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以無線網路訊號量測強度為基礎之增加空間向度的定位演算法 

 
學生：林宥儒                                          指導教授：方凱田 

國立交通大學電信工程研究所碩士班 

摘 要       

    

近年來行動裝置(Mobile Station)的定位已經日漸備受注目，而且重

要性與日俱增。而建構在行動裝置和基地台 (Base Station) 網路架構上

的定位演算法已經被廣泛應用到各個層面。傳統上的兩步求最小平方法 

(Two-Step Least Square) 之定位演算法，對於定位行動裝置來說，提供

了一個很有效率的解法。而另一個以幾何限制為輔助之定位 

(Geometry-Assisted Location Estimation) 演算法，則將非直線路徑

(None-Line-of-Sight)雜訊造成的行動裝置和基地台之相對陳列關係加入

了考量。後者針對了超視距雜訊，在以前者為基礎上，多附加了幾何上的

限制，增加了定位上的精確度。無論如何，前述兩者都是以到達時間  

(Time-of-Arrival) 作為量測基礎，而制定的演算法。很少有人以訊號量

測強度 (Received Signal Strength) ，這種很容易被今日各種行動裝置

取得的訊號來源，為基礎而來設計演算法。我們因而提出了一個以寬頻無

線 網 路 訊 號 量 測 強 度 為 基 礎 之 增 加 多 樣 性 的 定 位 演 算 法  (A 

Diversity-Augmented Location Estimation Algorithm for RSS-Based 

Wireless Networks)。此一演算法同時也考慮了路徑損耗指數(Path Loss 

Exponent)對於訊號量測強度轉換到估測距離所造成的影響，因而採取機制

去修正它。我們所提出的演算法同時保留了兩步求最小平方法的優點，也

透過了訊號量測強度來做出良好而精確的定位估算。我們也提供了許多模

擬結果來證明所提演算法的效能的確能勝過許多已經存在的定位演算法。 
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Institute of Communication Engineering 
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ABSTRACT 

 

Mobile location estimation has attracted a significant amount of attention in recent 

years. The network-based location estimation schemes have been widely adopted 

based on the radio signals between the mobile device and the base stations. The 

two-step least square (TSLS) method has been studied in related research to provide 

efficient location estimation of the mobile devices. In order to enhance the precision of 

location estimate, the geometry-assisted location estimation (GALE) scheme is 

designed to incorporate the geometric constraints within the formulation of TSLS 

method. However, these two algorithms are mainly designed based on the 

time-of-arrival (TOA) measurements. There is not much effort that has been dedicated 

in location estimation based on received signal strength (RSS) measurements, which 

can be easily obtained by mobile devices nowadays. A diversity-augmented location 

estimation (DALE) algorithm is proposed in this thesis with additional spatial 

assistance based on the RSS measurements. This algorithm also considers and corrects 

the effect of incorrect path loss exponent (PLE). The proposed DALE scheme can both 

preserve the computational efficiency from the TSLS algorithm and obtain precise 

location estimation based on RSS measurements. Numerical results demonstrate that 

the proposed DALE algorithm can achieve better accuracy, comparing with other 

existing schemes, in mobile location estimation.
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Chapter 1

Introduction

Wireless location technologies, which are designated to estimate the position of a mobile

station (MS), have drawn a lot of attention over the past few decades. Different types

of location-based services (LBSs) have been proposed and studied, including the emer-

gency 911 (E-911) subscriber safety services [1], the location-based billing, the navigation

system, and applications for the intelligent transportation system (ITS) [2]. Due to the

emergent interests in the LBSs, it is required to provide enhanced precision in the location

estimation of a MS under different environments.

A variety of wireless location techniques have been studied and investigated [3], [4], [5].

The network-based location estimation schemes have been widely proposed and employed

in the wireless communication systems. These schemes locate the position of the MS

based on the measured radio signals from its neighborhood base stations (BSs). The

representative algorithms for the network-based location estimation techniques are the

time-of-arrival (TOA), the time difference-of-arrival (TDOA), and the angle-of-arrival

(AOA). The TOA scheme estimates the MS’s location by measuring the arrival time of

the radio signals coming from different wireless BSs; while the TDOA method measures

the time difference between the arriving radio signals. The AOA technique is conducted

within the BS by observing the arriving angles of the signals coming from the MS.
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The equations associated with the network-based location estimation schemes are in-

herently nonlinear. The uncertainties induced by the measurement noises make it more

difficult to acquire the estimated MS position with tolerable precision. Algorithms applied

least square (LS) such as the two-step least square (TSLS) scheme [6] has been studied to

provide reasonable accuracy for location estimation with its efficient two-step calculation.

However, the algorithms based on the TSLS method are primarily feasible for location

estimation under line-of-sight (LOS) environments. The non-line-of-sight (NLOS) situa-

tions, which occur mostly under urban or suburban areas, greatly affect the precision in

most of the location estimation schemes. On the other hand, the range scaling algorithm

(RSA) proposed in [7] alleviates the NLOS errors by considering the cell layout between

the MS and its associated BSs. A constrained nonlinear optimization approach is adopted

to obtain improved location estimate for the MS. However, the RSA approach involves the

requirement of solving an optimization problem based on a nonlinear objective function.

The inefficiency incurred by the algorithm may not be feasible to be applied in practical

systems.

In this paper, an efficient Diversity-Augmented Location Estimation (DALE) algo-

rithm is proposed to obtain location estimation of the MS based on received signal

strength (RSS) measurements. The proposed DALE scheme integrates the spatial di-

versity by combining additional constrains with the conventional TSLS algorithm. We

retrieve the distance by using RSS measurements and the path loss model. Moreover, we

take the jittering of path loss exponent (PLE) into consideration in the proposed DALE

algorithm, which always happens due to the channel fadings. The MS’s position is ob-

tained by correcting the PLE to reduce the error of Distance Estimation (DE) during

the process of converting RSS into range measurements, then solving the equations with

additional constrains in DALE. Different cases are illustrated in simulations in order to

demonstrate the effectiveness of the proposed DALE algorithm. Comparing with other
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existing schemes, numerical results show that the DALE approach can acquire higher

accuracy for location estimation of the MS.

The remainder of this thesis is organized as follows. Chapter 2 describes the related

work for wireless location estimation. In Chapter 3, we introduce the models of measure-

ment signals and existing LS schemes as background knowledge. The proposed DALE

algorithm is described in Chapter 4. The performance evaluation of proposed scheme is

conducted in Chapter 5 via simulations. Chapter 6 draws the conclusions.
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Chapter 2

Related Work

Different location estimation schemes have been proposed to acquire the MS’s position.

Various types of information (e.g. the signal traveling distance, the received angle of

the signal, or the RSS measurements) are involved to facilitated the algorithm design

for location estimation. The primary objectives in most of the location estimation algo-

rithms are to obtain higher estimation accuracy with promoted computational efficiency.

