
國 立 交 通 大 學

電控工程研究所

碩士論文

對於祈使機械控制命令的理性預期模型設計

Designing a Rational Expectation Model for Imperative Machine

Control Commands

研 究 生：黃晉澤

Student: Jin-Ze Huang

指導教授：黃育綸 博士

Advisor: Dr. Yu-Lun Huang

中華民國一百年七月

July, 2011



對於祈使機械控制命令的理性預期模型設計

Designing a Rational Expectation Model for Imperative Machine Control

Commands

研 究 生：黃晉澤 Student: Jin-Ze Huang

指導教授：黃育綸 博士 Advisor: Dr. Yu-Lun Huang

國 立 交 通 大 學

電控工程研究所

碩士論文

A Thesis

Submitted to Institute of Electrical Control Engineering

College of Electrical Engineering

National Chiao Tung University

in partial Fulfill of the Requirements

for the Degree of

Master

in

Institute of Electrical Control Engineering

July, 2011

Hsinchu, Taiwan, Republic of China

中華民國一百年七月



Designing a Rational Expectation Model for Imperative

Machine Control Commands

Student: Jin-Ze Huang Advisor: Dr. Yu-Lun Huang

Institute of Electrical Control Engineering

National Chiao Tung University

Abstract

自然語言處理的相關研究可以追朔到1950年代，為了讓一般使用者能夠用自然語言與
電腦系統溝通，許多研究學者投注於基於自然語言之對話系統的研究。現有的研究依
其設計，主要可以分為三種基本的對話方法 -基於有限狀態（Finite State Machine）、
基於框架（Frame），以及基於資訊狀態更新（Information State Update）等對話方
法。在這篇論文中，我們定義了祈使控制機械命令，用來組成一個任務，一個任務包
含了受控元件、行為、受控元件的描述。我們提出一個理性期望模型，結合有限狀態
機與分散式代理人等設計概念，分析我們所定義的任務。其中，有限狀態機是用來處
理任務中的受控元件、行為、描述子等關係，簡化後續對話方法中各分散式代理人
（包括元件代理人、行為代理人、回應代理人、命令代理人等）所負責的處理程序。
最後，我們並以各種不同任務分析，結果可以明顯看出本文所提之方法可以幫助對話
管理者減少對話的次數。

i



Designing a Rational Expectation Model for Imperative

Machine Control Commands

Student: Jin-Ze Huang Advisor: Dr. Yu-Lun Huang

Institute of Electrical Control Engineering

National Chiao Tung University

Abstract

Since 1950s, natural language processing and dialog approaches, concerning the interactions

between human users and computers, have been researched and evolved towards a more

friendly user interface. By their designs, the existing dialog approaches can be classified as

Finite State-based, Frame-based and Information State Update (ISU)-based. In this thesis, we

define imperative machine control commands to construct a task with operated device ,

behavior and description of the device. we propose a rational expectation model, integrated

with a finite state machine and distributed agents, to analyze the task we defined. A finite state

machine is designed to construct relationships of a operated device , behavior and description

describing the device. Such a design simplifies the process of distributed agents, including the

component agent, behavior agent, response agent and command agent, in a dialogue system. In

the end of the thesis, we analyze REM in terms of different case studies of tasks. From the case

studies, we show that the REM can decrease the conversation of dialogue manager.

ii



Contents

Abstract i

Abstract ii

Table of Contents iii

List of Figures vi

Chapter 1 Introduction 1

1.1 Dialogue System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Approaches of Dialogue Manager . . . . . . . . . . . . . . . . . . . . . 3

1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2 Background 6

2.1 Approach of Dialogue . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Finite State-Based Approach . . . . . . . . . . . . . . . . . . . 6

2.1.2 Frame-Based Approach . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Information State Update Approach . . . . . . . . . . . . . . . 12

2.2 Current Dialogue System . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 FSM-based Dialogue Systems . . . . . . . . . . . . . . . . . . . 14

2.2.2 Frame-based Dialogue Systems . . . . . . . . . . . . . . . . . . 15

2.2.3 Information State Update Dialogue System . . . . . . . . . . . . 17

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Chapter 3 Design 19

iii



3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Definition of Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Flow Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Infer missing information . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Chapter 4 Implementation 35

4.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Open Agent Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 Agent-Based Model . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.2 Structure of OAA . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Structure of Proposed Mode with OAA . . . . . . . . . . . . . . . . . . 38

4.4 summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Chapter 5 Analysis 41

5.1 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.1 Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1.2 Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.3 Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1.4 Case 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2.1 Finite-sate approach with REM . . . . . . . . . . . . . . . . . . 45

5.2.2 Frame-based approach with REM . . . . . . . . . . . . . . . . . 46

Chapter 6 Conclusion 47

iv



Chapter 7 Future Work 48

References 49

v



List of Figures

1.1 Dialogue System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Architecture of Dialogue System . . . . . . . . . . . . . . . . . . . . . 2

2.1 Finite State-Based approach for component in home control . . . . . . . 7

2.2 Frame-Based Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Exmaple of Finite-based Dialogue System . . . . . . . . . . . . . . . . 16

3.1 Parse Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Major Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Task Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6 Component Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.7 Behavior Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.8 Response Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 Agent-Based Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Open Agent Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Structure of Proposed Model with OAA . . . . . . . . . . . . . . . . . . 39

4.4 Facilitator with One Manager . . . . . . . . . . . . . . . . . . . . . . 40

4.5 Facilitator with Two Managers . . . . . . . . . . . . . . . . . . . . . . 40

vi



Chapter 1

Introduction

This chapter introduces the definition and approaches of a dialogue system, and then

describes our motivation and contribution.

1.1 Dialogue System

The major goal of a dialogue system is that a user can use interact with the dialogue

system by natural language, as shown in Figure. 1.1. The research can be traced back to

Artificial Intelligence(AI) in 1950s, a number of research has addressed this goal until now. In

general, the dialogue system can help user complete some tasks in specified domain.

For example, a user may control home appliance by simple words or sentences. Or, a

driver who is in car wants to play music, go home by navigation system and call someone

within driving. A user can use natural language as command, the dialogue system should

realize the semantic from user. So, the dialogue system should analysis the sentence from

human to realize semantic.

There are several components in the dialogue system, as shown in Figure. 1.2 We take a

flow to explain the integral system. The input is a sentence with speech and the dialogue

manager commands the speech recognition component recognizes the sound sentence to text.

The semantics parsing component receives the text from speech recognition and analyses the

sentence to realize the semantic from a user. The semantics parsing component parses the

result to dialogue manager. The result may be a controlled command or unmeaning sentence.

1



User ŏŢŵŶųŢŭġ ōŢůŨŶŢŨŦ

ŅŪŢŭŰŨŶŦŴ
ŔźŴŵŦŮ

ŕŶųůġŰůġŵũŦġŕŗġŪůġŵũŦġţŦťųŰŰŮ

Figure 1.1: Dialogue System

The dialogue manager sends the command to the external communication component

according to the result as controlled command. The external communication component is

responsible for communicating with external device and controlling the devices. At last, the

speech synthesis component transforms the texts to voice and outputs the voice to user.

