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摘要 

雜訊無論在情緒辨識或其他任何應用中，都是相當困擾的問題。當前最常見

的做法是採取匹配訓練（matched condition）來對抗雜訊；相反的，本文考慮不

匹配條件、只訓練單一分類器來對抗各種情況下的雜訊。實驗結果顯示：就算在

最嚴格的不匹配條件下，本文採用的時頻調變特徵參數組也有極為穩健的表現。

文中亦討論該時頻調變特徵參數的特性以及它如何受雜訊干擾所影響。本實驗包

含四項變因：兩組資料庫（Berlin Emotional Speech Database、Aibo Emotional 

Speech）、兩種雜訊（white noise、babble noise）、兩組特徵參數（spectro-temporal 

modulation features、INTERSPEECH 2009 Emotion Challenge features）、兩種訓練

-測試條件（slack or strict mismatched condition）。針對資料失衡的問題，本文則

提出結合效度的樣本合成方案來改善。 
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Abstract 

 Noise is an annoying problem either in emotion recognition or in other 

applications. Previous research has considered matched condition to counter it. This 

article, on the contrary, considers mismatched condition which trains only one 

classifier that confronts all kinds of situation. Experiments show that the proposed 

feature set, which contains spectro-temporal modulation information, is robust, 

indicating that the mismatched training/testing condition is feasible. This paper also 

discussed the properties of the proposed features and how noise affected the features. 

The experiments included four variables: two databases (Aibo Emotion Corpus and 

Berlin Emotional Speech Database), two types of noise (additive white Gaussian 

noise and babble noise), two feature sets (spectro-temporal modulation features and 

INTERSPEECH 2009 Emotion Challenge features), and two conditions (slack and 

strict mismatched conditions). As for the issue of data imbalance, a synthetic method 

based on emotion validity was proposed to deal with it.
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There’s no big conceptual difference between solving intellectual problems by 

the brain or by a computer. 

Cybernetics, 1948, Norbert Wiener 

 

 

On the contrary, their experience was just like some one taking from various 

places hands, feet, a head, and other pieces, very well depicted, it may be, but not for 

the representation of a single person; since these fragments would not belong to one 

another at all, a monster rather than a man would be put together from them. Hence in 

the process of demonstration or "method", as it is called, those who employed 

eccentrics are found either to have omitted something essential or to have admitted 

something extraneous and wholly irrelevant.  

On the Revolutions of the Heavenly Spheres, 1543, Nicolaus Copernicus 
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Chapter 1  

Introduction 

 

1.1 Motivation 

As one primary form that shows human affective information, emotions are the 

most intriguing and mysterious subject in both science and society. Discussions about 

emotions can be traced back to thousands of years ago, but scientific theories and 

computational analysis thrive in just about a hundred years. Although psychologists 

still have difficulty answers the underlying ontological questions about emotions, 

phenomenological research prospers unexpectedly fast and finally establishes its 

achievements.  

One main reason that renders the research of emotion so fascinating is that the 

research is interdisciplinary. Psychology, image processing, machine learning society, 

and audio processing are among those disciplines. The whole research about emotion 

can be divided into several parts: psychology takes the ontology, refining the whole 

theoretical framework; other disciplines relate their research in the phenomenology, 

making the analysis and application possible. Interdisciplinary brings diversity as well 

as specialization. 

Most efforts of emotion research are devoted to recognition which comprises two 

underlying parts: feature extraction and regression/classification. While the 

computing community and statistics take care of second part, audition and vision 

research take the first. The speech processing community also plays an important role 

since speech is a major expressive form of emotion. Theories about temporal 

sequences, short-term spectral analysis, and prosodic properties become well-known 

basic knowledge in speech community. As a member of this community, we try to 

respond to the problems that arise in the recognition of emotion in speech. 

 

1.2 Current Research Interest 

The rapidity of the development of emotion-related research is still increasing in 

recent years. Since Picard popularized the concept of “affective computing” fifteen 
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years ago (Picard, 1997), more and more application fields are gaining interest in the 

research of affect. Medical caring for infants and the elder, psychiatric analysis, call 

center services, ticket reservation and retailing systems and human computer 

interaction designs are among the list. Back to the academia the INTERSPEECH has 

held several affect-related challenges including the INTERSPEECH 2009 Emotion 

Challenge, the 2010 Paralinguistic Challenge and the 2011 Speaker State Challenge. 

Research topics have shifted from a narrow definition “emotion” to a more wide sense 

“affect” and the process of generalization of the definition of affect is not rest yet. 

Earlier attempts on acted emotions either in visual or auditory modality had been 

successful. The recognition rate on automatic systems got very close to that on human 

labelers. However, when it comes to natural or spontaneous emotions, the 

performance dropped drastically. We will come back to this issue later. 

Investigation into robustness is a rather new attempt (Schuller et al., 2011), and 

the scope is rather limited. First, most discussions are still confined to additive noise, 

ignoring the more realistic form of Lombard effect which is the alternation of the way 

people speak in apparently noisy environments. Second, present approaches of 

matched condition are very basic, having some assumptions that are not so realistic. 

Last, there is no suitable database dedicated to the investigation of robustness. 

 

1.3 Related Work 

INTERSPEECH 2009 Emotion Challenge 

Organized in 2009 to find out the best feature set and the best classifier, the 

challenge was also the official start for spontaneous emotion recognition. A 

spontaneous emotion database, Aibo Emotion Corpus, was first openly available in 

the competition. The baseline achieved 38.2% UR using 384 features and a support 

vector machine (SVM) as its classifier. Feature selection and data imbalance were 

also discussed throughout the challenge. The following chart shows participant teams 

and the brief information about their work. 

The challenge reveals a wide variety of features in use. Most features were cepstral 

or prosodic (Mel-frequency cepstral coefficients (MFCCs), dynamic features such as 

pitch contour), and SVM and Gaussian mixture model were the most frequently 

adopted classifiers. 
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Table 1.3.1: Classification results from INTERSPEECH 2009 Emotion Challenge. 

Barra-Chicote et al. 

A E N P R Recall Precision UR UP 

A 211 294 38 7 61 34.53% 25.51% 38.25% 32.81% 

E 130 1166 127 6 78 77.37% 26.96% WR 

N 403 2662 1446 247 613 26.92% 80.69% 36.68% 

P 16 39 56 54 50 25.12% 15.21% GR 

R 67 164 125 41 149 27.29% 15.67% 34.56% 

Luengo et al. 

A E N P R Recall Precision UR UP 

A 414 97 46 26 28 67.76% 17.65% 41.38% 31.94% 

E 428 687 284 45 64 45.56% 35.27% WR 

N 1302 1089 2340 423 223 43.52% 80.66% 43.35% 

P 29 11 78 88 9 40.93% 12.77% GR 

R 172 64 153 107 50 9.16% 13.37% 34.71% 

Lee et al. 

A E N P R Recall Precision UR UP 

A 290 171 65 63 22 47.46% 21.23% 41.57% 31.02% 

E 210 752 325 136 85 49.87% 36.02% WR 

N 748 1094 2057 1109 369 38.26% 78.51% 39.87% 

P 23 13 39 131 9 60.93% 8.01% GR 

R 95 58 134 197 62 11.36% 11.33% 36.26% 

Bozkurt et al. 

A E N P R Recall Precision UR UP 

A 319 191 59 12 30 52.21% 24.24% 40.90% 34.11% 

E 217 964 256 8 63 63.93% 33.00% WR 

N 656 1638 2516 212 355 46.79% 80.90% 47.83% 

P 19 18 94 50 34 23.26% 15.24% GR 

R 105 110 185 46 100 18.32% 17.18% 36.69% 

*Only 4 groups of participants published their confusion matrix. 

*UR: unweighted recall rate; WR: accuracy; GR: geometric mean of class-wise recall rate. Discussions 

about assessment metrics can be found in Chapter 3. 

 

Features 

Features are still an ongoing issue in emotion recognition research. Popular vocal 

features include duration, intensity, pitch, voice quality, intonation contour, spectral 

features, prosodic features, wavelet features, and non-linguistic vocalizations. 

However, their true utility is under study. For instance, some questioned if duration is 
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a useful feature (Burkhardt et al., 2009); others negate the use of intonation (Bänziger 

and Scherer, 2005). 

 

1.4 Previous Work 

Our current system framework is based on Yeh’s (Yeh, 2010). The system, the 

materials and even the results seem the same at first glance, but in reality the 

framework has been way more than modified. Everything, even the research paradigm, 

changed. She realized a system that utilized LibSVM (Chang and Lin, 2011) as 

classifier and spectro-temporal analysis as feature set. The system worked fine on 

Berlin Emotional Speech Database, but it did not perform well on Aibo Emotion 

Corpus. 

Taking her aim at robustness, Yeh attempted to consider mismatched condition for 

training and testing, meaning that the training is under only one condition (mostly 

using pure speech) and the trained model has to deal with all kinds of condition 

(different noise type or signal-to-noise ratio).  

Yeh’s paradigm gave four possible directions which later became my starting 

points. First, the new database, Aibo Emotion Corpus, is highly imbalanced; the 

majority class has samples 24 times more than the minority does. How to counter the 

imbalance is an issue. Second, kernels other than linear ones might help. Third, 

feature selection or reduction may be considered more. Fourth, higher statistics of the 

RS feature may be taken into consideration. All of the four possible improvements are 

properly done or at least have a decent investigation during my research phase. 

 

1.5 The Research Paradigm 

Our research paradigm, or “research programme” (in Imre Lakatos’ phrase), is 

always clear: to develop a robust affect recognizer. Robustness against noise is one 

start that spectro-temporal modulation features bring. The ultimate goal is to refine 

the recognition system to be robust against even speaker. During my research, I can 

only narrow the ambition down to a simpler version: to verify the robustness 

spectro-temporal modulation features can offer. 

To sum up, my research paradigm has the following structure: 

1. Hard core: To verify that RS features is still robust (against noise) in stricter 

cases (e.g. when the case is recognizing spontaneous emotion). 

2. Protective Belts: Factors that prevent RS features from performing full 

potential should be ruled out 

3. Positive Heuristics 
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Robust against noise 

Robust performance of both acted and spontaneous emotions 

 

An obvious positive heuristic here is to draw stricter condition to training and 

testing condition and see if the RS feature set still performs robust. More specifically, 

the paradigm asks us to do tests on mismatched conditions. Previously, experiments 

under matched conditions, i.e. training and testing samples that have the same 

distortion or noise, have been studied and bolstered. However, matched condition is 

just a start, never the end. Yeh commenced mismatched condition and now it is our 

time to carry through it. 

The only thing I tried to do is to verify that even under a very strict condition, 

there are still features that are not disqualified. Many features significantly change 

their characteristics under the effect of noise, energy profile being one of those. Since 

human beings can recognize emotion, speech content, or other meaningful 

information in noisy speech, there is no reason machines cannot. This gives us 

interests to examine RS features which have inspiration origins from human audition. 

 

This thesis is structured as follows. Chapter 2 covers related work and 

background knowledge. Chapter 3 lists detailed information about the materials and 

methods. Chapter 4 is for experiments and discussions. Finally, Chapter 5 illustrates 

the big picture and some specific future work. 
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Chapter 2  

Literature Review, Related Work 

and Background Knowledge 

 

2.1 Machine Learning 

Recognition is essentially a question of classification (or regression), and the 

whole process can be purely mathematical. Rooted deeply in statistics and aided by 

computer, automatic classification has become a powerful well-structured instrument. 

Machine learning which offers such instruments became one of the most prominent 

research fields in recent years. Some famous classifiers has been employed even in 

realistic applications; artificial neural networks (ANN), naïve Bayesian classifier, 

(NBC), Bayesian logistic regression (BLR), relevance vector machine (RVM), just to 

name a few. This section explains the reason the support vector machine (SVM) 

(Vapnik, 1995) is adopted and briefs some background knowledge about it. 

 

2.1.1 Kernel methods and sparse kernel machines 
In supervised learning, there are three main perspectives to solve a regression or 

classification problem. Generative models attempt to model the distribution of inputs 

as well as the outputs, explicitly or implicitly. Discriminative models only model the 

posterior distribution. Discriminant functions, however, concern nothing about 

distribution but seek the decision boundaries. SVM, which is a member of the last 

category of learning, can still be interpreted in the light of probability. This 

interpretation will be given later. 

Kernel method and the dual form 

All regression or classification problems have a similar form of solution: 

y ൌ  fሺwሬሬሬറTφሺxሬറሻ ൅ bሻ 
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y: algorithm output ሺregression target or class labelሻ 

t୬: ground truth ሺregression target or class labelሻ. 

wሬሬሬറ: weighting vector (or equivalently, the normal vector of the decision boundary in 

classification case). 

b: bias term 

xሬറ: input vector 

φሺxሬറሻ: feature vector 

fሺ·ሻ: activation function that transforms regression target into class labels. 

