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Dr. Ruey-Bing Hwang

Department of Communication Engineering
National Chiao Tung University

ABSTRACT

The function of gratings is to:couple the incident plane wave energy into the dielectric
waveguide or to change the bound surface waves in the dielectric waveguide into leaky waves
in free space, and this structure plays a significant role nowadays since the interfacial
elements between optical integrated circuits is required urgently. However, the conventional
analysis examines the coupling behavior at a fixed value of wavelength. This work, thereby,
presents an extended analytical approach to the outgoing beam width on broadband operation,
and reveals these properties are remained nearly constant over a wavelength band from 1um
to 2um. The reason for choosing the symmetric structure is that symmetrical grating avoids
excitation of the second (n=-2) space harmonic and therefore, the behavior of broadband
would not be deteriorated. Moreover, we find the canonic rectangular (d,/d =d,/d =0.5)
gratings exhibit the smallest difference of flatness, but the symmetric triangular ones, however,

present larger variation.
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Chapter |
Introduction

Fine periodic structures such as gratings, implemented on an optical waveguide, are
widely used as one of the most important elements for optical integrated circuits (OICs)
construction. The understanding of the input or output thin-film dielectric grating couplers has
been developed well for years. Figure 1-1 illustrates examples of grating couplers for
integrated optics and they would change the direction of light as we observe. However,
conventional analysis examines their coupling behavior at a fixed value of
frequency/wavelength and emphasizes primarily_the applications for a narrow wavelength
band like frequency-selective devices. Nowadays; the operation over a wide wavelength band,
such as spectrum analyzers, broadband fiber communication, and other applications, is more

often seen than before. Meanwhile, the ‘wideband-laser system applies for the properties of

7
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Figure 1- 1 Grating coupler components for optical integrated circuits. (a) Input/output coupler. (b) Waveguide

couplers. (c) Focusing coupler.



broader wavelength band as well. This work, therefore, presents the flatness behaviors of
grating couplers with the beamwidth over a certain wavelength interval and furthermore
provides a simple design procedure for broadband operation.

The following Chapter Il is concerned with the method of analysis. The small
perturbation method (SPM) is adopted here due to its simplicity of formulations and
acceptable accuracy. Electromagnetic fields with a grating layer can be represented as
distributed current and/or voltage sources within the transverse transmission-line network in
the viewpoint of SPM, and thus a designer applies this method for acquisition of grating
parameters.

Subsequently, the results of broadband behavior are explored and discussed in Chapter
I11, and we then observe the broadband coupling is realizable. While verifying the broadband
properties of different types of grating.profile, we find.these behaviors at certain choices of t,
remaining flat over a wavelength-band from lpum.to- 2um with the central wavelength
A, =1550 nm. Previous literature [7] has.shown that, the curves of leakage factor « versus
the grating height t; can be roughly“divided into‘the parabolic region and the bounded
fluctuation region. In this work, we show the flatness appearance in the broadband operation
region which is posited in the transition between those two regimes mentioned above. Also, a
simple flatness criterion for determining parameters for gratings and discussion is then
provided at the end of this chapter.

In Chapter IV, we summarize the conditions that a grating coupler is used on broadband
operation and comment on the application of SPM approach to other related problems in the

conclusion. In addition, the further work in grating couplers is mentioned as well.



Chapter ]I
Method of Analysis

2.1 FLOQUET’S THEOREM
2.2 STATEMENT OF THE PROBLEM AND BACKGROUND INFORMATION

2.3 SMALL PERTURBATION METHOD WITH GREEN’S FUNCTION TECHNIQUE

2.1 Floquet’s Theorem

The traveling waves guided in an axially periodic structure can be sufficiently
represented from Floquet’s theorem. This theorem, has carried out by Bloch, generalizes a
linear ordinary differential equation with periodic coefficients from a linear partial differential
equation so as to solve Schrddinger’s equatieny which is in connection with the propagation of
electron waves in large but finite crystals..Consider a wave propagating in infinite periodic
structures which periodical direction is'along X axis. It is obviously true that the fields along
x differ from the other one at a period d-away by a complex number due to the infinity of
periodicity. This complex constant can be ‘separated to real and imaginary part, and they are
so-called attenuation coefficients and phase constants and respectively. For the case of TE
mode, this property satisfies the wave equation with the periodically variational permittivity

£y, (x) such as

d? 2
{dxz + 8{&0 + &,, COS (Tﬂ Xﬂkoz}go(x) =0 (2.1)

with

g (X)=¢,+¢, cos(zd—”xj (2.2)


http://www.schrodinger.com/

Here we change x+d instead of x, and then obtain

2
{d_+ go{gro +g”cos(2d_ﬂ(x+d)ﬂk°2}¢(x+d) =0 (2.3)

dx 2

Since the cosine term in (2.3) is periodical as well, ¢ (x + d) is also a solution of (2.1).
Note that ¢ (x) is not a periodic function, i.e. ¢ (X) =@ (x+d).
Therefore, a time-harmonic electromagnetic field function ¢ (x)and ¢ (x+d) have

the same manner as ¢ (x+d) and ¢ (x+2d). Mathematically, we write them as

p(x+d) _o(x+2d) ¢ (x+md) _c (2.4)
e(x) @+ dhunelx+(m-1)d]

where C is a constant. From the above equation; we obtain ¢ (x+md)=C"¢ (x). Note that
C™ is generally a complex number mentioned -previously. Thus it would be written as
C =exp(ik,,d), and the generally complex Flaguet wave number k,, =, +ia is referred
to as the fundamental propagation constant. Such as array antennas, the phase on each one

ikyod

periodical position differs for one kyd. The field possesses the property ¢(x+d)=e""¢(X).

