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正交頻率多工訊號之低複雜度峰均值降低之方法 

 

學生:陳至寧                                     指導教授:蘇育德  博士 

 

國立交通大學電信工程研究所碩士班 

 

摘         要 

    由於正交頻率多工  (OFDM)信號會使傳送時間訊號產生高峰均值 

(PAPR)，讓系統的傳輸功率效能打了不少折扣。在許多種解決方案中，選擇性

映射 (Selective Mapping) 及部分傳輸序列 (Partial Transmit Sequences)算是比較

簡易可行的。然而，此兩種方法需要作多次的 IDFT，其運算複雜度仍高，為提

升其可行性，簡化運算複雜度是必要的。現有大多數的簡化複雜度的方法似乎都

沒有考慮到快速傅立葉轉換 (FFT)或反轉換（IFFT）的代數與硬體結構性質。我

們認為上述兩種降低峰均值方法若能一併考慮快速傅立葉轉換的結構將有助於

簡化其實現複雜度，提高其實用性。 

 

     在這篇論文中，我們依前述理念，提出新型的架構概念可以達到上述的目

的。目前現有的選擇性映射及部分傳輸序列均可藉由我們提出的兩種方法，達到

降低複雜度的目的。我們提的方法，除可降低運算複雜度之外，也能在相同複雜

度的前提之下，降低更多的峰均值。此外，我們又提出了一個可以提早結束計算

的機制，根據這個機制，可以節省更多的運算量。 
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Abstract

One major problem with an orthogonal frequency division multiplexing (OFDM)

system is high peak-to-average power ratio (PAPR) of the transmitter’s output signals.

To deal with it, several reduction scheme have been proposed and selective mapping

(SLM) and partial transmit sequence (PTS) are two of them. Nevertheless, both two

schemes incur high computational complexity and simplification is required. Although

there are several works are devoted to the simplification, we find that most of them are

designed without considering the structure of fast Fourier transform (FFT). It motives

us to jointly design the PAPR reduction scheme and FFT.

In this thesis, we propose a concept to achieve this goal and several existed PAPR

reduction schemes can be simplified with this concept. Here, two variant PAPR reduction

schemes are considered and we will show that either the computational complexity can be

reduced or we can get lower PAPR compared to the conventional schemes. In addition,

a early stopping criterion is proposed to further reduce the computational complexity.
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Chapter 1

Introduction

Orthogonal frequency division multiplexing (OFDM) has become a very popular

transmission scheme for wideband communication systems due to its many desired prop-

erties. For instance, it has high spectral/power efficiencies, admits simple channel esti-

mation and equalization, is compatible with other anti-fading methods and allows flex-

ible resource allocation. With all these advantages, it suffers from one major drawback:

high peak-to-average power ratio (PAPR) of the resulting time-domain waveforms. The

high PAPR effect often forces the transmit power amplifier backoff to avoid significant

nonlinear signal distortion.

Various techniques have been proposed to deal with this issue [1]. These methods

can be classified into three categories. The first category can be referred to as the block

coding scheme [2]. A subset of legitimate signals with lower PAPR is transmitted instead

of using the whole signal space, and a pre-defined mapping rule between information bit

stream and signal subset has to be set up.

The second category includes several signal distortion schemes. Among them, clip-

ping [3] is the simplest–it basically clips those parts of the signal whose magnitude exceed

the predetermined threshold. Nevertheless, as clipping suffers from in-band distortion

and out-band radiation, it results in spectral efficiency reduction and error rate perfor-

mance degradation. Active constellation extension (ACE) [4] clips signal in time-domain

and forces frequency-domain components to stay within an extended region so that no
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BER degradation will occur. For tone reservation (TR) [5], the transmitter does not

send data on s small subset of subcarriers, and find the specific time-domain signal to

be added to the original time-domain signal to lower the value of PAPR. Tone injection

(TI) [5] adjusts frequency-domain signal by choosing transmitted signal from alternative

signal points to reduce peaks in time-domain.

The last category involves different signal scrambling schemes. In selective mapping

(SLM) [6], an input frequency domain data block is multiplied by several predetermined

sequences to generate the alternative sequences, and the one with the lowest time do-

main PAPR is selected for transmission. In partial transmit sequences (PTS) [7], the

input data block is partitioned into a number of disjoint subblocks, which are phase

rotated by a set of phasors to produce a set of candidate sequences. The one with the

lowest PAPR is chosen for transmission. Obviously, both SLM and PTS schemes need

to perform multiple inverse fast Fourier transforms (IFFTs) and the associated com-

putational complexity is often the main design concern that prevents their usages in a

practical system.

In this thesis, we propose two new PAPR reduction approaches based on SLM and

PTS schemes. In the first scheme, decimation-in-time radix-r IFFT algorithm is ex-

ploited to transform an NL-point IDFT into two consecutive r × (NL/r)-point IDFT

stages, with r being a adjusting parameter to produce different SLM and PTS alterna-

tives. Unlike the conventional SLM and PTS schemes, phase sequences are applied to

time-domain sequences and frequency-domain sequences respectively, phase sequences

are multiplied to intermediate sequences between stage one and stage two. As a result,

the calculation results of stage one are the same for all candidate sequences and just

have to be calculated once for a given OFDM symbol. In addition, a stop criterion is

also proposed to drop unnecessary calculations so that lower computational complexity

is achieved and the same PAPR reduction performance as the conventional SLM or PTS

schemes is provided.
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It has been introduced in [12], the operations of IDFT can be replaced by conversion

vectors. By performing circular convolution of IDFT of input data block and conversion

vector with different number of right cyclic shift, a number of candidate sequences are

generated. These conversion vectors are modified into our proposed scheme so that only

r × (NL/r)-point IDFTs are needed, and certain computational complexity is relieved

due to the reason mentioned in preceding paragraph.

The second proposed scheme generalizes the two-stage decomposition to a multiple-

stage DIT radix-r IFFT implementation in which the values of r of stage one and

the remaining stages can be different. For this multiple-stage SLM or PTS approach,

phase sequences are multiplied to intermediate sequences within IFFT operations at

more than one stage. Since the phase sequence generations are different from that of

[16, 17], better PAPR reduction performance is achieved with the same computational

complexity. Compares with the conventional SLM and PTS schemes, it achieves a lower

computational complexity at the cost of slightly PAPR performance degradation. In

other words, with the same complexity, our scheme provides better PAPR reduction

performance than that of conventional schemes.

The rest of the thesis is organized as follow. The ensuing chapter provides a general

description of OFDM systems and the associated PAPR problem. Detail description of

the conventional SLM and PTS schemes is given in Chapter 2. In Chapter 3 we present

our first DIT radix-r IFFT based scheme and a stop criterion for early termination. We

also present schemes that combine our algorithm and the conversion vector approach of

[12] in this chapter. In Chapter 4, we introduce a scheme which utilizes multiple-stage

DIT radix-r IFFT to further lower the computational complexity. Analysis of compu-

tational complexity and simulated PAPR curves of various approaches are provided in

the related chapters. Finally, concluding remarks and suggestions for future studies are

provided in Chapter 5.
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Chapter 2

System Model and DFT/IDFT
Architectures

2.1 Orthogonal Frequency Division Multiplexing

Nowadays high data rate is desired in many applications. However, as the symbol

duration decreases with increasing data rate, single carrier systems suffer from severer

intersymbol interference (ISI) caused by the dispersive fading of wireless channels or

equivalently, frequency selective fading channels. Therefore, a technique called orthog-

onal frequency division multiplexing (OFDM) is introduced to cope with this problem.

The basic idea of OFDM is to divide the entire frequency selective fading channel into

many narrowband flat fading subchannels. In other words, a high-rate data stream is

split into several lower rate streams that are transmitted simultaneously over a number

of subchannels, which can also be called subcarriers. Due to the increase of symbol

duration for the lower rate streams, the relative amount of dispersion caused by the

multi-path nature decreases. Furthermore, ISI can almost be completely eliminated

with the aid of the cyclic prefix (CP) in which the OFDM symbol is cyclically extended

to avoid intercarrier interference (ICI). The function of a CP is detailed later.

The block diagram of an OFDM system is provided in Fig. 2.1. The information bit

stream is first encoded by a channel coding scheme (e.g. BCH code, convolutional code)

4



Figure 2.1: Block diagram of an OFDM system.

and then passed through an interleaver to increase the resistance to inferior frequency-

selective channel conditions such as a deep fade. Serial-to-parallel (S/P) is used to

generate the inputs of inverse discrete Fourier transform (IDFT) from the outputs of the

modulator.

An OFDM symbol can be expressed as the sum of many independent signals modu-

lated onto subcarriers. Let {Xk|k = 0, 1, · · · , N − 1} denote a block of N complex data

symbols modulated by phase shift keying (PSK) or quadrature amplitude modulation

(QAM). The complex baseband representation of an OFDM symbol is given as

x(t) =
1

N

N−1∑

k=0

Xk exp (j2πk∆ft) , 0 ≤ t ≤ T, (2.1)

where T is the OFDM symbol duration and ∆f = 1/T is the adjacent subcarrier sepa-

ration. The discrete-time equivalent is the IDFT of {Xk} given by the following, with

time index t being replaced by sample number n,

xn =
1

N

N−1∑

k=0

Xk exp

(
j2πnk

N

)
, n = 0, 1, · · · , N − 1, (2.2)

where {xn|n = 0, 1, · · · , N − 1} is the time-domain sequence. In practice, the IDFT can

be implemented efficiently by the inverse fast Fourier transform (IFFT) whose complex-

ity can be reduced to O(N log2(N)) with the radix-2 algorithm.