The high-resolution (super-resolution) schemes are proposed as in [8], [9], [10], [11]. The

scheme studied in [8] considers arbitrarily located antennas and a particular covariance

matrix within a noisy environment. The covariance matrix is composed of various types

of properties, including gain, phase, frequency, polarization, and angle-of-arrival (AOA)

information. The subspace method utilized in the super-resolution schemes estimates the

components of the covariance matrix based on an eigen-analysis. The well-known super-

resolution algorithm is the multiple signal classification (MUSIC) [9]. It is experimentally

illustrated to be a robust solution for location estimation, especially for a near-far envi-

ronment. However, it has also be shown in [10] and [11] that the drawbacks of the MUSIC

approach include (i) comparably high sensitivity to large noise and (ii) its complexity in

computation.

The beamforming system is a space-time processor that operates on the output of a
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sensor array. It provides spatial filtering capability which enhances the amplitude of a co-

herent signal associated with the surrounding noises. Since the conventional beamforming

technique is sensitive to the estimation error for the MS’s position, a combination of lo-

calization and beamforming is proposed as in [12]. It increases the robustness to location

errors without sacrificing the computation efficiency. An enhanced algorithm for simul-

taneous multi-source beamforming and adaptive multi-target tracking is studied in [13].

The correlation between the adaptive minimum variance beamforming and the optimal

MS localization is also investigated as in [14]. However, the complication of the beamform-

ing system makes the associated location estimation techniques difficult to be practically

realized.

Instead of exploiting the spatial and temporal information of the signal, the location

fingerprinting technique locates the MS based on the RSS [15] [16]. The technique involves

both the off-line and the on-line phases. A location grid that is related to a signal signature

database for a specific service area is developed in the off-line phase; while a measured

RSS vector at the MS is delivered to the central server to compare with the location grid in

the on-line phase. Moreover, a hybrid algorithm which combines the RF propagation loss

model is proposed both to mitigate the requirement of the training data and to adjust the

configuration changes [17]. It is obvious to recognize that a considerable size of database

is required for the location fingerprinting techniques.

There are also different approaches exploiting linearized methods to achieve computing

efficiency while obtaining an approximate estimation of the MS’s position. The Taylor

series expansion (TSE) method was utilized in [18] to acquire the location estimation

from the TDOA measurements. The method requires iterative processes to obtain the

location estimate from a linearized system. The major drawback of the TSE scheme is

that it may suffer from the convergence problem due to an incorrect initial guess of the

MS’s position. The TSLS method was adopted to solve the location estimation problem
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from the TOA [6], the TDOA [19], and the TDOA/AOA measurements [20]. It is an

approximate realization of the maximum likelihood (ML) estimator and does not require

iterative processes. The TSLS scheme is advantageous in its computational efficiency with

adequate accuracy for location estimation.

Instead of utilizing the circular line of position (CLOP) methods (e.g. the TSE and

the two-step LS schemes), the linear line of position (LLOP) approach is presented as a

new interpretation for the cell geometry from the TOA measurements. Since two TOA

measurements that intersect at two points will generate a connecting line, two indepen-

dent lines will be created by using three BSs in the scenario of two-dimensional location

estimation. Therefore, the LS method can be adopted to estimate the location of the

MS. The detail algorithm of the LLOP approach can be obtained by using the TOA

measurements as in [21], and the hybrid TOA/AOA measurements in [22].

It can be found from the previous work that some of the location estimation algorithms

involve complicated computation or additional database and infrastructures; while others

are only suitable for specific situations (e.g. LOS environments or special areas). Not

much effort has been dedicated in location estimation based on RSS with light off-line

database construction. The DALE algorithm based on RSS measurements as proposed in

this paper preserves the computational efficiency from the TSLS method; while reducing

the requirement of hardware’s capability of transmitting and measuring.
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Chapter 3

Preliminary

In this chapter, the mathematical modeling of the signal measurements is formulated in the

Section 3.1. The conventional linear LS methods for location estimation is briefly reviewed

in the Section 3.2. Moreover, the range measurements converting from the observations of

RSS may suffer from unreasonable geometric relationships as the log-normal distributed

fading effects exists. Thus, in Section 3.3, the overlapped region among three range

measurements is denoted and emphasized.

3.1 Modeling of the Signal Measurements

In order to facilitate the design of the proposed DALE algorithms, the signal model for the

RSS measurements is presented in this Section. To describe the model precisely, we have

surveyed some technical reports and documents. The COST 231 [23] project is a com-

prehensive framework in which the radio channel characteristics for various environments

are investigated and developed. Furthermore, the advancements for E-UTRA physical

layer aspects [24] are continuously moving in in the 3GPP technical specifications. It also

provides path loss models for various propagation scenarios which have been adopted in

the paper. Some simulation assumptions and parameters in [25] are suggested to describe
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the interferences between macrocells and femtocells in LTE and so as the path loss models

in different scenarios.

According to the model suggested in [24], the indoor path loss model can be expressed

as

PLi = PL0 + 20 log10 fc + 10α log10 ξi + ni (3.1)

where i=1,2, and 3. The parameter α represents the PLE. PLi, measured in Decible (dB)

is denoted as the path loss, between the transmitter and the receiver. PL0 is the path

loss one at the reference distance, (usually assigned by 1 meter) from the transmitting

BSi. PL0 is often be considered as a constant since the variance of path loss in such a

short distance is trivial. fc denotes the carrier frequency measured in GHz. ξi is the true

distance between the BSi and the MS in the range from 3 to 100 in meters. The notation

ni represent the slow fading effect, which is often described as a Gaussian distribution with

zero mean and standard deviation σi. Since the proposed DALE algorithm is developed

based on geo-location concepts, the range measurements are required and can be acquired

from the RSS observations as

r̂i = exp ((PLi − PL0)
ln 10

10α
) (3.2)

3.2 Least Square Methods for Location Estimation

Range measurements are essential for geo-location to identify the MS’s position. How-

ever, range measurements are closely related to MS’s position in a linear manner and

they should be linearized before applying the LS methods. The TSLS scheme [19] is a

simple and effective method which is utilized as the baseline formulation for the proposed

DALE algorithm. The concept of the TSLS method is to acquire an intermediate location

8



estimate in the first step with the definition of a new variable β, which is mathematically

related to the MS’s position (i.e. β = x2+y2). At this stage, the variable β is assumed to

be uncorrelated to the MS’s position. This assumption effectively transforms the nonlin-

ear equations for location estimation into a set of linear equations, which can be directly

solved by the LS method. It is also noted that the selection of β provides a feasible first

step location estimation compared with the random initial guess in the iterative linear LS

method, e.g. the TSE scheme. Moreover, the elements within the associated covariance

matrix are selected based on the standard deviation from the measurements. The varia-

tions within the corresponding signal paths are therefore considered within the problem

formulation. The second step of the method primarily considers the relationship that the

variable β is equal to x2 + y2, which was originally assumed to be uncorrelated in the

first step. An improved location estimation can be obtained after the adjustment from

the second step. The detail algorithm of the TSLS method for location estimation can be

found in [19] [20] [26].

