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中文摘要 
 
 在本篇論文中，我們研究一個相當新且近代的通道模型，該通道利用

常速流體當中的化學粒子交換來做為溝通的訊息。這些粒子由傳送端出發

至接收端的路徑，我們將其視為一維空間來做模擬。很典型的通訊應用像

是我們將奈米級的儀器置入血管中，以完成傳遞訊息的任務。在這個情況

下，我們不再依賴電磁波傳遞訊息，而是將訊息放在釋放粒子的時間點上。

一旦粒子被傳送端釋放進入流體中時，會在介質中行布朗運動，這將會對

粒子到達接收端的時間產生不確定性，這樣的不確定性就是我們的雜訊。

我們用反高斯分布來描述這樣的雜訊。此篇研究將重點放在相加性雜訊通

道以描述基本的通道容量趨勢。 

 

 我們深入研究此模型，並分析出新的通道容量上界與下界。 這些界線

是漸進緊的，也就是說，如果平均延遲的限制可放寬至無限大，或是介質

流體流速趨近無限大，則相對應的漸進通道容量可被精確的推導出來。 



Abstract

Molecular Communication in Fluid Media:

Bounds on the Capacity of the Additive

Inverse Gaussian Noise Channel

Student: Chang Hui-Ting Advisor: Prof. Stefan M. Moser

Institute of Communication Engineering
National Chiao Tung University

In this thesis a very recent and new channel model is investigated that describes

communication based on the exchange of chemical molecules in a liquid medium

with constant drift. They travel from the transmitter to the receiver at two ends

of a one-dimensional axis. A typical application of such communication are nano-

devices inside a blood vessel communicating with each other. In this case, we no

longer transmit our signal via electromegnetic waves, but we put our information

on the emission time of the molecules. Once a molecule is emitted in the fluid

medium, it will be affected by Brownian motion, which causes uncertainty of the

molecule’s arrival time at the receiver. We characterize this noise with an inverse

Gaussian distribution. Here we focus solely on an additive noise channel to describe

the fundamental channel capacity behavior.

This new model is investigated and new analytical upper and lower bounds on

the capacity are presented. The bounds are asymptotically tight, i.e., if the average-

delay constraint is loosened to infinity or if the drift velocity of the liquid medium

tends to infinity, the corresponding asymptotic capacities are derived precisely.
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Chapter 1

Introduction

1.1 General Molecular Communication Channel Model

Usually, we transmit our signal with electromagnetic waves in the air or in wires.

Recently, people are more and more interested in communication within nanoscale

networks. But when we want to transmit our signal via these tiny devices, we face

some problems that the antenna size of them are restricted and the energy that could

be stored in them is very little. Therefore, we solve these problems with providing

a different type of communication instead. This thesis focuses on a channel which

operates in a fluid medium with a constant drift velocity. The transmitter is a

point source with many molecules to be emitted. The receiver waits on the other

side for the molecules’ arrival. The information is encoded in the emission time

of the molecules, X, which takes value in a finite set. One application example is

blood vessel, which has a blood drift. The nanoscale device could be any medical

inspection device that is inserted in our body.

Wiener Process

w = 0 w = d

Transmitter

Receiver

w

v

Figure 1.1: Wiener process of molecular communication channel.
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Chapter 1 Introduction

Once the nanoscale molecules are emitted in the fluid medium, they are effected

by Brownian motion which causes uncertainty of the arrival time at the receiver.

We describe this type of channel noise with an inverse Gaussian distribution. Now,

consider a channel as shown in Figure 1.1 where w is the position parameter, d is

the receiver’s position on w axis and v is the drift velocity, v > 0. The transmitter

is placed at the origin of w axis. It emits a molecule into a fluid with positive drift

velocity, v. The information is put on the releasing time. In order to know this

information, the receiver ideally subtracts the average traveling time, d
v , from the

arrival time. Note that once a molecule arrives at the receiver, it is absorbed and

never returns to the fluid. Moreover, every molecule is independent of each other.

This molecular communication channel model was proposed by Srinivas, Adve

and Eckford [1].

1.2 Mathematical Model

Let W (x) be the position of a molecule at time x that travels via a Brownian

motion medium. Let 0 ≤ x1 < x2 < · · · < xk be a sequence of time indices ordered

from small to large. Then, W (x) is a Wiener process if the position increment

Ri = W (xi−1)−W (xi) are independent random variables with

Ri ∼ N
(

v(xi − xi−1),σ
2(xi − xi−1)

)

(1.1)

where σ2 = D
2 with D being the diffusion coefficient, which depends on the tem-

perature and the stickiness of the fluid and the size of the particles. Assuming the

molecule is released at time x = 0 at position W (0) = 0, the position at time x̃ is

W (x̃) ∼ N
(

vx̃,σ2x̃
)

. The probability density function (PDF) of W is given by:

fW (w; x̃) =
1√

2πσ2x̃
exp

(

−(w − vx̃)2

2σ2x̃

)

. (1.2)

In our communication system, instead of looking at the position of the molecule

at a certain time, we turn our focus on its arriving time at the receiver for a fixed

distance d.

x Y

released arrived

N

time

0 d position

Figure 1.2: The relation between the molecule’s time and position.
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1.2 Mathematical Model Chapter 1

We release the molecule at time x from the origin, W (x) = 0 and x ≥ 0. Assum-

ing that after traveling for a random time N , the molecule arrives at the receiver

for the first time at time Y ,

Y = x+N. (1.3)

Hence, our channel model is characterized by an additive noise in the form of the

random propagation time N . This is the only uncertainty we have in the system.

When we assume a positive drift velocity v > 0, the distribution of the traveling

time N is well known to be an inverse Gaussian (IG) distribution. As a result, we

call this channel the additive inverse Gaussian noise (AIGN) channel. Since the

PDF of N is

fN (n) =







√

λ
2πn3 exp

(

−λ(n−µ)2

2µ2n

)

n > 0,

0 n ≤ 0,
(1.4)

we get the conditional probability density of output Y given the channel inputX = x

as

fY |X(y|x) =







√

λ
2π(y−x)3 exp

(

−λ(y−x−µ)2

2µ2(y−x)

)

y > x,

0 y ≤ x.
(1.5)

There are two important parameters for the inverse Gaussian distribution: the av-

erage traveling time

µ =
d

v
=

distance between transmitter and receiver

drift velocity
, (1.6)

and a parameter

λ =
d2

σ2
(1.7)

that describes the impact of the noise. Usually we write N ∼ IG(µ,λ). By calcula-

tion, we get

E[N ] = µ =
d

v
, (1.8)

Var(N) =
µ3

λ
=

dσ2

v3
. (1.9)

If the drift velocity v increases, the variance decreases, in other words, the distri-

bution is more centered. If the drift velocity is slowed down, we will have a more

spread-out noise distribution. Without loss of generality, we normalize the propa-

gation distance to d = 1.

For practical reasons, we constrain the transmitter to have an average delay m

on the emission of a molecule, i.e., the input X is subject to the constraint:

E[X] ≤ m. (1.10)

Note that a peak constraint would also be of large practical interest, but for sim-

plicity we focus on average constraint at the moment.

3



Chapter 1 Introduction

1.3 Capacity

Since we introduced a new type of channel, the AIGN channel, we are interested in

how much information it can transmit. In [2], Shannon showed that for memoryless

channels with continuous input and output alphabets and an corresponding condi-

tional PDF describing the channel, and under an input constraint E [X] ≤ m, the

channel capacity is given by

! sup
fX(x) : E[X]≤m

I(X;Y ) (1.11)

where the supremum is taken over all input probability distributions f(·) on X that

satisfy the mean constraint E[X] ≤ m. By I(X;Y ) we denote the mutual information

between X and Y . For the AIGN channel, we have

sup
fX(x) : E[X]≤m

I(X;Y ) = sup
fX(x) : E[X]≤m

{

h(Y )− h(Y |X)
}

(1.12)

= sup
fX(x) : E[X]≤m

{

h(Y )− h(X +N |X)
}

(1.13)

= sup
fX(x) : E[X]≤m

{

h(Y )− h(N |X)
}

(1.14)

= sup
fX(x) : E[X]≤m

h(Y )− h(N) (1.15)

= sup
fX(x) : E[X]≤m

h(Y )− hIG(µ,λ), (1.16)

where (1.15) holds because N and X are independent. The mean constraint (1.10)

of the input signal translates to an average constraint for Y :

E[Y ] = E[X +N ] (1.17)

= E[X] + E[N ] (1.18)

= E[X] + µ (1.19)

≤ m+ µ. (1.20)

4



Chapter 2

Mathematical Preliminaries

In this chapter, we will introduce some mathematical properties of the inverse Gaus-

sian random variable and other useful lemmas for future use in this thesis.