5



In multipath channel, delayed replicas of the previous OFDM symbol lead to ISI

between successive OFDM symbols. To eliminate the effects of ISI caused by the channel

delay spread, a CP or guard interval is inserted between blocks of N IFFT coefficients,

where the length of the CP is at least equal to that of the delay spread, such that

multipath components from one symbol cannot interfere with the next symbol. The CP

is simply a copy of the tail part of an OFDM symbol and can be attached to the front of

the OFDM symbol. In this way, delayed replicas of the OFDM symbol always have an

integer number of cycles within the FFT interval, as long as the delay spread is smaller

than the length of CP or guard time. After appending the CP, the digital-to-analog

converter (D/A) is involved to transform a discrete-time signal to an analog signal that

passes to the radio frequency (RF) block. The RF block consists of up-converter, high

power amplifier, and antenna. While the above-mentioned is the structure of an OFDM

transmitter, the receiver is in a reverse operation with blocks having the inverse functions

of those of the transmitter in the reverse order as depicted in Fig. 2.1.

2.2 Peak-to-Average Power Ratio

Since an OFDM symbol comprises a sum of modulated subcarriers, it is likely N

sinusoids are added up coherently such that a large peak-to-average power ratio (PAPR)

exists. When N signals are added with the same phase, N times peak power compare

to average power is produced.

A large peak-to-average power ratio results in some disadvantages such as a reduced

power efficiency of the power amplifier (PA). A large peak forces signal fall into the

saturation region of the PA and causes nonlinear distortion. In such case, back-off is

necessary for the power amplifier and its operating point is moved toward the origin to

avoid signal from clipping. Hence, its power efficiency decreases proportionally with the

back-off range. Even worse, nonlinear distortion may cause the degradation of bit-error

rate (BER) performance. Therefore, a number of PAPR reduction schemes are proposed

6



to solve these problems.

While the discrete time PAPR of the transmit signal is defined as

PAPR =
max

0≤n<N−1
|xn|2

E [|xn|2] , (2.3)

an L-oversampling is needed to ensure a negligible approximation error if the discrete

PAPR analysis is to be used to approximate analog waveforms. The L-oversampling

can be implemented by taking an NL-point IFFT on data block X concatenated with

(L− 1)N zeros, that is, X = [X0, X1, · · · , XN−1, 0, · · · , 0]T . Therefore, the PAPR of the

transmit signal can be rewritten as

PAPR =
max

0≤n<NL−1
|xn|2

E [|xn|2] . (2.4)

It is shown in [8, 9] that L = 4 can provide sufficiently accurate PAPR result. After

knowing the drawbacks and the definition of PAPR, the measurement of it shall be

introduced.

The complementary cumulative distribution function (CCDF) of the PAPR denotes

the probability that the PAPR of a data block exceeds a given value is commonly used

to measure the performance of PAPR reduction techniques. In [10], an approximate

expression is derived for the CCDF of the PAPR for an OFDM symbol. From the

central limit theorem we know that for a large value of N , the number of subcarriers

for the OFDM system, each time-domain signal sample xn is a circularly symmetric

complex Gaussian random variable with a mean of zero and a variance of 1. As a result,

the amplitude of an OFDM symbol is Rayleigh distributed while the power distribution

becomes a central chi-square distribution of two degrees of freedom with a cumulative

distribution function (CDF) given by

F (z) = 1− exp(−z). (2.5)
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CCDF of the PAPR per OFDM symbol, and this expression is given by

P (PAPR > z) = 1− P (PAPR ≤ z)

= 1− F (z)N

= 1− (1− exp(−z))N (2.6)

Equation shown above is obtained by assuming time-domain samples, xn, are mutually

independent. Theoretical curves and simulated curves are plotted in Fig. 2.2. We can

notice that for the case of small N , (2.6) cannot approximate the true behavior well since

the Gaussian assumption does not hold. Besides, this expression is not accurate anymore

when oversampling is applied. Hence, in the following chapters, simulated curves are

used to compare the performance of various PAPR reduction techniques, where the

closer the CCDF curve is to the vertical axis, the better its PAPR characteristic.

2.3 Conventional Schemes for PAPR Reduction

To reduce PAPR of OFDM systems, it is possible to eliminate high peak values due

to the constructive interference of time-domain signals with an identical phase by phase

rotation. There are two methods, based on the rotation of phases of the subcarriers of

a given OFDM symbol, that are commonly used; specifically , the selective mapping

(SLM) and partial transmit sequences (PTS) schemes.

2.3.1 Selective Mapping

In the SLM technique, the input data block X = [X0, X1, · · · , XN−1]
T is multiplied

element-wise by U phase sequences B(u) = [b
(u)
0 , b

(u)
1 , · · · , b

(u)
N−1]

T , u = 1, 2, · · · , U , to

generate a set of alternative sequences which contain the same information as the original

input data block where the first phase sequence B(1) is usually set to be an all-one

sequence. Thus, the uth alternative sequence is X(u) = [X0b
(u)
0 , X1b

(u)
1 , · · · , XN−1b

(u)
N−1]

T .

Each of these alternative sequences is operated by IDFT operation and becomes one of

8
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Figure 2.2: Theoretical and simulated CCDF curves of the PAPR with N = 16 and
N = 1024.

the candidates

x(u)
n =

1

N

N−1∑

k=0

Xkb
(k)
k W−kn

N , (2.7)

where n = 0, 1, . . . , N − 1 and u = 1, 2, . . . , U , to choose from.

Among all the candidate sequences X(u), only the one with the lowest PAPR is

selected for transmission while the index u corresponding selected phase factor B(u) also

should be transmitted to the receiver as side information. For the implementation, the

conventional SLM scheme needs U IDFT operations, and the number of required bits as

side information is dlog2 Ue for an input data block. This method is applicable to any

type of modulation and any number of subcarriers. A block diagram of the SLM scheme

is depicted in Fig. 2.3.
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Figure 2.3: Block diagram of the SLM scheme.

2.3.2 Partial Transmit Sequence

In an OFDM system employing PTS technique to reduce PAPR, an input data

block is partitioned into M disjoint subblocks Xm = [Xm,0, Xm,1, . . . , Xm,N−1]
T , m =

1, 2, · · · ,M , where only specific subcarriers in the mth subblock Xm are nonzero and

the rest zero, i.e.,
M∑

m=1

Xm = X. (2.8)

Then, the subblocks Xm are trandformed into M time-domain partial transmit se-

quences, by NL-point IDFT operations, which are given as

xm = [xm,0, xm,1, · · · , xm,NL−1] = IDFT{Xm}. (2.9)

To reduce PAPR, these partial sequences are rotated by phase factors b = {bm =

ejθm|m = 0, 1, · · · ,M − 1} independently. The PTS scheme is different from the SLM

scheme in that phase factors are multiplied by the time-domain signal and it can be

demonstrated by the linearity property of the IDFT operation:

x′(b) =
M∑

m=1

bm · IDFT{Xm}

=
M∑

m=1

bm · xm. (2.10)
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In order to determine the optimum phase vector b′ which generates the candidate

sequence with the lowest PAPR, the following is employed:

b′ = arg min
b

{
max

0≤n<NL−1
|x′n|

}
. (2.11)

If W phase angles are allowed, e.g.,

θm ∈
{

2πi

W
| i = 0, 1, . . . , W − 1

}
, (2.12)

the number of all possible phase vectors is WM . The block diagram of the PTS scheme

is shown in Fig. 2.4. As we can see, in general, the conventional PTS scheme needs M

IDFT operations for each input data block, and the number of required side information

bits is dlog2 WMe.

Figure 2.4: Block diagram of the PTS scheme.

Based on these two schemes, several new PAPR reduction schemes that are more

efficient are proposed in the coming chapters.

2.4 Radix-r Algorithm

The IFFT algorithms are based on a divide-and-conquer approach which decomposes

the computation of the IDFT of a N -length sequence into successively smaller IDFTs.
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The fashion in which this principle is implemented results in a variety of different algo-

rithms but all with comparable efficiency in computational speed. These algorithms are

most efficient when the number of data points N is highly composite and can be written

as N = r1r2 · · · rm, where r1, · · · , rm are all integers. Specifically, when N equals to rm,

where r is called the radix of the IFFT algorithm, a regular structure can be seen in the

IFFT algorithm.

The divide-and-conquer approach can be achieved by either decimation-in-time (DIT)

or decimation-in-frequency (DIF). To illustrate these two concepts clearly, N = 2m (i.e.

radix-2 algorithm)is considered in the following for the sake of simplicity.

2.4.1 Decimation-in-Frequency Algorithm

We first consider the DIF IFFT algorithm. It is mainly based on the decomposi-

tion of the computation into successively smaller IDFT operations and thus results in

substantial efficiency boost. The decomposition is done by breaking sequence Xk down

into successively smaller sequences. For N = 2m, an even integer, we can compute xn

by dividing the sequence Xk into two (N/2)-point sequences where one consists of the

even-numbered points and the odd-numbered points of Xk. With xn given by

xn =
1

N

N−1∑

k=0

XkW
−nk
N , n = 0, 1, · · · , N − 1, (2.13)

where WN = e−j2π/N and dividing Xk into its even-numbered and odd-numbered halves,

(2.13) becomes

xn =
1

N

( ∑

k even

XkW
−nk
N +

∑

k odd

XkW
−nk
N

)

=
1

N




(N/2)−1∑
s=0

X2sW
−2sn
N +

(N/2)−1∑
s=0

X2s+1W
−(2s+1)n
N




=
1

N




(N/2)−1∑
s=0

X2s(W
2
N)−sn + W−n

N

(N/2)−1∑
s=0

X2s+1(W
2
N)−sn


 (2.14)
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where the second equality is due to the substitution of variables k = 2s for k even and

k = 2s + 1 for k odd.

