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摘       要 

 

由於大多數的傳送端裝置都是以電池提供能量，因此提升能量使用效率可以

同時提升成本效益與延長電池使用壽命。因為通道會隨著時間以及使用者的位置

不同而變化，傳送端可以利用這些變化所造成的分集(diversity)，視不同時間

之通道增益適當地調整其傳輸能量，進而大大的提高其能量的使用效率。 

在本論文中我們將會探討如何在時域上有效地分配傳輸能量以達到總能量

消耗最小化。在已知當前通道增益與未來通道的統計特性，但不知未來通道增益

資訊的情況之下，我們將設計一排程器既能節省能源又能滿足其服務質量

(Quality of Service)，即資料傳輸流量及限時條件。為了探討通道衰減、限時

條件與當前通道增益之間的相互影響，我們在此只討論一基本的排程問題，即我

們只討論抵達時間間格固定的單一封包，如:VoIP網路電話，影音串流都是這類

型的限時通訊方式，另外，我們沒有考慮中斷機率(Outage probability)的發生。 

利用反住水(Inverse Water-Filling)理論，我們可以推導出最佳非因果

(non-causal)的排程器，而在只有兩個時段(time slot)的情況下，也可推導出

最佳的因果排程器。此外，我們利用動態規劃法(dynamic programming)也可推

導出最佳分配法，但在總時段數大於二時沒有封閉式解法(Closed-form)，即無

法用基本函數表示。於是我們提出了兩個次最佳排程方案，一個利用了中央極限

定理(Central Limit Theorem)，另一個使用了反住水理論。兩個方法皆是由通

道意識與延遲意識所組成的線性組合，且模擬結果顯示當傳送量大時，兩的方法

皆接近於最佳排程結果。 

此外，我們推廣到多使用者的例子。在第一階段我們只有使用者們的通道特

性。在限時條件下，使用者們的分配順序並不重要，因此在此階段只需決定該分

配多少時段給每個使用者。之後我們將可把問題視為多個獨立的單一使用者、單

載波問題。在多個使用者情況下，排程問題可以分成資源分配、通道指定，即傳

送方必須利用順序統計法(order statistics)決定該通道應當指派給哪位使用

者，並決定該傳送多少能量以達成總能量消耗最小化的目的。 
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Abstract

For many wireless transmitters, since most devices are battery powered, increased

energy efficiency in data transmission provides significant benefits. Higher energy effi-

ciency may result in prolonging the lifetime of the battery. We seek to find an energy-

saving scheduler that sends a packet of R bits within a hard delay deadline K over fading

channels. The scheduling policies needs to determine the number of bits transmitted

in the current time slot with only the knowledge of current channel state information

and the channel statistics of the future channel while satisfying the quality of service

QOS constraints as the deadline expired in order to minimize the total energy consump-

tion. In this thesis, we will focus on the interaction between fading, hard deadlines, and

causal channel information by studying transmission of only a single packet, and thus

do not consider random arrivals since there are applications with deterministic packet

arrivals, i.e., VoIP or video streaming where packets arrive regularly and each must be

received within a short delay window. Although it is more reasonable to consider ran-

dom arrivals and outage probability that allows few packets missing, to emphasize the

relationship between fading, hard deadlines, and causal channel information, we only

consider a fundamental scheduling problem that one packet and no outage is allowed.

An optimal non-causal scheduling policy is derived by inverse water-filling (IWF)

method and an optimal causal scheduling policy is also derived for total time slots
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K = 2. We also develop a dynamic programming formulation that leads to an optimal

transmission schedule, however, it is hard to express as a closed form when K > 2.

Thus, we propose two suboptimal scheduler which give simple structure for general

problems, and one utilizes central limit theorem (CLT) for approximation while the

other is inspired by the IWF method. The policies are composed of a linear combination

of channel-awareness term and delay-awareness term. The numerical results show that

the proposed policies are nearly optimal when R is large.

In addition, we extend our work to multiple user case. At the first phase, we only

have the channel pdfs of users. Since delay constraint specifies only that the rate is

achieved in K blocks, the order of which the users are scheduled within the K blocks is

not important in this phase, so the scheduling boils down to sorting out the number of

blocks being allocated to each user. After deciding the number of blocks allocated to each

user, the problem can be treated as independent single-user single-carrier problems with

competitions. With multiple users, the scheduling problem is composed of distributing

resources, channel assignment that the transmitter requires to decide which user occupies

the channel at any given time slot by order statistic method and bit allocation that how

many bits should be allocated in order to minimize the total energy consumption of all

users.
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Chapter 1

Introduction

It has been shown that future wireless communication systems are expected to pro-

vide even higher rate multimedia services with more varieties of QoS requirements while

the higher of the energy consumption in network is also required that the tradeoff be-

tween expended energy and throughput is of prime importance in increasing transmitter

efficiency. Thus, the conservation of energy has recently begun to receive attention where

energy conservation refers to efforts made to reduce energy consumption, and may result

in a financial cost saving to consumers if the energy savings offset any additional costs of

implementing an energy efficient technology. For most devices in wireless communication

system are battery powered, for example, a battery- powered cellular phone might want

to have a call or download a file from the Internet using the minimum amount of energy

while satisfying its delay limitation imposed by quality of service (QOS) constraints, in

order to extend the battery lifetime.

Based on the assumption that channel state information (CSI) is available at the

transmitter for all time, the problem of finding the best transmission power and its

corresponding transmission rate at the transmitter for a time varying fading channel

was first addressed in [1] by using very long codewords to capture the ergodic properties

of the channel. However, having very long codewords causes excessive transmission

delay due to the large interleaver depth. With hard delay constraint, general energy-

rate relationships are studied in [2]-[6], but the scheduler has full information of channel
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state for all time and packet arrival time.

In this thesis, we will focus on the interaction between fading, hard deadlines (which

means the data must be transmitted before its expiry.), and causal channel information

by studying transmission of only a single packet, and thus do not consider random

arrivals since there are applications with deterministic packet arrivals, i.e., VoIP or video

streaming where packets arrive regularly and each must be received within a short delay

window. [7]-[9] have considered this problem. [7] provides numerical methods for the

general case where data throughput is concave in expended energy and the closed form

of optimal policies for the special cases where throughput is a piecewise linear function

of expended energy in a low signal-to-noise ratio or high bandwidth environment. [8]

develops a finite horizon dynamic programming formulation, where the tradeoff between

the cost of power and the probability of meeting the quality of service (QoS) constraint

and the optimal policy is to save energy by stopping data transmission and waiting for

upcoming channel condition improvements. In [9], a random arrival constraint is also

considered. This paper allocates power based on the relative value of power weighted

against the demanded QOS. The benefit of using this dynamic approach is that it will

stop the transmission in poor conditions, as it is predicted that achieving the demanded

QOS is expensive in terms of power. On the other hand, with a strict constraint on

QOS will force the transmitter to transmit, and it will be an excessive cost in terms of

power.

Delay constraint can be described as the probability of the outage event, and related

works can be found in [10]-[14]. In [10], it exploits the causal CSI to optimize the power

allocation over the blocks for minimizing the outage probability using a dynamic pro-

gramming approach. Similar in [11] in two-user downlink channel for expected capacity

maximization with a short-term power constraint given the causal CSI. In [13] an algo-

rithm that adapts the power allocation over the blocks to minimize the average transmit

power while constraining an upper bound of the outage probability constraint was pro-
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posed. [14] proposes a suboptimal solution which utilizes the Gaussian approximation

on the unknown channels by limit central theorem and simplifies the problem to convex

optimization.