Now, let us consider a linear regression case (for it shares the same core as 

classification) whose parameters (weighting vector) are determined by minimizing a 

regularized minimum mean squared error (MMSE) criterion where the error function 

is given by 

Jሺwሬሬሬറሻ ൌ
1
2

෍ሼ wሬሬሬറTφሺxሬറ୬ሻ െ t୬ሽଶ ൅
λ

2
wሬሬሬറTwሬሬሬറ

N

୬ୀଵ

, where λ ൒ 0. 

and n ൌ 1,2, … , N denotes sample indices 

The optimal solution (by differentiating Jሺwሬሬሬറሻ w.r.t. wሬሬሬറ) for wሬሬሬറ takes the form of  

wሬሬሬറ ൌ െ ଵ

λ
∑ ሼ wሬሬሬറTφሺxሬറ୬ሻ െ t୬ሽφሺxሬറ୬ሻN

୬ୀଵ ൌ ∑ a୬φሺxሬറ୬ሻ ൌ ΦaሬറN
୬ୀଵ , 

with  aሬറ ൌ െ ଵ

λ
∑ ሼ wሬሬሬറTφሺxሬറ୬ሻ െ t୬ሽN

୬ୀଵ  

If we substitute wሬሬሬറ with Φaሬറ and define the kernel matrix as  

K ൌ ΦTΦ, whereΦ୬୩ ൌ φ୩ሺxሬറ୬ሻ is the design matrix, we have 

Jሺaሬറሻ ൌ
1
2

aሬറTKKaሬറ െ aሬറTKtറ ൅
1
2

tറTtറ ൅
λ

2
aሬറTKaሬറ 

Setting the gradient of  Jሺaሬറሻ with respect to  aሬറ to 0, we obtain 

dJ
daሬറ

ൌ KKaሬറ െ Ktറ ൅ λKaሬറ ൌ 0 ֜ aሬറ  ൌ ሺK ൅ λINሻିଵtറ 

Substituing a back into y ൌ  wሬሬሬറTφሺxሬറሻ, we get yሺxሬറሻ ൌ kሺxሬറሻTሺK ൅ λINሻିଵaሬറ 

k ቀxሬറ୧
Txሬറ୨ቁ ൌ φሺxሬറ୧ሻTφ൫xሬറ୨൯ is known as the kernel function. 

This is the dual form of the original problem. In the dual form, the prediction 

(regression target) can be made solely by the training set (cf. [Bishop, 2006] and [Ng, 

2009], for Mercer’s theorem and other detail limitation a kernel must obey). We 

recognize that this form of decision (kernel method) belongs to discriminant function 

in which probability are not involved at appearance. In the next section, we attempt to 

link the two. 
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Probability interpretation 

Assume the prior distribution of w obeys an isotropic Gaussian of the form: 

wሬሬሬറ~Nሺ0, αିଵIሻ 

Given the training samples and basis functions (or equivalently, kernel function), we 

have the design matrix (or equivalently, the kernel matrix) and then we know that 

yሬറ ൌ Φwሬሬሬറ is a linear combination of Gaussian vectors and hence is a Gaussian vector. 

Eሾyሬറሿ ൌ ΦEሾwሬሬሬറሿ ൌ 0ሬറ 

covሺyሬറሻ ൌ EሾyሬറyሬറTሿ ൌ EൣΦwሬሬሬറwሬሬሬറTΦT൧ ൌ Φ ൬
1
α

I൰ΦT ൌ
1
α

K 

Therefore, yሬറ~Nሺ0ሬറ, ଵ

α
Kሻ. The kernel matrix is the dominating factor of the covariance 

matrix. This bridges the gap between the two paradigms of discriminant function and 

discriminative model. 

 Now we further assume that we can model the problem using Gaussian process: 

t୬ ൌ y୬ ൅ Ԗ୬, where Ԗ୬~Nሺ0, σଶሻ is prediction error 

The joint distribution of the regression target tറ ൌ ሺtଵ, … , tNሻT conditioned on the 

values of yሬറ ൌ ሺyଵ, … , yNሻT is given by an isotropic Gaussian of the form 

tറ ൌ yሬറ ൅ Ԗറ, where Ԗ୬~Nሺ0, σଶIሻ 

1) tറ ൌ yሬറ ൅ Ԗറ, 

2) yሬറ~Nሺ0ሬറ, ଵ

α
Kሻ 

3) Ԗറ~N൫0ሬറ, σଶI൯ 

 tറ~Nሺ0, Cሻ where C ൌ σଶI ൅ ଵ

α
K. This concludes the training phase. 

 

In the testing phase, the regression target, say tNାଵ, has correlation with the targets in 

the training phase. Incorporating training samples tറ with testing sample tNାଵ into 

tറNାଵ, according to Bayes’ theorem for Gaussian variable, we know 

tറNାଵ~N൫0ሬറ, CNାଵ൯, where CNାଵ ൌ ൤
CN

kሬറT
 k
c

൨,  

where kሬറ ൌ  kሺxሬറ୬, xሬറNାଵሻ, n ൌ 1,2, … N and c ൌ kሺxሬറNାଵ, xሬറNାଵሻ 

Therefore 

tNାଵ|tറ~NሺkሬറTCN
ିଵtറ, c െ kሬറTCN

ିଵkሬറሻ 

Since CN is determined by training data and c and kሬറ are determined by testing 

sample, the decision is made naturally. Starting from divergent point of views, 

discriminant function and probabilistic discriminative model finally reach the same 
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end.  

Despite of the same purpose and mathematical analysis, why should someone 

adopting kernel methods and the dual form if in reality the number of samples (N) is 

larger than dimension (the kernel matrix is N ൈ N while solving w, we only have to 

deal with M ൈ M matrix where M is the dimension of basis function)? This is 

because in some cases, not all training samples are necessary and thus the kernel 

matrix becomes sparse. A sparse kernel is equivalent to a reduced N ൈ N matrix. 

Sometimes the reduced N can be very small-- even smaller than M. This justifies the 

use of the dual form. In the next section, we will introduce one type of sparse kernel 

machines: the support vector machines (SVM). 

 

2.1.2 Support Vector Machines  

Attempts to solve binary classification problems were made in early days. Frank 

Rosenblatt’s perceptron is among the early attempts (Rosenblatt, 1962). Perceptrons 

have several shortcomings. It cannot solve overlapping classes and its decision 

boundary might not be optimal (Bishop, 2006).  

Figure 2.1.1 

Left: Correct binary classification without maximizing margin. 

Right: Maximum margin classifier. 

Source: Lecture notes from Machine Learning. Wang, 2011. 

 

Originally devised for linearly separable binary classification problem, the SVM 

attempted to maximize the margin between classes. Let the class label be 1 and -1, the 

distance of any point x to the decision boundary is  

t୬yሺxሬറ୬ሻ
ԡwሬሬሬറԡ

, t୬ א ሼെ1, 1ሽ 
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Define functional margin as “the shortest distance between the decision boundary and 

the class”, i.e. functional margin is the distance between the boundary and the sample 

which is nearest to it: 

γ ൌ min ቊ
t୬yሺxሬറ୬ሻ

ԡwሬሬሬറԡ
ቋ ൌ

t୬ሺwሬሬሬറTφሺxሬറ୬ ൅ bሻሻ
ԡwሬሬሬറԡ

 

Now we try to find a decision boundary that has maximum margin, so we solve 

arg max
୵ሬሬሬറ,ୠ

ሼγሽ ൌ arg max
୵ሬሬሬറ,ୠ

ሼ
t୬yሺxሬറ୬ሻ

ԡwሬሬሬറԡ
ሽ 

This optimization problem is too complex to solve, therefore we set the functional 

margin to unity 

Set γ ൌ t୬ሺwሬሬሬറTφሺxሬറ୬ ൅ bሻሻ ൌ 1 

֜ t୬ሺwሬሬሬറTφሺxሬറ୬ሻ ൅ bሻ ൒ 1, n ൌ 1, … , N 

The problem becomes 

arg min
୵ሬሬሬറ,ୠ

1
2

ԡwሬሬሬറԡଶ , subject to  

t୬ሺwሬሬሬറTφሺxሬറ୬ሻ ൅ bሻ ൒ 1 

which is a (solvable) quadratic programming problem. 

To solve this problem, we introduce Lagrange multipliers a୬ ൐ 0 such that 

 

 

where aሬറ ൌ ሺaଵ, aଶ, … , a୬ሻT 

Taking derivatives, we have 

dL
dwሬሬሬറ

ൌ 0  ֜  w ൌ ෍ a୬t୬φሺxሬറ୬ሻ

N

୬ୀଵ

 

dL
db

ൌ 0  ֜  0 ൌ ෍ a୬t୬

N

୬ୀଵ

 

Substituting wሬሬሬറ, we have 

L෨ሺaሬറሻ ൌ ෍ a୬

N

୬ୀଵ

െ
1
2

෍ ෍ a୬a୫t୬t୫kሺxሬറ୬, xሬറ୫ሻ

N

୫ୀଵ

N

୬ୀଵ

 

bject to Karush-Kuhn-Tucker condition (if it has a solution): 

a୬ ൒ 0  

t୬yሺxሬറ୬ሻ െ 1 ൒ 0  
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a୬ሼt୬yሺxሬറ୬ሻ െ 1ሽ ൌ 0 

To predict testing label, 

yሺxሬറሻ ൌ ෍ a୬t୬kሺxሬറ, xሬറ୬ሻ ൅ b

N

୬ୀଵ

 

Based on the kernel method we introduced previously, SVM can make prediction 

based on empirical input data (training samples). Applying certain kernel functions, 

SVM can also solve non-linearly separable problems. 

 
Figure 2.1.2 Non-linearly separable problem using a radial basis function (rbf) kernel. 

Source: Lecture notes from Machine Learning. Wang, 2011. 

 

Extension to overlapping classes (Non-separable problems) 

Since the class distributions are overlapping, the technique mentioned in 

previous section cannot be directly applied. Consequently, we introduce a slack 

variable ξ୬ ൒ 0 that allows sample points to be on the wrong side. 

 

Figure 2.1.3 A simple example explaining how the slack variables work. 
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Source: Lecture notes from Machine Learning. Wang, 2011. 

 

 

The introduction of slack variables changes the constraint to  

t୬yሺxሬറ୬ሻ ൒ 1 െ ξ୬, n ൌ 1, … , N 

Similar to the previous section, we again introduce additional Lagrange multipliers 

μ୬ ൒ 0 to solve the optimization problem 

Lሺwሬሬሬറ, b, aሬറሻ ൌ
1
2

ԡwሬሬሬറԡଶ ൅ C ෍ ξ୬

ଵ

୬ୀଵ

െ ෍ a୬ሼt୬yሺxሬറ୬ሻ െ 1 ൅ ξ୬ሽ
N

୬ୀଵ

െ ෍ µ୬ξ୬

N

୬ୀଵ

 

subject to KKT conditions if it has a solution 

a୬ ൒ 0  

t୬yሺxሬറ୬ሻ െ 1 ൅ ξ୬ ൒ 0  

a୬ሼt୬yሺxሬറ୬ሻ െ 1 ൅ ξ୬ሽ ൌ 0  

µ୬ ൒ 0  

ξ୬ ൒ 0 

µ୬ξ୬ ൌ 0 

Taking derivatives 

dL
dwሬሬሬറ

ൌ 0  ֜  w ൌ ෍ a୬t୬φሺxሬറ୬ሻ

N

୬ୀଵ

 

dL
db

ൌ 0  ֜  0 ൌ ෍ a୬t୬

N

୬ୀଵ

 

dL
dξ

ൌ 0  ֜ a୬ ൌ C െ µ୬ 

 

And, of course, by substituting w, we can obtain the dual representation. The 

introduction to the mathematics of standard SVM ends here. An alternative form of 

SVM, known as ν-SVM and introduced by Schölkopf et al., has the equivalent form 

of maximizing  

L෨ሺaሬറሻ ൌ െ
1
2

෍ ෍ a୬a୫t୬t୫kሺxሬറ୬, xሬറ୫ሻ

N

୫ୀଵ

N

୬ୀଵ

, subjec to 

0 ൑ a୬ ൑
1
N

 

෍ a୬t୬ ൌ 0

N

୬ୀଵ
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෍ a୬ ൒ ν

N

୬ୀଵ

 

Schölkopf proved that if  

1) The kernel is analytical. 

2) The training samples are independent and identically distributed. 

then the value ν is  

1. An upper bound on the fraction of margin errors 

2. An lower bound on the fraction of support vectors 

 

 

Figure 2.1.4 Illustration of SVM applied to a overlapping 2-dimensional data set. The 

support vectors are indicated by green circles. 

Source: Machine Learning and Pattern Recognition. Bishop, 2006. 

 

Philosophy of science in SVM 

Vapnik’s design of SVM is an instantiation of falsification in the philosophy of 

science. When it comes to defining the error function, SVM chose a hinge function 

which exonerates samples very far from the boundary, indicating that only the wrong 

samples matter. When computing the decision boundary, samples that are nearly 

wrong or misclassified become support vectors. Even in the theory of 

Vapnik-Chervonenkis dimension, we can see the falsifiability concept so clear 

(Vapnik, 2006). 
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Disadvantages 

Originally devised for 2-class separable problems, SVM has some disadvantages 

when applying to non-separable multi-class problems.  

1. It can only give hard decisions (binary outputs) instead of soft ones 

(probabilistic, numeric ones). In some fields of application (e.g. weather 

forecast), we prefer a probabilistic prediction rather than a clear-cut outcome.  

