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A Diversity-Augmented Location Estimation Algorithm for RSS-Based Wireless Networks

Student : Yu-Ju Lin Advisors : Dr. Kai-Ten Feng

Institute of Communication Engineering

National Chiao Tung University

ABSTRACT

Mobile location estimation has attracted a significant amount of attention in recent
years. The network-based location estimation schemes have been widely adopted
based on the radio signals between the mobile device and the base stations. The
two-step least square (TSLS) method has been studied in related research to provide
efficient location estimation of the mobile devices. In order to enhance the precision of
location estimate, the geometry-assisted location estimation (GALE) scheme is
designed to incorporate the«geometric-constraints within the formulation of TSLS
method. However, these“two algorithms are ‘mainly designed based on the
time-of-arrival (TOA) measurements. There is not much effort that has been dedicated
in location estimation based on received signal strength (RSS) measurements, which
can be easily obtained by mobile devices nowadays. A diversity-augmented location
estimation (DALE) algorithm is ‘proposed 'in this thesis with additional spatial
assistance based on the RSS measurements. This algorithm also considers and corrects
the effect of incorrect path loss exponent (PLE). The proposed DALE scheme can both
preserve the computational efficiency from the TSLS algorithm and obtain precise
location estimation based on RSS measurements. Numerical results demonstrate that
the proposed DALE algorithm can achieve better accuracy, comparing with other

existing schemes, in mobile location estimation.
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Chapter 1

Introduction

Wireless location technologies, which are designated to estimate the position of a mobile
station (MS), have drawn a lot of attention over the past few decades. Different types
of location-based services (LBSs) have been proposed and studied, including the emer-
gency 911 (E-911) subscriberssafety services [1], the location-based billing, the navigation
system, and applications for the intelligent transportation system (ITS) [2]. Due to the
emergent interests in the LBSs, it is required to provide enhanced precision in the location
estimation of a MS under different environments.

A variety of wireless location techuiques-have been studied and investigated [3], [4], [5].
The network-based location estimation schemes have been widely proposed and employed
in the wireless communication systems. These schemes locate the position of the MS
based on the measured radio signals from its neighborhood base stations (BSs). The
representative algorithms for the network-based location estimation techniques are the
time-of-arrival (TOA), the time difference-of-arrival (TDOA), and the angle-of-arrival
(AOA). The TOA scheme estimates the MS’s location by measuring the arrival time of
the radio signals coming from different wireless BSs; while the TDOA method measures
the time difference between the arriving radio signals. The AOA technique is conducted

within the BS by observing the arriving angles of the signals coming from the MS.



The equations associated with the network-based location estimation schemes are in-
herently nonlinear. The uncertainties induced by the measurement noises make it more
difficult to acquire the estimated MS position with tolerable precision. Algorithms applied
least square (LS) such as the two-step least square (TSLS) scheme [6] has been studied to
provide reasonable accuracy for location estimation with its efficient two-step calculation.
However, the algorithms based on the TSLS method are primarily feasible for location
estimation under line-of-sight (LOS) environments. The non-line-of-sight (NLOS) situa-
tions, which occur mostly under urban or suburban areas, greatly affect the precision in
most of the location estimation schemes. On the other hand, the range scaling algorithm
(RSA) proposed in [7] alleviates the NLOS errors by considering the cell layout between
the MS and its associated BSs. A constrained nonlinear optimization approach is adopted
to obtain improved location estimate for the MS. However, the RSA approach involves the
requirement of solving an optimization problem based on a nonlinear objective function.
The inefficiency incurred by«the algorithm may not be:feasible to be applied in practical
systems.

In this paper, an efficient Diversity-Augmented Location Estimation (DALE) algo-
rithm is proposed to obtain<location estimation of the MS based on received signal
strength (RSS) measurements. The proposed DALE scheme integrates the spatial di-
versity by combining additional constrains with the conventional TSLS algorithm. We
retrieve the distance by using RSS measurements and the path loss model. Moreover, we
take the jittering of path loss exponent (PLE) into consideration in the proposed DALE
algorithm, which always happens due to the channel fadings. The MS’s position is ob-
tained by correcting the PLE to reduce the error of Distance Estimation (DE) during
the process of converting RSS into range measurements, then solving the equations with
additional constrains in DALE. Different cases are illustrated in simulations in order to

demonstrate the effectiveness of the proposed DALE algorithm. Comparing with other



existing schemes, numerical results show that the DALE approach can acquire higher
accuracy for location estimation of the MS.

The remainder of this thesis is organized as follows. Chapter 2 describes the related
work for wireless location estimation. In Chapter 3, we introduce the models of measure-
ment signals and existing LS schemes as background knowledge. The proposed DALE
algorithm is described in Chapter 4. The performance evaluation of proposed scheme is

conducted in Chapter 5 via simulations. Chapter 6 draws the conclusions.



Chapter 2

Related Work

Different location estimation schemes have been proposed to acquire the MS’s position.
Various types of information (e.g. the signal traveling distance, the received angle of
the signal, or the RSS measurements) are-involved to facilitated the algorithm design
for location estimation. Theprimary-objectives in most of the location estimation algo-
rithms are to obtain higher estimation accuracy with promoted computational efficiency.
The high-resolution (super-resolution) schemes are proposed as in [8], [9], [10], [11]. The
scheme studied in [8] considers arbitrarily located antennas and a particular covariance
matrix within a noisy environment. The-covariance matrix is composed of various types
of properties, including gain, phase, frequency, polarization, and angle-of-arrival (AOA)
information. The subspace method utilized in the super-resolution schemes estimates the
components of the covariance matrix based on an eigen-analysis. The well-known super-
resolution algorithm is the multiple signal classification (MUSIC) [9]. It is experimentally
illustrated to be a robust solution for location estimation, especially for a near-far envi-
ronment. However, it has also be shown in [10] and [11] that the drawbacks of the MUSIC
approach include (i) comparably high sensitivity to large noise and (i) its complexity in
computation.

