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Molecular Communication in Fluid Media:
Bounds on the Capacity of the Additive

Inverse GGaussian Noise Channel

Student: Chang Hui-Ting Advisor: Prof. Stefan M. Moser

Institute of Communication Engineering
National Chiao Tung University

Abstract

In this thesis a very recent and new channel model is investigated that describes
communication based on the exchange of chemical molecules in a liquid medium
with constant drift. They travel from the transmitter to the receiver at two ends
of a one-dimensional axis. A typical application of such communication are nano-
devices inside a blood vessel communicating with each other. In this case, we no
longer transmit our signal via electromegnetic waves, but we put our information
on the emission time of the molecules. Once a molecule is emitted in the fluid
medium, it will be affected by Brownian motion, which causes uncertainty of the
molecule’s arrival time at the receiver. We characterize this noise with an inverse
Gaussian distribution. Here we focus solely on an additive noise channel to describe
the fundamental channel capacity behavior.

This new model is investigated and new analytical upper and lower bounds on
the capacity are presented. The bounds are asymptotically tight, i.e., if the average-
delay constraint is loosened to infinity or if the drift velocity of the liquid medium
tends to infinity, the corresponding asymptotic capacities are derived precisely.
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Chapter 1

Introduction

1.1 General Molecular Communication Channel Model

Usually, we transmit our signal with electromagnetic waves in the air or in wires.
Recently, people are more and more interested in communication within nanoscale
networks. But when we want to transmit our signal via these tiny devices, we face
some problems that the antenna size of them are restricted and the energy that could
be stored in them is very little. Therefore, we solve these problems with providing
a different type of communication instead. This thesis focuses on a channel which
operates in a fluid medium with a constant drift velocity. The transmitter is a
point source with many molecules to be emitted. The receiver waits on the other
side for the molecules’ arrival. The information is encoded in the emission time
of the molecules, X, which takes value in a finite set. One application example is
blood vessel, which has a blood drift. The nanoscale device could be any medical
inspection device that is inserted in our body.

Wiener Process

Transmitter
Receiver

| |
T T

Figure 1.1: Wiener process of molecular communication channel.



Chapter 1 Introduction

Once the nanoscale molecules are emitted in the fluid medium, they are effected
by Brownian motion which causes uncertainty of the arrival time at the receiver.
We describe this type of channel noise with an inverse Gaussian distribution. Now,
consider a channel as shown in Figure 1.1 where w is the position parameter, d is
the receiver’s position on w axis and v is the drift velocity, v > 0. The transmitter
is placed at the origin of w axis. It emits a molecule into a fluid with positive drift
velocity, v. The information is put on the releasing time. In order to know this
information, the receiver ideally subtracts the average traveling time, %, from the
arrival time. Note that once a molecule arrives at the receiver, it is absorbed and
never returns to the fluid. Moreover, every molecule is independent of each other.

This molecular communication channel model was proposed by Srinivas, Adve
and Eckford [1].

1.2 Mathematical Model

Let W(z) be the position of a molecule at time z that travels via a Brownian
motion medium. Let 0 < z; < 9 < --- < x be a sequence of time indices ordered
from small to large. Then, W (x) is a Wiener process if the position increment
R; = W(x;—1) — W(x;) are independent random variables with

Rl’ ¢ N(U([Ez - 332;1),0'2(15‘1‘ - Iifl)) (11)

where o2 = % with D being the diffusion coefficient, which depends on the tem-

perature and the stickiness of the fluid and the size of the particles. Assuming the
molecule is released at time z = 0 at position W (0) = 0, the position at time  is
W (z) ~ N (vi,o%). The probability density function (PDF) of W is given by:

B 1 w — vT)?
fw(w; z) = \/ﬁeXP <—(20_2j)> . (1.2)

In our communication system, instead of looking at the position of the molecule
at a certain time, we turn our focus on its arriving time at the receiver for a fixed

distance d.
released arrived
0 d position
| |
{ {
T Y time
N

Figure 1.2: The relation between the molecule’s time and position.



1.2 Mathematical Model Chapter 1

We release the molecule at time x from the origin, W(x) = 0 and z > 0. Assum-
ing that after traveling for a random time N, the molecule arrives at the receiver
for the first time at time Y,

Y =x+N. (1.3)

Hence, our channel model is characterized by an additive noise in the form of the
random propagation time N. This is the only uncertainty we have in the system.
When we assume a positive drift velocity v > 0, the distribution of the traveling
time N is well known to be an inverse Gaussian (IG) distribution. As a result, we
call this channel the additive inverse Gaussian noise (AIGN) channel. Since the
PDF of N is

N2

f (n) 27r/\n3 exp <_)\(271172!7LL)) n >0,
N pr—

0 n <0,

(1.4)

we get the conditional probability density of output Y given the channel input X =«

hY _ AMy—z—p)?
(y|z) = V 27 (y—=)3 exp ( 2u2(y—x) ) y=a (1.5)
0

y <.

as

Tyix

There are two important parameters for the inverse Gaussian distribution: the av-
erage traveling time

d distance between transmitter and receiver
== . . ) (16)
v drift velocity
and a parameter
d2

that describes the impact of the noise. Usually we write N ~ IG(u, A). By calcula-
tion, we get

EN)=p =2 (18)
3 2
vmm:%=%< (1.9)

If the drift velocity v increases, the variance decreases, in other words, the distri-
bution is more centered. If the drift velocity is slowed down, we will have a more
spread-out noise distribution. Without loss of generality, we normalize the propa-
gation distance to d = 1.

For practical reasons, we constrain the transmitter to have an average delay m
on the emission of a molecule, i.e., the input X is subject to the constraint:

E[X] < m. (1.10)

Note that a peak constraint would also be of large practical interest, but for sim-
plicity we focus on average constraint at the moment.
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1.3 Capacity

Since we introduced a new type of channel, the AIGN channel, we are interested in
how much information it can transmit. In [2], Shannon showed that for memoryless
channels with continuous input and output alphabets and an corresponding condi-
tional PDF describing the channel, and under an input constraint E[X] < m, the
channel capacity is given by

= sup I(X;Y) (1.11)
fx(z): E[X]<m
where the supremum is taken over all input probability distributions f(-) on X that

satisfy the mean constraint E[X] < m. By I(X;Y’) we denote the mutual information
between X and Y. For the AIGN channel, we have

sup I(X;Y)=  sup {h(Y)—h(Y|X)} (1.12)
fx(z): E[X]<m fx(@): E[X]<m

= sup {h(Y)—h(X+N|X)} (1.13)
fx(z): E[X]<m

- swp {h(Y) % h(N|X)} (1.14)
fx(x): E[X]<m

= sup h(Y) — h(N) (1.15)
fx (2): E[X]<m

= sup h(Y) = hc(un)s (1.16)

fx(z): E[X]<m

where (1.15) holds because N and X are independent. The mean constraint (1.10)
of the input signal translates to an average constraint for Y:

E[Y] = E[X + N] (1.17)
= E[X] +E[N] (1.18)
—E[X]+p (1.19)
<m+p (1.20)



Chapter 2

Mathematical Preliminaries

In this chapter, we will introduce some mathematical properties of the inverse Gaus-
sian random variable and other useful lemmas for future use in this thesis.

