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QPSK-modulated Code Design for Combined Channel

Estimation and Error Correction on a
Frequency-selective Fading Channel

Student: Yi-Hsin Chen Advisor: Po-Ning Chen

Institute of Communications Engineering

National Chiao Tung University

Abstract

In this thesis, we design andexamine the QPSK-modulated codes for combined channel
estimation and error protection.over itfrequency-selective. channels. We found that when
QPSK modulation is considered, phase information.of the channel coefficients is more es-
sential than the respective amplitude information, particularly for the blind receiver we are
interested in. Under the assumption that the unknown phases are synchronized among differ-
ent channel taps, we establish a close-form-expressed union bound for the error performance
and later use it as a criterion to search for the optimal code design. Our simulations show
that the QPSK-modulated codes can provide an acceptable improvement over the BPSK-

modulated codes.
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Chapter 1

Introduction

1.1 Overview

Traditionally, in a communication system over a fading environment, channel estimation,
channel equalization and error correction are carried out, at the receiver in sequence. The
good performance of this typical-system then reliescheavily on an accurate estimate of channel
coefficients. As such, a known training sequence of a nontrivial length has to be employed.
However, even with a long trainingsequence; it might still be hard to yield an acceptably

good estimate for channel coefficients under.severe ¢hannel fades.

In 2002, Skoglund et al. [1] proposed combining channel estimation and equalization
with the error correction and found the optimal non-linear binary code for channels with
unknown parameters by computer search. Simulations showed that the computer searched
code outperforms the Golay (23,12) code extended with one known pilot by 1.3 dB at
WER = 1072, At such background, this thesis will continue the quest along this research
line, and focus on the code design based on BPSK/QPSK modulations for combined channel

estimation and error correction over a fading channel.

In particular, we attempt to design the QPSK modulated codes, rather than the BPSK

modulated codes as in [1], because we wish to improve the transmission rate. The pre-



liminary simulations however indicate that the receiver may need to know the phases in
order to achieve an acceptable performance for QPSK modulated codes. Yet, we found
that by adding a simple assumption such that the phases among different channel coeffi-
cients are identical although they are unknown, the performance of the blind receiver can
be significantly improved. The problem of this simple assumption is that it does not give
a close-form-expressed union bound that can be conveniently used as the criterion for code

search. An approximation will then be proposed and showed to be useful in code search.

The remaining parts of the thesis are organized as follows. Chapter 2 introduces the
background knowledge about the code design for combined channel estimation and error
correction, and gives a modified system model used in subsequent chapters. Chapter 3
assumes that the phases among different«channel coefficients are synchronized (i.e., identical),
and derives the optimal blind decoding criterion for this modified system model. Chapter
4 presents and discusses simulation results. Chapter'd concludes the thesis and remarks on

the possible future work.



1.2 Acronyms and Notations

The acronyms and some common identifiers used in this thesis are listed as follows.

BER bit error rate

WER word error rate

ML maximum-likelihood

SNR signal-to-noise ratio

N block length of a code, i.e., the number of symbols in a codeword

K number of bits in an information sequence to be encoded

P number of channel paths or taps

L L =N+ P—1is the sum of a codeword length plus the minimum guard interval without

interblock interference

The following notations are used in this thesis.

Symbol | Meaning
v a vector (The following notations are simple representative examples.
Similar notations are applied to other alphabets.)
Uk the k-th component of awector v
|v]|> | the norm of a vector v
X a matrix
Ty the element of a matrix X at row k and column ¢
X7 transpose of a matrix X
X# | Hermitian transpose of a matrix X
I the L x L identity matrix
1 the imaginary unit




Chapter 2

Preliminaries

In this chapter, we provide the background knowledge about the code design for combined
channel estimation and error correction. Specifically, Section 2.1 introduces the typical
system model considered in the nonscoherent system literature. Section 2.2 talks about the
design criterion that is usually adopted-in-the literature. Section 2.3 gives the algorithm that
will be used for code searching.*Section 2.4 concludes this'chapter by presenting a modified

system model that will be used in the/subsequent chapters.