The geometric-assisted location estimation (GALE) [27] algorithm is another scheme

that have some inspirations on the proposed DALE algorithm. In a set of noise-free TOA

measurements obtained in the GALE algorithm, the corresponding range measurements

will exactly intersect in the point where the MS shall be. Due to the existence and

domination of NLOS noise in range measurements at outdoor environments, the range

measurements will always be larger than they actually are. The concept of the GALE

method is to add a geometric constraint derived from the three NLOS-contaminated

measurements and to construct an additional measurement similar to those in the real

world as if there were another BS emitting signal there. By adopting this concept, the

spatial diversity is thus increased. Moreover, the proposed DALE algorithm is come up

with by taking the merits of the concepts and performing some further modification. The

detail algorithm of the GALE method for location estimation can be found in [27] [28].
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3.3 Overlapped Region of Three Range Measurements

Adopting the path loss model described in Section 3.1 and use the RSS measurements

as information to locate MS’s position is cost-effective and easy-implemented. However,

not as what most traditional range-free positioning algorithms such fingerprinting tech-

nique [15], [16] did to RSS, a simple distance estimation method addressed in Section

3.2 is included in the proposed DALE algorithm to estimate the range measurements and

various path loss exponents. In a noise free environment and having knowledge of the true

path loss exponent, the signal range measurements can be converted directly from RSS

measurements, and they are supposed to intersect in the position of MS. But the distance

we obtain might be either extended or shortened due to the existence of the normal-

distributed fading effects in the RSS measurements. This could be a severe problem in

location algorithms. For example, if two RSS measurements are suffered from positive

noises, the converted range measurements will be shorter than they actually are since the

noises make the RSS measurements seem to be stronger than they really are, as ri and

rj illustrated in Fig. 3.1. But this situation implies that the MS could be located in the

distance of either r1 or r2 apart from BSi or BSj, which dose not make sense physically.

A more reasonable circumstance should be that the two range measurements covers each

other. In other words, the summation of any two range measurements is no smaller than

the distance between these two BSs, and the relationship can be obtained as

r′i + r′j ≥ Li,j , ∥BSi −BSj∥ (3.3)

where ∥x∥ is the norm of a vector x.

Furthermore, as described in Section 3.2, another problem comes as it require three

RSS measurements to perform a two-dimensional linear least square estimation. If each

10
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two range measurements barely contact with each other as described in (3.3), there are

still chances that the three range measurements have no intersection in common, as the

real lines illustrated in Fig. 3.2. This implies that the same MS could be located in

more than one range intersection and receives RSS measurements simultaneously. Once

more, this is impossible. The reasonable case should be that either the three range

measurements intersect in the location of MS, or the three range measurements construct

an overlapped region. In other words, each two range measurements shall have one or

two intersection points. Moreover, it is observed that the necessary condition to form an

overlapped region as having three range measurements is that each circle shall cover the

nearest vertex formed by other two circles. For example, as illustrated in Fig. 3.2, if the

circle 1 with radius r1 is intended to cover the intersection zone formed by circle 2 and

circle 3, it must at least cover the V1, which is the nearest vertex formed by by circle 2

and circle 3. The mathematical constraint shall be as follows

r”2 ≥ d2 = ∥BS2 −V2∥ (3.4)

where BSi represents the position of the ith BS and Vi represents the position of the ith

vertex formed by the two range measurements other than the ith range measurement. As

the aforementioned conditions for three BSs are satisfied, the overlapped region where the

MS is supposed to be within could be guaranteed.
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Chapter 4

Proposed Diversity-Augmented

Location Estimation Algorithm

In this chapter, the proposed diversity-augmented location estimation (DALE) algorithm

based on RSS measurements and the concepts of linear least square methods as depicted

in Section 3.2 will be extended. The algorithm will be introduced in three parts as

illustrated by a flow chart in Fig. 4.1. First of all, in Section 4.1, we consider the impact

of inaccurate PLE α due to having no information about the channel characteristics of a

new environment and thus assigning a rough and empirical initial guess of PLE. This will

introduce a serious error during the process of converting RSS into distance due to the

given PLE guess. Therefore, the distance estimation (DE) mechanism is proposed to fine-

tune PLE and estimate distances with a simple two-step TSE method. And in Section

4.2 we will go through a proposed range adjustment(RA) mechanism. The existence of

Gaussian noise in RSS measurements will cause abnormal signal ranges as we discussed

in 3.3. We thus propose the RA mechanism to adjust the signal ranges to the reasonable

volumes. Section 4.3 comes how we use the idea of virtual base station (VBS) [28] and the

ideas of LS methods described in Section 3.2 to acquire some augmented diversity gains

on the space domain and obtain a more precise location estimation of the MS’s position.
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Figure 4.1: Flow chart of our proposed DALE algorithm
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4.1 Mechanism of Distance Estimation

In this section, we will introduce the first part of the proposed DALE algorithm, the DE

mechanism. As the path loss model mentioned in Chapter 3, we define

Fi , PL′
0 + 10α log10 ξi

where PL′
0 = PL0 + 20 log fc. The mechanism of the prosed DE scheme is to use TSE to

expand Fi with respect to the two parameters α and ξi as

Fi = Fi|IG1,i
+

∂

∂α
Fi|IG1,i

(α− IG1,i) + · · · (4.1)

= Fi|IG2,i
+

∂

∂ξ
Fi|IG2,i

(ξi − IG2,i) + · · · (4.2)

where α is PLE, ξi represents the distance between MS and the ith BS, and IGi is a set

of initial guess as follows

IGi =

 IG1,i

IG2,i


The terms with order equal to or higher than two are relatively trivial and can be ne-

glected. One potential drawback of TSE is the requirement of initial guess. The result of

TSE would be diverge if we give a set of extremely bad initial guesses. Fortunately, we

have simple and reasonable candidates for the initial guesses. Notation IG1,i is a guess of

PLE α̂i, which will be chosen as a long-term statistics of a space or just giving a reason-

able number after judging the environment. And IG2,i is an initial guess of the distance

between the ith BS and the MS, which will be chosen as the mean of range measurement

samples ζi,j, that is, IG2,i = mean(ζi,j)=ξ̂i, where i ∈ (1, 3), j ∈ (1, ns), and ns is the

number of samples we take per link. As described in equations (4.1) and (4.2), the two-
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step TSE is utilized to estimate ξi after αi iteratively, and iterations is terminated as the

requirements are met.