2.1 Properties of the Inverse Gaussian Distribution

In [1], the differential entropy of an inverse Gaussian random variable was given in
a complicated form that is unwielding for analytical analysis. So we try to modify
the original expression and derive a cleaner form for mathematical derivation.

Proposition 2.1 (Differential Entropy of the Inverse Gaussian Distribution).

<A> >+3‘%KV @),
WKL ()

hIG(,u,,)\) = lOg <2K_

1
2

+ — 2.1
3 H
1. 2mp 3 2\ 2\ 1
=1 = i I o) = 2.2
2 %N +2€Xp<u> 1( u>+2 22)
1. 270%d 3 2dv\ . [ 2dv 1

where K(-) is the order-y modified Bessel function of the second kind, and Ei(-) is
the exponential integral function defined as

oo ,—t —x .t
—/ etdt:/ %dt, x> 0. (2.4)

In MATLAB, the exponential integral function is implement as expint (z)= — Ei(—x).

(1>

Ei(—x)

Here (2.1) is taken from [1]. The concise expression (2.2) and (2.3) are derived
below.



Chapter 2 Mathematical Preliminaries

Proof. We divide the right hand side of (2.1) into three parts. From [3, (8.469.3)]
the first part can be simplified as follows:

() b (D)) oo
— log ((27;“ >2 exp <—2>> (2.6)

1 2 A

— 2 9.
2log 3 . (2.7)

From formula [3, (8.486(1).21)], we get:

T cEreeh) e

From formula [3, (8.486.16)]

K_,(2) = Ku(2) (2.11)
and formula [3, (8.468)]
T n+k)!
K, p1(2) =)o e ZW (2.12)

HORA0

= K1 <2> (2.14)
TN & A 1! 2!

= (5> exp <_M) o (%>0 + ol (%>1 (2.15)

= (72%\)5 exp (—2) (1 + %) . (2.16)
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Therefore, the third term of (2.1) will be
A A T\ 5 A
EY )R () o, @ree ()0}
2 AN . )
o)l @)
A p
== (2+4) 2.1
21 ( + A (2.18)
A1
=—4+_. 2.1
L3 (2.19)
As a result,
1. 27 X 3 2\ 2\ A1
=1 - — 4= — | Ei| —— -+ = 2.2
PG (u,n) 5 log — M+2exp< ) 1< M>+M+2 (2.20)
1. 27p® 3 2\ 2\ 1
=1 — — | Ei[ —— - 2.21
2 7 +2€Xp<ﬂ> 1( M>+2 220)
O

Next, when we want to make an IG random variable add with another IG random
variable and end up also in IG distributed, there is a specific way to reach it. Only
certain type of IGs will add up to be IG distributed.

Proposition 2.2 (Additivity of the IG distribution). Let M be a linear combination

of random variables M;:
l

M=) cM;, ¢ >0, (2.22)
i=0
where

Here we assume that M; are not necessarily independent, but summed up under the
constraint that

A.
5 =k, foralli. (2.24)

Cilb;

Then
2
M ~1G ZCiHi, K (Z ciui> (2.25)
i i

Proof. The proof can be found in [4, Sec. 2.4, p. 13]. O

Remark 2.3. If we simply add two inverse Gaussian random variable, as long as
they are in the same fluid, which means they have the same v and o2, the result is
still inverse Gaussian.

Consider a Wiener process X (t) beginning with X (0) = x¢ with positive drift v

2

and variance o<. Choose a and b so that xo < a < b and consider the first passage
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Mathematical Preliminaries

time 11 from xg to a and Ty from a to b. Then T7 and 15 are independent inverse

Gaussian variables with parameters

and

_ 2
St >\1:<a ;EO)
v o
b—a b—a)?
p2 = ; )\22( 2)
v o

Now consider T3

T3 is also an inverse Gaussian variable.

=Ty + 15, therefore, c1 = co = 1 and

)\i '02
— = — = constant,
Hi o

That is

v? (1 + H2)2>

T3 ~ 1G <u1 + pe, 2

zg

Since (1 + po = b; ,

3

o2

. N 2
! ~IG<b ivo,(b o) >
v

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

The last observation also follows directly from the realization that T3 is the first

passage time from xq to b [4].

Proposition 2.4 (Scaling). If N ~IG(u, ), then for any k > 0

kN ~1G (kp, k).

Proof. The proof can be found in [4, Sec. 2.4, p. 13].

Proposition 2.5. If N is a random variable distributed as 1G (u,

N) =

= u;
1 l
BREY
3
2 K.
=po A+ N
133
[TZED LR
w
A’
1,2
U )\2’
2\ A A
—ezul’_%f(y_l () ) veR
T 2 \ i

(2.31)

). Then

(2.32)
(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)
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Remark 2.6. From (2.11), we can also write

L 20 2 1 A
E[N7] = \/?eﬂ,u 2KV+% (M) (2.39)

Proof. The proofs are based on [4, (2.6)], [5, Proposition 2.15], [4, (8.36)] and [3,
3.471 9. -

Proposition 2.7. If N ~1G(u, ), then

22 2
EflogN]=en Ei<_,u> + log p; (2.40)
N u p
E|l—+ =| =2+ —. 2.41
[u \ N} A (240
Proof. A proof is shown in [6]. O

Proposition 2.8. If N; are IID ~ IG(u, ), then the sample mean from that dis-
tribution will be

1« .
gZNi:NNIG(,u,n)\), fori=1,...,n. (2.42)
i=1
Proof. A proof can be found in [4, Sec. 5.1, p. 56]. O

Lemma 2.9. Under the three constraints

Ellog X] = a, (2.43)
E[X] = ao, (2.44)
E[X7'] = as, (2.45)

where a1, as and ag are some fixed values, the mazimum entropy distribution is the
inverse Gaussian distribution.

Proof. From [7, Chap. 12] we know that if we have the three constraints above, the
optimal distribution to maximize the entropy will have the form

f(.%) _ e)\g—i-)\l logx+>\2a:+)‘73 (2.46)
A
= g lotrert Tt (2.47)
which is exactly the form of the inverse Gaussian. O
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2.2 Power Inverse Gaussian and Its Properties

The power inverse Gaussian (PIG) distribution parameterized by an arbitrarily fixed
real number 7 # 0 has the PDF given by

oot (3) o (i () (2)7)) e

O<y<oo, O<a<oo, 0<f<oo0. (2.49)

where

When n = 1, we will have Y ~ IG(3, ). Therefore, we can take the inverse Gaussian
distribution as a special case of the power inverse Gaussian [6].

Proposition 2.10. If a power inverse Gaussian random variable Y is distributed

as (2.48), then

EflogY] = ;e% Ei<—n220;> + log f3; (2.50)
Y n Y -n 1 7]2,8
[ ()] ae 2 asn
Proof. See [6]. O

Proposition 2.11 (Differential Entropy of the Power Inverse Gaussian). If a power
inverse Gaussian random variable Y is distributed as (2.48), its differential entropy

will be . 5 )
« 28 o
h(Y; =—1 — -+ = BEi| —— =, 2.52
(oic) = —tog [z # (43 ) emi(- 22 )+ 5. e
Proof. The claim can be derived simply by plugging in Proposition 2.10. O

Proposition 2.12. If a power inverse Gaussian random variable Y is distributed

2.48),
as (2.48) L e . .