In defining a periodic function P (x)=e "“*p (x), it may be expanded in a Fourier series

by

.2nzr

P()=YA,e ¢ (2.5)

and it results in

(ko +2" 7 )x

p()=Y A, e
= YA, ek (2.6)

with



k :kx0+2(r;—”=ﬂo+2(r;—”+ia, N=0,+1+2,.. @2.7)

xn

This Fourier series expansion indicates that the field of a normal mode of an axially

periodic structure consists of an infinite series A_exp(k,,x), called space harmonic,

t

resembling harmonic representation e’ in time domain. The ng, term in (2.7) is called the

Ny space harmonic or Hartree harmonic. The functions A  represent the corresponding
space harmonic amplitudes, while the wave number ki denotes the fundamental space
harmonic propagation constant. According to the convergence properties of the Fourier series,
the absolute value of A_ is significantly decreases as | n | is approximate to infinity. In
general, the singled dominant n= 0 harmonic is sufficient to describe the field distribution.
Note that the wave may consist of positive-going and negative-going waves due to the sign of
harmonic order n. Using the definition of P, a periodic function of x with a period d,
therefore the general solution of Equation (2.1) Is of the-form P = exp(tk,,X)¢ (X) .That is
the particular result of Floquet’s theorem-and.commonly the starting point in solving the

problem of periodic structures and the periedic property of P is given
P(x+d)=e" e ™ g (x+d)=e " "p (X) =P (X) (2.8)

2.2 Statement of the Problem and Background Information

As we introduce in Chapter I, output grating couplers are regarded as surface-wave-to
leaky-wave converters. It is assumed herein the light wave propagates to + X direction. The
fundamental phase constant f,, which only exists in the grating region instead of
non-grating part, would be very close to the propagation factor /g, of incident surface wave
in the non-grating region as long as the relative permittivity of film waveguide & is mainly
larger than the one of grating layer &. Furthermore, the attenuation coefficient « is
comparably insignificant to /. However, we are interested only in these leaky-waves modes

5



that appear as perturbations of a surface-wave mode. Then it can be assumed as

By = Be > Ko = 27[/2'0 (2.9)

where Ao is a certain wavelength in air and ko is the free space wave number at the

corresponding wavelength Ao,

Figure 2- 1 Illustration of a basic output coupler which converts surface waves to leaky-wave outgoing beams

with angles @™ and beam widths W ™. Note that both €™ and W ™ are functions of wavelength A of

incident surface wave.

The attenuate coefficient « can be hold as leakage of the energy scattered by a number of
diffracted orders after it is assumed that all the materials discussed here are in lossless
situations. Due to the diffraction of grating, Ieak;i-wave fields manifest harmonic components
with  wave numbers f =pf,+2nz/d in defining the Equation (2.7), where
n=0,%£1,+2,..and d is the period of the grating. Each harmonic corresponding to each

6



propagating order of grating then scatters outgoingly into the air and substrate material.
Figure 2-1 is regarded as a structure that transforms a surface wave into one or more leaky
waves. Only the air beam is shown but actually there is similar situation occurring in the
substrate. Such a situation is suggested a beam is inclined in the angle @ (™ for a certain

wavelength A ,, and the angles would be

oM :sin‘l(%) n=0,+1+2,... (2.10)

0

Note that the radiation from the grating part occurs only for n < 0 due to the reasonability in
Equation (2.10). Practically, the period of grating is appropriately chosen so that a single order
harmonic solely propagates, and mostly the_ n=-1 harmonic is prescribed for design. For
minimizing the numbers of outgoing:beamsrto-cause only n=-1 harmonic exist in the air

and substrate, the period d must be selected to satisfy

|ﬂ—1/k0 |< Na and |ﬂ—2 /kO |> Na (211)

in the air region, and

|IB—l/k0 |< Ns and |ﬂ—2/k0 |> Ns (212)

in the substrate region. The terms N, and Ns denotes the refractive index of air and substrate,
and are defined as N,° = & = 1 and N¢’=&. The latter terms both in Equation (2.11) and (2.12)
imply that the waves do not propagate for all n=—1. Arranging both of equations, we obtain

the range of N = g, /k, satisfying

—1+£< N <1+i (2.13)
d d



and

N <%— N and N>N _24 (2.14)

to support the propagating of single harmonic beam. The effective refractive index N of the
thin film waveguide, defined as f,,/k, or f,/k,, increases in a nonlinear way as the
operation frequency is increased, and is influenced by the dimension of the structure as well.
Figure 2-2 shows the linear programming diagram of the above equations. The forward and
backward direction properties of outgoing beams depend on positive and negative values of
the angle in Equation (2.10), i.e. it is demarked by the line of N=A4/d. This boundary
between these two regions correlates with Bragg reflection condition. Such a resonant
situation, however, leads the incident power totally to reflect back to the surface-wave part
and that is something to avoid for a desirgner. 2

It deserves to be mentioned in Figure Z-é ;tk‘lafa critiCaI point occurs when A is decreasing

to about 1.25 ¢ m. The point indicates the ioWest aneIength of the proper operation region. If

Effective Refractive Index B

203,
Figure 2- 2 The proper range for the variation of wavelength A versus corresponding effective refraction index N
while the central wavelength 4,=1550 nm with the period d = 4,/ 2, & =2.3.



the wavelength is selected to be below this point, the second or higher-order surface modes
might be excited. These unwanted beams would cause unnecessary loss and degenerate the
broadband performance.

At larger wavelength, the horizontal fraction of the output beam is oriented along — X
direction while g, < 0. As the wavelength is decreasing, the leaky beam rotates clockwise to
the normal even to form a forward leaky wave. Here we define L as the effective coupling
length is reciprocal of attenuate coefficient, i.e.L=1/«. According to this definition, the
effective width of the beam in air is W™ = L™ cos#™ . This effective width W™ depends
on the operation wavelength since both of decay factor «™ and diffraction angle 8™ are
functions of 4.