It can be noted that each of the sums in (2.14) denotes an (N/2)-point IDFT with

the first being the IDFT of the even-numbered points and the second that of the odd-

numbered points of the original input data sequence. After the two IDFTs are computed,

they are combined linearly according to (2.14) to generate the N -point IDFT xn. These

procedures can be illustrated by Fig. 2.5, where N = 8 is taken as an example, and

can be repeated recursively until reaching 2-point IDFTs. A 2-point IDFT consists

only of additions and subtractions of two points. and requires m = log2 N stages of

computations. Figure 2.6 depicts the complete DIF decomposition of an 8-point IDFT

computation with m = 3 stages. We note that each stage has N complex multiplica-

Figure 2.5: Flow graph of the DIF decomposition of an 8-point IDFT computation into
two 4-point IDFTs together with the proper linear combination.

tions and N complex additions. Since there are log2 N stages, we have in total N log2 N

complex multiplications and N log2 N complex additions. Compared to the direct com-

putation of IDFT (2.13), which requires N2 complex multiplications and N(N − 1)

complex additions, substantial calculations are saved.
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Figure 2.6: Flow graph of the complete DIF decomposition of an 8-point IDFT compu-
tation.

The amount of computation can be further reduced by exploiting the symmetry and

periodicity of the complex coefficient W−n
N . We note that the basic computation to

obtain a pair of values in one stage from a pair of values in the preceding stage can be

visualized by Fig. 2.7. From (2.14) and Fig. 2.6, it can be observed that the coefficients

that linearly combine Xk’s are always powers of WN and exponents are separated by

N/2. Due to the symmetry property of WN , Fig. 2.7 can be transformed into Fig. 2.8.

Figure 2.7: Flow graph of the basic butterfly computation for Fig. 2.6.

Accordingly, the computation of Fig. 2.7 can be simplified to Fig. 2.8, i.e. the

required complex multiplication number is reduced from two to only one. Hence, by using

the simplified form of the butterfly operation in Fig. 2.8, the total number of complex

multiplications is (N/2) log2 N and that of complex additions remains unchanged as

N log2 N . The simlified version of Fig. 2.6 is given in Fig. 2.9.
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Figure 2.8: Flow graph of the simplified butterfly computation for Fig. 2.7.

Figure 2.9: Flow graph of the 8-point IDFT using the butterfly computation of Fig. 2.8.

As for general cases other than r = 2, DIF IFFT can be implemented by dividing

the frequency domain components into r subsets

{Xrs}NL/r−1
s=0 ;

{Xrs+1}NL/r−1
s=0 ;

...

{Xrs+(r−1)}NL/r−1
s=0 ,

and (2.14) can be generalized to

xn =
1

N




(N/r)−1∑
s=0

Xrs(W
r
N)−sn + W−n

N

(N/r)−1∑
s=0

Xrs+1(W
r
N)−sn + · · ·

+W
−(r−1)n
N

(N/r)−1∑
s=0

Xrs+(r−1)(W
r
N)−sn


 . (2.15)
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The flow graph of (2.15) is demonstrated in Fig. 2.10, and those r× (N/r)-point IDFT

can also be decomposed recursively in a similar manner as mentioned above into logr N

stages.

Figure 2.10: Flow graph of the DIF decomposition of an N -point IDFT computation
into r × (N/r)-point IDFTs.

2.4.2 Decimation-in-Time Algorithm

On the other hand, the DIT algorithm is organized in exactly the opposite manner of

that of the DIF algorithm. In other words, while the latter computes IDFT by forming

smaller subsequences of the input sequence Xk with some specific order, the IDFT

computation based on DIT divides the output sequence xn into successively smaller

subsequences and is introduced subsequently.

Similarly, without loss of generality, we consider the case when r = 2 for the con-

venience of the explanation of the DIT algorithm. To construct DIT algorithms, let

us consider computing separately the even-numbered time-domain samples and those

odd-numbered. Again, starting form (2.13), we obtain the even-numbered time-domain
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samples as

x2s =
1

N

N−1∑

k=0

XkW
−k(2s)
N , s = 0, 1, · · · , N/2− 1, (2.16)

which obviously can be expressed as

x2s =
1

N




(N/2)−1∑

k=0

XkW
−k(2s)
N +

N−1∑

k=N/2

XkW
−k(2s)
N


 . (2.17)

=
1

N




(N/2)−1∑

k=0

XkW
−k(2s)
N +

(N/2)−1∑

k=0

Xk+N/2W
−(k+N/2)2s
N


 . (2.18)

Similarly, the odd-numbered time-domain samples are given by

x2s+1 =
1

N

N−1∑

k=0

XkW
−k(2s+1)
N , s = 0, 1, · · · , N/2− 1, (2.19)

and can be rearrange to

x2s+1 =
1

N




(N/2)−1∑

k=0

XkW
−k(2s+1)
N +

N−1∑

k=N/2

XkW
−k(2s+1)
N




=
1

N




(N/2)−1∑

k=0

XkW
−k(2s+1)
N +

(N/2)−1∑

k=0

Xk+N/2W
−(k+N/2)(2s+1)
N


 . (2.20)

Because of the periodicity of W−2sk
N and W2

N = WN/2, W
−(N/2)2s
N = 1, and W

−N/2
N = −1,

W
−2s(k+N/2)
N = W−2sk

N W−sN
N = W−2sk

N , (2.21)

and (2.18) and (2.20) can be rewritten as

x2s =
1

N

(N/2)−1∑

k=0

(
Xk + Xk+N/2

)
W−sk

N/2 (2.22)

x2s+1 =
1

N

(N/2)−1∑

k=0

(
Xk −Xk+N/2

)
W−k

N W−ks
N/2, (2.23)

where s = 0, 1, · · · , N/2 − 1. It can be noticed that both (2.22) and (2.23) are the

(N/2)-point IDFT of two (N/2)-length sequences, which are respectively obtained by

adding the first and the last half of the input sequence element-by-element for the former

and subtracting the last half from the first half followed by the multiplication of W−k
N
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for the latter. Thus, the IDFT can be computed by forming two sequences based on the

brackets in the summations of (2.22) and (2.23), then computing the (N/2)-point IDFTs

of these two sequences to obtain the even-numbered and the odd-numbered time-domain

samples. The procedure discussed in above is illustrated in Fig. 2.11 for the case of an

8-point IDFT.

Figure 2.11: Flow graph of the DIT decomposition of an 8-point IDFT computation into
two 4-point IDFTs.

Analogous to what have beeb seen in the DIF decomposition, the process of (2.22)

and (2.23) can be done recursively for the smaller size of IDFTs (i.e. (N/2)-point IDFTs).

This is realized by combining the first and the last half of the input points, which are

of length N/4 for each (N/2)-point IDFTs led in (2.22) and (2.23) and then computing

(N/4)-point IDFTs. This process can be done until reaching 2-point IDFT. The number

of arithmetic operations involved (N/2) log2 N complex multiplications and N log2 N

complex additions, thus making its computational complexity identical to that of the

DIF one. For the 8-point example, the corresponding flow graph of the complete DIT

decomposition is shown in Fig. 2.12.
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Figure 2.12: Flow graph of the complete DIT decomposition of an 8-point IDFT com-
putation.

For general r’s, we may consider the time-domain sequence xn in r batches as

{xrn}N/r−1
n=0 ;

{xrn+1}N/r−1
n=0 ;

...

{xrn+(r−1)}N/r−1
n=0 ,

and the IDFT expression can be rewritten as

xrn+n0 =

N
r
−1∑

k=0

(
r−1∑
q=0

Xk+ qN
r

W
−( qN

r )n0

N

)
W

−k(rn+n0)
N (2.24)

where n = 0, 1, . . . , N/r−1 and n0 = 0, 1, . . . , r−1 is the index of the butterfly outputs.

The flow graph is summarized in Fig. 2.13.

To conclude this section, we examine the tendency of the two decomposition methods

as the computation moves from a former stage to a latter one. Specifically, the DIT IFFT

algorithm successively decomposes larger IDFTs into smaller IDFTs while the DIF-based

one performs the opposite, i.e., it combines smaller IDFTs into larger IDFTs. Therefore,

the DIF IFFT algorithm needs to perform all the IDFTs in each stage before deriving a

single time-domain sample whereas it is not the case for the DIT-based one. Only one
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Figure 2.13: Flow graph of the DIT of an N -point IDFT computation into r (N/r)-point
IDFT computations.

of the IDFTs in each stage is required to obtain a single output. This nice property of

the DIT-based IFFT enables an early discard of unsuitable candidates before obtaining

its whole output samples.
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Chapter 3

IDFT architecture aware PAPR
reduction schemes I

3.1 Proposed Algorithm

In the proposed algorithm, we take the radix-r DIT IFFT algorithm introduced

in the previous subsection as the basic structure to develop a novel scheme that can

reduce the computational complexity for PAPR reduction. Although N -point IDFT

can be decomposed into log2 N stages until reaching 2-point IDFT, here we exploit

two stages only and visualize the structure in Fig. 2.13. The most important step of

our construction is the selection of the value of r for radix-r at the first stage, because

different such values of can result in different corresponding schemes for PAPR reduction

such as the SLM and PTS methods. Hence, we will introduce two categories of values of r

which respectively lead to the corresponding SLM and PTS schemes with L-oversampling

employed. By taking some properties of the L-oversampling into account, we suggest

some efficient algorithms. The way how our proposal reduces the complexity will also

be mentioned in the subsequent discussions.
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3.1.1 Corresponding SLM Scheme

In the rest of this thesis, the operation of L-oversampling interpreted as the IDFT of

an data block X padded with (L−1)N zeros, and the length of the IDFT input sequence

becomes NL. Also note that as discussed previously, the oversampling of L = 4 folds is

sufficient to provide accurate PAPR approximations in general and thus will be adopted

throughout this work. Most importantly, efficient algorithms will be developed under

this adoption.