The beamforming system is a space-time processor that operates on the output of a



sensor array. It provides spatial filtering capability which enhances the amplitude of a co-
herent signal associated with the surrounding noises. Since the conventional beamforming
technique is sensitive to the estimation error for the MS’s position, a combination of lo-
calization and beamforming is proposed as in [12]. Tt increases the robustness to location
errors without sacrificing the computation efficiency. An enhanced algorithm for simul-
taneous multi-source beamforming and adaptive multi-target tracking is studied in [13].
The correlation between the adaptive minimum variance beamforming and the optimal
MS localization is also investigated as in [14]. However, the complication of the beamform-
ing system makes the associated location estimation techniques difficult to be practically
realized.

Instead of exploiting the spatial and temporal information of the signal, the location
fingerprinting technique locates the MS based on the RSS [15] [16]. The technique involves
both the off-line and the on-line phases. A location grid that is related to a signal signature
database for a specific serviee area-is developed in the off-line phase; while a measured
RSS vector at the MS is delivered to the central server to compare with the location grid in
the on-line phase. Moreover,.-a hybrid algorithm which combines the RF propagation loss
model is proposed both to mitigate the requirement of the training data and to adjust the
configuration changes [17]. It is obvious to recognize that a considerable size of database
is required for the location fingerprinting techniques.

There are also different approaches exploiting linearized methods to achieve computing
efficiency while obtaining an approximate estimation of the MS’s position. The Taylor
series expansion (TSE) method was utilized in [18] to acquire the location estimation
from the TDOA measurements. The method requires iterative processes to obtain the
location estimate from a linearized system. The major drawback of the TSE scheme is
that it may suffer from the convergence problem due to an incorrect initial guess of the

MS’s position. The TSLS method was adopted to solve the location estimation problem



from the TOA [6], the TDOA [19], and the TDOA/AOA measurements [20]. It is an
approximate realization of the maximum likelihood (ML) estimator and does not require
iterative processes. The TSLS scheme is advantageous in its computational efficiency with
adequate accuracy for location estimation.

Instead of utilizing the circular line of position (CLOP) methods (e.g. the TSE and
the two-step LS schemes), the linear line of position (LLOP) approach is presented as a
new interpretation for the cell geometry from the TOA measurements. Since two TOA
measurements that intersect at two points will generate a connecting line, two indepen-
dent lines will be created by using three BSs in the scenario of two-dimensional location
estimation. Therefore, the LS method can be adopted to estimate the location of the
MS. The detail algorithm of the LLOP approach can be obtained by using the TOA
measurements as in [21], and the hybrid TOA /AOA measurements in [22].

It can be found from the previous work that some of the location estimation algorithms
involve complicated computation or-additional database and infrastructures; while others
are only suitable for specifie situations (e.g. LOS environments or special areas). Not
much effort has been dedicated in location estimation based on RSS with light off-line
database construction. The DALE algorithm based on RSS measurements as proposed in
this paper preserves the computational efficiency from the TSLS method; while reducing

the requirement of hardware’s capability of transmitting and measuring.



Chapter 3

Preliminary

In this chapter, the mathematical modeling of the signal measurements is formulated in the
Section 3.1. The conventional linear LS methods for location estimation is briefly reviewed
in the Section 3.2. Moreover, the range measurements converting from the observations of
RSS may suffer from unreasonable-geometric relationships as the log-normal distributed
fading effects exists. Thus; in Section 3.3, the oeverlapped region among three range

measurements is denoted and emphasized.

3.1 Modeling of the Signal Measurements

In order to facilitate the design of the proposed DALE algorithms, the signal model for the
RSS measurements is presented in this Section. To describe the model precisely, we have
surveyed some technical reports and documents. The COST 231 [23] project is a com-
prehensive framework in which the radio channel characteristics for various environments
are investigated and developed. Furthermore, the advancements for E-UTRA physical
layer aspects [24] are continuously moving in in the 3GPP technical specifications. It also
provides path loss models for various propagation scenarios which have been adopted in

the paper. Some simulation assumptions and parameters in [25] are suggested to describe



the interferences between macrocells and femtocells in LTE and so as the path loss models
in different scenarios.
According to the model suggested in [24], the indoor path loss model can be expressed

as

PL; = PLy +20logy, f. + 10alog & + n; (3.1)

where 1=1,2, and 3. The parameter « represents the PLE. PL;, measured in Decible (dB)
is denoted as the path loss, between the transmitter and the receiver. PLj is the path
loss one at the reference distance, (usually assigned by 1 meter) from the transmitting
BS;. PLy is often be considered as a constant since the variance of path loss in such a
short distance is trivial. f. denotes the carrier frequency measured in GHz. §; is the true
distance between the BS; and the MS in-the range from 3 to 100 in meters. The notation
n; represent the slow fading effect, which is often described as a Gaussian distribution with
zero mean and standard deviation ;. Since the proposed DALE algorithm is developed
based on geo-location concepts, the range measurements are required and can be acquired

from the RSS observations as

In 10

722' = exXp ((PL»L — PL()) 10a

) (3.2)

3.2 Least Square Methods for Location Estimation

Range measurements are essential for geo-location to identify the MS’s position. How-
ever, range measurements are closely related to MS’s position in a linear manner and
they should be linearized before applying the LS methods. The TSLS scheme [19] is a
simple and effective method which is utilized as the baseline formulation for the proposed

DALE algorithm. The concept of the TSLS method is to acquire an intermediate location



estimate in the first step with the definition of a new variable 8, which is mathematically
related to the MS’s position (i.e. 8 = x*+y?). At this stage, the variable § is assumed to
be uncorrelated to the MS’s position. This assumption effectively transforms the nonlin-
ear equations for location estimation into a set of linear equations, which can be directly
solved by the LS method. It is also noted that the selection of 5 provides a feasible first
step location estimation compared with the random initial guess in the iterative linear LS
method, e.g. the TSE scheme. Moreover, the elements within the associated covariance
matrix are selected based on the standard deviation from the measurements. The varia-
tions within the corresponding signal paths are therefore considered within the problem
formulation. The second step of the method primarily considers the relationship that the
variable 3 is equal to % + y?, which was originally assumed to be uncorrelated in the
first step. An improved location estimation can be obtained after the adjustment from
the second step. The detail algorithm of the TSLS method for location estimation can be
found in [19] [20] [26].