Speech Speech
Dialogue ManagerSpeech 

Recognition

Semantics
Parsing

External 
Communication

Speech 
Synthesis

Dialogue System

Figure 1.2: Architecture of Dialogue System

We take an example in home controls, if a user wants to control the television in the

2



bedroom. User may say "Turn on the TV in the bedroom.". Then the speech recognition

component recognizes the sound sentence to text. The semantics parsing component realizes

the semantic, let dialogue manager know user's command. The dialogue manager will receive

the information, and connect other components according to the semantic of user's command.

The dialogue manager requires the external communication component to communicate the

device "TV" and send the command "turn on" to device. The response generation component

creates the response according to result of external device as "complete" or "another

command". The speech synthesis component transforms the response to speech and outputs to

user. User will hear the sound response not just text.

For missing information, the dialogues manager would ask the user for missing parts,and

the process increases the number of conversation. In a dialogue system, the dialogue manager

is the system core. The approaches of dialogue manager are responsible for the flow of

conversation, including for querying the missing information. The dialogue manager controls

the dialogue flow and the approach of dialogue manager decides the dialogue type.

1.2 Approaches of Dialogue Manager

Dialogue system can be classified to three approaches. We will introduce these

approaches in Section 2.1 : a.Finite state-based approach - A sequence of predefined

questions for a task. b.Frame-based approach - A set of predefined condition for a task. c.

Information State Update approach - A number of sets of conditions and effects support the

information state changing.

We describe the three approaches shortly.

• In finite state-based approach, the dialogue system controls the flow of conversation

3



with a sequence of predetermined questions. A general system with state-based dialogue

constraints the user's input. Because the restriction of input,the system can be

constructed easily.

• In a frame-based approach the user is asked questions that enable the system to fill slots

to perform a task. The dialogue flow is not predetermined but reliable for user's input.

• Information State Update approach (ISU) [1] is similar with frame-based approach, but

more complex. The major difference between ISU and frame- based is that ISU has a

information state to update with rules. A programmer must determine the a set of

dialogue move,a set of update rules and an update strategy.

1.3 Motivation

The dialogue manager must analysis the semantics and resolve the missing information by

mentioned approaches. For reducing the load of dialogue manager, we determine imperative

machine control commands to construct a task with the operated device, its descriptions and

behaviors. Moreover, we design its rational expectation model (REM) for missing information

between the semantics parsing component and the dialogue manager.

The imperative machine controlling commands would compose a task and assist REM to

check the integrity. We apply finite-state machine and the concept of distributed agents for

designing REM. REM would inspect the integrity of the task step by step, and deal with the

missing information of the task by distributed agents.

We design a set of distributed agents to deal with the missing information in a task

dependently. We use Open Agent Architecture (OAA) [2] to implement the distributed agents,

we would introduce the OAA in Section 4

4



1.4 Contribution

We expect that imperative machine controlling commands and REM would reduce the

load of the dialogue manager. For determining the form of the controlling command, the

dialogue manager realizes the semantics easily. REM deal with missing information before the

dialogue manager. The dialogue manager does not handle the missing information by asking

users or querying the database.

1.5 Organization

In Section 2.1, we introduce the three approaches and their principle advantage and

disadvantage of those approaches. We discuss the implementation of the approaches in

Section 2.2 and show their pros and cons. And the detail of REM is revealed in Section 3. In

Section 4 and Section 5 we introduce the implementation and discuss all scenarios. Section 6

concludes the thesis.

5



Chapter 2

Background

In the chapter, we talk about background of our research and current dialogue system.

2.1 Approach of Dialogue

There are three basic strategies for a dialogue system -- finite state-based approach,

frame-based approach [3] and information state update (ISU) approach respectively. We

discuss pros and cons of finite state-based approach, frame-based approach and ISU approach.

2.1.1 Finite State-Based Approach

In a basic finite state-based system, the dialogue structure is represented in the set of a

state and possible transitions. The states in the system represent information from user, and the

transitions between nodes determine possible path. The system progresses through a series of

states, with the transitions between nodes which are determined by the user's input. In finite

state-based approach, the system consisted of a sequence of predetermined question and

corresponding keywords,as show in Figure. 2.1. All paths and questions are predefined.

Most commercial systems are implemented with this approach, because the dialogue flow

is specified as a sequence of states with possible transitions. The system maintains the

transitions of the dialogue by recognize the answer of question, as words or phrases of user's

responses.

6



We take an example about home control. The example of specified flow of a dialogue

system which verifies the user's response of each state. There is a assumption that accuracy

rate of the speech recognizer is 100%.

ŒŶŦŴŵŪŰůı

ŌŦźŰųťġı
ĩŅŦŷŪŤŦĪ

ŒŶŦŴŵŪŰůĲ

ŌŦźŰųťġĲ
ĩōŰŤŢŵŪŰůĪ

ņůť

ŌŦźŰųťġĳ
ĩŃŦũŢŷŪŰųġĲĪ

ŒŶŦŴŵŪŰůġĴ

ŌŦźŰųťġĴ
ĩŃŦũŢŷŪŰųġĳĪ

ŒŶŦŴŵŪŰůĳ

Figure 2.1: Finite State-Based approach for component in home control

System:Which one do you want to operate? [Question 0]

User: The television in the bedroom. [Keyword 0]

System:Which one television? [Question 1]

User: In the bedroom [Keyword 1]

System:What is the instruction [Question 2]

User: Turn on and go to channel 36 [Keyword 2]

System:What is the next instruction [Question 4]

User: Go to channel 36 [Keyword 4]

System:What is the next instruction

User: No

7



In this conversation, system would ask a sequence of questions for the controlled device

and behaviors. User's answers have to satisfy the transition condition or system would ask the

same question until the corrected keywords occur. And system can not handle

over-information, if user provided too much information. The system with finite-state

approach can not accept the over-information.[4] And a problem about the orderless of

behaviors occur. If a user gives "Go to the channel 36" command before "Turn on the TV"

command, the system with finite-state approach can not execute the command exactly.

Generally the system with finite state-based approach restricts user's input to a word or

phrase. Each state which receives a predetermined word or simple phrase makes language

understand more easier. However, this advantage will make system easy to construct step by

step. The flow of dialogue is passive for user, because the restricted input. Even the input is

natural input, like sentences, the system must extract the words or phrase in the sentences by

the speech recognizer.

In 1996, B. Hansen described a toolkit with typical finite state machine that automatically

generates prompts in a variety of styles.[5] The toolkit provides several styles for format of

question, so a programmer can design a set of questions with selected styles. A programmer

can construct a system by a series of predefine questions.

Advantages

Principal advantage of the finite state-based approach are its simplicity and its execution

efficiency. For a developer, the predetermined transition network can approach

well-constructed task involving question-response conversation. The well-construed task

involves many aspects, as ordered states, information of each state will be dependent or clear

transition network. The constructed system guides the flow of dialogue and decides the next

8



question.

