for one kx0d. The field possesses the property .  )()( 0 xedx dikx ϕϕ =+

    In defining a periodic function , it may be expanded in a Fourier series 

by 

)( )( 0 xex xikx ϕ−=P
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   απβπ i
d
n

d
nkk xxn ++=+=

22
00 ,   ,...2 ,1 ,0 ±±=n               (2.7) 

 

    This Fourier series expansion indicates that the field of a normal mode of an axially 

periodic structure consists of an infinite series , called space harmonic, 

resembling harmonic representation  in time domain. The n

)exp( xkxnnA

ti ne ω
th term in (2.7) is called the 

nth space harmonic or Hartree harmonic. The functions  represent the corresponding 

space harmonic amplitudes, while the wave number k

nA

x0 denotes the fundamental space 

harmonic propagation constant. According to the convergence properties of the Fourier series, 

the absolute value of  is significantly decreases as | n | is approximate to infinity. In 

general, the singled dominant n= 0 harmonic is sufficient to describe the field distribution. 

Note that the wave may consist of positive-going and negative-going waves due to the sign of 

harmonic order n. Using the definition of P , a periodic function of x with a period d, 

therefore the general solution of Equation (2.1) is of the form 

nA

)( )exp( 0 xxk x ϕ±=P .That is 

the particular result of Floquet’s theorem and commonly the starting point in solving the 

problem of periodic structures and the periodic property of  is given P

 

                           (2.8)  )()( )( )( 000 xxedxeedx xkxkdk xxx PP ==+=+ −−− ϕϕ

 

2.2 Statement of the Problem and Background Information 

    As we introduce in Chapter I, output grating couplers are regarded as surface-wave-to 

leaky-wave converters. It is assumed herein the light wave propagates to  direction. The 

fundamental phase constant 

x̂+

0β , which only exists in the grating region instead of 

non-grating part, would be very close to the propagation factor swβ of incident surface wave 

in the non-grating region as long as the relative permittivity of film waveguide εf  is mainly 

larger than the one of grating layer εg. Furthermore, the attenuation coefficient α is 

comparably insignificant to β0. However, we are interested only in these leaky-waves modes 
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that appear as perturbations of a surface-wave mode. Then it can be assumed as 

 

000 2 λπββ =>≈ ksw                             (2.9) 

 

where λ0 is a certain wavelength in air and k0 is the free space wave number at the 

corresponding wavelength λ0.  

 

)1(−θ
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2
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e
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Figure 2- 1 Illustration of a basic output coupler which converts surface waves to leaky-wave outgoing beams 

with angles θ (n) and beam widths W (n). Note that both θ (n) and W (n) are functions of wavelength λ of 

incident surface wave. 

 

The attenuate coefficient α can be hold as leakage of the energy scattered by a number of 

diffracted orders after it is assumed that all the materials discussed here are in lossless 

situations. Due to the diffraction of grating, leaky-wave fields manifest harmonic components 

with wave numbers dnn /20 πββ +=  in defining the Equation (2.7), where 

and d is the period of the grating. Each harmonic corresponding to each ... ,2 ,1 ,0 ±±=n
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propagating order of grating then scatters outgoingly into the air and substrate material. 

Figure 2-1 is regarded as a structure that transforms a surface wave into one or more leaky 

waves. Only the air beam is shown but actually there is similar situation occurring in the 

substrate. Such a situation is suggested a beam is inclined in the angle  for a certain 

wavelength λ

)( nθ

 n, and the angles would be 

 

)(sin
0

1)(

k
nn βθ −=     ,...2 ,1 ,0 ±±=n                    (2.10) 

 

Note that the radiation from the grating part occurs only for n < 0 due to the reasonability in 

Equation (2.10). Practically, the period of grating is appropriately chosen so that a single order 

harmonic solely propagates, and mostly the 1−=n  harmonic is prescribed for design. For 

minimizing the numbers of outgoing beams to cause only 1−=n  harmonic exist in the air 

and substrate, the period d must be selected to satisfy 

 

 aNk <− |/| 01β    and     aNk >− |/| 02β                   (2.11)    

 

in the air region, and  

 

sNk <− |/| 01β     and     sNk >− |/| 02β                  (2.12) 

 

in the substrate region. The terms Na and Ns denotes the refractive index of air and substrate, 

and are defined as Na
2 = εa = 1 and Ns

2 =εs. The latter terms both in Equation (2.11) and (2.12) 

imply that the waves do not propagate for all 1−≠n . Arranging both of equations, we obtain 

the range of 00 / kN β=  satisfying  

 

d
N

d
λλ

+<<+− 11                            (2.13) 
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and  

                     sN
d

N −<
λ2    and   

d
NN s

λ2
−>                    (2.14)  

 

to support the propagating of single harmonic beam. The effective refractive index N of the 

thin film waveguide, defined as 0/ kswβ  or 00 / kβ , increases in a nonlinear way as the 

operation frequency is increased, and is influenced by the dimension of the structure as well. 

Figure 2-2 shows the linear programming diagram of the above equations. The forward and 

backward direction properties of outgoing beams depend on positive and negative values of 

the angle in Equation (2.10), i.e. it is demarked by the line of dN /λ= . This boundary 

between these two regions correlates with Bragg reflection condition. Such a resonant 

situation, however, leads the incident power totally to reflect back to the surface-wave part 

and that is something to avoid for a designer. 

    It deserves to be mentioned in Figure 2-2 that a critical point occurs when λ is decreasing 

to about 1.25μm. The point indicates the lowest wavelength of the proper operation region. If 

 

 
Figure 2- 2 The proper range for the variation of wavelength λ versus corresponding effective refraction index N 

while the central wavelength λ0 =1550 nm with the period d = λ0 / 2, εs = 2.3. 
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the wavelength is selected to be below this point, the second or higher-order surface modes 

might be excited. These unwanted beams would cause unnecessary loss and degenerate the 

broadband performance. 