First of all, we differentiate Fi partially with respect to α

g1,i ,
∂

∂α
Fi = 10 log10 ξ̂i (4.3)

where i represents the index of BSs and j represents the index of the range measurement

samples received from BSi. We form an equation as follows

G1∆α = H1 (4.4)

where

G1 =



g1,i

g1,i

·

g1,i


, H1 =



PLi,1 − Fi|α̂i

PLi,2 − Fi|α̂i

·

PLi,j − Fi|α̂i


Solving this equation by the LS method, we can obtain an increment

∆α = (UTU)−1UTV (4.5)

We can update the α̂i by adding it with ∆α as

α̂i = α̂i +∆α (4.6)

The updated α̂i will be used in the following step. Secondly, we differentiate Fi partially
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with respect to ξ

g2,i ,
∂

∂ξ
Fi =

10α̂i

ln 10
· 1
ξ̂i

(4.7)

And we form an equations as follows

G2∆ξ = H2 (4.8)

where

G2 =



g2,i

g2,i

·

g2,i


, H2 =



PLi,1 − Fi|ξ̂i

PLi,2 − Fi|ξ̂i

·

PLi,j − Fi|ξ̂i


Solving this equation with LS method, we have an increment ∆ξ

∆ξ = (GT
2G2)

−1GT
2H2 (4.9)

We can thus update the ξ̂i by means of ∆ξ

ξ̂i = ξ̂i +∆ξ (4.10)

The updated IG2,i will be fed back to conduct the first procedure. We will keep conducting

this two-stage calculation for many rounds. And the iteration will be halted until either

condition 1 is met or the conditions 2 and 3 are satisfied

1. maximum iteration times (ITmax) ≤ IT

2. ∥∆α∥ < threshold (TS) of ∆α
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3. ∥∆ξ∥ < TS of ∆ξ

The goal of conducting this DE mechanism is to eliminate the effect of having an

inaccurate α, which could cause a severe error during we converting the RSS measurements

into distance. After all, the final outcome shall be the updated distance IG2,i, which is

denoted by r̂i and r̂ =

[
r̂1, r̂2, r̂3

]T
is obtained as completing the DE mechanism.

r̂ is then fed into the following RA mechanism for further processing.

4.2 Mechanism of Range Adjustment

The two-phase method called the RA mechanism is proposed based on the estimations

acquired at the DE mechanism and the observations depicted in Section 3.3. In Section

3.3 we have mentioned that it is strange that two range measurements does not have

mutual intersection. Hence, it is necessary to examine and adjust the r̂ before conducting

location estimations. It is denoted that r′i is originally equal to r̂i and will be adjust in

the RA mechanism if necessary. Moreover, the parameter Ti,j is assigned as an index to

represent the the geometric relationship between r′i and r
′
j. Parameter Si,j is defined as

the flag to be assigned to the ith BS with respect to all the other BSj. Therefore, we

check Ti,j and classify them into five cases in phase1 as follows

1. If two range measurements r′i and r
′
j are too small to reach each other, Ti,j is defined

as ”outer separation”, and assigning k1 flags to r′i and k1 flags to r′j.

2. If two range measurements r′i and r
′
j intersect each other in two points, Ti,j is defined

as ”intersection”, and assigning 0 flag to both r′i and r
′
j.

3. If the range measurement r′i contains range measurement r′j, Ti,j is defined as ”con-

taining”, and assigning -k1 flags to r′i and k1 flags to r′j.
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4. If the range measurement r′i is contained by range measurement r′j, Ti,j is defined

as ”containing”, and assigning k1 flags to r′i and -k1 flags to r′j.

5. If two range measurements r′i and r
′
j intersect each other in one point, Ti,j is defined

as ”tangency”, and assigning 0 flag to both r′i and r
′
j.

After all, we sum up the flags of ith BS with respect to the jth BS as follows

Si =
∑
j,i̸=j

Si,j (4.11)

Multiplying Si with the ith link’s measurement standard deviation σmi
, and we can obtain

the adjustment to update r′i. That is, r
′
i = r′i+∆r′i, where ∆r

′
i = σmi

Si. In phase1 we will

keep this iterative calculation until each two ranges have intersect in common or at least

tangent each other. The mechanism of RA’s phase1 is illustrated by the pseudo code in

Algorithm 1.

After phase1’s adjustment, the final output should be ř, where ř =

[
r′1, r′2, r′3

]T
and it will be fed into phase2 for the sake of the observations in Section 3.3. There might

still have chances that each two ranges intersect with each other but three ranges have no

intersection region in common, as described in Section 3.3. Thus we propose the second

phase to prevent it. In phase2 we are going to propose another process to make sure

the 3 ranges will intersect others or even intersect in exactly one point. Any two circles

intersect with each other will result in at least one vertex. First of all, we calculate the Vp,

one of the intersection point of r”i and r”j which is the one closet to BSp, where i ̸= j,

i ̸= p and j ̸= p and i, j, p = 1, 2, and 3. As constraint (3.4) we discussed in Section 3.3

that guarantees the existence of common overlapped region. r”p ≥ dp = ∥BSp −Vp∥

If the constrain is not satisfied in the pth link, we will add ∆r”i to r”i, that is, r”i = r”i+

∆r”i, where ∆r”i = k2σi, i ̸= p. We will keep doing this mechanism until constraint (3.4)

is satisfied for all p. The final output of phase2 will be r̃, where r̃ =

[
r”1, r”2, r”3

]T
.
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Algorithm 1: Range Adjustment Phase1
Ti,j : Relation between BSi and BSj

Li,j : The distance between BSi and BSj

r′i: The ith range measurement
σmi : The standard deviation of measurements in the ith link
Si,j : The flag assigned
kp: The step size of adjustment per round in phasep
begin

while (Ti,j ̸=intersection) & (Ti,j ̸=tangency) do
forall the Nodei and Nodej, i ̸=j do

if r′i + r′j < Li,j then

Ti,j = outerseparation;
Si,j = k1;
Sj,i = k1;

else if r′i + r′j > Li,j then

if r′i + Li,j < r′j then

Ti,j = contained;
Si,j = k1;
Sj,i = −k1;

else if r′i > r′j + Li,j then

Ti,j = containing;
Si,j = −k1;
Sj,i = k1;

else
Ti,j = intersection;
Si,j = 0;
Sj,i = 0;

end

else if r′i + r′j = Li,j then

Ti,j = tangency;
Si,j = 0;
Sj,i = 0;

end

end
forall the Nodei, Nodej, i ̸=j do

r′i = r′i + σmi

∑
j Si,j ;

end

end

end
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The mechanism of RA’s phase2 is illustrated by the pseudo code in Algorithm 2.

Algorithm 2: Range Adjustment Phase2
dp: Distance between BSp and Vp

begin
while dp > Rp do

forall the Nodep do
r”i = r”i + k2σmi ;
r”j = r”j + k2σmj ;

end

end

end

4.3 Diversity-Augmented Location Estimation

As illustrated in Fig. 4.2, three BSs associated with the three range measurements are

utilized for the location estimation of the MS. The overlap region (i.e. confined by the

arcs V1V2, V1V3, and V2V3) is formed by the mechanism of RA as we described in Section

4.2. Since the objective of the proposed DA location estimation is to expand the spatial

diversity, the following definitions and the associated constraint cost function are defined:

Definition 4.1 (Virtual Distance). The parameter γi (for i = 1 to 3) is defined as the

ith virtual distance between the MS’s position and Vi as

γi = ∥x−Vi∥ (4.12)

where x is the MS’s location; Vp represents the intersecting points around the overlap

region, i.e. V1 = (xv1 , yv1), V2 = (xv2 , yv2), and V3 = (xv3 , yv3) are the corresponding

coordinates of the points V1, V2, and V3.