We present energy-efficient scheduling policies that reduce the energy consumption of

networks while satisfying the hard delay constraint and QOS constraints. In chapter 2,

an optimal non-causal scheduling policy is derived by inverse water-filling (IWF) method

and an optimal causal scheduling policy is also derived for total time slots K = 2. We

also develop a dynamic programming formulation that leads to an optimal transmission

schedule, however, it is hard to express as a closed form when K > 2 as in [15]. Thus, we

propose two suboptimal scheduler which give simple structure for general problems, and

one utilizes central limit theorem (CLT) for approximation while the other is inspired

by the IWF method. The policies are composed of a linear combination of channel-

awareness term and delay-awareness term. The numerical results show that the proposed

policies are nearly optimal when R is large. In chapter 3, we apply our algorithm to

the multi-carrier case. In chapter 4, we extend our work to multiple user case. At the

first phase, we only have the channel pdfs of users. Since delay constraint specifies only

that the rate is achieved in K blocks, the order of which the users are scheduled within

the K blocks is not important in this phase, so the scheduling boils down to sorting out

the number of blocks being allocated to each user. After deciding the number of blocks

allocated to each user, the problem can be treated as independent single-user single-

carrier problems with competitions. With multiple users, the scheduling problem is

composed of distributing resources, channel assignment that the transmitter requires to

decide which user occupies the channel at any given time slot by order statistic method

and bit allocation that how many bits should be allocated in order to minimize the total

energy consumption of all users.

3



Chapter 2

Delay Constraint Scheduling for
Single User over Fading Channels

2.1 Background

Fostered by the remarkable growing of consumer demand for various multimedia

applications, increase the efficiency of data transmission has been the significant issue

over the past few years. While the most devices are battery powered, the efforts focus on

increasing the energy efficiency rather than the data throughput. For example, a battery-

powered cellular phone might want to have a call or download a file from the Internet

using the minimum amount of energy while satisfying its delay limitation imposed by

quality of service (QOS) constraints, in order to extend the battery lifetime.

For delay-sensitive communications, the data must be transmitted before its expiry.

Besides, the delay constraint can be considered in terms of whether a required rate is

reached within a finite number of time slots or can be described as the probability of the

outage event. Thus, for delay-sensitive applications, the target rate is usually given, and

the aim problem would be to minimize the transmission energy cost for a given deadline

constraint.

Since time-varying channel is the fundamental feature of the wireless communication

environment, the transmitter is preferred to transmit higher rate when the channel is in

4



good condition, and transmit less rate when the channel is in bad state. In our design

of scheduling strategies, we aim to transmit more data in good quality channel in order

to minimize the overall energy consumption while satisfying the user’s delay and other

quality of service constraints in a time-varying channel.

In this research, we will focus on the interaction between fading, hard deadlines, and

causal channel information by studying transmission of only a single packet, and thus

do not consider random arrivals since there are applications with deterministic packet

arrivals, i.e., VoIP or video streaming where packets arrive regularly and each must

be received within a short delay window. Although it is more reasonable to consider

random arrivals and outage probability that allows few packets missing, to emphasize

the relationship between fading, hard deadlines, and causal channel information, we only

consider one packet and no outage is allowed.

2.2 System Model

Consider a single-user and single-carrier problem that sends a packet of R bits within

K time slots (or blocks as well), which K is referred to as delay deadline, through

a flat fading channel as illustrated in Fig. 2.1. We assume that the packet must be

Figure 2.1: single-user delay constraint scheduling.

transmitted by the deadline and no other packet is scheduled in K time slots. Although

in realistic traffic, other packets can arrive before the deadline of the previous packet

and it is possible to drop some packets, i.e. outage probability is allowed, we simplify

the problem and focus on the issue of meeting deadline.
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We also assume a time-varying block-fading channel, which fades identically and

independently from one block to another, but the fade is considered static within a

time slot. The transmitter is assumed to have causal knowledge of the channel state

information (CSI), that is, the transmitter only knows the channel state in current time

slot and the statistics of the future channes, but the precise future channel states are

unknown.

We use gk to denote the channel gain in kth time slot, where k is in descending

order, i.e., k = K is the initial slot, k = K − 1 is the 2nd slot,..., and k = 1 is

the final time slot that all remaining bits must be transmitted even if the channel

condition is quite poor, and k represents the number of remaining time slots. The

channel amplitude can be decomposed into the distance-dependent and the distance-

independent terms. For example, when we assume that the channel amplitude,
√

gk, is

rayleigh fading distributed, gk will be exponential distributed with probability density

function (pdf) as following:

f(gk) =

{
1

C0d−γ e
− gk

C0d−γ , gk ≥ 0;

0, gk < 0.
(2.1)

where mean E[gk] = C0d
−γ ∀k in which d denotes the distance between the transmitter

and the receiver, γ is the power loss exponent, and C0 is the distance-independent mean

channel power gain.

Based on Shannon-Hartley theorem, the channel capacity R = log2(1 + gQ), where

g and Q denote the channel power gain and energy, and after manipulations, Q = 2R−1
g

.

Since the future CSI is unknown, the average future energy E[Q] = (2R − 1)E[1
g
], and

the policy is meaningful only when E[1
g
] is finite. This rules out Rayleigh fading where g

is exponentially distributed and thus E[1
g
] is not finite. It means that the scheduler will

not accept the users whose channel conditions are not qualified. Therefore, the following

are the channel models which E[1
g
] is proved finite:

• Truncated Rayleigh fading
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The channel power gain g is truncated exponentially distributed. The truncated ex-

ponential distribution restrict the domain from the value which lie below a thresh-

old η, thus, the channel state g is distributed as following:

f(gk) =

{
1

C0d−γ e
− gk−η

C0d−γ , gk ≥ η;

0, gk < η.
(2.2)

• Nakagami-m distribution

Given a shape parameter µ and a second parameter controlling spread ω, its prob-

ability density function (pdf) is:

f(x; µ, ω) =
2µµx2µ−1

Γ(µ)ωµ
exp(−µ

ω
x2) (2.3)

where Γ(·) is the Gamma distribution.

Furthermore, we can prove that the channel power gain is chi- square distributed

with degrees of freedom k, which is the distribution of a sum of the squares of k

independent standard normal random variables.

Let the random variable Y be defined by Y = x2, the event {Y ≤ y} occurs when

{X2 ≤ y} or equivalently when {0 ≤ X ≤ √
y} for y nonnegative. Thus,

FY (y) =

{
0, y < 0
FX(

√
y), y > 0

(2.4)

and differentiating with respect to y, we will get the pdf of the channel power gain

fY (y) =
fX(

√
y)

2
√

y

=
µµyµ−1

Γ(µ)ωµ
e−

µ
ω

y

=
y

k
2
−1e−

y
2

Γ(k
2
)2

k
2

where µ = k
2

and ω = k.

2.3 Problem Formulation

We consider a single user sending a packet of R bits before the deadline expired.

The problem is to find the minimum required energy for a given target rate R in a

7



transmission of K-block flat-fading channels. Thus, we are going to determine the

energy, or equivalently the number of bits, to be served during each time slot k such

that the expected energy is minimized and the bits are served by the deadline K which

is illustrated in Fig. 2.2. The objective function can be expressed as:

Figure 2.2: single-user scheduling diagram.

min Ek = min
rk

Qk + E[Qr], ∀k (2.5)

subject to

Qk ≥ 0, Qr ≥ 0

where

K deadline (time slots), k is in descending order and thus represents the number of

remaining time slots;

Qk the energy allocated in kth time slot, Qk = PkT ;

Qr the expected required energy for transmitting the remaining bits, as the time slots

are independent and identical distributed(i.i.d), the optimum can always be attained

with an equal-power policy, Qr = (k − 1)TPr;

R the total target bits,
∑K

k=1 rk = R;

rk the rate achieved at the kth block:

rk = log2(1 +
Qkgk

N0

) in bps/Hz (2.6)

8



then the energy allocated in kth time slot can be expressed as:

Qk =
N0(2

rk − 1)

gk

(2.7)

R̃k the remaining bits to be sent in the k block;

gk channel power gain in time slot k;

When rk becomes smaller, the transmission energy in the kth time slot is reduced.