Proof. See [8, Ch. 18]. O

Lemma 2.13. IfY is a random variable that satisfied the following two constraints:

Eflog Y] = 71’@% Ei<—17220;> +log 8 (2.54)
and
Y n Y -n _ 7726
f|(5) +(5) |-+ (259

where n is an fived real number, n # 0, 5 > 0 and « > 0, the distribution of Y that
mazximizes the entropy is the power inverse Gaussian distribution.

10
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2.3 Related Lemmas and Propositions

In this section, we will show the lemmas and properties which will be used in our
proof of bounds.

The first one is the data processing theorem for relative entropy. It can also
be called relative entropy processing theorem, or monotonicity theorem of relative
entropy.

Lemma 2.14 (Data Processing Theorem for Relative Entropy). Let Qx, and Qx,
be two input distributions of a communication channel, and Qy, and Qy, the two
corresponding output distributions. Then

D(QX1|’QX2) > D(QY1||QY2)7 (2'56)

where
D(@x1Qx) = [ Qx(a)10g X4 (257
Proof. See, e.g., [9, (B.102)]. O

Lemma 2.4 says that due to the noise introduced in a channel, two output distri-
butions are more difficult to distinguish from each other that the two corresponding
inputs distribution.

Next, we will list some propositions related to the O-function.

Definition 2.15. The Q-function is defined by

Q(a) 2 \/12? /Oo el’/2 dt. (2.58)

Note that Q («) is the probability that a standard Gaussian random variable
will exceed the value a and is therefore monotonically decreasing with an increasing
argument.

Proposition 2.16 (Bounds for the Q-function).

1 o? 1 1 a2
ez [1-——=|<Q(a)< e 7, a > 0; 2.59
V2Ta ( Oé2> (@) V2T ( )
1 _a2
Q(a) < 56_7, a>0. (2.60)

Proposition 2.17. Let ®(-) denote the cumulative distribution function (CDF) of
the standard normal distribution:

d(a) :\/12?/_& e P12 qt. (2.61)

Q(a) = ®(—a), (2.62)
Q(a)+ Q(—a) = 1. (2.63)

Then

11
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—Q(»)

08" ' —— Upper bound from (2.59)

0.6 — Lower bound from (2.59)

Upper bound from (2.60)
0.4 -
02 .

0 -

0.2 .
04t 1
06} |
08} |

In MATLAB, we can use y=qfunc(x) to get the value of the Q-function.

Proposition 2.18 (Upper and Lower Bound for Exponential Integral Function).
We have

1 2 1
567‘76 In (1 + > <Eji(z) = —Ei(—z) <e “In (1 + ) , x>0, (2.64)
x x
or

1 1 2
—e “In (1 + ) < —Ei(z) =Ei(—2) < —ie_m In (1 + ) , x>0. (2.65)
x x

12



Chapter 3

Known Bounds to the Capacity
of the AIGN Channel

The entropy maximizing distribution f*(y) with a mean constraint E[Y] < m + p is

the exponential distribution with parameter #W [7, (12.21)]:
f{) = ——e T, Y20 (3.1)
H e min, > 0. :
TR 2= Y

The entropy of such a distribution is
R*(Y)=1+1In(m+ pn). (3.2)

This can be used to derive a upper bound on the capacity of the AIGN channel:

N sup I(X;Y) (3:3)
Ix(z): E[X]<m

= sup h(Y) = hiGua (3.4)
h@%ﬂﬂsm{ m)}

= sup  A(Y) = hign (3.5)
fx(z): E[X]<m

=1+ 1n(m + ,U) - hIG(;L,)\)' (36)

In [1], to derive a lower bound, we drop the maximization and the additivity property
of the IG distribution is used. We choose an input signal X to be IG in such a way,
according to Lemma 2.2, that the output Y will be also inverse Gaussian.

Since the noise distribution is N ~ IG(p, A), i.e., k = ﬁ Setting X ~ I1G(m, \,),
we must satisfy

K== (3.7)

Hence we need

Ao = AL (3.8)
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As a result, the input X is chosen as:
m2
X ~1G (m, )\2> . (3.9)
7
The corresponding output Y is then also IG distributed:

Y ~ 1G (m + 1, lj;(u + m)z) . (3.10)

The distribution of Y is not necessarily an entropy maximizing distribution for a
given mean, m + p.
Combing the upper and lower bound on capacity, we have the following:

hIG(m—i—u,ﬂ%(m—&-u)Q) —higy < < 14log(p+m) — higgun- (3.11)

Using Proposition 2.1, we have

1 log 2w (m + p)

P (b 2y (et r2) T 31 X
3 2A(m + p) A 2X(m+ p) 1
which then results in the following bounds:
> ! log th
2 Iz
3 2\ 2\ 2\ 2\
+ = exp () (exp (T) Ei<—(m;r“)> X Ei(—)) (3.13)
2 @ 1% p %
B 110 mv +d
T2y
9 2
+ §exp 2dv exp 2mo Ei PR A P Ei v ;o (3.14)
2 o2 o2 o2 o?
1, Am+p? 3 22\ ../ 2)\ 1
Slog MDA 2 MEi(-22) + 2 1
< 5log o yi3 5 €XP . i m + 5 (3.15)
1, v(mv+d? 3 2dv .( 2dv 1
— g A TY 2 OVEi (-2 ) 42 1
2 %% 9ndo? 2exp<02) 1< 02>+2 (3-16)

In (3.13) and (3.15), we express the capacity as a function of m, p and A, while
in (3.14) and (3.16) we show the same expression as a function of m, v, ¢ and d.
These bounds are depicted in Fig. 3.3 and Fig. 3.4

We see in Fig. 3.3 that the known upper bound performs not good at high
velocities and at very low velocities.

14



Chapter 3

— Known upper bound

3.5

— Known lower bound

0 L Il

10
Drift velocity (v)

Figure 3.3: Upper and lower bound (3.14) and (3.16) of the AIGN channel for the
choice: m=1,d =1, and 62 = 1.

— Known upper bound

— Known lower bound

Figure 3.4: Upper and lower bound in (3.14) and (3.16) of the AIGN channel for
the choice: v =1, d =1, and 02 = 1.
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Chapter 4

Our Different Trials of Lower
Bounds

4.1 Lower Bounds of h(Y) Based on h(X)

Theorem 4.1. A lower bound on the output entropy of the inverse Gaussian channel

s as follow:

3 Am? 1 m Am
Y) > h(X) + 2 (Ellog¥] — Eflog X]) — 2 E| = | 41 Mg
A(Y) 2 hCX) + 5 (EllogY] - Ellog X]) = 5 E || +1oe -+ 50 0
1) + 2 (Eflog Y] - Eflog X)) = e[ L] Liog ™ 1Ty
- g (108 ¢ 202 | X[ Pmutl ! 202\

Proof. Our approach of lower bounding h(Y) is based on the data process inequality
of relative entropy as given in Lemma 2.14

D(QxQx:c) = D(Qy[|Qyic)- (4.3)
We pick Qx, as
m2
such that Qy, will be
A 2
Vi ~1G (m-+ i S5+ m) (4.5)

and keep QQx, and @)y, arbitrary distributed as Qx and Qy .
The left hand side of (4.3) can be evaluated as follows:

A2 (X — m)?