2. Multi-class problems are theoretically unsolvable by binary classifiers. 

Commonly adopted schemes, including one-against-one (OAO) and 

one-against-all (OAA) decomposition of original multi-class problem, leave 

unresolvable areas where samples cannot be determined (an intuitive 

explanation is shown in Fig. 2.1.5; for comparison of multi-class SVM 

methods, cf. (Hsu and Lin, 2002) ). 

3. Misclassified samples are all supposed to be support vectors, so when classes 

overlap in the feature space, the amount of support vector increases. That is 

why highly non-separable problem makes the kernel very non-sparse, 

increasing training and testing time.  

4. It is time-consuming to tune the hyperparameters. For example, for a 

regression problem that applies rbf kernel, we have to tune C (regularization 

term), ε(regression tolerance parameter), and γ (rbf parameter).There is no 

way to know advanced what value the hyperparameters might fall on. Grid 

search is most commonly suggested method to try parameter, but still, this 

strategy is not time-saving. 

Despite all the above mentioned disadvantages, SVM is still widely adopted 

in our or other researcher’s experiments for its simplicity. 

 
Figure 2.1.5: Binary classifier solving multi-class problem. Unresolvable areas 



 

15 
 

are shaded green. 

Source: Machine Learning and Pattern Recognition. Bishop, 2006. 

 

2.1.3 Imbalanced Datasets 

Long existing in everyday applications, imbalanced datasets are a major and 

annoying issue in machine learning. In recent years, the imbalanced learning problem 

has drawn a significant amount of interest from academia, industry, and government 

funding agencies (He and Garcia, 2009). The fundamental issue with the imbalanced 

learning problem is the ability of imbalanced data to significantly compromise the 

performance of most standard learning algorithms. Most algorithms assume or expect 

balanced class distributions or equal misclassification costs. Therefore, when 

presented with complex imbalanced data sets, these algorithms fail to properly 

represent the distributive characteristics of the data and resultantly provide 

unfavorable accuracies across the classes of the data. In real-world domains, the 

imbalanced learning problem represents a recurring problem of high importance with 

wide-ranging implications, warranting increasing exploration. 

There are three major approaches to handle data imbalance. The most intuitive 

type is sampling methods. Under-sampling the majority, over-sampling the minority, 

and synthetic sampling are the most popular ones. Cluster-based methods and data 

clearing methods such as Tomek link are usually applied as auxiliaries. Cost-sensitive 

methods are another main category dealing with imbalanced datasets. In some 

domains, cost-sensitive methods are even superior to sampling methods (He and 

Garcia, 2009). The other method, called kernel-based methods, is to calibrate learning 

algorithms themselves. 

 

2.2 Auditory Model 

The proposed auditory features were extracted from stages of an auditory model, 

which is based on physiological evidences and consists of early cochlear (ear) and 

central cortical (A1) modules. 
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Figure 2.2.1 Detail block diagrams of auditory model (feature extractor). 

2.2.1 Cochlear Module 

The cochlear module models the functions of the peripheral auditory system. The 

cochlea behaves like a frequency analyzer. As Fig. 2.2.1 shows, the cochlear module 

consists of a bank of 128 overlapping asymmetric constant-Q band-pass filters 

ሺQଷୢB ൎ 4ሻ that mimic the frequency selectivity of the cochlea. These filters are 

distributed evenly over 5.3 octaves with a 24 filters/octave frequency resolution. The 

output of each filter is fed into a non-linear compression stage and a lateral inhibitory 

network (LIN), and then processed by an envelope extractor (a half-wave rectifier 

followed by a low-pass filter). The non-linear high-gain compression models the 

saturation of the inner hair cells, which transduce the vibrations of the basilar 

membrane along the cochlea into intracellular hair cell potentials. The auditory nerve 

then transmits the hair cell potentials to the cochlear nucleus of the central auditory 

system. This transmission is simulated by the LIN, which generates a spectral profile 

by detecting discontinuities along the frequency axis. This is followed by integration 

over a few milliseconds. This study uses a simplified linear version of this module 

with a disabled hair cell stage. This approach normalizes all speech signals in advance 

to avoid the non-linear high-gain compression of the hair cells. As in Fig. 2.2.1, the 

outputs at different stages of this module can be written as: 

yଵሺt, fሻ ൌ sሺtሻ ୲כ hሺt, fሻ       (1) 

yଷሺt, fሻ ൌ ∂୤yଵሺt, fሻ       (2) 

yସሺt, fሻ ൌ maxሺyଷሺt, fሻ, 0ሻ    (3) 

yହሺt, fሻ ൌ yସሺt, fሻ ୲כ µሺt, τሻ      (4) 

where sሺtሻ is the input speech, hሺt, fሻ is the impulse response of the constant-Q 

cochlear filter with center frequency f, כ୲ depicts the convolution in time, ∂୤ is the 

partial derivative along the f axis, the integration window µሺt, τሻ ൌ eି౪
ಜ · uሺtሻ with 

the time constant τ models the current leakage along the neural pathway to the 
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cochlear nucleus (midbrain), and uሺtሻ is the unit step function.  

 

The output yହሺt, fሻ is an auditory spectrogram that represents neuron activities 

along the time (t) and log-frequency (f) axis. The auditory spectrogram produced by 

this simplified linear cochlear module is similar to the magnitude response of a 

Mel-scaled FFT based spectrogram. The constant-Q criterion of the filter bank shares 

similar effects of the Mel-scale and the local envelope approximates the magnitude of 

a FFT based spectrogram. Note that the LIN accounts for the spectral masking effect 

provided that hair cells behave non-linearly. However, since this study does not 

consider the hair cell stage, the LIN only effectively sharpens the constant-Q cochlear 

filters. 

 

2.2.2 Cortical Module and Rate-Scale Representation 

The second module models the spectro-temporal selectivity of neurons in the 

auditory cortex (A1). The auditory spectrogram yହሺt, fሻ is further analyzed (filtered) 

by cortical neurons, which are modeled by two-dimensional filters tuned to different 

spectro-temporal modulation parameters (Chi et al. 2005). The rate (or velocity) 

parameter   (in Hz) reflects how fast the local spectro-temporal envelope varies 

along the temporal axis. The scale (or density) parameter   (in cycle/octave) 

represents the distribution of the local spectro-temporal envelope along the 

log-frequency axis. In addition to the rate and the scale, cortical neurons are also 

sensitive to the sweeping direction of the FM of the sound. This module characterizes 

directional selectivity using the sign of the rate: negative for upward sweeping 

direction, and positive for downward sweeping direction. 

 

Therefore, the 4-dimensional output of this cortical module can be formulated as 

rሺt, f, ω, Ωሻ ൌ yହሺt, fሻ ୲୤כ STIRሺt, f, ω, Ωሻ    (5) 

where STIRሺt, f, ω, Ωሻ  is the joint two-dimensional spectro-temporal impulse 

response (STIR) of the direction-selective filter tuned to ω and Ω, and כ୲୤ is the 

two-dimensional convolution in the time and log-frequency domains. More detailed 

formulations and derivations of the STIRሺt, f, ω, Ωሻ are available in (Chi et al. 2005). 

The local energy of the four-dimensional output is then computed as 

Eሺt, f, ω, Ωሻ ൌ |rሺt, f, ω, Ωሻ ൅ jHሾrሺt, f, ω, Ωሻሿ|  (6) 

where Hሾ·ሿ  is the Hilbert transform along the log-frequency (f) axis. From a 
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functional point of view, cortical neurons perform a joint spectro-temporal 

multi-resolution analysis (due to various rate-scale combinations) on the input 

auditory spectrogram. The excitation pattern of cortical neurons associated with a 

single time-frequency (T-F) unit at ሺt୨, f୨ሻ of the input auditory spectrogram is 

referred to as the rate-scale (RS) representation of that particular T-F unit, and is 

expressed as Eሺt, f, ω, Ωሻ. 

 

The frame-based RS representation of an utterance can be obtained by averaging the 

RS representations of T-F units over the frequency axis as follows:  

P൫ω, Ω, t୨൯ ൌ ଵ

ଵଶ଼
∑ Eሺt, f, ω, Ωሻଵଶ଼

୨ୀଵ    (7) 

The bottom panels of Fig. 2.2.2 show the time-varying RS representation P൫ω, Ω, t୨൯ 

of a sample speech around 200 and 550 ms. Each plot of the RS representation clearly 

shows two attributes: (1) spectro-temporal modulations of envelopes and (2) resolved 

pitch below 512 Hz. Consider the 550 ms frame as an example. The resolved pitch 

around 230 Hz produces a strong response around the high rate high scale (pitch 

related) region. On the other hand, the envelopes of the almost flat harmonic structure 

shown at 230, 460, and 1150 Hz produces {low rate (due to the flatness, no FM), low 

scale (2 cycles/periods within 2.32 octave)} strong responses at regions less than 8 Hz 

and less than 1 cycle/octave. Since flat envelopes do not favor any sweeping 

directions, the {low rate, low scale} region exhibits symmetric rate responses. Figure 

2.2.1 shows that the frame-based P൫ω, Ω, t୨൯  encodes the information of the 

spectral-temporal structures, including but not limited to pitch, harmonicity, formant 

spacing, and AM and FM of an input sound at each time instant. Some of these 

structures, such as pitch, AM, and FM, are associated with the prosody of the sound, 

while others are associated with the spectral characteristics of the sound. Variations of 

these two types of features (prosodic and spectral features) commonly appear in 

speech emotion recognition researches (Cowie et al. 2001; Mozziconacci 2002; 

Scherer 2003; New et al. 2003; Ververidis and Kotropoulos 2006; Schuller et al. 

2007a; Busso et al. 2009). Therefore, the proposed time-varying RS representation 

could be a good candidate for speech emotion recognition. 

The left and right panels of Fig 2.2.2 show the long-term averaged P൫ω, Ω, t୨൯ 

of clean speech and white noise, respectively. The long-term averaged RS 

representation of clean speech shown in the Figure 2.2.2 was produced by extracting 

30 clean utterances from the NOIZEUS corpus (Loizou 2007). Clearly, the white 

noise primarily affects the pitch region (> 128 Hz) of speech. In addition to the pitch 

region, speech possesses high energies in the low-scale low-rate region (< 4 

cycle/octave, < 32 Hz), while white noise activates the high-rate high-scale region (> 
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2 cycle/octave, > 32 Hz) due to differences in the structures of their spectral-temporal 

envelopes. This indicates that local spectro-temporal speech envelopes are mostly 

smoother than white noise envelopes along either the time or the frequency axis. 

These spectro-temporal envelopes critically encode the amplitude modulation and the 

frequency modulation of the sound, which are vital cues for humans to segregate 

individual sound streams from a sound mixture (Grimault et al. 2002; Carlyon et al. 

2000). This segregation process of human hearing perception is very important to 

people’s daily lives, and is referred to as auditory scene analysis (ASA) (Bregman 

1990). Since speech envelope modulation is critical to hearing perception and vastly 

different from white noise envelope modulation, this study uses the time-varying 

P൫ω, Ω, t୨൯, which decomposes modulations of local envelopes in a multi-resolution 

fashion, to assess speech emotions under noisy conditions.  

 

 

Figure 2.2.2 Rate-scale representation of a speech frame. 
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2.3 Emotion Psychology 

The analysis of emotion has three main perspectives. Discrete theory, having 

probably the most ancient origins, describes emotions as discrete categories, so it is 

sometimes called the “Category theory.” Dimensional theory, on the contrary, 

describes emotions as something in N-dimensional space, so it is also known as the 

“Continuous theory.” Besides these two, some psychologists describe emotions as 

something that consists of smaller components. 

 

2.3.1 Discrete model of Emotion 

 The discrete theory (a.k.a. categorical theory) of emotion holds that emotions are 

discrete categories just like how we call them. The number of emotion categories may 

be finite or infinite, but there is finite number of “basic emotions.” Paul Ekman’s Big 

Six (anger, disgust, fear, happiness, sadness, and surprise) has become the most 

well-known but not undoubted theory about basic emotions. For more complex 

emotions, mixture theory and compound theory are usually used. Plutchik’s 

circumplex interprets emotions as mixtures formed by four pairs of basic emotion 

(joy-sadness, trust-disgust, fear-anger, and anticipation-surprise) like colors on a 

palette. However pretty the circumplex model might be, Reisenzein pointed out that 

high-class (complex) emotions can happen independently, indicating that the mixture 

theory might be falsified. Oatley and Johnson-Lairel proposed a compound theory 

claiming that high-class emotions are compounds of basic emotions. Still, this theory 

has some problem, including the fact that some basic emotions become reducible and 

that it cannot explain the inherent similarity between basic emotions (Hewstone et al., 

2005). Today, discrete theory is still the most prevailing one that most emotion 

databases are labeled with categories. 

 

2.3.2 Dimensional model of Emotion 

 The dimensional or continuous model describes emotions as N-dimensional 

clusters. Every emotion occupies a specific subspace in the N-dimensional space. Its 

history can be trace back to Wilhelm Wundt a hundred years ago, and its later 

follower includes Osgood and other researchers (Hewstone et al., 2005). In this model, 

valence and activation are two dimensions that are most mentioned. If there are three 

dimensions, potency (or power) will be added in. Recently, some more dimensions, 
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like unpredictability, are introduced based on neurological studies (Fontaine, 2007). 