However, it will leave more bits which need to transmit in the future and the expected

energy for transmitting the remaining bits will increase. The optimal energy-efficient

scheduler is the set of scheduling functions {ropt
k (., .)}K

k=1 that minimizes the total ex-

pected energy cost:

min
rK ,...,r1

E[
K∑

k=1

Qk(rk, gk) ] (2.8)

subject to
K∑

k=1

rk = R and 0 ≤ rk ≤ R̃k ∀k

Then, the optimal bit allocation can be formulated sequentially via dynamic program-

ming with the remaining bits R̃k:

ropt
k (R̃k, gk) =

{
arg min0≤rk≤R̃k

{Qk(rk, gk) + E[
∑k−1

s=1 Qr(rs, gs)|rk]}, k=K,...,2;

R̃1, k=1.

(2.9)

The optimal solution can be found by working backwards in recursive manner. We cal-

culate the optimal scheduling policy at k = 1 first, and determine the optimal action at

k = 2 based on the scheduling policy r1 used at k = 1 and so forth. Since the channel

power gain gk is known and future channel state gk−1, ..., g1 are unknown, the current

energy cost Qk is not random but the future energy cost Qr is random, so we take

the expected future energy cost for consideration. If the perfect information of channel

state g is available to the transmitter for all time slots, then the optimal solution can be

obtained by inverse water-filling procedure, i.e., more power is allocated to the better

channel with higher signal-to-noise ratio (SNR), so as to minimize the total energy cost

9



of all blocks. The optimal scheduler with perfect CSI by inverse water-filling method is

shown below.

2.4 Optimal Scheduling with Perfect CSI by Inverse

Water-Filling Method

Here we derive an optimal scheduling policy that the channel state are known non-

casually, i.e., gK , gK−1, ..., g1 are known at k = K by inverse water-filling. The conven-

tional water-filling maximizes the data rate subject to a power constraint, and this is

like a dual problem of minimizing the energy cost subject to a rate constraint; thus, it

is referred to as inverse water-filling (IWF):

min
K∑

k=1

2rk − 1

gk

(2.10)

subject to

K∑

k=1

rk = R (2.11)

rk ≥ 0 (2.12)

Since it is a convex problem, it can be easily solved by the standard Lagrangian method.

Define the Lagrangian as:

Λ(rk, λ) =
K∑

k=1

2rk − 1

gk

− λ(
K∑

k=1

rk −R) (2.13)

where λ is a Lagrangian multiplier, and solve:

∇Λ(rk, λ) = 0 (2.14)

We get

rk = log2(
gk

gth

) (2.15)

10



where gth = ln 2
λ

, and only when gk > gth , i.e., rk > 0 will the time slot be utilized.

Substitute (2.15) into (2.11), and we can get the optimal solution:

rk(R̃k, gk) =

{
1
k′ R̃k + k′−1

k′ log2
gk

ηIWF
k

, gk > gth

0, gk < gth.
(2.16)

where k′ =
∑k

i=1 1{gi>gth} denotes the number of time slot which is utilized and channel

threshold ηIWF
k = (

∏k−1
i=1 g

1{gk>gth}
i )

1
k′−1 . The first additive term corresponds to allocate

the remaining bits equally to utilized time slots, and the second term corresponds to

decide whether to add/subtract the bits depending on channel state g. For K = 2, the

optimal non-causal scheduling policy is given by:

rIWF
2 (R, g2) = 〈 R

2
+

1

2
log2(

g2

g1

) 〉R0 (2.17)

We notice that the optimal non-causal policy determines rIWF
2 by inverse water-filling

over channel g2 and g1. When k=2, more bits will be transmitted if g2 > g1, on the

other hand, less bits will be transmitted if g2 < g1.

2.5 Optimal Causal Scheduling for K=2

First, we consider the special case for K = 2 to illustrate the basic idea of the

proposed scheduling scheme. Because it is a delay-constraint based transmission, in

the final slot (k = 1), the scheduler is required to transmit all the remaining bits R̃1

regardless the channel state g1. At the first time slot k = 2, g2 is known but g1 is

unknown. Thus, the energy cost in the last time slot is given by Qr(R̃1, g1) = 2R̃1−1
g1

for all g1, and the expected cost to serve R̃1 bits in the final slot is Eg1 [Qr(R̃1, g1)] =

E[ 1
g1

](2R̃1 − 1). The scheduler needs to determine the transmitted bits r2, based on

channel state g2 and remaining bits R, while balancing the current energy cost and the

11



expected future cost. The objective function can be written as:

min E2 = min
r2

Q2 + E[Qr] (2.18)

= min
0≤r2≤R

1

g2

(2r2 − 1) + E[
1

g1

](2R̃1 − 1)

= min
0≤r2≤R

1

g2

(2r2 − 1)+
︸ ︷︷ ︸
current energy cost

+ E[
1

g1

](2R−r2 − 1)
︸ ︷︷ ︸

future energy cost

where taking into account the constraints on r2, the number of transmitted bits can not

be less than 0 or more than the total bits R.

Since the objective function is convex, we can get the global optimum solution by

setting the derivative to zero:

ropt
2 (R, g2) = 〈1

2
R +

1

2
log2

g2

η1

〉R0 (2.19)

where η1 = 1
ν1

= 1
E[1/g1]

is a constant that depends only on the distribution of the channel

state g and the operation 〈.〉ba means that the value is truncated from below at a and

truncated from above at b.

Like the structure in (2.17), the first additive term in (2.19): 1
2
R corresponds to

allocate equal bits to time slot k = 1 and k = 2, and the second additive term in (2.19):

1
2
log2

g2

η1
corresponds to a measure of the channel state in first time slot. If the channel

quality g2 is bigger than the threshold η1, then more bits are allocated than 1
2
R, and if

the channel quality g2 is smaller than the threshold η1, less bits are allocated to the time

slot. Compare the optimal non-causal solution (2.17) with the optimal causal solution

(2.19), We notice that the optimal non-causal policy determines rIWF
2 by inverse water-

filling over channel g2 and g1, while the optimal causal policy determines ropt
2 by inverse

water-filling over channel g2 and 1
ν1

(=η1) which seems the future channel state as 1
ν1

.

Now we discuss further when the number of total time slots K > 2. From (2.9), the

optimization that the scheduler solves at time slot k is:
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Ek(R̃k, gk) =

{
min0≤rk≤R̃k

( 2rk−1
gk

+ Ēopt
k−1(R̃k − rk) ), k=K,...,2;

E1(R̃1, g1), k=1.
(2.20)

where Ēopt
k−1(R̃k − rk) = Eg[E

opt
k−1(R̃k − rk, g)] denotes the expected cost to serve R̃k − rk

bits in (k − 1) slots if the optimal allocation policy is used at each time slot. Assuming

Ēopt
k−1(R̃k − rk) is differentiable, using the same method as in K = 2 case, the optimal

solution can be obtained by solving (2.21):

ropt
k (R̃k, gk) =





0, gk < ln 2

(Ēopt
k−1)′(R̃k)

,

argrk
{2rk

gk
= 1

ln 2
(Ēopt

k−1)
′(R̃k − rk)}, ln 2

(Ēopt
k−1)′(R̃k)

< gk < 2R̃k ln 2

(Ēopt
k−1)′(0)

,

R̃k, gk > 2R̃k ln 2

(Ēopt
k−1)′(0)

.