2.1 System Model

The system model introduced in this section is precisely the one adopted in [1] except that
the code symbols are not restricted to {—1,+1} but can be extended to {—1,41, —, +1}.
In the system considered therein, a length-N codeword b = [by, ..., bx|T of an (N, K) block
code C is transmitted through a quasi-static block fading channel of memory order (P — 1);
hence, the channel coefficients can be expressed by a P-by-1 vector h. Other than the fading

effect, the system suffers an additive white Gaussian noise. This gives a system model as

y=Bh+n



where

_51 0O --- 0]
S )
B = with every b; € {1, £}, (2.1)
0 bN b1
[0 0 - Dy LxP

n is an L x 1 zero-mean complex Gaussian vector with covariance matrix oI, and L =
N+ P —1. Here, we adopt the notational convention by denoting the L-by-L identity matrix
by HL-

Note that as similar to [1], (P — 1) should be regarded as an upper bound of the true
memory order and is the only information that both the transmitter and receiver priorly
know. In addition, the channel coefficient-vector h, although unknown to both transmitter
and receiver, remains constant during-the transmission-of a codeword. Under these two

assumptions, the optimal decoder is the so-calledjointmaximum-likelihood (JML) decoder:

b'h) = i <Bh|?,
(b/h) arg(bvhr)lélcnxcgly I

where C is the set of all codewords, and € consists of all complex numbers.

For a given codeword b, it can be derived that the optimal estimation h that minimizes

|ly — Bh||? is equal to
h = (B'B) "By,
where superscript “H” denotes the Hermitian transpose operation. Hence, the JML estima-
tor of the transmitted codeword is given by
b = argmin |y — B(B7B)'B7y|>
beC
_ : — Pryll? 2.2
argmin ||y — Ppyll”, (2.2)

A

where Pp = B(BYB) !B, which can be pre-computed and stored during the decoding

>



process. Notably, Pg and B (equivalently, b) are not one to one correspondence unless the

first bit is fixed. For this reason, we will fix the first bit as b; = 1 in our code design.

2.2 Code Design Criterion

In this thesis, we attempt to search an (IV, K) code C by simulated annealing, which mini-

mizes the union bound of the average block error probability P, defined by

p, & 27K Z Pr <IA) #+ b) b transmitted)
bec

- 2753 P (13 £ (i)
eJ

where, for convenience, we denote by J the set of indices of codewords in C. The union

b(i) transmitted) ,

bound of P,, which we adopt in this thesis; is given by

Pr< 225N SN N it (2.3)

€T JET jFi

where pj|; is the pairwise error probability (PEP) defined by
pji = Pr <I; = b(j)) b(7) transmitted) . (2.4)
The PEP, according to (2.2), can be represented as

pii = Pr(ly() = Pe()yO)” < ly() —Ps(@)y()]°)

% Pr ([ly(@) = Pe()y@” = ly (i) - Ps@)y()]’) . (2.5)

where Pp(i) = B(i)(B”(i)B(i)) !B (i) is the projection matrix onto the column space of
B(i) and the received vector y(i) = B(i)h + n is now complex Gaussian distributed with
mean m,(i) = B(i)m,, and covariance matrix S,(i) = B(i)S,B (i) + o2I;. Since y(i) has
density and since our code book satisfies Pg(i) # Pp(j) for i # j, the second term in (2.5)

is equal to zero when 7 # j. Thus,

pii = Pr(lly(i) —Pe()y@)I* < ly() - PaDy@)]’). (2.6)

6



By defining Q(j,i) = Pg(j) — P5(i), the PEP in (2.6) can be rewritten as
pii = Pr(y"(H)QU, )y(i) > 0). (2.7)

It is reasonable to assume that o2 > 0; hence, the real and symmetric matrix S,(i) is
positive definite and can be factorized to S, (i) = Sy/ (i )Sl/ ?(i). We then consider the real

and symmetric L X L matrix
12000 4 \<L/2 (5
Sy/ (Z)Q(],Z)Sy/ (Z)’
and decompose it into sum of outer products of orthonormal eigenvectors {q,}._, with

eigenvalues as multiplicative coefficients {\,}L_,, i.e.,

Sy (1)Q(j, Sy @ Z Aoy (2.8)
Without loss of generality, we index thesereigenvalues in‘descending order, namely,
AL Z Ay 2 > AL (2.9)
By this, together with (2.8), we get
v = (50 <'>)Hsl/2<'>@<j, DSY2 () (S5 2(D)y(0))
- X
- ZAn|Xn|2, (2.10)
n=1

where

X, £ 4,8, (i)y(0)

is complex Gaussian distributed with mean

ma(n) = q,S, () B(i)m,



and variance 0% = 1. This leads to that {|X,,|*}}_, are noncentral x*-variables. Because the
eigenvectors {q, }£_, are orthonormal, {X,}%Z_, are independent and identically distributed
random variables. With (2.7) and (2.10), we conclude that p;; is the probability that the

weighted sum of these noncentral y2-variables is larger than zero.