The geometric-assisted location estimation (GALE)[27] algorithm is another scheme
that have some inspirations on the proposed DALE algorithm. In a set of noise-free TOA
measurements obtained in the’ GALE algorithm, the corresponding range measurements
will exactly intersect in the point/‘where the MS shall be. Due to the existence and
domination of NLOS noise in range measurements at outdoor environments, the range
measurements will always be larger than they actually are. The concept of the GALE
method is to add a geometric constraint derived from the three NLOS-contaminated
measurements and to construct an additional measurement similar to those in the real
world as if there were another BS emitting signal there. By adopting this concept, the
spatial diversity is thus increased. Moreover, the proposed DALE algorithm is come up
with by taking the merits of the concepts and performing some further modification. The

detail algorithm of the GALE method for location estimation can be found in [27] [28].



3.3 Overlapped Region of Three Range Measurements

Adopting the path loss model described in Section 3.1 and use the RSS measurements
as information to locate MS’s position is cost-effective and easy-implemented. However,
not as what most traditional range-free positioning algorithms such fingerprinting tech-
nique [15], [16] did to RSS, a simple distance estimation method addressed in Section
3.2 is included in the proposed DALE algorithm to estimate the range measurements and
various path loss exponents. In a noise free environment and having knowledge of the true
path loss exponent, the signal range measurements can be converted directly from RSS
measurements, and they are supposed to intersect in the position of MS. But the distance
we obtain might be either extended or shortened due to the existence of the normal-
distributed fading effects in the RSS measurements. This could be a severe problem in
location algorithms. For example, if two RSS measurements are suffered from positive
noises, the converted range measurements will be shorter than they actually are since the
noises make the RSS measurements-seem to be stronger than they really are, as r; and
r; illustrated in Fig. 3.1. But this situation implies that the MS could be located in the
distance of either r; or ry apart from BS; or BS;, which dose not make sense physically.
A more reasonable circumstance should be that the two range measurements covers each
other. In other words, the summation of any two range measurements is no smaller than

the distance between these two BSs, and the relationship can be obtained as

i+ > Ly £ ||BS; — BS;]| (3.3)

where ||x|| is the norm of a vector x.
Furthermore, as described in Section 3.2, another problem comes as it require three

RSS measurements to perform a two-dimensional linear least square estimation. If each
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Figure 3.1: An illustration of outer separate and intersection of two range measurements

Figure 3.2: An illustration of intersections of two circles and overlapping of three circles

11



two range measurements barely contact with each other as described in (3.3), there are
still chances that the three range measurements have no intersection in common, as the
real lines illustrated in Fig. 3.2. This implies that the same MS could be located in
more than one range intersection and receives RSS measurements simultaneously. Once
more, this is impossible. The reasonable case should be that either the three range
measurements intersect in the location of MS, or the three range measurements construct
an overlapped region. In other words, each two range measurements shall have one or
two intersection points. Moreover, it is observed that the necessary condition to form an
overlapped region as having three range measurements is that each circle shall cover the
nearest vertex formed by other two circles. For example, as illustrated in Fig. 3.2, if the
circle 1 with radius r; is intended to cover the intersection zone formed by circle 2 and
circle 3, it must at least cover the V;, which is the nearest vertex formed by by circle 2

and circle 3. The mathematical«constraint shall beras follows

?””2 Z d2 = ||BS2 — V2” (34)

where BS; represents the position of the ith BS and 'V, represents the position of the ith
vertex formed by the two range measurements other than the ith range measurement. As
the aforementioned conditions for three BSs are satisfied, the overlapped region where the

MS is supposed to be within could be guaranteed.
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Chapter 4

Proposed Diversity-Augmented

Location Estimation Algorithm

In this chapter, the proposed diversity-augmented-location estimation (DALE) algorithm
based on RSS measurements‘and the-concepts of linear least square methods as depicted
in Section 3.2 will be extended:" The algorithm will be introduced in three parts as
illustrated by a flow chart in"Fig. 4.1. First of all, in Section 4.1, we consider the impact
of inaccurate PLE a due to having no information‘about the channel characteristics of a
new environment and thus assigning a rough and empirical initial guess of PLE. This will
introduce a serious error during the process of converting RSS into distance due to the
given PLE guess. Therefore, the distance estimation (DE) mechanism is proposed to fine-
tune PLE and estimate distances with a simple two-step TSE method. And in Section
4.2 we will go through a proposed range adjustment(RA) mechanism. The existence of
Gaussian noise in RSS measurements will cause abnormal signal ranges as we discussed
in 3.3. We thus propose the RA mechanism to adjust the signal ranges to the reasonable
volumes. Section 4.3 comes how we use the idea of virtual base station (VBS) [28] and the
ideas of LS methods described in Section 3.2 to acquire some augmented diversity gains

on the space domain and obtain a more precise location estimation of the MS’s position.
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4.1 Mechanism of Distance Estimation

In this section, we will introduce the first part of the proposed DALE algorithm, the DE

mechanism. As the path loss model mentioned in Chapter 3, we define

F; & PLy + 10alog &

where PLj = PLy+ 20log f.. The mechanism of the prosed DE scheme is to use TSE to

expand F; with respect to the two parameters a and &; as

0

Fy = Fyre,, + a—aE\IGl,i(a —1G;) + -+ (4.1)
0

= Fijic,, + a—fFille,i (& —IGoy) + -+ (4.2)

where « is PLE, &; represents the distance between MS and the ith BS, and IG; is a set

of initial guess as follows

Gy,
1G, =

26

The terms with order equal to or higher than two are relatively trivial and can be ne-
glected. One potential drawback of TSE is the requirement of initial guess. The result of
TSE would be diverge if we give a set of extremely bad initial guesses. Fortunately, we
have simple and reasonable candidates for the initial guesses. Notation /G ; is a guess of
PLE &;, which will be chosen as a long-term statistics of a space or just giving a reason-
able number after judging the environment. And /Gy, is an initial guess of the distance
between the ¢th BS and the MS, which will be chosen as the mean of range measurement
samples (; j, that is, IGy; = mean((i,j):&, where i € (1,3), j € (1,n,), and ng is the

number of samples we take per link. As described in equations (4.1) and (4.2), the two-

15



step TSE is utilized to estimate &; after «; iteratively, and iterations is terminated as the
requirements are met.