    At larger wavelength, the horizontal fraction of the output beam is oriented along x̂−  

direction while 01 <−β . As the wavelength is decreasing, the leaky beam rotates clockwise to 

the normal even to form a forward leaky wave. Here we define L as the effective coupling 

length is reciprocal of attenuate coefficient, i.e. α1≡L . According to this definition, the 

effective width of the beam in air is . This effective width  depends 

on the operation wavelength since both of decay factor  and diffraction angle  are 

functions of . 

)()()( cos nnn LW θ= )(nW

)(nα )(nθ

)( nλ

    Typical thin-film grating configuration is shown in Figure 2-2. Subscripts a, g, f, and s 

denote air, grating layer, firm and substrate region respectively. The relative permittivity ε  

of each layer is a pure real number because of the assumption of lossless property in all 

materials. The thickness of residual layer here is ignored for simplifying the problem. Due to 

Tamir and Peng’s investigation which develops the relation of normalized leakage versus 

aspect ratio for canonic rectangular grating [7], the aspect ratio in Figure 2-2 (a) is properly 

chosen as 1/2. This study, however, is focused on the relation between the effective width W, 

of outgoing beam in air region with the operation wavelength λ , and henceforth to develop 

design criteria that minimize the variation of W as λ  varies over a certain larger frequency 

interval. 

fε

sε

gε

aε
gt

ft fε

sε

gε

aε

gt

ft

 

                      (a)                                        (b) 

Figure 2- 3 Geometry of grating structures profile: (a) canonic rectangular type, (b) symmetric triangular type 
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2.3 Small Perturbation Method with Green’s Function Technique 

In this paper, the improved first-order small perturbation method (SPM) is introduced to 

analyze the plane-wave diffracting and scattering out of the gratings. This approach, was 

sequentially developed by Handa et al.[9], Tamir et al.[7], and by Hwang and Wei [13], is 

much more current than the rigorous method, and its computational application provides the 

analytical insight for developing design criteria with a short time. In view of SPM, the grating 

layer is regarded as a perturbed variation on the uniform multilayer. Such a concept leads to 

translate the boundary value problems and source of a diffraction wave to the 

transmission-line modal appropriately for periodic dielectric medium. 

The infinite dimension of the  direction is assumed in our work, i.e. ŷ 0=dyd . Due 

to the periodicity of the grating, the dielectric variation in the grating can be expanded as 

one-dimension Fourier expansion  

 

"" ++++== −
−

∞

∞−
∑ xixixi

n
ddd

n

ezezezzx
πππ

εεεεε
222

)()()(),( 101  

      ( )[ ]xz d
πδε 2

0 cos)(21 +≈  

),( zxpu εε +≡                                (2.15) 

 

where εn is the corresponding Fourier-series coefficients. εp (x, z) is considered as a perturbed 

term imposed on a layer with the dielectric constant which depends on the position x and z. 

The above expression only exists on the grating layer because all the other layers have been 

assumed uniform, i.e. there is no perturbation inside those layers except grating. The electric 

and magnetic fields of leaky-wave can be respectively taken apart to corresponding 

unperturbed and perturbed terms by Fourier series expansion as    

 

                                      pu EEE +=                                (2.16) 
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and 

pu HHH +=                             (2.17) 

 

The relation of Eu and Hu are independent from other perturbed fields, i.e. these two 

unperturbed fields generate each other but Ep and Hp while they are introduced in to 

Maxwell’s equations. With the notation, Maxwell’s equations can be taken the form 

 

                       ( ) ( )pupu HHEE +=+×∇ 0ωµi                       (2.18) 

and 

 ( ) ( )pupu EEHH ++−=+×∇ )],([0 zxi pu εεωε  

 ppuu EEEE ),(),( 0000 zxiizxii pupu εωεεωεεωεεωε −−−−=      (2.19) 

 

where 0ε  and 0µ  are the permittivity and permeability in vacuum. In Equation (2.19), the 

unperturbed electric Eu is generated merely due to the curl operation of Hu by the previous 

statement, and hence the last three terms can be viewed as fields produced by perturbed 

magnetic field Hp. If the term εpEp has been assumed to be significantly small compared to 

any other term, thus the perturbed part of Equation (2.19) is given 

 

upp EEH ),(00 zxii pu εωεεωε −−=×∇                   

  ),(0 zxi u eqp JE +−= εωε                               (2.20) 

with                       

ueq EJ ),(0 zxi pεωε−≡                           (2.21) 
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 TE modes TM modes 

Field Components 
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)exp()( 0 xizVE uyu β=  
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ωµ
β
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)exp()( 0 xizVE uxu β=  

)exp()( 0 xizIH uyu β=  

yu
gu

zu EE
εωε

β
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0−=  
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0

1
ωµ

qzu

qu
qu

k
Z

Y ==  

 

qzu

qu

qu
qu kZ

Y
εωε 01

==  

 

Propagation Coefficient 
2

0
2
0

2
0 Nkkk ququqzu −=−= εβε   with  

0

0

k
N β

=  

Table 2- 1 The field components and transmission line parameters of unperturbed structure. 

 

    The accuracy of small perturbation method strongly depends on whether the supposition 

is held or not. If the term εp is not small enough, the last term of Equation (2.19) can not be 

ignored and that would cause inaccuracy of analysis. Based on Equation (2.21), the equivalent 

current source Jeq is regarded as the generation of spatial variation of medium. Combining 

with following transmission-line modal, the characteristics of a diffraction phenomenon of a 

grating coupler is investigated. 

 

2.3.1 The surface waves guided in the unperturbed structure 

For the uniform two-dimension-multilayer structure, the fields are of TE and TM types. 

The components of each type can be represented by the equivalent voltages  and 

the currents  waves traveling along the  direction. Note that the  direction is 

transverse to the original direction of incident surface waves. As summarized in Table 2-1, 

those components obey the conventional transmission line equation given by 

)(zVV =

)(zII = ẑ ẑ
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)(
)( zIZik

dz
zdV

ququqzu
qu =                           (2.22) 

)(
)( zVYik

dz
zdI

ququqzu
qu =                            (2.23) 

 

where q denotes a, g, f and s respectively and the subscription u exhibits the unperturbed 

quantities. Because the relative dielectric constants in all materials εqu are all real numbers, 

the propagation constants are either real or imagery numbers. We note that two of these 

factors kazu and kszu are purely imaginary since the fields of surface waves evanesce in the two 

layers and kfzu is reversely real because the wave sinusoidally propagates in the firm in Figure 

2-4.  