We can further re-formulate (2.10) and obtain

L
ZXZ'XZ(QkISnl)> (2.11)
=1

where L is the number of distinct eigenvalues in {\,}£_,, k; is the multiplicity of the eigen-
value )\;, and y?(2k;n) stands for a noncentral x?-variable with 2k degrees of freedom and

noncentrality parameter n. Condition (2.9) immediately gives

M Ay > S
Denote for convenience the random variable

Yij =y A0)Q(, 1)yli)

Ztn’j]

with its characteristic function ¢;;(#) ="Ele -“Sinice. Y; ; consists of L independent y*-

variable, ¢; ;(t) is given by

L —ky/2 L nXt
; (T—2Nt) Texp oy ———]. 2.12
)= T =20 e (13 274 212

=1

We then note that p;; can be expressed in terms of ¢; ;(¢) according to

1 [e.e] [e.e] .

In general, (2.13) dose not have a closed-form formula. Nevertheless, when a codeword
is transmitted over the Rayleigh fading channel with m,; = 0, the closed-form expression
exists. By assuming that A, >0 > \,; and letting ¢ = Zle ki, (2.13) can be solved [3] as

S A
Pili = ; =1 83:’“1*1];}(@ . (2.14)

=N




where

Fz)=a" [] @-X)".

1<r<L,r#l

Consequently, under Rayleigh fading channel with m, = 0, from [3], the design criterion

(2.3) can be evaluated via (2.14).

2.3 Code Searching Algorithm

In this subsection, we will introduce the simulated annealing algorithm and later will apply

it for code searching.

A typical simulated annealing algorithm follows the below procedure:

Choose initial code J and initial temperature.”'.
REPEAT
REPEAT
Chose another code J'«
Set Ae =¢€(TJ') — e(T):
IF (Ae < 0)
THEN Set J = J".
ELSE With probability p, set J =J'.
UNTIL (Reach a certain number of energy drops or too many iterations.)
Set T = aT.

UNTIL (Reach the targeted freezing temperature.)

The detail of the above algorithm, specifically for our code search, is given below.

e The initial code J consists of the first 2% elements of all possible candidates, listing

9



in alphabetical order.

e This system is heated initially and then cooled down, for which the initial temperature

is T'= 10" and the targeted freezing temperature is 10~".

e In the inner loop, a random code perturbation is implemented. The new code [J’ is
almost the same as J. The only difference between them is that one of the codewords
in J, drawn in random, will be replaced by a randomly picked word originally outside

J.

e The energy function €(-) of this system is the union bound in (2.3) without the multi-
plicative constant 275 i.e.,
CTTEDY D0, i
i€d jE€J ,j#i

which can be evaluated via:(2.14)-

e When Ae < 0, the code J*performs-hetter (i.e., has a smaller union bound) and hence
the new code J’ will substitute the original one J; such case will be referred to as
o/ -perturbation.

To avoid falling into a local minima, replacing the old code [J by the new code J’

is still conducted with probability p = exp(—%) when Ae > 0. Such a replacement

when it is conducted will be referred to as ZA-perturbation.

e The inner loop ends if more than 5.@/-perturbations occur, or more than 500 %-

perturbations is reached.

e Following [1], we set a = 0.995.

We conclude the subsection by pointing out that after the code is selected, the encoder will

map the uniformly distributed information messages to the codewords in alphabetical order.

10



In other words, the first information sequence in its own alphabetical order will correspond to
the first code word also in its respective alphabetical order, the second information sequence
will be mapped to the second codeword, etc. Simulations show that such simple mapping
will result in a BER that is comparible to the best mapping obtained by simulated annealing
[4]; hence, we adopt this simple alphabetical-order-based mapping for ease of our system

implementation.