D(Qx|Qxc)

N

2

mZ
= —h(X) — Eg, |log (27T‘;(3>

16



4.1 Lower Bounds of h(Y) Based on h(X) Chapter 4

1 Am? 3 AX —m)?
=—h(X)—=1 —Eg,[log X]+E _ 4.
()~ Jog 270 + Seq o X + Eq [ A5 ] (17)
1 Am? 3 AX2 —2mX +m?)
=—h(X)—=1 —Eg,[log X]+E 4.
h(X) 9 OgQ?T,MQ_'_Q Qx log X] + QX|: 202X :| (4.8)
3 A Am? 1 1 Am?
=—h(X)+ -Eg,[log X]+ —Eg,[X]+ —5E —| —zlog——=
( )+2 QX[Og ]+2M2 QX[ ]+ 202 QX|:X:| 20g27TN2
Am
_ 4.9
2 (4.9)
The right hand side of (4.3) will be:
D(Qy | @vic)
1
A( 2\ 2 A 2 o 2
p+m) (b +m) (Y —p—m)
= —h(Y) — Eg, |log we exp | — e
27Y’3 2(p+m)%Y
(4.10)
1. Am+p)? 3 MY — i —m)?
=—h(Y)—-log———+ =Eqg, [logY] +Eq, | ———— 4.11
( ) 2 Og 277,“42 + 2 QY[Og ] + QY 2N2Y ( )
1. Am+p? 3
=—h(Y)—-log————+ =Eqp, [logY
(Y) = 5log o 2 Qy logY]
ANY?2 + 52 +m? — 2uY — 2mY + 2mpy)
E 4.12
+ Eqy 262Y ( )
3 A A(m + p)? 1
= —h(Y)+ 5Eqy [log Y] + TIUIQEQY Y]+ TEQY %
1. Am+p)?  Am+ p)
- =1 — . 4.1
Qe o 2 (4.13)
After rearranging both side of the data processing inequality, we get:
A
h(Y)>h(X)+1 - =
(Y) = h(X) T I
3 A Am? 1
— 5EQx[log X] — WEQX [X] - TILLQEQX [X]
3 A A(m + p)? 1
3 a2 1] AXm+p)? _[1]
=h(X)+ = (E[llogY] — E[log X]) — —E| = ————F|=
() + 5 (Ellog Y] ~ Ellog X]) - 5B || + 2 5he |
A m A
+ —E[Y —X]+1o - = 4.15
2012 [ ] S (4.15)
3 am? 1] AXm+wp)? _[1]
=h(X)+ = (E[llogY] — E[log X]) — —E| = ————F|=
m A
+ log ——— — —. 4.16
% T o (4.16)
To get rid of E [%], we use Jensen’s inequality:
1 1 1 1
E|l—|> - > , 4.17
[Y} T E[Y] EX]+EN T m+p (4.17)

17



Chapter 4 Our Different Trials of Lower Bounds

which yields

3 Am? _[1 A(m + w)
> e _ _ AN s
hY) > h(X)+ 5 (E[log Y] — E[log X]) — 2% E [X] 2012
m A
3 Am 1 m Am
=h(X)+ 3 (E[logY] — E[log X]) — ME[ ] + log p———y + TR (4.19)

The second bound (4.2) then follows simply by substituting p = % and A\ = &

[

into (4.1). O

4.2 Capacity Lower Bounds Based on Theorem 4.1

In this section, it is our goal to continue trying to make the lower bound only a
function of X, independent of Y. L.e., we need to replace E[log Y] by further lower-
bounding it. We use two different approaches.

4.2.1 Lower Bound 1: Taylor Expansion

We use a Taylor expansion of the logarithm:

o0

log(1 +u) = — Y (~1)" 5 for —1<u<l1, (4.20)
n=0 "
w?  wd owt W ol

.-~ \ U ' = ¢ 421

u—sts Tt et (4.21)
2
log(1+u) > u— %, Vu > 0, (4.22)
N\ _ N N? N

1 1 > — — — — > 4.2

Og<+x> x  2z% x_o (4:23)
We use this bound in the following way:
N+ X
E[logY] — E[log X] =E [log i ] (4.24)
—ex|E [ (1 > ’X - x” (4.25)
> EX [ :c” (4.26)
E[N] [N2]
—Ex 7X o ] (4.27)
po_ E[N?]

—Eyv| L& — 4.2

Ylx o o2x? (4.28)
r 2
- r_ H

=Ex|% 5 (1+ A)] (4.29)




4.2 Capacity Lower Bounds Based on Theorem 4.1 Chapter 4

_LE [;{] N (RO [;2] , (4.30)

where in (4.29) we use (2.34). This bound can now be plugged into Theorem 4.1:

plugging (4.30) into (4.1), we get a new lower bound as a function only of X:

)z 0+ Le | 1] -2 (14 B e[ ) - A ]

2 |X 4 A 2u | X
+log m”l r ;;'; (4.31)
-0 (=) 3] -4 )]
+ log mnl p + ;:; (4.32)
= h(X)+ 5 @d - (”ff) E H M d+ 0?)E [;Q]
+log — B (4.33)

Theorem 4.2 (A lower bound on capacity of the inverse Gaussian channel).
> R0 + L (3u= 22 ) e[ L —3"2(1+“)E L
= 2\ T T2 X| 4 X X2
1
A )2 3 2\ 2\ A 1
+log [ —~ “Zexp (VB[22 )+ 20 2 (4.34)
m 4+ p \ 2wps 2 1 1 2u? 2
1 (3d mu\ 2 1 3d 1
—hX)+= (= - (=) )E|=| - == (dv+0*)E| =
( >+2<v <0’)> [X] 403(U+U) [XQ}

5
2 2 2 21
+log —— O P remep (Z) Ei(—Z) - (4.35)
o o

V2ro(mu+1) 2 202 2
Proof.
>I1(X;Y)=hY)-hY|X) (4.36)
=h(Y)—-h(X + N|X) (4.37)
= hY) = hig(un)- (4.38)

The proof is complete if we plug equation (4.32) and (4.33) separately and Proposi-
tion 2.1 in (4.38). O

We plug X ~IG(m, ) into our lower bound of Theorem 4.2. Unfortunately, this
lower bound is not tighter than the known lower bound and is even decreasing as v
gets larger.