Typical thin-film grating configuration is shown in Figure 2-2. Subscripts a, g, f, and s
denote air, grating layer, firm and substrate region respectively. The relative permittivity &
of each layer is a pure real number because of-the assumption of lossless property in all
materials. The thickness of residual-layer. here_ is-ignored for simplifying the problem. Due to
Tamir and Peng’s investigation which-develops. the ‘relation of normalized leakage versus
aspect ratio for canonic rectangular grating [7], the aspect ratio in Figure 2-2 (a) is properly
chosen as 1/2. This study, however, is focused on the relation between the effective width W,
of outgoing beam in air region with the operation wavelength A, and henceforth to develop
design criteria that minimize the variation of W as A varies over a certain larger frequency

interval.

(@) (b)

Figure 2- 3 Geometry of grating structures profile: (a) canonic rectangular type, (b) symmetric triangular type



2.3 Small Perturbation Method with Green’s Function Technique

In this paper, the improved first-order small perturbation method (SPM) is introduced to
analyze the plane-wave diffracting and scattering out of the gratings. This approach, was
sequentially developed by Handa et al.[9], Tamir et al.[7], and by Hwang and Wei [13], is
much more current than the rigorous method, and its computational application provides the
analytical insight for developing design criteria with a short time. In view of SPM, the grating
layer is regarded as a perturbed variation on the uniform multilayer. Such a concept leads to
translate the boundary value problems and source of a diffraction wave to the
transmission-line modal appropriately for periodic dielectric medium.

The infinite dimension of the y direction is assumed in our work, i.e. d/dy=0. Due
to the periodicity of the grating, the dielectric variation in the grating can be expanded as

one-dimension Fourier expansion

~ egi#25(z) cos (2= x))

g, +e,(2) (2.15)

where &, is the corresponding Fourier-series coefficients. &, (X, z) is considered as a perturbed
term imposed on a layer with the dielectric constant which depends on the position x and z.
The above expression only exists on the grating layer because all the other layers have been
assumed uniform, i.e. there is no perturbation inside those layers except grating. The electric
and magnetic fields of leaky-wave can be respectively taken apart to corresponding

unperturbed and perturbed terms by Fourier series expansion as

E=E,+E, (2.16)

10



and

H=H, +H, (2.17)

The relation of E, and H, are independent from other perturbed fields, i.e. these two
unperturbed fields generate each other but E, and H, while they are introduced in to

Maxwell’s equations. With the notation, Maxwell’s equations can be taken the form

Vx(E, +E, )=iou,H, +H,) (2.18)
and

Vx(Hu +Hp): —lwgyle, +¢,(X, Z)](Eu +Ep)

=-lweye B, —iweye (X, 2)E =lwee B —lwg e, (X, 2)E, (2.19)

where &, and g, are the permittivity and permeability in vacuum. In Equation (2.19), the
unperturbed electric E, is generated merely. due to the curl operation of H, by the previous
statement, and hence the last three terms can be viewed as fields produced by perturbed
magnetic field Hp. If the term gE, has been assumed to be significantly small compared to

any other term, thus the perturbed part of Equation (2.19) is given

VxH, =-lweye B —iwee, (X 2)E,
=—lwee B+, (X,2) (2.20)
with

Joq =-loese (X, 2)E, (2.21)

€q

11



TE modes TM modes

qu :—IU(Z)eXp(iﬁOX) Exu :Vu (Z) eXp(iﬂOX)
Field Components Eyu :Vu (Z) eXp(iﬂo X) H yu I u (Z) eXp(i:Bo X)
H w = IBO Eyu Ezu = - ﬂO Eyu
CU/J 0 2 0‘9 gu
Characteristic k e &
YqU = —1 = qZU YqU = l = 0 qLI
Admittances Z qu WH o yA qu quu

Propagation Coefficient Kew =Ko =By =Ko/ —N?  with N = %

0

Table 2- 1 The field components and transmission line parameters of unperturbed structure.

The accuracy of small perturbation method strongly:depends on whether the supposition
is held or not. If the term &, is not Small €enough;the last term of Equation (2.19) can not be
ignored and that would cause inaccuracy-of analysis. Based on Equation (2.21), the equivalent
current source Jeq IS regarded as the generation of spatial variation of medium. Combining
with following transmission-line modal, the characteristics of a diffraction phenomenon of a

grating coupler is investigated.

2.3.1 The surface waves guided in the unperturbed structure
For the uniform two-dimension-multilayer structure, the fields are of TE and TM types.
The components of each type can be represented by the equivalent voltages V =V (z) and
the currents | =1(z) waves traveling along the Z direction. Note that the Z direction is
transverse to the original direction of incident surface waves. As summarized in Table 2-1,

those components obey the conventional transmission line equation given by

12



av,(2) B

2 i Zy 14 (2) (2.22)
YA
dl
. (@) _ ik, Y, Ve (2) (2.23)
YA

where g denotes a, g, f and s respectively and the subscription u exhibits the unperturbed
quantities. Because the relative dielectric constants in all materials &, are all real numbers,
the propagation constants are either real or imagery numbers. We note that two of these
factors ki, and ks, are purely imaginary since the fields of surface waves evanesce in the two
layers and ki, is reversely real because the wave sinusoidally propagates in the firm in Figure

2-4.

Figure 2- 4 General basic multilayer configuration.