2.4 A Modified System Model Presumed in This The-

Sis

In reality, the channel coefficients b = [hy, ho, ..., hp]T may not be totally independent. As
an example for a channel with two taps.asshewn-in Figure 2.1, their phases (that incur from
their delays in signal traveling over two-different major paths) should have constant differ-
ence. So the traditionally convenient assumption that+/; and h, are independent complex
variables may not be reasonable«In particular, such assumption would make the noncoherent
detection of the QPSK signals somehow infeasible. Thus, we modify the system model intro-
duced in Section 2.1 in this subsection (and alsoin the sequel) by assuming that the phases
of all channel taps have constant difference while their amplitudes remain independent. For

simplicity, we further assume these differences are all zero.

Path 2
Transmitter \ Receiver
byt by Path 1 R TR TR

Figure 2.1: The modified system model

Denote by a; the amplitude distortion and by 6; the phase distortion of path ¢. For

11



convenience of its description, we let P = 2. With the new setting, the reception at time n

can be obtained as

Yn = hl'bn+h2'bn—1

= ae? b, + axe? - b,_1. (2.15)

Notice that hy = a;e? and hy = ase?? are no longer independent Gaussian distributed

even if # is assumed independent of both a; and as. In our analysis, these parameters are
assumed to be unknown constants during the transmission of a codeword. Nevertheless, in
later simulations, a; and as will be assumed independent Rayleigh distributed, and 6 that is

independent of both a; and ay is uniformly distributed over [—m, 7).

12



Chapter 3

A Channel with Synchronized Phases
Among Channel Taps: The Modified
System Model

In this chapter, we will start from. Section 3:ls-which peints out by a simple example that
for a blind receiver for QPSK modulations; the phase distortion affects the performance
more than the amplitude distortion does. Thisleads to a straightforward inference that the
receiver may need to know the phases in order to yield an acceptable performance. Yet,
continuing the discussion along this line;-we found that by adding a mild assumption such
that the phases among different channel coefficients are synchronized (i.e., identical), the
performance of a blind receiver can already be adequately improved even without knowing
(estimating) the exact value of these phases. It thus suffices to consider the modified system

model introduced in Section 2.4.

Since channel coefficients of the modified system model are no longer independent to each
other, some discussion on the statistics of the modified system model becomes necessary,
which will be given in Section 3.2. To find the best code design based on the minimization of
the union bound, an evaluable formula for the pairwise error rate is needed, which requires

an approximate statistics of the modified system model; this is the focus of Section 3.3. We

13



end this chapter by deriving the optimal blind decoding criterion for the modified system

model in Section 3.4.

3.1 Impacts of Phase Distortions and Amplitude Dis-
tortions

In this section, we will demonstrate that the phase distortion will affect the performance
more than the amplitude distortion does. For simplicity and clarity, we let P = 1. Cases
with larger P should have similar behavior; hence, we omit them.

uZh) — ¥ ig unknown while

First, we consider the case that the phase distortion ¥ £ e
the amplitude distortion h,, = |h| is known at the receiver, where h = |h|e? = h,,0 is the
complex-valued channel coefficient. Since h,, is known at the receiver, the joint maximum-

likelihood (JML) decoder becomes

b, h)= ‘ + B0 1
(b, P53 arg gl ly I, (3.1)

where C is the set of all codewords;, and, C comnsists of all complex numbers. Denoting the
L-by-1 matrix Bh,, by A, we get
ly = AI|? = (y— A0)"(y — AY)

= |lyl|? — y"AY — Ay + 9" AT AY

lyl* — 0y A — (9y™A)" +[0PAT A

ly||> — 2Re {Vy" A} + AT A,
This results in that

= i — AD|?
arg min [y — AJ

should satisfy
Dy A = |y Al

14



Le.,

- AH B
[Afty| By
Via (3.2), the decoder in (3.1) turns to
- ' B -
b = argminlly — Bh,J|
: By ||’

Next, consider the alternative case that the amplitude distortion A, is unknown but the

phase distortion ¢ is known at the receiver. Similarly, denoting Bv by D, we get

ly — Dhy,||> = (y—Dhy,)"(y — Dhy,)

= [yP=w"DED y)h,, + |ID|*A7,. (3.4)

Hence, the estimate of the amplitude distortion, which \minimizes (3.4) subject to h,, > 0,

is given by

>
3
!