Valence stands for intrinsic pleasure. If we feel good in an emotion, the emotion 

has positive valence, and it has negative valence if we feel the opposite. Activation 

represents the degree of psychological activity of the subject. If subjects know that 

they are in some emotion, the activation is high. Pereira pointed out that emotions 

with similar activation or potency are usually indistinguishable because they have 

similar acoustic features (Pereira, 1998).  

 

2.3.3 Component Process Model 

Component process model is an appraisal theory for vocal communication based 

on cognitive psychology (Scherer, 2005). It interprets emotion as a (temporal) series 

of components, each representing a pattern of variation of acoustic features. Every 

pattern has their psychological or physiological meaning, and the whole temporal 

process are all involved with cognition. Basically, the cognition process comprises 

five internal checks on the events or experiences a subject has been through. These 

five components are novelty check, intrinsic pleasure check, goal/need significance 

check, dealing potential check, and normative/spontaneous check. Although the 

theory might be sound, current applicable databases seldom contains the underlying 

element—context, thus limiting its applicability. 

 

2.3.4 Brunswik’s lens model 

Brunswik’s lens model is a counterpart explanation of the whole affective 

communication process (emotion recognition system) in psychology. This model has 

the same three stages as other communication architectures. Initially, emotions are 

encoded into speech utterances which have acoustic features like duration or intensity. 

Then the features go through a communication channel which might incorporate 

speech with noise. Finally, another perception subject receives the acoustic signal, 

maybe transform it into perception features, and decode the emotion. This model 

contains three important elements of emotion detection: ecological validity which 

describes the degree of modulation emotion has on speech, feature extraction which is 

the transformation from distal cues (acoustic features) to proximal cues (perception 

features), and recognition (classification). 
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Table 2.3.1 Synthetic compilation of the review of empirical data on acoustic 

pattering of basic emotions 

Adapted from Vocal Communication of Emotion (Scherer, 2003) 

  Joy Anger Stress Fear Boredom Sad 

Intensity + + + + - 

F0 floor/mean + + + + - 

F0 variability + + - - 

F0 range + + + (-) - - 

Sentence contours   - - 

High frequency energy (+) + + - 

Speech and articulation rate (+) +   + - - 

 

 

2.4 Miscellaneous 

2.4.1 Cross-validation 

Cross-Validation is a statistical method of evaluating and comparing learning 

algorithms (or models) by dividing data into two subsets: one used for training a 

model and the other used to validate it. This procedure is widely applied, especially 

when the database has too few samples so that generalization might be unreliable. 

Cross-validation procedure offers an estimator for performance, and of course brings 

some drawbacks. 

There are many variant kinds of cross-validation schemes, all of which are 

variants of a prototypical form of “k-fold cross-validation.” In k-fold cross-validation 

the data is first partitioned into k equal-sized folds (subsets). Subsequently, k 

iterations of training and validation are performed such that within each, iteration a 

different fold of the data is held-out for validation while the remaining k-1 folds are 

used for learning. See an example in Figure 2.4.1. In addition, data is commonly 

stratified prior to being split into k folds. Stratification is the process of rearranging 

the data as to ensure each fold is a good representative of the whole.  

Three common variants are also proposed: (See Table 2.4.1 for summary) 

1. Hold-Out Validation 

Hold-out validation separates a database into two independent subsets: one for 

training and the other for testing. Independence between the training and the 

testing sets assures an accurate performance estimator, but the downside is that the 

procedure only uses parts of the whole data, so the estimator has large variance. 
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2. Leave-One-Out Cross-Validation 

Leave-one-out cross-validation (LOOCV) is an extreme case of k-fold 

cross-validation where k equals the number of samples. In each iteration, one 

sample is used for testing and all the others are used for training. LOOCV gives an 

almost unbiased estimator but it has very large variance. 

3. Repeated K-Fold Cross-Validation 

Large number of estimates is always welcome for obtaining reliable performance 

estimation or comparison. In k-fold cross-validation, only k estimates are obtained. 

A commonly used method to increase the number of estimates is to run k-fold 

cross-validation multiple times. The data is reshuffled and re-stratified before each 

round. 

 

 

Figure 2.4.1: A graphical illustration of a 3-fold cross-validation. 

Source: Encyclopedia of Database Systems, Springer, 2009. 

 

Table 2.4.1: Pros and cons of different validation procedures. 

Cross-validation method Pros Cons 

Hold-out validation Accurate performance 

estimator 

Large variance 

K-fold cross-validation Accurate performance 

estimator 

Underestimated variance 

Leave-one-out 

cross-validation 

Unbiased performance 

estimator 

Very large variance 

Repeated k-fold 

cross-validation 

Reduced bias Underestimated variance 

 

In short, cross-validation schemes necessarily meet the problem of trade-off 

between the size of training and testing sets. Larger number of training samples 
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(indicating smaller number of testing samples) brings smaller bias whereas larger 

number of testing samples results in smaller variance. Or in a plainer interpretation: 

too little training is prone to bias (preferring) and too little testing is like gambling 

(One data point and you're jumping for joy; loss of generalization). 
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Chapter 3  

Methods and Materials 

 

3.1 Database and Assessment Metrics 

The databases used here is Berlin Emotional Speech Database (Burkhardt et al., 

2005) and Aibo Emotion Corpus (Steidl, 2009). They differ from the types (acted or 

spontaneous) of emotions and recording condition. Information in detail can be found 

in Table 1. 

 

3.1.1 Berlin Emotional Speech Database 

This database comprises 535 German utterances of about 25 minutes in total. 

The corpus consists of 7 emotions simulated by 10 speakers. The recordings are 

studio-quality, and all the sentences have 80% or higher human recognition rate. 

Previous research showed that state-of-the-art automatic emotion recognition schemes 

achieve over 80% accuracy in best-case scenario (Kockmann et al., 2011). 

 

3.1.2 Aibo Emotion Corpus 

This database comprises 18,216 chunks of about 8.9 hours of spontaneous 

emotion. It consists of 5 (originally 11) emotions of 51 children, aged from 10-13. 

The emotions were elicited in an experiment in which children thought the Aibo robot 

dogs obeying their commands. The recordings are medium quality; some samples 

have serious microphone clicking noise, others are clipped due to loudness, and the 

others include coughing. The corpus was used in INTERSPEECH 2009 Emotion 

Challenge and the best performance reached 41.7% of unweighted recall rate (UR) 

and the combination of all participants reached 44.0% of UR. 
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Table 3.1.1: Details about AEC and BES 

Database FAU AIBO Emotion Corpus Berlin Emotional Speech 

Database 

Language German German 

Emotion Info.   

Type Spontaneous Acted 

Class 2: Idle, Negative 

5: AENPR 

7: ABDFHNS 

# of labeler 5 20 

Speaker Info.   

Gender Male: 21 

Female: 30 

Male: 5 

Female: 5 

Age 10-13 21-35 

Utterance Info   

# of Utterance 18216 535 

Sampling rate 16kHz 16kHz 

Duration 0.1-24.5 seconds 1.2-9.0 seconds 

Validity 0-100% 80-100% 

Quality Normal (some with severe 

microphone click noise) 

Recording studio 

*A: Anger. B: Boredom. D: Disgust. E: Emphatic. F: Fear. H: Happy. N: Neutral. P: Positive. S: 

Sadness. R: the rest. 

 

Challenges in AEC database 

Compared to BES which contains acted emotions, Aibo Emotion Corpus (AEC) 

is more challengeable for three reasons other than the fact that it contains spontaneous 

emotions: 

First, the samples have rather low prototypicality (later called “validity” in this 

article; the usage of prototypicality is left for emotion classes), meaning that even 

human labelers have difficulty recognizing the emotion. Low prototypicality can be 

seen as strong internal noise that undermines classification performance either for 

machines or for humans. The macro effect is high intra-class variance and that the 

problem becomes highly non-separable. 

Second, among the 5 classes, the Rest is an undefined class; it has no specific 

traits and even no intra-class similarity. They become an apparent source of 

disturbance and it makes the problem more difficult according to the following 
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reasons: 

(1) Their intrinsic uncertainty makes them similar to other samples from classes. 

(2) They distribute in a sparse manner over the whole feature space, appearing 

little correlation to other inter- or intra-class samples. 

(3) The Rest is a class without phenomenal traits; the samples just do not belong 

to other categories. 

(4) The confusion matrix gets bigger, thus raising complexity and error rate. 

(5) The assessment metrics might fail to reflect a fair situation because of this 

internally noisy class. 

Third, the 5 classes in AEC are severely imbalanced. The problem is common 

even in everyday situations but disturbing and when the imbalance is severe, taking 

accuracy (or weighted recall) as the performance metric is no longer feasible; 

therefore this paper adopted UR as the main assessment metric. Besides, imbalanced 

data cause classifiers learn to prefer majority class. Actually, the imbalance is 

two-fold, because 

(1) The numbers of samples of each class are imbalanced 

(2) The validity (percentage that human labelers came to consensus) of each 

class has different distribution. Some classes have very high validity samples 

while others do not. 

Unfortunately, the biggest and the most valid class are the same one—Neutral. 

Neutral, which has samples 8.9 times more than Positive (the minority), has 83.9% 

(the highest) validity in average while Positive has only 58.3%. Things deteriorated 

under this situation because usual applicable techniques can make imbalance worse. 

While synthetic method creates more samples for minority class, it also creates more 

unreliable (low validity) samples. Under-sampling methods which cut back on 

samples in the majority class might cause information loss. Cost methods, on the 

other hand, have same issues as synthetic methods because they give reliable samples 

high cost as well as unreliable ones. 

In our experiments, data are rebalanced by a mechanism similar to the SMOTE 

with different costs (Chawla et al., 2002; Akbani et al., 2004). This method utilizes 

validity as a reference in synthesizing procedure, so it might allegedly avoid some of 

the problems described above. 
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Figure 3.1.1: Histogram of the distribution of duration of the wav file in Aibo Corpus. 

*The x-axis represents duration (seconds) and the y-axis represents the number of samples. 

 

 

 

Figure 3.1.2 Distributions of validity of each class.  

*Almost all REST samples have zero validity because they do not belong to any other classes. 
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Table 3.1.2: Duration of wav files in Aibo Corpus 

Duration (sec) Number of files

<1 3183

1-2 11687

2-3 4007

3-4 569

4-5 162

>5 105

 

3.1.3 Assessment metrics 

The assessment metrics, even the terminology of assessment metric, seem to 

have no consensus yet. In the case of imbalanced datasets, commonly used metrics  

might even fail to give truthful information. Although in binary classification tasks, 

the receiver operating characteristic (ROC) or its equivalent form, the precision-recall 

curve (PRC), is viewed as the most informative metric, its use remains limited (cf. 

Davis and Goadrich, 2006). The area under the curve (AUC) of ROC or PRC has the 

same limitation. For hard-type classifiers which output discrete label only (e.g. SVM), 

none of the above mentioned metrics can be used (because they need soft decision or 

probability estimate), let alone to be used in multi-class problems ().  

Accuracy, or the weighted recall rate (WR), tends to be biased in the case of 

imbalanced data. Sometimes the geometric or harmonic mean of WR and UR (also 

known as G-mean and F-measure) is used to represent one overall performance. In 

this article, performance is evaluated by UR with WR as auxiliary metric. Some 

common assessment metrics and their definition are listed below: 

recall୧ ൌ
∑ Iሼt୬ ൌ i ת y୬ ൌ iሽN

୬ୀଵ

∑ Iሼt୬ ൌ iሽN
୬ୀଵ

 

precision୧ ൌ
∑ Iሼt୬ ൌ i ת y୬ ൌ iሽN

୬ୀଵ

∑ Iሼy୬ ൌ iሽN
୬ୀଵ

 

Arithmetic mean: A ؜
1
K

෍ Z୧

K

୧ୀଵ

 

Geometric mean: G ؜ ඩෑ Z୧

K

୧ୀଵ

K
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Harmonic mean: F ൌ
K

∑ 1
Z୧

K
୧ୀଵ

  

Weighted mean: W ൌ ෍ weight୧ ൈ Z୧

K

୧ୀଵ

 

Iሼ·ሽ: indicator function.  I ൌ ൜
1, if the statement is true
0, if the statement is false 

y୬: prediction lable of the nth test sample ሺclassification outputሻ 

t୬: class lable of the nth test sample ሺtruth/answerሻ 

i: class index, i ൌ 1, … , K 

n: sample index, n ൌ 1, … , N 

Z୧′s represent recall or precision or both.  

 

 
Figure 3.1.3 Geometric illustration of arithmetic, geometric, and harmonic mean. 