First of all, we differentiate F; partially with respect to «

o .
91, S a_aF" = 10logy & (4-3)

where 7 represents the index of BSs and j represents the index of the range measurement

samples received from BS;. We form an equation as follows

G Aa=H; (4.4)
where
— 91, y i PLZ.’1 _ Filévi ]
G, — 91,i ’ H PLi;y — Fya,
2K § | PLig— Fa, |

Solving this equation by the LS/method, we can obtain an increment

Aa = (UTU)'UTV (4.5)

We can update the &; by adding it with A« as

The updated &; will be used in the following step. Secondly, we differentiate F; partially

16



with respect to &

AR = - 4.7
P9 T Wm0 g (4.7)
And we form an equations as follows
where

92,i PLiy — Fy,

92,i PLis— Fy¢

G2 - ’ ) H2 - ’ 5
| i) [(PLij = Fyg, |

Solving this equation with IS method, we have an increment A&
A& =(GLG2)'GIH; (4.9)
We can thus update the fz by means of A&
& =&+A¢ (4.10)

The updated 1G5y ; will be fed back to conduct the first procedure. We will keep conducting
this two-stage calculation for many rounds. And the iteration will be halted until either

condition 1 is met or the conditions 2 and 3 are satisfied
1. maximum iteration times (/7,4,) < IT

2. |[Aa|| < threshold (TS) of A«

17



3. |A¢|| < TS of A&

The goal of conducting this DE mechanism is to eliminate the effect of having an
inaccurate a, which could cause a severe error during we converting the RSS measurements
into distance. After all, the final outcon%e shall be the updated distance IG5;, which is
denoted by 7; and r = [ Py, T, T3 } is obtained as completing the DE mechanism.

r is then fed into the following RA mechanism for further processing.

4.2 Mechanism of Range Adjustment

The two-phase method called the RA mechanism is proposed based on the estimations
acquired at the DE mechanism and the observations depicted in Section 3.3. In Section
3.3 we have mentioned that it is strange that two range measurements does not have
mutual intersection. Hence, it is necessary to examine and adjust the r before conducting
location estimations. It is denoted that 7/ is originally equal to 7; and will be adjust in
the RA mechanism if necessary. Moreover; the parameter 7; ; is assigned as an index to
represent the the geometricrelationship between r. and 7"3.. Parameter S; ; is defined as
the flag to be assigned to the 4th.BS with respect to all the other BS;. Therefore, we

check T; ; and classify them into five‘cases in phase; as follows

L. If two range measurements r; and r’; are too small to reach each other, T ; is defined

as "outer separation”, and assigning k; flags to r} and k; flags to r;.

2. If two range measurements r; and r;- intersect each other in two points, 7T; ; is defined

as "intersection”, and assigning 0 flag to both r; and r7.

3. If the range measurement 7; contains range measurement r%, T; ; is defined as ”con-

taining”, and assigning -k; flags to 7; and k; flags to 7.
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4. If the range measurement 7} is contained by range measurement 7’3, T; ; is defined

as "containing”, and assigning k; flags to r; and -k flags to 7.

5. If two range measurements r; and r’; intersect each other in one point, 7; ; is defined

as "tangency”, and assigning 0 flag to both r} and 7.

After all, we sum up the flags of ith BS with respect to the jth BS as follows

Si=>Y_Si (4.11)
JA#]
Multiplying S; with the 7th link’s measurement standard deviation o,,,, and we can obtain
the adjustment to update r;. That is, r; = r; + Ar., where Ar} = 0,,,,5;. In phase; we will
keep this iterative calculation until each two ranges have intersect in common or at least
tangent each other. The mechanism of RA’s‘phase; is illustrated by the pseudo code in
Algorithm 1. .
After phase,’s adjustment, the final output'should be ¥, where r = { rh,oorh, Th }

and it will be fed into phases for the sake of the observations in Section 3.3. There might
still have chances that each two ranges intersect with each other but three ranges have no
intersection region in common, as described. in Section 3.3. Thus we propose the second
phase to prevent it. In phases we are going to propose another process to make sure
the 3 ranges will intersect others or even intersect in exactly one point. Any two circles
intersect with each other will result in at least one vertex. First of all, we calculate the V},,
one of the intersection point of 7”; and r”; which is the one closet to BS,, where i # j,
i#pand j#pandi,j,p=1,2, and 3. As constraint (3.4) we discussed in Section 3.3
that guarantees the existence of common overlapped region. r”, > d, = [|BS, — V, ||
If the constrain is not satisfied in the pth link, we will add Ar”; to r”;, that is, »”; =7, +
Ar”;, where Ar”; = kooy, i # p. We will keep doing this mechanism until constraint (3.4)

T
is satisfied for all p. The final output of phase; will be ¥, wheret = | 7 =~ 7, 7,
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Algorithm 1: Range Adjustment Phase;

T; ;: Relation between BS; and BS;

L; ;: The distance between BS; and BS;

ri: The ith range measurement

om,;: The standard deviation of measurements in the ith link
S;,j: The flag assigned

kp: The step size of adjustment per round in phase,
begin

while (T; ; #intersection) & (T} ; #tangency) do
forall the Node; and Node;, i#j do

if 7’2 + T’; < Lz‘,j then

T; ; = outerseparation;

Sij = ki;

Sji = ki;

Ise if r + r; > L; ; then

if 7“; + Lz‘,j < T} then

T; ; = contained,

[¢]

Sij = ki;
Sji = —ki;
else if r} > r;- + L; ; then

T; ; = containing;
Sij = =ki;
Sji = ku;
else
T; ; = intersection;
Si,j = 0;
Sji =05
end
else if v + 7 = L; ; then
T; ; = tangency;
Si,j = 0;
Sji = 0;
end

end

forall the Node;, Node;, i#j do
TP =T+ Omg D Sigs

end

end
end
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The mechanism of RA’s phases is illustrated by the pseudo code in Algorithm 2.