2.1 Properties of the Inverse Gaussian Distribution

In [1], the differential entropy of an inverse Gaussian random variable was given in

a complicated form that is unwielding for analytical analysis. So we try to modify

the original expression and derive a cleaner form for mathematical derivation.

Proposition 2.1 (Differential Entropy of the Inverse Gaussian Distribution).

hIG(µ,λ) = log

(

2K− 1
2

(

λ

µ

)

µ

)

+
3

2

∂
∂γKγ

(

λ
µ

) ∣

∣

∣

γ=− 1
2

K− 1
2

(

λ
µ

)

+
λ

2µ

K 1
2

(

λ
µ

)

+K− 3
2

(

λ
µ

)

K− 1
2

(

λ
µ

) (2.1)

=
1

2
log

2πµ3

λ
+

3

2
exp

(

2λ

µ

)

Ei

(

−2λ

µ

)

+
1

2
(2.2)

=
1

2
log

2πσ2d

v3
+

3

2
exp

(

2dv

σ2

)

Ei

(

−2dv

σ2

)

+
1

2
(2.3)

where Kγ(·) is the order-γ modified Bessel function of the second kind, and Ei(·) is
the exponential integral function defined as

Ei(−x) ! −
∫ ∞

x

e−t

t
dt =

∫ −x

−∞

et

t
dt, x > 0. (2.4)

In MATLAB, the exponential integral function is implement as expint(x)= −Ei(−x).

Here (2.1) is taken from [1]. The concise expression (2.2) and (2.3) are derived

below.

5



Chapter 2 Mathematical Preliminaries

Proof. We divide the right hand side of (2.1) into three parts. From [3, (8.469.3)]

the first part can be simplified as follows:

log

(

2K− 1
2

(

λ

µ

)

µ

)

= log

(

2

(

(πµ

2λ

)
1
2
exp

(

−λ

µ

))

µ

)

(2.5)

= log

(

(

2πµ3

λ

)

1
2

exp

(

−λ

µ

)

)

(2.6)

=
1

2
log

2πµ3

λ
− λ

µ
(2.7)

From formula [3, (8.486(1).21)], we get:

∂Kγ

(

λ
µ

)

∂γ

∣

∣

∣

∣

∣

∣

γ=− 1
2

=
(πµ

2λ

)
1
2
exp

(

λ

µ

)

Ei

(

−2λ

µ

)

(2.8)

such that the second term of (2.1) can be written as

3

2

∂
∂γKγ

(

λ
µ

) ∣

∣

∣

γ=− 1
2

K− 1
2

(

λ
µ

) =
3

2

(πµ
2λ

)
1
2 exp

(

λ
µ

)

Ei
(

−2λ
µ

)

(πµ
2λ

)
1
2 exp

(

−λ
µ

) (2.9)

=
3

2
exp

(

2λ

µ

)

Ei

(

−2λ

µ

)

. (2.10)

From formula [3, (8.486.16)]

K−ν(z) = Kν(z) (2.11)

and formula [3, (8.468)]

Kn+ 1
2
(z) =

√

π

2z
e−z

n
∑

k=0

(n+ k)!

k!(n− k)!(2z)k
(2.12)

we get the result:

K− 3
2

(

λ

µ

)

= K 3
2

(

λ

µ

)

(2.13)

= K1+ 1
2

(

λ

µ

)

(2.14)

=
(πµ

2λ

)
1
2
exp

(

−λ

µ

)







1!

0!1!
(

2λ
µ

)0 +
2!

1!0!
(

2λ
µ

)1






(2.15)

=
(πµ

2λ

)
1
2
exp

(

−λ

µ

)

(

1 +
µ

λ

)

. (2.16)

6



2.1 Properties of the Inverse Gaussian Distribution Chapter 2

Therefore, the third term of (2.1) will be

λ

2µ

K 1
2

(

λ
µ

)

+K− 3
2

(

λ
µ

)

K− 1
2

(

λ
µ

) =
λ

2µ






1 +

(πµ
2λ

)
1
2 exp

(

−λ
µ

)

(

1 + µ
λ

)

(πµ
2λ

)
1
2 exp

(

−λ
µ

)






(2.17)

=
λ

2µ

(

2 +
µ

λ

)

(2.18)

=
λ

µ
+

1

2
. (2.19)

As a result,

hIG(µ,λ) =
1

2
log

2πµ3

λ
− λ

µ
+

3

2
exp

(

2λ

µ

)

Ei

(

−2λ

µ

)

+
λ

µ
+

1

2
(2.20)

=
1

2
log

2πµ3

λ
+

3

2
exp

(

2λ

µ

)

Ei

(

−2λ

µ

)

+
1

2
(2.21)

Next, when we want to make an IG random variable add with another IG random

variable and end up also in IG distributed, there is a specific way to reach it. Only

certain type of IGs will add up to be IG distributed.

Proposition 2.2 (Additivity of the IG distribution). Let M be a linear combination

of random variables Mi:

M =
l

∑

i=0

ciMi, ci > 0, (2.22)

where

Mi ∼ IG(µi,λi), i = 1, . . . , l. (2.23)

Here we assume that Mi are not necessarily independent, but summed up under the

constraint that
λi

ciµ2
i

= κ, for all i. (2.24)

Then

M ∼ IG





∑

i

ciµi,κ

(

∑

i

ciµi

)2


 (2.25)

Proof. The proof can be found in [4, Sec. 2.4, p. 13].

Remark 2.3. If we simply add two inverse Gaussian random variable, as long as

they are in the same fluid, which means they have the same v and σ2, the result is

still inverse Gaussian.

Consider a Wiener process X(t) beginning with X(0) = x0 with positive drift v

and variance σ2. Choose a and b so that x0 < a < b and consider the first passage

7



Chapter 2 Mathematical Preliminaries

time T1 from x0 to a and T2 from a to b. Then T1 and T2 are independent inverse

Gaussian variables with parameters

µ1 =
a− x0

v
, λ1 =

(a− x0)2

σ2
(2.26)

and

µ2 =
b− a

v
, λ2 =

(b− a)2

σ2
. (2.27)

Now consider T3 = T1 + T2, therefore, c1 = c2 = 1 and

λi

µi
=

v2

σ2
= constant, (2.28)

T3 is also an inverse Gaussian variable. That is

T3 ∼ IG

(

µ1 + µ2,
v2(µ1 + µ2)2

σ2

)

. (2.29)

Since µ1 + µ2 =
b−x0

v ,

T3 ∼ IG

(

b− x0
v

,
(b− x0)2

σ2

)

. (2.30)

The last observation also follows directly from the realization that T3 is the first

passage time from x0 to b [4].

Proposition 2.4 (Scaling). If N ∼ IG(µ,λ), then for any k > 0

kN ∼ IG(kµ, kλ). (2.31)

Proof. The proof can be found in [4, Sec. 2.4, p. 13].

Proposition 2.5. If N is a random variable distributed as IG(µ, λ). Then

E[N ] = µ; (2.32)

E

[

1

N

]

=
1

µ
+

1

λ
; (2.33)

E
[

N2
]

= µ2 +
µ3

λ
; (2.34)

E

[

1

N2

]

=
1

µ2
+

3

λ2
+

3

µλ
; (2.35)

Var (N) =
µ3

λ
; (2.36)

Var

(

1

N

)

=
1

µλ
+

2

λ2
; (2.37)

E[Nν ] =

√

2λ

π
e

λ
µµν− 1

2Kν− 1
2

(

λ

µ

)

, ν ∈ R. (2.38)
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2.1 Properties of the Inverse Gaussian Distribution Chapter 2

Remark 2.6. From (2.11), we can also write

E
[

N−ν
]

=

√

2λ

π
e

λ
µµ−ν− 1

2Kν+ 1
2

(

λ

µ

)

. (2.39)

Proof. The proofs are based on [4, (2.6)], [5, Proposition 2.15], [4, (8.36)] and [3,

3.471 9.].

Proposition 2.7. If N ∼ IG(µ,λ), then

E[logN ] = e
2λ
µ Ei

(

−2λ

µ

)

+ logµ; (2.40)

E

[

N

µ
+

µ

N

]

= 2 +
µ

λ
. (2.41)

Proof. A proof is shown in [6].