As mentioned above, different values of r at the first stage result in distinct cor-

responding schemes for PAPR reduction. Specifically, if r = L (L = 4) is chosen,

the proposed algorithm can equivalently correspond to the SLM scheme, which rotates

phases subcarrier-wise to lower the PAPR value of an input data block. As will be in-

troduced later, when the radix-4 DIT-based IFFT is taken as the basic building block of

our proposed algorithm, the corresponding SLM scheme can be obtained. Accordingly,

an NL-point time-domain samples are partitioned into four subsets where each subset

is the output samples of an (NL/4)-point IDFT. The mathematical expression of the

output samples of the first (NL/4)-point IDFT is given as

x4s =
1

NL

NL−1∑

k=0

XkW
−(4s)k
NL , s = 0, 1, · · · , NL/4− 1, (3.1)

and can be expressed as

x4s =
1

NL




NL
4
−1∑

k=0

XkW
−k(4s)
NL +

NL
2
−1∑

k=NL
4

XkW
−k(4s)
NL +

3NL
4
−1∑

k=NL
2

XkW
−k(4s)
NL +

N−1∑

k= 3NL
4

XkW
−k(4s)
NL


 (3.2)
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With substitutions of variables in the last three summation in (3.2), we obtain

x4s =
1

NL




NL
4
−1∑

k=0

XkW
−k(4s)
NL +

NL
4
−1∑

k=0

Xk+NL
4

W
−(k+NL

4
)(4s)

NL

NL
4
−1∑

k=0

Xk+NL
2

W
−(k+NL

2
)(4s)

NL +

NL
4
−1∑

k=0

Xk+ 3NL
4

W
−(k+ 3NL

4
)(4s)

NL




=
1

NL

NL
4
−1∑

k=0

(
Xk + Xk+NL

4
+ Xk+NL

2
+ Xk+ 3NL

4

)
W

−k(4s)
NL . (3.3)

From (3.3), it can be noticed that the input samples of (NL/4)-point IDFT is linear

combination among four components of L-oversampled input data sequence and there

is an interval of NL/4 between adjacent components. Similarly, output samples of the

rest three (NL/4)-point IDFTs are given as

x4s+1 =
1

NL

NL
4
−1∑

k=0

(
Xk + jXk+NL

4
−Xk+NL

2
− jXk+ 3NL

4

)
W−k

NLW
−k(4s)
NL ; (3.4)

x4s+2 =
1

NL

NL
4
−1∑

k=0

(
Xk −Xk+NL

4
+ Xk+NL

2
−Xk+ 3NL

4

)
W−2k

NL W
−k(4s)
NL ; (3.5)

x4s+3 =
1

NL

NL
4
−1∑

k=0

(
Xk − jXk+NL

4
−Xk+NL

2
+ jXk+ 3NL

4

)
W−3k

NL W
−k(4s)
NL (3.6)

where, similar to (3.3), each input samples of them can be obtained by a linear com-

bination among four interleaved components of the length-NL zero-padded input data

sequence. The flow graph of (3.3) – (3.6) are illustrated in Fig. 3.1. The different part

of these four subsets is the weighting for each components in summations and for each

(NL/4)-point IDFT, the weighting W−kn0
NL multiplied on the input sample is required,

where n0 = 0, 1, 2, 3 denotes the index of (NL/4)-point IDFT.

Due to the fact that 3N zeros are padded at the end of the original sequence to

achieve 4-oversampling, only the first element (Xk) in the brackets of (3.3) – (3.6) is

nonzero while the rest three elements (Xk+NL
4

, Xk+NL
2

, and Xk+ 3NL
4

) zero. Hence, for

these four (NL/4)-point IDFTs, the length-NL
4

input frequency-domain samples are the

23



Figure 3.1: Flow graph of radix-4 DIT decomposition of an NL-point IDFT computation
into four (NL/4)-point IDFTs.
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same as the original input data block X = [X0, X1, · · · , XN−1]
T of length N when the

weighting W−kn0
NL is not considered. After the process of four (NL/4)-point IDFTs, the

length-NL time-domain samples can be obtained.

Now, the question is, how do we map this case in which radix-4 is considered at the

first stage into the corresponding SLM scheme? The key is the position where the phase

sequences are multiplied with the input data block X. In the proposed algorithm, phase

rotation occurs at the input sequences of the four (NL/4)-point IDFTs. In other words,

phase sequences which generate candidate sequences are multiplied by the original input

sequence of the four (NL/4)-point IDFTs (3.3) – (3.6) or, equivalently, multiplied with

the data block X and then with different W−kn0
NL for different (NL/4)-point IDFTs.

Therefore, the frequency-domain representation of the u-th candidate sequence can be

expressed as

X(u) = XB(u) def
= [X0b

(u)
0 , X1b

(u)
1 , · · · , XN−1b

(u)
N−1]

T (3.7)

where u = 1, 2, · · · , U , U is the number of phase sequences, and B(u) = [b
(u)
0 , b

(u)
1 , · · · , b

(u)
N−1]

T

is the uth phase sequence. Additionally, there are different weightings W−kn0
NL , n0 ∈

{0, 1, 2, 3} have to be multiplied prior or after X is multiplied by B(u) for different

(NL/4)-point IDFTs.

It can be noted from (3.7) that the subcarrier-wise multiplication of the phase factors

and the input data block X makes our proposal identical to and be regarded as the

conventional SLM scheme where r = L (L = 4). Furthermore, since phase sequences can

be multiplied after the data X is scaled by weightings W−kn0
NL , we are able to improve the

conventional SLM scheme by the following: treating the calculation of the original inputs

of the four (NL/4)-point IDFTs (3.3) – (3.6) as the first stage, and the multiplication of

these input with B(u) the second. The computation result at the first stage of a specific

OFDM symbol can be calculated only once and stored and reused for U phase sequences

at the second stage. Consequently, as opposed to the conventional SLM method, the

proposed possesses lower computational complexity while preserves the same PAPR
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reduction performance with the same number of subcarriers and phase sequences.

As a final remark, we should mention that as long as NL/4 equals to a power of

some r′, we can implement (NL/4)-point IDFTs efficiently by the radix-r′ IFFT where

r′ = 2 is most commonly used and will be adopted in our simulations.

3.1.2 Corresponding PTS Scheme

In this subsection, we propose an algorithm that corresponds to a complexity-

reduced PTS implementation. Similarly, the required operations to derive the L-oversampled

IDFT of input data block X is performed here. Again, as mentioned, the oversampling

of 4-fold (i.e. 4-oversampling) is sufficient to accurately approximate the PAPR value of

the time-domain signal that carries data X.

It has been mentioned in the beginning of this section that different values of r for

radix-r at the first stage result in diverse corresponding schemes for PAPR reduction.

In the following discussion, r > L (L = 4) is chosen to map this proposed algorithm

to the corresponding PTS scheme, where r is a multiple of 4. For the conventional

PTS scheme, the input data block is partitioned into M subblocks and phase rotation

is operated block-wise, i.e., subcarriers belong to the same subblock are multiplied by

the same phase factor to reduce the value of PAPR of the input data block X.

We first claim that the radix-r DIT IFFT algorithm with r > L and r being any

multiple of 4 is the basic structure to correspond to a PTS scheme, without loss of

generality, we may take r = 8 as an example to illustrate our proposal. According to the

discussion in Section 2.4.2, NL-point time-domain samples are divided into eight subsets

where each of them forms output samples of an (NL/8)-point IDFT. The mathematical

expression of the radix-8 DIT IFFT algorithm is given by

x8s =
1

NL

NL−1∑

k=0

XkW
−k(8s)
NL , s = 0, 1, · · · , NL/8− 1, (3.8)
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which is the expression of the first (NL/8)-point IDFT output and can be rewritten as

x8s =
1

NL

NL
8
−1∑

k=0

(
XkW

−k(8s)
NL + Xk+NL

8
W

−(k+NL
8

)(8s)

NL + Xk+NL
4

W
−(k+NL

4
)(8s)

NL +

Xk+ 3NL
8

W
−(k+ 3NL

8
)(8s)

NL + Xk+NL
2

W
−(k+NL

2
)(8s)

NL + Xk+ 5NL
8

W
−(k+ 5NL

8
)(8s)

NL +

Xk+ 3NL
4

W
−(k+ 3NL

4
)(8s)

NL + Xk+ 7NL
8

W
−(k+ 7NL

8
)(8s)

NL

)

=
1

NL

NL
8
−1∑

k=0

(
Xk + Xk+NL

8
+ Xk+NL

4
+ Xk+ 3NL

8
+ Xk+NL

2
+ Xk+ 5NL

8

+Xk+ 3NL
4

+ Xk+ 7NL
8

)
W−ks

NL
8

(3.9)

and, the rest (NL/8)-point IDFT output with n0 ∈ {1, 2, · · · , 7} are given collectively

as

x8s+n0 =
1

NL

NL
8
−1∑

k=0

((
7∑

q=0

Xk+ qNL
8

W−qn0

8

)
W−kn0

NL

)
W−ks

NL
8

, (3.10)

where q = 0, 1, · · · , 7 and s = 0, 1, · · · , NL/8− 1. The flow graph of this radix-8-based

algorithm is depicted in Fig. 3.2 with twiddle factors W−qn0

8 being neglected.

It can be observed from (3.9) and (3.10) that for a specific (NL/8)-point IDFT, each

input sample is a linear combination among eight (NL/8)-equispaced components of

the zero-padded input data sequence. Again, due to the padded zeros at the end of the

original data, only the first two elements in the linear combinations of (3.9) and (3.10)

are nonzero and the rest six zero. Hence, for each of these eight (NL/8)-point IDFTs, the

actual input sequence is {Xk +W−n0
8 Xk+NL

8
|k = 0, 1, · · · , NL/8−1}, n0 ∈ {0, 1, · · · , 7},

which is of length N/2.

Similar to the case that corresponds to the SLM scheme, phase sequences which help

generating candidate sequences are multiplied with the original input sequences that

feed into these (NL/8)-point IDFTs. As will be detailed later, a same phase sequence

have to be multiplied by the original input sequences element-wise for all (NL/8)-point

IDFTs to generate a specific candidate sequence and to correspond to a PTS scheme.

To begin with, we note that (3.10) can be alternatively rewritten as the following for

27



Figure 3.2: Flow graph of the radix-8 DIT of an NL-point IDFT computation into eight
(NL/8)-point IDFTs.