 

umzum Yk )1()1(  , ++

quqzu Yk  , 

uzu Yk 11  , 

uzu Yk 00  , 
0=z

1hz =

mumzu Yk  , 

1−= qhz

qhz =

1−= mhz

mhz =

1t

qt

mt

 
Figure 2- 4 General basic multilayer configuration. 

 

    For dealing with different geometric types of grating or the structures with many layers, 

the general basic grating configuration is introduced here. Assume that the transmission-line 

model for (m+1) layers is shown as Figure 2-4. From the transmission-line theory, the field is 

initially defined in the terminal layers such as  

 

( )zikCV zuu 000 exp −=                           (2.24) 

                         ( )( )mzummum hzikCV −−= +++ )1()1()1( exp                   (2.25) 
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 With the consistency relation 
 

                                ( ) 02exp1 =ΓΓ− −+
qqzuququ tki                         (2.26) 

 

where the terms  and  is regarded as the reflection coefficients looking into the 

upper and lower boundaries of the q medium, one then find that the representation of fields 

would be  

+Γqu
−Γqu

 

       ( )( ) ( ) ( )( )[ ]11 exp2expexp −
+

− −−Γ+−= qqzuqqzuquqqzuqqu hziktkihzikCV     (2.27)  

 

while  or . In Equation (2.27), the reflection coefficient  is given by 

the reflectance relations 

0≠q )1( +≠ mq +Γqu

 

                                    
uu

uu
u YY

YY

01

01
1 +

−
=Γ−                              (2.28) 

( )

( )ummu

ummu
mu YY

YY

1

1

+

++

+

−
=Γ                         (2.29) 

 

Thus the reflection coefficients looking into the upward and downward to boundaries of the q 

medium are 

                                

                
[ ]( ) [ ]( ) [ ]

( ) ( )

[ ]( ) [ ]( ) [ ]
( ) ( )1,1

1,1

2
,1,1,1

2
,1,1,1

++

++

+
+++

+
++++

Γ−++

Γ++−
=Γ

quq

quq

tki
uquqquuqqu

tki
uquqquuqqu

qu eYYYY

eYYYY
       (2.30) 

and 

[ ]( ) [ ]( ) [ ]
( ) ( )

[ ]( ) [ ]( ) [ ]
( ) ( )1,1

1,1

2
,1,1,1

2
,1,1,1

−−

−−

−
−−−

−
−−−−

Γ−++

Γ++−
=Γ

quq

quq

tki
uquqquuqqu

tki
uquqquuqqu

qu eYYYY
eYYYY

        (2.31) 
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while  or  as well as the field representations. The constant coefficients C0≠q )1( +≠ mq 0, 

C(m+1), and Cq satisfy the continuity between two distinct layers of materials. For normalizing 

with convenience, i.e. C1 = 1, other coefficients would be given by 

 

                                                               (2.32) 112
10 1 tki
u

zueC +Γ+=

 
and  
 

                             
( ) ( )

( )( )
qqu

quq

tki
qu

uq
tki

q
q e

eC
C 2

,1
2

1

1

11,1

+

+
−−

Γ+

Γ+
=

−−

                      (2.33) 

 

The dispersion relation β0 (λ) for the surface wave modes in the uniform multilayer is 

found by using many of well-developed methods, such as a transverse-resonance technique as 

following. This technique is based on the fact that in a waveguide at cutoff, the fields form 

standing waves in the transverse plane of the waveguide. An equivalent transmission-line 

network of the four-layer configuration with respect to the transverse  is modified in 

Figure 2.4. Consequently all of the modes are obtained by solving the eigenvalue equation in 

the form 

ẑ

    

0)()( =+ zZzZ dnup   for all  z                      (2.34) 

 

where Zup and Zdn are the input impedance looking up and down, respectively, and they are 

given by 

 

                          
)tan(
)tan(

)(
ggzuazugzu

ggzugzuazu
gzuup tkiZZ

tkiZZ
ZzZ

−

−
=                     (2.35) 
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)tan(
)tan(

)(
ffzuszufzu

ffzufzuszu
fzudn tkiZZ

tkiZZ
ZzZ

−

−
=                     (2.36) 

 

where kqzu and Zqzu are the propagation constants and characteristics impedances on Table 2.1. 

Hence the effective refractive index N (λ) = β0 (λ) / k0 for any given λ is determined as shown 

in Figure 2-7. Note that the assumption of Equation (2.9) is established while the thickness of 

grating approximates to zero since the relative dielectric constant of grating εgu, in general, is 

equal to neither εs nor εf. Hence the result of dispersion is restricted to the structure which has 

small tg in comparison with tf. 
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Figure 2- 5 The dispersion relation for four-layer TE modes with the following parameters: 

Na =1, Ngu =1.41, Nf =1.732, Ns =1.517. 

 

    The total power guided in the form of the surface-wave can be obtain by integrating 

corresponding 2-D Poynting vector. Here the appropriate expressions fields are selected from 

Table 2-1. Finally we find 

 16



 

( ) dzxP ˆ⋅×= ∫
∞

∞−

∗
uu HE                          (2.37) 

 

This term would help for estimating the leakage of power in the form of leaky-wave. 
 

2.3.2 The leaky waves excited in the perturbed structure 

In the previous section, the phenomenon of the unperturbed structure is described. Here 

it is assumed that the electric field of the incident plane-wave is in the direction, i.e. TE 

mode. To obtain the leaky-wave fields, we choose the space harmonic representations in Table 

2.2. With the Equation (2.21), the n

ŷ

th set of the space harmonic amplitude satisfies the 

source-excited transmission-line relations as shown in Equation (2.38) and (2.39). In these 

two equations, the distributed voltages vn(z) and currents in(z) are generated by the perturbing 

periodicity and only occur in the region of grating.  