For dealing with different geometric types of grating or the structures with many layers,
the general basic grating configuration is introduced here. Assume that the transmission-line
model for (m+1) layers is shown as Figure 2-4. From the transmission-line theory, the field is

initially defined in the terminal layers such as

Vo, = Coexp(—ik,,, 2) (2.24)

V(m+1)u = C(m+l) eXp (_ iI((erl)zu (Z - hm )) (225)
13



With the consistency relation

1-T; T, expli2k,,t, )=0 (2.26)

qu— qu qzu -q

where the terms I, and [, is regarded as the reflection coefficients looking into the

upper and lower boundaries of the g medium, one then find that the representation of fields

would be

Vo =C, [exp(ikGIZU (z —h,, ))+ Iy exp(|2quutq )exp(— Ky, (z —h,, ))] (2.27)

while g=0 or g=(m+1).In Equation (2:27),the reflection coefficient I';, is given by

the reflectance relations

i, “SgtF TR 2.28
“ Ylu +Y0u ( )
Yo =Y
= (2.29)
Yo+ Y(m+l

Thus the reflection coefficients looking into the upward and downward to boundaries of the q

medium are
= (Yqu _Y[q”] ) (Y +Y[q+1]u)r[q+1] e'2Kaalan)
Fqu a (Yqu +Y[q+1] ) (Y Y[q+1]u )r[q+1] e|2k(q+1)'ut(q+l) (2.30)
and
I'. = (Yqu —Y[(H]U )+ (Yqu +Y[<H],u )F[a—l],uei2k<q*l>vu‘(qfl> o

" (Yqu +Vga)u )+ (Yqu = Ylgalu )F[;—l],uei2k(qfl)'Ut(qfl)

14



while g=0 or g=(m+1) aswell as the field representations. The constant coefficients Co,
Cme+1), and Cy satisfy the continuity between two distinct layers of materials. For normalizing

with convenience, i.e. Cy = 1, other coefficients would be given by

C, =1+ g'%nt (2.32)
and

C i ei2k(q71),ut(q*1) l+ 1"+, u
. - - ingth (q-1), ) (2.33)
+T €

The dispersion relation f (1) for the surface wave modes in the uniform multilayer is
found by using many of well-developed methods, such. as a transverse-resonance technique as
following. This technique is based-on_the fact that in. a waveguide at cutoff, the fields form
standing waves in the transverse planeiof the waveguide. An equivalent transmission-line
network of the four-layer configuration with respect to the transverse Z is modified in
Figure 2.4. Consequently all of the modes are obtained by solving the eigenvalue equation in

the form

Z,(2)+Z4,(2)=0 forall z (2.34)

where Z, and Zg, are the input impedance looking up and down, respectively, and they are

given by

Z o —Z  tan(k g, t,)

- Zgzu - iZalzu 1:a'n(kgzutg)

Z,(2)=Z

(2.35)
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7 (Z) -7 Zszu —iz fzu tan(kfzutf ) (2 36)
& Mz -z, tan(k,t,) '

fzu

where Kqu and Zq,y are the propagation constants and characteristics impedances on Table 2.1.
Hence the effective refractive index N (1) = £ (1) / ko for any given A is determined as shown
in Figure 2-7. Note that the assumption of Equation (2.9) is established while the thickness of
grating approximates to zero since the relative dielectric constant of grating &y, in general, is
equal to neither & nor &. Hence the result of dispersion is restricted to the structure which has

small tq in comparison with t;.

1.62

1.615

1.61

1.605

1.6

Effective Refractive Index N

1.595

1.59

0 0.4 038 12 16
4/

Figure 2- 5 The dispersion relation for four-layer TE modes with the following parameters:
Na=1, Ngy=1.41, Ny=1.732, N,=1.517.

The total power guided in the form of the surface-wave can be obtain by integrating
corresponding 2-D Poynting vector. Here the appropriate expressions fields are selected from
Table 2-1. Finally we find
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P={" (B, xH," ) &dz (2.37)
This term would help for estimating the leakage of power in the form of leaky-wave.

2.3.2 The leaky waves excited in the perturbed structure
In the previous section, the phenomenon of the unperturbed structure is described. Here
it is assumed that the electric field of the incident plane-wave is in the § direction, i.e. TE
mode. To obtain the leaky-wave fields, we choose the space harmonic representations in Table
2.2. With the Equation (2.21), the ny set of the space harmonic amplitude satisfies the
source-excited transmission-line relations as shown in Equation (2.38) and (2.39). In these
two equations, the distributed voltages vn(z).and currents i,(z) are generated by the perturbing

periodicity and only occur in the region of grating:

dV,o o
o Ko Zogn Tn =V, (2.38)
dl, . _

o Ko Yonlgn = Jn (2.39)

Since the distributed sources only exist in the grating layer, the corresponding boundary
conditions of the impedances at the grating terminal looking upward and downward with the

above two equations are given by

- V. (2) _ 7
{Ia),u 0 é’Vn(Z)/GZLO =7 (2.40)
: V. (2) _

and {'W“W}Zzt = L (241)
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TE modes TM modes

H X _z I n (Z)exp(iﬁn X) Exp = Zvn (Z)exp(iﬁn X)
Field Components
Eyp = 2. Vo (2)exp(if,%) H,, =21, (2)exp(iB,%)
Characteristic v, - L _ kqi an _ 1 _ DE (&,
Admittances Z an WL Z gn qun
Vn:O Vnz_iwh(z)
WEGE g,

Equivalent Source

Jn = —lwege, (2)V, (2) J, =—lwe,e, (2)V,(2)

gzn n

2
Propagation Coefficient feat = kggqu —,32 = k0 \/gqu —(N + ngj

Table 2- 2 The field components and transmission. line parameters of perturbed structure.

The analogous representations of parameters: are known in Figure 2-6. For TE mode, the
effect of grating dielectric perturbation is viewed as current-excited sources. From Equation
(2.38) and (2.39), a second-order differential equation, as shown in the following, is then

derived

(dzz + K JVH(Z)=—iwuojn(Z) (2.42)
dz

With the boundary conditions shown in (2.40) and (2.41), the voltage distribution along the

Z direction in the grating layer is given by

V,(2) = —ien, [ G,(z]2)],(2)dz’ (2.43)
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where G,(z|z'") is the Green’s function that introduces the unit amplitude generators of
voltage and current to represent the excitations V,(z) employed in Figure 2-6 and its

mathematical derivation is detailed in the next section.