28



n0 = 0, 1, · · · , 7:

x8s+n0 =

NL
8
−1∑

k=0

(
1

NL

7∑
q=0

Xk+ qNL
8

W
−(k+ qNL

8
)(8s+n0)

NL

)
(3.11)

the sum of the NL-point IDFTs of M = NL/8 subblocks

Xk = [0, · · · , 0︸ ︷︷ ︸, Xk, 0, · · · , 0︸ ︷︷ ︸, Xk+NL
8

, 0, · · · , 0, Xk+ 7NL
8

, 0, · · · , 0︸ ︷︷ ︸]

k
NL

8
− 1

NL

8
− k (3.12)

where k = 0, 1, · · · ,M − 1. Recall that the PTS scheme with M subblocks employed

can be represented as (2.10). Therefore, it is possible to implement the corresponding

PTS scheme via our proposal. Specifically, the implementation is given as

x′8s+n0
(B(u)) =

M−1∑

k=0

b
(u)
k · IDFT{Xk}

=
1

NL

NL
8
−1∑

k=0

((
7∑

q=0

Xk+ qNL
8

W−qn0

8

)
W−kn0

NL

)
b
(u)
k W−ks

NL
8

(3.13)

where B(u) = [b
(u)
0 , b

(u)
1 , · · · , b

(u)
M−1]

T , s = 0, 1, · · · , NL/8 − 1, and n0 = 0, 1, · · · , 7. Ob-

viously, just like the corresponding SLM scheme, the calculation in the outer brackets

can be done beforehand and stored for the use by all phase sequences B(u), where

u = 1, 2, · · · , U and U is the number of candidate sequences. Since this calculation is

performed only once for a specific OFDM symbol, a great amount of computation is

saved with PAPR reduction performance maintained.

For the general case of r > L (L = 4) where r is a multiple of 4, the mathematical

expression of our radix-r decomposition is represented as

xrs+n0 =
1

NL

NL
r
−1∑

k=0

((
r−1∑
q=0

Xk+ qNL
r

W−qn0
r

)
W−kn0

NL

)
W−ks

NL
r

, (3.14)

where q = 0, 1, · · · , r− 1, s = 0, 1, · · · , NL/r− 1, n0 = 1, 2, · · · , r− 1. According to the

analysis of case of radix-8 above, it is known that there are r/L components that are
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nonzero and the rest zero in the inner summations because of the zero-padding. There-

fore, we have M = NL/r subblocks with each containing only r/L nonzero components.

Analogous to the previous case, the corresponding PTS scheme can be implemented.

Again, finally, (NL/r)-point IDFTs are efficiently implemented by the radix-r′ IFFT

for r′ if NL/r is a power of r′.

3.1.3 Proposed Stop Criterion

A stop criterion is proposal in this subsection to further reduce the computational

complexity by dropping unnecessary calculations. Before introducing this criterion, two

points have to be highlighted.

First, recall the definition of the PAPR of a signal

PAPR =
max

0≤n<NL−1
|xn|2

E [|xn|2] , (3.15)

where xn|n = 0, 1, · · · , NL − 1, are time-domain samples and L is the factor of over-

sampling. The set of allowed phase factors is written as P = {ej2πl/W |l=0,1,··· ,W−1 from

which elements of B(u) can choose, where W is the number of allowed phase factors

(angles). It can be noticed that all allowed phase factors locate on the unit circle, i.e.

their magnitudes are all 1. We can show that for all U candidate sequences x(u) which

are the IDFT of X(u) derived via element-wise multiplication (3.7) or (3.13), their ex-

pected power E
[
|x(u)

n |2
]

is a constant if elements of B(u) are drawn from the polyphase

set P . Therefore, we can focus only on the peak value of each candidate sequence (the

numerator of (3.15)) instead of calculating (3.15) wholely when choosing the one with

the lowest PAPR in our proposed algorithms.

Second, as discussed in the previous subsections, the basic structure in our proposed

algorithms is the radix-r DIT IFFT algorithm which owns a particular character that

can be utilized to reduce the amount of calculations. Besides, from Fig. 3.3, it can

be noted that the original NL-point IDFT is decomposed into r× (NL/r)-point IDFTs

with linear combinations at the first stage and the output sequence of each (NL/r)-point
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IDFT is a fraction of the length-NL oversampled time-domain samples. Therefore, the

fact that in our proposed algorithms, these r × (NL/r)-point IDFT can be computed

sequentially enables us to early terminate the procedure for determining a candidate’s

PAPR immediately if its intermediate peak value already exceeds the minimum one

calculated from the previous candidate sequences. In this way, needless calculations are

avoided and thus the computational complexity decreased. In the following discussion,

the detail of the proposed stop criterion is introduced.

Figure 3.3: Flow graph of the radix-r DIT decomposition of an NL-point IDFT com-
putation into r × (NL/r)-point IDFT computations.

Our proposed stop criterion is executed by comparing and terminating. To launch

this process, it is necessary to have a reference value for comparison. We take the

corresponding SLM scheme with radix-4 at the first stage as an example and give some

figures to illustrate the proposed stop criterion. Hence, in the beginning, the peak value

of the candidate sequence without phase rotation X(1) = X, i.e. the original sequence, is

taken as the reference value Pref to which Pi,j, denotes the peak value of the jth (NL/4)-
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point IDFT output of the ith candidate sequence for i = 2, 3, · · · , U and j = 1, 2, · · · , 4,

is compared to.

We start from the second candidate sequence (i = 2), NL/4 time-domain samples

are obtained after calculating the first (NL/4)-point IDFT. The peak value among

these samples are found out and called P2,1 as shown in the frame of Fig. 3.4. Then,

Figure 3.4: Illustration of the proposed stop criterion (I).

P2,1 is compared to the reference peak value Pref . If P2,1 ≥ Pref , it can be figured

out from (3.15) that the PAPR value of the second candidate sequence, generated by

the second phase sequence, must be larger than that of the time-domain samples of

the original input data block. It is obvious that the second candidate sequence cannot

achieve better performance of PAPR reduction, so the process to generate this candidate
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sequence is terminated and the rest operations are dropped. Otherwise, the PAPR of

this candidate sequence may be lower than that of the original input data, so the peak

value of the second (NL/4)-point IDFT output samples P2,2 is necessary to be computed

and compared with Pref as depicted in Fig. 3.5.

Figure 3.5: Illustration of the proposed stop criterion (II).

As the same account mentioned above, comparing P2,2 with Pref is required to decide

whether this candidate sequence can achieve better PAPR reduction performance or not.

If P2,2 ≥ Pref , we terminate the current process immediately, drop the rest processes to

generate this candidate sequence, and move on to the computation of the next candidate

sequence. Otherwise, it is requested to calculate the peak value of the third (NL/4)-

point IDFT output P2,3 and so on. Finally, if P2,4 is still smaller than Pref , it can be
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Table 3.1: The Proposed Algorithm

X(1) = [X0, X1, · · · , XN−1]

x = IDFT{X}
Pref = max(|x|2)

For u = 2 to U

compute Pu,1;

let s = 2;

while((Pu,j < Pref , j < s)&&(s ≤ r)) do

compute Pu,s;

s++;

end

if((s− 1 = r)&&(Pu,r < Pref))

update Pref = max(Pu,j|j = 1, . . . , r);

end

end

concluded that the PAPR of this candidate sequence is lower than that of the original

input data block and Pref is updated by the largest among P2,j, j = 1, 2, 3, 4, and PAPR

of the second candidate sequence is recorded.

In general, based on the proposed stop criterion, r (NL/r)-point IDFTs are executed

sequentially so that we can derive the peak value a part of the time-domain samples at

a time. Therefore, the process of generating candidate sequence can be terminated

once the peak value of a part of this candidate sequence already exceeds the reference

value Pref . The complete procedure is summarized in Table (3.1). As we can see

that unnecessary computations are neglected to lower the amount of computations.

Accordingly, the computational complexity is reduced by employing the proposed stop

criterion.
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3.2 Performance Analysis and Comparison

3.2.1 Analysis of Computational Complexity

Compared to the conventional SLM and PTS schemes, our proposed radix-r DIT

IFFT algorithm can reduce the computational complexity effectively on account of two

reasons. First, each phase sequence is multiplied with the input of the r× (NL/r)-point

IDFTs corresponding to the original data block X, so the computation result of the first

stage for a given OFDM symbol can be preserved and used for all U phase sequences. In

other words, the results of stage one for a specific OFDM symbol have to be calculated

only once so that the computational complexity decreases. Second, by checking our pro-

posed stop criterion sequentially, process of generating a particular candidate sequence

can be terminated immediately once we are certain that this candidate sequence fails to

reach a better PAPR reduction performance.

In order to compare the computational complexity of the proposed schemes and

conventional schemes, we define the computational complexity ratio as

R =
Complexity of proposed scheme

Complexity of conventional scheme
× 100%.

The comparison of computational complexity is shown in Table 3.2 and 3.3, and the

computational complexity ratio of various schemes is also given in Table 3.4 and 3.5.

Note that the worst case complexity is adopted here to measure the performance of the

proposal algorithms. As for the conventional PTS scheme, the number of subblocks (M)

is replaced by NL/r, which is equivalent to the number of subblocks for our proposed

PTS scheme, and r is the value of radix-r used at the first stage in our proposal.

3.2.2 Simulation Results

Simulations are performed to evaluate the PAPR reduction performance of the

proposed corresponding SLM and PTS schemes. Here, the input data are 16-QAM
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Table 3.2: Computational Complexity of Various Schemes (I)

Number of complex multiplications

Conventional SLM scheme U
(

NL
2
· log2 NL

)

Proposed SLM scheme NL
(
1 + U

2
· log2 N

)

Conventional PTS scheme (NL)2

2r
· log2 NL

Proposed PTS scheme NL
2

(
log2 r + U · log2

NL
r

)

Table 3.3: Computational Complexity of Various Schemes (II)

Number of complex additions

Conventional SLM scheme U (NL · log2 NL)

Proposed SLM scheme NL (1 + U · log2 N)

Conventional PTS scheme (NL)2

r
· log2 NL

Proposed PTS scheme NL
(
log2 r + U · log2

NL
r
− 1

)

modulated and the OFDM system contains N = 256 subcarriers. To estimate the

PAPR, the OFDM symbol is oversampled by a factor of L = 4.