(2.21)

When k = 2, the future expected energy cost Ēopt
1 (R̃1) = E[ 1

g1
](2R̃1−1) and its derivative

is in a simple form; thus, the optimal scheduling policy can be solved in closed form as in

(2.19). However, it is not that easy to find a closed form for K > 2. Since the derivative

(Ēopt
k−1)

′(R̃k − rk) is hard to be analytically inverted, the optimal scheduler can not be

written in closed form, so the optimal policy can be only expressed by (2.21); thus, it is

of interest to develop suboptimal schedulers.

2.6 Proposed Scheduling Policies

In this section, we will derive two scheduling equations to determine the number of

bits transmitted to each time slot such that the total transmit energy of the system is

minimized while the QoS and delay constraints are satisfied.
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2.6.1 Proposed Scheduling Policy by Central Limit Theorem

First, we would like to introduce the Central limit theorem (CLT) which is mainly

used in this algorithm. In probability theory, the Central limit theorem (CLT) asserts

that the mean of a sufficiently large number of independent random variables, each with

finite mean and variance, will be approximately normally distributed. The law of large

numbers states that the arithmetic mean of independent, identically distributed random

variables converges to the expected value.

Central limit theorem: Let X1, X2, ...Xn be a sequence of independent and identically

distributed random variables with expected value µ and variance σ2, which n is a random

sample of size. The central limit theorem asserts that for a sufficiently large n, the

distribution of Sn = 1
n
(X1 + X2 + ... + Xn) will be approximately normal with mean µ

and variance σ2

n
:

Sn − nµ

σ
√

n
→ N(0, 1) as n → ∞ (2.22)

Given the remaining blocks k, using CLT we can derive the minimum energy sched-

uler of single user. First we have to find the formulation of expected future energy cost

E[Qr], and we will start on the scheduler by the expression of the remaining bits R̃k−1

at time slot k − 1 which can be written as:

R̃k−1 =
k−1∑
m=1

rm

=
k−1∑
m=1

log2(1 +
gmQm

N0

)

≈
k−1∑
m=1

log2(
gmQm

N0

)

=
k−1∑
m=1

log2 gm +
k−1∑
m=1

log2(
Qm

N0

)

Our goal is to minimize the summation of Qms. First of all, we shall know how to

distribute Qm such that the bit sum is maximized with the condition that
∑k−1

m=1 Qm is

a constant. By applying Lagrange multiplier, the equal power allocation is optimal. In
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the equal power allocation strategy,

R̃k−1 =
k−1∑
m=1

log2 gm +
k−1∑
m=1

log2(
Qm

N0

)

=
k−1∑
m=1

log2 gm + (k − 1) log2(
Qr

(k − 1)N0

)

After some manipulations,

⇒ log2(
Qr

(k − 1)N0

) =
R̃k−1

k − 1
− 1

k − 1

k−1∑
m=1

log2 gm

ln(
Qr

(k − 1)N0

) =
R̃k−1 ln 2

k − 1
− 1

k − 1

k−1∑
m=1

ln gm (2.23)

Since the channel gain {gk−1, ..., g1} is a sequence of independent and identically dis-

tributed random variables, as sufficiently large k, the distribution of
∑k−1

m=1 ln gm can be

approximated by central limit theorem (CLT) as normal with

µg(k−1)
= E[

k−1∑
m=1

ln gm] = (k − 1)[ln C0 − γEM ] (truncated exponential) (2.24)

σ2
g(k−1)

= var[
k−1∑
m=1

ln gm] =
(k − 1)π2

6
(truncated exponential) (2.25)

where γEM is the Euler-Mascheroni constant. According to (2.23), since the first term

of the right hand side is a constant, the right hand side of equation (2.23) is also normal

distributed.

Define X = Qr

(k−1)N0
and Y = R̃k−1 ln 2

k−1
− 1

k−1

∑k−1
m=1 ln gm, then equation (2.23) can be

written as ln X = Y , where

E[Y ] =
R̃k−1 ln 2

k − 1
− 1

k − 1
µg(k−1)

(2.26)

var[Y ] =
1

(k − 1)2
σ2

g(k−1)
(2.27)

Since Y is normally distributed, X is log-normally distributed which can be expressed

as lnN (E[Y ], var[Y ]), where

E[X] = eE[Y ]+var[Y ]/2 (2.28)

var[X] = (evar[Y ] − 1)e2E[Y ]+var[Y ] (2.29)
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By using equation (2.28), we can derive the formulation of expected future energy cost

as following:

E[X] =
E[Qr]

(k − 1)N0

= e
R̃k−1 ln 2

k−1
−[ln C0−γEM ]+ π2

12(k−1) (2.30)

⇒ E[Qr] = (k − 1)N0e
R̃k−1 ln 2

k−1
−[ln C0−γEM ]+ π2

12(k−1)

= (k − 1)N0e
− ln C0+γEM+ π2

12(k−1)
+

(R̃k−rk) ln 2

k−1

= (k − 1)N0e
− ln C0+γEM+ π2

12(k−1)
+

R̃k ln 2

k−1 e−
rk ln 2

k−1 (2.31)

Then, the number of bits allocated in time slot k over exponential distributed fading

channel can be attained by differentiating (2.7) and (2.31), and set the derivative to 0:

∂(Qk + E[Qr])

∂rk

=
N0

gk

2rk ln 2−N0 ln 2e− ln C0+γEM+ π2

12(k−1)
+

R̃k ln 2

k−1
− rk ln 2

k−1 = 0

⇒ rk = 〈 1

k
[

π2

12 ln 2
+ R̃k] +

k − 1

k
[
ln gk

C0
+ γEM

ln 2
] 〉R̃k

0 (2.32)

Compare our bit policy with the optimal scheduling policy (2.21) when K = 2.

As what we had mentioned before, the additive term 1
k
R̃k in (2.32) denotes allocating

equal bits to time slot {k, ..., 1}, and the term k−1
k

ln gk

C0
corresponds to the channel state

measure in kth time slot with a threshold value C0 which depends on the channel statistic

and is constant with respect to k. Furthermore, we have the addition correction term

which depends on channel statistic in our scheduling policy which prevents the scheduler

from allocating too few bits to each time slot. We observed that if the scheduler is too

passive on scheduling, there will be too many remaining bits left in the last time slot,

and this will cause a significant increase on energy cost.

When the deadline is far away (i.e., k is large), the first term in (2.32) is too small to

be negligible, and the bit allocation is almost dependent on the instantaneous channel

quality which means that only when the channel state is good will the scheduler allocate

the bits to the time slot. The scheduler can be more selective because many different

channels remain to be seen before the deadline is reached. On the other hand, when
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k approaches to 1 (the deadline is coming close), the weight on the channel-dependent

term decreases, and the scheduler concerns more on the delay-associated term.