Proposition 2.8. If Ni are IID ∼ IG(µ, λ), then the sample mean from that dis-

tribution will be

1

n

n
∑

i=1

Ni = N̄ ∼ IG(µ, nλ), for i = 1, . . . , n. (2.42)

Proof. A proof can be found in [4, Sec. 5.1, p. 56].

Lemma 2.9. Under the three constraints

E[logX] = α1, (2.43)

E[X] = α2, (2.44)

E
[

X−1
]

= α3, (2.45)

where α1, α2 and α3 are some fixed values, the maximum entropy distribution is the

inverse Gaussian distribution.

Proof. From [7, Chap. 12] we know that if we have the three constraints above, the

optimal distribution to maximize the entropy will have the form

f(x) = eλ0+λ1 log x+λ2x+
λ3
x (2.46)

= xλ1eλ0+λ2x+
λ3
x , (2.47)

which is exactly the form of the inverse Gaussian.
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2.2 Power Inverse Gaussian and Its Properties

The power inverse Gaussian (PIG) distribution parameterized by an arbitrarily fixed

real number η '= 0 has the PDF given by

R(y) =

√

α

2πβ3

(

y

β

)−(1+ η
2 )

exp



− α

2η2β

(

(

y

β

)
η
2

−
(

y

β

)− η
2

)2


 , (2.48)

where

0 < y < ∞, 0 < α < ∞, 0 < β < ∞. (2.49)

When η = 1, we will have Y ∼ IG(β,α). Therefore, we can take the inverse Gaussian

distribution as a special case of the power inverse Gaussian [6].

Proposition 2.10. If a power inverse Gaussian random variable Y is distributed

as (2.48), then

E[log Y ] =
1

η
e

2α
η2β Ei

(

− 2α

η2β

)

+ log β; (2.50)

E

[

(

Y

β

)η

+

(

Y

β

)−η
]

= 2 +
η2β

α
. (2.51)

Proof. See [6].

Proposition 2.11 (Differential Entropy of the Power Inverse Gaussian). If a power

inverse Gaussian random variable Y is distributed as (2.48), its differential entropy

will be

h(YPIG) = − log

√

α

2πβ3
+

(

1

η
+

1

2

)

e
2α
η2β Ei

(

− 2α

η2β

)

+
1

2
. (2.52)

Proof. The claim can be derived simply by plugging in Proposition 2.10.

Proposition 2.12. If a power inverse Gaussian random variable Y is distributed

as (2.48),

E
[

Y b
]

=
βb−1/2

η

√

2α

π
exp

(

α

η2β

)

K b
η
− 1

2

(

α

η2β

)

. (2.53)

Proof. See [8, Ch. 18].

Lemma 2.13. If Y is a random variable that satisfied the following two constraints:

E[log Y ] =
1

η
e

2α
η2β Ei

(

− 2α

η2β

)

+ log β (2.54)

and

E

[

(

Y

β

)η

+

(

Y

β

)−η
]

= 2 +
η2β

α
(2.55)

where η is an fixed real number, η '= 0, β > 0 and α > 0, the distribution of Y that

maximizes the entropy is the power inverse Gaussian distribution.
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2.3 Related Lemmas and Propositions

In this section, we will show the lemmas and properties which will be used in our

proof of bounds.

The first one is the data processing theorem for relative entropy. It can also

be called relative entropy processing theorem, or monotonicity theorem of relative

entropy.

Lemma 2.14 (Data Processing Theorem for Relative Entropy). Let QX1
and QX2

be two input distributions of a communication channel, and QY1
and QY2

the two

corresponding output distributions. Then

D(QX1
‖QX2

) ≥ D(QY1
‖QY2

), (2.56)

where

D(QX1
‖QX2

) !

∫

QX1
(x) log

QX1
(x)

QX2
(x)

dx. (2.57)

Proof. See, e.g., [9, (B.102)].

Lemma 2.4 says that due to the noise introduced in a channel, two output distri-

butions are more difficult to distinguish from each other that the two corresponding

inputs distribution.

Next, we will list some propositions related to the Q-function.

Definition 2.15. The Q-function is defined by

Q (α) !
1√
2π

∫ ∞

α
et

2/2 dt. (2.58)

Note that Q (α) is the probability that a standard Gaussian random variable

will exceed the value α and is therefore monotonically decreasing with an increasing

argument.

Proposition 2.16 (Bounds for the Q-function).

1√
2πα

e−
α2

2

(

1− 1

α2

)

< Q (α) <
1√
2πα

e−
α2

2 , α > 0; (2.59)

Q (α) ≤ 1

2
e−

α2

2 , α ≥ 0. (2.60)

Proposition 2.17. Let Φ(·) denote the cumulative distribution function (CDF) of

the standard normal distribution:

Φ(α) =
1√
2π

∫ α

−∞
e−t2/2 dt. (2.61)

Then

Q (α) = Φ(−α), (2.62)

Q (α) +Q (−α) = 1. (2.63)
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α

In MATLAB, we can use y=qfunc(x) to get the value of the Q-function.

Proposition 2.18 (Upper and Lower Bound for Exponential Integral Function).

We have

1

2
e−x ln

(

1 +
2

x

)

< E1(x) = −Ei(−x) < e−x ln

(

1 +
1

x

)

, x > 0, (2.64)

or

−e−x ln

(

1 +
1

x

)

< −E1(x) = Ei(−x) < −1

2
e−x ln

(

1 +
2

x

)

, x > 0. (2.65)
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Chapter 3

Known Bounds to the Capacity

of the AIGN Channel

The entropy maximizing distribution f∗(y) with a mean constraint E[Y ] ≤ m+µ is

the exponential distribution with parameter 1
m+µ [7, (12.21)]:

f∗(y) =
1

m+ µ
e−

y
m+µ , y ≥ 0. (3.1)

The entropy of such a distribution is

h∗(Y ) = 1 + ln(m+ µ). (3.2)

This can be used to derive a upper bound on the capacity of the AIGN channel:

! sup
fX(x) : E[X]≤m

I(X;Y ) (3.3)

= sup
fX(x) : E[X]≤m

{

h(Y )− hIG(µ,λ)

}

(3.4)

= sup
fX(x) : E[X]≤m

h(Y )− hIG(µ,λ) (3.5)

= 1 + ln(m+ µ)− hIG(µ,λ). (3.6)

In [1], to derive a lower bound, we drop the maximization and the additivity property

of the IG distribution is used. We choose an input signal X to be IG in such a way,

according to Lemma 2.2, that the output Y will be also inverse Gaussian.

Since the noise distribution isN ∼ IG(µ,λ), i.e., κ = λ
µ2 . SettingX ∼ IG(m,λx),

we must satisfy

κ =
λ

µ2
=

λx

m2
. (3.7)

Hence we need

λx = λ
m2

µ2
. (3.8)

13



Chapter 3 Known Bounds to the Capacity of the AIGN Channel

As a result, the input X is chosen as:

X ∼ IG

(

m,λ
m2

µ2

)

. (3.9)

The corresponding output Y is then also IG distributed:

Y ∼ IG

(

m+ µ,
λ

µ2
(µ+m)2

)

. (3.10)

The distribution of Y is not necessarily an entropy maximizing distribution for a

given mean, m+ µ.

Combing the upper and lower bound on capacity, we have the following:

h
IG

(

m+µ, λ
µ2

(m+µ)2
) − hIG(µ,λ) ≤ ≤ 1 + log(µ+m)− hIG(µ,λ). (3.11)

Using Proposition 2.1, we have

h
IG

(

m+µ, λ
µ2

(m+µ)2
) =

1

2
log

2πµ2(m+ µ)

λ

+
3

2
exp

(

2λ(m+ µ)

µ2

)

· Ei
(

−2λ(m+ µ)

µ2

)

+
1

2
, (3.12)

which then results in the following bounds:

≥ 1

2
log

m+ µ

µ

+
3

2
exp

(

2λ

µ

)(

exp

(

2λm

µ2

)

Ei

(

−2λ(m+ µ)

µ2

)

− Ei

(

−2λ

µ

))

(3.13)

=
1

2
log

mv + d

d

+
3

2
exp

(

2dv

σ2

)(

exp

(

2mv2

σ2

)

Ei

(

−2v(mv + d)

σ2

)

− Ei

(

−2dv

σ2

))

; (3.14)

≤ 1

2
log

λ(m+ µ)2

2πµ3
− 3

2
exp

(

2λ

µ

)

Ei

(

−2λ

µ

)

+
1

2
(3.15)

=
1

2
log

v(mv + d)2

2πdσ2
− 3

2
exp

(

2dv

σ2

)

Ei

(

−2dv

σ2

)

+
1

2
. (3.16)

In (3.13) and (3.15), we express the capacity as a function of m, µ and λ, while

in (3.14) and (3.16) we show the same expression as a function of m, v, σ2 and d.