Figure 3.6 compares the PAPR performance of the proposed SLM scheme with pro-

posed stop criterion and that of the conventional SLM scheme. It is seen that for a given

number of candidate sequences (U), the PAPR reduction performance of the proposed,

which is of lower computational complexity is identical to that of the conventional one.

The PAPR reduction performance of the proposed and the conventional PTS scheme

with number of candidate sequences set to be U = 8 is shown in Fig. 3.7. Again, noted

that the proposed PTS scheme can achieve the same performance as the conventional

one for a given number of subblocks (M) while having a lower complexity.

Table 3.4: Computational Complexity Ratio of the Proposed SLM Scheme with N = 256

Rmul (%) Radd (%)

U = 8 82.5 81.25

U = 32 80.63 80.31
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Table 3.5: Computational Complexity Ratio of the Proposed PTS Schemes with N = 256
and U = 8.

r = 32(M = 32) r = 128(M = 8) r = 256(M = 4)

Rmul (%) Radd (%) Rmul (%) Radd (%) Rmul (%) Radd (%)

U = 8 14.06 13.75 38.75 37.50 60 57.50

3.3 Proposed Algorithm with Conversion Vectors

In general, the SLM and PTS schemes can provide significant PAPR reduction per-

formance, but each of them may require a high computational load due to the need of

a bank of IDFTs. Therefore, we are interest in the methods which reduce the computa-

tional complexity of both SLM and PTS schemes.

3.3.1 Brief introduction for LWW Scheme

It has been introduced in [12] that the IDFT operations were substituted for conver-

sion vectors which are specified in the form of perfect sequences so that the corresponding

phase sequences all have the same magnitude to avoid the degradation of BER perfor-

mance. In [12], candidate sequences can generated by applying an NL-point circular

convolution of the time-domain with conversion vector which are composite of base vec-

tors. To reduce the computational complexity of the conversion process, the conversion

vectors whose length are all NL have to comply with some constrains. Accordingly, three

classes of conversion vectors were proposed in [12], and three novel low-complexity SLM

schemes we called LWW Schemes were implemented with these three classes conversion

vectors.

According to the discrete Fourier transform (DFT) properties, if a time-domain signal

xn is time-shifted by an amount of ∆ (resulting in a signal xn−∆), its frequency-domain

representation is simply multiplied by a phase shift term of −j2πk∆
N

. Besides, circular

convolution in time-domain becomes multiplication in frequency-domain. Therefore, a

candidate sequence can be generated by performing a circular convolution of the IDFT
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Figure 3.6: Comparison of PAPR performance of Proposed SLM Scheme and conven-
tional SLM Scheme.

of input data block with these three classes conversion vectors, and various numbers of

right cyclic shift of base vectors can obtained a number of candidate sequences. Figure

3.8 illustrates the architecture of LWW Scheme I where Ga1, Ga2, Gb1 and Gb2 are the

base vectors of conversion vectors Ga and Gb, respectively.

From Fig. 3.8, it can be noted that only one NL-point IDFT is required to generate

a number of candidate sequences by performing circular convolution and cyclic shifts,

the computational complexity can be reduced significantly for LWW Schemes at the cost

of PAPR reduction performance.
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Figure 3.7: Comparison of PAPR performance of Proposed PTS Scheme and conven-
tional PTS Scheme.

3.3.2 Modified LWW Scheme with Proposed Stop Criterion

To reduce the computational complexity of our proposal further, LWW Scheme is

considered with some modifications. First, the NL-point IDFT is replaced by our pro-

posed algorithm which has been introduced in previous section. The second modification

is about the length of base vectors which is length-NL in LWW Scheme. To adapt the

conversion vectors to our schemes, the length of base vectors have to be changed to NL/r.

Figure 3.9 shows the architecture of convolution structure in which Ha1, Ha2, Hb1 and

Hb2 denote the base vectors after length modification (i.e. length-(NL/r)). Therefore,

the complete structure of our proposed scheme with conversion vectors is presented in

Fig 3.10. Similarly, the computation of r× (NL/r)-point IDFTs are computed once for
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Figure 3.8: Architecture of L&W Scheme I.

a given OFDM symbol, and a number of candidate sequences are generated by applying

circular convolution of base vectors with the out samples of r × (NL/r)-point IDFTs.

Furthermore, since we can derive the length-(NL/r) output sequence which is a frac-

tion of certain length-NL candidate sequence sequentially, the proposed stop criterion

can also be considered in this modified scheme to lower the computational complexity.

3.3.3 Analysis of Computational Complexity

For all r× (NL/r)-point IDFTs, each of them only needs to be performed once for a

given OFDM symbol when length-modified LWW Scheme is combined to our proposed

algorithm. Therefore, our proposed schemes with length-modified conversion vectors

result in lower computational complexity compares with conventional SLM scheme, con-

ventional PTS scheme, and our proposed schemes in preceding section.

There are three LWW Schemes proposed in [12]. The scheme introduced in previous

subsection is LWW Scheme I. LW Scheme II is constructed by combining LWW Scheme

I and the conventional SLM scheme to enhance the PAPR reduction performance. Two
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Figure 3.9: Architecture of modified convolution structure for generating candidate se-
quences.

parallel IDFTs are required and a random phase sequence is adopted before the second

IDFT operation. This random phase sequence can increase the diversity of candidate

sequences, resulting in a better performance of PAPR reduction, but higher computa-

tional complexity due to one more IDFT operation. LWW Scheme III has the same

structure as LWW Scheme I while the third class conversion vectors proposed in [12] is

used.

It can be noticed that for LWW Scheme I and LWW Scheme III, the corresponding

schemes based on our proposed algorithm with length-modified conversion vectors can

achieve the same number of complex multiplications. The corresponding Scheme II in our

proposed algorithm requires less complexity than LWW Scheme II since the computation

of the first stage only needs to compute once and reuses for two sets of r × (NL/r)-

point IDFTs. Besides, our proposed corresponding schemes can achieve less number of
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Figure 3.10: Architecture of our proposed scheme with conversion vectors.

complex additions due to the use of L-oversampling.

Table 3.6 and 3.7 present the computational complexity of various SLM schemes,

including the conventional SLM scheme, LWW Schemes, and corresponding Schemes

based on our proposed algorithm. However, only SLM scheme can be implemented in

LWW Schemes so that Table 3.8 and 3.9, which are the comparison of various PTS

schemes, just compare the conventional PTS scheme and corresponding scheme based

on our proposed algorithm. It is worth noting that the worst case of our schemes

is considered here while the computational complexity can be reduced further if the

proposed stop criterion is considered.

In addition, computational complexity ratio for the conventional SLM and PTS

schemes and our corresponding schemes is given in table 3.10 and 3.11.
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Table 3.6: Computational complexity of various SLM schemes (I)

Number of complex multiplications

Conventional SLM Scheme U
(

NL
2
· log2 NL

)

LWW Scheme I NL
2
· log2 NL

LWW Scheme II NL · log2 NL

LWW Scheme III NL
2
· log2 NL

Proposed modified Scheme I for SLM NL
2
· log2 NL

Proposed modified Scheme II for SLM NL(1 + log2 N)

Proposed modified Scheme III for SLM NL
2
· log2 NL

Table 3.7: Computational complexity of various SLM schemes (II)

Number of complex additions

Conventional SLM Scheme U(NL · log2 NL)

LWW Scheme I NL(log2 NL + U + 7)

LWW Scheme II NL(2 · log2 NL + U + 14)

LWW Scheme III NL(log2 NL + 3U)

Proposed modified Scheme I for SLM NL(log2 N + U + 8)

Proposed modified Scheme II for SLM NL(2 · log2 N + U + 15)

Proposed modified Scheme III for SLM NL(log2 N + 3U + 1)

3.3.4 Simulation Results

In this section, we investigate the PAPR performance of various PAPR reduction

schemes when 16-QAM is employed with N = 256. Besides, L = 4 which is the factor

of oversampling is considered.

Fig. 3.11 compares the PAPR reduction performance of our Proposed Modified

Table 3.8: Computational complexity of various PTS schemes (I)

Number of complex multiplications

Conventional PTS Scheme (NL)2

2r
· log2 NL

Proposed modified Scheme I for PTS NL
2
· log2 NL

Proposed modified Scheme II for PTS NL
2

log2 r + NL · log2
NL
r

Proposed modified Scheme III for PTS NL
2
· log2 NL
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Table 3.9: Computational complexity of various PTS schemes (II)

Number of complex additions

Conventional PTS Scheme (NL)2

r
· log2 NL

Proposed modified Scheme I for PTS NL(log2 NL + U + 6)

Proposed modified Scheme II for PTS NL
(
log2 r + 2 · log2

NL
r

+ U + 13
)

Proposed modified Scheme III for PTS NL(log2 NL + 3U − 1)

Table 3.10: Computational complexity ratio for Proposed SLM Schemes over the con-
ventional SLM scheme with N = 256.

Proposed Scheme I Proposed Scheme II Proposed Scheme III

Rmul (%) Radd (%) Rmul (%) Radd (%) Rmul (%) Radd (%)

U = 8 12.50 30.00 22.50 48.75 12.50 41.25

U = 32 3.13 15.00 5.63 19.69 3.13 32.81

Schemes I and II, LWW Scheme I and II, and conventional SLM schemes. It is seen that

for a given number of candidate sequences (U), the PAPR reduction performance of both

Proposed Modified Scheme I and II is similar to that of LWW Scheme I and II. From a

detailed inspection, the performance degradation of Proposed Modified Scheme I and II

relative to that of conventional SLM scheme are 0.4 and 0.16 dB, respectively for U = 32

and CCDF of of 10−4. As expected, PAPR performance of Proposed Modified Scheme

II is better that that of Proposed Modified scheme I for an extra IDFT operation.