For the purpose of comparing with other previous work, we are going to derive a

scheduling policy over the truncated exponential distributed fading channel. Now we

are ready to recast the bit allocation policy with η = 0.0000001. As sufficiently large k,

the distribution of
∑k−1

m=1 ln gm can be approximated by central limit theorem (CLT) as

normal with

µg(k−1)
= E[

k−1∑
m=1

ln gm] = (k − 1)(−0.5772) (2.33)

σ2
g(k−1)

= var[
k−1∑
m=1

ln gm] = (k − 1)(1.6449) (2.34)

Let X = Qr

(k−1)N0
and Y = R̃k ln 2

k−1
− 1

k−1

∑k−1
m=1 ln gm, then equation (2.23) can be written

as ln X = Y , where

E[Y ] =
R̃k−1 ln 2

k − 1
+ 0.5772 (2.35)

var[Y ] =
1.6449

(k − 1)
(2.36)

As the method we used before, the expected future energy cost over the truncated

exponential fading channel is rewritten as:

E[X] =
E[Qr]

(k − 1)N0

= e
R̃k−1 ln 2

k−1
+0.5772+ 1.6449

2(k−1) (2.37)

⇒ E[Qr] = (k − 1)N0e
R̃k ln 2

k−1
+0.5772+ 1.6449

2(k−1) e
−rk ln 2

k−1 (2.38)

Then, the number of bits allocated in time slot k over truncated exponential distributed

fading channel can be attained by differentiating (2.7) and (2.38), and set the derivative

to 0:

∂(Qk + E[Qr])

∂rk

=
N0

gk

2rk ln 2− (N0 ln 2)e
R̃k ln 2

k−1
+0.5772+ 1.6449

2(k−1) e
−rk ln 2

k−1

⇒ rk = 〈 1

k
[R̃k +

0.82245

ln 2
] +

k − 1

k
[
ln gk + 0.5772

ln 2
] 〉R̃k

0 (2.39)
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For the expansion to the multiple user cases, it is needed to find the required time

slots before scheduling. Thus, we are attempt to find the optimal required time slot

k∗ which minimizes the future energy cost in (2.31) when k = K before the scheduling

which also fulfills the QOS constraints. For minimizing transmission energy with the

condition that the total bits R needed to be transmitted, we can first calculate the

number of required time slots k∗ by differentiating the expected energy cost E[Qr] with

respect to k:

E[Qr] = kN0e
− ln C0+γEM+ π2

12k
+R ln 2

k

∂E[Qr]

∂k
= e− ln C0+γEM+ π2

12k
+R ln 2

k (1− π2

12k
− R ln 2

k
) = 0

⇒ 1− π2

12k
− R ln 2

k
= 0 (2.40)

The optimal required time slots can be derived as:

k∗ =
π2

12
+ R ln 2 (2.41)

where if k∗ exceeds the number of total time slots K, it would be bounded to K, and k∗

should be rounded to the nearest integer. Actually, the floor or ceiling operations can

be used here, too. After integerizing k∗, we will check the expected energy cost with

k∗ = dk∗e and k∗ = bk∗c, where dye returns the smallest integer that is bigger than y;

similarly, byc returns the greatest integer that is smaller than y. If the energy cost with

k = dk∗e is smaller than the energy cost with k∗ = bk∗c, then we will set k∗ = dk∗e or

vice versa. We had compared the result k∗ with kbest, the one obtained by exhausted

method that check the energy cost for every k, and it turns out that two solutions are

the same, k∗ = kbest, shown in fig. 2.3.

However, the conclusion is inaccurate. Although it has good performance on schedul-

ing which will be shown in numerical results, by an intuitive judgement, the more time

slots we have, the more flexible constraint we get. Mathematically, the set of optimal k∗

is one subset of K such that it shall not outperform than the scheduler with K-time-slot

constraint.
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Figure 2.3: The required time slots k∗ we derived is equal to the optimal solution kbest

found by exhausted search.

2.6.2 Proposed Scheduling Inspired by Inverse Water-Filling

In this section, a new proposed algorithm inspired by inverse water-filling is pre-

sented. The difficulty to find a general analytic solution to the optimization problem in

(2.8) is due to complications caused by the constraint 0 ≤ rk ≤ R (for each k) in the

dynamic optimization. Thus, if we relax the constraint while maintaining the other con-

straint, we can derive the optimal policy in closed form. The problem can be rewritten

as follows:

min
rK ,...,r1

E[
K∑

i=1

Qi(ri, gi) ] (2.42)

subject to
K∑

i=1

ri = R
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By using Lagrange multiplier and differentiate the function with respect to ri,

∂
∑K

i=1 Qi − λ(
∑K

i=1 ri −R)

∂ri

=
ln 2eri ln 2

gi

− λ = 0 (2.43)

⇒ ri =
ln( λgi

ln 2
)

ln 2
(2.44)

Substituting the results back into the constraint,

R =
K∑

i=1

ri =
K∑

i=1

ln(λgi

ln 2
)

ln 2
(2.45)

⇒ ln λ =
R ln 2 + K ln ln 2−∑K

i=1 ln gi

K
(2.46)

ri =
ln λ− ln ln 2 + ln gi

ln 2

=
R ln 2

K
− 1

k

∑K
i=1 ln gi + ln gi

ln 2

=
R

K
+

ln gi − 1
K

∑K
i=1 ln gi

ln 2

=
R

K
+

(K−1)
K

ln gi − 1
K

∑K
j=1,j 6=i ln gj

ln 2

Then, we can get the scheduling policy rK for k = K by taking the expectation on

unknown channel gain {g1, ..., gK−1}:

E[rK ]g1,...,gK−1
=

R

K
+

(K − 1) ln(gK

ḡ
)

K ln 2

=
R

K
+

K − 1

K
log2

gK

ḡ

where ḡ = eE[ln g]. By truncating the policy at 0 and R̃k, the general optimal solution

for time slot k can be expressed as:

rk = 〈 R̃k

k
+

k − 1

k
log2

gk

ḡ
〉R̃k
0 (2.47)

Observing the equation (2.47), the structure is similar to the optimal solution in (2.17).

We can have an insight that our scheduler applies inverse water-filling at every time slot

k over the following k channels with channel gain gk and (k − 1) identical channel with

channel gain ḡ which is illustrated in Fig 2.4.
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Figure 2.4: Channel gain interpretation for IWF-based algorithm scheme.

Therefore, the expected transmission power of future channels at time slot k is:

E[Qr] =
(k − 1)(2R̃k/(k−1) − 1)

ḡ
(2.48)

Now, differentiate E[Qr] with respect to k :

∂E[Qr]

∂k
=

(2R̃k/k − 1)

ḡ
− 2R̃k/kR̃k ln 2

kḡ

∂2E[Qr]

∂k2
=

(2R̃k/k)R̃2
k(ln 2)2

k3ḡ
> 0

We can not tell the slope to be positive or negative by the first- order differential equation.

However, with the condition that limk→∞
∂E[Qr]

∂k
= 0, we can say the function E[Qr] is

decreasing as k increasing, which conforms to the fact that the more time slots we use,

the less energy to be consumed, see Fig 2.5.

Furthermore, considering the average number of bits transmitted in time slot k, we

21



Figure 2.5: The expected energy versus the number of total time slots

can prove our scheduler is unbias that the decision is not aggressive nor conservative.

Egk
[rk] = Egk

[
R̃k

k
+

k − 1

k
log2

gk

ḡ
]

=
R̃k

k
− k − 1

k
log2 ḡ +

k − 1

k
E[log2(gk)]

=
R̃k

k
− k − 1

k
E[log g] +

k − 1

k
E[log gk]

=
R̃k

k

2.7 Numerical Results

First, we will introduce some suboptimal scheduling policies that will be compared

with our algorithm in the following.

A. Suboptimal I in [15]
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This paper proposes two suboptimal schedulers that simply apply the inverse

water-filling at every time slot k. With the intuition of observations described

above, the suboptimal I applies this inverse water-filling at every time slot k over

the following k channels:

gk,
1

ν1

, ...,
1

ν1︸ ︷︷ ︸
k−1

(2.49)

where ν1 = E[ 1
g1

]. Then the bit allocation policy is given by:

r
(I)
k (R̃k, gk) = 〈 1

k
R̃k +

k − 1

k
log2

gk

η
(I)
k

〉R̃k
0 (2.50)

where η
(I)
k = 1

ν1
serves as the channel threshold, and is constant with respect to k.