19



Chapter 4 Our Different Trials of Lower Bounds

—— Known upper bound

—— Known lower bound
35 . 4

Lower bound: IG input

Drift Velocity (v)

Figure 4.5: m=2,02=1,d=1

4.2.2 Lower Bound 2

Another approach of lower bounding E[log Y| — E[log X] is as follows:

X+ N
Eflog Y] — Elog X] = E [log A ] (4.39)
= Eflog N] + E |lo i—i-i (4.40)
= g g N X .
2 1 1
> e Ei(—)\> +logu+E {log < + ﬂ (4.41)
Ju po X
22 2 1 1
> 62“)\ Ei<—>\> + log v + log < + ) . (4.42)
I poom
Therefore, we derive the capacity lower bound as follow:
> h(Y)—h(N) (4.43)
3 Am? _[1 m Am
>h(X)+ = (EllogY] — E[log X]) — —5E|=| +1 —
> 1(X) + 3 (Ellog Y] ~ Ellog X)) — 5 M log T 2
— h(N) (4.44)
Am? _[1 Amo 1 1. (m+p)A
>h(X)—- —5E|= — ——+ —log———%— 4.4
= hX) =52 {X] 22 2 2% 2 (4.45)

where equation (4.44) comes from (4.19) and the equation (4.45) comes from (4.42)
and (2.2).

20



4.2 Capacity Lower Bounds Based on Theorem 4.1 Chapter 4

Corollary 4.3.

>hMX) - —
22 mv? 1 (mv + d)v?

mv 1
=h(X) — 552 E[X} +W+§log

am? _[1 amo 1 (m+ p)A
- — + - log —— 4.4
[X} * 202 Toloe 2rempy’ (4.46)

. 4.4
2memo2d (4.47)

As a choice for the input X, we choose a power inverse Gaussian distribution
described in Section 2.2:

o= (3) e (5 () 6) 7))

where
O0<r<oo, O<a<oo, 0<pf<oo. (4.49)

From Proposition 2.12 and the delay constraint of X we have:

(@) = m. (4.50)

A o

725 Dow leads to

Defining &

(4.51)

From Proposition 2.11, we have

1 an? L1\ 9500 oo, 1
h(X)=—=1 -+ = *FEi(—2 = 4.52
(%) = 5108 5k + (54 5 ) #Ei(=20) + 5, (452)
and
1 2 - ~
— BK*L%(O‘) (4.54)
% K1 1 (&) '
n 2
2% g ) i
= —eK K . 4.55
m7re %*% (a) *%7% (a) ( )
Plugging (4.51), (4.52) and (4.55) into (4.46), we derive the lower bound as follows:
2
1 an L1y o S MAQ 95 - ~
_210g27?€52+<77+2>e Ei(—2a) — - K%_%(Q)K_%_%(Oé)
Amo 1. (m+p)A
— 4 = 4.
* 22 + 2 2wemus (4:56)
1. mm(m+ p)A - - . Am
_§IO 2073 —logoz—log|77|—oz—logKifé(oz)%—2—M2
1 ]. 28 . - m)\d 2& -~ ~
+<n+2>6 El(—20[)—TIuQ€ K%_% (OJ)K_%_% (Oz) (4.57)
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—— Known upper bound
—— Known lower bound
- Lower bound: PIG input

_3 I I I I I
0 2 4 8 10 12

6
Drift Velocity (v)

Figure 4.6: m=2,0°=1,d=1

The parameters «, 5 and 7 are freely choosable. We optimize their value numerically
and get a lower bound shown in Fig. 4.6.

Unfortunately, the lower bound with power inverse Gaussian is not tighter than
the known lower bound.

4.3 Lower Bound Based on the Convolution of Expo-
nential and Inverse Gaussian Distribution

1
m
Because it is an additive channel, the resulting output will have a PDF that is

We start with a new approach based on the choice of the input X ~ Exp( )

the convolution of the exponential PDF with the inverse Gaussian PDF. This can
actually be computed explicitly [10, Eq.(18)]:

L xer [ cking (RY Zd) L kang [ _FY +d
friy)=— ( <I><\/m>+ <I>< m)) (4.58)
Bl PO (N (At fro Ryt
(o) a3 o
1

R (e—w (—m (V’? B \/%y»

22



4.3 Lower Bound Based on the Convolution of Exponential and Inverse

Gaussian Distribution Chapter 4
1
kX
+ e 9 (vk)\ <\/ky+ >>) , (4.60)
VEy
where
202 v2 202 1 2
Y m A2  d*m w2 Am (4.61)

We remind that without loss of generality, we assume to have a unit length d = 1
between transmitter and receiver. Note that to make sure that the bound is real, it
must constrain the channel parameters to satisfy

212

This now yields the following lower bound on capacity:

£ max I(X;Y) (4.63)
Ix(z)
> I(X; Y)\Xwexp(%) (4.64)
= (h(Y) - h(Y\X))]XNeXp(%) (4.65)
= h(Y)| Xnexp(L) ~ h(N) (4.66)
= —Ey[log fy (Y)] = h(N) (4.67)
T (S T )
+ e (\/k:)\ (\/kY + V&)))]
+logm+m+'u—2—|—k)\—h(]\7) (4.68)
> —Ey |log <1—|—€2k)‘Q<\/k)\ (VkY—i-\/]{;l},))) +10gm+m+u
A
— Z 4 kA= h(N) (4.69)
M -
> —Ey |log (1 + e%)‘;eék/\(kyﬁﬂc;))] +logm + m;; = 2 + kX — h(N)
) (4.70)
= —Ey |log <1 + ;e‘é’“k(’“y‘“kly))] tlogm+ TR A iy ) (471)
I mop
r 2
= —Ey |log <1 + ;e_ék’\<m_\/lle7) >] + logm + mip A + kX — h(N).
i mop
(4.72)

Here in (4.69) we lower-bound the first Q-function by 0 because Q (-) is nonnegative.
Then based on that log(-) is a monotonic function, in (4.70) we apply the upper
bound for the O-function (2.60).
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Chapter 4 Our Different Trials of Lower Bounds

To further bound this expectation over Y, we provides two methods. The first

method is simply using

1 1 2
Ey [log (1 + ;eWWWm) )} < log % (4.73)
since
Lo (viv ! 2
——kX|VEY —— | <0. 4.74
s (Vv - ) < (1.74)
Therefore, the first method gives us the result
3 p A 1 e 3 3 22 [/ 2)
>1 —log=4+———4+k\+=log— — =1 ——er Eil — ). (4.
> logm 0g2+m ,u+ —i—2og27T 5 logu— e 1( N) (4.75)

Another option is applying Jensen’s inequality:

1 _1 _1 ) A
>—Ey[log <1+2e (VI -7z >] —l—logm—l—l—l—%—*%-k)\—h(]\f)

L
(4.76)
1 1 1 2
> —log <Ey|:1+2€ (VI -7z D +logm+1+:2—2+k>\—h(N).
(4.77)

Making a variable transformation ¢ = ky we now evaluate the expectation as follows:
2
[P0k

1 At _1 _1)?
— eﬁ_m_kAe Qk)\<\/i \/Z)
0 km

-<1 -9 (x/ﬁ (x/i— \2)) + g <\/ﬁ <\/E+ \2))) dt (4.78)