(Y,

2[|Df[*

"By By *

- { 2[| B2 }

B {e’ngB+6’9]BHy}+
2N ’

(3.5)

where {}* £ max{z, 0}, and the last step follows from || = 1 and ||B||*> = N. Following

(3.5), we obtain

- _ i 2
b = argrglelélﬂy Bh,, ||
1 2
_ : _ 120, H H
= argmin |y 2NIB%(€ y ' B+ B y) (3.6)

With the availability of (3.3) and (3.6), we proceed to compare the resultant performances

of the two decoders. Simulation shows that knowing only the amplitude distortion has no

15



performance gain. In other words, the knowledge of the phase distortion is more critical
for a blind receiver. Notably, as will be shown in subsequent chapter, (3.6) will lead to a

performance improvement over the criterion in (2.2).

For a practical system, it may be too idealistic to assume that the phase distortion is
known or can be accurately estimated at the receiver unless a certain non-trivial implemen-
tation cost for channel estimation is permissible. We then found that by assuming that the
phases of different channel taps are synchronized as the modified system model has assumed
in Section 2.4, an evident improvement over (2.2) can be obtained. This somewhat justi-
fies the necessity of the provision of the modified system model. As aforementioned, the

respective decoding criterion for the modified system model will be given in Section 3.4.

3.2 PDFs of the Channel Coefficients of the Modified
System Model

In this section, the probability density functions (PDFs).of the channel coefficients of the

modified system model introduced imSection 2.4 are.discussed.

In this scenario, the simplest case shall be P = 2 because we need at least two channel
taps to synchronize their phases. Assume that the amplitude distortion h,,, and h,,, are
independent Rayleigh distributed with mean ”TTQ, where 72 = "—22, and the phase distortion
0 is uniformly distributed over [—m,7) and independent of both h,,, and h,,,. By these

assumptions, the marginal PDfs of these parameters can be written as follows.

Uu u?
St (W) = €722, u>0
T
v 2
fth (U) = ﬁe 272 >0
1
fg(@):%, —-r<f<m

16



When denoting the two channel coefficients as hy = x1 + 1wy and hy = 29 + 19, We get

21 = hyy, cos by,

Y1 = Ny, sin Oy,
o = hyp, cos by,
Yo = hm2 sin 02,

where 0; = 6, = 0 with probability one. By the independence of h,,,, h,,, and 8, we derive

20 20 U _w? U w2 1
Shyno (ue™ ve™) = fo no 00.0,(u, 0,01, 05) = ¢ 22 . ¢ 22 . %5(81 —6y).  (3.7)
Through the Jacobian transformation, we get
1 «i+vfaegess Y1 Yo
Jor gz (T1, Y1, T2, Y2 )y = ST 227§ (tan ol tan ) (3.8)

Since (3.8) does not lead to a close-form formula for the pair-wise error rate for the modified

system model in Section 2.4, we-will seek an.approximate to it in the next section.

3.3 Approximate PDFs of the Channel Coefficients of
the Modified System Model

When the channel coefficients are zero-mean independent Gaussian distributed, the pairwise
error rate exhibits a close-form expression as have been derived in (2.14). In order to use

this close-form expression, a zero-mean Gaussian approximate f, », to (3.8) is needed.

A straightforward approximate to fj, 5, in (3.7) is to make the zero-mean independent

Gaussian f, », having the same covariance matrix as fp,, n,. We then derive based on f3, 4,
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that

Elhhy = / / ab* f. (@, b)dadb
cJcC
E [hyp, - €’

. e . hm2 . 6_j9:|
= K [hml ’ th]

= E[hn,] E [, ] ; (3.9)
hence, the covariance matrix due to fy, 5, is given by

o2
Sh - |: L‘_Q 42 :| . (310)

T o
Accordingly, we adopt fu, n, ~ N(0,Sy) as the approximate PDF to fp, s,

Since the pairwise error probability (PEP). in/Section 2.2 is determined by the statistics
of X,,, we examine how well f, 5, approximate fph, by analyzing the moments of X,, in the

sequel. Apparently, the second moments-of X;;“due'to both f,, 5, and 4, », are the same.

