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摘 要       

 

 

 

    傳統探討平行無記憶性高斯通道資源分配的問題都是以最大化整體通

道容量為目的，而所推得的最佳能量分配法為著名的充水(Water-Filling)

演算法。但是此一能量分配法則的問題為，各管道達到最佳能量分配的碼

率是總能量的函數，所得的最佳碼率常是一個實作上不易實現的實數，同

時隨著訊號雜訊比增大還需不斷更換最佳編碼方式，如此才能達到原本設

定的最大通道容量，另外最大通道容量是成立於碼長趨近於無限大的情

況，在實際有限的碼長下，此種能量分配方式是否可以達到最佳系統效能

(即系統有效吞吐量)值得探討，故而本論文直接探討在有限碼長、固定編

碼方式下以達到最大有效系統吞吐量為目的的傳送能量分配策略。結果顯

示，我們所提出的資源分配方式可以以類似充水演算法的概念以圖形詮

釋，並且幾乎達到最大系統有效吞吐量。 

 



Throughput-Oriented Power Allocation Policies for
Parallel Gaussian Channels Under Finite-Length and

Fixed-Rate Coding Constraints

Student: Wen-Chieh Chang kkk Advisor: Po-Ning Chen

Institute of Communications Engineering

National Chiao Tung University

Abstract

The common criterion used in the power allocation problem for parallel memoryless

Gaussian channels is to maximize overall mutual information (namely, to achieve the ca-

pacity), resulting in the well-known water-filling policy. Such a capacity-achieving power

allocation, although theoretically interesting and beneficial in conceptually elucidating the

behavior of coding systems, does not match well with practical situations as capacity is an

asymptotic rate requiring the codeword length to grow to infinity. In addition, the overall

system capacity can only be achieved when the coding scheme of each channel is optimally

and continuously adapted to the allotted power. However in a practical system, the adopted

codes are by no means optimal in terms of achieving capacity and have only a finite number

of rate choices. Furthermore, a common quantity of interest is the effective system through-

put. In light of these observations, we study in this paper the problem of determining the

power allocation strategy for a system of coded parallel Gaussian channels with the objective

of maximizing effective throughput under finite-length and fixed-rate coding constraints. An

approximating formula of the system’s effective throughput is proposed for the case of con-

volutional codes and used to identify the optimal power allocation for each parallel channel.

Our results show that the proposed power allocation policies can be graphically represented

as a variation of the water-filling principle and achieves a near-optimal throughput.
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Chapter 1

Introduction

1.1 Overview

Finding the best strategy for allocating power over parallel independent additive white Gaus-

sian noise (AWGN) channels is a classical problem in information theory (e.g., cf. [1, 6] and

the references therein). For this problem, a typical optimization criterion for the distribution

of power is to maximize the system’s mutual information (namely, to achieve the system’s

capacity), which results in the well-known water-filling scheme. In this scheme, the capacity

is achieved when the input of each parallel channel is Gaussian distributed and has a power

allotment given by the “water level” of its respective “vessel” with base height equal to the

channel’s noise variance [1]. In 2006, Lozano, Tulio and Verdú re-visited this problem by

judiciously constraining the input to be drawn from discrete modulation constellations used

in practice such as phase-shift keying (PSK) [9] and quadrature amplitude modulation. They

concluded the study with a refined optimal power allocation policy, referred to as mercury

water-filling [6]. The result was obtained based on two key observations regarding parallel

Gaussian channels: (i) both the mutual information and the minimum mean-square error are

functions of the signal-to-noise ratios (SNRs), and (ii) the derivative of the former measure

with respect to the SNR is equal to the latter one.
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In literature, there is another challenging power allocation problem over parallel Gaussian

channels. Instead of knowing the noise variance in each channel, only the total noise variance

is known. In such case, the criterion becomes to maximize the so-called worst-case mutual

information, defined as the smallest mutual information among all possible noise variance

distributions with variance sum equal to a given constant. Signal power is then allotted to

achieve the worst-case capacity, which is the maximum of the worst-case mutual information

among all power allocations. The resulting power allocation policy is to allot equal signal

power to each channel, regardless of the value of the total noise variance.

The capacity-oriented power allocation, although theoretically interesting and useful for

the analysis of channel coded systems, is not realistic in several aspects. First, channel ca-

pacity is a function of the total system power, and the optimal coding scheme that achieves

capacity may be different for different capacity values. Hence, optimality can be achieved

only when the coding scheme of each parallel channel can be optimally adapted to the power

allotment, which is difficult to fulfill in practice. Secondly, the optimal rate obtained from

a capacity-based power allocation is often a concretely unrealizable real number; this is in

contrast with practical systems whose code rates are usually restricted to only a few rational

numbers such as 1/2, 1/3, 2/3, 1/4, etc. Finally, capacity is an asymptotic quantity that re-

quires the coding blocklength or frame size to grow without bound; yet, in practical systems,

the blocklength is finite (typically preset as a function of the system’s delay requirements).

In view of the above points, we herein investigate power allocation policies that re-

spectively achieve the maximum effective throughput (instead of capacity) and maximum

worst-case effective throughput (instead of worst-case capacity) for convolutionally coded

parallel memoryless Gaussian channels with finite-length and fixed-rate coding constraints,

where effective throughput is defined as the number of successfully transmitted information

bits per channel use. Since in general, there is no closed-form formula for the error rate (and

2



hence effective throughput) of a coded system, the optimal solution can only be obtained

via case-by-case simulation. Our study however shows that it is possible to obtain a good

approximating expression for the error rate of each coded channel and then use these approx-

imations to derive the near-optimal power allocation policies as a function of the system’s

total power and noise variances. The resulting near-optimal-throughput power allocation

policies are reminiscent of a variation of the traditional water-filling principle, where the

base width and height of each individual vessel (corresponding to each parallel channel) now

become functions of the code characteristics. However, unlike the case of water-filling, we

obtain that when a channel is in use (or active), a minimal power should be allocated to it.