By using a constant threshold, it shows that Suboptimal I is not selective enough

and transmits too many bits when the deadline is far away. To see this, consider

the average number of bits transmitted in slot k:

Egk
[rk(R̃k, gk)] = Egk

[
1

k
R̃k +

k − 1

k
log2

gk

η
(I)
k

] (2.51)

=
1

k
R̃k +

k − 1

k
E[ log2

gk

η
(I)
k

] (2.52)

Because η
(I)
k = 1

ν1
= 1

E[ 1
g1

]
, by Jensen’s inequality

E[ log2

gk

η
(I)
k

] = E[log2 gk] + log2 E[
1

g1

] > 0 (2.53)

Thus, Suboptimal I transmits more than R
K

bits on average when scheduling begins,

which is in some sense overly aggressive. By contrast, the average number of bits

transmitted at time slot k in our algorithm (2.49) shows that our policy has a

better performance with no too aggressive or conservative on scheduling.

B. Suboptimal 2 in [15]

Suboptimal I has a constant threshold which is not selective enough, so it is of

interest to have a threshold which varied with k, and it is intuitive to use a larger

threshold when the deadline is far away (large k), as the scheduler can be more
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selective because many different channels remain to be seen before the deadline is

reached. From [15], the bit allocation policy of suboptimal II is given by:

r
(II)
k = 〈 1

k
R̃k +

k − 1

k
log2

gk

η
(II)
k

〉R̃k
0 (2.54)

where

η
(II)
k =

1

G(νk−1, νk−2, ..., ν1)
(2.55)

and G(νk, ..., ν1) = (
∏k

i=1 νi)
1
k represents the geometric mean operation, and νm =

(E[(1
g
)

1
m ])m, for m = 1, 2, .... The future energy cost of suboptimal 2 in [15] was

defined as below:

E[Qr(R̃k)] = k2
R̃k
k G(νk, ..., ν1)− kν1 (2.56)

Compare the two suboptimal policies of [15] with the non-causal optimal solution

Figure 2.6: General framework of single-user schedulers.

(2.16) and the causal optimal solution derived by IWF (2.47), and we can see that

they all have the similar form only with the different channel threshold as in Fig.

2.6:

rk = 〈 1

k
R̃k +

k − 1

k
log2(

gk

ηk

) 〉R̃k
0 (2.57)
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where ηk is the channel threshold determined by the individual algorithms. This

framework shows how the delay constraint affects the scheduling strategy. At time

slot k, the scheduler transmits a fraction 1
k

of the remaining bits R̃k plus/minus

a quantity depends on the current channel condition. When the channel gain is

better than the channel threshold (gk > ηk), more bits will be transmitted, while

less bits will be served when the channel gain is worse than the channel threshold.

For large k, the first term is almost negligible, and the scheduler is nearly channel-

dependent that it can be aggressive when the channel is in a good condition. On

the other hand, for small k, we should take more concern on delay deadline, thus,

the decision will be more conservative.

C. Equal bit

The equal bit scheduler is one of the simplest causal scheduler. It serves equal bits

on each time slot regardless of the channel gain:

req
k =

R

K
=

1

k
R̃k (2.58)

2.7.1 Numerical results

The simulated performance of the proposed scheduling algorithms are presented in

this section. First we evaluate the performance of the proposed scheduling algorithms

for the single-user single-carrier scheme over truncated Rayleigh distributed channel in

Fig 2.7, and the performance of the proposed scheduling algorithms for the single-user

single-carrier scheme over Nakagami distributed channel in Fig 2.8. In Fig. 2.7 and

Fig. 2.8 we compare the performance of the proposed algorithms with the suboptimal

scheduling policies and optimal non-causal solution. The expected energy for k = T

means the average future energy cost we estimated before scheduling, and we observes

that it has a significant decrease on total energy consumption via scheduling with the

information of the current channel gain.

The CLT-based algorithm and the IWF-based algorithm are superior to suboptimal 1
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Figure 2.7: Total energy consumption for K=100 over truncated Rayleigh distributed
channel.

by a 4 dB margin due to the non-aggressive nature and a slightly superior to suboptimal

2. The difference between our algorithm and suboptimal 2 is not obvious, but our

algorithm is possible to be extended to the multiple user cases. Both our algorithms

perform nearly as well as the optimal solution when B is large. There are significant

differences between equal-bit and other schedulers, which is to be expected given the

time diversity available over the time slots.
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Figure 2.8: Total energy consumption for K=100 over Nakagami distributed channel.
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Chapter 3

Proposed Single-User Multi-Carrier
Scheduler

3.1 Scenario

In multi-carrier scenario, we assume that there are M carriers in one time slot. Similar

as single-carrier scenario, the scheduler has full CSI of the current M subcarriers and

the pdf of future channels only. The packet must be transmitted by the deadline and no

other packet is scheduled in K time slots. In this scenario, we try to find out the way

which is energy-efficient for allocating bits in each subcarruer.

3.2 Proposed Algorithm

If we applied the result of single-carrier case into multi-carrier scenario by assuming that

the channel gain of each subcarrier of the future time slot can be viewed as identical and

the value is ḡ which is illustrated in Fig 3.1. We will obtain exactly the same answer.

Inverse water-filling is applied in the case that we have the channel gain of current M

subcarriers and (k − 1)M identical subcarriers with channel gain ḡ:

g1,k, ..., gM,k, ḡ, ..., ḡ︸ ︷︷ ︸
M(k−1)

(3.1)
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Figure 3.1: Channel gain interpretation for single-user multi-carrier scheme.

where ḡ = eE[ln g]. In order to obtain the close form solution to minimize total expected

energy, we relax the upper bound and the lower bound of rm,k such that the problem

can be written as follows:

min
r1,K ,r2,K ,...,rM,K ...,r1,1,r2,1,...,rM,1

M∑
m=1

K∑

k=1

2rm,k − 1

gm,k

(3.2)

subject to
M∑

m=1

K∑

k=1

rm,k = R (3.3)

By using Lagrange multiplier and differentiate the function with respect to rm,k,

∂

∂rm,k

(
M∑

m=1

K∑

k=1

2rm,k − 1

gm,k

− λ(
M∑

m=1

K∑

k=1

rm,k −R) ) = 0 (3.4)

⇒ rm,k = log2(
λgm,k

ln 2
) (3.5)
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Substituting the results back into the constraint,

M∑
m=1

K∑

k=1

log2(
λgm,k

ln 2
) = R

M∏
m=1

K∏

k=1

gm,k

ln 2
λ

= 2R

ln 2

λ
= (

∏M
m=1

∏K
k=1 gm,k

2R
)

1
MK

Then, we can get the scheduling policy for subcarrier m at time slot k by taking the

expectation on unknown channel gain {g1,k−1, ..., gM,k−1, ..., g1,1, ..., gM,1}:

rm,k = E[ log2

gm,k

(
∏M

m=1

∏K
k=1 gm,k

2R̃k
)

1
Mk

]

= log2

gm,k

( ḡ
(k−1)M

∏M
m=1 gm,k

2R̃k
)

1
Mk

=
1

Mk
R̃k + log2

gm,k

(ḡ(k−1)M
∏M

m=1 gk,m)
1

Mk

=
1

Mk
R̃k + log2

gm,k

gth

where gth = (ḡ(k−1)M
∏M

m=1 gm,k)
1

Mk .