Moreover, the user's responses are restricted, so technological demands will be reduced,

particularly the speech recognizer. But the lack of flexibility is a trade-off against the natural

input. If the dialogue system is built-in in mobile device, the technological demand is a big

issues for implementation. For those reasons, the most commercial systems are implemented

by finite-state based approach. As mentioned example, the developers define a series of states

and tradition network to complete a well-construed task.

Disadvantages

Finite state-based approach is not suitable for less well-structured task involving

unpredicted conversation between user and system. The less well-constructed task means all

information of each state will be dependent or the transition network will change within

runtime. The dependence means that current state needs information of next state.

The simple example of changing network is that the entry point of system changes or is

unpredicted every time. Because the system with finite-state based approach has fixed

transition network, the entry point must be unchangeable. It's not natural for user, because user

gives the predetermined keyword what dialogue system needs in order. So, The system can't

handle additional information in one conversation at a time. For user, the dialogue system with

finite stated-based approach is not flexible for general lifestyle.

2.1.2 Frame-Based Approach

A basic frame-based system would ask user questions that enable the system to fill slots in

a template in order to perform a task. In frame-based approach, the dialogue flow is not

determined but dependent on user's input. That means the frame-based approach is

9



user-initiative because user provides information on user's own initiative.

The questions or tasks of frame-based approach are dependent on their preconditions. The

precondition is the information from user, that is the answer of the question. In the Philips

timetable system[6], there are predefined conditions that compose the task or question.

In fact, the frame-based approach can import mathematical model for decision making. In

2005, Chin-Han Tsai proposed a dialogue strategy [7] with SA-Q learning [8] and Markov

decision [9] for navigation.

We take two examples about home control. The two example of specified conditions of a

dialogue system with frame-based approach, as show in Figure. 2.2. There is a assumption that

accuracy rate of the speech recognizer is 100%.

ŕŢŴŬĴ
ŜńŰŮűŭŦŵŦġźŰŶųġŤŰŮŮŢůťŞ

ŕŢŴŬĳġ
ŜŸũŪŤũġŰůŦġŕŗġŀŞ

ŕŢŴŬĲ
ŜŘũŢŵġŪŴġŵũŦġťŦŷŪŤŦŀŞ ŕŶųůġŰů

ŕŗ

ŕŢŴŬĵġ
ŜŘũŢŵġŪŴġźŰŶųġŪůŴŵųŶŤŵŪŰůŀŞ ŃŦťųŰŰŮ

Figure 2.2: Frame-Based Model

10



Conversation 1
System:What is your command?

User: Turn on the TV. [Task 2]

System:which one TV? [Question 2]

User: In the bedroom

System:Complete your command [Task 3]

Conversation 2
System:What is your command?

User: The TV in the bedroom. [Task 4]

System:What is your instruction? [Question 4]

User: Turn on

System:Complete your command [Task 3]

In the two conversations, the system with frame-based approach would ask a common

question at first. A user could say any imperative sentence to be a command, and then the

system would find the correct keywords in user's command. The system fills the slots (or

satisfies the conditions) to complete some tasks.

Obviously, the system can handle over-information under some circumstances, if a user

provided more information. But, if a programmer did not take into account some situation, the

system does not complete the task. In summary, the precondition determine the flexibility of

the dialogue system and how system executes actions.

11



Advantages

The frame-based approach has several advantages over the finite-state-based approach.

For users, frame-based approach is greater flexibility and the ability of using natural language

as input. It is difficult to constrain user's responses required by the system, even when the

system have been carefully designed.[10] The user can provide over-information under the

frame-based approach. In this way, the transition time can be reduced, that results in a more

efficient and more natural dialogue flow.

Disadvantages

Finite state-based approach and frame-based approach are appropriate for well-defined

tasks. In frame-based approach, all task should be decomposed to several meaningful slots (or

conditions). And only well-defined tasks can be decompose.

In this context, the determination of the system’s next action is fairly limited, The

developers defined the time of occurrence of tasks (or questions) according to the sets of

chosen conditions. So, the frame-based approach is short of scalability.

2.1.3 Information State Update Approach

The ISU approach consists of five concepts.

• Informational components, including aspects of common context and internal

motivating factors.

• Formal representations of informational components.

• A set of dialogue moves, that trigger the update of information state.

• A set of update rules, that govern the updating of information state.

12



• An update strategy,that deciding which rule(s) to apply.

In a sense, the ISU approach is similar with the frame-based approach. There also are

conditions and rules in the ISU approach. But, there is a difference between the ISU approach

and the frame-based frame There is information state in the ISU approach, the dialogue state

can be represented by information state.

Moreover, a programmer must define the informational components in formal

represantation. The informational components can be private information or public

information. Further, the dialogue moves serve as triggers to update the information state. The

set of dialogue moves would influence the possible messages the can be sent and the update to

be made.

At last, the programmer should design a set of update rules and choose a update strategy.

The update rules formalize the way that information state is changed. There some types of the

update strategy, take the first rule, or apply each rule in sequence etc.

Advantages

The ISU approach has several advantages over the frame-based approach. The ISU

approach provides the information state to present the dialogue state. The rules can be more

complex than the frame-based approach.

The ISU approach is more flexible than frame-based approach, because the dialogue

moves can make system be mixed-initiative. The dialogue moves can determine the next

information state according to the previous information state and user's input.

It is also difficult to constrain user's responses required by the system, even when the

system have been carefully designed. The ISU approach can update a set of informational

components in a conversation.

13



Disadvantages

The disadvantages of ISU approach are how to define the informational components to

represent the information state, and how to design the conditions and effects for rules. In a

word, the ISU approach is more complex than frame-based model Because the levels of ISU

approach is more complicated.

2.2 Current Dialogue System

In the section we would take a look at the few implementations of dialogue system by a or

finite-state based and frame-based strategy.

A number of researchers have focused on single strategy for implementation. Some

simple application is still constructed by finite-state based strategy, as telephone booking

system. The demand of telephone booking system is easily structure, so the system was

constructed by finite-state based strategy.

On the other hand, the frame-based strategy will be applied to database query system

mostly, as voice navigation system. The voice navigation system will analysis user's

instruction, as "Take me to NBA store on 5th avenue.". The system fill in slots of the specified

task. The user's instruction will be taken apart to several pattens, as verb or destination. The

system would complete the user's request based on the result of decomposing the user's input.

2.2.1 FSM-based Dialogue Systems

Since 1992, the Center for Spoken Language Understanding (CSLU) developed the CSLU

Toolkit [11] as a complete system , including speech recognition and authoring tools etc. By

CSLU Toolkit, we can use Rapid Application Developer (RAD) to build real-world dialogue

14



system. A programmer can define activities by placing objects and assign transition of

activities. In 1999, Michael F. McTear provided practical experience for undergraduate

students in the specification and development of spoken dialogue systems.[12]

We take a simple ticketing system as explanation according theory of finite state machine.

[13] We define a set of questions as a finite set of state S =

Departure,Time,Destination,End . And we define the transition, as shown in Figure 2.3.

At first, the reservation system asks the user for destination. If the ticketing system does

not get the exact answer from user, the system holds the state Departure till the correct

answer. If the ticketing system receives the correct answers of three states Departure , Time

and Destination , the system would enter the state End.