(o]
</ Ly S 1+1€7%k)\(t72+%) LGN (4.79)
—Jo km 2

o0 o0
= et ([Temmemta o [T i) s
0 0

km

2 2 Am 2\
_“ / [22 1 12)2
mt" 2+ k2xm 1( m+ )\)
1 2ipn Am A
— _— 20— + k2)2 4.81
+me# 1+ k2 m 1( \/m+ ’ (4.81)

and therefore

m u A 3 A1 e 3 2/ 2\
>log—+———+kX+=-log—+ =-log— — —e» Eil —
_og)\+m 'u+ +20gM+2og27T 26“ 1 M

1 2 am 2
—1 1+ — _— — + k22
Og( +m“\/umm 1( m T >
1 2ipa m A
— P — 24/ — + k22 . 4.82
+2m€# 1+ k22m 1( m+ (4.82)
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4.3 Lower Bound Based on the Convolution of Exponential and Inverse

Gaussian Distribution

Chapter 4

I(X;Y) (nats)

—— Known upper bound
—— Known lower bound
— Lower bound (4.75)
—— Lower bound (4.82)

3.5~

25

1.5+

I(X;Y) (nats)

0.5

2 3 4 5 6 7 8 9 10

Drift Velocity (v)

Figure 4.7: m=2,0%2=1,d=1

—— Known upper bound
— Known lower bound
—— Lower bound (4.75)
—— Lower bound (4.82)

2 3 4 5 6 7 8 9 10

Delay (m)

Figure 4.8: v=2,02=1,d=1
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Chapter 4 Our Different Trials of Lower Bounds

This bound is shown in Figs. 4.7 and 4.8.
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Chapter 5

Our Different Trials of Upper
Bounds

In Chapter 6, we will show that the known upper bound proposed in [1] is quite
tight in high drift velocity v and m. Therefore, the main goal in this chapter will
focus on low v. Since we had a rather separated upper and lower bound in low v,
we attempt to derive a better upper bound that behaves closer to the capacity. The
method we use here is duality-based bound:

< Eg- [D(W(|X)||R("))] . (5.1)

where D(:|-) is defined in (2.57), W(:|X) is the channel law, R(-) is the output
distribution and Q* is the capacity-achieving input distribution [11, Ch. 7]. The
only thing which is known to us is the channel law W (:|X).

Note that the R(-) here can be any distribution on the output. It doesn’t need
to be an output distribution corresponding to a certain input distribution. This
gives us quite a lot of freedom, but we still have three main tasks here to find
a good or reasonable upper bound: First is making a clever choice of R(-) that
helps us to get a better upper bound. Second is being able to analytically evaluate
D(W(|X )HR()), which is usually difficult. Third is evaluating or further upper-
bounding the expectation over the capacity-achieving input on the right hand side of
(5.1) without knowing Q* generally. The third task could be solved by the properties
of Q*, e.g., the input moment constraint.

This chapter shows some of the trials we did by choosing R(:) to be exponential,
inverse Gaussian, power inverse Gaussian and shifted Gamma distribution.

5.1 Exponential Distribution as Output Distribution

Based on (5.1), when we plug an exponential distribution Exp(/) as output distri-
bution, we get the following bound:

< Eg- [D(fy1x (1)1 v ()] (5.2)
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Chapter 5 Our Different Trials of Upper Bounds

— Eg+[-h(Y|X = ) — Ey x[log fy ()]]
— _h(N)+log g+ E

B
E[X + N]
B
m+
B

—h(N) +log 8 +
< —h(N) +log 5 +
= q(u, A, B)

We optimize over

and get the optimal result:
gr=m+p,

which is exactly the upper bound in [1].

(5.3)
(5.4)

(5.8)

(5.9)

(5.10)

5.2 Inverse Gaussian Distribution as Output Distribu-

tion

In the communication environment described in Chapter 1, we have a mean con-

straint on the input delay, E[X]| < m. Therefore, another capacity upper bound is

derived by choosing an output distribution as IG(m + p, 3) into the duality-based

upper bound (5.1).

Lemma 5.1 (Upper bound with IG(m + u, 8) as the output distribution).

<

log2l+gE[log(X+N)] - Q(Trﬁi-u) —I-gE[

1
2 °R X+ N

Proof.

< Eg+ [D(fyx C1X) | fy ()]
= Eq- [-h(Y|X = z) — Ey|x[log fy (-)]]

o2nY3

2(m + u)?Y

— —h(N) — Eq. [EYIX llog ( o (_M>>”

= —h(N)+ ;logzgr —I—;E[IogY] +L b

= —h(N)—F;logQgﬂL;E[log(X—l—N)] _Q(m’:—u)+2

28

2(m + p) +2E[H -
B

p

|

m+ [
1
X+N

| -

E

(5.11)
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There are two methods how we can further bound Lemma 5.1. First method,
apply Jensen’s inequality on E[log(X + N)J:

<—h(N)+;log27T+3log(m+u)—ﬁ—kgE[ = ] (5.17)

B 2(m + p) X+N
f(m, p, A, B). (5.18)

[I>

To optimize over /3, we perform partial differential for f(-) over 5:

of(m, A8 1 e
gRm kAP 2 1 L CE 1
B 23 2(m+u)+2 X+N (5.19)
£ 0. (5.20)
Solving equation (5.20), we get
B* = Y (5.21)

(m+u)E{ﬁ] 1

Hence, we plug the optimal 8 back in (5.17) and get:

1 o 1 3 1
< —h(N)+ =1 El——| -1 2] -
< ()+20g<m+u<(m+ﬂ) [X+N] ))+20g(m+u)+2

(5.22)
3 m4+pu 1 3 2x 2\ 1 1 1
=Zlog—F + Zlogh— Ze% Bi| —==) 4+ Zlog  E -
e\ 1< u>+20g< [XHV] mﬂt)
(5.23)
3 m+p 1 3 2 2\ 1 1 1
< Zlog——=+ —loghA—Zew EBi[ === ) + ~log [E|=| — 5.24
ST T T T 1( u>+20g( [N] m+u) (5249
2 2 1
= §10gm - §e23 Ei(—)\> + - log <1 + m)\> . (5.25)
2 I 2 0 2 p(m + p)

Here, (5.23) is derived by plugging in Proposition 2.1. Since X is nonnegative,
dropping X results in (5.24). And in (5.25), we use (2.33).