In the effective-throughput-optimizing problem, we show that the optimal power assigned to

each channel may experience a sudden jump (or discontinuity) when the total system power

increases. This is due to the practical constraint requiring the code rates to be fixed and pos-

itive, and hence for a given channel, a power allotment that is smaller than a certain value

can only result in an inferior overall throughput. In the worst-case-effective-throughput-

optimizing problem, we provided a near-optimal power allocaton policy for system SNR

greater than a certain threshold. We show that our proposed power allocation policy yields

better gain than the traditional equal power allocation if the differences in the characteristics

of the used codes between channels are larger.

The rest of the thesis is organized as follows. In Chapter 2, we prove the optimality of

water-filling policy and equal power allocation policy for capacity-achieving and worst-case-

capacity-achieving problems, respectively. In Chapter 3, we introduce the system model and

define the throughput-optimizing and worst-case-throughput-optimizing power allocation

problems. We then propose the near-optimal power allocation policies based on convolutional

codes in Chapter 4 and present numerical and simulation results in Chapter 5. Finally, we

conclude the thesis in Chapter 6.
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Chapter 2

Preliminaries

As aforementioned, the traditional power allocation policy is to maximize the overall system

mutual information. Under a common assumption that the noise variance of each individual

channel is known, the resulting optimal power allocation that achieves the system capacity

is the water-filling power allocation scheme. For an alternative case where only the total

noise variance is known, the optimal power allocation that achieves the system worst-case

capacity is to allocate equal power to each channel. For the two cases mentioned above,

proofs of the optimality of the claimed power allocation policies will be respectively given in

the two sections in this chapter.

2.1 Capacity-AchievingWater-Filling Power Allocation

Policy with Known Noise Variance in Each Chan-

nel

Consider a system with K parallel AWGN channels. Assume that the noises are independent

of each other. Denote the noise variance for channel i by σ2
i , 1 ≤ i ≤ K. The capacity of K

parallel AWGN channels is then give by

max
∑K

i=1 Pi≤Pt

K
∑

i=1

1

2
log

(

1 +
Pi

σ2
i

)

. (2.1)

4



We denote for convenience P = {Pi}
K

i=1 as its assemble format. Since (2.1) is concave over

P , the technique of Lagrange multiplier [7] can be applied as the following. Let

f (P ) =

K
∑

i=1

1

2
log

(

1 +
Pi

σ2
i

)

− λ

(

K
∑

i=1

Pi − Pt

)

, (2.2)

where the constant λ is the so-called Lagrange multiplier and is always chosen such that the

power-sum constraint
∑K

i=1 Pi = Pt is satisfied. Taking the derivative of (2.2) with respective

to Pi, we have from the Kuhn-Tucker condition that

{ 1

2(Pi+σ2
i )

= 0, if Pi > 0;

1

2(Pi+σ2
i )

≤ 0, if Pi = 0.

Hence,

Pi =
(

ν − σ2
i

)+
, (2.3)

where (x)+ , max{0, x} and ν is chosen such that the power-sum constraint is satisfied (and

is equal to − 1
2λ
). (2.3) can be graphically interpreted via a water-filling scheme as shown in

Figure. 2.1.
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Pi = Pt

3X

i=1

Pi = Pt

Figure 2.1: An example of the water-filling power allocation for K = 3.
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2.2 Worst-Case-Capacity-AchievingWater-Filling Power

Allocation Policy Subject to a Known Sum of Noise

Variances

Instead of knowing the noise variance, σ2
i , of each channel, we suppose that we obtain only

the information of total noise variance, σ2
t =

∑K

i=1 σ
2
i . Lacking the knowledge of noise

variance in each channel, we need to consider the worst case scenario, where for any given

power allocation, σ2
i is always chosen such that the system mutual information is minimized.

It is named the worst-case mutual information and is defined as

min
∑K

i=1 σ
2
i =σ2

t

K
∑

i=1

1

2
log

(

1 +
Pi

σ2
i

)

. (2.4)

Based on (2.4), the optimal power allocation is chosen such that (2.4) is maximized

subject to the power constraint
∑K

i=1 Pi = Pt. The first step toward this problem is to

find the {σ2
i } that achieves the worst-case mutual information. It can be derived that the

second-order derivative of (2.4) with respect to each σ2
i is positive; hence, (2.4) is a convex

function of σ2
i . We can then apply the Lagrange multiplier technique to find the optimal

{σ2
i } that achieves the worst-case mutual information. Let

f1(P ) =

K
∑

i=1

1

2
log

(

1 +
Pi

σ2
i

)

+ λ1

(

K
∑

i=1

σ2
i − σ2

t

)

, (2.5)

where λ1 is chosen such that
∑K

i=1 σ
2
i = σ2

t . Taking derivative of (2.5) with respect to σ2
i ,

we have






Pi

2
(

(σ2
i )

2
+Piσ

2
i

) + λ1 = 0, if σ2
i > 0;

Pi

2
(

(σ2
i )

2
+Piσ

2
i

) + λ1 < 0, if σ2
i = 0.

(2.6)

(2.6) can be reorganized into a second-order polynomial function of σ2
i as the following:

{

(σ2
i )

2
+ Piσ

2
i +

Pi

2λ1
= 0, if σ2

i > 0;

(σ2
i )

2
+ Piσ

2
i +

Pi

2λ1
< 0, if σ2

i = 0.
(2.7)
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Hence, we obtain

σ2
i =





−Pi +
√

(Pi)2 −
2Pi

λ1

2





+

. (2.8)

We then replace the σ2
i in (2.4) by (2.8) and take away the minimization, and (2.4) becomes

n
∑

i=1

1

2
log






1 +

Pi

−Pi+
√

(γPi)2−
2Pi
λ1

2






. (2.9)

Since (2.9) is concave with respect to Pi, the Lagrange multiplier technique can be applied

again as the following. Let

f2(P ) =

K
∑

i=1

1

2
log






1 +

Pi

−Pi+
√

(Pi)2−
2Pi
λ1

2






+ λ2

(

K
∑

i=1

Pi − 1

)

, (2.10)

where λ2 is chosen such that
∑K

i=1 Pi = Pt. The derivative of (2.10) with respect to Pi

becomes

∂f2(P )

∂Pi

=







1
(

−1 +
√

1− 2
λ1Pi

)2

+ 2(−1 +
√

1− 2 2
λ1Pi

)











1
√

(1− 2
λ1Pi

λ1P 2
i



 + λ2.