Obviously, the ticketing system with predefined questions is lack of flexibility. And user

must complete condition of all states, it is unfriendly for user. Even programmers design a

integrated finite-state machine,a unpredictable user input or unpredictable behaviour of devise

will make the system in loss of function.

2.2.2 Frame-based Dialogue Systems

In 1995, "The Philips Automatic Train Timetable Information System" [6] provides

information about train connection between German cities. And in 2000, "MIMIC: an adaptive

mixed initiative spoken dialogue system for information queries" [14] provides movie

showtime information. The two system had the same aim, that is how to construct an

appropriate database query that user required. In fact, the Philips system still is user-initiative,

the MIMIC is mixed-initiative by modelling initiative during dialogue interaction [15]

The task specification in MIMIC consists of four slot, Question-Type, Movie, Theater and

Town respectively. The MIMIC use goal selection algorithm to determine the action of system

15



Departure Time Destination

0

1

End

1

1

0 0

Figure 2.3: Exmaple of Finite-based Dialogue System

to find the goal with basic probability (bap). The MIMIC would update the baps in runtime

with a set of initial value.

Obviously, the frame-based strategy would be suitable for well-defined task. If a task has

unknown number of slot, e.g controlling a device, the frame-based strategy will be complex.

We would say a series of instructions to a device. For handle the situation of unknown number

of slots, developer must design more combinations of slots for tasks. So, the frame-based

strategy is similar with finite state-based strategy in a aspect of weak ability of unknown

situation.

16



2.2.3 Information State Update Dialogue System

In 2007,Amores et al.[16] [17] proposed a multimodal and multilingual dialogue system

for the home domain(MIMUS). MIMUS follows the Information State Update approach to

dialogue management, and has been developed under the EU-funded TALK project[18]

MIMUS

Architecture of MIMUS is a set of OAA(Open Agent Architecture) agents[2]. The system

core is Dialogue Manager ,which processes all requests from other agents, the user's input and

provides appropriate output. Information transformation between all agents is controlled by

system core.

Because of Open Agent Architecture,every manager will complete subsection of user's

request. And communication of every manager still pass through the dialogue manager, every

manager will send the result of subtask to the dialogue manager. The main approach

implementing the system is Information State Update (ISU). The principal element of ISU

approach is the dialogue history, which memorizes dialogue states and is updated by some

update rules.

The informational components in MIMUs are Dialogue Move, Type, Arguments and

Contents (DTAC)[19]. The DTAC obtained for a keyword or a phrase trigger the dialogue

update rule.

2.3 Summary

In summary, all approaches have their own advantages and disadvantages, and there are

implementation with those approaches. Some are more easy to construct, some are more

friendly for users. But, the implemented systems must query the missing information from

17



asking users.

18



Chapter 3

Design

3.1 Preliminaries

In the section we will define the notation of controlling commands. First We were inspired

by Phrase Structure Grammar (PSG),that is a grammatical notion presented by Chomsky in

Syntactic Structures (1957) to represent the structure in language phrases.[20] Based on PSG,

we could decompose the sentence to noun-phrase as NP and verb-phrase as VP. In general, the

VP will contain NP and verbs and the NP will contain nouns.

Further, we define some notation . (Table 3.1) We define the device that receive user's

command is dominated device (Cx). And general noun (N ) often means the operated-state of

dominated device. User's commands map to the behavior (bxi) of the dominated device. The

subscript x is corresponding to the operated device (Cx). The subscript i is a index means

order of behaviors. The subscript x is corresponding to the operated component (Cx). We

define the description as Dx that includes adj and Loc.

Table 3.1: Notation of Cluster
Object Notation
Dominated Device Cx

General Noun N
Behavior (Command) bxi
Location Loc
adjective adj
Description Dx

19



Table 3.2: Notation of Set
Sets Notation
Set of Cx C̄
Set of bxi β̄
Set of Cx,Dx,bxi Task

Table 3.3: Notation of Example
TV Cx

Turn on btv1
go to btv2

red,room Dx

btv1,btv2 ¯Stva

And we define the set of notation. (Table 3.2) As mentioned PSG, the structure of the

sentence is often drawn out as a parse tree, shown in Figure 3.1. Due to the parse tree, we can

obtain the structure of sentence easily. Give a example "Turn on the red TV in the room and

ĩTurn on the red TV in the room Ī

ĩTurn on the red TV in the room Ī

ĩthe red TV in the roomĪĩŕŶųůġŰůĪ

ĩ TVĪĩtheĪ ĩRed) ĩ inĪ ĩthe roomĪ

Figure 3.1: Parse Tree

go to channel 36". As mentioned, we can disassemble the sentence to several parts by PSG.

First, the sentence will be taken apart to two V P s according to the verbs "Turn on" and "go

to". Second, the V P s are taken apart to several segments. (Table 3.3)

20



3.2 Definition of Task

We define a task including three slots, as Cx, bxi and Dx. A task would represent an

imperative machine control command, including the elements we define before. The user's

sentence would be transformed through semantics parsing, and the task generator, we

introduce in next section, would generate the task with the result.

A task should include Cx or bxi at least, for example , a Cx could compose a task. The

composition of a task is limited for three elements, but the number of bxi and Dx is not limited.

A task would include more than one behavior (bx), for an example, task = {

tv,turn on,go to the channel 36,bedroom}. The mentioned task means the operated device tv

would receive more than one command, as turn on and go to channel 36.

But, the situation about missing information would happen unexpectedly, for an example,

task = {tv,bedroom}. The mentioned task is lack of behaviors, the sub-model in Section 3.3

could analysis the task, and deal with the missing information in the task.

3.3 Block Diagram

Abbreviation In the section we discuss out block diagram in REM, and the architecture of

the model we proposed is according to OAA [2]. All sub-models in the model are agents that

be responsible for different function based on the theory of distributed agents. So, every agent

is responsible for of the task. Here is the block diagram, as shown in Figure. 3.2.

We would introduce function of the sub-models in REM, and flow chart of the sub-models.

Component Sub-model The facilitator receives the tagged word and dispatching a part of

the task to the suitable agent according to the label. The tagged words as information of the

21



Task Generator

Facilitator Behaviors 
Manager

Component 
Manager

Response
Maneger

Component
Mapping

Table

Behavior
Mapping

Table

User
Profile 

Preference

Command
File

Figure 3.2: Block Diagram

component including descriptions are stored in memory, and the facilitator sends the words to

the component sub-model. The component sub-model fills actual command in instruction file.

There is a component mapping table to support component sub-model mapped the user's

command to actual instruction. The component sub-model can handle the unknown device

according to some rules. For example, if we want to add a new TV in system, the NLTK can

identify the word "TV" and the word "TV" has a device type code, then the component

sub-model can update the component mapping table. The component sub-model will analysis

the description of the device ,including the location and some additional feature of device. The

description help the component sub-model find the exact device. For example, there are more

than one TV in the house but in different room, as bedroom or living room. The component

sub-model would find the exact device according to description in user's command. And all

22



descriptions of device still have mapping code of actual instruction in the component mapping

table.