*Q denotes the quadratic mean (a.k.a. root mean square) 

Synonyms  

Unweighted recall and unweighted average of class-wise recall rate mean the 

same thing. Weighted recall or weighted average of class-wise recall rate is also 

known as accuracy where the weight is the fraction of the class. Useful combinations 

include the A, G, and F of recall rate, precision, or both (only applied to binary 

classification). The geometric mean is sometimes called the G-mean and the harmonic 

mean is sometimes called F-measure. 
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Pros and cons 

 Weighted recall (WR) makes unfair evaluation of performance when 

encountering highly imbalanced datasets. In the case of Aibo Corpus, classifying all 

test samples to Neutral gets 65.12% WR while this classification is useless as well as 

meaningless because it is not better even than guessing. Unweighted recall (UR) gives 

a fairer view, but still, it does not reflect the specific performance the classifier has on 

a specific class. For example, we have a classifier whose recall rate for a 5-class 

problem are 100%, 50%, 50%, 50%, and 0%, then the UR is 50%. However, we 

notice that the classifier cannot recognize any sample of the 5th class. On the other 

hand, under this circumstance, the geometric mean (GR) is 0%, pointing out that one 

of the classes failed to be recognized. Our conclusion is that there is no one single 

metric that reflects overall performance, so we had better rely on multiple metrics. 

 

3.2 Features 

Features are always the most fundamental issue in emotion or affect research. 

Adequate feature set consolidate the foundation of recognition. Large scale searching 

for features was one of the major attempts in last decade. For now, some features have 

been identified as basic elements. This section briefs two feature sets used in our 

experiments. 

3.2.1 Rate-scale features 

The process described in Chapter 2 resulted in four-dimensional (time, frequency, 

rate, scale) information. First, the information was downsized to 3-dimensional by 

taking average along frequency. Then we took temporal mean and standard deviation 

along time dimension. Finally, there were only 2-D information, namely rate and scale, 

left. The range of rate is from 21 to 29 and -21 to -29, and the range of scale is from 2-1 

to 23. Therefore, the total number of features is 2×(# of rates)×(# of scales) ×(statistics) 

= 2×9×5×2 = 180. Since every utterance is transformed into this rate-scale (RS) 

representation, conceptually an utterance of any length is represented by the 180 

features, namely a 180-entry vector. This provides us a way to visualize an utterance. 

Now it is time to explain the physical meaning of every RS feature. Speech 

manifests itself in both high rate and low rate region. The low rate part carries 

information about speech rate whereas the high rate part carries the information about 
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pitch. Scale on the other hand, carries information about formants. Different types of 

noise give rise to the impact on different RS regions. Babble noise inflicts more 

alternation on low rate region while white noise does (See Figure 3.2.1). 

 

3.2.2 INTERSPEECH 384 features 

The 384 features used in 2009 INTERSPEECH Emotion Challenge is the main 

comparison target in the following experiments. This feature set comprises 16 

low-level descriptors and their first-order derivatives and their 12 functionals. The 16 

low-level features are zero-crossing-rate (ZCR) from the time signal, root mean 

square (RMS) frame energy, pitch frequency (normalized to 500 Hz), 

harmonics-to-noise ratio (HNR) by autocorrelation function, and mel-frequency 

cepstral coefficients (MFCC) 1-12 in full accordance with HTK-based computation. 

Each of these 16 features include the delta (time derivative) coefficients. Next, 12 

functionals are derived for each low-level and its delta feature on a chunk basis: mean, 

standard deviation, kurtosis, skewness, minimum and maximum value, relative 

position, range, and two linear regression coefficients with their mean square errors 

(MSEs);. Thus, the final feature set contains 384 (16ൈ2ൈ12) attributes and is referred 

to as the i384 feature set in the following simulations. 

The feature extraction module is an open source toolkit named OpenSMILE 

(Eyben et al. 2009). Details of this feature set can be found in Table 2. This set of 

features includes the most common ones associated with prosody, spectral shape, 

voice quality, and their derivatives. The i384 features contains the most commonly 

used features in emotion-related research and this is why it is chosen to be our main 

comparison target. 

 

Table 2. Features used in INTERSPEECH 2009 Emotion Challenge 

LLD (16*2) Functionals (12) 

(Δ) RMS energy  max, min, range, max position, min position 

temporal mean, standard deviation, skewness, kurtosis 

linear regression: offset, slope, MSE 

(Δ) MFCC 1-12 

(Δ) ZCR  

(Δ) HNR  

(Δ) F0 
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3.3 System Framework and the Paradigms 

3.3.1 System overview 

As shown in Figure 3.31, a speech sample went through three stages in order: the 

preprocessing, feature extraction, and classifier stage. In the preprocessing stage, a 

speech sample was first down-sampled to 8 kHz to meet some requirements in the 

auditory module. Then the voice activity detection (VAD) module marked voice 

regions and computed the speech power to which loudness was adjusted to -20dB 

according. Noise with different types and SNR was added into the speech sample. In 

the second stage, the auditory module extracted the RS features. In the final stage, 

clean speech samples were used to train one single SVM classifier and noisy samples 

were used to test it.  

 

 

Figure 3.3.1: System Block Diagram 

 

3.3.2 Consistency between Training and Testing 

The consistency between training and testing conditions represents the 

underlying paradigm an experiment adopts. Performance of feature sets differs from 

one another under different conditions. Here we introduce some consistency criterions 

that are used in our or other researchers work.  

Matched condition 

Matched condition between training and testing implies that testing conditions 

such as a specific noise type or SNR are known advanced in training phase. Under 

this paradigm, researchers collect or synthesize training and testing samples that have 

the same condition, say same SNR, for learning machines. Having same conditions 

implies same (or approximately same) probability distribution of samples, so the 
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learning machine usually has better performance. This paradigm also allows different 

feature sets when dealing with different conditions, e.g. feature set A for 10dB 

condition and set B for -5dB noisy condition.  

Widely adopted in previous work, matched conditions are popular when it comes 

to the discussion of noise or interference (cf. Schuller et al., 2006; You et al., 2006). It 

is the easiest way to counter the effect of noise or interference and the results are 

usually good enough. However, this paradigm sometimes goes ad hoc and loses 

generality, and it also requires the learning machine to be very powerful.  

Here is an example: We need to detect a signal under a specific type of noise in q 

dB condition where q א ሼ∞, 10, 0, െ10ሽ. We are able to access noise samples, so 

without analyzing the characteristics of the noise, we train the learning machine with 

synthetic noisy signal under different SNR conditions. After comparing different sets 

of features, we finally determine that different feature sets be used in different SNR 

conditions (Table 3.3.1 exhibits more details). 

 

Table 3.3.1: An example illustrating the degree of freedom matched condition has. 

Starting resources before training 

- Pure signal samples 

- Pure noise samples 

Training phase 

- Synthetic noisy samples of ൞

∞

10
0

െ10

ൢ  dB SNR 

Training configuration: 

SNR condition (dB) Feature set Learning Machine 

∞ Feature A Machine A 

10 Feature B Machine B 

0 Feature C Machine C 

-10 Feature D Machine D 

*Different features set might require different learning machines (algorithms, 

theoretical analysis, or strategies). 

Testing phase 

- Actual/Synthetic noisy samples of ൞

∞

10
0

െ10

ൢ  dB SNR 
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Pros and cons 

As mentioned earlier, matched condition is an easy way to take into 

consideration the issues that will be met later in testing phase. This paradigm has the 

following assumptions: 

Assumption 0 (consistency assumption):  

The conditions of training phase are the same as that of testing phase. This is 

equivalent to having training and testing sample from the same distributions. 

Assumption 1 (foresight assumption):  

The learning machine knows that it will have to face a specific condition 

different from current empirical resources (e.g. pure signal samples in the 

previous example). 

Assumption 2 (access assumption):  

Direct access to the interference or noise is available (noise samples are 

obtainable). 

*Learning in consistency assumption requires both foresight and access assumptions; otherwise, 

the learning might be meaningless or it might be not better than guessing. 

Although performance under matched condition is good enough in current literature, 

it actually relies on some strong assumptions. Removing one of the assumptions 

above disqualifies the application of matched conditions. 

Mismatched conditions 

 Contrary to matched condition, mismatched condition implies mismatch between 

training and testing conditions. This requires stronger ability of generalization or more 

consideration in the training phase. Mismatched conditions can be further divided into 

mainly two categories, so we separate the discussions. 

Slack mismatched conditions 

Slack mismatched condition utilizes more prior knowledge that cannot be 

acquired from empirical data. This paradigm retains the foresight assumption, so it is 

insufficient to run a matched condition experiment. In this case, the learning machine 

expects the discrepancy between training and testing data, so it has to get prepared for 

it. Here, preparation can of several forms. It can be prior knowledge from which the 

machine knows how noise or interference affects feature sets; it can also be strategy to 

recognize the problem (e.g. noise type and SNR) before classification (so that it can 
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process noisy samples beforehand). For example, if we have no access to noise 

samples or noisy signal samples but the statistics or properties of noise is known, we 

can take care of it in the training phase. 

There is one thing different in Yeh’s and my paradigms though we both adopted 

mismatched conditions. Yeh adopted an even looser form of slack mismatched 

condition, called clarity condition here, that allows utilization of information from 

testing data. For example, in the experiments of Berlin database, she normalized the 

whole database in advance by subtracting sample mean and dividing sample standard 

deviation (we will come to the discussion about the issues of normalization later). 

This might seem minor at first glance, but it implies shared information between 

training and testing sets; or to be more precise, the machine uses information from 

testing data in the training process. In such a case, irrationality is not undoubtable. 

Strict mismatched conditions 

Strict mismatched condition is a paradigm that insists on using no knowledge 

other than given empirical data. As a result, the learning machine requires robust 

features to deal with the changes of conditions. For example, if the distribution of a 

feature is insensitive to the change of conditions, the feature will perform at about the 

same level. 

Database 

Current available databases of emotion usually have no realistic noisy samples 

(speech in specific SNR conditions). Although some databases (e.g. SUSAS ) contain 

some noisy samples, it is far from sufficient. This is why most researchers do with 

synthetic noisy samples in training and testing phases. 

 

Table 3.3.2: Comparison of assumptions of matched and mismatched conditions. 

Condition Assumption 0 

(Consistency) 

Assumption 1 

(Foresight) 

Assumption 2 

(Access) 

Matched ★ ★ ★ 

Slack Mismatched ╳ ★ △ 

Strict Mismatched ╳ △ △ 

*★: necessary. △: not important. ╳: assumption not hold. 

*Note that consistency assumption is a sufficient condition of foresight condition and access condition 

and it is not vice versa. The union of foresight and access assumption is a necessary but not sufficient 
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condition of consistency. Consistency between training and testing is one of the many strategies for 

leaning machines. 

 

 

Figure 3.3.2: Visualized illustration of the difference between matched and 

mismatched conditions. 

 

3.3.3 Normalization Schemes 

Numerical normalization for classifier is usually a necessary procedure for 

machine learning algorithms. Very large or very small scale of numbers cause 

problems especially when there is no closed-form solution. In addition, normalization 

might bring a sparser data, which shorten classification time. There are many 

normalization schemes for classification (cf. Friedrichs and Igel, 2005). While linear 

transformations are most frequently used, nonlinear warpings may also be employed 

in some cases. Here we discuss two types of linear normalization schemes in our 

experiments. Note that the following problems might occur only under our paradigm 

because we are dealing with mismatched conditions. 
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Nrm01 

LibSVM suggests its user normalize their training data to [0, 1] because it makes 

data sparser. This scheme, denoted by nrm01, has risks when the training set has 

outliers that are too large in absolute value. When the dimension is high, the risk 

raises. Actually, under ordinary situation, this is not a problem; it becomes serious 

when the testing set mismatches the training set, i.e. they obey different probability 

distributions. 

Nrmuv 

The other normalization scheme used in our experiments is by subtracting 

sample mean and then normalizing sample standard deviation. This scheme, denoted 

by nrmuv, achieves about the same performance as that of nrm01 but it usually takes 

a bit longer for training and testing. 

 

Pros and cons 

Both of the methods do not consider the correlation between features; i.e. they 

both assume that features are independent or that the dimensions each feature spans 

are orthogonal. This assumption has very high risks, because it does not usually hold. 

Taking RS features for example, values of adjacent rates or scales are usually highly 

correlated. This negligence partially explains why performance degenerates in slack 

condition. 

A maximum value or a minimum value is a biased estimator with high variance. 

Compared to sample mean or sample variance, normalization by extreme values can 

be risky because they have more uncertainty. For example, it might result in different 

best SVM parameters when we conduct repeated k-fold cross-validation, making best 

parameters hard to decide. 

 

3.3.4 Voice Activity Detection 

A voice activity detection (VAD) technique is recommended when the case is 

Aibo Emotion Corpus, which comprises microphone noise and very long period of 

silence. Note that the problem is not even manifest in Berlin Database because it was 

recorded in a studio without noise and with proper process of silence duration. As far 

as RS feature set is concerned, the two problems are almost a nightmare. If most of a 
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wave file is silence, the characteristics of speech will lose its importance. If 

microphone noise is very serious, then the high-rate regions will be compromised. 

Therefore, VAD is required in analyzing Aibo Corpus. 

First of all, an energy-based VAD does not serve our purpose because it cannot 

exclude microphone noise. There are two types of microphone noise. One is clipping, 

which is caused by microphone setting the value to zero when it detects very high 

energy. The other is clicking, which happened when the participant hit the 

microphone. 