 

nqnqnqzn
qn vIzik

dz
dV

−=                            (2.38) 

 

nqnqnqzn
qn jIYik

dz
dI

−=                             (2.39) 

 
 

Since the distributed sources only exist in the grating layer, the corresponding boundary 

conditions of the impedances at the grating terminal looking upward and downward with the 

above two equations are given by  

 

fn
zn

n Z
zzV

zVi '
/)(
)(

0
0 =

⎭
⎬
⎫

⎩
⎨
⎧

∂∂
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ωµ                (2.40) 
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⎭
⎬
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∂∂
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/)(
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0ωµ               (2.41) 
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Table 2- 2 The field components and transmission line parameters of perturbed structure. 

 

The analogous representations of parameters are known in Figure 2-6. For TE mode, the 

effect of grating dielectric perturbation is viewed as current-excited sources. From Equation 

(2.38) and (2.39), a second-order differential equation, as shown in the following, is then 

derived 

 

)()( 0
2

2

2

zjizVk
dz
d

nnqzn ωµ−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+                    (2.42) 

 

With the boundary conditions shown in (2.40) and (2.41), the voltage distribution along the 

direction in the grating layer is given by ẑ

 

zdzjzzGizV nn

t

n
g ′′′−= ∫ )()|()(

00ωµ                   (2.43) 
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where  is the Green’s function that introduces the unit amplitude generators of 

voltage and current to represent the excitations V

)|( zzGn ′

n(z) employed in Figure 2-6 and its 

mathematical derivation is detailed in the next section. 

 

Figure 2- 6 Equivalent source-excited transmission-line for perturbed-layer structure. 

 

     The leakage parameter α of the leaky-wave field is obtained by recalling that the power 

P(x) in Equation (2.37) along the perturbed structure varying as )2exp( xα−  would satisfy 

  

                                     P
dx
dP α2−=                               (2.44)   

    

where the change in power P occurs longitudinally since the harmonic components of leaky 

waves radiate to air or substrate. Thus rate of change of P in Equation (2.44) can be also 

written as 

 

∑∑ +==−
n

sn
m

amrad ppp
dx
dP  

{ } { }sn
n

snam
m

am YVYV ℜ+ℜ= ∑∑ 22
                (2.45) 

 

The subscripts n and m denote the corresponding order of harmonics in air region and 
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substrate region respectively. While leaking away from the film layer, the total power per unit 

length prad then equal to the summation of all the harmonic power per unit length of the 

respective regions. Combining Equation (2.44) and (2.45), we get 

 

∑∑ +=
n

sn
m

am ααα          

⎭
⎬
⎫

⎩
⎨
⎧

+== ∑∑
n

sn
m

am
rad pp

PP
p

2
1

2
                    (2.46) 

 

where the mth or nth harmonic of power per unit length pam or psn involves a copious algebraic 

derivation with Green’s function.  

The other significant factor for design of grating couplers is the efficiency of power 

coupling ηql  where q can be as a or s to represent the proportion of power radiated away to 

air or substrate region and l denotes the relative harmonics. Consequently the efficiency can 

be defined  

 

{ }
{ } { }∑∑ ℜ+ℜ

ℜ
=≡
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smsm

n
anan
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YV
p
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22

2

η               (2.47) 

 

Those two terms, leakage parameter and coupling coefficient, exhibit the properties for 

design criterion to lay the operation points. In this research, we would select some operation 

points after figuring the former parameter due to the variation on the outgoing beamwidth. In 

addition, the promotion on power efficiency is often investigated by the structure with 

asymmetry. 

2.3.3 Green’s function technique 

With the configuration in Figure 2-6, the one-dimensional differential equation in 

Equation (2.42) can be solved by Green’s function technique as following 
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with the boundary conditions, 
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where )( zz ′−δ  is dirac delta function. This equation presents that the electromagnetic fields 

radiated by point current excitations are conveniently expressed in terms of Green’s function.  

According to the classical circuit theory, the voltage and current components due to the point 

source can be written as  

 

( ) ( )zzikzzik
n

gzngzn eVeVzV ′−−
−

′−
+ +=)(                   (2.51) 

                                      

where  and  are undetermined coefficients corresponding to the magnitudes of the 

wave traveling upward and downward. While 

+V −V

gtz = , the relation between these two 

unknown coefficients would be 

 

                                  
( )ztik
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ggzne

V
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+

− Γ= 2
                           (2.52)   

 

where the reflection coefficient of for nth harmonic ( ) ( )gnangnangan ZZZZ +−=Γ / , and thus 

Equation (2.53) is rewritten as  
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For a point source excited at , the following equation would be satisfied zz ′=
 

                             { })(||)(1)( zZzZzzV dn
n

up
nn ′′⋅=′=                      (2.54)       

where  and  denote the impedances looking upward and downward at the 

point , and , however, is obtained by the above two equations to acquire the Greens’ 

function such as 

)(zZ up
n ′ )(zZ dn

n ′

zz ′= +V

 

               ( )
( ) ( )

( ) { )(||)( 
1

| 2

2

zZzZ
e

ee
zzG dn

n
up
nztik

gan

tzzik
gan

zzik

n ggzn

ggangzn

′′
Γ+

Γ+
=′ ′−

−′+−′−

}          (2.55) 

 

Thus, the voltage distribution  along the  direction in the grating layer will be 

obtained from the integral equation in Equation (2.43). 

)(zVn ẑ
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Chapter Ⅲ 

Numerical Results and 

Discussions 
3.1 DEPENDENCE OF COUPLING PROPERTIES ON tg IN DIFFERENT GRATING PROFILES

3.2 CHARACTERISTICS OF THE BEAMWIDTH AT BROADBAND OPERATION 

3.3 DISCUSSION ON VARIATION OF THE BEAMWIDTH ON ∆λ FOR DIFFERENT PROFILE 

Based on the perturbation approach with Green’s function introduced in Chapter II, it is 

feasible to delve into the interconnection of properties of the power leakage and 

geometric/material parameters for implementing. However, the detail investigation on their 

relation has been discussed well by and Stone [8] and Peng [7] in the early year. Due to the 

strong dependence of the leakage and grating height, here we emphasize on tg to generalize 

the wideband operation design criteria with different symmetrical profiles of gratings. 