Behavior Sub-model The tagged words as instructions of the device will be stored in

memory, and the facilitator sends the words to behavior sub-model. The behavior sub-model

fills actual command in instruction file. There still is a behavior mapping table to support the

behavior sub-model mapped the user's commands to actual instructions. The behavior

sub-model can identify the whether user's command is suitable for device or not. For example,

we can't let TV dry clothes, because the command "Dry" should belong to washer. And the

behavior sub-model fills a set of instructions in command file in order according to the

sequence of user's command. The behavior sub-model also can build some relationship

between new behavior and device.

Missing Information Sub-model The missing information sub-model handles the lack of

the user's command. There are several possible scenarios. First, all information of user

command is integral, the missing information sub-model will not do anything. Second, there is

lack of information, the missing information sub-model adds some instruction based on user

preference. Because the user preference includes location and costumed set of user.

The missing information sub-model can find the exact device with the location of user if

user did not give the completed information of device. For example, user is in the bedroom

and user want to turn on the TV in the room. But the user may just say "Turn on the TV". The

missing information sub-model will find the TV in the bedroom according to the location of

user.

And we design the mapping table with relationship between bxi and Cxi.

23



Component Mapping Table The component mapping table helps component sub-model fill

the actual instruction in command file. We design the component mapping table with three

columns. device ID location ID feature ID

The first is device type with two fences, the second is location with two fences and the last

is feature with four fences. The feature column can be costumed by user or programmer.

For example, the feature column can be the brand of device,color of device or more details

of device, even be combination of brand and color. The component sub-model should maintain

the mapping table. As mentioned above, the component sub-model updates the mapping table

by some logical rules.

Behaviour Mapping Table The behavior mapping table will help behavior sub-model fill

the actual instruction in instruction file. The behavior mapping table has three columns.

device ID state ID parameter weight

The first is device type with two fences, the second is state of device with two fences and

the last is parameter with four fences. The parameter column is the follow-up parameters of

the user command. The last column is weight of the device, based on the users trends.

For example, the user may watch the channel 73. The TV will receive the instruction of

changing channel and the number 73 is the follow-up parameter of the command. The weight

of TV would increase when the task include the Cx TV.

The behavior sub-model should maintain the mapping table. As mentioned above, the

behavior sub-model updates the mapping table by some logical rules.

In fact, the three sub-models can handle most scenery in missing information of tasks. And

we add some user information in system to enhance the usability of the proposed sub-models.

24



3.4 Flow Chart

Flow Chart We apply finite state machine to major flow with the task generator determines

determining weather the Cx , Dx and bxi in the sentence or not, and with the missing

information sub-model, behavior sub-model and component sub-model, as show in Figure. 3.3

The notation [!] means the element is non-existent in sentence.

At first, we check Cx and Dx whether in sentence, and then check the bxi. If there is not

any Cx , Dx or bxi in sentence, the Behavior sub-model and the comPonent sub-model

handle the lack of information. If user provides complete information in sentence, theMissing

Information Sub-model handle the new elements.

Cx, Dx,

bxi
Ŕ

ŕŢŴŬ

Dx, bxi

Cx, bxi

Cx

Dx

œŔ

!Dx

!Cx

bxi

Dx

Cx

!Cx
ŃŔ
őŔ

!Cx , !Dx bxi

œŔĻġœŦŴűŰůŴŦġŔŶţĮŎŰťŦŭ
ŃŔĻŃŦũŢŷŪŰųġŔŶţĮŎŰťŦŭ
őŔĻŤŰŮőŰůŦůŵġŔŶţĮŎŰťŦŭ

ĢġĻġŏŰůĮŦŹŪŴŵŦůŵ

Figure 3.3: Major Flow

25



Overview As mentioned component, there is a overview of the dialogue flow that composed

by those components, as Figure. 3.4. At beginning, the Natural Language ToolKit decomposes

the sentence to several parts and give the words simple tags. And the task generator stores the

useful words by the mentioned tags by some string manipulation. The component sub-model,

the behavior sub-model and the missing information sub-model process respective task

synchronously. The component sub-model and the behavior sub-model find the corresponding

command form the mapping tables. Updating the mapping table is for the behavior sub-model

and the task generator. The missing information sub-model add missing information in

command file according to user profile preference.

Task Generator A flow of task generator is Figure. 3.5 Then there is the task generator

inspects whether a new device Cx in user command. The purpose of task generator is to

generate a task. At first, task generator checks he device Cx whether in dataset. If there is a

new device, the task generator will register the device in dataset. There is a logical rule to add

new device. For example, if the last device type id is 1000 and the new device type will be

1001.

Another function of task generator is checking if the behavior bxi and Dx is in user

command. But the task generator does not update the behavior mapping table.

Component Sub-model There is a flow of the component sub-model as show in Figure. 3.6.

The component sub-model checks whether the device Cx and the description of the device Dx

is in user command. If there is no device Cx, component sub-model will ignore the device type

column in command file. And then, the component sub-model examines the description Dx

weather is in the dataset. If there are new descriptions, the component sub-model registers the

new description in dataset. There still is a logical rule to add new description of device. If

26



Figure 3.4: Overview

there is no description of device Dx, the component sub-model still ignores the device

description column in command file.

27



Pseudo Code
Step 1 : input Cx and Dx

Step 2 : if Cx exists in component mapping table
Cx → command file

else
break

Step 3 : if Dx exist in component mapping table then
if device column = Cx

Dx → command file
else Cx → device column

else
Dx → component mapping table

Behavior Sub-model There is a flow of the behavior sub-model as show in Figure. 3.7. At

first, the behavior sub-model still checks the behavior of device bxi whether is in dataset. If

there is a new behaviur, the behavior sub-model registers the new behavior of device in

dataset. And the behavior sub-model sets the device type column in the behavior bxi and fills

the behavior bxi in command file.

On the other hand, if there is an old behavior, the behavior sub-model must check the flag

FNewC . If the flag is 1, the behavior sub-model would tag the behavior bxi to the corresponding

device Cx. Behaviour sub-model judges whether the behavior from user command is logical

for device Cx. If the behavior bxi is logical, behavior sub-model fills bxi in command file

according to behavior mapping table. The behaviour sub-model ignores the bxi in user

command, if the behaviorbxi is not logical.

28



Pseudo Code
Step 1 : input bx and Cx

Step 2 : if bx exists in behavior mapping table
if device column = NULL

Cx → device column
if device column = Cx

bx → command file
else

break
else

bx → behavior mapping table
Cx → behavior mapping table

Missing Information Sub-model There is a flow of the missing information sub-model as

show in Figure. 3.8. At first, the missing information sub-model checks the user command. If

there is not device Cx in user command, the missing information sub-model fills device type

ID in command file according to type ID column behavior bxi from behavior mapping table.

Then missing information sub-model examines the location in user command. If there is no

location information in user command, the missing information sub-model gets location

information from user profile preference. And the missing information sub-model also

examines the feature information in user command, as adjective, brand information or other

information describes the device Cx. But the feature information is not necessary.