Algorithm 2: Range Adjustment Phases
dp: Distance between BS, and V,,
begin
while d, > R, do
forall the Node, do
7””2' = 7’”1' + kzo‘mi;
’I“”j = T‘”j + k‘gO’m].;
end

end

end

4.3 Diversity-Augmented Location Estimation

As illustrated in Fig. 4.2, three BSs.associated with the three range measurements are
utilized for the location estimation of the MS. The'overlap region (i.e. confined by the
arcs V1 Vs, V1 V3, and V5V3) is formed by the mechanism.of RA as we described in Section
4.2. Since the objective of the proposed DA location estimation is to expand the spatial

diversity, the following definitions and the associated constraint cost function are defined:
Definition 4.1 (Virtual Distance). The. parameter 7; (for ¢ = 1 to 3) is defined as the
1th virtual distance between the MS’s position and V; as

vi =[x = Vil (4.12)

where x is the MS’s location; V,, represents the intersecting points around the overlap
region, i.e. Vi = (Zy,, Yu,), V2 = (Tuy, Yuy), and Vi = (2, Yu,) are the corresponding

coordinates of the points Vi, V5, and V3.

It is noted that the value of ~; varies as the three coordinates Vi, V,, and V3 are

changed. On the other hand, an expected MS’s position x, is chosen to locate within the
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Figure 4.2: An illustration of range measurements after RA mechanism and the result of
overlapped region
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® BS,

Figure 4.3: An illustration of range adjustment and the projection of error variance

triangular area V3V, V3 in order to-fulfill the constraints from the geometric layout. The

corresponding ith expected wirtual distance e, can be defined as follows
Definition 4.2 (Expected Virtual Distance). The 4th expected virtual distance 7., is
defined as

Yoo = [[xe = Vil = 7+, (4.13)
where x. is the expected position of the MS, and n,, denotes the error induced by the
computed deviation between ., and ;.

The major objective by adapting the geometric assistance in the DA location estima-
tion is to create three additional virtual BS as if they were transmitting signals to MS,
which can be used to improve the performance of following LS method. We view the

points {V;} illustrate in Fig. 4.2 as VBSs, and the set of virtual distances v, as range
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measurements, where ¥. = [Ve,, Ves, Ves]. Moreover, the expected position of MS, x, can
be viewed as a virtual mobile station (VMS) as illustrated in Fig. 4.3. We can thus form
three additional equations similar to those in the real world. The selection of the VMS’s
position . is obtained by weighting the points {V;} with the signal variations from the
theree range measurements. The coordinates of x, = (x., y.) are chosen with different

weights (wy, we, w3) w.r.t. the Vi, Vo, and V3 points of the triangle as

T =Y wiVi (4.14)
k=1

where n = 3 in this case, and Vj are the vertexes as illustrated in Fig. 4.3 with coor-
dinates as (2,4, ). The weighting coefficients wy, are defined based on the effects from
both the standard deviations and the relative distance w.r.t. the corresponding range
measurements, which can be obtained in-the same way as [27]. Based on an appropriate
selection of the weighting coefficients,-the VMS’s position «,. is obtained. The ith expected
virtual distance 7y, can therefore be computed from equation (4.13), and the proposed
DA location estimation can be formulated by solving the TSLS problem as we described
in Section 3.2 with the additional geometric assistance, which are originated from the
virtual concept among the overlapped-region. The solution is obtained by minimizing
both the errors coming from the output of RA (that is, ) and the deviations between
the expected virtual distances and the virtual distances (as shown in equation (4.12)). By
rearranging and combining 7; and (4.13) in the matrix format, the following equation can

be obtained:

Hizi=J1+ ¢ (4.15)
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T
where 2, = { Ty Yay A } and

—21’1 —2y1 1
—2372 —2y2 1
H>3 —2x5 —2y; 1
H, = = (4.16)
Hixg —2x,, —2y,, 1
—2x,, —2y,, 1
—2xy, —2yy, 1
7:% — K@
7:% Ry
J§X1 77% — Ky
J = = (4.17)
Ji’XI /Ygl e
7622 Km/eg
| 7625 oA K'Ye:; i
The corresponding coefficients are'given by
Ko = T) + Y} fort =1, 2,3

The expected virtual distances 7., (as shown in equation (4.17)) are served as the virtual
measurements, comparing with those true measurements r,, for £ = 1, 2, and 3. The
noise component of n in r is consisted of n,, and ng4, where n,, are the noises of range
measurements, and ng4 is the noise that is introduced during the RA mechanism. Since
the coordinates of Vi, V5, and V3 are obtainable after the r are acquired, we depict the

noise of 7., as the projections of 7;’s noises, where ¢, j = 1,2, and 3, and ¢ # j. For
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example, as illustrated in Fig. 4.2, the noise of 7., shall be n, = n;cosd + nzcosp. It
is noted that 6 is the angle between 7., and 71, while ¢ is the angle between ~., and 7.

The measurement noise matrix ¢ in (4.15) can be obtained as
Y1 =Bin+n’
where

B = dlag {fl, 7:2, f37 Yers  Vez ’763}

~ ~ ~ T
n = [nla na, ns, n’yel ) n’}'e2 ) n’)’egj

Based on the DA location estimation scheme, an intermediate estimate z; after the first

step can be obtained as

N>

T
= |:l’(1) Y(1) )\:| = (H{‘I’IlHl)ilHlT\IlIIJ1 (4.18)

where (z(1),ya)) is denoted.as the intermediate location estimation of the MS after the

first step of the algorithm, A = x?l) + y(zl). The weighting matrix W, is obtained as
U, = Elny] = 4B1QB,

It is noted that ¥, is acquired by neglecting the second term of (4.18). The matrix Q

becomes
_ 3 ~2 2 =2 2 2 2
Q = diag {01, 0y, O3, 0y, Oy, Oy }

It can be observed that Q represents the covariance matrix for both the TOA measure-

ments and the expected virtual distances, where o, corresponds to the standard deviation
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of 7,,. For the convenience of analysis, we assume that the noise of range measurement

is independent of the noise of RA mechanism, that is, n,,, L nga,. And thus 57

can be
written as the sum of 02, and 0%, where o7, is the noise variance of the range measure-
ment of the ith channel, and 0%, is the variance of range measurement’s modification
due to the RA mechanism as we depicted in Section 4.2. The detailed derivation of 0%,

will be described as follows.