(2.11)

(2.11) should satisfy

{

∂f2(P )
∂Pi

= 0, if Pi > 0;
∂f2(P )
∂Pi

< 0, if Pi = 0.

For any j 6= i, we accordingly have that if Pi > 0 and Pj > 0,

∂f2(P )

∂Pi

=
∂f2(P )

∂Pj

. (2.12)

This concludes that choosing Pi = Pj for every i and j will be one of the optimal power

allocation that maximizes (2.4).

7



Chapter 3

System Model and Problem

Formulation

Consider a system with K parallel channels or links, each of which has a binary-antipodal-

input (realized via binary PSK modulation) and suffers independent AWGN noise. Let Ri

be the rate of the code adopted by channel i, and denote by Pe,i its corresponding frame

error rate for frame size Ni, 1 ≤ i ≤ K. The system effective throughput is then defined as

T (P ) ,
K
∑

i=1

Ri (1− Pe,i) , (3.1)

which corresponds to the successfully transmitted information bits per channel use. Note

that in the above formula, Pe,i is a function of Ni, σ
2
i and Pi. To simplify the notations, we

do not explicitly write Pe,i as a function of Ni, Pi and σ2
i .

Corresponding to the capacity-achieving problem that σ2
i in each channel is known to the

system, we will find Pi such that (3.1) is maximized under the power constraint
∑K

i=1 Pi = Pt.

Similarly, corresponding to the wort-case-capacity-achieving problem that only the total

noise variance is available, we will find Pi such that the worst-case effective throughput

defined in (3.2) is maximized.

Tw (P ) , min
∑K

i=1 σ
2
i =σ2

t

K
∑

i=1

Ri (1− Pe,i) (3.2)

8



In this thesis, we implicitly assume that an error-detection scheme is applied to each

frame such that information is successfully transmitted only when no decoding error occurs

within a frame.1 We also assume that the time needed to transmit one code bit is identical

for all channels.

In general, Pe,i does not exhibit a closed-form formula. Hence, the power allocation

that maximizes T (P ) (respectively, Tw (P )) can be obtained only via case-by-case simula-

tion studies. It is thus hard to establish a general power allocation principle from such a

simulation-based power allocation result. One possible solution is to derive a good approxi-

mation for Pe,i with a structure that can facilitate its analysis.

When transmitting a convolutional code over an AWGN channel with noise variance σ2,

the frame error rate at high SNRs can be well approximated by the event error rate [5] as

Pe ≈ Adfreee
− 1

2
dfree

P

σ2 , (3.3)

where dfree is the free distance of the convolutional code, Adfree is the number of codewords

with Hamming weight equal to dfree, and P is the transmission power. However, the approx-

imated Pe in (3.3) is far from accurate for moderate SNRs and finite frame sizes (cf. the

approx. Pe curve in Figure. 3.1 for a convolutional code with rate R = 1/4 and memory

order 6, in which REb = P and σ2 = N0/2). Instead of adding more rectifying terms to (3.3)

that may later introduce analytical obstacles, we choose to fix this inaccuracy by replacing

Adfree and dfree with the refined parameters A and d respectively such that the adjusted curve

1Alternatively, one may define the effective throughput based on the (information) bit error rate (Pb) to
avoid considering the frame size, e.g.,

∑K

i=1
# of info. bits successfully recovered at receiver i

# of total info. bits transmitted via channel i
=
∑K

i=1(1− Pb,i).

This however may introduce an impractical situation where a high bit error rate (e.g., nearly one half) at
the receiver can still provide a non-trivial throughput to the system. Such an impractical situation can be
avoided under the definition in (3.1) since almost all frames fail the error detection check under a high bit
error rate.

9



defined below,

log(Pe) ≈ min

{

0, log(A)−
P

2σ2
d

}

, (3.4)

is close to the true Pe in the least squares sense over the range of operating SNRs (cf. the

adjusted approx. Pe curve in Figure. 3.1). For details of the procedure for retrieving A and

d, please see Example 3.1.

Example 3.1. From (3.4), we know that the approximated Pe in log scale is a linear com-

bination of di and logA in the operating SNR region. Thus linear least square estimator

[8] can be applied to retrieve d and logA. We let x = [x [0] x [1] ...x [M − 1]]T be a vector

composed by M true Pe values which are in log scale and g = [g [0] g [1] ...g [M − 1]]T denote

its corresponding Eb

N0
. We also let s = [s [0] s [1] ...s [M − 1]]T denote the approximated Pe

values in log scale. From (3.4), the s [j] can be modelled by

s [j] = −R g [j] d+ logA ∀ 1 ≤ j ≤ M

or in matrix form

s = Hθ,

where

H =

















−Rg[0] 1
−Rg[1] 1

.

.

.
−Rg[M − 1] 1

















, θ =

[

d
logA

]

.

The least square estimator is found by minimizing

J (θ) = (x−Hθ)T (x−Hθ) . (3.5)

The gradient of (3.5) is

∂J (θ)

∂θ
= −2HTx+ 2HTHθ

10



Setting the gradient to be zero yields the least square estimator

θ̂ =
(

HTH
)−1

HTx

The refined parameters A and d for the code is then found.

We denote the refined parameters in channel i by Ai and di, respectively. Note that

the effect of Ni to the frame error rate is included in the choice of di and Ai. Even if

we use the same code, di and Ai of a code will be different if we use different frame size.

Once di and Ai for a given code is determined, it can be later used universally to find the

throughput-optimizing power allocation policy for every value of Pt.