Pseudo Code
Step 1 : input bx

Step 2 : Cx = device column of bx

Step 3 : Cx → command file
Step 4 : Dx = description of Cx

Step 5 : Dx → command file

29



3.5 Infer missing information

The mapping table would be solution for how to infer the missing information. By the

relationship between Cx and bx, the behavior sub-model would infer the corresponding

behaviors for the device. And so does the missing information sub-model.

The sub-models with inferring function still deduce the wrong solution, because the faulty

mapping table. But by the weight column, the sub-models would refine the mapping table.

The probability of inferring the wrong solution would decrease, by refining the weight over

and over.

3.6 Summary

We introduce the definition and form of tasks included notations to express users'

commands. We still defined the two mapping tables, and make a description of the sub-models

in function and flowchart.

For different elements in a task, we design the corresponding sub-models to deal with

different sceneries. The sub-models would check the elements in a task and missing

information, and do the actions for different sceneries.

30



xC C xC

{ }xC C C 

xb 

Figure 3.5: Task Generator

31



xC

xC

xC

Figure 3.6: Component Manager

32



xib
{ }x x xib  

xib
xC

xib b

xxibxib

xib xib xib

xib
xC

Figure 3.7: Behavior Manager

33



Start

Check

User

Command

Type in 

command?

Feature bit 

in field?

YES

Locattion  bit 

in field?

NO

Fill type ID in 

Command file 

YES

Get location 

information in 

User profile

NO

Guess Device 

according to

behavior

Fill location bit 

in Command 

file

Fill feature bit 

in Command 

file

YESNO

End

Figure 3.8: Response Manager

34



Chapter 4

Implementation

In the chapter we will discuss our implementations of REM based on our proposed model.

4.1 Environment

We divide into two parts to explain how we implement. One is hardware, the other is

software included the tools we applied to.

4.1.1 Hardware

In hardware, the CPU is Intel C2D E7500, it's a dual-core CPU. The RAM is 2048 MB.

And we use keyboard as input, and the output is monitor. In fact, a single-core CPU still

satisfies the demand of our model.

There is a list about the hardware. (Table 4.1)

4.1.2 Software

For general environment,all tools we applied work normally on Windows XP. We have to

simulate Windows XP with virtual machine. So we use VMware 3.0.1 to construct Windows

Table 4.1: Hardware List
CPU Intel C2D E7500
RAM 2048MB
Input Keyboard
output Monitor

35



Table 4.2:
Software Version
VMware 3.0.1
Eclipse helios-SR2
OAA 2.7
GCC N/A

XP. And the host operated system is Windows 7

The program editor is eclipse and its version is Helios Service Release 2. But there is no

C/C++ compiler in eclipse. Before writing the program, we must install the compiler gcc.

At first, the program language of Natural Language ToolKit (NLTK) with distributions for

Windows, Mac OSX and Linux is Python . So, we have to write a simple program to apply

NLTK. The version of Python is 2.6 . To use the NLTK library,we need to import the head

file. And the version of OAA library is 2.3.2 since June, 2007 .

The main program language we applied to complete all components is C++.

4.2 Open Agent Architecture

We would introduce the OAA in this section. We have to introduce the concept of agents

at first. And then we would dig in OAA.

4.2.1 Agent-Based Model

Agent-based model is based on Artificial Intelligence (AI) and focus on dialogue system

as cooperation between intelligent agents. All of these approaches for agents do focus on

"Goal" , "Solution" and "Event". "Event" means the user's request, "Goal" is the expected

action for user's request and "Solution" is the actual action for user's request.

When the agents what are build-in dialogue system receive "Event", the agents would find

36



"Solution" and send "Goal" to another agent or user. There are not only one "Solution" for a

"Event" , and the "Solution" will change according to some parameters.

In agent-based model shows as Figure. 4.1, a small black point represents a agent with

some function. The gray ellipse is the external environment, and the other ellipses in the big

gray ellipse are perceived by agents. A agent is responsible for perceiving a small part of

environment, that means function of agents is not strong. If there are two agents, one of them

is in charge of handling what kind of home appliance user operates and the other one is

responsible for searching which one to be operated.

ņůŷŪųŰŮŦůŵ

ŢŨŦůŵ

ŪůŵŦųŢŤŵŪŰů

ŰųŨŢůŪŴŢŵŪŰůŢŭġųŦŭŢŵŪŰůŴũŪű

ŔűũŦųŦġŰŧġŷŪŴŪţŪŭŪŵźġŢůťġ
ŪůŧŭŶŦůŤŦ

Figure 4.1: Agent-Based Model

4.2.2 Structure of OAA

The OAA is shown as Figure. 4.2. The main component in OAA is facilitator, being

responsible for distributing the task to the specified agent. All agents must register their

solutions in facilitator, or the facilitator would not pass the task the the agent without

37



registering. The Interagent Communication Language (ICL) developed by SRI is the form of

communication between agetns and he facilitator.

In 1996, the Agent Development Toolkit (ADT) [21] is proposed as a IDE. And the OAA

is wide range to be applied. As Section 2 mentioned, the MIMUS applied the OAA in its

architecture.

ŇŢŤŪŭŪŵŢŵŰųġłŨŦůŵ

ŖŴŦųġŊůŵŦųŧŢŤŦġ
łŨŦůŵ

ŎŦŵŢġ
łŨŦůŵ

łűűŭŪŤŢŵŪŰůġ
łŨŦůŵ

łűűŭŪŤŢŵŪŰůġ

Figure 4.2: Open Agent Architecture

4.3 Structure of Proposed Mode with OAA

We introduce the structure of our model with the hybrid approach, as shown Figure 4.3.

As mentioned in Section 3, the NLP would analysis the sentence from the user. The task

generator extracts the tagged word from the result form the NLP. The facilitator would pass the

tagged word to the appropriate manager.

At first, we have to launch the facilitator, and we launch the component manager and the

behavior manager, as shown Figure 4.4 The behavior manager registers its function in

facilitator.

There are two managers invoked in runtime. as shown Figure 4.5. Obviously, the

38



Figure 4.3: Structure of Proposed Model with OAA

facilitator accepts the requests of registering from the two managers.

4.4 summary

In summary, we introduce the hardware and software environment in our design We

introduce the architecture of Open Agent Architecture (OAA),and how we use the structure of

OAA to design and implement REM in mentioned environment.

39



Figure 4.4: Facilitator with One Manager

Figure 4.5: Facilitator with Two Managers

40



Chapter 5

Analysis

In this chapter, we would introduce the actions of REM in four case. In Section 5.2, we

discuss the effect of REM in the dialogue manager with different approach.

5.1 Case Study

According the task we defined before, we list several situations about the missing

information of the task. we would continue using the notation Cx, bx and Dx to composed a

task.

We denote the verbs to bxi and nouns to Cx based on our model. We list all possible cases.

I. Task with Cx

II. Task without Cx

III. Task with bx

IV. Task without bx

There is a table as show (Table 5.1)

We follow the definition of degree of complexity allocated to each task.[17] A simple task

includes only one bxi, a complex task requires more than one bxi. On the other hand, the task

what remembered the previous information is complex, as referential relations.[22][23]

We analysis four cases. In our proposed model, we can handle more than one bxi. In

following case, we just discuss the situation with one bxi.