From equations (3.1) and (3.2), we have

In 10 In 10 In¢&; In 10
o= o | (0] = exp (G100 + 0] = Gep [ (] (419
where
In¢&;

. 2 PIAVARERES b : :

4= SRSl ) T
We define 3; = exp(ln loni) and taking nature logarithm of it to have In 3; = lfolc?nz ~
N (0,08, 5), where 01,5, =300, The statistical characteristics and probability density

function (PDF) of the log-normal distributed variable.5; shall be

s 2 B3 Texne%, )

‘7,(231- £ Var[ﬁi] = exp(Uﬁlg.) (GXP(Ufnﬂi) - 1)

fﬁ(@;)— 1(11152):|76i>0

——exp [
\/27r01ng 2 O

From equation (4.19), we have r; = £;5;. It is also log-normal distribution. Taking
nature logarithm from it and we will have In7; = In&+1n 8; ~ A (fun 7, 01211 fi)’ where pu 7,
=In¢& and o, ; = 03.. We can thus have 7;’s mean y;, £ E[fy] = exp(In+1io i) = Cillg,
and variance 02, £ Var[#;] = exp(In& + 3oi, ;. ) (exp(of ;) — 1) = (&0s,)*

After acquiring the statistic characteristic of range measurement 7;, we define the noise
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of range measurement as n; £ 7 —& =&y, where v; = B;— 1, and y; € (—1,+00). v;is a
random variable with shifted log-normal distribution. p,, = E[v;] = E[8; — 1] = ug, — 1,

and o2 £ V] = V[;] = (04,)% Since #; = &u;, we can know that p, £ E[&y] =

Eilpg, — 1) = ps, — & and o4, £ Varl&y] = (&05,)% = O’%%,. Here n;, is also a shifted

log-normal random variable with support (—¢;, +00). We can thus derive v;’s PDF from

fs(B:) as follows.

dp;
i) = i) |=7—|: 8 >0
Fo0) = 15(8) | 3 |
1 1 In(y; +1) 2}
= exp | —=(—2 2 s 4.20
(Vi+1>\/271'0'1n,gi P |: 2( O1n B; ) ( )
Moreover, we derive n;’s PDF by means. of v;’s.
7¢L7; dl/i ~
fyw) = fv(g) d_ﬁz My > =&
1 1 An(% 41 1
= — exp __((51—))2 -
(& 1) V2ronps, 250 Omp, &
1 1 1n(% +1),
- &~ (———)
(72 + &)V 2mom g, 2" omg,

1 :
e |~ (—E0?| A > 0
TV 2Tom 8, 2" Omg,

In(7;) — In(&; R
— —ﬁ\/%al 5. exp {_%( (7 ()Tlnﬁv (£>)2} = fa(7) (4.21)

We would like to know the errors that happened between range measurements as we

consider the rationality of the geometric relations as described in Section 3.3. Moreover,
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we define

'fbi + ﬁj ~ A
Nij ’Vk(O'mz +O'mj)—‘ ) fz 5] 7 j
as the total number of adjustment times for both the range measurements 7; and 7;,
i,7 € (1,3), i # j, and k is the number of flag we assign to each range measurement per
iteration round.

According to the properties of ceiling function,

"/‘Wﬁww ’ [WVKWWWW ! [Wb

(4.22)

Assume {n;};—10 ~ are supposed to be independent, and

..........

{Ni}iz12,.. .~ shall also be indépendent. That is, fx(7i,7;) = fx (7). (f;). Since

since n; ; is bounded, from equation—(4.22) we know that a%m, = oy, + 032/], , where Y; £

{k(a ”+U )W T —5i < Vi, VY; € Z. To obtain o2, we'first derive Y;’s CDF as follows
’l’L.i TILj T

Or; "Fo'rj )

Fy(y@-)ZP(Kéyi):P(h( i )1§yi)zp(+

Tttt T

(Note :x <n<[z] <n)

= P(; < k(om; + Om,) i)

/k(amﬁamj)yi 1 [ 1 (111(7%' + &) —Ing
= - exp |—=
—& (M + &)V 2o g, 2 Tn B;

(k(om, +om;)y;+€;)—Ing;

%ln B; 1 1 2:| A ll’l(ﬁl -+ &,) —In 51
= exp |—=¢*| dg, g & 4.23
/_Oo o p{ 59| 499 P (4.23)

I(k(om, + om;)yi + &) — Ing; &
- )~

Uln Bl O-mi + Umj)

2| dn

After acquiring the CDF of Y;, we take differentiation of it with chain rule and Leibniz’s
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rule to derive its probability mass function (PMF) Py (y;) as follows.

dFy (h(y:)) dh

A In(k(om, + Umj>?/i + &) +In¢;
dh dy

Oln g

PY(yi) =

from equation (4.23)

Fy(h(y) _ d (") 1 L,
YRR 2 —~¢%l d
dh dh | . ar P T
1 1 In(k(om, + om,)yi +&) +In&
= exp | —5( )
V2 2 Oln ;

1 1

@: : k(om, + omy)

dy Oln p; k(aml + Umj)yi + gz !
1 1 In(k(om, + om, )y +&) +1n& k(Om, +0m;)

P ) = —— - i j . i j
- Y<y ) V2T P |: 2( Oln B; Uln5i<k<0mi + am]')yi + £2>
= k(amz + Umj)'
1 L In(k(om, + om;)yi + &) + Iné;

R N\ 2
(k(Om, + O, )i + E)V 270, exp{ > )

Oln g;

Since it is hard to find the variance 052/1_ from the complicate PMF, we acquire it in the
computational way as Z;?io[k(ami Lo Py (y). After conducting all the computation of
oy, and o, we can thus acquire o, = k*0y, + k%03, The 0%, shall be the summation
of all the o7  multiplies o7 where i #j; that is, 03, = 07 >, ;0. = as nga, is defined
by o; Zj Mig-

To extract the relationships of x(1), y1) and A, second step of the DA location estima-
tion scheme can be obtained as [19]:

1/2

T
& = [ 4 y} = [(H] ¥, 'H,) 'H] ¥, 'J,] (4.24)
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where

T
101 T
n-[ 4]
01 1
U, = Elpotpg ]| = 4 By cov(2) B, =4 B, (H{ ¥7'H;) ™' By (4.25)

B2 - dlag {‘%27 g’ia 1/2}

The final output of the proposed DALE algorithm will be (&, g) after solving the second
step of DA location estimation as described in equation (4.24) and choosing the one that

is nearest to Z;.
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Chapter 5

Performance Evaluation

In this chapter, simulations are conducted to show the effectiveness of the proposed DALE
algorithms under different network topologies and MS’s positions. The noise model of
RSS measurements will be the same as we described in section 3.1. The slow fading
effect will be Gaussian-distributed-with mean w equal to zero and standard deviation o
in the range from 3-6 dB. IEEE 802.11a [29] defined the operation frequency at 5.0GHz,
while 2.4GHz in IEEE 802.11b [30]. -Nowadays many. wireless fidelity (Wi-Fi) devices
are mainly operating at frequency band around 2:4-2.5 GHz, so we roughly choose the
carrier frequency f. as 2.45 GHz.  The-remaining common simulation parameters are
referred to the 3GPP TR 36.814 report [24] as we mentioned in section 3.1 and are listed

in Table 5.1. We will evaluate the effectiveness of the proposed DE mechanism first.

Table 5.1: Simulation parameters

Parameters Values
Path Loss at Reference Point PL 11.5 dB
Carrier Frequency f,. 2.4 GHz
Path Loss Exponent « 4.33
Mean of Slow Fading Effect u 0 dB

Standard Deviation of Slow Fading Effect ¢ 3-6 dB
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Table 5.2: Deployment of BSs and MS

| [ BS: |BS; | BSs | MS
S1[(0,0) ] (20,2) [ (10, 20) (9, 8)
S2 (0, 0) | (20,2) | (10, 20) (3,1.8)
S37(0,0) | (20,2) | (16, 2.8) (12, 1.4)
S4 [ (0,0) [ (20,2) | (16, 2.8) (4,0.5)
S5 (0, O) (20, 0.2) (10, 8)+<UBS@, UBS,y) mean(BS)—l—(uMs,x, UMS,y)

Then the performance comparison between the proposed DALE algorithm with the other
existing location estimation methods are conducted in three types of network layouts.
First, we arrange the three BSs in the layout to be close to a regular triangle. Secondly
we deploy the three BSs to be like an irregular triangle. In the third topology, we put
the three BSs randomly in the space, trying to obtain an arbitrary triangle as evaluating
the performance in random cases. Therefore, 5 scenarios are taken into account and the
related deployment parameters is given-in-the Table 5.2, where ups,, ups, ~ U(—6,6),
Unrs,z, Unsy ~ U(—10,10) with constraints that the MS must lie in the triangle formed
by BSs and the distance betweenMS and each'BS must larger than 3 meters according to
the path loss model in [24]. Mean(BS) represents the gravity center (GC) of BSs’ layout.

For the convenience of evaluation, we define PLE’s true value as & and the PLE

estimation result of the proposed DE-mechanism as &. The PLE estimation error «, is

defined as

e =& — o

For the convenience of evaluation, we define MS’s true position as x = (x, y) and the
estimation output of location algorithms as x = (&, g). The location estimation error L,

is defined as

Le = [Ix —x|| (5.1)
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Figure 5.1: The relationship between PLE estimation error and noise standard deviation in a
regular triangle

The mean square error (MSE) is thus defined as

MSE = mean(||x—x||?) (5.2)

where mean(x) is the sample mean 6f the elements /in-the vector x. The value of PLE
initial guess & is 4.23, which has a'bias of 0.1 from.the long-term mean value of true PLE «
defined in Table 5.1. A random bias uniformly-distributed with [-0.05, 0.05] is appended
to the true PLE «a to represent the randomness of the real PLE of each propagation
channel. The performance is evaluated with 30000 independent trials. The initial guess
will be chosen as an arbitrary point with 1 meter from the MS’s true position for any
algorithm that requires that.

The objective of the DE mechanism is to estimate the PLE and the distance with RSS
measurements and the estimation performance is investigated under different scenarios
defined in Table 5.2. The initial guesses of the PLE and distance for the TSE-based

DE mechanism are obtained as described in Section 4.1. Fig. 5.1 and Fig. 5.2 are the
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Figure 5.2: The relationship between location estimation error and noise standard deviation
in a regular triangle

estimation errors of PLE and distamnce in scenarios S1 and S2 with respect to different
noise standard deviations. It is noted that thescenario S1 represents a network topology
with the BSs locate as a regular triangle whose center the MS lies at, while the scenario
S2 has the MS locates somewhere apart from the center of the network. We evaluate the
performance of our proposed DALE ‘algorithm-with the schemes of DALE without the
DE mechanism (DALE w/o DE) to-see whether the DALE algorithm have any improve
by performing the DE mechanism. In Fig. 5.1 we can see that for those schemes with
DE mechanism, that is, DALE (S1) and DALE (S2), have less PLE estimation error,
while the schemes without DE mechanism have a constant bias because they do not have
any mechanism to estimate the PLE. On the other hand, in Fig. 5.2, we can make an
intuitive conclusion that since DALE algorithm has the correction of PLE and thus it
has less location estimation error in both scenario S1 and S2. Moreover, we notice that
the PLE estimation in S2 is better than that in S2. This makes the location estimation
error in S2 is less than that in S1. We thus make a brief conclusion that the better PLE

estimation one have, the better location estimation results can be obtained.
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Figure 5.3: The relationship between PLE estimation error and noise

an irregular triangle
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Figure 5.4: The relationship between location estimation error and noise standard deviation
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Figure 5.5: The relationship between PLE estimation error and noise standard deviation in
an arbitrary triangle