An immediate consequence from the adjusted approximation formula in (3.4) is that the

contribution to the system effective throughput from channel i will be zero if

Pi < Pth,i ,
2σ2

i

di
log(Ai).

In Chapter 5, our simulations will confirm that for a given code assigned to channel i,

allocating a power value smaller than Pth,i indeed provides very limited contribution to the

system throughput since almost all frames will fail the implicitly assumed error-detection

check.

11



0 0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

E
b
/N

0

P
e

R = 1/4

 

 
P

e

approx. P
e

adjusted approx. P
e

Figure 3.1: Pe and its approximations for a (4, 1, 6) convolutional code with generator poly-
nomial (in octal) being [177 127 155 171], dfree = 20 and Adfree = 2. The adjusted parameters
are d = 22.42 and A = 962.51. The frame size is N = 4(500 + 6). Eb/N0 is plotted in linear
scale.
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Chapter 4

Throughput-Oriented Water-Filling

In this chapter, instead of maximizing the overall mutual information, we suggest a power

allocation that aims at maximizing the effective throughput defined in (3.1) and (3.2). The

analyses in Sections 4.1 and 4.2 are mainly based on the approximated Pe defined in (3.4).

Interestingly, both the proposed power allocation policies in the two sections can be inter-

preted by some variations of water-filling. At the end of each section, we will remark on the

near-optimal power allocation policies we proposed when total power goes without bound,

and several conclusions will be given.

4.1 Throughput-Oriented Water-Filling: Noise Vari-

ance in Each Channel is Known

Based on the adjusted approximation formula in (3.4), (3.1) becomes

T (P ) =
K
∑

i=1

Ri

(

1−min

{

1, Aie
−

diPi

2σ2
i

})

=
∑

i∈O

Ri

(

1−Aie
−

diPi

2σ2
i

)

, (4.1)

provided that the optimal set of active channels in use, denoted by O, can be priori deter-

mined. Since (4.1) is a concave function over Pi, the power allocation can be obtained by

13



using the Lagrange multiplier technique and the Kuhn-Tucker condition as follows. Let

E (P ) = T (P )− λ

(

∑

i∈O

Pi − Pt

)

,

where the constant λ is the Lagrange’s multiplier and is chosen such that
∑

i∈O Pi = Pt.

Taking derivative with respect to Pi, we have

∂E (P )

∂Pi

=
di
2σ2

i

Aie
−

diPi

2σ2
i − λ. (4.2)

By the Kuhn-Tucker condition, (4.2) should satisfy

{

∂E(P )
Pi

= 0, if Pi > 0,
∂E(P )
Pi

< 0, if Pi = 0.
(4.3)

By (4.2) and (4.3), the optimal Pi can be shown to have the following form:

P ∗
i =

2σ2
i

di

(

ν − log
σ2
i

diAiRi

)+

(4.4)

where ν is chosen such that
∑

i∈O P ∗
i = Pt. Note that ν should also satisfy

ν ≥ νmin , max
i∈O

log
σ2
i

diRi

for the reason that all the channels in O should be activated (i.e. P ∗
i ≥ Pth,i ∀ i ∈ O).

Interestingly, the above result can be interpreted graphically as a variation of the water-

filling principle. For channels outside O, zero power will be allocated. For each channel in

O, a vessel with base width
2σ2

i

di
and base height log

σ2
i

diAiRi
will be used for water filling. The

resulting water level ν must be no less than the base height log
σ2
i

diAiRi
plus log(Ai) for every

i ∈ O. The water inside each vessel is then the optimal power to be allotted. An example is

illustrated in Figure. 4.1.

Example 4.1. A three channels (K = 3) system is considered. Each channel has its base

height and base width as stated in the paragraph immediately above this example. We assume

that O = {1, 2} has already been given. Thus, zero power will be allocated to channel 3. And
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at least Pth,1 and Pth,2 should be allocated to channels 1 and 2, respectively. The lowest water

level νmin should then be chosen as

νmin = max

{

log
σ2
1

d1R1

, log
σ2
2

d2R2

}

.

log
¾
2

1

d1A1R1

log
¾
2

1

d1A1R1

logA1logA1

ºº

ºminºmin

Pth;1Pth;1

Pth;2Pth;2

CH1CH1 CH2CH2 CH3CH3

2¾
2

1

d1

2¾
2

1

d1

Figure 4.1: An example of the throughput-oriented water-filling with K = 3 and O = {1, 2}.

By (4.4), we obtain that for i ∈ O (hence ν ≥ log
σ2
i

diRi
),

diγ
∗
i = 2ν + 2 log(diAiRi)− 2 log(σ2

i ) (4.5)

where γ∗
i , P ∗

i /σ
2
i denotes the SNR of channel i. Equation (4.5) then indicates that the

optimal power allocation should make the SNR γ∗
i inversely proportional to the logarithm

of noise power σ2
i . This is in stark contrast with the capacity-achieving water-filling policy

(with Gaussian inputs), which results in an SNR that is inversely proportional to the noise

power itself. For example, when two active channels i and j adopt the same code with
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di = dj = 5, and σ2
j /σ

2
i = 2, (4.5) implies that

γ∗
i = γ∗

j +
2

di
log

σ2
j

σ2
i

= γ∗
j + 0.12,

while the capacity-achieving power allocation formula P ∗
i = (ν − σ2

i )
+ requires that

γ∗
i = 2γ∗

j + 1.

From our simulations, we indeed observe that the latter power assignment actually yields a

poor system throughput.

When the total power Pt is adequately large, all channels become active. We then obtain

from (4.5) that the SNRs of any two channels, say channels i and j, are characterized by

diγ
∗
i = djγ

∗
j + 2 log

σ2
j

σ2
i

+ log
diAiRi

djAjRj

Thus

lim
Pt→∞

diγ
∗
i

djγ∗
j

= 1 + lim
Pt→∞

2 log
σ2
j

σ2
i

+ log diAiRi

djAjRj

djγ∗
j

= 1.