A‘J:.' } A
Kew Y5
ko LY

Figure 2- 6 Equivalent source-excited transmission-line for perturbed-layer structure.

The leakage parameter « of the leaky-wave field is‘obtained by recalling that the power

P(x) in Equation (2.37) along the perturbed structure varying as exp(—2ax) would satisfy

P 2ep (2.44)

dx

where the change in power P occurs longitudinally since the harmonic components of leaky
waves radiate to air or substrate. Thus rate of change of P in Equation (2.44) can be also

written as

dP
_&_ Prag _Zm: Pam +Zn: Psn

= Z Vo | R0} + Z V| 9{Y,, } (2.45)

The subscripts n and m denote the corresponding order of harmonics in air region and
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substrate region respectively. While leaking away from the film layer, the total power per unit
length prag then equal to the summation of all the harmonic power per unit length of the

respective regions. Combining Equation (2.44) and (2.45), we get

RDICHEDIH
m n

_Prg _ 1
- 2P 2P {; pam +; psn} (246)

where the my, or ny, harmonic of power per unit length pam or ps, involves a copious algebraic
derivation with Green’s function.

The other significant factor for design of grating couplers is the efficiency of power
coupling 775 where g can be as a or s to represent the proportion of power radiated away to
air or substrate region and | denotes,the_relative -harmonics. Consequently the efficiency can

be defined

pal Ival |2 R {Yal } (247)

" P AR T

77a|

Those two terms, leakage parameter and coupling coefficient, exhibit the properties for
design criterion to lay the operation points. In this research, we would select some operation
points after figuring the former parameter due to the variation on the outgoing beamwidth. In
addition, the promotion on power efficiency is often investigated by the structure with
asymmetry.

2.3.3 Green’s function technique
With the configuration in Figure 2-6, the one-dimensional differential equation in

Equation (2.42) can be solved by Green’s function technique as following
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(£+kgm2JGn(z|z’)=5(z—z’) (249

with the boundary conditions,

: Gn(z) _ '

{'W °m}z_o =L (249)
: G,(2) _
{IwﬂOGGn(Z)/GZ}Z_t =7, (2.50)

where o&(z—1z") is dirac delta function. This equation presents that the electromagnetic fields
radiated by point current excitations are convenigntly expressed in terms of Green’s function.
According to the classical circuit theory, thewoltage and current components due to the point

source can be written as

V. (z) =V, e* el # ) Ly g () (2.51)

where V., and V_ are undetermined coefficients corresponding to the magnitudes of the
wave traveling upward and downward. While z=t , the relation between these two
unknown coefficients would be

_T _gPenlts?) (2.52)

gan

<|‘<

+

where the reflection coefficient of for ny harmonic I, =(Zan -7, )/(Zan +Zgn), and thus

Equation (2.53) is rewritten as
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V. (z=2")=V,+V_=V, (1+ FganeZikga"(tg_Z’)) (2.53)
For a point source excited at z=2z", the following equation would be satisfied

V (z=7)=1-{Z® ()12 (2)} (2.54)

where Z®(z') and Z%"(z') denote the impedances looking upward and downward at the

point z=1z',and V_, however, is obtained by the above two equations to acquire the Greens’

function such as

K (z-2') —iKgan (z+z'—2t )
e’ +I e ° ¢ b /s 0
G,(z|2)= P {z@ @)1z (2} (2.55)
gan

Thus, the voltage distribution V, (2) along-the Z. direction in the grating layer will be

obtained from the integral equation-n Equation (2.43).
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Chapter ]l

Numerical Results and
Discussions

3.1 DEPENDENCE OF COUPLING PROPERTIES ON tg IN DIFFERENT GRATING PROFILES
3.2 CHARACTERISTICS OF THE BEAMWIDTH AT BROADBAND OPERATION

3.3 DISCUSSION ON VARIATION OF THE BEAMWIDTH ON AA FOR DIFFERENT PROFILE

Based on the perturbation approach with Green’s function introduced in Chapter 11, it is
feasible to delve into the interconnection of properties of the power leakage and
geometric/material parameters for implementing. However, the detail investigation on their
relation has been discussed well by and'Stone [8} and Peng [7] in the early year. Due to the
strong dependence of the leakage and grating height, here we emphasize on ty to generalize
the wideband operation design criteria with different symmetrical profiles of gratings.

The reason for the choice of symmetrical structures is the feature avoiding the excitation
of higher order harmonics. Recalling the Section 2.2, a second (n=-2) order of harmonic
begins to propagate at a certain wavelength on the interval A4 that we concern about. The
undesired energy deteriorates the stable property on broadband operation and thus the
bandwidth is consequently reduced. Nevertheless, the effect of the second order harmonic is
invalid in this work since the leaky wave are only excited to the odd order harmonics in case
of the symmetrical grating profiles, i.e. only n=+1 +3,£5... harmonics exist.

Herein, the rectangular, triangular and trapezoidal profiles with symmetry are adopted as
show in Figure 3-1. The upper corrugation width d, and the lower one d, influence upon
the leakage parameter o, which comparably strongly depends on ty. As the assumption in
Chapter 11, only a single order, i.e.n=-1, is propagating if it is not mentioned particularly.

The results are shown in Figure 3-2 for a4 curves as functions of ty/A for types which have

23



d,
L
d,

d
(a)

d,

PN

(© (d)

Figure 3- 1 Types of symmetrical grating profile: (a).rectangular, (b) symmetric triangular, (c) regular trapezoidal

and (d) inverted trapezoidal type.

the fixed ratios of A /d = 0.52 for TEg-mode.