Fig. 3.12 shows the PAPR reduction performance of our Proposed Modified Scheme

III, LWW Scheme III and conventional SLM scheme. Note that our Proposed Modified

Scheme III can achieve similar performance as LWW Scheme III, and the maximum

performance loss of Proposed Modified Scheme III relative to the conventional SLM

scheme is 0.12 dB for U = 32 and CCDF of 10−4.

As mentioned in previous subsection, LWW Schemes are just applied to SLM scheme,

so comparison of PTS schemes just includes our Proposed Modified Schemes and the

conventional PTS scheme. In Fig. 3.13, PAPR reduction performance of Proposed

Modified Schemes I and II, and conventional PTS scheme is presented with U = 8. It
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Table 3.11: Computational complexity ratio for Proposed PTS Schemes over the con-
ventional PTS scheme with N = 256 and U = 8.

Proposed Scheme I Proposed Scheme II Proposed Scheme III

Rmul (%) Radd (%) Rmul (%) Radd (%) Rmul (%) Radd (%)

r = 32(M = 32) 3.13 7.50 4.69 11.25 3.13 10.31

r = 128(M = 8) 12.50 30.00 16.25 42.50 12.50 41.25

r = 256(M = 4) 25.00 60.00 30.00 82.50 25.00 82.50

can be noted that for a given number of subblocks (M), PAPR performances of Proposed

Modified Scheme I and II are poorer than that of conventional PTS scheme. However,

lower computational complexity of Proposed Modified schemes is provided.

Figure 3.14 illustrates the PAPR performance of Proposed Modified Scheme III and

conventional PTS scheme with U = 8. For M = 4, two schemes provide almost the same

performance. Although there are slight degradation of PAPR reduction performance for

M = 8 and M = 32, less computational complexity is achieved for Proposed Modified

Scheme III as shown in preceding section. It is shown that the performance loss of

Proposed Modified Scheme III relative to the conventional PTS scheme is 0.12 dB for

M = 32 and CCDF of 10−4.

3.4 Transform Decomposition

The transform decomposition (TD) [14], a mixture of a Cooley-Tukey FFT and a

computational structure similar to Goertzel’s algorithm [15], has been introduced for

computing only a subset of output points. Below, a mathematical derivation of TD for

input with few nonzero point is given.

The discrete Fourier transform (DFT) is defined as

Xk =
N−1∑
n=0

xnWnk
N , k = 0, 1, · · · , N − 1. (3.16)

Assume that there are L nonzero inputs and there exist a P which is the nearest power

two integer larger than L such that P divides N and define Q = N/P . The index n and
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Figure 3.11: Comparison of PAPR reduction performance of the proposed modified
schemes I and II, LWW schemes I and II, and conventional SLM schemes.

k can be written as

n = Qn1 + n2
n1 = 0, 1, · · · , P − 1
n2 = 0, 1, · · · , Q− 1

(3.17)

and

k = k1 + Qk2
k1 = 0, 1, · · · , Q− 1
k2 = 0, 1, · · · , P − 1.

(3.18)

Using the variable substitution with (3.17) and (3.18), (3.16) can be rewritten as

Xk1+Qk2 =
P−1∑
n2=0

Q−1∑
n1=0

xPn1+n2W
(Pn1+n2)(k1+Qk2)
N

=
P−1∑
n2=0

(
Q−1∑
n1=0

xPn1+n2W
(Pn1+n2)k1

N

)
Wn2k2

P . (3.19)
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Figure 3.12: Comparison of PAPR reduction performance of the proposed modified
scheme III, LWW scheme III, and conventional SLM scheme.

We can rewritten (3.19) as

Xk1
k2

=
P−1∑
n2=0

xk1
n2

Wn2k2
P

k1 = 0, 1, · · · , Q− 1
k2 = 0, 1, · · · , P − 1

(3.20)

where Xk1
k2

= Xk1+Qk2 and

xk1
n2

=

Q−1∑
n1=0

xPn1+n2W
k1(Pn1+n2)
N . (3.21)

For a given k1, (3.20) can be viewed as a P -point DFT and it can be computed

efficiently using a FFT algorithm. As the k1 range form 0 to Q − 1, there are Q P -

point DFT operations. For each P -point DFT, we need to acquire xk1
n2

by using (3.21).

Since there are L nonzero input points, the multiplications used by (3.21) are L at a

given k1 when n2 traverses from 0 to P − 1. Accordingly, the TD is a method for few
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Figure 3.13: Comparison of PAPR reduction performance of the proposed modified
schemes I and II, and the conventional PTS scheme.

nonzero elements of input data so that the computational complexity decreases. We can

conclude that for TD, it decomposes an original N -point DFT into Q P -point DFT by

using (3.21) for stage one and (3.20) for stage two. It can be noticed that the structure

of TD is similar to that of our proposed algorithm.

For PAPR reduction method, TD method can be applied due to the execution of

L-oversampling which combined length-N input data and (L− 1)N zeros consequently

to form the exact input sequence for NL-point IDFT. Besides, we can find out the

computational complexity of TD and our proposed algorithm are the same if only a

candidate sequence is generated.

Since the phase sequences are applied to the input sequence of IDFT when TD
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Figure 3.14: Comparison of PAPR reduction performance of the proposed modified
scheme III and the conventional PTS scheme.

method is applied, a complete computation of TD method is required to generate a

candidate sequence. However, in our proposed algorithm, for a given OFDM symbol,

the computation of the first stage is calculated once and the computation result can be

reused for remaining phase sequences since the phase sequences are applied at the end

of the first stage.
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Chapter 4

IDFT architecture aware PAPR
reduction schemes II

4.1 Related work

As mentioned in the pervious chapter, one of the drawbacks of SLM and PTS

schemes is the high computational complexity for the requirement of multiple IFFT

operations. This issue has been resolved in [16], which will be refer to as the G&G SLM

scheme from now on, by using the product of intermediate sequences within an IDFT

and some phase factors, with DIF/DIT IFFT being adopted.

In this chapter, we introduce new SLM and PTS schemes for PAPR reduction with

low computational complexity. The proposed schemes transform an input data block

into a set of candidate sequences by carefully multiplying the phase sequences with

intermediate sequences which are within an NL-point IDFT at different stages. The

main difference between our scheme and G&G SLM scheme is that we add the phase in

the intermediate stage suitably such that the generated sequence in frequency-domain is

equivalent to the product of the data sequence and phase sequence counterpart, whose

elements locate on the unite circle. With this property, we can show that the BER

performance is not degraded while the computational complexity is reduced by our

scheme.
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4.2 Proposed New SLM and PTS Schemes

As mentioned in the previous chapter, the values of r for radix-r at stage 1 correspond

our proposal to SLM and PTS schemes. Here, with such r determined and fixed, we

propose new SLM and PTS schemes by investigating the decomposition of later stages.

4.2.1 Scheme Description

To introduce the proposed scheme, we first define some notations we will use in the

rest of this chapter. As we consider the ηth IDFT of stage v, the input data and (fre-

quency) indices for stage v are denoted by X(v,η) and k(v), respectively. Similarly, x(v,η)

and n(v) are the output and (time) indices, respectively. Hence, the ηth intermediate

(NL/rv−1)-point IDFT outputs at stage v are given by

x
(v,η)

rn(v)+n0
=

1

r

(
r−1∑
q=0

X
(v,η)

k(v)+NL
rv q

·W−qn0
r

)
W−k(v)n0

NL/rv−1 (4.1)

where k(v) = 0, 1, · · · , NL/rv − 1, n(v) = 0, 1, · · · , NL/rv − 1, and η = 1, 2, · · · , rv−1.

As mentioned in Section 3.1, different values of r selected at the first stage for DIT

IFFT result in distinct SLM or PTS schemes. For instance, if r = 4 is used in the first

stage, it forms the SLM. For r > 4 and r is a multiple of 4, we have the PTS with

M = NL/r. However, there is one problem for the radix-r algorithm if r is determined

by the choice of the first stage. To implement the radix-r algorithm it is required that

NL has to be a power of r, which usually holds for r = 2 or 4 in the standardized

systems (e.g. [18, 19]). The requirement comes from that the total number of stages in

this algorithm, which is m = logr NL, must be an integer. To implement our proposed

PTS schemes, it is likely that the values of r become very large and thus difficult to

satisfy this requirement. To solve this problem, we observe that the output of stage 1 is

fed into multiple (NL/r)-point IFFTs which may be implemented by radix-2 or radix-

4 algorithm. To this end, we can first compute the first stage with radix-r and then

the remaining using radix-2 or radix-4 algorithm as illustrated in Fig. 4.1. Hence, the
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number of stage in our scheme is m = 1 + log2 NL/r or 1 + log4 NL/r. Notice that we

choose radix-2 or radix-4 to implement the IFFT because they have less computational

complexity in terms of multiplication compared with other radix-r algorithms.

Figure 4.1: Architecture of the proposed scheme.

Unlike the conventional SLM and PTS schemes in which different phase sequences

are applied respectively to an input data block and output sequences of IDFTs of disjoint

subblocks, the proposed scheme calculates the multiplication of these phase sequences

and the so-called intermediate sequences, which are the tentative output of the original

data input in some stages. To generate multiple candidate sequences, we first divide the

m stages into β subsets of stages where each subset contains one or several consecutive

stages. Phase rotation is performed at the output of stages vD = [v1, · · · , vβ] with some

designated phase sequences, where vj denotes the output stage of the jth subset and v1

is always set to be 1 in our algorithm. The numbers of intermediate signals, generated

at stages vD, are defined by PD = [P1, P2, · · · , Pβ] and increase successively. Figure

4.2 depicts the architecture of our proposed scheme, where P i
j denotes the ith phase

sequence applied to the intermediate sequence of output of stage vj, for i = 1, 2, · · · , Pj

and j = 1, 2, · · · , β.