Hence, when Pt is large, our result indicates that the allotted powers should make the diγ
∗
i

products equal across all channels. As in most cases, the approximate di is close to the free

distance of the code used by channel i; this suggests that, when Pt grows without bound,

the optimal SNR γ∗
i should in general be chosen as the reciprocal of the code’s free distance.

As already mentioned, our result also indicates that there is a minimum power required

for each channel to be activated. In other words, if the allocated power Pi is less than Pth,i

then re-assigning this power to other channels will generally result in a better throughput.

A remaining question is how to determine the optimal O. A straightforward approach is

to examine each of the choices of O, which is by no means complex. To examine one possible

choice of O, for a given total power, Pi is then determined by (4.4) since the relationship

of Pi and total power is a one-to-one mapping. The corresponding effective throughput is

obtained by simple calculation according to (4.1).
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4.2 Throughput-OrientedWater-Filling: Only Total Noise

Variance is Available

Based on the adjusted approximation formula in (3.4), (3.2) becomes

Tw (P ) = min
∑K

i=1 σ
2
i =σ2

t

K
∑

i=1

Ri

(

1−min

{

1, Aie
−

diPi

2σ2
i

})

. (4.6)

We focus on the situation that all channels are active, which means that

Pi ≥ Pth,i ∀ 1 ≤ i ≤ K. (4.7)

(4.6) becomes

Tw (P ) = min
∑K

i=1 σ
2
i =σ2

t

K
∑

i=1

Ri

(

1− Aie
−

diPi

2σ2
i

)

. (4.8)

A straightforward approach to eliminate the minimization in (4.8) is to use the Lagrange

multiplier technique and Kuhn-Tucker condition to find σ2
i such that the worst-case effective

throughput is achieved. However, in general, the worst-case effective throughput is not a

concave function of σ2
i since

∂2Tw (P )

∂ (σ2
i )

2 =
RiAidiPi

(σ2
i )

3 e
−

diPi

2σ2
i

(

1−
diPi

4σ2
i

)

. (4.9)

Thus, by letting

Pi ≥
4σ2

i

di
, (4.10)

we further constrain our problem to be concave over σ2
i such that (4.9) becomes always

negative. Under this constraint, we know that the σ2
i to achieve Tw should be chosen as

either 0 or σ2
t . Since the total noise variance is a given value, only one channel will be

allocated the whole noise power and the rest of the channels is allocated zero noise power.

Next we consider one possible power allocation P †
i , which is defined as

P †
i =

2σ2
t

di

(

ν − log
1

AiRi

)

, (4.11)
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where ν is chosen such that
K
∑

i=1

P †
i = Pt.

Our aim is to prove that this power allocation performs better than any other power alloca-

tion policies and hence is optimal.

From the power constraints in (4.7) and (4.10), P †
i should satisfy

P †
i ≥ max

{

2σ2
i

di
log (Ai),

4σ2
i

di

}

∀ 1 ≤ i ≤ K. (4.12)

Since σ2
i ≤ σ2

t , we can further increase Pt (equivalently, ν) such that

P †
i ≥ max

{

2σ2
t

di
log (Ai),

4σ2
t

di

}

∀ 1 ≤ i ≤ K. (4.13)

Define the minimum power required in channel i as

P †
th,i , max

{

2σ2
t

di
log (Ai),

4σ2
t

di

}

∀ 1 ≤ i ≤ K.

Replacing P †
i by (4.11), we further deduce (4.13) as a condition on ν,

2σ2
t

di

(

ν − log
1

AiRi

)

≥ max

{

2σ2
t

di
logAi,

4σ2
t

di

}

,

thereby implying

ν ≥ max {− logRi, 2− log (AiRi)} ∀ 1 ≤ i ≤ K. (4.14)

We let νmin denote the minimum value of the choice of ν, which satisfies (4.14) for every i.

From the definition of P †
i and (4.14), we have

P †
i ≥

2σ2
t

di

(

νmin − log

(

1

AiRi

))

∀ 1 ≤ i ≤ K. (4.15)

(4.15) equivalently implies a constraint in system SNR by taking summation over P †
i and

dividing it by σ2
t , which is

1

σ2
t

K
∑

i=1

P †
i ≥

K
∑

i=1

2

di

(

νmin − log

(

1

AiRi

))

= γ†
th,
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where γ†
th is the threshold system SNR. From above, we have claimed that by using P †

i as

power allocation, the optimal choice of σ2
i is either 0 or σ2

t , when system SNR is greater than

γ†
th. Using this result, the worst-case effective throughput due to {P †

i }, which is denoted by

T †
w can be computed as follows.

T †
w

(

P †
)

, min
∑

σ2
i
=σ2

t

K
∑

i=1

Ri

(

1− Aie
−

diP
†
i

2σ2
i

)

= min
∑

σ2
i
=σ2

t

K
∑

i=1

Ri






1− Aie

−
di

2σ2
t

di
(ν−log 1

RiAi
)

2σ2
i






(4.16)

We define the noise variance that achieves T †
w as

σ2
i

†
,

{

σ2
t , if i = m
0, if i 6= m

, (4.17)

where m can be chosen to be 1 ≤ m ≤ K. We will later show that any value of m yields the

same T †
w. We then take away the minimization in (4.16) by using σ2

i
†
as the noise power.

(4.16) becomes

K
∑

i=1

Ri






1− Aie

−
di

2σ2
t

di
(ν−log 1

RiAi
)

2(σ
†
i
)2







=
∑

i 6=m

Ri +Rm − e−(ν−log 1
RmAm

)+logRmAm

=

K
∑

i=1

Ri − e−ν . (4.18)

By (4.18), it is noted that the worst-case effective throughput is independent of m. Thus

definition of σ2
i

†
is justified. Besides, we know that Rm − e−ν is always non-negative for all

possible value of m from (4.14).

The optimality of using P †
i as power allocation is proved by the method of contradiction.