The behavior of TMg-mode or Gther higher mode can be also obtained by the similar
method. There just the fundamental TE, case Is shown here since these expressions give a
smaller value of « for the TM mode than for the TE mode. This is because the electric fields
of both guided and leaky mode make a large angle in the TM mode while they are parallel to
each other in the TE mode. Moreover, the gratings which consist of isotropic medium do not
yield the radiation of polarization differing from that of the guided-mode wave.

Forerunner implicated the preciseness of the approximate perturbation approach
generally decreases as ty /4 in comparison with the rigorous method. In spite of inaccuracy,
the larger values of t; /A are seldom of practical interesting while the grating is assayed by

its broadband behavior. Furthermore, the SPM is adopted with appropriateness in this paper.
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Figure 3- 2(a) Variation of normalized leakage a4 versus ty/A for the TE; mode in symmetric

gratings with the corrugated ratio of d,/d =1.
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Figure 3-2(b) Variation of normalized leakage a4 versus ty/A for the TE, mode in symmetric

gratings with the corrugated ratio of d,/d =0.75.
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Figure 3-2(c) Variation of normalized leakage a4 versus ty/A for the TE, mode in symmetric

1.2

gratings with the corrugated ratio of d,/d =0.5.
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Figure 3-2(d) Variation of normalized leakage a4 versus ty /A for the TE, mode in symmetric

gratings with the corrugated ratio of d,/d =0.25.
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Previous literature has shown that, in the case of canonic rectangular (d,/d =d,/d =0.5)
type of gratings, the leakage parameter « of a grating increases monotonously with small
value of ty and is approximately proportional to tgz. In such a case the grating is viewed as
operating in a parabolic region. On the other hand, for larger value of t;, o« oscillates
periodically about a certain average value within its upper bounds and lower bounds in this
saturation region. The phenomena reveal that gratings tend to exhibit a wider broadband
behavior if their operation points is located at the transition between the above two regimes as
shown in Figure 3-3. The design criteria for broadband couplers are determined by the
operation point which depends on the grating height t.

Analogously to canonic rectangular gratings, the trapezoidal (triangular) ones exhibit a
monotonic increase of a4 when tg is not too large. As ty is increasing, the curve maintains
the fluctuation except holding on a.saturation level. To take it over, ad is decreasing.
Comparing with the constant property respected to z of the perturbed dielectric constant in the
rectangular case, the term &, varies.as a function.of. z /in the trapezoidal one, i.e. gn = gn(2).
For a superior choice of operation points.in trapezoidal case, the transition region is also
suitable for broadband operation since the curve performs a rounded change of slopes inside

this interval.

v

Figure 3- 3 Typical variation of the leakage « versus the height ty in a rectangular dielectric grating.
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According to the work by Zhang and Tamir [16], the quadratic behavior holds well up to
some points denoted by Q. The range below Q point is thus defined as parabolic region. As t
is increasing behind the Q point, the phenomena of fluctuation rises owing to two sorts of
physical mechanism. The variation of Vy, is still adapted due to its in-phase property with the
distributed currents j.1(z). In Equation (2.29), two terms dominating this variation of Vg, are
exp(ikg,,-1 ty) and exp(2ikg; -1 ty). Herein the effective wavelength in the grating layer is defined

as

A, = = (3.1)

and thus the effects of exp(ikg.-1 tg) and exp(2ikgzits) should be Ag.1and Ag.1/2 respectively
shown in Figure 3-2. In the structure-condition we assumed, however, it can be found the

results then give the period of oscillation:as Ag-1/2.

3.2 Characteristics of the Beamwidth at Broadband Operation

Due to the crossover condition of constructive and destructive phase interference
generated by the above two oscillatory effects, the point Q is chosen to be one fourth of the
effective wavelengths, Aq-1/4, as the broadband operation point. Notice that in the mentioned
figures, these points are also posited in the transition regime between parabolic and bounded
saturation region and it is an appropriate regime for broadband operation because of its tender
performance of the « curves. In this section, we choose not only the Q points of Aq-1/4 but
also the points P at the location of t;= Ag4.1/8 in the parabolic region and the points R at the
location of t;= Agy-1/2 respectively as noted in Figure 3-3. The considerations argue in favor of
designing tq so that these operation points act in the desired wavelength interval centered at Ao.
Table 3-1 shows the position of operation points while the central wavelength
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Transition interval closed to the

Region Parabolic Transition
bounded fluctuation region

Point P Q R

for A, =1550 nm

0.1434 0.2868 0.5735
ty (1t m)

Table 3- 1 Position of broadband operation point. The center wavelength A, herein is chosen as 1550 nm.

is 1550 nm.

Generally speaking, when optical waves or electromagnetic waves are transmitting, the
decay relates with the wavelength of propagating. The operation wavelength Ao herein is
chosen as around 1550 nm by the frequently-used one in the optical fiber communication
system since it can be stimulated by the ~double-hetero structure (DHS) such as
GayInixAsyP1.yInP.

In comparison with the relation between; & and ty discussed in the last section, the
correlation of the beamwidth W,.; of n=-1 order of harmonic and A exhibits the more
complicated manner owing to N=N(1) and a=a(1) . However, the fluctuant
mechanisms of wave interference with periodicity mentioned previously would provide to
maintain W, _; as stable variation on a large interval of wavelength when a designer plans the
conditions. As we discuss in Section 2.2, the beamwidth W, .1 coupled into the air region is

given by

(3.2A)

Note that Equation (3.2A) is hold while
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M-
1oL~ 4] g (3.2B)

From Equation (3.2A), it is obvious that the beamwidth strongly depends on « and the
leakage factor is also a function of A. As A varies, the relative length t// A4 is changing
accordingly as well. Whenever ty/ A is slight, a4 varies correspondingly to parabolic region
of o versus ty curve. As we observe in Figure 3-2, a4 in this region has strong change as
the variation of ty/ 4. Large values of ty/ A, correspond to points in the bounded fluctuation
region of « versus ty curves, belong to large-scale variation as well as points in the
parabolic region. Therefore, the transition interval between those two regions should provide
more stable values of « .