These bounds are depicted in Fig. 3.3 and Fig. 3.4

We see in Fig. 3.3 that the known upper bound performs not good at high

velocities and at very low velocities.
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Figure 3.3: Upper and lower bound (3.14) and (3.16) of the AIGN channel for the

choice: m = 1, d = 1, and σ2 = 1.
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Figure 3.4: Upper and lower bound in (3.14) and (3.16) of the AIGN channel for

the choice: v = 1, d = 1, and σ2 = 1.
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Chapter 4

Our Different Trials of Lower

Bounds

4.1 Lower Bounds of h(Y ) Based on h(X)

Theorem 4.1. A lower bound on the output entropy of the inverse Gaussian channel

is as follow:

h(Y ) ≥ h(X) +
3

2
(E[log Y ]− E[logX])− λm2

2µ2
E

[

1

X

]

+ log
m

m+ µ
+

λm

2µ2
(4.1)

= h(X) +
3

2
(E[log Y ]− E[logX])− (mv)2

2σ2
E

[

1

X

]

+ log
mv

mv + 1
+

mv2

2σ2
. (4.2)

Proof. Our approach of lower bounding h(Y ) is based on the data process inequality

of relative entropy as given in Lemma 2.14

D(QX‖QXIG
) ≥ D(QY ‖QYIG

). (4.3)

We pick QX2
as

XIG ∼ IG

(

m,λ
m2

µ2

)

, (4.4)

such that QY2
will be

YIG ∼ IG

(

m+ µ,
λ

µ2
(µ+m)2

)

(4.5)

and keep QX1
and QY1

arbitrary distributed as QX and QY .

The left hand side of (4.3) can be evaluated as follows:

D(QX‖QXIG
)

= −h(X)− EQX






log







(

λm2

µ2

2πX3

)

1
2

exp

(

−
λm2

µ2 (X −m)2

2m2X

)












(4.6)
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= −h(X)− 1

2
log

λm2

2πµ2
+

3

2
EQX

[logX] + EQX

[

λ(X −m)2

2µ2X

]

(4.7)

= −h(X)− 1

2
log

λm2

2πµ2
+

3

2
EQX

[logX] + EQX

[

λ(X2 − 2mX +m2)

2µ2X

]

(4.8)

= −h(X) +
3

2
EQX

[logX] +
λ

2µ2
EQX

[X] +
λm2

2µ2
EQX

[

1

X

]

− 1

2
log

λm2

2πµ2

− λm

µ2
(4.9)

The right hand side of (4.3) will be:

D(QY ‖QYIG
)

= −h(Y )− EQY



log





(

λ
µ2 (µ+m)2

2πY 3

)
1
2

exp

(

−
λ
µ2 (µ+m)2(Y − µ−m)2

2(µ+m)2Y

)









(4.10)

= −h(Y )− 1

2
log

λ(m+ µ)2

2πµ2
+

3

2
EQY

[log Y ] + EQY

[

λ(Y − µ−m)2

2µ2Y

]

(4.11)

= −h(Y )− 1

2
log

λ(m+ µ)2

2πµ2
+

3

2
EQY

[log Y ]

+ EQY

[

λ(Y 2 + µ2 +m2 − 2µY − 2mY + 2mµ)

2µ2Y

]

(4.12)

= −h(Y ) +
3

2
EQY

[log Y ] +
λ

2µ2
EQY

[Y ] +
λ(m+ µ)2

2µ2
EQY

[

1

Y

]

− 1

2
log

λ(m+ µ)2

2πµ2
− λ(m+ µ)

µ2
. (4.13)

After rearranging both side of the data processing inequality, we get:

h(Y ) ≥ h(X) + log
m

m+ µ
− λ

µ

− 3

2
EQX

[logX]− λ

2µ2
EQX

[X]− λm2

2µ2
EQX

[

1

X

]

+
3

2
EQY

[log Y ] +
λ

2µ2
EQY

[Y ] +
λ(m+ µ)2

2µ2
EQY

[

1

Y

]

(4.14)

= h(X) +
3

2
(E[log Y ]− E[logX])− λm2

2µ2
E

[

1

X

]

+
λ(m+ µ)2

2µ2
E

[

1

Y

]

+
λ

2µ2
E[Y −X] + log

m

m+ µ
− λ

µ
(4.15)

= h(X) +
3

2
(E[log Y ]− E[logX])− λm2

2µ2
E

[

1

X

]

+
λ(m+ µ)2

2µ2
E

[

1

Y

]

+ log
m

m+ µ
− λ

2µ
. (4.16)

To get rid of E
[

1
Y

]

, we use Jensen’s inequality:

E

[

1

Y

]

≥ 1

E[Y ]
=

1

E[X] + E[N ]
≥ 1

m+ µ
, (4.17)
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which yields

h(Y ) ≥ h(X) +
3

2
(E[log Y ]− E[logX])− λm2

2µ2
E

[

1

X

]

+
λ(m+ µ)

2µ2

+ log
m

m+ µ
− λ

2µ
(4.18)

= h(X) +
3

2
(E[log Y ]− E[logX])− λm2

2µ2
E

[

1

X

]

+ log
m

m+ µ
+

λm

2µ2
. (4.19)

The second bound (4.2) then follows simply by substituting µ = d
v and λ = d2

σ2

into (4.1).

4.2 Capacity Lower Bounds Based on Theorem 4.1

In this section, it is our goal to continue trying to make the lower bound only a

function of X, independent of Y . I.e., we need to replace E[log Y ] by further lower-

bounding it. We use two different approaches.

4.2.1 Lower Bound 1: Taylor Expansion

We use a Taylor expansion of the logarithm:

log(1 + u) = −
∞
∑

n=0

(−1)n+1u
n

n
for − 1 < u ≤ 1, (4.20)

= u− u2

2
+

u3

3
− u4

4
+

u5

5
− u6

6
+ · · · (4.21)

log(1 + u) ≥ u− u2

2
, ∀u ≥ 0, (4.22)

log

(

1 +
N

x

)

≥ N

x
− N2

2x2
,

N

x
≥ 0. (4.23)

We use this bound in the following way:

E[log Y ]− E[logX] = E

[

log
N +X

X

]

(4.24)

= EX

[

EN

[

log

(

1 +
N

x

)∣

∣

∣

∣

X = x

]]

(4.25)

≥ EX

[

EN

[

N

x
− N2

2x2

∣

∣

∣

∣

X = x

]]

(4.26)

= EX

[

E[N ]

X
−

E
[

N2
]

2X2

]

(4.27)

= EX

[

µ

X
−

E
[

N2
]

2X2

]

(4.28)

= EX

[

µ

X
− µ2

2X2

(

1 +
µ

λ

)

]

(4.29)
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= µE

[

1

X

]

− µ2

2

(

1 +
µ

λ

)

E

[

1

X2

]

, (4.30)

where in (4.29) we use (2.34). This bound can now be plugged into Theorem 4.1:

plugging (4.30) into (4.1), we get a new lower bound as a function only of X:

h(Y ) ≥ h(X) +
3µ

2
E

[

1

X

]

− 3µ2

4

(

1 +
µ

λ

)

E

[

1

X2

]

− λm2

2µ2
E

[

1

X

]

+ log
m

m+ µ
+

λm

2µ2
(4.31)

= h(X) +
1

2

(

3µ− λm2

µ2

)

E

[

1

X

]

− 3µ2

4

(

1 +
µ

λ

)

E

[

1

X2

]

+ log
m

m+ µ
+

λm

2µ2
(4.32)

= h(X) +
1

2

(

3d

v
−

(mv

σ

)2
)

E

[

1

X

]

− 3d

4v3
(dv + σ2)E

[

1

X2

]

+ log
mv

mv + 1
+

mv2

2σ2
. (4.33)

Theorem 4.2 (A lower bound on capacity of the inverse Gaussian channel).

≥ h(X) +
1

2

(

3µ− λm2

µ2

)

E

[

1

X

]

− 3µ2

4

(

1 +
µ

λ

)

E

[

1

X2

]

+ log

(

m

m+ µ

(

λ

2πµ3

)
1
2

)

− 3

2
exp

(

2λ

µ

)

Ei

(

−2λ

µ

)

+
λm

2µ2
− 1

2
(4.34)

= h(X) +
1

2

(

3d

v
−

(mv

σ

)2
)

E

[

1

X

]

− 3d

4v3
(dv + σ2)E

[

1

X2

]

+ log
mv

5
2

√
2πσ(mv + 1)

− 3

2
exp

(

2v

σ2

)

Ei

(

−2v

σ2

)

+
mv2

2σ2
− 1

2
. (4.35)

Proof.