Second, a VAD based on RS features might be feasible because RS features of 

clicking and speech are very different in the feature space. Figure 3.3.2 shows no 

signs of pitch when the case is clicking noise; this gives a clue to separate speech 

from noise. However, it still needs more consideration and simplification. For one 

thing, extracting RS features takes too much time compared to energy-based methods; 

for another, it does need so many features (180 dimensions) to detect voice activity. 

The lack of response in pitch-related areas implicates that pitch is a good separator of 

speech, clicking, clipping, and, of course, silence. Therefore, we finally adopt a 

pitch-based VAD scheme. 

 

 

 

 

 

 

(a) 

From Ohm_01_336_00.wav 5.5-7 sec 

Microphone clicking 

Mean plot (Max value: 0.4194) 

Standard deviation plot 
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(b) 

From Ohm_01_336_00.wav 5-6 sec 

Microphone clicking 

Mean plot (Max value: 0.2565) 

 

Standard deviation plot 

 

 

 

 

 

(c) 

From Ohm_01_336_00.wav 1-2 sec 

Speech: “Okay” 

Mean plot 

Max value: 0.1729 

 

Standard deviation plot 

 

Figure 3.3.2 Samples showing the difference and similarity between a speech and a 

clicking sound. The microphone clicking in (a) does not look like speech at all because it shows no 

signs of pitch and the pattern of standard deviation has nothing similar to that a speech sample. The 

microphone clicking in (b) has a quasi-pitch response in RSsd plot, but it also contains peculiar 

response in low-rate-low-scale regions (triangular shape centered at rate=16). 

 

The VAD is implemented by an aperiodicity method called STRAIGHT 

(Kawahara et al., 2005). Its computation time is about the duration of the original file 

multiplies three. The VAD by aperiodicity, named VADA in the rest of this article, has 

three phases. In the first phase, STRAIGHT calculates the spectrogram and its 

aperiodicity; it then computes the fundamental frequency (F0) according to the 

aperiodicity of every frame (1 millisecond per frame). In the second phase, if F0 is 

larger than 600 Hz, the algorithm sets F0 to zero because STRAIGHT usually decides 
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F0 up to 600 Hz for clicking noise. Then the algorithm identifies active regions longer 

than 75 ms and eliminates regions shorter than 75 ms (by setting F0 to 0). In the final 

phase, it encapsulates those speech chunks in the second phase and leave 500ms to the 

front and end of the encapsulation. 

The 75 ms duration minimum was to eliminate microphone clicking and to keep 

short vowels. Short vowels can have durations as short as 55 ms; for instance, the 

duration of “e” of “Yezt” in Mont_01_072_00.wav has only 60 ms. But if the duration 

minimum is too low, it allows too many clicking frames to survive (clicking might 

sometimes has F0 lower than 600 so that it would not be eliminated in the second 

phase).  

 

Rewards and risks on applying VAD 

 Applying VADA helps to identify speech region in wav files and cuts back on the 

time spent on feature extraction. The original Aibo Corpus contains 8.9 hours of 

recording but after VADA, only less than 7 hours of speech content left. The main 

benefit comes from the reduction of the duration of corpus since feature extraction of 

RS takes huge amount of time (original duration multiplies 24). 

 Generally speaking, applying VAD is helpful when there are many wav files that 

contain long duration of silence or equivalently when the fraction of the duration of 

speech is low. The downside is that the original long-term property is altered after 

applying VAD. Actual effect is inconclusive in our experiments. Another issue is its 

robustness. In the presence of serious noise, most VAD’s cannot detect anything. In 

our experiments, we assume that VAD techniques are perfect even at the presence of 

serious additive noise. Or equivalently, the experiments were conducted on the 

assumption that clean version all noisy samples were known (this is taken for granted 

in our or other researchers’ experiments because contemporary studies only focus on 

synthetic noise; in practical use, the clean version of a noisy sample is unknown). This 

is not an ad hoc assumption because we already declare in Chapter 1 that anything 

prevents features from showing their potentials should be ruled out; on the other hand, 

in practice, without VADA, the performance does not change significantly. The 

assumption only helps us to cut down on the consumption of time. 
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Figure 3.3.3: The result of STRAIGHT applied on (a) Mont_01_034_00.wav and (b) 

03a01Fa.wav in clean speech (blue), 0dB white noise (green), and 0dB babble noise 

(red). 

 

3.4 Rebalancing Imbalanced Dataset 

3.4.1 Synthetic Minority Oversampling Technique with Validity  

As mentioned earlier, data imbalance is one of the three major issues of Aibo 

Corpus. A simple over- or under-sampling method is not good enough. A simple 

over-sampling method increases both training and testing time while we are using a 

(sparse) kernel-based classifier and it can be simply replaced by a simple 

cost-sensitive method. A simple under-sampling method, on the other hand, loses too 

much information. The trouble caused by removing samples is two-fold (as describe 

in Section 3.1.2) because the most of the majority samples are reliable and most of the 
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minority samples are unreliable. The analysis above leads us to a conclusion: we can 

adopt a cost-sensitive method or a finer synthetic sampling method. 

The Synthetic Minority Over-sampling Technique (SMOTE) partially meets our 

needs because it still synthesizes too many samples, which is costly to sparse kernel 

machines. And we noticed that SMOTE synthesizes new samples uniformly with an 

aim in mind that it does not attempt to change the probability distribution. 

Nonetheless, in emotion recognition, we have a crucial clue—validity which in other 

applications is not necessarily given or acquirable. Validity is a measure of how much 

credibility can be put on a sample. If a sample is unreliable, it does not deserve more 

derivatives (synthetic samples). Taking validity into consideration, we modified the 

original SMOTE and name it SMOTEV (SMOTE with validity).  

Formulation 

The original SMOTE selects a target sample xሬറ୧ and its k-nearest neighbors xሬറ୨Ԣs 

(kNN) and synthesize k samples on the midway of any pairs ሺxሬറ୧, xሬറ୨ሻ by 

xሬറୱ୷୬୲୦ୣୱ୧ୱ ൌ xሬറ୧ ൅ α୧୨൫xሬറ୨ െ xሬറ୧൯, where α~Uሺ0,1ሻ. 

It has two shortcomings. First, it needs to compute the distance matrix in order to find 

kNN’s. Second, it may synthesize many unreliable samples. Increasing unreliable 

samples prolonged training and testing time, and it might make learning more biased 

(increasing amount of falsification). 

To tackle the distance matrix, SMOTEV made another attempt. It first selects 

samples with 80% or higher validity to form a reference set. Next, all, except the 

samples with 20% or lower validity, become candidates of target sample. New 

samples are synthesized on a random position along the line of a reference sample and 

a target. Taking validity into consideration, we can formulate SMOTEV as 

xሬറୱ୷୬୲୦ୣୱ୧ୱ ൌ xሬറ୧ ൅ β୧୰ሺxሬറ୰ െ xሬറ୧ሻ ൌ ሺ1 െ β୧୰ሻxሬറ୧ ൅ β୧୰xሬറ୰ 

β୧୰~Betaሺ1 ൅ v୰, 1 ൅ v୧ሻ 

r: the index of a randomly selected sample in the reference subset. 

xሬറ୰: reference sample 

xሬറ୧: target  sample 

v୰: validity of  xሬറ୰ 

v୧: validity of  xሬറ୧ 

The random variable β୧୰ has mode of 
୴౨

୴౨ା୴౟
א ሾ0, 1ሿ. The skewed mode value 

reflects the fact that more credibility is given on the reference sample. Note that 

SMOTEV, just as SMOTE, cannot apply to nominal or ordinary scales (no technical 

problems, but the meaning might become nonsense); it only can apply to interval or 

ratio scales. 
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The final solution to imbalanced datasets in our experiment was to combine 

SMOTEV with different cost for each class. Setting different costs saves time and it 

has similar performance to that of sampling methods. Comparison of five different 

rebalancing schemes is shown in Table 3.4.1. The SVMs inherently bias toward 

majority classes since they aim to minimize total error; therefore, training without 

rebalancing is definitely infeasible. 

Aided by validity, SMOTEV conceptually synthesizes new samples that may be 

more reliable than the original SMOTE. The two synthetic methods have similar 

performance. However, all synthetic methods unavoidably increase training time. In 

order to reduce the trouble, setting different cost seems to be the best way. Therefore, 

we only synthesize part of the data, and setting different costs afterwards. 

 

Table 3.4.1 

No rebalancing 

A E N P R Recall Precision UR UP 

A 194 74 333 8 2 31.75% 32.61% 31.10% 35.58% 

E 86 337 1069 13 3 22.35% 51.93% WR Training 

N 252 215 4876 34 0 90.68% 70.60% 65.76% 613.86 

P 7 4 181 23 0 10.70% 22.77% GR 

R 56 19 448 23 0 0.00% 0.00% 0.00%

Different Costs 

A E N P R Recall Precision UR UP 

A 332 115 54 36 74 54.34% 22.07% 41.32% 31.57% 

E 256 693 273 115 171 45.95% 34.32% WR Training 

N 790 1124 2060 591 812 38.31% 80.94% 40.09% 901.92 

P 13 16 39 95 52 44.19% 10.00% GR 

R 113 71 119 113 130 23.81% 10.49% 39.86%

SMOTE 

A E N P R Recall Precision UR UP 

A 306 120 53 43 89 50.08% 22.82% 39.22% 31.10% 

E 224 699 252 138 195 46.35% 34.78% WR Training 

N 685 1104 2005 671 912 37.29% 81.08% 38.94% 4720.8 

P 13 13 46 88 55 40.93% 8.26% GR 

R 113 74 117 125 117 21.43% 8.55% 37.68%

SMOTEV 

A E N P R Recall Precision UR UP 

A 255 93 122 17 124 41.73% 25.81% 35.31% 32.34% 

E 149 446 634 24 255 29.58% 38.02% WR Training 
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N 487 575 3108 155 1052 57.80% 74.64% 48.61% 2542.8 

P 14 12 92 35 62 16.28% 13.01% GR 

R 83 47 208 38 170 31.14% 10.22% 32.48%

SMOTEV with different costs 

A E N P R Recall Precision UR UP 

A 294 95 98 25 99 48.12% 22.92% 39.23% 32.41% 

E 213 510 511 62 212 33.82% 38.93% WR Training 

N 666 640 2780 342 949 51.70% 76.82% 46.18% 1252.5 

P 11 13 59 73 59 33.95% 12.81% GR 

R 99 52 171 68 156 28.57% 10.58% 38.23%
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Chapter 4  

Experiment Results and Discussions 

4.1 Experiment setup 

For AEC database, the training set was 9959 clean speech chunks uttered by the 

children in Ohm school and the test set was 8527 clean speech chunks (or synthetic 

noisy samples) uttered by the children in Mont school. This is the same settings as 

that used in the INTERSPEECH 2009 Emotion Challenge. Speaker independence was 

assumed. For BES database, 10-fold cross-validation (CV) was used due of limited 

number of samples. Ten subsets were formed according to speakers to assure speaker 

independence. Note that using independent speakers in training and testing causes 

about 7% decrease of UR compared to a stratified 10-fold CV scheme (in which the 

training set contains samples from every speaker that represent the whole dataset 

better).  

Additive white Gaussian noise (AWGN) and additive babble noise (ABN) from 

NOISEX-92 database (Varga and Steeneken, 1993) were employed in the following 

experiments. The SNR condition ranges from 15dB to 0dB, 5dB decrease each step. 

In order to link the results of the matched condition paradigm, the experiments 

were conducted in two conditions: in the first part, a slack mismatched condition 

which allows researchers to use the statistics of test data is adopted. In the second, a 

strict mismatched condition which allows no knowledge of the test data is adopted. 

Note that only one classifier is train in both parts. The difference between slack and 

strict mismatched condition lies in the testing stage. For strict condition, both training 

and testing samples were normalized using the same scaling factor (computed from 

the training set) whereas for slack condition, training and testing samples were 

normalized using different scaling factors according to the noise type and SNR. 
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4.2 Peripheral Materials 

This section tackles several “minor issues” that facilitate or jeopardize the major 

objective. Some of them affect features or classification results in an extreme sense, 

even represent a shift of paradigm; others are less important but still more or less 

boost performance when properly handled. 

 

4.2.1 Parameter Selection by Grid Search 

Kernel and SVM parameters 

Experiments showed that kernels other than linear do not further improve 

classification results in our case. This is probably because that the data samples are 

highly overlapping and that the dimension is high. Actually, in non-separable cases, 

curvy decision boundary helps only when the distribution of samples from different 

classes are very different. In our cases, distributions of each RS features are very 

similar between classes so applying RBF kernels does not improve performance. (A 

reply to Yeh’s future work in Section 1.3) 

SVM parameters have an impact on the shape of decision boundaries and thus 

influence robustness. Robustness is a question of generalization, so if the boundaries 

are very twisted, the classifier will have reduced performance of generalization. 

However, robustness of features should not live on classifier’s competence of 

generalization. In our experiments, SVM parameters are selected to maximize the 

performance in training set since our assumption of a strict mismatched condition 

allows us to use no more information other than training samples. 