In a second method, from Lemma 5.1, we do not apply Jensen’s inequality on
E[log(X + N)] yet. Instead, we upper-bound it as follow:

E[log(N + X)] = E[log N] + Ex :Ey|X [1og (1 + %)} ‘X — 1 (5.26)
< E[log N] + Ex :log (EY|X [1 n %D‘X - x} (5.27)
= E[log N] + Ex -log <1+X</1L+/1\>>‘X—m} (5.28)

< E[log N] + log <1 +m (; + i)) (5.29)

2 2X 11
= 623 Ei(—) + log 11 + log (1 +m < + >> , (5.30)
u peoA

29



Chapter 5 Our Different Trials of Upper Bounds

where (5.27) follows by Jensen’s inequality, (5.28) applies (2.33) in Proposition 2.5,
(5.29) follows from Jensen’s inequality again together with E[X] < m, and (5.30)
simply plug in Proposition 2.7. This leads us to:

1. 27ud 22 2 1 2 22 2
< Ligg 2 3 R g —i - flog w3 R (2
2 A 2 2 5 2 L

3 3 1 8 1
+2logu+210g( <+/\ > m+M +2E[X+N] (5.31)

1. A3 1 3 1
ek nlen( ) i lc] o
£ g(m, p, A, B). (5.33)

Here, the equation (5.31) follows from the entropy of IG in (2.2) and (5.30). To
optimize over 3, we perform partial differential for g(-) over j:

dg(m, u, A, B) 1 1 1 1
TNTB N a8 5.34
op 28 2(m+,u)+2 X+N (5:34)
2 0. (5.35)
Solving equation (5.35), we get
B — &, 4 , (5.36)
which is the same as (5.21)! We plug the optimal 3’ back in (5.32) and get:
1 1 1 3 1 1
< —log A 1 E —1 1 -+ - .
< ;log +20g< [X+N} m+’u>+ og< +m(u+)\)> (5.37)

2
M) peenD) o
1

1 1

< =1 1 E

_2og/\+20g(

1 1 1 3 1

— logh+-log(~+ - — “og (1 S4z :
5 108 +2 og(A m+#>+2 og< +m<u+)\)> (5.39)
1 3 1 1

= -1 1+ ——— | + =1 1 -+ - . 5.40
2Og<+u(m+u)> 2Og< +m<u+k)> (540

We plot the lower bound according to drift velocity v and average-delay con-
straint m. As mentioned at the beginning of this chapter, the known upper bound
is quite tight at the high m and v. Therefore, the figures below focus on the improve-
ment in low v and m. From Figure 5.9, the known upper bound has a rising peak
as v decreases, while our upper bound with IG output distribution has a decreasing
tendency and will cross the known one. From Figure 5.10, our upper bound also
crosses the known upper bound at low m.
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3.5
— Known upper bound
3
— Known lower bound
— Upper bound: IG output
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Figure 5.9: m=2,02=1,d=1
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Chapter 5 Our Different Trials of Upper Bounds

5.3 Power Inverse Gaussian Distribution as Output Dis-
tribution

The PDF of the power inverse Gaussian distribution (PIG) is given by

wor= x5 () oo (-5 ()= 0)) ) o

where y > 0. The free parameters here are o, § > 0, and € R\ {0}. Using (5.1),
we derive the capacity upper bound with output distribution PIG.

< —h(N) — Eg+ [Ey|x[log (fy(Y))]] (5.42)
= —h(N) — (1 + g) log 5 + (1 + g) Eg-[log(X + N)] — %loga + %logQW

«

3
+ S log i+ %EQ* (X + N7+ %EQ* (X487 = 55 (5.43)
= g(a, B,1). (5.44)

We first optimize over a before doing any further bounding on the expectation over
Q.
dg(a, B, 1 il
g(a, B,m) _ .

(87 "Eq-[(X + N)"] + B7Eq- [(X + N)"] = 2) (5.45)

oo 20 228
2 0. (5.46)

We solve the optimal «,

. _ UMlE
BTTEQ-[(X + N)] + BTEQ-[(X + N)~"] — 2

(0%

(5.47)

and plug it back to (5.43):

< —h(N) — (1 + g) log B8 + (1 + g) Eg-[log(X + N)] + %log27r+ % + log 3
~log || + 3 log (5 "Eq:[(X + N)| + F'Eq: [(X + N) "] —2)  (5.48)
2 bla, B, 7). (5.49)

Then, we continue with optimizing over 5:

ObBm) _ _m S+ N4 gt E(X )T
B 26 2(BMEQ-[(X + N)1 + BnEQ+«[(X + N)~"] —2) )
= 0. (5.51)
We solve the optimal S,
B* = E[(X + N)"]n (5.52)
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5.3 PIG Distribution as Output Distribution Chapter 5

and plug it back to (5.48):
1 1 1
< —h(N) ~ 5 log Eq-[(X + N)] + (1 + g) Eq-[log(X + N)] + 5 log2 +
1
—logn| + 5 log (Eq- [(X + N)"Eq-[(X + N)"]] - 1) (5.53)
1 1
= —h(N)+ (1 + 5) Eq-[log(X + N)] + 5 log 27 + 3~ log |7]
1 1
-1 Eo+ (X +N) - ———————— ] . .54
- 5on (B [0+ 277 ) 20

Firstly, we upper-bound
(1 + ﬁ) Eo-[log(X + N)]

- (1+ ;7) <E[logN + Eo- [log (1 + ﬁ)]) (5.55)
(1+ )( llog N] —Hog( +Egr KD) (5.56)
(H—g) ( llog N] +log< +mE[H>> (5.57)
(1+g) <euE1< )—Hogu—i—log(l—l—m(;—ki))) (5.58)

for n > —2. Here we apply Jensen’s inequality in both (5.55) and (5.56). The
mean constraint on the input E[X] < m is applied to get (5.57). With the help of
Proposition 2.5, we have (5.58). Then we derive

Eq-[(X +N) "] <E[N] (5.59)
- \/éeiuﬁéfgﬁé (2) (5.60)
for 0 <1, and
Eg-[(X + N)"] < (Eg+[X + N])" (5.61)
< (m+p)" (5.62)

for 0 < n < 1. Here, (5.59) follows from X is non-negative, (5.60) follows from
Proposition 2.5, (5.61) follows from Jensen’s inequality and (5.62) follows from the
mean constraint on the input E[X] < m. As a result, we derive the capacity upper
bound as follow:

1 -1 -1 2X 1 1
gflog)\—i-n 10gu—&-77 e2ffE1 +<1+Q>log 1+m| -+ —
2 2 2 7 2 A

1 1
—1 =1 Eo+ (X +N) — ——————— .
o8 |+ 5 g Eqx [(X + )7 = gt (5.63)
1 2 1 1 1
< =log\— logu—eu Fi ——)\ +=log(1+m|~-+—
2 I 2 A
1 u)\

This upper bound is deplcted in Figure 5.11 and Figure 5.12.
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5.4 Shifted Gamma Distribution as Output Distribution Chapter 5

5.4 Shifted Gamma Distribution as Output Distribu-
tion
The shifted Gamma distribution is actually a generalization of Gamma distribution

and exponential distribution. We shift the gamma function left by J and get the
shifted gamma function as follow:

y+o
(y+0)>te 7
R = ) 5.65
o) = g (5.65)
where y > 0, « >0, 8 > 0, 6 > 0. And gamma function is defined below:
F@@)é/nt"%tdt (5.66)
3

where 7 > 0 and £ > 0. When there is no shift, that means § = 0, we have an
Gamma distribution:

a—1,—%
y~ e’
R = . 5.67
Moreover, when a = 1, we have an exponential distribution with parameter 1/3:
1 g
Rexp(y) = =€ 7Y, (5.68)
B
Here we simply plug (5.65) as output distribution and the channel law
A Ay — o — p)?
w = NS wleon i 5.69
00 = 5o () v 609)
in capacity upper bound (5.1). We get the following:
y+s
(y+06)>te 7
[ | p T )
EIN+X+6
:4WW+G—QEMQN+X+®L%[Z;+]
)
+ alog B+ logT (a, 5) (5.71)
+m+0
< —h(N) + (1~ a)E[log(N + X +9)] + 2
)
+ alog B + logT’ <a,5> (5.72)
e For a > 1: Eflog(N + X +0)] > Ellog N]
2X 2
S—MNH%L%M%u+u—ak?m<—A>+“+Z+5
i
)
+ alog 8 + logT’ <a, ﬁ) . (5.73)
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e For a > 1: E[log(N + X +0)] > logd

w+m-4+0

< —h(N)+(1—a)logd+ 3

+alog B+ logT (a, g) . (5.74)

e For 0 < o < 1: applying Jensen’s inequality E[log(N + X + 0)] < log(u+m+9)

pw+m+o

3 +alogﬁ+logf‘<a,g>.