We then proceed to compare the fourth moment of X,,-

From [5], an elementary result for'a zero-mean-complex Gaussian random variable Z is
that
E[Z*] =m!-E™[|Z"].
Therefore, the fourth moment of X,, from (2.10) with respect to the zero-mean Gaussian
fhlth 18
E[X,] =2, (3.11)
since E[X,] = 0 and F[X?] = 1 under PDF f, p,. The fourth moment of X,, with respect

to fn,.h, however does not have a close-form formula. Thus, we numerically obtain it via

Monte Carlo simulation and summarize the results in Figure 3.1.

We can then conclude from the figure that the fourth moments of the precise f, », and

the approximate f, n, are almost equal for N = 4, 6 and 8. Therefore, the PEP formula
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0
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Figure 3.1: E[X}] with respect to fj, n, via Monte Carlo simulation.
derived in Section 2.2 should be a good approximate to the true PEP when the precise PDF

fh1.ny of the channel coefficients ate nsed.

3.4 The Decoding Criterion of the Modified System
Model

We end this chapter by providing the ‘optimal decoding criterion for the modified system

model.

Consider without loss of generality the case of P = 2. The channel coefficient vector

h = [hy hs]” of the modified system model is given by

h = h,9, (3.12)

where h,, = [hp, th]T is amplitude distortion vector and o L& eldh) — gl<h2) g phase

distortion.
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By the formula below,

i —Bh|* = i — Bh|?
AP .
= min  min mln H y — Bh|?

beC hy,,€C2:hy, >09€[—m

we can find the minimizers for h,, and ¢ in sequence as follows.

S
|

(hB Bh,,) "By,
L

L
hny = {Z(yngn1+yngn1 Zgnlgnﬁgnlgm)}/ﬁﬁ

n=1
(gnlgnﬁgnlgm)}/N,

where g; ; represents the element locatedvat ¢th Tow and jth column of the matrix G = BJ.

3
I =~ H
—

L
hm2 - {Z(y;;gnﬂ + yng:;Q) - hm

n=1
With these minimizers, the optimal”decoding.criterion of the modified system model is

straightforwardly given by

: ) )
arg min |l =Bk, 0|
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Chapter 4

The Simulation Results

In this chapter, we will illustrate the simulation results in Section 4.1, and remarked them

in Section 4.2.

4.1 System Settings

In this section, we present the performances of codes designed in the previous chapters.

In our simulations, other than the requirement that the channel taps satisfy F [hh,H | =
(1/P)lp, where Ip denotes the P-by=Pridentityr matrix, we will focus on three kinds of

channel setting:

1. The channel is a Rayleigh-fading channel with P = 1.

2. The channel is a Rayleigh-fading channel with P = 2, in which h is a zero-mean,
independent and identically distributed complex Gaussian random vector. Note that
in this setting, the phases of the two channel taps are independent. This system model

is the same as the one used in [1] and [4].

3. The channel is the one we have mentioned in Section 2.4. The channel taps h becomes

dependent because the phases of the two channel taps are required to be the same.
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The amplitude of h remains independent.

Three kinds of decoders will be examined in our simulations:

1. The decoder does not know both the amplitude distortions and the phase distortions.
2. The decoder does not know the amplitude distortions but knows the phase distortions.
3. The decoder does not know the phase distortions but knows the amplitude distortions.

4. The decoder does not know the amplitude distortions and the phase distortions, but

knows that phases distortions are synchronized.

Figures 4.1-4.4 use codes designed ingSections 2.2 and 2.3. Figures 4.1 and 4.2 (respec-
tively, Figures 4.3 and 4.4) illustrate the performances©f the first ,the second decoders, and
the third decoders for codes based on-BPSK ‘(respectively, QPSK) modulations that are

transmitted over the first channel model, i.es P =1

Figures 4.5-4.8 give the perfermances of codes designed for the second system model,
i.e. P = 2. Likewise, Figures 4.5 and 4.6-(respectively, Figures 4.7 and 4.8) show the
performances of the first and the second decoders for codes based on BPSK (respectively,

QPSK) modulations.