However, there exists one major difference between the result of multi-carrier scenario

and the result of single-carrier scenario. When the rm,k is truncated, it implies the mth

channel of time slot k is unused. This channel shall be removed and we shall perform

the inverse water-filling algorithm again without having this channel. Thus the whole

procedure is concluded as in Fig 4.1. Note that we can just amendment the gth and total

resource number to acquire rm,k.
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Figure 3.2: Flowchart of the whole procedure for single user case.
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Chapter 4

Delay Constraint Scheduling for
Multiple-user Single-carrier over
Fading Channels

4.1 System Model

In this chapter, we extend our algorithm to multiple-user cases. Consider a multiple-

user single-carrier problem that each user has its own target data rate Ru, and the packet

has to be transmitted within deadline K which we assume to be the same for every

user for simplification through flat fading channels that we had mentioned before. The

scheduler has perfect current channel information of each user and the channel statistic

of future channel gain, see Fig 4.1. The scheduling problem is composed of channel

assignment that the transmitter requires to decide which user occupies the channel at

any given time slot and bit allocation that how many bits should be allocated which we

discuss in chapter 2 in order to minimize the total energy consumption of all users.

4.2 Problem Formulation

The problem can be formulated as:

min
{ku}

U∑
u=1

WuQu = min
{ku}

U∑
u=1

Wu
ku(2

Ru
ku − 1)

ḡu

(4.1)
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Figure 4.1: Channel gain interpretation for multi-user single-carrier scheme.

subject to
U∑

u=1

ku ≤ K, (4.2)

ku ∈ {1, 2, ..., K − U + 1},∀u, (4.3)

where

U the total number of users;

Qu the total energy allocated to user u;

ku the number of blocks allocated to user u;

Ru the target data rate of user u;

Wu the weighting of user u;

Here, we assume we don’t have any preference in minimizing energy of the particular

users and the weights of users are identical. The user should compete for the resources,

because only one user is permitted to gain access to the channel for each resource block.

To prevent the case there are users don’t own any single resource to transmit, we also
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enforce and guarantee that each user will obtain at least one resource, but the summation

of required time slots of each user can not exceed the delay deadline K. However, the

number of active users may be larger than the total available resources. The admission

control mechanism is needed to prevent the whole system being overwhelmed. To fucus

on the main issue, the design of the admission control is out of scope and we assume the

number of active users are far less than the number of total resources.

The whole procedure can be decomposed into two phases. At the first phase, the K

resources will be distributed among all users. After distributing the K resources to each

user, the scheduler decides which user occupies the channel at any given time (or block)

based on the current channel condition and then performs the bit allocation. At the

first phase, we only have the channel pdfs of users. Since delay constraint specifies only

that the rate is achieved in K blocks, the order of which the users are scheduled within

the K blocks is not important in this phase, so the scheduling boils down to sorting

out the number of blocks being allocated to each user. After deciding the number of

blocks allocated to each user, the problem can be treated as independent single-user

single-carrier problems with competitions.

4.3 Distribute Resources (Phase I)

Recall that the expected transmission energy is a concave function of its occupied

resource.

∂2E[Qr]

∂k2
=

(2R̃k/k)R̃2
k(ln 2)2

k3ḡ
> 0

Therefore, when determining the number of blocks allocated to each user based on the

channel statistics, we will encounter the NP-hard problem that we want to minimizing

the concave objective function with the affine constraint. To solving this troublesome,

we propose two algorithm. One is bisection algorithm and the other is greedy algorithm.
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4.3.1 Bisection Algorithm

Before introducing Karush-Kuhn-Tucker (KKT) condition, the constraint (4.3) is

relaxed from integers to positive values. Then differentiate the Lagrange function with

respect to ku, and we can get the number of required time slots for each user:

∂

∂ku

{
U∑

u=1

ku(2
Ru
ku − 1)

ḡu

− λ(
U∑

u=1

ku −K)} = 0 (4.4)

⇒ exp
Ru ln 2

ku
−1(

Ru ln 2

ku

− 1) = exp−1(−1− ḡuλ) (4.5)

It can be clearly seen that ku is a function of λ. If we have λ, the equation (4.5)

called Lambert W function can be helpful to find the one to one connect between λ

and ku. However, we don’t have any information about what λ should be. Lambert W

function is the inverse function of the function f(x) = xex. Therefore, we can obtain

the formulation of ku:

⇒ f−1(exp−1(−1− ḡuλ)) =
Ru ln 2

ku

− 1

ku =
Ru ln 2

f−1(e−1(−1− ḡuλ)) + 1
(4.6)

Before introducing bisection algorithm, we can conclude one important property that

when the channel statistics of the users are identical, the optimal ku can be expressed

as:

k∗u =
KRu∑

u Ru

(4.7)

It implies that the required subcarriers are proportional to the required data rates.

The bisection method in mathematics, is a root-finding method which repeatedly

bisects an interval then selects a subinterval in which a root must lie for further process-

ing. It is a very simple and robust method, and it converges. First of all, we assume

that the problem is feasible, and start with an interval [λmin; λmax] known to contain

the optimal value λ∗. Note that when λ = λmax,
∑

u Ku(λ) < K.On the other hand,
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when λ = λmin,
∑

u Ku(λ) > K. We then solve the feasibility problem at its midpoint

λmiddle = (λmax + λmin)/2, to determine whether the optimal value is in the lower or

upper half of the interval, and update the interval accordingly. This produces a new

interval, which also contains the optimal value, but has half the width of the initial

interval. This is repeated until the width of the interval is small enough.

Step 1: (initialization) Given
∑

Ku(λmax) < K,∑
Ku(λmin) > K, and tolerance ε > 0

repeat

Step 2: λmiddle = (λmax + λmin)/2.
Step 3: Compute

∑
u Ku(λmiddle)

Step 4: If
∑

u Ku(λmiddle) < K,
λmax = λmiddle. else, λmin = λmiddle

until |∑u Ku(λmiddle)−K| < ε.

Table 4.1: Bisection method.

After bisection algorithm, the Kus may not be integers. Therefore we take floor

operation and make Kus be integers. However, the summation of Ku may be less than

K. In that case, we will reassign the resources to help the most desired users by greedy

algorithm. The more detail can be found in the following subsection.

4.3.2 Greedy Algorithm

Since our objective is to find the minimum total energy consumption, we are inclined

to assign channel to the user who reduces the energy most by the computation of the

energy reduction metrics:

∆Qu = Qu,ku −Qu,ku+1, ∀u (4.8)

The one who has the maximum energy reduction while being assigned an additional re-

source will get one more resource, and keep repeating this procedure till all the resources
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have be distributed.

Step 1: (initialization)
∑U

u=1 ku < K
repeat

Step 2: Compute the power reduction metrics
∆Qu = Qu,ku −Qu,ku+1, ∀u

Step 3: Find u∗ = arg maxu ∆Qu and update
ku∗ := ku∗ + 1

until
∑U

u=1 ku = K.

Table 4.2: Greedy Algorithm.

4.4 Channel Assignment and Bit Allocation

After calculating the required time slot of each user, we can start scheduling for each

user with the total time slot K = ku. We propose three approaches to schedule.

I. The order is predefined and it is independent on the current channel gain.

II. The user who have the largest channel gain can occupy this resource if ku > 0 and

ku is updated as ku − 1

III. The channel assignment is dependent on ku, K, and current channel gain.

In approach I, since the number of time slots which user can use for transmitting de-

creases, according to the scheduling policy (2.32), the scheduler may be too aggressive

to send too many bits in each time slot, and this will cause the scheduler finish trans-

mitting too soon and waste some resources. It will cause the overall transmission energy

increases dramatically. Moreover, the approach ignores the user-diversity and does not

efficiently use the information of the current channel gain. Thus, apply the scheduling
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policy in (2.32) directly is not a good idea that it will lose the chance to enhance the

overall performance by allocating the channel to the appropriate user who has good

channel gain in the current time slot.

In the second approach, the scheduler assigns the time slot to the user based on its

channel gain only. We know that the channel gain will be distance-dependent. The user

who is close to the receiver will have better channel statistics than other users do. It

implies the channel gain of the particular user will be the largest with higher likelihood.