The result for symmetric grating couplers is depicted from Figure 3-4 to 3-7. Note that
all of the parameters are the same except the grating.profiles. We find that the property of the
beamwidth remains reasonably flat over the interval A4 from 1 m to 2 m. While the
coupler is operated at larger wavelength, the beamwidth performs slight decay since the term
in Equation (3.2B) is closed to zero as ty increases.

Regarding a broadband coupler operating at 1550 nm, Q (t; = Ag-1/4) point provides a
simple and effective design criterion. In the broadband operation region between P and R, the
flatness of those curves is slightly decreasing quantitatively. Therefore, Q is not the only
critical point for wideband operation. The beamwidth generated at Q point may not be a
desired dimension. We finally adjust ty to vary « for satisfying the specified beamwidth as
long as the operation point is not too far from Q point.

The n=-2 harmonic is suppressed below A = 1.25 1z m, where the other harmonics are
predicted to occur and is shown in Figure 2-2. The numerical results show that the power of

the second harmonics is extremely smaller than the first harmonic and thus can be ignored.
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Figure 3- 4(a) Variation of W, ; /4 versus A at peints Py Q, and R for rectangular grating with aspect ratio

d,/d=0.75 and d,/d:=0.75.

1000 - I . , I : I .
B O peration Point 7
B Q point ]
- —— - - Rpoint —
<
~
D T -
< - = ~
= ;
[
-~ .
Wl
1 1.2 14 1.6 1.8 2

© A(um)

Figure 3- 4(b) Variation of W, ., /4 versus A at points P, Q, and R for rectangular grating with aspect ratio

d,/d =05 and d,/d=0.5.
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Figure 3- 4(c) Variation of W, ; /4 versus A at peints Py Q, and R for rectangular grating with aspect ratio
d,/d=0.25 and d,/d=0.25.
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Figure 3- 5 (a) Variation of W, ; /4 versus A at pointsiP,Q;and R for symmetric triangular grating with aspect
ratio d,/d =1 and d,/d=0.
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Figure 3- 5(b) Variation of W, /4 versus A at points P, Q, and R for symmetric triangular grating with aspect
ratio d;/d =0.75 and d,/d =0.
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Figure 3- 5(c) Variation of W,_; /4 versus A at pointsiP;Q,.and R for symmetric triangular grating with aspect

ratio d,/d =0.5 and dy/d =0x
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Figure 3- 5(d) Variation of W, ; /4 versus A at points P, Q, and R for symmetric triangular grating with aspect

ratio d,/d =0.25 and d,/d =0.
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Figure 3- 6(a.1) Variation of W,_; /A versus 4 at pointsiP; Q;.and R for the regular trapezoidal gratings with aspect
ratio d,/d =1 and d,/d =0.75.
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Figure 3- 6(a.2) Variation of W,_; /A versus 4 at points P, Q, and R for the regular trapezoidal gratings with aspect
ratio d;/d=1 and d,/d =05.
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Figure 3- 6(a.3) Variation of W,_; /A versus 4 at pointsiP; Q;.and R for the regular trapezoidal gratings with aspect
ratio d,/d =1 and d,/d=0.25.
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Figure 3- 6(b.1) Variation of W, /1 versus A at points P, Q, and R for the regular trapezoidal gratings with
aspect ratio d,/d =0.75 and d,/d =0.5.
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Figure 3- 6(b.2) Variation of W, /1 versus A at.points P; Q, and R for the regular trapezoidal gratings with
aspect ratio d,/d =0.75,4and d,/d =0.25.
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Figure 3- 6(c) Variation of W,_; /1 versus A at points P, Q, and R for the regular trapezoidal gratings with aspect
ratio d,/d =0.5 and d,/d =0.25.
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Figure 3- 7(a) Variation of W, ; /1 versus A at pointsiP, Q.iand R for the inverse trapezoidal gratings with aspect
ratio d,/d =0.75 and dy/d =1.
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Figure 3- 7(b.1) Variation of W, _; /1 versus A at points P, Q, and R for the inverse trapezoidal gratings with
aspect ratio d,/d =0.5 and d,/d =1.
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Figure 3- 7(b.2) Variation of W, _; /1 versus A at.peints P,.Q, and R for the inverse trapezoidal gratings with

aspect ratio d,/d =0.5vand d,/d =0.75.
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Figure 3- 7(c.1) Variation of W,_; /4 versus A at points P, Q, and R for the inverse trapezoidal gratings with

aspect ratio d,/d =0.25 and d,/d =1.
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Figure 3- 7(c.3) Variation of W, ., /4 versus A at points P, Q, and R for the inverse trapezoidal gratings with
aspect ratio d, /d =0.25 and d,/d =0.5.
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3.3 Discussion on variation of beamwidth on AA for different profile

The beamwidth property of each shape of grating is shown in the last section. To contrast
the flatness of those profiles, we introduce two terms, the area A and the fractional beamwidth
AW /W,,,, , are shown in Figure 3-8. For the submicron technology, the fabrication tolerance
of grating height t; must be discussed with wideband operation. These two terms, however,
help to determine the connection between the grating height and variation of beamwidth over
a wavelength band A4 form 1um to 2um.