We will show that the Tw obtained from any other power allocation is less than or equal to
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T †
w. The proof is as follows. Consider any power allocation P̂i = P †

i +4P †
i , where 4P †

i 6= 0

for at least one channel and

K
∑

i=1

4P †
i = 0. (4.19)

We also consider a specific noise power allocation

σ̂i
2 =

{

σ2
t if i = k
0 if i 6= k

,

where

k , arg min
1≤i≤K

(

diPi

2σ2
t

− logAiRi

)

. (4.20)

An upper bound for the worst-case effective throughput of P̂ can be found as the following:

min
∑

σ2
i =σ2

t

K
∑

i=1

Ri

(

1−min

{

1, Aie
−

diP̂i

2σ2
i

})

≤
K
∑

i=1

Ri

(

1−min

{

1, Aie
−

diP̂i
2σ̂i

2

})

=
∑

i 6=k

Ri +Rk

(

1−min

{

1, Ake
−

dkP̂k

2σ2
t

})

. (4.21)

The first inequality holds for the reason that the minimization over the effective throughput

is always less than or equal to the effective throughput using the noise power σ̂i
2 in our case.

For the second equality, it is obvious that the minimization over 1 and Aie
−

diP̂i
2σ̂i

2 is always

greater than zero. Moreover, if we have

min

{

1, Ake
−

dkP̂k

2σ2
t

}

= 1,

(4.21) becomes
∑

i 6=k

Ri which is less than or equal to T †
w.

Else if

min

{

1, Ake
−

dkP̂k

2σ2
t

}

= Ake
−

dkP̂k

2σ2
t ,
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(4.21) becomes

∑

i 6=k

Ri +Rk − e
−

(

dkP̂k

2σ2
t

−log (RkAk)

)

. (4.22)

By comparing (4.22) with T †
w in (4.18), the only difference is in the exponential term. From

the definition of k in (4.20), we know that

dkP̂k

2σ̂2
k

− log (RkAk) = min
1≤i≤K

(

diP̂i

2σ2
t

− logAiRi

)

. (4.23)

Note that

diP̂i

2σ2
t

− logRiAi =
di

(

P †
i +4Pi

)

2σ̂t
2 − logRiAi

= ν +
di4Pi

2σ2
t

∀ 1 ≤ i ≤ K. (4.24)

There always exists at least a channel that has its di4Pi

2σ2
t

being negative since P̂i 6= P †
i and

4Pi should satisfy the constraint in (4.19). Taking minimization over (4.25), we have

min
1≤i≤K

(

diP̂i

2σ2
t

− logAiRi

)

< ν (4.25)

Thus

∑

i 6=k

Ri +Rk − e
−

(

dkP̂k

2σ2
t

−log (RkAk)

)

≤
∑

i 6=k

Ri +
(

Rk − e−ν
)

= T †
w

(

P †
)

From the discussion above, we have proved that the worst-case effective throughput of any

power allocation P̂i is less than that of P †
i . The optimality of P †

i is then justified. Thus,

we can claim that when system SNR is greater than γ†
th, the optimal power allocation that

maximizes Tw is by using P †
i as the power allocation. It is also worth knowing that the

corresponding choice of σ2
i that achieves Tw is to put total noise power to any one of the

channel.

The power allocation scheme can also be interpreted as a variation of water filling princi-

ple. For each channel, a vessel with base width
2σ2

t

di
and base height log 1

Aidi
will be used for
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water filling. From our constraints in power in (4.13), each channel should be allocated at

least P †
th,i. The resulting ν must be no less than νmin. The water filling inside each vessel is

then the optimal power to be allotted. An example with three channels(K = 3) is illustrated

in Fig. 4.2.

Example 4.2. A three channels (K = 3) system is considered. Each channel has its base

height and base width as defined in the paragraph immediately above this example. At least

P †
th,1, P

†
th,2 and P †

th,3 should be allocated to three channels, respectively. The lowest water level

νmin should then be chosen as

νmin = max
1≤i≤3

{

max {logAi, 2}+ log
1

AiRi

}

.
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Figure 4.2: An example of the throughput-oriented water-filling with K = 3.

From the definition of P †
i , we can see that the proposed power allocation depends on σ2

t .

Alternatively, we can say that the proposed power allocation scheme depends on system SNR
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if we look at the power allocation ratio for each channel, which is derived as the following:

p†i =
P †
i

Pt

=
2

diγt

(

ν − log
1

AiRi

)

, (4.26)

where γt = Pt/σ
2
t is the system SNR. In practice, the information of system SNR can be

obtained by applying feedback technique to the system. Besides, the effect of system SNR

in the power allocation can be eliminated if the code used in each channel can be chosen

such that the product of Ai and Ri is the same for different channels. In this way, the ratio

of power between different channels becomes a constant, which is as the following:

p†i : p
†
j =

1

di
:
1

dj
,

for i 6= j. Thus, the allocated power ratio for channel i becomes

p†i =
1
di

∑K

m=1
1
dm

,

which is only related to di. Furthermore, we look at p†i when the system SNR goes without

bound. From (4.26), we have

lim
γt→∞

p†i
p†j

=
1
di
1
dj

The optimal allotted power to channel i should be inversely proportional to its di, which

is closed to its free distance. It coincides with the fact that the free distance dominates

frame error rate and thus dominates worst-case effective throughput when SNR tends to be

infinity. Finally, our proposed power allocation scheme can be simplified to the traditional

equal power allocation scheme when all channels use the same code.
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Chapter 5

Numerical and Simulation Results

In this chapter, we compare the effective throughput retrieved by using different power

allocation policies. Several convolutional codes [2, 3] are adopted. The parameters in the

sense of the approximation given by (3.4) for these codes are listed in Table 5.1.

5.1 Throughput-Oriented Water-Filling: Noise Vari-

ance in Each Channel is Known

In this section, three situations of parallel Gaussian channels with K = 3 are examined.

They are respectively referred to as Cases I, II and III.