It is noted that the value of γi varies as the three coordinates V1, V2, and V3 are

changed. On the other hand, an expected MS’s position xe is chosen to locate within the
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Figure 4.3: An illustration of range adjustment and the projection of error variance

triangular area V1V2V3 in order to fulfill the constraints from the geometric layout. The

corresponding ith expected virtual distance γei can be defined as follows

Definition 4.2 (Expected Virtual Distance). The ith expected virtual distance γei is

defined as

γei = ∥xe −Vi∥ = γi + nγei
(4.13)

where xe is the expected position of the MS, and nγei
denotes the error induced by the

computed deviation between γei and γi.

The major objective by adapting the geometric assistance in the DA location estima-

tion is to create three additional virtual BS as if they were transmitting signals to MS,

which can be used to improve the performance of following LS method. We view the

points {Vi} illustrate in Fig. 4.2 as VBSs, and the set of virtual distances γe as range
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measurements, where γe = [γe1 , γe2 , γe3 ]. Moreover, the expected position of MS, x, can

be viewed as a virtual mobile station (VMS) as illustrated in Fig. 4.3. We can thus form

three additional equations similar to those in the real world. The selection of the VMS’s

position xe is obtained by weighting the points {Vi} with the signal variations from the

theree range measurements. The coordinates of xe = (xe, ye) are chosen with different

weights (w1, w2, w3) w.r.t. the V1, V2, and V3 points of the triangle as

xe =
n∑

k=1

wkVk (4.14)

where n = 3 in this case, and Vk are the vertexes as illustrated in Fig. 4.3 with coor-

dinates as (xvk ,yvk). The weighting coefficients wk are defined based on the effects from

both the standard deviations and the relative distance w.r.t. the corresponding range

measurements, which can be obtained in the same way as [27]. Based on an appropriate

selection of the weighting coefficients, the VMS’s position xe is obtained. The ith expected

virtual distance γei can therefore be computed from equation (4.13), and the proposed

DA location estimation can be formulated by solving the TSLS problem as we described

in Section 3.2 with the additional geometric assistance, which are originated from the

virtual concept among the overlapped region. The solution is obtained by minimizing

both the errors coming from the output of RA (that is, r̃) and the deviations between

the expected virtual distances and the virtual distances (as shown in equation (4.12)). By

rearranging and combining r̃i and (4.13) in the matrix format, the following equation can

be obtained:

H1ẑ 1 = J1 + ψ1 (4.15)
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where ẑ 1 =

[
x(1) y(1) λ

]T
and

H1 =

 H3×3
r̃

H3×3
γ

 =



−2x1 −2y1 1

−2x2 −2y2 1

−2x3 −2y3 1

−2xv1 −2yv1 1

−2xv2 −2yv2 1

−2xv3 −2yv3 1


(4.16)

J1 =

 J3×1
r̃

J3×1
γ

 =



r̃21 − κr̃1

r̃22 − κr̃2

r̃23 − κr̃3

γ2e1 − κγe1

γ2e2 − κγe2

γ2e3 − κγe3


(4.17)

The corresponding coefficients are given by

λ = x2(1) + y21

κℓ = x2ℓ + y2ℓ for ℓ = 1, 2, 3

The expected virtual distances γei (as shown in equation (4.17)) are served as the virtual

measurements, comparing with those true measurements rℓ, for ℓ = 1, 2, and 3. The

noise component of ñ in r̃ is consisted of nm and nRA, where nm are the noises of range

measurements, and nRA is the noise that is introduced during the RA mechanism. Since

the coordinates of V1, V2, and V3 are obtainable after the r̃ are acquired, we depict the

noise of γei as the projections of r̃j’s noises, where i, j = 1,2, and 3, and i ̸= j. For
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example, as illustrated in Fig. 4.2, the noise of γe3 shall be nγe3
= ñ1 cos θ + ñ2 cosφ. It

is noted that θ is the angle between γe3 and r̃1, while φ is the angle between γe3 and r̃2.

The measurement noise matrix ψ in (4.15) can be obtained as

ψ1 = B1n+ n2

where

B = diag {r̃1, r̃2, r̃3, γe1 , γe2 γe3}

n =
[
ñ1, ñ2, ñ3, nγe1

, nγe2
, nγe3

]T
Based on the DA location estimation scheme, an intermediate estimate ẑ 1 after the first

step can be obtained as

ẑ =

[
x(1) y(1) λ

]T
= (HT

1Ψ
−1
1 H1)

−1HT
1Ψ

−1
1 J1 (4.18)

where (x(1), y(1)) is denoted as the intermediate location estimation of the MS after the

first step of the algorithm, λ = x2(1) + y2(1). The weighting matrix Ψ1 is obtained as

Ψ1 = E[ψ1ψ
T
1 ] = 4B1QB1

It is noted that Ψ1 is acquired by neglecting the second term of (4.18). The matrix Q

becomes

Q = diag
{
σ̃2
1, σ̃2

2, σ̃2
3, σ2

γe1
, σ2

γe2
, σ2

γe3

}

It can be observed that Q represents the covariance matrix for both the TOA measure-

ments and the expected virtual distances, where σγei corresponds to the standard deviation
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of γei . For the convenience of analysis, we assume that the noise of range measurement

is independent of the noise of RA mechanism, that is, nmi
⊥ nRAi

. And thus σ̃2
i can be

written as the sum of σ2
mi

and σ2
RAi

, where σ2
mi

is the noise variance of the range measure-

ment of the ith channel, and σ2
RAi

is the variance of range measurement’s modification

due to the RA mechanism as we depicted in Section 4.2. The detailed derivation of σ2
RAi

will be described as follows.

From equations (3.1) and (3.2), we have

r̂i = exp

[
(
ln 10

10α
)Li

]
= exp

[
(
ln 10

10α
)(10α(

ln ξi
ln 10

) + ni)

]
= ξi exp

[
(
ln 10

10α
)ni

]
(4.19)

where

Li , PLi − PL′
0 = 10α(

ln ξi
ln 10

) + ni

We define βi = exp( ln 10
10α

ni) and taking nature logarithm of it to have ln βi =
ln 10
10α

ni ∼

N (0, σ2
lnβi

), where σlnβi
= ln 10

10α
ni. The statistical characteristics and probability density

function (PDF) of the log-normal distributed variable βi shall be

µβi
, E[βi] = exp(

1

2
σ2
mi
)

σ2
βi
, V ar[βi] = exp(σ2

lnβi
)
(
exp(σ2

lnβi
)− 1

)
fβ(βi) =

1

βi
√
2πσlnβi

exp

[
−1

2
(
ln βi
σlnβi

)2
]
, βi > 0

From equation (4.19), we have r̂i = ξiβi. It is also log-normal distribution. Taking

nature logarithm from it and we will have ln r̂i = ln ξi+ln βi ∼ N (µln r̂i , σ
2
ln r̂i

), where µln r̂i

= ln ξi and σ
2
ln r̂i

= σ2
βi
. We can thus have r̂i’s mean µr̂i , E[r̂i] = exp(ln ξi+

1
2
σ2
ln r̂i

) = ξiµβi

and variance σ2
mi

, V ar[r̂i] = exp(ln ξi +
1
2
σ2
ln r̂i

)(exp(σ2
ln r̂i

)− 1) = (ξiσβi
)2.