Figures 4.9 and 4.10 compare the BPSK-based and QPSK-based codes, which are de-
signed for and transmitted over the second P = 2 system model but decoded using the

second decoder.

Figures 4.11 and 4.12 compare the BPSK-based and QPSK-based codes, which are de-
signed for the third P = 2 system model but are transmitted over the third P = 2 channel.

The decoder in these two figures is the third one.

The above figures consider only the half rate codes. For different code rates respectively
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for BPSK-based and QPSK-based codes, the performances are summarized in Figures 4.13
and 4.14.
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BPSK P=1 N=4 BPSK P=1 N=8
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..... .| —8— with phase info.| ... —B— with phase info.|
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o BPSK P=1 N=12
100 —— e e e w—
... o0 —%— with no info.
... ... | —8— with phase info.
----- | —F— with amp. info.

BER

6 8 10 12 14 16 18
E,/N, (dB)

Figure 4.1: The BERs of BPSK-modulated codes using decoder with no/phase/amplitude
distortion information. The channel simulated is the Rayleigh-fading channel with P = 1.
Here, the codeword lengths examined are N = 4, 8,12, respectively.
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BPSK P=1 Without Phase Info.

10

—6— N=4
—&=— N=8
—— N=12
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BPSK P=1 With Phase Info.
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10 ‘
—<— N=4
—B8— N=8

—— N=12

BER

E,/N, (dB)

Figure 4.2: The BERs of BPSK-modulated codes using decoder without/with phase distor-
tion information. The channel simulated is the Rayleigh-fading channel with P = 1. Here,
the codeword lengths examined are 4, 8, 12.
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Figure 4.3: The BERs of QPSK-modulated codes using decoder with no/phase/amplitude
phase distortion information. The channel simulated is the Rayleigh-fading channel with
P = 1. Here, the codeword lengths examined are N = 4,8, 12.
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Figure 4.4: The BERs of QPSK-modulated codes using decoder without/with phase distor-
tion information. The channel simulated is the Rayleigh-fading channel with P = 1. Here,
the codeword lengths examined are N = 4,8, 12.
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o BPSK P=2 N=4 Without/With Phase Info. 0 BPSK P=2 N=8 Without/With Phase Info.
10 T 10 .
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10° : :
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Figure 4.5: The BERs of BPSK-modulated codes using decoder without/with phase dis-
tortion information. The channel simulated is the multi-path Rayleigh-fading channel with
P = 2. Here, the codeword lengths examined are N = 4,8, 12.
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Figure 4.6: The BERs of BPSK-modulated codes using decoder without/with phase dis-
tortion information. The channel simulated is the multi-path Rayleigh-fading channel with
P = 2. Here, the codeword lengths examined are N = 4,8, 12.
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QPSK P=2 N=4 Without/With Phase Info. 0 QPSK P=2 N=8 Without/With Phase Info.
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Figure 4.7: The BERs of QPSK-modulated codes using decoder without/with phase dis-
tortion information. The channel simulated is the multi-path Rayleigh-fading channel with
P = 2. Here, the codeword lengths examined are N = 4,8, 12.
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Figure 4.8: The BERs of QPSK-modulated codes using decoder without/with phase dis-
tortion information. The channel simulated is the multi-path Rayleigh-fading channel with
P = 2. Here, the codeword lengths examined are N = 4,8, 12.
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Figure 4.9: The BERs of BPSK-modulated and QPSK-modulated codes using decoder with-
out any information on the channels. The channel simulated is the multi-path Rayleigh-
fading channel with P = 2, for which the phases of two channel taps are independent. Here,
the codeword lengths examined are N = 4,8, 12.
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Figure 4.10: The BERs of BPSK-modulated and QPSK-modulated codes using decoder
without any information on the channels. The channel simulated is the multi-path Rayleigh-
fading channel with P = 2, for which the phases of two channel taps are independent. Here,
the codeword lengths examined are N = 4,8, 12.