In fact, we can break a task with more than one bxi into several sub-task with one bxi. On

41



Table 5.1: Case Study
NP

I II

VP III Case 1 Case 2
IV Case 3 Case 4

the other side, the command sending to devices is depended on bxi not previous device

information. So, there is no need to analysis overly complex tasks in this paper.

The situation of lack of Dx is similar with lack of Cx. So, we only discuss the lack of Cx.

5.1.1 Case 1

In case 1, our system receives the sentence with Cx and bxi. In principles, the actions of

system are independent because the independence of behaviour manager and component

manager. So there is a new bxi , the system registers the bxi in dataset and update the device ID

of bxi. And there is a new Cx , the system registers the Cx in dataset and update the device ID

of bxi.

As mentioned above, we analysis four situation as show (Table 5.2)

Existing bxi and Existing Cx It's a general situation with complete sentence. All bxi and Cx

in user command existed in dataset. Because of this, our system acts normally.

Existing bxi and new Cx If there is only Cx not in the dataset, our system still registers the

Cx and update device ID in existed bxi. Next,our system updates the device ID of bxi. In doing

so, our system can judge the logic of bxi next time.

New bxi and Existing Cx If there is only bxi not in the dataset, our system still registers the

bxi and update device ID in bxi. But, no need to register the Cx. The situation is very similar to

the previous.

42



Table 5.2: Case 1
I Cx in NPs

Existing Cx New Cx

III bxi in VPs
Existing bxi No register No update Register Cx Update de-

vice ID of bxi
New bxi Register bxi Update de-

vice ID of bxi
Register Cx and bxi
Register device ID in
bxi

Table 5.3: Example of Case 1
Turn on the TV in the bedroom

[Turn on] is an existing bxi , [TV] is an existing Cx
No register
No update

[Turn on] is an new bxi , [TV] is an existing Cx
Register [Turn on]

Update device ID in [Turn on]

[Turn on] is an existing bxi , [TV] is an new Cx
Register [TV]

Update device ID in [Turn on]

[Turn on] is an new bxi , [TV] is an new Cx
Register [Turn on] and [TV]
Update device ID in [Turn on]

New bxi and new Cx Even the sentence includes bxi and Cx, the bxi and Cx are not in dataset.

Our system not only registers bxi and Cx in dataset but also update the device ID in bxi. In

doing so, our system can distinguish the bxi and Cx next time.

We take a t for a example. 5.3

5.1.2 Case 2

In this case,the dominated factor is the Cx. The factor Cx would dominate the action of

our system. If there is a new Cx , the system have to register the Cx. On the other hand, the

system loads the bxi when the Cx is existed in dataset. In fact, We define a component not only

deviceCx but also description of device Dx , including location and features. We use Cx and

Dx to describe a complete component.

The point of case 2 is system how to handle the situation that there is not any bxi in user

command but Cx. All decision of case 2 are up to Cx. We take a sentence for a example. 5.5

43



Table 5.4: Case 2
II Cx in NPs

Existing Cx New Cx

III bxi in VPs
NULL Load bxi according to user file Register Cx

NULL Load bxi according to user file Register Cx

Table 5.5: Example of Case 2
TV in the bedroom

[TV] is an existing Cx Load bxi according to user preference
[TV] is an new Cx Register [TV]

And there is a table as show (Table 5.4)

5.1.3 Case 3

In this case, we pay attention on bxi -- lack of device type, only behaviour, as show

(Table 5.6). The user's input includes only behaviour bxi. we can expect the bxi dominates the

flow of our system.

There are two possible action. First, user gives a bxi which the system can't realize. Our

system registers the bxi without device ID,because there's no Cx in user's input. Second, bxi

form user's sentence exists in dataset. Our system can load the existed Cx from device ID of

bxi according to the behaviour mapping table.

We take a sentence for a example. 5.7

Table 5.6: Case 3
I Cx in NPs

NULL NULL

III bxi in VPs
Existing bxi Load device ID from bxi Load device ID from bxi
New bxi Register bxi,but no device ID Register bxi,but no device ID

44



Table 5.7: Example of Case 3
Turn it on in the bedroom

[Turn on] is an existing bxi Load device ID from [Turn on]
[Turn on] is an new bxi Register [Turn on]

5.1.4 Case 4

There is a situation we do not handle. A sentence without any bxi and Cx is not a legal

command. Because lack of information can not be a complete command,we preclude this

situation.

5.2 Discussion

We would discuss the dialogue systems with REM or without REM. As we mentioned

Section ??, the REM would fill the missing information in a task. The dialogue manager with

REM would receive the task with Cx, bx and Dx, if REM could find the solution. The dialogue

manager without REM would query database or ask user for missing information.

5.2.1 Finite-sate approach with REM

The dialogue manager in finite-state approach needs the a series of ordered words or

phrases to be input. The dialogue manager with FSM should check the elements in task in

ordered. If the input is not intact, the dialogue manager may stuck.

The REM would deal with the missing information, the dialogue manager could receive

the task with full information. The dialogue manager with REM could decrease the size of

dialogue and work well.

45



5.2.2 Frame-based approach with REM

The dialogue manager with frame-based approach fills the designed slots. The element in

a task which we determined would be filled in the designed slots. The dialogue manager with

frame-based approach would ask users for missing information.

The sub-models in REM could guess the missing information. The dialogue manager

could receive the result from REM to fill the slots, not to ask users for missing information.

46



Chapter 6

Conclusion

The REM could decrease the complex process querying data of dialogue manager about

missing information. The dialogue manager does not ask user after the REM.

The basic concept of REM is finite state machine with a series of judging. Because the

form of the task is fixed, we apply the finite state machine in determine mechanism even the

finite state machine with shortage in scalability. The sub-models deal with the missing

information and the unknown element in a task.

If missing information happens, the REM works based on the information of task, as

device or behavior. The REM would choose different action based on the device or behavior in

the task. With behavior mapping table or component mapping table, the REM could find the

corresponding solution to the task with missing information.

By the determined task, we design the REM with distributed agents for missing

information. The form of a task would assist REM to diagnose the state of a task, sub-models

in REM could find the solution.

The Rational Exception Model (REM) would help the dialogue manager to analysis the

state of dialogue. The sub-models in REM would query the missing information and determine

the logic of behavior for corresponding device with distributed agents. The dialogue manager

does not query the missing information with mentioned approached.

47



Chapter 7

Future Work

Future work in our research is to refine the mapping table with more efficient approach.

We choose the simple approach, weight column in mapping table, to infer the solution.

For this purpose, we could query database on-line and determine the relationship between

the keyword we searched and the result. For example,we could search the keyword "turn on",

the result would be the short sentence "turn on the radio". The short sentence included the

corresponding device "radio" for the keyword "turn on". We can refine our mapping table by

determining the relationship between "turn on" and "radio".

48



References

[1] D. Traum and S. Larsson, ''The information state approach to dialogue management,'' in

Current and New Directions in Discourse and Dialogue, 2003, pp. 325--353.