After acquiring the statistic characteristic of range measurement r̂i, we define the noise
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of range measurement as n̂i , r̂i− ξi = ξiνi, where νi = βi−1, and νi ∈ (−1,+∞). νi is a

random variable with shifted log-normal distribution. µνi , E[νi] = E[βi − 1] = µβi
− 1,

and σ2
νi

, V [νi] = V [βi] = (σβi
)2. Since n̂i = ξiνi, we can know that µn̂i

, E[ξiνi] =

ξi(µβi
− 1) = µr̂i − ξi and σn̂i

, V ar[ξiνi] = (ξiσβi
)2 = σ2

mi
. Here nr̂i is also a shifted

log-normal random variable with support (−ξi,+∞). We can thus derive νi’s PDF from

fβ(βi) as follows.

fV (νi) = fβ(βi)

∣∣∣∣dβidνi

∣∣∣∣ , βi > 0

=
1

(νi + 1)
√
2πσlnβi

exp

[
−1

2
(
ln(νi + 1)

σlnβi

)2
]
, νi > 1 (4.20)

Moreover, we derive n̂i’s PDF by means of νi’s.

fN̂(νi) = fV (
n̂i

ξi
)

∣∣∣∣dνidn̂i

∣∣∣∣ , n̂i > −ξi

=
1

( n̂i

ξi
+ 1)

√
2πσlnβi

exp

[
−1

2
(
ln( n̂i

ξi
+ 1)

σlnβi

)2

]
1

ξi

=
1

(n̂i + ξi)
√
2πσlnβi

exp

[
−1

2
(
ln( n̂i

ξi
+ 1)

σlnβi

)2

]

=
1

r̂i
√
2πσlnβi

exp

[
−1

2
(
ln( r̂i

ξi
)

σlnβi

)2

]
, r̂i > 0

=
1

r̂i
√
2πσlnβi

exp

[
−1

2
(
ln(r̂i)− ln(ξi)

σlnβi

)2
]
= fR̂(r̂i) (4.21)

We would like to know the errors that happened between range measurements as we

consider the rationality of the geometric relations as described in Section 3.3. Moreover,
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we define

ηi,j = k

⌈
n̂i + n̂j

k(σmi
+ σmj

)

⌉
,−ξi − ξj < n̂i + n̂j

as the total number of adjustment times for both the range measurements r̂i and r̂j,

i, j ∈ (1, 3), i ̸= j, and k is the number of flag we assign to each range measurement per

iteration round.

According to the properties of ceiling function,

k(

⌈
n̂i

k(σmi
+ σmj

)

⌉
+

⌈
n̂j

k(σmi
+ σmj

)

⌉
)− 1 < ηi,j < k(

⌈
n̂i

k(σmi
+ σmj

)

⌉
+

⌈
n̂j

k(σmi
+ σmj

)

⌉
)

(4.22)

Assume {ni}i=1,2,...,N are I.I.D., then {n̂i}i=1,2,...,N are supposed to be independent, and

{n̂i}i=1,2,...,N shall also be independent. That is, fN(n̂i, n̂j) = fN̂(n̂i)fNRA
(n̂j). Since

since ηi,j is bounded, from equation (4.22) we know that σ2
ηi,j

= σ2
Yi
+ σ2

Yj
, where Yi ,⌈

n̂i

k(σmi+σmj )

⌉
, −ξi
k(σri+σrj )

< Yi, ∀Yi ∈ Z. To obtain σ2
Yi
, we first derive Yi’s CDF as follows

FY (yi) = P (Yi ≤ yi) = P (

⌈
n̂i

k(σmi
+ σmj

)

⌉
≤ yi) = P (

n̂i

k(σmi
+ σmj

)
≤ yi)

(Note : x ≤ n⇔ ⌈x⌉ ≤ n)

= P (n̂i ≤ k(σmi
+ σmj

)yi)

=

∫ k(σmi+σmj )yi

−ξi

1

(n̂i + ξi)
√
2πσlnβi

exp

[
−1

2
(
ln(n̂i + ξi)− ln ξi

σlnβi

)2
]
dn̂

=

∫ ln(k(σmi+σmj )yi+ξi)−lnξi

σln βi

−∞

1√
2π

exp

[
−1

2
g2
]
dg, g , ln(n̂i + ξi)− ln ξi

σlnβi

(4.23)

= Φ

(
ln(k(σmi

+ σmj
)yi + ξi)− lnξi

σlnβi

)
,− ξi

k(σmi
+ σmj

)
< yi, yi ∈ Z

After acquiring the CDF of Yi, we take differentiation of it with chain rule and Leibniz’s
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rule to derive its probability mass function (PMF) PY (yi) as follows.

PY (yi) =
dFY (h(yi))

dh

dh

dy
, h(yi) ,

ln(k(σmi
+ σmj

)yi + ξi) + ln ξi

σlnβi

from equation (4.23)

FY (h(yi))

dh
=

d

dh

∫ h(yi)

−∞

1√
2π

exp

[
−1

2
g2
]
dg

=
1√
2π

exp

[
−1

2
(
ln(k(σmi

+ σmj
)yi + ξi) + lnξi

σlnβi

)2
]

dh

dy
=

1

σlnβi

· 1

k(σmi
+ σmj

)yi + ξi
· k(σmi

+ σmj
)

⇒ PY (yi) =
1√
2π

exp

[
−1

2
(
ln(k(σmi

+ σmj
)yi + ξi) + ln ξi

σlnβi

)2
]
·

k(σmi
+ σmj

)

σlnβi
(k(σmi

+ σmj
)yi + ξi)

= k(σmi
+ σmj

)·

1

(k(σmi
+ σmj

)yi + ξi)
√
2πσlnβi

exp

[
−1

2
(
ln(k(σmi

+ σmj
)yi + ξi) + lnξi

σlnβi

)2
]

Since it is hard to find the variance σ2
Yi

from the complicate PMF, we acquire it in the

computational way as
∑1000

yi=⌈k(σmi+σmj )⌉
PY (yi). After conducting all the computation of

σ2
Yi

and σ2
Yj
, we can thus acquire σ2

ηi,j
= k2σ2

Yi
+ k2σ2

Yj
. The σ2

RAi
shall be the summation

of all the σ2
ηi,j

multiplies σ2
i where i ̸= j, that is, σ2

RAi
= σ2

i

∑
i,i ̸=j σ

2
ηi,j

as nRAi
is defined

by σi
∑

j ηi,j.