In our cases of RBF kernels, there are two parameters: parameter C, the 

regularization cost (or ν in the case of ν-SVM; in our case, ν-SVM has numerical 

problem determiningν), and parameter γ of RBF kernel. Grid search is applied to find 

the best parameter combination (C, γ). There are other strategies for parameter 

selection (cf. Friedrichs and Igel, 2004), but a simple grid search serves our purpose. 

The procedure of grid search has two phases, coarse search and fine search. Coarse 

search finds a general trend of how the parameter combination influences 

performance and fine search zooms in a specific area in order to find a better result 

(Chang and Lin, 2011). The results of grid search on different databases, feature sets 

are shown in following Tables. All tests are based on strict mismatched condition and 

speaker independent setting. 
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 Both SVM and ν-SVM have some problems in parameter settings when 

encountering highly overlapping problems. If the regularization term C of linear 

kernel SVM is too large, the algorithm will converge in a very slow fashion; the 

counterpart of C in ν-SVM, parameter ν, cannot be set too large. In our experiments, ν 

cannot be larger than 0.2152 if the case is Aibo Corpus, and it cannot be larger than 

0.5 if the case is Berlin Database. 

Table 4.2.1: Parameter selection in AEC database using full RS feature set. 

Database: Aibo Emotion Corpus 

Feature set: r180 

Normalization to [0, 1] 

ν-SVM with linear kernel 

ν UR WR 

0.1 11.0990 10.8998 

0.2 23.7597 53.6030 

0.21 25.9669 57.9145 

0.215 26.5859 56.9820 

0.2151 24.1896 59.0893 

0.2152 n/a n/a 

 

 

Table 4.2.2: Parameter selection in BES database using full RS feature set. 

Database: Berlin Emotional Speech Database 

Feature set: r180 

Normalization to [0, 1] 

ν-SVM with linear kernel 

ν UR WR GR 

0.05 62.9833 65.0467 59.5497 

0.1 64.2851 65.9813 61.1472 

0.15 64.7768 66.1682 61.5982 

0.2 63.9185 65.9813 60.6937 

0.25 63.8075 65.9813 60.4542 

0.3 63.5807 66.1682 59.8891 

0.35 62.5823 65.4206 59.3010 

0.4 61.0858 64.6729 57.1871 

0.45 59.3344 63.1776 55.2406 

0.5  n/a  n/a  n/a 
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In simpler (separable) cases, ν-SVM is known for its convenience of parameter 

tuning; in our cases, SVM is a superior option. All assessment metrics exhibit higher 

performance for the original form of SVM; therefore we carried on experiments with 

the original form of SVM. When C grows larger, it takes much longer to compute the 

decision boundaries. This phenomenon only happens in linear kernel because linear 

kernel only allows linear separation. In this case, there will be a lot of misclassified 

samples, so the kernel becomes very dense and optimization becomes more difficult 

(large C indicates smaller allowable distance from the decision boundary.).  

The impact parameter C has on performance was simply a trade-off between UR 

and WR when using i384 features. The best C was around 2ିହ for i384 and it was 2 

for r180 features. The discordance became a problem later when we attempted to fuse 

the two feature sets. Larger value of the regularization term C did not change 

classification in Berlin Database, which is in accordance with previous report (Keerthi 

and Lin, 2003). 

 

Table 4.2.3:  

Database: Aibo Emotion Corpus 

Feature set: r180 

Normalization to [0, 1]  

C-SVM with linear kernel 

C UR (%) WR (%) Training Time 

(sec) 

1 40.8539 38.0162 117.5781 

4 40.4612 38.3311 139.2412 

16 41.1159 38.2342 212.9472 

64 40.9177 38.0162 530.5290 

256 40.5074 38.2463 1896.6185 

1024 39.6739 38.0162 >7200 

 

Table 4.1.4: 

C UR (%) WR (%) Training Time (sec)

0.0039 35.1718 36.2965 194.2642 

0.0078 36.6687 36.9868 185.4706 

0.0156 37.9080 37.6892 184.7538 

0.0312 38.6105 37.8467 179.2178 

0.0625 39.2341 38.1252 169.9313 

0.125 39.6744 37.7377 148.4252 

0.25 40.2018 37.5802 155.9607 
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0.5 41.0704 38.0041 179.4198 

1 40.8539 38.0162 211.7685 

2 41.2416 38.5370 216.3879 

4 40.4612 38.3311 228.1803 

6 40.522 38.3553 249.0802 

8 40.8762 38.3069 252.9136 

12 41.0623 38.2827 236.2706 

16 41.1159 38.2342 266.8908 

20 40.7435 38.1252 278.7337 

24 41.2673 38.3674 285.9171 

28 41.0141 38.1737 292.3508 

32 41.0003 38.0041 299.1315 

 

Table 4.2.5 

Database: Aibo Emotion Corpus 

Feature set: i384 

Normalization to [0, 1] 

C-SVM with linear kernel 

C UR (%) WR (%) Training Time 

(sec) 

0.0039 39.8802 37.5076 243.5482 

0.0078 40.4281 38.9851 246.4208 

0.0156 40.9513 39.8571 296.5431 

0.0312 41.0799 39.7239 311.3814 

0.0625 40.8276 39.2879 300.0468 

0.125 39.6519 38.6218 - 

0.25 39.0249 38.6702 - 

1 38.3846 39.0335 377.3136 

2 37.9609 38.9851 - 

3 37.6471 38.9367 - 

4 37.7094 39.1183 456.2891 

6 37.1659 39.3848 - 

8 37.1238 39.4938 - 

16 37.2128 39.5785 741.8974 

64 36.9992 39.4695 1704.751 

256 36.5811 39.6512 - 

1024 - - ???? (>3600*5) 
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Table 4.2.6: 

Database: Berlin Emotional Speech Database 

Feature set: r180 

Normalization to [0, 1] 

C-SVM with linear kernel 

C UR (%) WR (%) 

0.0625 62.9155 65.0467 

0.125 64.4259 66.1682 

0.25 64.3638 65.7944 

0.5 67.0633 68.0374 

1 66.1917 67.2897 

2 67.7281 68.7850 

4 64.775 66.3551 

8 64.5947 66.3551 

16 63.6399 65.7944 

 

Table 4.2.7 

Database: Berlin Emotional Speech Database 

Feature set: i384 

Normalization to [0, 1] 

C-SVM with linear kernel 

C UR (%) WR (%) GR(%) 

0.0039 28.793 30.2804 0 

0.0078 46.5434 47.8505 0 

0.0156 53.9342 54.7664 38.5244 

0.0312 64.393 64.8598 63.0003 

0.0625 67.833 68.972 67.1822 

0.125 69.2811 70.4673 68.7423 

0.25 67.7995 69.1589 67.2293 

0.5 66.4909 68.2243 65.6157 

1 65.3944 67.1028 64.5396 

2 65.5069 67.2897 64.627 

4 65.5069 67.2897 64.627 

8 65.5069 67.2897 64.627 

256 65.5069 67.2897 64.627 
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Figure 4.2.1 Grid search for parameter selection in Berlin Database. 
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(a) (b) 

(c) (d) 

Figure 4.2.2: Grid search for parameter selection in Berlin Database (ν-SVM). 

(a) show the result of coarse-scale search. (c) is a 3D version of (b). (d) is the result of 

fine-scale search. 

 

4.2.2 Cross-validation Issues in Berlin Database  

 In Berlin Database, there are only 535 wav files that belong to 7 classes. The 

number of features is 180 (RS) or 384 (INTERSPEECH). As rule of thumb, the 

number of training samples is better to be 5 or 10 times to the number of features. If it 

is not the case, cross-validation (CV) is suggested to be employed for a better 

estimation of performance.  

There are several schemes of cross-validation. Stratified 10-fold cross-validation 

schemes are widely adopted to ensure a better (unbiased and minimal variance) 

estimator. Nevertheless, in our experiments, we intended to apply the same criterions 

to both Aibo Corpus and Berlin Database. Since a speaker independent 
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training/testing configuration was set in Aibo Corpus, we decided to apply 10-fold 

cross validation to Berlin Database according to the 10 speakers. 

One merit from speaker independent settings is that the performance estimator is 

fixed. In random 10-fold cross-validation, the estimator is a random variable, which 

makes comparison between feature sets harder. The downside, of course, is that the 

performance gets lower than that in a stratified cross-validation. Experimental results 

in Table 4.2.8 shows about 7% decrease when adopting speaker independent settings. 

 

Table 4.2.8: Comparison between speaker dependent and independent settings 

Speaker dependent setting was carried out by random 10-fold CV; the results are shown in the upper 

chart. Speaker independent setting was carried out by 10-fold CV according to 10 speakers; the results 

are shown in the lower chart. Both tests were conducted under clarity condition. Note that Anger gets 

more confusion with Happy, and Neutral becomes less distinctive under speaker independent settings. 

H A D F N B S Recall UR 

H 33 23 2 10 3 0 0 46.5% 73.2% 

A 9 115 0 2 1 0 0 90.6% WR 

D 1 2 25 8 5 3 2 54.3% 75.9% 

F 18 4 2 41 4 0 0 59.4% GR 

N 3 0 4 1 65 5 1 82.3% 70.8% 

B 1 0 3 0 7 67 3 82.7% 

S 0 0 0 0 1 1 60 96.8% 

50.8% 79.9% 69.4% 66.1% 75.6% 88.2% 90.9%

H A D F N B S Recall UR 

H 30 27 3 11 0 0 0 42.3% 66.3% 

A 20 103 1 3 0 0 0 81.1% WR 

D 3 3 20 11 4 3 2 43.5% 68.8% 

F 21 5 3 37 3 0 0 53.6% GR 

N 3 0 4 6 55 9 2 69.6% 63.5% 

B 1 0 3 0 8 64 5 79.0% 

S 0 0 1 0 2 0 59 95.2% 

38.5% 74.6% 57.1% 54.4% 76.4% 84.2% 86.8%
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4.3 Experiments on Robustness  

4.3.1 Slack Mismatched Condition 

Some abbreviations are listed in this passage. The proposed rate-scale features 

which contain spectro-temporal modulation information are called the RS features. 

The RS features comprise two subsets: the RSmu set consists of temporal mean of RS 

and the RSsd set consists of temporal standard deviation (SD) of RS. The 384 

INTERSPEECH features are denoted as i384, and the totality of RSmu and RSsd is 

denoted as r180. 

The following experimental results are split into two parts based on slack and 

strict matched conditions. All other setting are held the same, except for one thing: 

under slack condition, the hybrid feature set is i384 and r180 but under strict 

condition it is i384 and RSsd. The reason is that under slack condition, even RSmu is 

robust, so it can be added into the hybrid set. 

The results from slack mismatched condition are shown in Fig. 6 and Fig. 7 and 

Table 3 and Table 4. In both BES and AEC databases, the unweighted recall rate of 

RSsd features holds almost the same except for 0 dB condition. On the other hand, the 

performance of i384 has an apparent trend of decreasing. Although i384 fares about 

8% better than r180 does in clean condition, increasing advantage of RS features 

arises through decreasing SNR. Similar trends also appear under matched condition. 

There is one thing that needs notice: a single raise in UR does not mean that the 

performance is elevated under that SNR condition. It is the trend instead of a single 

point on the curve that matters. 
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Figure 4.3.1: Curves for UR v. SNR in BES database under slack mismatched 

condition.  

*i384: 384 baseline features used in INTERSPEECH 2009 Emotion Challenge.  

*r180: proposed spectro-temporal modulation (rate-scale) features.  

*r90: half of the proposed features with only temporal standard deviation (RSsd). 

*IR: i384 combining r180 features (564 features in total). w: white noise. b:babble noise. 

*Training/Testing set: 10-fold cross-validation with speaker independence 

 

  

∞dB 20dB 15dB 10dB 5dB 0dB

i384w 68.8119 60.3312 59.5984 61.0768 54.2032 47.9846

i384b 68.8119 57.6923 57.413 53.4125 50.7897 43.966

r180w 66.3769 66.1757 64.996 64.9484 63.1001 60.5604

r180b 66.3769 65.2422 65.6143 65.9263 61.8951 50.8454

IR_w 73.1573 66.0913 62.8653 64.9214 61.2421 55.389

IR_b 73.1573 66.3826 67.2531 62.6277 59.3636 55.4546

r90w 52.5284 52.9064 51.9664 52.2298 51.6153 44.9501

r90b 52.5284 52.4778 52.9681 54.1444 49.8457 38.9375
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Table 4.3.1: The confusion matrices of r180 under ∞, 0dB white noise and 0dB babble 

noise condition. 