The area A, henceforth, indicates the scanning of the beamwidth variation as ty is
changing, and roughly the smaller A is, the flatter the variation of beamwidth is. Nevertheless,

A only exhibits the difference of beamwidth absolutely and is independent of the operation

beamwidth. The other term, AW /W,,,, , defined as
AW Mg, = Wivisd = Wiy (3.3)
WMax

is not only considered about the difference but-also normalized to the largest beamwidth
relatively. Thus, for the case with larger Wuax and unitary beamwidth difference, the term

performs a smaller value and hence reveals the lower fraction of the beamwidth.

WMax/ﬂ’ ?77 7
AW / A ////W%A
W12

A

Figure 3- 8 Typical variation of the normalized beamwidth W /A versus wavelength
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[d,/d,d,/d] [0.75,0.75] [0.5,0.5] [0.25,0.25]

A 72.0055 50.9157 72.0055
AW /W, 0.6996 0.6996 0.6996

Table 3- 2(a) Aand AW /W, in rectangular gratings.

[d,/d,d,/d] [1,0] [0.75,0] [0.5,0] [0.25,0]
A 82.0125 80.5991 95.1744 164.9242
AW /W, 0.732 0.7385 0.7591 0.7694

Table 3-2(b) Aand AW /W,,,, in symmetric triangular gratings.

[d,/d,d,/d] [1,0.75] [1,0.5] [1,0.25] [0.75,0.5] [0.750.25]  [0.5,0.25]
A 100.2802 57.2929 57.0842 535352  56.8849 59.3
AW /W, 0.6437 0.6612 0.6905 0.6928 0.7067 0.7094

Table 3- 2(c) Aand AW /W, in regular trapezoidal gratings.

[d,/d,d,/d] [0.75,1] [0.5/] [0:5,0.75] [0.251] [0.250.75]  [0.25,0.5]
A 164.9242 95.1744 59.3 805991  56.8849 53.5352
AW W, 0.7694 0.7591 0.7094 0.7385 0.7067 0.6928

Table 3- 2(d) A and“AWL/W,,..~in-inverse trapezoidal gratings.

Table 3-2 exhibits A and AW /W,,,, in different types of grating shape. In the viewpoint

of A, we first find the canonic rectangular (d,/d =d, /d =0.5) structure has the smallest area.
It verifies the canonic rectangular gratings can offer wider bandwidths and flatter beamwidth
over a fixed wavelength band than any other type of grating. The regular trapezoidal types
and inverse ones also provide the areas which are not too far from which the canonic
rectangular gratings provide. Observe the cases of trapezoidal shape with d,/d =1 in Figure
3.5(a), 3.6(a.1), 3.6(a.2) and 3.6(a.3), there the crosses between two curves exist and they
would reduce the difference of variation and thus decrease A. However, it can be found
obviously that symmetric triangular profiles have larger areas than all the others. In Figure
3-2(a)-(d), the « curves of triangular profile are almost sharper and smaller than other curve

of profiles and it would cause their beamwidth is generally larger and decrease its broadband
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flatness. Oppositely, the cases of [d,/d=0.25,d,/d=0] (Ssymmetric triangular) and
[d,/d =0.75,d,/d =1] (regular trapezoidal), which geometry are complementary to each
other, would exhibit worst evenness.

Regular trapezoidal gratings commonly remain small values of the fractional beamwidth

AW /W,,,, as we observe due to their larger W,,,, in denominator. The canonic rectangular

Max
grating also performs a low value of the fractional beamwidth with acceptancy. Specifically,
something interesting is that the fractional beamwidth of the three rectangular cases are equal
despite of different AW, W,,,, and W_, . Though the symmetric triangular gratings have
their AW /W

larger W are not small as we expect. The group of triangular shapes still

Max ? Max

behaves larger variation on flatness and may have less application on broadband operations.
Fortunately, triangular gratings with asymmetry, such as blazed dielectric ones, promote the
power efficiency leaked to the air/substrate [11]. Thus the gratings with canonic rectangular
profiles, which have low area and fractional beamwidth;-are more appropriate for broadband

operation in our discussion.
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Chapter [V
Conclusion

The dielectric gratings can be designed to deliver out-coupled beams with reasonably
constant widths and intensities over a large wavelength interval AA. Specifically, types of
gratings with grating height ty around Agq-1/4 convert a surface-wave into a leaky beam which
beamwidth is remained flat over a wavelength band from 1um to 2um. The performances of
other choices of ty such as Ag.1/2 or Aq.1/8 very slightly but still maintain the evenness
condition in the wavelength interval. The flexibility of t; therefore provides the broadband
operation region of desired beamwidth, and then.a new design criterion can be concluded.

Furthermore, the analysis of the flatnessfor different types of gratings shows canonic
rectangular grating has the smallest-variation, i.e. most flatness, due to the lowest area A. This
property is appropriate for wideband-application-and provides the tolerance for the deficiency

of fabrications. On the other hand, symmetric triangular ones commonly present small values

not only on area A but also the fractional beamwidth AW /W, . In comparison with

symmetric triangular gratings, rectangular or trapezoidal ones have better evenness.

Originally, the order of n=-2 harmonic is excited according to the linear programming
diagram of N=p,/k, versus A/d . Because of the symmetrical structures as we
introduced, the power of the second harmonic is restricted to be very small, and therefore the
power leaked out to the air/substrate is almost not influenced by that little portion so that the
spectrum properties can retain a flat condition as designers’ expectation.

Small perturbation method provides an acceptable accuracy and efficient calculation for
computers in comparison with the rigorous method which need elaborate numerical

computations while the grating height tq is selected on the transition region between the
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parabolic regime and bounded saturation regime. Thus, because of the simplicity in
formulations, this method is appropriate to broadband analysis. Quantitatively, the higher
order modes exhibit more violent oscillation than the fundamental one. It is expected that they

have less wideband behavior than a fundamental TE; mode does.
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