To extract the relationships of x(1), y(1) and λ, second step of the DA location estima-

tion scheme can be obtained as [19]:

x̂ =

[
x̂ ŷ

]T
=

[
(HT

2Ψ
−1
2 H2)

−1HT
2Ψ

−1
2 J2

]1/2
(4.24)
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where

H2 =

 1 0 1

0 1 1


T

J2 =

[
x̂2i ŷ2i β̂

]T

Ψ2 = E[ψ2ψ
T
2 ] = 4 B2 cov(ẑ ) B2 = 4 B2 (H

T
1Ψ

−1
1 H1)

−1 B2 (4.25)

B2 = diag {x̂i, ŷi, 1/2}

The final output of the proposed DALE algorithm will be (x̂, ŷ) after solving the second

step of DA location estimation as described in equation (4.24) and choosing the one that

is nearest to ẑ1.
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Chapter 5

Performance Evaluation

In this chapter, simulations are conducted to show the effectiveness of the proposed DALE

algorithms under different network topologies and MS’s positions. The noise model of

RSS measurements will be the same as we described in section 3.1. The slow fading

effect will be Gaussian-distributed with mean µ equal to zero and standard deviation σ

in the range from 3-6 dB. IEEE 802.11a [29] defined the operation frequency at 5.0GHz,

while 2.4GHz in IEEE 802.11b [30]. Nowadays many wireless fidelity (Wi-Fi) devices

are mainly operating at frequency band around 2.4-2.5 GHz, so we roughly choose the

carrier frequency fc as 2.45 GHz. The remaining common simulation parameters are

referred to the 3GPP TR 36.814 report [24] as we mentioned in section 3.1 and are listed

in Table 5.1. We will evaluate the effectiveness of the proposed DE mechanism first.

Table 5.1: Simulation parameters

Parameters Values
Path Loss at Reference Point PL0 11.5 dB
Carrier Frequency fc 2.4 GHz
Path Loss Exponent α 4.33
Mean of Slow Fading Effect µ 0 dB
Standard Deviation of Slow Fading Effect σ 3-6 dB
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Table 5.2: Deployment of BSs and MS

BS1 BS2 BS3 MS

S1 (0, 0) (20, 2) (10, 20) (9, 8)
S2 (0, 0) (20, 2) (10, 20) (3, 1.8)
S3 (0, 0) (20, 2) (16, 2.8) (12, 1.4)
S4 (0, 0) (20, 2) (16, 2.8) (4, 0.5)
S5 (0, 0) (20, 0.2) (10, 8)+(uBS,x, uBS,y) mean(BS)+(uMS,x, uMS,y)

Then the performance comparison between the proposed DALE algorithm with the other

existing location estimation methods are conducted in three types of network layouts.

First, we arrange the three BSs in the layout to be close to a regular triangle. Secondly

we deploy the three BSs to be like an irregular triangle. In the third topology, we put

the three BSs randomly in the space, trying to obtain an arbitrary triangle as evaluating

the performance in random cases. Therefore, 5 scenarios are taken into account and the

related deployment parameters is given in the Table 5.2, where uBS,x, uBS,y ∼ U(−6, 6),

uMS,x, uMS,y ∼ U(−10, 10) with constraints that the MS must lie in the triangle formed

by BSs and the distance between MS and each BS must larger than 3 meters according to

the path loss model in [24]. Mean(BS) represents the gravity center (GC) of BSs’ layout.

For the convenience of evaluation, we define PLE’s true value as α̂ and the PLE

estimation result of the proposed DE mechanism as α̂. The PLE estimation error αe is

defined as

αe = α̂− α

For the convenience of evaluation, we define MS’s true position as x = (x, y) and the

estimation output of location algorithms as x̂ = (x̂, ŷ). The location estimation error Le

is defined as

Le = ∥x̂− x∥ (5.1)

33



3 3.5 4 4.5 5 5.5 6
0.0955

0.096

0.0965

0.097

0.0975

0.098

0.0985

0.099

0.0995

0.1

STD (dB)

P
L

E
 E

rr
o

r

 

 

DALE (S1)

DALE (S2)

DALE w/o DE (S1)

DALE w/o DE (S2)

5 10 15 200

4

8

12

16

20

x−axis (m)

y
−

a
xi

s 
(m

)

 

 

MS (S1)

MS (S2)

BS

Figure 5.1: The relationship between PLE estimation error and noise standard deviation in a
regular triangle

The mean square error (MSE) is thus defined as

MSE = mean(∥x̂− x∥2) (5.2)

where mean(x) is the sample mean of the elements in the vector x. The value of PLE

initial guess α̂ is 4.23, which has a bias of 0.1 from the long-term mean value of true PLE α

defined in Table 5.1. A random bias uniformly-distributed with [-0.05, 0.05] is appended

to the true PLE α to represent the randomness of the real PLE of each propagation

channel. The performance is evaluated with 30000 independent trials. The initial guess

will be chosen as an arbitrary point with 1 meter from the MS’s true position for any

algorithm that requires that.

The objective of the DE mechanism is to estimate the PLE and the distance with RSS

measurements and the estimation performance is investigated under different scenarios

defined in Table 5.2. The initial guesses of the PLE and distance for the TSE-based

DE mechanism are obtained as described in Section 4.1. Fig. 5.1 and Fig. 5.2 are the
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Figure 5.2: The relationship between location estimation error and noise standard deviation
in a regular triangle

estimation errors of PLE and distance in scenarios S1 and S2 with respect to different

noise standard deviations. It is noted that the scenario S1 represents a network topology

with the BSs locate as a regular triangle whose center the MS lies at, while the scenario

S2 has the MS locates somewhere apart from the center of the network. We evaluate the

performance of our proposed DALE algorithm with the schemes of DALE without the

DE mechanism (DALE w/o DE) to see whether the DALE algorithm have any improve

by performing the DE mechanism. In Fig. 5.1 we can see that for those schemes with

DE mechanism, that is, DALE (S1) and DALE (S2), have less PLE estimation error,

while the schemes without DE mechanism have a constant bias because they do not have

any mechanism to estimate the PLE. On the other hand, in Fig. 5.2, we can make an

intuitive conclusion that since DALE algorithm has the correction of PLE and thus it

has less location estimation error in both scenario S1 and S2. Moreover, we notice that

the PLE estimation in S2 is better than that in S2. This makes the location estimation

error in S2 is less than that in S1. We thus make a brief conclusion that the better PLE

estimation one have, the better location estimation results can be obtained.

35



3 3.5 4 4.5 5 5.5 6
0.0955

0.096

0.0965

0.097

0.0975

0.098

0.0985

0.099

0.0995

0.1

STD (dB)

P
L

E
 E

rr
o

r

 

 

DALE (S3)

DALE (S4)

DALE w/o DE (S3)

DALE w/o DE (S4)

5 10 15

200

1

2

x−axis (m)

y
−

a
xi

s 
(m

)

 

 

MS in (S3)

MS in (S4)

BS

3

Figure 5.3: The relationship between PLE estimation error and noise standard deviation in
an irregular triangle
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Figure 5.5: The relationship between PLE estimation error and noise standard deviation in
an arbitrary triangle

The performance of the DE mechanism in the scenarios S3 and S4 is studied in Fig.