The reason for the choice of symmetrical structures is the feature avoiding the excitation 

of higher order harmonics. Recalling the Section 2.2, a second ( 2−=n ) order of harmonic 

begins to propagate at a certain wavelength on the interval ∆λ that we concern about. The 

undesired energy deteriorates the stable property on broadband operation and thus the 

bandwidth is consequently reduced. Nevertheless, the effect of the second order harmonic is 

invalid in this work since the leaky wave are only excited to the odd order harmonics in case 

of the symmetrical grating profiles, i.e. only … 5 3, ,1 ±±±=n harmonics exist.  

    Herein, the rectangular, triangular and trapezoidal profiles with symmetry are adopted as 

show in Figure 3-1. The upper corrugation width  and the lower one  influence upon 

the leakage parameter α, which comparably strongly depends on t

1d 2d

g. As the assumption in 

Chapter II, only a single order, i.e. 1−=n , is propagating if it is not mentioned particularly. 

The results are shown in Figure 3-2 for αλ curves as functions of tg /λ for types which have  
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Figure 3- 1 Types of symmetrical grating profile: (a) rectangular, (b) symmetric triangular, (c) regular trapezoidal  

and (d) inverted trapezoidal type. 

 

the fixed ratios of λ /d = 0.52 for TE0-mode. 

The behavior of TM0-mode or other higher mode can be also obtained by the similar 

method. There just the fundamental TE0 case is shown here since these expressions give a 

smaller value of α for the TM mode than for the TE mode. This is because the electric fields 

of both guided and leaky mode make a large angle in the TM mode while they are parallel to 

each other in the TE mode. Moreover, the gratings which consist of isotropic medium do not 

yield the radiation of polarization differing from that of the guided-mode wave. 

Forerunner implicated the preciseness of the approximate perturbation approach 

generally decreases as tg / λ  in comparison with the rigorous method. In spite of inaccuracy, 

the larger values of tg / λ  are seldom of practical interesting while the grating is assayed by 

its broadband behavior. Furthermore, the SPM is adopted with appropriateness in this paper. 
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     Figure 3- 2(a) Variation of normalized leakage αλ versus tg /λ for the TE0 mode in symmetric  

gratings with the corrugated ratio of 1/1 =dd .   
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   Figure 3-2(b) Variation of normalized leakage αλ versus tg /λ for the TE0 mode in symmetric  

gratings with the corrugated ratio of 75.0/1 =dd . 
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Figure 3-2(c) Variation of normalized leakage αλ versus tg /λ for the TE0 mode in symmetric  

gratings with the corrugated ratio of 5.0/1 =dd . 
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Figure 3-2(d) Variation of normalized leakage αλ versus tg /λ for the TE0 mode in symmetric  

gratings with the corrugated ratio of 25.0/1 =dd . 
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Previous literature has shown that, in the case of canonic rectangular ( 5.0// 21 == dddd ) 

type of gratings, the leakage parameter α  of a grating increases monotonously with small 

value of tg and is approximately proportional to tg
2. In such a case the grating is viewed as 

operating in a parabolic region. On the other hand, for larger value of tg, α  oscillates 

periodically about a certain average value within its upper bounds and lower bounds in this 

saturation region. The phenomena reveal that gratings tend to exhibit a wider broadband 

behavior if their operation points is located at the transition between the above two regimes as 

shown in Figure 3-3. The design criteria for broadband couplers are determined by the 

operation point which depends on the grating height tg. 

Analogously to canonic rectangular gratings, the trapezoidal (triangular) ones exhibit a 

monotonic increase of αλ  when tg is not too large. As tg is increasing, the curve maintains 

the fluctuation except holding on a saturation level. To take it over, αλ  is decreasing. 

Comparing with the constant property respected to z of the perturbed dielectric constant in the 

rectangular case, the term εgn varies as a function of z  in the trapezoidal one, i.e. εgn = εgn(z).  

For a superior choice of operation points in trapezoidal case, the transition region is also 

suitable for broadband operation since the curve performs a rounded change of slopes inside 

this interval. 

Bounded Fluctuation Region

Parabolic Region

Broadband Operation Region

R
P

Q

gt

α

 
Figure 3- 3 Typical variation of the leakage α versus the height tg in a rectangular dielectric grating. 
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According to the work by Zhang and Tamir [16], the quadratic behavior holds well up to 

some points denoted by Q. The range below Q point is thus defined as parabolic region. As tg 

is increasing behind the Q point, the phenomena of fluctuation rises owing to two sorts of 

physical mechanism. The variation of Vgu is still adapted due to its in-phase property with the 

distributed currents j-1(z). In Equation (2.29), two terms dominating this variation of Vgu are 

exp(ikgz,-1 tg) and exp(2ikgz,-1 tg). Herein the effective wavelength in the grating layer is defined 

as  
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and thus the effects of exp(ikgz,-1 tg) and exp(2ikgz,-1 tg) should be Λg,-1 and Λg,-1/2 respectively 

shown in Figure 3-2. In the structure condition we assumed, however, it can be found the 

results then give the period of oscillation as Λg,-1/2.  

 

3.2 Characteristics of the Beamwidth at Broadband Operation 

    Due to the crossover condition of constructive and destructive phase interference 

generated by the above two oscillatory effects, the point Q is chosen to be one fourth of the 

effective wavelengths, Λg,-1/4, as the broadband operation point. Notice that in the mentioned 

figures, these points are also posited in the transition regime between parabolic and bounded 

saturation region and it is an appropriate regime for broadband operation because of its tender 

performance of the α  curves. In this section, we choose not only the Q points of Λg,-1/4 but 

also the points P at the location of tg = Λg,-1/8 in the parabolic region and the points R at the 

location of tg = Λg,-1/2 respectively as noted in Figure 3-3. The considerations argue in favor of 

designing tg so that these operation points act in the desired wavelength interval centered at λ0. 