In Case I, the noise variances for the three channels are σ2
1 = 1, σ2

2 = 3.5 and σ2
3 = 6,

respectively. Here, codes with higher code rates are naturally assigned to less noisy channels;

hence we have R1 = 1/2, R2 = 1/3 and R3 = 1/4. The frame sizes for the three channels

are N1 = 2(1000 + 6), N2 = 3(1000 + 6) and N3 = 4(1000 + 6), respectively. In Figure. 5.1,

we depict the effective throughputs for the seven possible choices of the active channel set

O. The figure indicates that all the power should be allocated to channel 1 if Pt < 5.14,

and both channels 1 and 2 should be active when 5.14 < Pt < 10.05. Beyond the point

Pt = 10.05, all three channels should be made active.
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Table 5.1: The information of the used codes in the simulation.

adjusted adjusted codeword length generator polynomial
code dfree Adfree d A N (octal)

10.63 1478.07 2(500+6)
(2, 1, 6) 10 11

11.02 4750.45 2(1000+6)
[133 171]

15.79 593.83 3(500+6)
(3, 1, 6) 14 1

16.12 1449.97 3(1000+6)
[133 171 145]

22.42 962.51 4(500+6)
(4, 1, 6) 20 2

22.13 1401.29 4(1000+6)
[117 127 155 171]

(2, 1, 2) 5 1 5.31 111.56 2(500+2) [5 7]
(3, 1, 11) 24 13 29.04 41373.67 3(500+11) [5475 6471 7553]
(4, 1, 10) 29 3 35.54 11266.62 4(500+10) [2565 2747 3311 3723]

In Figure. 5.2, we compare the optimal effective throughput obtained from exhaustive

search with that obtained from our throughput-oriented water-filling based on the FER

approximation and from the capacity-achieving water-filling policy. We remark that our

throughput-oriented water-filling can achieve a near-optimal effective throughput as an-

ticipated. We also observe that the capacity-achieving water-filling policy yields a good

throughput only when all the power is allocated to a single channel (which is the optimal

choice only for small values of Pt).

In Figure. 5.3, we plot the optimal power ratio P ∗
2 /Pt with respect to different power

allocation policies. We note that a sudden increase for this ratio occurs in the exhaustive

search curve at Pt = 4.98 which is exactly the instance the active channel set O changes

from {1} to {1, 2} as shown in Figure. 5.4. This jump occurs when the total power is a little

bit larger than the total power corresponding to ν = νmin = log
σ2
2

d2R2
in Figure. 4.1, i.e.,

Pt >
2σ2

1

d1

(

log
σ2
2

d2R2
− log

σ2
1

d1A1R1

)

+
2σ2

2

d2

(

log
σ2
2

d2R2
− log

σ2
2

d2A2R2

)

= 4.93.

This is because Channel 2 can provide a solid contribution to the system effective throughput

only when P2 is adequately larger than Pth,2. Figure 5.3 also indicates that the predicted

jump point from the throughput-oriented water-filling based on the FER approximation,
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i.e., Pt = 5.14, is very close to the true jump point, Pt = 4.98, while the capacity-achieving

water-filling policy always suggests a continuous increase in the power ratio.
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case 1: Ch1 only
case 2: Ch2 only
case 3: Ch3 only
case 4: Ch1 & Ch2
case 5: Ch1 & Ch3
case 6: Ch2 & Ch3
case 7: Ch1 & Ch2 & Ch3

Figure 5.1: Case I: Effective throughputs for the seven choices of the active channel set O.

For Case II, we exchange the codes used in Channels 1 and 3 in Case I. Hence, R1 = 1/4

and R3 = 1/2. The results are summarized in Figures. 5.5, 5.6 and 5.7. These figures point

out that using a lower code rate for a less noisy channel will yield a better throughput only

when the total power is very small. For moderate to high total power, exchanging the codes

between channels 1 and 3 never results in a better effective throughput. This confirms the

common intuition that when a channel is less noisy, a code with a higher rate should be used.

A side observation is that when assigning a code with lower rate to a less noisy channel, the

set of active channels changes more often with respect to Pt. In particular, Channel 2 will

26



0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

1.2

1.4

total power

ef
fe

ct
iv

e 
th

ro
ug

hp
ut

 

 
exhaustive search
throughput−oriented I
capacity−optimizing

Figure 5.2: Case I: Optimal effective throughputs obtained from exhaustive search, the
throughput-oriented water-filling based on the FER approximation, and the capacity-
achieving water filling policy.

have two cut-off regions given by Pt < 3.76 and 11.42 < Pt < 14.65 as shown in Figure. 5.5.

In addition, Figure. 5.5 shows that adopting a wrong O will noticeably degrade the effective

throughput. Hence, exchanging the codes between Channels 1 and 3 will make complicated

the optimization of the throughput.

Finally for Case III, the codes used for three channels are the same as those used in Case I,

but the frame sizes are changed to N1 = 2(500 + 6), N2 = 3(500 + 6) and N3 = 4(500 + 6).

Thus di and Ai are changed simultaneously. Besides, the noise variances are changed to

σ2
1 = 2, σ2

2 = 8, σ2
3 = 9. Similar behaviors can be observed from Figure 5.8 except that

the capacity-achieving water-filling policy gives an effective throughput closer to the optimal
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Figure 5.3: Case I: Optimal power ratio for channel 2.

one for high values of the total power. This can be somehow anticipated from the discussion

following (4.5) as when the noise variances of the active channels have larger gaps (between

Channel 1 and Channels 2 or 3), the capacity-achieving water-filling policy will yield a power

allocation closer to the throughput-oriented water-filling.
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Figure 5.4: Case I: Illustration of the optimal active set O changing from {1} to {1, 2}.
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Figure 5.5: Case II: Effective throughputs for the seven choices of active channel set O.
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Figure 5.6: Case II: Optimal effective throughputs obtained from exhaustive search, the
throughput-oriented water-filling based on the FER approximation, and the capacity-
achieving water filling policy.
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Figure 5.7: Case II: Optimal power ratio for Channel 2.
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Figure 5.8: Case III: Optimal effective throughputs obtained from exhaustive search,
the throughput-oriented water-filling based on the FER approximation, and the capacity-
achiving water-filling policy.
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5.2 Throughput-OrientedWater-Filling: Only Total Noise

Variance is Available

In this section, three situations of parallel Gaussian channels are examined. They are re-

spectively referred to as Cases I, II and III.