≥ I(X;Y ) = h(Y )− h(Y |X) (4.36)

= h(Y )− h(X +N |X) (4.37)

= h(Y )− hIG(µ,λ). (4.38)

The proof is complete if we plug equation (4.32) and (4.33) separately and Proposi-

tion 2.1 in (4.38).

We plug X ∼IG(m,β) into our lower bound of Theorem 4.2. Unfortunately, this

lower bound is not tighter than the known lower bound and is even decreasing as v

gets larger.
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Figure 4.5: m = 2, σ2 = 1, d = 1

4.2.2 Lower Bound 2

Another approach of lower bounding E[log Y ]− E[logX] is as follows:

E[log Y ]− E[logX] = E

[

log
X +N

X

]

(4.39)

= E[logN ] + E

[

log

(

1

N
+

1

X

)]

(4.40)

≥ e
2λ
µ Ei

(

−2λ

µ

)

+ logµ+ E

[

log

(

1

µ
+

1

X

)]

(4.41)

≥ e
2λ
µ Ei

(

−2λ

µ

)

+ logµ+ log

(

1

µ
+

1

m

)

. (4.42)

Therefore, we derive the capacity lower bound as follow:

≥ h(Y )− h(N) (4.43)

≥ h(X) +
3

2
(E[log Y ]− E[logX])− λm2

2µ2
E

[

1

X

]

+ log
m

m+ µ
+

λm

2µ2

− h(N) (4.44)

≥ h(X)− λm2

2µ2
E

[

1

X

]

+
λm

2µ2
− 1

2
+

1

2
log

(m+ µ)λ

2πmµ3
, (4.45)

where equation (4.44) comes from (4.19) and the equation (4.45) comes from (4.42)

and (2.2).

20



4.2 Capacity Lower Bounds Based on Theorem 4.1 Chapter 4

Corollary 4.3.

≥ h(X)− λm2

2µ2
E

[

1

X

]

+
λm

2µ2
+

1

2
log

(m+ µ)λ

2πemµ3
(4.46)

= h(X)− m2v2

2σ2
E

[

1

X

]

+
mv2

2σ2
+

1

2
log

(mv + d)v2

2πemσ2d
. (4.47)

As a choice for the input X, we choose a power inverse Gaussian distribution

described in Section 2.2:

fX(x) =

√

α

2πβ3

(

x

β

)−(1+ η
2 )

exp



− α

2η2β

(

(

x

β

)
η
2

−
(

x

β

)− η
2

)2


 , (4.48)

where

0 < x < ∞, 0 < α < ∞, 0 < β < ∞. (4.49)

From Proposition 2.12 and the delay constraint of X we have:

E[X] = β

√

2α̃

π
eα̃K 1

η
− 1

2
(α̃)

!
= m. (4.50)

Defining α̃ ! α
η2β now leads to

β =
m

√

2α̃
π eα̃K 1

η
− 1

2
(α̃)

. (4.51)

From Proposition 2.11, we have

h(X) = −1

2
log

α̃η2

2πβ2
+

(

1

η
+

1

2

)

e2α̃ Ei(−2α̃) +
1

2
, (4.52)

and

E

[

1

X

]

=

√

2α̃

πβ2
eα̃K− 1

η
− 1

2
(α̃) (4.53)

=
m

β2

K− 1
η
− 1

2
(α̃)

K 1
η
− 1

2
(α̃)

(4.54)

=
2α̃

mπ
e2α̃K 1

η
− 1

2
(α̃)K− 1

η
− 1

2
(α̃) . (4.55)

Plugging (4.51), (4.52) and (4.55) into (4.46), we derive the lower bound as follows:

≥ −1

2
log

α̃η2

2πeβ2
+

(

1

η
+

1

2

)

e2α̃ Ei(−2α̃)− mλα̃

πµ2
e2α̃K 1

η
− 1

2
(α̃)K− 1

η
− 1

2
(α̃)

+
λm

2µ2
+

1

2
log

(m+ µ)λ

2πemµ3
(4.56)

=
1

2
log

πm(m+ µ)λ

2µ3
− log α̃− log | η |− α̃− logK 1

η
− 1

2
(α̃) +

λm

2µ2

+

(

1

η
+

1

2

)

e2α̃ Ei(−2α̃)− mλα̃

πµ2
e2α̃K 1

η
− 1

2
(α̃)K− 1

η
− 1

2
(α̃) . (4.57)
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Figure 4.6: m = 2, σ2 = 1, d = 1

The parameters α, β and η are freely choosable. We optimize their value numerically

and get a lower bound shown in Fig. 4.6.

Unfortunately, the lower bound with power inverse Gaussian is not tighter than

the known lower bound.

4.3 Lower Bound Based on the Convolution of Expo-

nential and Inverse Gaussian Distribution

We start with a new approach based on the choice of the input X ∼ Exp
(

1
m

)

.

Because it is an additive channel, the resulting output will have a PDF that is

the convolution of the exponential PDF with the inverse Gaussian PDF. This can

actually be computed explicitly [10, Eq.(18)]:

fY (y) =
1

m
e−

Y
m
+λ

µ

(

e−kdλΦ

(

kY − d
√

Y/λ

)

+ ekdλΦ

(

−kY + d
√

Y/λ

))

(4.58)

=
1

m
e−

y
m
+λ

µ

(

e−kλ

(

1−Q
(

ky − 1
√

y/λ

))

+ ekλQ
(

ky + 1
√

y/λ

))

(4.59)

=
1

m
e−

y
m
+λ

µ

(

e−kλQ
(

−
√
kλ

(

√

ky − 1√
ky

))
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+ ekλQ
(√

kλ

(

√

ky +
1√
ky

)))

, (4.60)

where

k =

√

v2 − 2σ2

m
= d

√

v2

d2
− 2σ2

d2m
=

√

1

µ2
− 2

λm
. (4.61)

We remind that without loss of generality, we assume to have a unit length d = 1

between transmitter and receiver. Note that to make sure that the bound is real, it

must constrain the channel parameters to satisfy

m ≥ 2µ2

λ
. (4.62)

This now yields the following lower bound on capacity:

! max
fX(x)

I(X;Y ) (4.63)

≥ I(X;Y )
∣

∣

X∼exp( 1
m
)

(4.64)

= (h(Y )− h(Y |X))
∣

∣

X∼exp( 1
m
)

(4.65)

= h(Y )
∣

∣

X∼exp( 1
m
)
− h(N) (4.66)

= −EY [log fY (Y )]− h(N) (4.67)

= −EY

[

log

(

1−Q
(

√
kλ

(

√
kY −

√

1

kY

))

+ e2kλQ
(

√
kλ

(

√
kY +

√

1

kY

)))]

+ logm+
m+ µ

m
− λ

µ
+ kλ− h(N) (4.68)

≥ −EY

[

log

(

1 + e2kλQ
(

√
kλ

(

√
kY +

√

1

kY

)))]

+ logm+
m+ µ

m

− λ

µ
+ kλ− h(N) (4.69)

≥ −EY

[

log

(

1 + e2kλ
1

2
e−

1
2
kλ(kY+2+ 1

kY )
)]

+ logm+
m+ µ

m
− λ

µ
+ kλ− h(N)

(4.70)

= −EY

[

log

(

1 +
1

2
e−

1
2
kλ(kY−2+ 1

kY )
)]

+ logm+
m+ µ

m
− λ

µ
+ kλ− h(N) (4.71)

= −EY

[

log

(

1 +
1

2
e
− 1

2
kλ

(√
kY− 1√

kY

)2)]

+ logm+
m+ µ

m
− λ

µ
+ kλ− h(N).