Table 3-1 shows the position of operation points while the central wavelength 
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Region Parabolic  Transition  
Transition interval closed to the 

bounded fluctuation region 

gt  1,8
1

−Λ g  1,4
1

−Λ g  1,2
1

−Λ g  

Point P Q R 

for 15500 =λ nm 

(μm) gt
0.1434 0.2868 0.5735 

Table 3- 1 Position of broadband operation point. The center wavelength λ0 herein is chosen as 1550 nm. 

 

is 1550 nm.     

Generally speaking, when optical waves or electromagnetic waves are transmitting, the 

decay relates with the wavelength of propagating. The operation wavelength λ0 herein is 

chosen as around 1550 nm by the frequently-used one in the optical fiber communication 

system since it can be stimulated by the double hetero structure (DHS) such as 

GaxIn1-xAsyP1-yInP. 

    In comparison with the relation between α  and tg discussed in the last section, the 

correlation of the beamwidth Wa,-1 of 1−=n  order of harmonic and λ  exhibits the more 

complicated manner owing to )(λNN =  and )(λαα = . However, the fluctuant 

mechanisms of wave interference with periodicity mentioned previously would provide to 

maintain Wa,-1 as stable variation on a large interval of wavelength when a designer plans the 

conditions. As we discuss in Section 2.2, the beamwidth Wa,-1 coupled into the air region is 

given by 

( ) ( )

( )

a

a
a

d
N

W
ε

λλ

λαλα
θ

2

1,
1, 11cos ⎥⎦

⎤
⎢⎣
⎡ −

−== −
−                  (3.2A) 

 
Note that Equation (3.2A) is hold while  
 

 31



                
( )

01

2

>
⎥⎦
⎤

⎢⎣
⎡ −

−
a

d
N

ε

λλ
                             (3.2B) 

 

From Equation (3.2A), it is obvious that the beamwidth strongly depends on α  and the 

leakage factor is also a function of λ . As λ  varies, the relative length tg/ λ  is changing 

accordingly as well. Whenever tg/ λ  is slight, αλ  varies correspondingly to parabolic region 

of α  versus tg curve. As we observe in Figure 3-2, αλ  in this region has strong change as 

the variation of tg/ λ . Large values of tg/ λ , correspond to points in the bounded fluctuation 

region of α  versus tg curves, belong to large-scale variation as well as points in the 

parabolic region. Therefore, the transition interval between those two regions should provide 

more stable values of α . 

    The result for symmetric grating couplers is depicted from Figure 3-4 to 3-7. Note that 

all of the parameters are the same except the grating profiles. We find that the property of the 

beamwidth remains reasonably flat over the interval ∆λ from 1μm to 2μm. While the 

coupler is operated at larger wavelength, the beamwidth performs slight decay since the term 

in Equation (3.2B) is closed to zero as tg increases. 

    Regarding a broadband coupler operating at 1550 nm, Q (tg = Λg,-1/4) point provides a 

simple and effective design criterion. In the broadband operation region between P and R, the 

flatness of those curves is slightly decreasing quantitatively. Therefore, Q is not the only 

critical point for wideband operation. The beamwidth generated at Q point may not be a 

desired dimension. We finally adjust tg to vary α for satisfying the specified beamwidth as 

long as the operation point is not too far from Q point.  

   The  harmonic is suppressed below λ = 1.25μm, where the other harmonics are 

predicted to occur and is shown in Figure 2-2. The numerical results show that the power of 

the second harmonics is extremely smaller than the first harmonic and thus can be ignored. 

2−=n
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Figure 3- 4(a) Variation of Wa,-1 /λ versus λ at points P, Q, and R for rectangular grating with aspect ratio 

75.0/1 =dd  and 75.0/2 =dd . 
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Figure 3- 4(b) Variation of Wa,-1 /λ versus λ at points P, Q, and R for rectangular grating with aspect ratio 

5.0/1 =dd  and 5.0/2 =dd . 
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Figure 3- 4(c) Variation of Wa,-1 /λ versus λ at points P, Q, and R for rectangular grating with aspect ratio 

25.0/1 =dd  and 25.0/2 =dd . 
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Figure 3- 5 (a) Variation of Wa,-1 /λ versus λ at points P, Q, and R for symmetric triangular grating with aspect 

ratio  and 1/1 =dd 0/2 =dd . 
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Figure 3- 5(b) Variation of Wa,-1 /λ versus λ at points P, Q, and R for symmetric triangular grating with aspect 

ratio  and 75.0/1 =dd 0/2 =dd . 
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Figure 3- 5(c) Variation of Wa,-1 /λ versus λ at points P, Q, and R for symmetric triangular grating with aspect 

ratio  and 5.0/1 =dd 0/2 =dd . 
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Figure 3- 5(d) Variation of Wa,-1 /λ versus λ at points P, Q, and R for symmetric triangular grating with aspect 

ratio  and 25.0/1 =dd 0/2 =dd . 
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Figure 3- 6(a.1) Variation of Wa,-1 /λ versus λ at points P, Q, and R for the regular trapezoidal gratings with aspect 

ratio 1/1 =dd  and 75.0/2 =dd . 
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Figure 3- 6(a.2) Variation of Wa,-1 /λ versus λ at points P, Q, and R for the regular trapezoidal gratings with aspect 

ratio 1/1 =dd  and 5.0/2 =dd . 
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Figure 3- 6(a.3) Variation of Wa,-1 /λ versus λ at points P, Q, and R for the regular trapezoidal gratings with aspect 

ratio  and 1/1 =dd 25.0/2 =dd . 
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Figure 3- 6(b.1) Variation of Wa,-1 /λ versus λ at points P, Q, and R for the regular trapezoidal gratings with 

aspect ratio  and 75.0/1 =dd 5.0/2 =dd . 
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Figure 3- 6(b.2) Variation of Wa,-1 /λ versus λ at points P, Q, and R for the regular trapezoidal gratings with 

aspect ratio  and 75.0/1 =dd 25.0/2 =dd . 
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Figure 3- 6(c) Variation of Wa,-1 /λ versus λ at points P, Q, and R for the regular trapezoidal gratings with aspect 