In Case I, we consider K = 3 and use the (2, 1, 6), (3, 1, 6) and (4, 1, 6) convolutional

code in three channels, respectively. The frame size of the codes are N1 = 2(500 + 6),

N2 = 3(500 + 6) and N3 = 4(500 + 6). The total noise variance σ2
t is set to 10. For

convenience, we will plot the ratios of the effective throughput against the maximum rate,

which is the sum of the rates of the three channels in the following figures.

In Figure. 5.9, we compare the ratios of the effective throughputs against the maxi-

mum rate, obtained from the throughput-oriented water-filling in (4.11) and the traditional

worst-case capacity-achieving equal power allocation. The γ†
th, at which value our proposed

power allocation becomes optimal, is 4.72 dB. We can see that almost all of the power al-

location methods achieve the maximum rate when system SNR is above γ†
th. Although we

cannot guarantee the optimality of using the throughput-oriented water-filling for system

SNR smaller than γ†
th, we can still see that it has around 1.4 dB gain over the equal power

allocation when the effective throughput of the system is required to achieve 85% of the

maximum rate.

We also observe the distribution of worst-case noise variances for system SNR varying

from 2 dB to 6 dB when using throughput-oriented water-filling as the power allocation

method. The result shows that we should always give total noise power to Channel 2. This

confirms our claim that the worst-case effective throughput is achieved by giving total noise

power to only one channel for system SNR greater than γ†
th.

In Case II, the (2, 1, 2), (3, 1, 11) and (4, 1, 10) convolutional codes are used in three
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Figure 5.9: Case I: The worst-case effective throughputs obtained from throughput-oriented
water-filling based on the FER approximation, and the worst-case-capacity-achieving equal
power allocation.

channels, respectively. Compared with the codes used in Case I, the codes used in Case II

has larger gaps in di, where d1 = 5.31, d2 = 29.40 and d3 = 35.54. It is anticipated

that by using this set of codes, throughput-oriented water-filling should yield a greater gain

than equal power allocation, when being compared with Case I. A simple way to prove this

anticipation is by looking at the situation when system SNR is large. The proposed power

allocation policy suggests that Pi should be allocated inversely proportional to di. For larger

difference in the amount of di’s, the proposed power allocation deviates greatly from the equal

power allocation, and thus yields better gain. Figure 5.10 confirms our deduction. We see

that throughput-oriented water-filling yields around 2 dB gain when the effective throughput
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achieves 85% of the maximum rate. Besides, when we look at the situation when system SNR

is equal to γ†
th = 5.19 dB, throughput-oriented water-filling almost achieves the maximum

rate while the equal power allocation achieves only 83% of the maximum rate.
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Figure 5.10: Case II: The worst-case effective throughputs obtained from throughput-
oriented water-filling based on the FER approximation, and the the worst-case-capacity-
achieving equal power allocation.

For Case III, we increase the number of channels to beK = 4. We use the (2, 1, 6), (3, 1, 6)

and (4, 1, 6) convolutional codes in the first three channels as in Case I. Two different codes

are chosen to be used in Channel 4 for comparison.

Firstly, we use the (2, 1, 6) in Channel 4, which is the same code as that used in channel

1. We yield only 0.89 dB gain when the effective throughput is required to achieve 85% of

the maximum rate (See Figure 5.11), which is less than the gain in Case I. Secondly, we use
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the (3, 2, 6) punctured convolutional code in Channel 4. It is punctured from (2, 1, 6) code

with puncture pattern
[

1 1
1 0

]

.

The adjusted parameters for the punctured (3, 2, 6) code is d4 = 7.89 and A4 = 6469.15,

where d4 is much less than the di of other used codes. From Figure 5.12, we could see that

the gain enlarges to 1.89 dB when the effective throughput achieves 85% of the maximum

rate, which is greater than the gain obtained in Case I. The result in this case confirms the

anticipation that the throughput-oriented water-filling yields a larger gain from traditional

equal power allocation when the characteristics of the used codes deviate largely from each

other .
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Figure 5.11: Case III: The worst-case effective throughput of using throughput-oriented
water-filling and equal power allocation. K = 4. (2, 1, 6), (3, 1, 6) and (4, 1, 6) codes are used
in the first three channels, and (2, 1, 6) code is used again in the fourth channel.
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Figure 5.12: Case III: The worst-case effective throughput of using the throughput-oriented
water-filling and equal power allocation. K = 4. (2, 1, 6), (3, 1, 6) and (4, 1, 6) code sare used
in the first three channels, and (3, 2, 6) code is used in the fourth channel.
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Chapter 6

Conclusion

In this paper, two power allocation policies are respectively proposed for the two situations:

(i) noise variance is known to each channel and (ii) only total noise variance is known. We aim

to maximize the effective throughput and the so-defined worst-case effective throughput of

theK coded parallel AWGN channels, subject to practical finite-length and fixed-rate coding

constraints. These policies preserve the notion of the water-filling principle by additionally

taking into consideration the code characteristics. Simulation and numerical results show

that the proposed policy for the situation that noise variance is known to each channel can

achieve a near-optimal effective throughput for all values of the total power. When only the

total noise variance is known, the proposed policy can also achieve a near-optimal effective

throughput for system SNR greater than a certain threshold.

In practice, standards usually provide a list of optional codes for each channel. For the

case where noise variance in each channel is known, a natural future work is thus to provide

a quick determination of the optimal active channel set O (instead of examining all (2K −1)

possibilities) such that our policy can readily determine the suitable code to be used in each

channel. For the case where only total noise variance is available, the future work is to find

the optimal power allocation policy for system SNR below the threshold system SNR.
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