The performance of the DE mechanism in the scenarios S3 and S4 is studied in Fig.
5.3 and Fig. 5.4. In Fig. 53 we candiseover that DALE (S3) and DALE (S4) have
less PLE estimation error than the scheme without DE mechanism which has a constant
bias. Observing from Fig. 5.4 we notice again that the one with better PLE estimation
will has less location estimation error in both S3/and S4. Since the PLE estimation
in S4 is better than that in S3; it makes better location estimation in S4 than in S3.
Therefore, it is revealed again that better PLE estimation is coupled with better distance
estimation. In the scenario S5, a random network topology is applied as addressed in
Table 5.1. According to the path loss model in TR 36.814 [24], the distance between the
MS and any BS should be larger than 3 meters. The Fig. 5.3 and Fig. 5.4 represent the
estimation performance of the DE mechanism in S5. The DALE has the PLE with less
bias, thus its location estimation error is less than the DALE without DE scheme. By
the general case, we can confirm the effectiveness of the DE mechanism can be ensured.
The location errors of the DALE algorithm and many other methods are also evaluated

in the scenarios mentioned above. The performance of our proposed DALE algorithm
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is compared with the schemes of DALE without the DE mechanism (DALE w/o DE),
DALE without the design of weighting (DALE w/o W), TSLS algorithm [19] as well as
TSE algorithm [18]. It is noted that the proposed DALE in scenario 1 is close to other
algorithms, especially the DALE without DE scheme. This is due to the perfect layout
of BSs that reduces the effect of noise. However, DALE (S1) is still the one with the best
performance. In scenario S2, the MS moves toward one corner of the regular triangle,
making the MS become closer to one of the MS than scenario S1. This increase the
chance of having bad performance for all the algorithms because the shortest distance
between MS and BSs become very short. Any noise with extreme value could cause a
significant ratio of change in the shortest path, which could lead to a severe error in the
calculation results. However, we can still discover that our proposed DALE (S2) have the
best performance in Fig. 5.7. Without any weighting, the DALE w/o W scheme could
be even worse than the TSLS and TSE that have taken noise STD as weighting design.
For our proposed DALE with moderate weighting, it turns into the best one. Moreover,
it is not hard to discover that the gain of DE is tiny in these two scenario. This could be
not extremely bad layout that makesthe gain of RA mechanism to be tiny.

In equations of (5.1) and (5.2), we think that the'location estimation error and MSE
has a kind of positive correlation. For the clearness of illustration, we eliminates the DALE
w/o DE and DALE w/o W schemes in our MSE Figures since they do not have better
performance than DALE in the CDF of location estimation error. In other words, we will
evaluate the performance of our proposed DALE algorithm with TSLS algorithm, and
TSE algorithm. In Fig. 5.8, we compare the MSE of the algorithms we just mentioned.
Similar to what we saw in Fig. 5.7, in scenario S1 all the algorithms have the performance
closed to each other, while in S2, the bad layout formed by the BSs make all the algorithms
to have worse estimation results.

In Fig. 5.9, we evaluate the positioning performance in the scenario S3 and S4. From
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Figure 5.10: The comparison of mean squared error in the scenarios S3 and S4

Fig. 5.9 we can discover that for the real lines, our proposed DALE algorithm as well as
other two schemes hold the position of the best three performance. The TSE (S3) seems
to be better than TSLS (S3).in & significant. gain. This. might be due to TSE have a good
initial guess that is close to-the MS’s true position. The DALE w/o W (S3) scheme here
also performs better than TSE (S3) with'a gain. This might be due to the layout of BSs
is an irregular triangle. For other algorithms it is.easy to obtain a location estimation x
out of the triangle, while our proposed DALE algorithm have the mechanism of RA that
can form some additional constrains that reduce the effect of abnormal layout and noises.
And we can see that the consideration of weighting and DE mechanism both have some
gains. If focusing on dashed lines, we can discover similar phenomenons that happened
in scenario 3. However, the gain of DE mechanism in S4 is greater than that in S3, which
implies that it works better in worse layouts. After all, it seems that Fig. 5.7 and Fig.
5.9 imply our proposed DALE algorithm works well in any circumstances and has most
gain than any other algorithm at the worst case.

In Fig. 5.10 the MSE performance in the scenarios S3 and S4 is conducted. As the
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Figure 5.11: The comparison of location estimation error under the fading noise with 4 dB
standard deviation in the scenario Sb

layout becomes even irregular, all the algorithm have worse performances than that in Fig.
5.8. However, the proposed DALE can still-perform well than any other algorithms. This
confirms that due to the RA mechanism, the proposed DALE algorithm can eliminate
chances of having extremely bad estimations and thus holds the performance.

In Fig. 5.11, the comparison of location estimation is evaluated in the scenario S5.
The performance is in consist with-what we_have discovered and discussed in scenario
S1 to S4. Through the observation of location estimation error’s CDF from scenario 1
to 5 with the STD of noise in 4 dB, we can make a brief conclusion that our proposed
DALE algorithm is better than other two control group scheme, that is, DALE without
DE mechanism and DALE without the design of weighting.

As the scenario S5 represents a general case of the network topology, in Fig. 5.12 it
can be observed that the DALE w/o W scheme performs better than TSLS and TSE,
which shall be the gain of having RA mechanism. And next we discover that DALE
w/o DE scheme have a gain of taking the noise variance into consideration to design the

weighting. Moreover, we can see the gain of DE mechanism from the performance of
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proposed DALE.
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Chapter 6

Conclusion

An efficient diversity-augmented location estimation (DALE) algorithm based on the mea-
surement of RSS is proposed in this thesis. The DALE scheme inherits the merits of the
GALE algorithm and enhances the conventional TSLS algorithm by imposing additional
virtual spatial constraints within -its-formulation. By using the proposed DALE algo-
rithm, the computational ¢fficiency acquired from.the TSLS method is preserved, and
the requirement of hardware’s transmitting and measurement capability is lowered to a
moderate level by adopting RSS, as the measurement source. Higher location estimation
accuracy for the MS is also achieved. Moreover, the jittering of PLE can be reduced by
adopting the proposed DE mechanism. The proposed RA mechanism can effectively deal
with various geometric layouts between the MS and its associated BSs. It is shown in the
simulation results that the proposed DALE algorithm provides better position location

estimate comparing with other existing methods.
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