(5.75)

< —h(N)+ (1 —a)log(pp+m+0) +

We optimize over «, 5 and § for these three different boundings and get Figure 5.13.
There we can see that the optimized (5.73), (5.74) and (5.75) are the same as known
upper bound (3.16). This is because the shifted Gamma distribution contains expo-
nential distribution as a special case.

5
( — Known upper bound
ast — Known lower bound
— Upper bound (5.73)
i Upper bound (5.74)
D s — Upper bound (5.75)
2
= =
>'<“ 25} B
:/ 2 /
>

0 0.5 1 1.5 2 25 3 3.5 4 4.5 5

Drift Velocity (v)

Figure 5.13: m=2,02=1,d=1
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Chapter 6

Asymptotic Capacity of AIGIN
Channel

In this chapter, we try to figure out how the capacity behaves when the drift velocity
v and the average-delay constraint m tend to infinity.

6.1 When v Large

We first pick the known upper bound introduced in Chapter 3 since it is asymptot-
ically tight in v:

(v) <1+ log(m + p) — hig(un) (6.1)
=1+log(m+p) — %log 27;2261 — %exp <2Ud2v> Ei(—zgd;> - % (6.2)
< %—i—log (m—i—i) —%10g2ﬂ02d+glogv+glog <1+20d21)> (6.3)
zlog<m+j>+;log2ﬂc{;2d+glogv—glog<l+;;)>, (6.4)

where (6.3) is simply plugging in the upper bound of Ei(-) from Proposition 2.18.

Its asymptotic upper bound is:

Am?e
2w

On the other hand, we pick the lower bound in Section 4.3:

3 1
(v) < 3 logv + 5 log +o(1). (6.5)

© 3 2ugi_ony)
2 2
1 m 2\
—log [ 1+ —eMy )/ o Ay Y
og( +m6 2 + k2 m 1( m+ >

L Av+kX Am i 212
+2m€ 71+k‘2)\m 1 2\/m+k)\ , (66)
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Chapter 6 Asymptotic Capacity of AIGN Channel

where k = (/v? — % When v goes to infinity, the result is as follow:

m2e
2m
From (6.5) and (6.7), we can observe that the upper and the lower bound coincide,

3 1 A
(v) > B logv + 3 log + o(1). (6.7)

which proves the following result:

Theorem 6.1 (Asymptotic Capacity of AIGN Channel with v Large). The capacity
of the AIGN channel defined in Section 1.1 and 1.2 is asymptotically, when the drift
velocity v of the fluid medium tends to infinity while all other parameters are kept
constant, as follow:

lim { (v) logv} _ %log . (6.8)

45

I(X;Y) (nats)

r ‘ P ‘ — Known upper bound
7
e — Known lower bound
0.5+ - ’
) - - - Asymptotic capacity
0 1 ! 1 1 1 1 1 1 1 1 |
0 1 2 3 4 5 6 7 8 9 10

Drift velocity (v)

Figure 6.14: Setting parameter: m =2, d = 1 and o2 = 1.

6.2 When m Large

First, we use the known upper bound introduced in Chapter 3 since it is also asymp-
totically tight in m:

(m) < 1+log(m+ p) = hrgun) (6.9)

=1+ logm + log (1—}—%) — RG> (6.10)
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6.2 When m Large Chapter 6

where h(N) is independent of m. When m goes to infinity, the upper bound becomes:

1 22 2
(m) <logm + 3 log 2;23 - ge? E1<:\> +o(1) (6.11)

On the other hand, we also pick the lower bound in Section 4.3.

m ou A 3 Al e 3 2_ [ 2\
>log—+———+k\A+ -log—+ -log— — e~ Ei| —
(m)_og)\—Fm H+ +20glu+2og27r 5¢* Ei .

1 2 Am 2
Clog [ 14+ —eiy ) 20 2 k2
(g< e 2+k%m,1<vnz+ )
1 A Am / A

e 32Ai< 2\

Sy i) M) +o(1) (6.13)

1
= logm + §1og

2

where k = /L — N

o
we let m goes to infinity. From (6.11) and (6.13), we can observe that the upper

and the lower bound coincide, which proves the following result.

Here, (6.13) is because the last term of (6.12) goes to 0 once

Theorem 6.2 (Asymptotic Capacity of AIGN Channel with m Large). The capacity
of the AIGN channel defined in Section 1.1 and 1.2 is asymptotically, when the
average-delay constraint m is loosened to infinity while all other parameters are kept
constant, as follow:

nlj%go{ (m) —logm} =1 — hyg(un (6.14)

1. X 3 2\ 2
= log——— — = ZVEi(-22). 6.15
2% 2l pr(ﬂ> ( u) (6:15)
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Figure 6.15: Setting parameter: m =2, d = 1 and o2 = 1.
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Chapter 7

Discussion and Conclusion

In this thesis, a new type of channel, the additive inverse Gaussian noise channel,
has been investigated. We introduced its interesting properties and related lemmas.
Several methods of upper-bounding and lower-bounding its channel capacity are
provided.

We have found out that the upper bounds (3.15) and (3.16) from literature [1]
are very tight by providing analytical lower bound that is tight in the asymptotic
regime. Therefore, we focused on the low drift velocity v and low average-delay m
regime. Note that (3.16) has a strange increasing behavior when v — 0. Here we
provided an upper bound (5.40) that is better than (3.16) in low v. Moreover, (3.15)
does not tend to 0 as m — 0, while we can show an improved upper bound (5.40)
that does tends to 0.

The lower bounds (3.15) and (3.14) in [1], are not tight enough in both high
v and high m. With the help of [10], we were able to compute the exact output
distribution of an exponential input. This lower bound (4.82) was much tighter than
the known bound with respect to both v and m. It turned out that together with the
known upper bound, this lower bound allowed us to derive the asymptotic capacity
at high v (6.8) and m (6.15).

For future research, we propose the following problems related to the additive
inverse Gaussian noise channel:

e Derivation of the exact slope of the asymptotic capacity when m — 0.
e Derivation of the channel capacity behavior for v — 0.
e Inclusion of a peak-delay constraint to the system.

e Extension to nonadditive channels.
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