5.3 and Fig. 5.4. In Fig. 5.3 we can discover that DALE (S3) and DALE (S4) have

less PLE estimation error than the scheme without DE mechanism which has a constant

bias. Observing from Fig. 5.4 we notice again that the one with better PLE estimation

will has less location estimation error in both S3 and S4. Since the PLE estimation

in S4 is better than that in S3, it makes better location estimation in S4 than in S3.

Therefore, it is revealed again that better PLE estimation is coupled with better distance

estimation. In the scenario S5, a random network topology is applied as addressed in

Table 5.1. According to the path loss model in TR 36.814 [24], the distance between the

MS and any BS should be larger than 3 meters. The Fig. 5.3 and Fig. 5.4 represent the

estimation performance of the DE mechanism in S5. The DALE has the PLE with less

bias, thus its location estimation error is less than the DALE without DE scheme. By

the general case, we can confirm the effectiveness of the DE mechanism can be ensured.

The location errors of the DALE algorithm and many other methods are also evaluated

in the scenarios mentioned above. The performance of our proposed DALE algorithm

37



3 3.5 4 4.5 5 5.5 6

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

STD (dB)

Lo
ca

tio
n 

E
st

im
at

io
n 

E
rr

or
 (

m
)

 

 
DALE (S5)
DALE w/o DE (S5)

Figure 5.6: The relationship between location estimation error and noise standard deviation
in an arbitrary triangle
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standard deviation in scenario S1 and S2
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is compared with the schemes of DALE without the DE mechanism (DALE w/o DE),

DALE without the design of weighting (DALE w/o W), TSLS algorithm [19] as well as

TSE algorithm [18]. It is noted that the proposed DALE in scenario 1 is close to other

algorithms, especially the DALE without DE scheme. This is due to the perfect layout

of BSs that reduces the effect of noise. However, DALE (S1) is still the one with the best

performance. In scenario S2, the MS moves toward one corner of the regular triangle,

making the MS become closer to one of the MS than scenario S1. This increase the

chance of having bad performance for all the algorithms because the shortest distance

between MS and BSs become very short. Any noise with extreme value could cause a

significant ratio of change in the shortest path, which could lead to a severe error in the

calculation results. However, we can still discover that our proposed DALE (S2) have the

best performance in Fig. 5.7. Without any weighting, the DALE w/o W scheme could

be even worse than the TSLS and TSE that have taken noise STD as weighting design.

For our proposed DALE with moderate weighting, it turns into the best one. Moreover,

it is not hard to discover that the gain of DE is tiny in these two scenario. This could be

not extremely bad layout that makes the gain of RA mechanism to be tiny.

In equations of (5.1) and (5.2), we think that the location estimation error and MSE

has a kind of positive correlation. For the clearness of illustration, we eliminates the DALE

w/o DE and DALE w/o W schemes in our MSE Figures since they do not have better

performance than DALE in the CDF of location estimation error. In other words, we will

evaluate the performance of our proposed DALE algorithm with TSLS algorithm, and

TSE algorithm. In Fig. 5.8, we compare the MSE of the algorithms we just mentioned.

Similar to what we saw in Fig. 5.7, in scenario S1 all the algorithms have the performance

closed to each other, while in S2, the bad layout formed by the BSs make all the algorithms

to have worse estimation results.

In Fig. 5.9, we evaluate the positioning performance in the scenario S3 and S4. From
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Figure 5.10: The comparison of mean squared error in the scenarios S3 and S4

Fig. 5.9 we can discover that for the real lines, our proposed DALE algorithm as well as

other two schemes hold the position of the best three performance. The TSE (S3) seems

to be better than TSLS (S3) in a significant gain. This might be due to TSE have a good

initial guess that is close to the MS’s true position. The DALE w/o W (S3) scheme here

also performs better than TSE (S3) with a gain. This might be due to the layout of BSs

is an irregular triangle. For other algorithms it is easy to obtain a location estimation x̂

out of the triangle, while our proposed DALE algorithm have the mechanism of RA that

can form some additional constrains that reduce the effect of abnormal layout and noises.

And we can see that the consideration of weighting and DE mechanism both have some

gains. If focusing on dashed lines, we can discover similar phenomenons that happened

in scenario 3. However, the gain of DE mechanism in S4 is greater than that in S3, which

implies that it works better in worse layouts. After all, it seems that Fig. 5.7 and Fig.

5.9 imply our proposed DALE algorithm works well in any circumstances and has most

gain than any other algorithm at the worst case.

In Fig. 5.10 the MSE performance in the scenarios S3 and S4 is conducted. As the
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Figure 5.11: The comparison of location estimation error under the fading noise with 4 dB
standard deviation in the scenario S5

layout becomes even irregular, all the algorithm have worse performances than that in Fig.

5.8. However, the proposed DALE can still perform well than any other algorithms. This

confirms that due to the RA mechanism, the proposed DALE algorithm can eliminate

chances of having extremely bad estimations and thus holds the performance.

In Fig. 5.11, the comparison of location estimation is evaluated in the scenario S5.

The performance is in consist with what we have discovered and discussed in scenario

S1 to S4. Through the observation of location estimation error’s CDF from scenario 1

to 5 with the STD of noise in 4 dB, we can make a brief conclusion that our proposed

DALE algorithm is better than other two control group scheme, that is, DALE without

DE mechanism and DALE without the design of weighting.

As the scenario S5 represents a general case of the network topology, in Fig. 5.12 it

can be observed that the DALE w/o W scheme performs better than TSLS and TSE,

which shall be the gain of having RA mechanism. And next we discover that DALE

w/o DE scheme have a gain of taking the noise variance into consideration to design the

weighting. Moreover, we can see the gain of DE mechanism from the performance of
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Figure 5.12: Scenario 5’s MSE with respect to standard deviation

proposed DALE.
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Chapter 6

Conclusion

An efficient diversity-augmented location estimation (DALE) algorithm based on the mea-

surement of RSS is proposed in this thesis. The DALE scheme inherits the merits of the

GALE algorithm and enhances the conventional TSLS algorithm by imposing additional

virtual spatial constraints within its formulation. By using the proposed DALE algo-

rithm, the computational efficiency acquired from the TSLS method is preserved, and

the requirement of hardware’s transmitting and measurement capability is lowered to a

moderate level by adopting RSS as the measurement source. Higher location estimation

accuracy for the MS is also achieved. Moreover, the jittering of PLE can be reduced by

adopting the proposed DE mechanism. The proposed RA mechanism can effectively deal

with various geometric layouts between the MS and its associated BSs. It is shown in the

simulation results that the proposed DALE algorithm provides better position location

estimate comparing with other existing methods.
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