(4.72)

Here in (4.69) we lower-bound the first Q-function by 0 because Q (·) is nonnegative.
Then based on that log(·) is a monotonic function, in (4.70) we apply the upper

bound for the Q-function (2.60).
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To further bound this expectation over Y , we provides two methods. The first

method is simply using

EY

[

log

(

1 +
1

2
e
− 1

2
kλ

(√
kY− 1√

kY

)2)]

≤ log
3

2
, (4.73)

since

−1

2
kλ

(√
kY − 1√

kY

)2

≤ 0. (4.74)

Therefore, the first method gives us the result

≥ logm− log
3

2
+

µ

m
− λ

µ
+ kλ+

1

2
log

λe

2π
− 3

2
log µ− 3

2
e

2λ
µ Ei

(

−2λ

µ

)

. (4.75)

Another option is applying Jensen’s inequality:

≥ −EY

[

log

(

1 +
1

2
e
− 1

2
kλ

(√
kY− 1√

kY

)2)]

+ logm+ 1 +
µ

m
− λ

µ
+ kλ− h(N)

(4.76)

≥ − log

(

EY

[

1 +
1

2
e
− 1

2
kλ

(√
kY− 1√

kY

)2])

+ logm+ 1 +
µ

m
− λ

µ
+ kλ− h(N).

(4.77)

Making a variable transformation t = ky we now evaluate the expectation as follows:

EY

[

e
− 1

2
kλ

(√
kY− 1√

kY

)2]

=

∫ ∞

0

1

km
e

λ
µ
− t

km
−kλe

− 1
2
kλ

(√
t− 1√

t

)2

·
(

1−Q
(√

kλ

(√
t− 1√

t

))

+ e2kλQ
(√

kλ

(√
t+

1√
t

)))

dt (4.78)

≤
∫ ∞

0

1

km
e

λ
µ
− t

km

(

1 +
1

2
e−

1
2
kλ(t−2+ 1

t )
)

e−
1
2
kλ(t+ 1

t ) dt (4.79)

=
1

km
e

λ
µ

(
∫ ∞

0
e−

t
km

− 1
2
kλt− 1

2
kλ 1

t dt+
1

2
ekλ

∫ ∞

0
e−

t
km

−kλt−kλ 1
t dt

)

(4.80)

=
2

m
e

λ
µ

√

λm

2 + k2λm
1

(

√

2λ

m
+ k2λ2

)

+
1

m
e

λ
µ
+kλ

√

λm

1 + k2λm
1

(

2

√

λ

m
+ k2λ2

)

, (4.81)

and therefore

≥ log
m

λ
+

µ

m
− λ

µ
+ kλ+

3

2
log

λ

µ
+

1

2
log

e

2π
− 3

2
e

2λ
µ Ei

(

−2λ

µ

)

− log

(

1 +
1

m
e

λ
µ

√

λm

2 + k2λm
1

(

√

2λ

m
+ k2λ2

)

+
1

2m
e

λ
µ
+kλ

√

λm

1 + k2λm
1

(

2

√

λ

m
+ k2λ2

))

. (4.82)
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Figure 4.7: m = 2, σ2 = 1, d = 1
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This bound is shown in Figs. 4.7 and 4.8.
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Chapter 5

Our Different Trials of Upper

Bounds

In Chapter 6, we will show that the known upper bound proposed in [1] is quite

tight in high drift velocity v and m. Therefore, the main goal in this chapter will

focus on low v. Since we had a rather separated upper and lower bound in low v,

we attempt to derive a better upper bound that behaves closer to the capacity. The

method we use here is duality-based bound:

≤ EQ∗

[

D
(

W (·|X)
∥

∥R(·)
)]

, (5.1)

where D(·‖·) is defined in (2.57), W (·|X) is the channel law, R(·) is the output

distribution and Q∗ is the capacity-achieving input distribution [11, Ch. 7]. The

only thing which is known to us is the channel law W (·|X).

Note that the R(·) here can be any distribution on the output. It doesn’t need

to be an output distribution corresponding to a certain input distribution. This

gives us quite a lot of freedom, but we still have three main tasks here to find

a good or reasonable upper bound: First is making a clever choice of R(·) that

helps us to get a better upper bound. Second is being able to analytically evaluate

D
(

W (·|X)
∥

∥R(·)
)

, which is usually difficult. Third is evaluating or further upper-

bounding the expectation over the capacity-achieving input on the right hand side of

(5.1) without knowing Q∗ generally. The third task could be solved by the properties

of Q∗, e.g., the input moment constraint.

This chapter shows some of the trials we did by choosing R(·) to be exponential,

inverse Gaussian, power inverse Gaussian and shifted Gamma distribution.

5.1 Exponential Distribution as Output Distribution

Based on (5.1), when we plug an exponential distribution Exp(β) as output distri-

bution, we get the following bound:

≤ EQ∗

[

D(fY |X(·|X)‖fY (·))
]

(5.2)
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= EQ∗

[

−h(Y |X = x)− EY |X [log fY (·)]
]

(5.3)

= −h(N) + log β +
E[Y ]

β
(5.4)

= −h(N) + log β +
E[X +N ]

β
(5.5)

≤ −h(N) + log β +
m+ µ

β
(5.6)

! q(µ,λ,β) (5.7)

We optimize over β

∂q(µ,λ,β)

∂β
=

1

β
− m+ µ

β2
(5.8)

!
= 0 (5.9)

and get the optimal result:

β∗ = m+ µ, (5.10)

which is exactly the upper bound in [1].

5.2 Inverse Gaussian Distribution as Output Distribu-

tion

In the communication environment described in Chapter 1, we have a mean con-

straint on the input delay, E[X] ≤ m. Therefore, another capacity upper bound is

derived by choosing an output distribution as IG(m + µ,β) into the duality-based

upper bound (5.1).

Lemma 5.1 (Upper bound with IG(m+ µ,β) as the output distribution).

≤ 1

2
log

2π

β
+

3

2
E[log(X +N)]− β

2(m+ µ)
+

β

2
E

[

1

X +N

]

− h(N). (5.11)

Proof.

≤ EQ∗

[

D(fY |X(·|X)‖fY (·))
]

(5.12)

= EQ∗

[

−h(Y |X = x)− EY |X [log fY (·)]
]

(5.13)

= −h(N)− EQ∗

[

EY |X

[

log

(

√

β

2πY 3
exp

(

−β(Y −m− µ)2

2(m+ µ)2Y

)

)]]

(5.14)

= −h(N) +
1

2
log

2π

β
+

3

2
E[log Y ] +

β

2(m+ µ)
+

β

2
E

[

1

Y

]

− β

m+ µ
(5.15)

= −h(N) +
1

2
log

2π

β
+

3

2
E[log(X +N)]− β

2(m+ µ)
+

β

2
E

[

1

X +N

]

. (5.16)
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There are two methods how we can further bound Lemma 5.1. First method,

apply Jensen’s inequality on E[log(X +N)]:

≤ −h(N) +
1

2
log

2π

β
+

3

2
log(m+ µ)− β

2(m+ µ)
+

β

2
E

[

1

X +N

]

(5.17)

! f(m,µ,λ,β). (5.18)

To optimize over β, we perform partial differential for f(·) over β:

∂f(m,µ,λ,β)

∂β
= − 1

2β
− 1

2(m+ µ)
+

1

2
E

[

1

X +N

]

(5.19)

!
= 0. (5.20)

Solving equation (5.20), we get

β∗ =
m+ µ

(m+ µ)E
[

1
X+N

]

− 1
. (5.21)

Hence, we plug the optimal β back in (5.17) and get:

≤ −h(N) +
1

2
log

(

2π

m+ µ

(

(m+ µ)E

[

1

X +N

]

− 1

))

+
3

2
log(m+ µ) +

1

2
(5.22)

=
3

2
log

m+ µ

µ
+

1

2
log λ− 3

2
e

2λ
µ Ei

(

−2λ

µ

)

+
1

2
log

(

E

[

1

X +N

]

− 1

m+ µ

)

(5.23)

≤ 3

2
log

m+ µ

µ
+

1

2
log λ− 3

2
e

2λ
µ Ei

(

−2λ

µ

)

+
1

2
log

(

E

[

1

N

]

− 1

m+ µ

)

(5.24)

=
3

2
log

m+ µ

µ
− 3

2
e

2λ
µ Ei

(

−2λ

µ

)

+
1

2
log

(

1 +
mλ

µ(m+ µ)

)

. (5.25)

Here, (5.23) is derived by plugging in Proposition 2.1. Since X is nonnegative,

dropping X results in (5.24). And in (5.25), we use (2.33).