[2] A. Cheyer and D. Martin, ''The open agent architecture,'' Journal of Autonomous Agents

and Multi-Agent Systems, vol. 4, no. 1, pp. 143--148, March 2001, oAA.

[3] M. F. McTear, ''Spoken dialogue technology: enabling the conversational user interface,''

ACM Comput. Surv., vol. 34, pp. 90--169, March 2002. [Online]. Available:

http://doi.acm.org/10.1145/505282.505285

[4] M. M. University and M. F. Mctear, ''Modelling spoken dialogues with state transition

diagrams: experiences with the cslu toolkit,'' in Proc 5th International Conference on

Spoken Language Processing, 1998, pp. 1223--1226.

[5] B. Hansen, D. G. Novick, and S. Sutton, ''Systematic design of spoken prompts,'' in

Proceedings of the SIGCHI conference on Human factors in computing systems: common

ground, ser. CHI '96. New York, NY, USA: ACM, 1996, pp. 157--164. [Online].

Available: http://doi.acm.org/10.1145/238386.238466

[6] H. Aust, M. Oerder, F. Seide, and V. Steinbiss, ''The philips automatic train timetable

information system,'' Speech Commun., vol. 17, pp. 249--262, November 1995. [Online].

Available: http://portal.acm.org/citation.cfm?id=219030.219079

[7] D. S.-H. C. Chin-Han Tsai, ''A study on speech dialogue system and dialogue strategy,''

July 2005.

49

http://doi.acm.org/10.1145/505282.505285
http://doi.acm.org/10.1145/238386.238466
http://portal.acm.org/citation.cfm?id=219030.219079


[8] M. Guo, Y. Liu, and J. Malec, ''A new q-learning algorithm based on the metropolis

criterion,'' EEE Trans Syst Man Cybern B Cybern, vol. 34, pp. 2140--3, 2004. [Online].

Available:

http://www.biomedsearch.com/nih/new-Q-learning-algorithm-based/15503510.html

[9] E. Levin, R. Pieraccini, and W. Eckert, ''Using markov decision process for learning

dialogue strategies,'' in Proc. ICASSP, 1998, pp. 201--204.

[10] H. machine-dialog Corpora, W. Eckert, E. N�th, H. Niemann, and E.-G.

Schukat-Talamazzini, ''Real users behave weird - experiences made collecting large

human-machine-dialog corpora,'' 1995.

[11] S. Sutton, R. Cole, J. D. Villiers, J. Schalkwyk, P. Vermeulen, M. Macon, Y. Yan,

E. Kaiser, B. Rundle, K. Shobaki, P. Hosom, A. Kain, Johan, J. Wouters, D. Massaro, and

M. Cohen, ''Universal speech tools: The cslu toolkit,'' in In Proceedings of the

International Conference on Spoken Language Processing (ICSLP, 1998, pp.

3221--3224.

[12] M. F. Mctear, ''Using the cslu toolkit for practicals in spoken dialogue technology,'' in

University College London, 1999, pp. 1--7.

[13] C. L. Liu, Elements of discrete mathematics, 1977.

[14] J. Chu-Carroll, ''Mimic: an adaptive mixed initiative spoken dialogue system for

information queries,'' in Proceedings of the sixth conference on Applied natural language

processing, ser. ANLC '00. Stroudsburg, PA, USA: Association for Computational

Linguistics, 2000, pp. 97--104. [Online]. Available:

http://dx.doi.org/10.3115/974147.974161

50

http://www.biomedsearch.com/nih/new-Q-learning-algorithm-based/15503510.html
http://dx.doi.org/10.3115/974147.974161


[15] J. Chu-Carroll and M. K. Brown, ''An evidential model for tracking initiative in

collaborative dialogue interactions,'' User Modeling and User-Adapted Interaction,

vol. 8, pp. 215--254, February 1998. [Online]. Available:

http://portal.acm.org/citation.cfm?id=598279.598319

[16] J. G. Amores, G. Pérez, and P. Manchón, ''Mimus: a multimodal and multilingual

dialogue system for the home domain,'' in Proceedings of the 45th Annual Meeting of the

ACL on Interactive Poster and Demonstration Sessions, ser. ACL '07. Morristown, NJ,

USA: Association for Computational Linguistics, 2007, pp. 1--4. [Online]. Available:

http://portal.acm.org/citation.cfm?id=1557769.1557771

[17] P. Manchón, C. del Solar, G. Amores, and G. Pérez, ''Multimodal interaction analysis in a

smart house,'' in Proceedings of the 9th international conference on Multimodal

interfaces, ser. ICMI '07. New York, NY, USA: ACM, 2007, pp. 327--334. [Online].

Available: http://doi.acm.org/10.1145/1322192.1322249

[18] T. Project., Talk and Look: Linguistic Tools for Ambient Linguistic Knowledg, 2007.

[Online]. Available: www.talk-project.org

[19] P. M. Portillo, G. P. García, and G. A. Carredano, ''Multimodal fusion: a new hybrid

strategy for dialogue systems,'' in Proceedings of the 8th international conference on

Multimodal interfaces, ser. ICMI '06. New York, NY, USA: ACM, 2006, pp. 357--363.

[Online]. Available: http://doi.acm.org/10.1145/1180995.1181061

[20] N. Chomsky, Syntactic structures, 1957.

[21] A. C. G.-L. L. David L. Martin, ''Development tools for the open agent architecture,'' vol.

PAAM 96. SRI AI center, April 1996.

51

http://portal.acm.org/citation.cfm?id=598279.598319
http://portal.acm.org/citation.cfm?id=1557769.1557771
http://doi.acm.org/10.1145/1322192.1322249
www.talk-project.org
http://doi.acm.org/10.1145/1180995.1181061


[22] L. Ahrenberg, A. J�nsson, and N. Dahlb�ck, ''Discourse representation and discourse

management for a natural language dialogue system,'' in In Proceedings of the Second

Nordic Conference on Text Comprehension in Man and Machine, Taby, 1990.

[23] J. Hawkins, ''Definiteness and indefiniteness: A study in reference and grammaticality

prediction,'' 1978.

52


	Abstract
	Abstract
	Table of Contents
	List of Figures
	Chapter Introduction
	Dialogue System
	Approaches of Dialogue Manager
	Motivation
	Contribution
	Organization

	Chapter Background
	Approach of Dialogue
	Finite State-Based Approach
	Frame-Based Approach
	Information State Update Approach

	Current Dialogue System
	FSM-based Dialogue Systems
	Frame-based Dialogue Systems
	Information State Update Dialogue System

	Summary

	Chapter Design
	Preliminaries
	Definition of Task
	Block Diagram
	Flow Chart
	Infer missing information
	Summary

	Chapter Implementation
	Environment
	Hardware
	Software

	Open Agent Architecture
	Agent-Based Model
	Structure of OAA

	Structure of Proposed Mode with OAA
	summary

	Chapter Analysis
	Case Study
	Case 1
	Case 2
	Case 3
	Case 4

	Discussion
	Finite-sate approach with REM
	Frame-based approach with REM


	Chapter Conclusion
	Chapter Future Work
	References