ratio  and 5.0/1 =dd 25.0/2 =dd . 
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Figure 3- 7(a) Variation of Wa,-1 /λ versus λ at points P, Q, and R for the inverse trapezoidal gratings with aspect 

ratio  and 75.0/1 =dd 1/2 =dd . 
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Figure 3- 7(b.1) Variation of Wa,-1 /λ versus λ at points P, Q, and R for the inverse trapezoidal gratings with 

aspect ratio  and 5.0/1 =dd 1/2 =dd . 
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Figure 3- 7(b.2) Variation of Wa,-1 /λ versus λ at points P, Q, and R for the inverse trapezoidal gratings with 

aspect ratio  and 5.0/1 =dd 75.0/2 =dd . 
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Figure 3- 7(c.1) Variation of Wa,-1 /λ versus λ at points P, Q, and R for the inverse trapezoidal gratings with 

aspect ratio  and 25.0/1 =dd 1/2 =dd . 
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Figure 3- 7(c.2) Variation of Wa,-1 /λ versus λ at points P, Q, and R for the inverse trapezoidal gratings with 

aspect ratio  and 25.0/1 =dd 75.0/2 =dd . 
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Figure 3- 7(c.3) Variation of Wa,-1 /λ versus λ at points P, Q, and R for the inverse trapezoidal gratings with 

aspect ratio  and 25.0/1 =dd 5.0/2 =dd . 
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3.3 Discussion on variation of beamwidth on ∆λ for different profile 

    The beamwidth property of each shape of grating is shown in the last section. To contrast 

the flatness of those profiles, we introduce two terms, the area ∆ and the fractional beamwidth 

, are shown in Figure 3-8. For the submicron technology, the fabrication tolerance 

of grating height t

MaxWW /∆

g must be discussed with wideband operation. These two terms, however, 

help to determine the connection between the grating height and variation of beamwidth over 

a wavelength band ∆λ form 1µm to 2µm. 

The area ∆, henceforth, indicates the scanning of the beamwidth variation as tg is 

changing, and roughly the smaller ∆ is, the flatter the variation of beamwidth is. Nevertheless, 

∆  only exhibits the difference of beamwidth absolutely and is independent of the operation 

beamwidth. The other term, , defined as MaxWW /∆

  

Max

Max
Max W

WWWW min/ −
=∆                            (3.3) 

 

is not only considered about the difference but also normalized to the largest beamwidth 

relatively. Thus, for the case with larger WMax and unitary beamwidth difference, the term 

performs a smaller value and hence reveals the lower fraction of the beamwidth. 

 

λ

λ/W∆

λ/minW

λ/MaxW

∆

 

Figure 3- 8 Typical variation of the normalized beamwidth λ/W  versus wavelength  
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[ ] dddd /,/ 21 [0.75,0.75] [0.5,0.5] [0.25,0.25] 

∆ 72.0055 50.9157 72.0055 

MaxWW /∆  0.6996 0.6996 0.6996 

Table 3- 2(a) ∆ and MaxWW /∆  in rectangular gratings. 

 
[ ] dddd /,/ 21 [1,0] [0.75,0] [0.5,0] [0.25,0] 

∆ 82.0125 80.5991 95.1744 164.9242 

MaxWW /∆  0.732 0.7385 0.7591 0.7694 

Table 3- 2(b) ∆ and MaxWW /∆  in symmetric triangular gratings. 

 
[ ] dddd /,/ 21 [1,0.75] [1,0.5] [1,0.25] [0.75,0.5] [0.75,0.25] [0.5,0.25] 

∆ 100.2802 57.2929 57.0842 53.5352 56.8849 59.3 

MaxWW /∆  0.6437 0.6612 0.6905 0.6928 0.7067 0.7094 

Table 3- 2(c) ∆ and MaxWW /∆  in regular trapezoidal gratings. 

 
[ ] dddd /,/ 21 [0.75,1] [0.5,1] [0.5,0.75] [0.25,1] [0.25,0.75] [0.25,0. 5] 

∆ 164.9242 95.1744 59.3 80.5991 56.8849 53.5352 

MaxWW /∆  0.7694 0.7591 0.7094 0.7385 0.7067 0.6928 

Table 3- 2(d) ∆ and MaxWW /∆  in inverse trapezoidal gratings. 

 

Table 3-2 exhibits ∆ and  in different types of grating shape. In the viewpoint 

of ∆, we first find the canonic rectangular (

MaxWW /∆

5.0// 21 == dddd ) structure has the smallest area. 

It verifies the canonic rectangular gratings can offer wider bandwidths and flatter beamwidth 

over a fixed wavelength band than any other type of grating. The regular trapezoidal types 

and inverse ones also provide the areas which are not too far from which the canonic 

rectangular gratings provide. Observe the cases of trapezoidal shape with  in Figure 

3.5(a), 3.6(a.1), 3.6(a.2) and 3.6(a.3), there the crosses between two curves exist and they 

would reduce the difference of variation and thus decrease ∆. However, it can be found 

obviously that symmetric triangular profiles have larger areas than all the others. In Figure 

3-2(a)-(d), the α curves of triangular profile are almost sharper and smaller than other curve 

of profiles and it would cause their beamwidth is generally larger and decrease its broadband 

1/1 =dd

 44



flatness. Oppositely, the cases of [ 0/,25.0/ 21 == dddd ] (symmetric triangular) and 

[ ] (regular trapezoidal), which geometry are complementary to each 

other, would exhibit worst evenness.  

1/,75.0/ 21 == dddd

Regular trapezoidal gratings commonly remain small values of the fractional beamwidth 

 as we observe due to their larger  in denominator. The canonic rectangular 

grating also performs a low value of the fractional beamwidth with acceptancy. Specifically, 

something interesting is that the fractional beamwidth of the three rectangular cases are equal 

despite of different ,  and . Though the symmetric triangular gratings have 

larger , their  are not small as we expect. The group of triangular shapes still 

behaves larger variation on flatness and may have less application on broadband operations. 