In a second method, from Lemma 5.1, we do not apply Jensen’s inequality on

E[log(X +N)] yet. Instead, we upper-bound it as follow:

E[log(N +X)] = E[logN ] + EX

[

EY |X

[

log
(

1 +
x

N

)]∣

∣

∣
X = x

]

(5.26)

≤ E[logN ] + EX

[

log
(

EY |X

[

1 +
x

N

])∣

∣

∣
X = x

]

(5.27)

= E[logN ] + EX

[

log

(

1 +X

(

1

µ
+

1

λ

))∣

∣

∣

∣

X = x

]

(5.28)

≤ E[logN ] + log

(

1 +m

(

1

µ
+

1

λ

))

(5.29)

= e
2λ
µ Ei

(

−2λ

µ

)

+ logµ+ log

(

1 +m

(

1

µ
+

1

λ

))

, (5.30)
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where (5.27) follows by Jensen’s inequality, (5.28) applies (2.33) in Proposition 2.5,

(5.29) follows from Jensen’s inequality again together with E [X] ≤ m, and (5.30)

simply plug in Proposition 2.7. This leads us to:

≤ −1

2
log

2πµ3

λ
− 3

2
e

2λ
µ Ei

(

−2λ

µ

)

− 1

2
+

1

2
log

2π

β
+

3

2
e

2λ
µ Ei

(

−2λ

µ

)

+
3

2
log µ+

3

2
log

(

1 +m

(

1

µ
+

1

λ

))

− β

2(m+ µ)
+

β

2
E

[

1

X +N

]

(5.31)

=
1

2
log

λ

eβ
+

3

2
log

(

1 +m

(

1

µ
+

1

λ

))

− β

2(m+ µ)
+

β

2
E

[

1

X +N

]

(5.32)

! g(m,µ,λ,β). (5.33)

Here, the equation (5.31) follows from the entropy of IG in (2.2) and (5.30). To

optimize over β, we perform partial differential for g(·) over β:

∂g(m,µ,λ,β)

∂β
= − 1

2β
− 1

2(m+ µ)
+

1

2
E

[

1

X +N

]

(5.34)

!
= 0. (5.35)

Solving equation (5.35), we get

β′∗ =
m+ µ

(m+ µ)E
[

1
X+N

]

− 1
, (5.36)

which is the same as (5.21)! We plug the optimal β′ back in (5.32) and get:

≤ 1

2
log λ+

1

2
log

(

E

[

1

X +N

]

− 1

m+ µ

)

+
3

2
log

(

1 +m

(

1

µ
+

1

λ

))

(5.37)

≤ 1

2
log λ+

1

2
log

(

E

[

1

N

]

− 1

m+ µ

)

+
3

2
log

(

1 +m

(

1

µ
+

1

λ

))

(5.38)

=
1

2
log λ+

1

2
log

(

1

λ
+

1

µ
− 1

m+ µ

)

+
3

2
log

(

1 +m

(

1

µ
+

1

λ

))

(5.39)

=
1

2
log

(

1 +
mλ

µ(m+ µ)

)

+
3

2
log

(

1 +m

(

1

µ
+

1

λ

))

. (5.40)

We plot the lower bound according to drift velocity v and average-delay con-

straint m. As mentioned at the beginning of this chapter, the known upper bound

is quite tight at the high m and v. Therefore, the figures below focus on the improve-

ment in low v and m. From Figure 5.9, the known upper bound has a rising peak

as v decreases, while our upper bound with IG output distribution has a decreasing

tendency and will cross the known one. From Figure 5.10, our upper bound also

crosses the known upper bound at low m.
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5.3 Power Inverse Gaussian Distribution as Output Dis-

tribution

The PDF of the power inverse Gaussian distribution (PIG) is given by

fY (y) =

√

α

2πβ3

(

β

y

)(1+ η
2 )

exp



− α

2η2β

(

(

y

β

)
η
2

−
(

β

y

)
η
2

)2


 , (5.41)

where y > 0. The free parameters here are α,β > 0, and η ∈ R \ {0}. Using (5.1),

we derive the capacity upper bound with output distribution PIG.

≤ −h(N)− EQ∗

[

EY |X [log (fY (Y ))]
]

(5.42)

= −h(N)−
(

1 +
η

2

)

log β +
(

1 +
η

2

)

EQ∗ [log(X +N)]− 1

2
logα+

1

2
log 2π

+
3

2
log β +

α

2η2β1+η
EQ∗ [(X +N)η] +

α

2η2β1−η
EQ∗

[

(X +N)−η
]

− α

η2β
(5.43)

! g(α,β, η). (5.44)

We first optimize over α before doing any further bounding on the expectation over

Q∗.

∂g(α,β, η)

∂α
= − 1

2α
+

1

2η2β

(

β−ηEQ∗ [(X +N)η] + βηEQ∗

[

(X +N)−η
]

− 2
)

(5.45)

!
= 0. (5.46)

We solve the optimal α,

α∗ =
η2β

β−ηEQ∗ [(X +N)η] + βηEQ∗ [(X +N)−η]− 2
(5.47)

and plug it back to (5.43):

≤ −h(N)−
(

1 +
η

2

)

log β +
(

1 +
η

2

)

EQ∗ [log(X +N)] +
1

2
log 2π +

1

2
+ log β

− log |η|+ 1

2
log

(

β−ηEQ∗ [(X +N)η] + βηEQ∗

[

(X +N)−η
]

− 2
)

(5.48)

! b(α,β, η). (5.49)

Then, we continue with optimizing over β:

∂b(β, η)

∂β
= − η

2β
+

−ηβ−η−1E[(X +N)η] + ηβη−1E[(X +N)−η]

2 (β−ηEQ∗ [(X +N)η] + βηEQ∗ [(X +N)−η]− 2)
(5.50)

!
= 0. (5.51)

We solve the optimal β,

β∗ = E[(X +N)η]
1
η (5.52)
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and plug it back to (5.48):

≤ −h(N)− 1

2
log EQ∗ [(X +N)η] +

(

1 +
η

2

)

EQ∗ [log(X +N)] +
1

2
log 2π +

1

2

− log |η|+ 1

2
log

(

EQ∗

[

(X +N)−ηEQ∗ [(X +N)η]
]

− 1
)

(5.53)

= −h(N) +
(

1 +
η

2

)

EQ∗ [log(X +N)] +
1

2
log 2π +

1

2
− log |η|

+
1

2
log

(

EQ∗

[

(X +N)−η
]

− 1

EQ∗ [(X +N)η]

)

. (5.54)

Firstly, we upper-bound
(

1 +
η

2

)

EQ∗ [log(X +N)]

=
(

1 +
η

2

)

(

E[logN ] + EQ∗

[

log

(

1 +
X

N

)])

(5.55)

≤
(

1 +
η

2

)

(

E[logN ] + log

(

1 + EQ∗

[

X

N

]))

(5.56)

≤
(

1 +
η

2

)

(

E[logN ] + log

(

1 +mE

[

1

N

]))

(5.57)

=
(

1 +
η

2

)

(

e
2λ
µ Ei

(

−2λ

µ

)

+ logµ+ log

(

1 +m

(

1

µ
+

1

λ

)))

(5.58)

for η ≥ −2. Here we apply Jensen’s inequality in both (5.55) and (5.56). The

mean constraint on the input E[X] ≤ m is applied to get (5.57). With the help of

Proposition 2.5, we have (5.58). Then we derive

EQ∗

[

(X +N)−η
]

≤ E
[

N−η
]

(5.59)

=

√

2λ

π
e

λ
µµ−η− 1

2Kη+ 1
2

(

λ

µ

)

(5.60)

for 0 ≤ η, and

EQ∗ [(X +N)η] ≤ (EQ∗ [X +N ])η (5.61)

≤ (m+ µ)η (5.62)

for 0 ≤ η ≤ 1. Here, (5.59) follows from X is non-negative, (5.60) follows from

Proposition 2.5, (5.61) follows from Jensen’s inequality and (5.62) follows from the

mean constraint on the input E[X] ≤ m. As a result, we derive the capacity upper

bound as follow:

≤ 1

2
log λ+

η − 1

2
log µ+

η − 1

2
e

2λ
µ Ei

(

−2λ

µ

)

+
(

1 +
η

2

)

log

(

1 +m

(

1

λ
+

1

µ

))

− log |η|+ 1

2
log

(

EQ∗

[

(X +N)−η
]

− 1

EQ∗ [(X +N)η]

)

(5.63)

≤ 1

2
log λ− logµ− e

2λ
µ Ei

(

−2λ

µ

)

+
1

2
log

(

1 +m

(

1

λ
+

1

µ

))

+
1

2
log

(

m+ µ− µλ

µ+ λ

)

. (5.64)

This upper bound is depicted in Figure 5.11 and Figure 5.12.
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5.4 Shifted Gamma Distribution as Output Distribu-

tion

The shifted Gamma distribution is actually a generalization of Gamma distribution

and exponential distribution. We shift the gamma function left by δ and get the

shifted gamma function as follow:

RSG(y) =
(y + δ)α−1e−

y+δ
β

βα · Γ(α, δ
β )

, (5.65)

where y ≥ 0, α > 0, β > 0, δ ≥ 0. And gamma function is defined below:

Γ(η, ξ) !