Accordingly, by the multiplication of stage 1 output and P1 phase sequences, P1 in-

termediate sequences at the output of stage 1 are obtained. Then, the output sequences

are treated as the input of stage v1 + 1 (i.e. 2) and are processed separately from stage

2 to v2. Each of the P1 intermediate sequences at the output of stage v2 is then phase-
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Figure 4.2: Detailed architecture of the proposed scheme.
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rotated by P2/P1 phase sequences. Therefore, a total of P2 new intermediate sequences

are obtained after performing the operations of stage v2. The same procedure of gener-

ating corresponding intermediate sequences is applied to subsequent stages repeatedly.

Consequently, Pβ candidate sequences are generated at the output of the last stage to

lower PAPR. Compared with the conventional SLM or PTS schemes, the computation

load of the new scheme is much relieved since phase sequences are multiplied to inter-

mediate sequences. Here, we show a simple example of the proposed new SLM scheme

for an OFDM system.

Figure 4.3: Block diagram of the proposed new SLM scheme with vD = [1, 4] and
PD = [2, 8].

Example: Assume there are five stages of an IFFT operation for a given OFDM

symbol, and vD = [1, 4] and PD = [2, 8] are configured to generate candidate sequences.

Figure 4.3 presents the block diagram of this case. As we can see, two phase-rotated

intermediate sequences are generated at the output of stage v1 = 1 and individually

computed through stage 2 to stage v2 = 4. Subsequently, P2/P1 = 4 phase sequences
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are applied to each of two intermediate sequences at the output of stage v2 = 4 pro-

ducing 8 intermediate sequences. Finally, the operation of stage 5 is performed at all 8

intermediate sequences separately to generate a total of P2 = 8 candidate sequences.

4.2.2 Phase sequences of new SLM and PTS Schemes

For convenience, we consider radix-2 here. The extension to radix-4 or the hybrid

of radix-2 and radix-4 is straightforward. Recall that the operations at a certain stage

of DIT radix-r IFFT are performed by a number of linear combinations. Hence, each

subcarrier data is a specific element of linear combinations appears r · 2(v−1) times at

stage v in the multistage structure. In order to avoid the degradation of bit error rate

(BER) performance, this sample must be multiplied by the same phase factor whenever it

appears at stage v to maintain its power. In other words, the phase sequences with length

NL/(r · 2(v−1)) is applied to the output sequence of stage v, and all r · 2(v−1)(NL/(r ·
2(v−1)))-point IDFT output sequences are multiplied by the same phase sequence to

generate a corresponding intermediate sequence.

As for the G&G SLM scheme, the phase factors multiplied to the intermediate sam-

ples containing the same data are unnecessarily identical. Thus, the equivalent effect on

that data is a linear combination of these phase factors which cannot guarantee the data

power unchangeable anymore. To visualize such effect, the magnitude of an equivalent

phase sequence of the proposed and G&G SLM schemes are depicted in Fig. 4.5 and 4.6

with N = 256 employed.

4.3 Performance Analysis and Comparison

4.3.1 Computational Complexity Analysis

In our proposed scheme, phase sequences are multiplied by the intermediate se-

quences at the output of stages vD = [1, v2, · · · , vβ] with the corresponding numbers of
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sequences given by PD = [P1, P2, · · · , Pβ], respectively. Hence, the total number of IFFT

stages required to generate Pβ candidate sequences excluding the first stage is

λ = (v2 − 1) · P1 + (v3 − v2) · P2 + · · ·+ (m− vβ) · Pβ, (4.2)

where m is the total number of stages to generate a specific candidate sequence:

m = 1 + log2

NL

r
. (4.3)

Since the computational complexity is fixed in each stage (NL/2 multiplications and

NL additions), we have the complexity analysis of our scheme, stated in Table 4.1 – ??.

The G&G SLM scheme, which make use of the multistage structure of radix-2 IFFT,

applies phase sequences differently from ours. Their operation of phase rotation is con-

sidered at the output of stages vR = [v1, v2, · · · , vβ] and done to PR = [P1, P2, · · · , Pβ]

intermediate sequences, where PR is defined as the number of intermediate sequences

generated at stages vR. Thus, the total number of stages required (including the first

few stages) is given as

λR = v1 + (v2 − v1) · P1 + · · ·+ (mR − vβ) · Pβ, (4.4)

where mR = log2 NL. For fair comparison, radix-2 is considered for the last m−1 stages

of our proposed scheme, where it is done to all IFFT stages in the G&G SLM scheme.

Note that though the value of m and mR are different, the computational complexity

of our proposal with r = 4 at the first stage and the that of the G&G SLM scheme is

identical if same numbers of phase sequences are applied to the corresponding stages.

Table 4.1 – 4.2 present the computational complexity of our proposed schemes, the

G&G SLM scheme, and the conventional SLM schemes. In addition, the computational

complexity ratio of the proposed schemes over the conventional schemes are shown in

Table 4.3 for N = 256. Obviously, the complexity is reduced.
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Table 4.1: Computational complexity of various SLM schemes (I)

Number of complex multiplications

Conventional SLM scheme U
(

NL
2
· log2 NL

)

Proposed SLM scheme NL + NL
2
· λ

G&G SLM scheme NL
2
· λR

Table 4.2: Computational complexity of various SLM schemes (II)

Number of complex additions

Conventional SLM scheme U(NL · log2 NL)

Proposed SLM scheme NL(1 + λ)

G&G SLM scheme NL · λR

4.3.2 Simulation Results

The comparison of PAPR reduction performance of various schemes is presented in

this section. The evaluation considers the CCDF of the PAPR of 16 QAM-modulated

OFDM symbols with U = 8 and N = 256.

The PAPR reduction performance of various SLM schemes is depicted in Fig. 4.4,

where vD and vR denote the stages phase sequences are multiplied for our scheme and the

G&G scheme, respectively. As can be seen, the earlier the phase sequences are applied

to, the better the PAPR reduction performance. This observation coincides with the

intuition that the multiplication of phase sequences of the earlier stages introduces more

diversity to the candidates. However, the cost of improving PAPR reduction capability is

the higher computational complexity; as shown in Table 4.3. This gives us a direct trade-

off between the PAPR performance and computational complexity which is beneficial

for system design. Notice that when vD = [1, 4] is applied in our proposed scheme,

it can achieve almost the same performance as the conventional SLM scheme with a

complexity ratio of 60% only. This shows the potential improvement of complexity

reduction with negligible performance degradation by joint design. From Table 4.1 and

4.2, the computational complexity of vD = [1, 6] in our proposed scheme and vR = [2, 7]
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Table 4.3: Computational complexity ratio of the proposed SLM schemes with N = 256.

vD PD Rmul (%) Radd (%)

[1, 4] [2, 8] 60.00 58.75

[1, 6] [2, 8] 45.00 43.75

[1, 8] [2, 8] 30.00 28.75

in the G&G SLM scheme are identical while shown in Fig. 4.4 the PAPR reduction

performance of the latter is poorer than the former with 0.12 dB for U = 8 at the CCDF

of 10−4, which shows the advantage of our scheme over G&G SLM scheme. The case

with vD = [1, 8] has the worst PAPR reduction performance among all three cases since

the second part of the phase sequences are multiplied to a later stage to obtain the

lowest complexity.

As mentioned in previous subsection, to guarantee the BER performance, our pro-

posed schemes have to follow some rules to ensure the factors of equivalent phase se-

quences all locate on the unit circle while the G&G SLM scheme does not take into

account. Figure 4.5 and 4.6 show the magnitudes of equivalent phase sequences of our

scheme and the G&G SLM scheme, respectively. These results conform to what we

discussed before. To investigate the effect of destroying the unimodularity, the BER

performance of our SLM scheme and the G&G SLM scheme is also given in Fig. 4.7

where a 256-subcarrier QPSK-modulated OFDM system is considered. As our expecta-

tion, the BER performance of the G&G SLM scheme is much poorer than our proposal.
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Figure 4.4: Comparison of the PAPR reduction performance of the proposed SLM
Scheme, G&G SLM scheme and conventional SLM scheme.
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Figure 4.5: Magnitude of an equivalent phase sequence of our scheme.
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Figure 4.6: Magnitude of an equivalent phase sequence of the G&G SLM scheme.
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Figure 4.7: Comparison of the BER performance of the proposed SLM Scheme and the
G&G SLM scheme.
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Chapter 5

Conclusion

Several novel low complexity SLM-based and PTS-based schemes for PAPR reduction

are proposed. These schemes make use of some special properties of the IFFT structures

which are known as DIT IFFT or DIF IFFT. We also suggest a stop criterion to further

reduce the computational complexity for the DIT-IFFT implementation.

The new schemes achieve the same PAPR reduction performance as the conventional

schemes with much reduced computational complexity. For instance, when the number

of subcarriers (N) is 256 and the number of mapping sequences (U) is 8, the multipli-

cation complexity ratios (normalized with respect to that required by the conventional

SLM/PTS schemes) are 82.5% and 60% for the SLM and PTS (which uses four sub-

blocks) schemes, respectively. If the stop criterion is applied, the reduction ratio can be

further improved. Besides variants of the conventional SLM and PTS schemes, we can

apply the proposed stop criterion to reduce the complexity of the LWW schemes [12] as

well.

We extend our study to the multistage DIT IFFT structure. A similar approach,

which we referred to as the G&G SLM scheme [16], was presented before. A shortcoming

of this scheme is that the equivalent mapping sequence does not have constant modulus

entries and, as a result, the receiver’s de-mapping process brings about noise enhance-

ment and BER performance degradation. Our new design overcomes this disadvantage
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by generating multiple constant modulus candidate frequency domain sequences.

The concept of taking advantage of the special IFFT structures in designing new

PAPR reduction schemes can be extended to modify other existing PAPR reduction

schemes and develop new low-complexity schemes. One such example is the bit-flipping

based PAPR reduction schemes. Moreover, as there are several recent proposals for

simplifying the implementation of IDFTs, it is worthwhile to consider these alternative

structures, e.g., split-radix FFT algorithm, and investigate the feasibility of further com-

putational complexity reduction when used in conjunction with some PAPR reduction

schemes.
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