Fortunately, triangular gratings with asymmetry, such as blazed dielectric ones, promote the 

power efficiency leaked to the air/substrate [11]. Thus the gratings with canonic rectangular 

profiles, which have low area and fractional beamwidth, are more appropriate for broadband 

operation in our discussion.  

MaxWW /∆ MaxW

W∆ MaxW minW

MaxW MaxWW /∆
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Chapter Ⅳ 

Conclusion 
The dielectric gratings can be designed to deliver out-coupled beams with reasonably 

constant widths and intensities over a large wavelength interval ∆λ. Specifically, types of 

gratings with grating height tg around Λg,-1/4 convert a surface-wave into a leaky beam which 

beamwidth is remained flat over a wavelength band from 1µm to 2µm. The performances of 

other choices of tg such as Λg,-1/2 or Λg,-1/8 very slightly but still maintain the evenness 

condition in the wavelength interval. The flexibility of tg therefore provides the broadband 

operation region of desired beamwidth, and then a new design criterion can be concluded. 

Furthermore, the analysis of the flatness for different types of gratings shows canonic 

rectangular grating has the smallest variation, i.e. most flatness, due to the lowest area ∆. This 

property is appropriate for wideband application and provides the tolerance for the deficiency 

of fabrications. On the other hand, symmetric triangular ones commonly present small values 

not only on area ∆ but also the fractional beamwidth MaxWW /∆ . In comparison with 

symmetric triangular gratings, rectangular or trapezoidal ones have better evenness.  

Originally, the order of  harmonic is excited according to the linear programming 

diagram of 

2−=n

0/ kN swβ=  versus d/λ . Because of the symmetrical structures as we 

introduced, the power of the second harmonic is restricted to be very small, and therefore the 

power leaked out to the air/substrate is almost not influenced by that little portion so that the 

spectrum properties can retain a flat condition as designers’ expectation. 

Small perturbation method provides an acceptable accuracy and efficient calculation for 

computers in comparison with the rigorous method which need elaborate numerical 

computations while the grating height tg is selected on the transition region between the 
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parabolic regime and bounded saturation regime. Thus, because of the simplicity in 

formulations, this method is appropriate to broadband analysis. Quantitatively, the higher 

order modes exhibit more violent oscillation than the fundamental one. It is expected that they 

have less wideband behavior than a fundamental TE0 mode does. 

 

 

 47



 

 
Bibliography  
 
[1] T. Tamir, Integrated Optics, Springer-Verlag, ch. 3, pp. 110-118, 1985. 

[2] H. Nishihara, M. Haruna and T. Suhara, Optical Integrated Circats, McGraw-Hill,pp. 62-94, 1989. 

[3] R. E. Collin and F. J. Zucker, Antenna theory, part 2, McGraw-Hill, pp.184-188, 1969. 

[4] A. Ishimaru, Electromagnetic wave propagation, radiation, and scattering, Prentice-Hall, pp.178-180, 1991. 

[5] R. E Collin, Field theory of guided waves, IEEE Press, pp. 605-608, 1991. 

[6] L. B. Felsen and N. Marcuvitz, Radiation and scattering of waves, Prentice-Hall, pp.185, 1973. 

[7] T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys., vol. 14, pp. 69-73, 1977. 

[8] F. T. Stone and S. Austin, “A theoretical and experimental study of the effect of loss on grating couplers,” 

IEEE J. Quantum Electron., vol. QE-12, No. 11, pp. 727-732, Nov. 1976. 

[9] K. Handa, S.T. Peng and T. Tamir, ”Improved perturbation analysis of dielectric gratings,” Appl. Phys., vol.5, 

pp.325-328, 1975. 

[10] M. D. Salik, P. Chavel, ”Resonant excitation analysis of waveguide grating couplers,” Opt. Commun., 

vol.193, pp.127-131, 2001. 

[11] K. C. Chang and T. Tamir, “Simplified approach to surface-wave scattering by blazed dielectric gratings,” 

Appl. Phys., vol.19, no.2, pp.282-288, 1980. 

[12] S. T. Peng, “Rigorous formulation of scattering and guidance by dielectric grating waveguide: general case 

of oblique incidence,” J. Opt. Soc. Am., vol.6, pp.1869-1883, 1989. 

[13] R. B. Hwang and Ching-Chuan Wei, “Small perturbation analysis of diffracted holographic gratings,” Opt. 

Commun., 125, pp.217-221, 1996. 

[14] R. B. Hwang and D. K. Jen, “Small perturbation analysis of diffracted holographic gratings,” Microwave 

and optical technology letters, vol.19, no.6, pp.434-437, Dec. 1998. 

[15] K. C. Chang, V. Shah, and T. Tamir, “Scattering and guiding of waves by dielectric gratings with arbitrary 

profiles,” J. Opt. Soc. Am., vol.70, pp.804-813, 1980. 

[16] S. Zhang and T. Tamir, “Analysis and design of broadband grating couplers,” IEEE J. Quantum Electron., 

vol. 29, No. 11, pp. 2813-2824, Nov. 1993. 

[17] R. M. Emmons and D. G. Hall, “Buried-oxide silicon-on insulator structures-II: Waveguide grating 

couplers,” J. Quantum Electron., vol. 28, pp. 164-175, Nov. 1992. 

[18] R. M. Emmons and D. G. Hall, “Comparison of film thickness tolerances in waveguide grating couplers,” 

Opt. Lett., vol. 16, pp.998-1000, 1992. 

[19] K. Ogawa and W. S. C. Chang, “Analysis of Holographic thin film grating coupler,” Appl. Optics., vol.12, 

no. 9, pp.2167-2171, 1973. 

[20] S. T. Peng, H. L. Bertoni and T. Tamir, ”Analysis of periodic thin film structures with rectangular profiles,” 

Optics Commun., vol. 10, no.1, Jan 1974. 

 48



[21] S. T. Peng, T. Tamir and H. L. Bertoni, ”Theory of periodic dielectric waveguides,” IEEE Trans. M.T.T., vol. 

MTT-23, pp. 123-133, Nov. 1975. 

 

 49