∫ ∞

ξ
tη−1e−t dt (5.66)

where η > 0 and ξ ≥ 0. When there is no shift, that means δ = 0, we have an

Gamma distribution:

RG(y) =
yα−1e−

y
β

βα · Γ(α, 0) . (5.67)

Moreover, when α = 1, we have an exponential distribution with parameter 1/β:

Rexp(y) =
1

β
e−

1
β
y. (5.68)

Here we simply plug (5.65) as output distribution and the channel law

W (y|x) =

√

λ

2π(y − x)3
exp

(

−λ(y − x− µ)2

2µ2(y − x)

)

, y > x, (5.69)

in capacity upper bound (5.1). We get the following:

≤ −h(N)− EX∗

[

EY |X

[

log

(

(y + δ)α−1e−
y+δ
β

βα · Γ(α, δ
β )

)]]

(5.70)

= −h(N) + (1− α)E[log(N +X + δ)] +
E[N +X + δ]

β

+ α log β + logΓ

(

α,
δ

β

)

(5.71)

≤ −h(N) + (1− α)E[log(N +X + δ)] +
µ+m+ δ

β

+ α log β + logΓ

(

α,
δ

β

)

(5.72)

• For α ≥ 1: E[log(N +X + δ)] ≥ E[logN ]

≤ −h(N) + (1− α) log µ+ (1− α)e
2λ
µ Ei

(

−2λ

µ

)

+
µ+m+ δ

β

+ α log β + logΓ

(

α,
δ

β

)

. (5.73)
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• For α ≥ 1: E[log(N +X + δ)] ≥ log δ

≤ −h(N) + (1− α) log δ +
µ+m+ δ

β
+ α log β + logΓ

(

α,
δ

β

)

. (5.74)

• For 0 < α ≤ 1: applying Jensen’s inequality E[log(N +X + δ)] ≤ log(µ+m+δ)

≤ −h(N) + (1− α) log(µ+m+ δ) +
µ+m+ δ

β
+ α log β + logΓ

(

α,
δ

β

)

.

(5.75)

We optimize over α, β and δ for these three different boundings and get Figure 5.13.

There we can see that the optimized (5.73), (5.74) and (5.75) are the same as known

upper bound (3.16). This is because the shifted Gamma distribution contains expo-

nential distribution as a special case.
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Chapter 6

Asymptotic Capacity of AIGN

Channel

In this chapter, we try to figure out how the capacity behaves when the drift velocity

v and the average-delay constraint m tend to infinity.

6.1 When v Large

We first pick the known upper bound introduced in Chapter 3 since it is asymptot-

ically tight in v:

(v) ≤ 1 + log(m+ µ)− hIG(µ,λ) (6.1)

= 1 + log(m+ µ)− 1

2
log

2πσ2d

v3
− 3

2
exp

(

2dv

σ2

)

Ei

(

−2dv

σ2

)

− 1

2
(6.2)

<
1

2
+ log

(

m+
d

v

)

− 1

2
log 2πσ2d+

3

2
log v +

3

2
log

(

1 +
σ2

2dv

)

(6.3)

= log

(

m+
d

v

)

+
1

2
log

e

2πσ2d
+

3

2
log v − 3

2
log

(

1 +
σ2

2dv

)

, (6.4)

where (6.3) is simply plugging in the upper bound of Ei(·) from Proposition 2.18.

Its asymptotic upper bound is:

(v) ≤ 3

2
log v +

1

2
log

λm2e

2π
+ o(1). (6.5)

On the other hand, we pick the lower bound in Section 4.3:

(v) ≥ log
m

λ
+

1

mv
− λv + kλ+

3

2
log λv +

1

2
log

e

2π
− 3

2
e2λv Ei(−2λv)

− log

(

1 +
1

m
eλv

√

λm

2 + k2λm
1

(

√

2λ

m
+ k2λ2

)

+
1

2m
eλv+kλ

√

λm

1 + k2λm
1

(

2

√

λ

m
+ k2λ2

))

, (6.6)
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where k =
√

v2 − 2σ2

m . When v goes to infinity, the result is as follow:

(v) ≥ 3

2
log v +

1

2
log

λm2e

2π
+ o(1). (6.7)

From (6.5) and (6.7), we can observe that the upper and the lower bound coincide,

which proves the following result:

Theorem 6.1 (Asymptotic Capacity of AIGN Channel with v Large). The capacity

of the AIGN channel defined in Section 1.1 and 1.2 is asymptotically, when the drift

velocity v of the fluid medium tends to infinity while all other parameters are kept

constant, as follow:

lim
v↑∞

{

(v)− 3

2
log v

}

=
1

2
log

λm2e

2π
. (6.8)
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Figure 6.14: Setting parameter: m = 2, d = 1 and σ2 = 1.

6.2 When m Large

First, we use the known upper bound introduced in Chapter 3 since it is also asymp-

totically tight in m:

(m) ≤ 1 + log(m+ µ)− hIG(µ,λ) (6.9)

= 1 + logm+ log
(

1 +
µ

m

)

− hIG(µ,λ), (6.10)
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where h(N) is independent ofm. Whenm goes to infinity, the upper bound becomes:

(m) ≤ logm+
1

2
log

eλ

2πµ3
− 3

2
e

2λ
µ Ei

(

−2λ

µ

)

+ o(1) (6.11)

On the other hand, we also pick the lower bound in Section 4.3.

(m) ≥ log
m

λ
+

µ

m
− λ

µ
+ kλ+

3

2
log

λ

µ
+

1

2
log

e

2π
− 3

2
e

2λ
µ Ei

(

−2λ

µ

)

− log

(

1 +
1

m
e

λ
µ

√

λm

2 + k2λm
1

(

√

2λ

m
+ k2λ2

)

+
1

2m
e

λ
µ
+kλ

√

λm

1 + k2λm
1

(

2

√

λ

m
+ k2λ2
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(6.12)

= logm+
1

2
log

eλ

2πµ3
− 3

2
e

2λ
µ Ei

(

−2λ

µ

)

+ o(1) (6.13)

where k =
√

1
µ2 − 2

λm . Here, (6.13) is because the last term of (6.12) goes to 0 once

we let m goes to infinity. From (6.11) and (6.13), we can observe that the upper

and the lower bound coincide, which proves the following result.

Theorem 6.2 (Asymptotic Capacity of AIGN Channel withm Large). The capacity

of the AIGN channel defined in Section 1.1 and 1.2 is asymptotically, when the

average-delay constraint m is loosened to infinity while all other parameters are kept

constant, as follow:

lim
m↑∞

{ (m)− logm} = 1− hIG(µ,λ) (6.14)

=
1

2
log

λe

2πµ3
− 3

2
exp

(

2λ

µ

)

Ei

(

−2λ

µ

)

. (6.15)
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Figure 6.15: Setting parameter: m = 2, d = 1 and σ2 = 1.
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Chapter 7

Discussion and Conclusion

In this thesis, a new type of channel, the additive inverse Gaussian noise channel,

has been investigated. We introduced its interesting properties and related lemmas.

Several methods of upper-bounding and lower-bounding its channel capacity are

provided.

We have found out that the upper bounds (3.15) and (3.16) from literature [1]

are very tight by providing analytical lower bound that is tight in the asymptotic

regime. Therefore, we focused on the low drift velocity v and low average-delay m

regime. Note that (3.16) has a strange increasing behavior when v → 0. Here we

provided an upper bound (5.40) that is better than (3.16) in low v. Moreover, (3.15)

does not tend to 0 as m → 0, while we can show an improved upper bound (5.40)

that does tends to 0.

The lower bounds (3.15) and (3.14) in [1], are not tight enough in both high

v and high m. With the help of [10], we were able to compute the exact output

distribution of an exponential input. This lower bound (4.82) was much tighter than

the known bound with respect to both v and m. It turned out that together with the

known upper bound, this lower bound allowed us to derive the asymptotic capacity

at high v (6.8) and m (6.15).

For future research, we propose the following problems related to the additive

inverse Gaussian noise channel:

• Derivation of the exact slope of the asymptotic capacity when m → 0.

• Derivation of the channel capacity behavior for v → 0.

• Inclusion of a peak-delay constraint to the system.

• Extension to nonadditive channels.
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