We shall point out the issue that its channel gain is larger than others but we will force

the user to take the resource without considering this channel which is extremely bad

from its perspective. The user-diversity is almost wasted because the channel assignment

is highly correlated to the user distances.

To deal with the above issues, approach III does take channel gains, channel statis-

tics, user quotas and total remaining time slots into consideration. Instead of comparing

the channel gain directly, we use the order statistic to help us find out which user is most

suitable for the time slot. Before going to details, order statistic is briefly introduced.

Order Statistic: Without loss of generosity, there are n identical independent random

variables, X1, X2, . . . , Xn, and the order statistics Y1, Y2, . . . , Yn are also random vari-

ables, defined by sorting the values of X1, X2, . . . , Xn in decreasing order as in fig 4.2.

The first order statistic (or largest order statistic) is always the maximum of the sample,

that is,

Y1 = max{X1, . . . , Xn } (4.9)

Similarly, the nth order statistic (or smallest order statistic) is the minimum, that is,

Yn = min{X1, . . . , Xn } (4.10)

Moreover, the cdf of Yk can be expressed as
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Figure 4.2: Probability distributions for 5 order statistic of exponential distribution.

FYk
(x) = Pr{at least (n− k) of Xi are less than or equal to x} (4.11)

= Pr{Yk ≥ x}

= 1− Pr{Yk < x}

= 1−
n∑

i=n−k

Cn
i F i(x)[1− F (x)]n−i

When the scheduler receives the current channel gains, gu(K) feedback from users,

it will calculate FYku
(gu(K)) for all users with n = K. The reason we choose the ku as

the order is that the user has been assigned with ku time slots which it can use. It is

more reasonable when the user decide whether takes the time slot by consuming its own

quotas. Note that when computing FYku
(gu(K)), Fu(x) is user-specific.

With the metrics of FYku
(gu(K)), the scheduler can decide which user can use this

channel by choosing the user with largest FYku
(gu(K)). We observe that the larger the

order, the larger the probability of the value of FYku
(gu(K)) as in Fig 4.3 which means

that when having small number of time slots, the channel gain needs to be higher for
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competition. Once the channel assignment is done, It becomes the single-user single
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Figure 4.3: CDF versus channel gain for different orders.

carrier scenario and rKu is

rKu =
Ru

ku

+
ku − 1

ku

log2

gu(K)

ḡu

(4.12)

The whole procedure including step 1 and step 2 which is concluded as following:

Step 1: Distribute the K time slots to all users by bisection or greedy algorithm
and obtain kus.

Step 2: while (K >= 1)
1. Compute FYku

(gu(K)) based on the current channel gain, K, kus and
user-specific channel statistics.
2. Find the most suitable user:

u∗ = arg maxu FYku
(gu(K)).

3. Do bit allocation:

rKu∗ = Ru∗
ku∗

+ ku∗−1
ku∗

log2
gu∗ (K)

ḡu∗
4. Update parameters:

ku∗ = ku∗ − 1, K = K − 1 and Ru∗ = Ru∗ − rKu∗
end
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Table 4.3: Proposed scheduling Algorithm.

There is one variant that will do step 1 again (redistribute resource) after bit alloca-

tion.

Step 1: Distribute the K time slots to all users by bisection or greedy algorithm
and obtain kus.

Step 2: while (K >= 1)
1. Compute FYku

(gu(K)) based on the current channel gain, K, kus and
user-specific channel statistics.
2. Find the most suitable user:

u∗ = arg maxu FYku
(gu(K)).

3. Do bit allocation:

rKu∗ = Ru∗
ku∗

+ ku∗−1
ku∗

log2
gu∗ (K)

ḡu∗
4. Update parameters:

ku∗ = ku∗ − 1, K = K − 1 and Ru∗ = Ru∗ − rKu∗
5. Distribute again the K time slots to all users by bisection or greedy algorithm
and obtain kus.
end

Table 4.4: Proposed scheduling Algorithm 2.

4.5 Numerical Results

The performance of the proposed algorithms over truncated Rayleigh distributed

channel for multi-user scheme is in fig 4.4 with parameter λ = 1 and threshold η =

0.0000001, and Nakagami distributed channel for multi-user scheme is in fig 4.5 with

degree of freedom = 4. Throughout the simulations, we assume the deadline K = 100,

the number of user U = 4, and the bit allocation algorithm we use here is IWF-based

policy in chapter 2.6.2.

In fig 4.4 and 4.5, The proportional fairness algorithm has the worst performance

since it takes the balance between fairness and energy consumption in consideration.
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If the users have the same target data rate to transmit, it is similar as round robin

algorithm that it exchanges energy cost for fairness. We can observe that our algorithm

is superior to equal bit algorithm by a 6 dB margin. We also see that no matter what

algorithm we user in distribute resource phase, either greedy or KKT condition method

will result in same performance and it also has the same results whether we recalculate

the number of required time slot in the beginning of every time slot or not. In addition,

0 20 40 60 80 100 120 140 160 180 200
−5

0

5

10

15

20

25

30

35

40

45

B (bits)

en
er

gy
 (

dB
)

 

 

proposed−greedy−order statistic

proposed−greedy−channel gain
proposed−greedy iteratively−order statistic
proposed−lambertw−order statistic
equal−bit

proportional fairness

Figure 4.4: Total energy consumption for K=100 over truncated Rayleigh distributed
channel for multi-user scheme.

for channel assignment phase our algorithm which assigns channel according to CDF

value by order statistic method performs better than the one just considers the channel

gain by a 5 dB margin.
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Chapter 5

Conclusion

Energy-efficient scheduling over fading channels in wireless communication system is

critical in minimizing total energy consumption while satisfying the hard delay deadline

and QOS constraints in order to extend the battery lifetime. We assume that the

information of the current channel state is perfect known and the future channel gain

is unknown that we have the channel statistic only while scheduling. In this thesis, we

have presented two scheduling policies that minimize the total consumed power while

meeting the delay requirements for single user case and both of them have the similar

structure with the optimal non-causal solution. Both the proposed schedulers are in

simple form and they give insight that the scheduler is channel-dependent when the

deadline is faraway (i.e. K is large) while delay-dependent when K is small. We also

proved that the proposed IWF based scheduler is unbias which means the decision is

not too aggressive or conservative. Observed from the proposed algorithms, the channel

gain of the future time slot can be viewed as identical and the value is ḡ. The simulation

results shows that the performance is nearly as well as the optimal non-causal solution

when the required transmitted bits is large.

We also consider the scheduling problem for multiple carrier case with the knowledge

of channel state information of M subcarriers in the current time slot. The derived

scheduler is in closed form but has a difference from the single-user single-carrier scheme
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that after calculation if the number of the transmitted bit terms out to be negative, we

have to discard that channel and reschedule again.

Furthermore, we extend our algorithms to multi-user single-carrier case where the

scheduling procedure is composed of two phases: distribute the resources, channel as-

signment and bit allocation. First we compute the number of required time slots of each

user by bisection method, since delay constraint specifies only that the rate is achieved

in K blocks with some probability, the order of which the users are scheduled within

the K blocks is unimportant, so the scheduling boils down to sorting out the number

of blocks being allocated to each user. Thus, the multiple user problem is divided into

several independent single user subproblems. Second, we proposed a channel assignment

algorithm by order statistic. Taking channel gain, channel statistic, users’ quotas and

total remaining time slots into consideration, we can find out which user is most suitable

for that time slot, and then perform bit allocation.

Finally, our proposed algorithm can be generalized into correlated channel cases

easily. In these cases, we apply the conditional probability density function instead of

independent channel assumption and we expect this to be more practical and important

over wireless networks.
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