33



—4— BPSK, N=8
—8— QPSK, N=8

BER
BER

10 ‘ i -3 ‘ ‘
0 5 10 15 10 0 5 10 15

E,/N, (dB) E,/N, (dB)

—<— BPSK, N=12
—H&— QPSK, N=12

BER

-3

10 : ;

0 5 10 15
E,/N, (dB)

Figure 4.11: The BERs of BPSK-modulated and QPSK-modulated codes using decoder
with the information that the phases of two channel taps are synchronized. The channel
simulated is the multi-path fading with P = 2, for which the phases of two channel taps are
also synchronized. Here, the codeword lengths examined are N = 4,8, 12.
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Figure 4.12: The BERs of BPSK-modulated and QPSK-modulated codes using decoder
with the information that the phases of two channel taps are synchronized. The channel
simulated is the multi-path fading with P = 2, for which the phases of two channel taps are
also synchronized. Here, the codeword lengths examined are N = 4,8, 12.
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Figure 4.13: The BERs of the (V, N/2) and (N, N/4) BPSK-modulated codes using decoder
with the information that the phases of two channel taps are synchronized. The channel
simulated is the multi-path fading with P = 2, for which the phases of two channel taps are
also synchronized. Here, the codeword lengths examined are N = 4,8, 12.
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Figure 4.14: The BERs of the (N, N), (N, N/2), (N,N/4) QPSK-modulated codes using
decoder with the information that the phases of two channel taps are synchronized. The
channel simulated is the multi-path fading with P = 2, for which the phases of two channel
taps are also synchronized. Here, the codeword lengths examined are N = 4,8, 12.
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4.2 General Remarks

Figures 4.1, 4.3, 4.5 and 4.7 clearly illustrate that knowing the phase information at the
receiver can yield evident performance gain, but knowing the amplitude information at the
receiver yield no gain. For example, it can be seen from Figures 4.1 and 4.3 that when N
is fixed as 12, we can obtain respectively 1 dB and 1.2 dB performance gain by providing
phase information to the receiver at BER= 10~2. When the channel becomes of two paths,
the performance gains are reduced down to 0.8 and 1 dB as shown from Figures 4.5 and
4.7, respectively. A side observation is that QPSK-modulated codes will yield a little more
performance gain than BPSK-modulated codes when the phase information is additionally

provided to the receiver.

Next, we compare the performance dfferences between BPSK and QPSK modulated
codes when the codes are transniitfed over the Rayleigh fading channel (Figure 4.9) and its
corresponding modified channelamodel (Figure4.11) in which the phases of different channel
taps are assumed to be synchronized. By-eonsidering/ the codeword length N = 12 and
channel memory order P = 2, the performance diffefence is about 0.2 dB at BER=10"2 in
Figure 4.9, and about 0.5 dB at BER=1072/in Figure 4.11. This infers that when the phases

of the channel taps are synchronized, QPSK modulation is more favored.

Finally, we examine the performances of codes with different code rates in Figures 4.13
and 4.14. By fixing the energy possessed by each information bit, we obtain that (N, N/2)
codes have the best performance. The reasons are as follows. For code rates smaller than
one half, each code bit may have insufficient energy to combat noises, which degrades the
performance. For code rates larger than one half, the “distance” between IPp pairs decreases;

hence, the performance is also getting worse.
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Chapter 5

Conclusion Remarks and Future Work

In this thesis, we derived an approximation close-form formula for the union bound of the
error performance for QPSK-modulated codes transmitted over a frequency-selective fading
channel and demodulated by a blind receiver. Based on the criterion, we then searched
for good QPSK-modulated codes for combined. channel estimation and error protection by
computers. Simulations howeversshow that the blind receiver of QPSK-modulated codes may
need to know the phase information of the channel taps.in order to obtain an acceptable

coding gain over the BPSK-modulated codes.

By adding a simple assumption that phases among different channel taps are synchronized
even if they are unknown, a significant improvement in performance can then be observed.
To be specific, our simulations show that QPSK-modulated codes perform 0.5 dB better
than BPSK-modulated codes when BER = 1072 and codeword length N = 12.

Several issues can be further studied. The first one is to find a systematic code design for
our simulated-annealing-based computer-searched codes. The second issue is to establish a
decoding scheme for such codes with low decoding complexity. Other than these two, further
analysis of the bizarre effect of code rates as have been reported in Section 4.2 could also be

worth of further study. Extensions of the QPSK modulations to QAM modulation in order
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to increase the transmission rate should be a good next step along this research line.
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