∞ dB   

 H A D F N B S   

H 29 24 5 13 0 0 0        

A 25 95 3 3 1 0 0        

D 2 3 27 9 1 2 2        

F 20 3 7 37 2 0 0        

N 2 0 8 6 52 9 2        

B 1 0 4 0 8 60 8        

S 0 0 1 0 1 0 60        

UR 66.38%  

WR 67.29%  

GR 64.29%  

0 dB (white noise) 0 dB (babble noise) 

 H A D F N B S H A D F N B S 

H 26 29 5 10 1 0 0 24 20 5 16 5 1 0 

A 20 103 2 1 0 0 1 34 80 5 8 0 0 0 

D 2 3 26 9 2 3 1 6 2 23 6 6 1 2 

F 20 4 10 31 2 0 2 18 4 12 24 6 0 5 

N 2 0 17 6 45 6 3 2 0 15 6 41 6 9 

B 1 0 7 1 9 57 6 0 0 4 0 20 43 14 

S 0 0 7 0 7 0 48 0 0 4 2 6 7 43 

UR 60.56% 50.85% 

WR 62.80% 51.96% 

GR 58.48% 49.30% 

*The columns are classification results and the rows contains true label. 
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Figure 4.3.2: The performance of four feature sets in two type of noise under slack 

mismatched condition. 

*w: white noise. b: babble noise. r90: RSsd; 

 

Table 4.3.2: Confusion matrices of classification result using r90 feature set. 

 ∞dB 0dB (white noise) 0dB (babble noise) 

 A E N P R A E N P R A E N P R 

A 284 141 83 29 74 164 151 126 72 98 172 125 148 64 102

E 183 712 409 66 138 236 564 409 115 184 194 481 536 96 201

N 546 1118 2721 338 654 611 993 2475 590 708 709 957 2528 515 668

P 10 20 87 54 44 21 33 82 51 28 23 35 87 40 30

R 91 84 184 72 115 72 84 194 89 107 77 102 191 82 94

UR 38.10% 30.72% 28.58% 

WR 47.06%  40.70% 40.15% 

GR 35.79%  29.27%  26.68% 

  

∞dB 15dB 10dB 5dB 0dB

i384w 34.0805 31.7828 31.3663 29.6525 27.3104

i384b 34.0805 30.9148 29.7634 28.0848 27.1918

r180w 38.0958 36.8806 35.5228 33.025 30.7178

r180b 38.0958 36.3379 35.4951 32.7817 28.5766

IR_w 39.5223 36.034 35.2724 33.89 31.2807

IR_b 39.5223 35.8016 34.6279 33.1507 30.4382

r90w 38.9796 38.5473 37.9525 35.7288 32.4861

r90b 38.9796 38.5652 38.0537 36.744 34.4989
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4.3.2 Strict Mismatched Condition 

Under strict mismatched condition, the performance of both r180 and i384 

features decreases in a rather fast fashion. On the contrary, RSsd holds fair 

performance when noise is not too severe.  

 

Figure 4.3.3: Curves for UR v. SNR in BES database under strict mismatched 

condition.  

*Training/Testing set: 10-fold cross-validation with speaker independence 

*IR: hybrid feature set of i384 and r90. 

 

   

∞dB 20dB 15dB 10dB 5dB 0dB

i384w 65.4998 44.3692 40.7651 35.9994 30.0137 27.0519

i384b 65.4998 49.7023 45.2093 38.4405 30.3997 22.2993

r180w 66.5532 62.2958 52.967 39.377 29.652 22.5866

r180b 66.5532 64.8847 60.6835 50.6261 35.3618 25.8061

IR_w 68.6049 38.3585 34.3785 30.7386 26.8331 24.1201

IR_b 68.6049 46.1104 38.7074 28.3047 21.1159 17.0742

r90w 52.5284 52.9064 51.9664 52.2298 51.6153 44.9501

r90b 52.5284 52.4778 52.9681 54.1444 49.8457 38.9375
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Table 4.3.3: Confusion matrix using r180 feature set under ∞, 0dB white noise and 

0dB babble noise condition in Berlin Database. 

∞ dB   

 H A D F N B S   

H 19 25 6 19 2 0 0        

A 33 86 3 4 1 0 0        

D 7 3 20 7 7 1 1        

F 22 4 9 22 10 0 2        

N 2 0 7 9 43 8 10        

B 0 0 2 1 13 60 5        

S 0 0 1 2 9 7 43        

UR 52.53%  

WR 54.77%  

GR 49.25%  

0 dB (white noise) 0 dB (babble noise) 

 H A D F N B S H A D F N B S 

H 11 11 8 31 10 0 0 12 19 1 21 14 1 3 

A 33 46 8 34 5 1 0 41 68 1 11 4 2 0 

D 4 0 13 12 10 1 6 5 2 1 7 20 1 10 

F 3 1 8 39 12 0 6 7 2 0 16 20 2 22 

N 0 0 4 5 42 0 28 0 0 0 2 31 3 43 

B 0 0 2 1 23 32 23 0 0 0 0 9 33 39 

S 0 0 0 1 7 1 53 0 0 0 0 2 0 60 

UR 44.95% 38.94% 

WR 44.11% 41.31% 

GR 39.90% 25.52% 
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 Figure 4.3.4: The performance of four feature sets in two type of noise under strict 

mismatched condition. The database is the Aibo Emotion Corpus. 

 

Table 4.3.4: Confusion matrices of classification result using r90 feature set. 

 ∞dB 0dB, white noise 0dB, babble noise 

 A E N P R A E N P R A E N P R 

A 364 91 55 30 71 76 37 55 398 45 277 51 92 132 59

E 400 660 198 95 155 84 221 235 855 113 358 321 408 306 115

N 1356 985 1656 595 785 260 295 998 3399 425 1107 350 2028 1418 474

P 28 17 35 77 58 4 3 17 172 19 23 5 47 110 30

R 168 66 107 97 108 29 16 70 377 54 117 27 141 193 68

UR 37.95% 27.11% 33.59% 

WR 34.70%  18.42%  33.96% 

GR 35.56%  19.30%  29.72% 

* The columns are classification results and the rows contains true label. 

  

∞dB 15dB 10dB 5dB 0dB

i384w 40.8836 28.484 27.7508 29.9478 23.403

i384b 40.8836 31.1979 28.5196 25.6792 23.2721

r180w 38.4873 30.9367 22.3641 22.2385 19.9756

r180b 38.4873 36.2747 29.9413 24.1416 21.3265

IR_w 39.2886 27.7961 27.7749 26.6509 21.1784

IR_b 39.2886 30.6028 27.06 25.5483 24.0099

r90w 37.9466 37.4443 37.0016 34.1584 27.1089

r90b 37.9466 37.6617 37.1286 36.2775 33.591
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4.3.3 Discussion on Emotion 

Emotions at opposing extremes of arousal are easier to discriminate according to 

the dimensional emotion theory. This phenomenon is observable in Table 5 (H versus 

Others for valence and HADF v. NBS for arousal). The presence of noise inflicts 

more damage on recognition of closer emotions (emotions in the same emotion family) 

than that on more unrelated emotions. Again in Table 5, for example, it is more likely 

that the classifier confuses Neutral with Boredom but it is less likely that the classifier 

confuses Sadness with Anger (cf. (Schuller et al, 2006) for similar tests). The 

similarity emotion psychology described above also corresponds to the results of data 

visualization in Figure 4.3.7.  

It is interesting when we take a look on how noise influences RSsd and further 

influences classification results. As Table 6 and Table 5 show, additive babble noise 

caused classification to skew toward neutral emotion (N) in both databases. This 

result is not unimaginable because babble noise contains numerous intelligible pieces 

of utterance. The superposition of those pieces of utterance makes an emotion neutral 

speech-like sound which shares similar traits with emotion neutral speech. Therefore, 

speech samples with high density of babble noise tend to be classified as Neutral. 

White noise, on the other hand, skews classification toward the emotion category 

that has more drastic change of pitch-related attributes. In the case of BES, it would 

be Fear and in AEC, it would be Positive (including Joyful and Motherese). One 

might wonder why in BES, the result was not skewed toward Happy. This is because 

in BES, the acoustics of Fear samples is much more significant than that of Happy 

samples. 

 

4.3.4 Discussion on Robustness 

In this paragraph, we discuss how noise affects RS features. Under slack 

mismatched condition, the effect from noise is partly removed by the normalization 

and therefore the degradation is greatly reduced; nonetheless, under strict mismatched 

condition, with the increasing presence of noise pattern, the structure of the temporal 

mean of RS features (later denoted as RSmu) is gradually destroyed, causing rapid 

degradation of the UR. This indicates that when there is no available knowledge that 

can adjust the testing sample, i.e. when it is unable to apply slack mismatched 

condition, even the RSmu are not robust. 



 

63 
 

On the other hand, the temporal standard deviation of the RS features (later 

denoted as RSsd) which fares limited ability of recognition is fairly robust even under 

strict mismatched condition. The reason the two sets of RS features differ in 

robustness performance is explained here. The RS features are derived from spectrum. 

When additive noise comes in, the energy is elevated thus resulting in elevated RSmu. 

The elevation is not removed under strict mismatched condition, so degradation in 

performance is inevitable. However, addition in spectrum inflicts minor effects to 

variance and that is why RSsd is robust. 

Noise with the same type usually has the similar RS pattern. Figure 4.3.5 show 

typical patterns of AWGN and babble noise respectively. Babble nose has stronger 

response in low rate region in both positive and negative rate half-planes while 

AWGN affects more on higher rate regions. In this point of view, how noise affects 

speech is merely a translation in the feature space. (Of course, additive noise does not 

result in pure translation.) This is why the classification (trained by RSmu and RSsd) 

appears to give all testing samples the same label in very low SNR under strict 

mismatched condition. 

 

(a) (b) 

Figure 4.3.5: Babble noise and white noise. 

Only RSmu is shown here. The x-axis represents “rate” and the y-axis represents “scale”. 
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Hybrid Features 

 In Fig. 4.3.1 and Fig. 4.3.2, under slack mismatched condition, combining i384 

with r180 features is beneficial to robustness in both AEC and BES databases. 

Unfortunately, the hybrid feature set did not work well under strict condition. The 

discrepancy is natural because under slack condition the distribution of testing 

samples can be regulated whereas under strict condition the normalization results in a 

biased distribution of testing data. For example, if testing samples are just a 

translation of original training samples, under slack condition, the translation can be 

compensated; however, under strict condition, the translation is not mended. In short, 

under matched or slack mismatched condition, a hybrid set of i384 and RS (either 

RSmu or RSsd) features helps the totality to gain robustness; under strict condition, 

applying robust feature sets in classification is more applicable. 

 An alternative argument that the normalization (under strict mismatched 

condition) worsened the robustness of i384 features. This argument is half right and it 

also implies that i384 features are not robust.  

 

Fusion Schemes 

 Instead of feature fusion, another approach is to fusion the decision of every 

learning machine, just like what the Emotion Challenge did. In our preliminary 

experiments, three classifiers (SVM’s) were built up using r180 features, i384 features, 

and r180+i384 features, respectively. The output then went through a majority 

mechanism to give a final decision. The following chart shows a slight performance 

boost (which is a better result than that of any single participants in 2009 Emotion 

Challenge). Two fusion schemes, committee and expert decision, were adopted and 

both resulted in better UR. Nonetheless, a robust fusion scheme against noise is still 

an open and ongoing quest because it requires several robust (and discriminative) sets 

of features.  

 

Feature Dimension 

A brief inspection of feature dimension or feature reduction is presented in the 

following figures. Results were visualized in two-dimensional plots. Sample 

distributions after applying linear discriminant analysis (LDA, which is supervised) 

and principal component analysis (PCA, which is unsupervised) showed similar 

trends.  

The results of LDA (training set) look like a belt of grouped clusters, inlaid with 

Anger, Joy, Fear, Disgust, Neutral, Boredom, and Sadness, in sequence. The order as 

well as the constellation also indicates the internal similarity between each class pair. 

High activation emotions (Anger, Joy, Fear, and Disgust) locate at adjacent places and 
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low activation emotions (Neutral, Boredom, and Sadness) also locate at adjacent 

places. Despite of LDA’s nearly perfect constellations in the training phase, its 

generalization ability appears to be slightly mediocre, at least not better than PCA. 

Comparing the right panels of Fig. 4.3.6 and Fig. 4.3.7 (a), we can observe resembling 

trends such as the fact that Anger and Joy are highly overlapping. 

In unsupervised feature reduction scheme (PCA), there is no apparent 

constellation for samples from the same emotion class. However, high activation 

emotions and low activation emotions still distribute at opposing locations. 

 

(a) Leaving speaker 10 out. 

(b) Leaving speaker 5 out. 

Figure 4.3.6: Reducing feature dimension (r180) to two using LDA. 
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(a) Reduction by principal component analysis 

(b) Reduction by t-distributed Stochastic Neighbor Embedding 

Figure 4.3.7: Visualization after reducing feature dimension (r180) to two. 

*Green circles = Happy; Red squares = Anger; Magenta pentagons = Disgust; Yellow hexagons = Fear; 

Black crosses = Neutral; Cyan plus signs = Boredom; Blue asteroids = Sadness. 
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Table 4.3.5: Comparison between combining and the original models 

r180 

A E N P R Recall Precision UR UP 

A 392 104 44 24 47 64.16% 18.56% 41.24% 31.67% 

E 377 735 209 69 118 48.74% 34.17% WR 

N 1171 1214 1847 402 743 34.35% 81.94% 38.54% 

P 21 19 54 74 47 34.42% 11.37% GR 

R 151 79 100 82 134 24.54% 12.30% 39.04% 

i384 

A E N P R Recall Precision UR UP 

A 339 167 39 19 47 55.48% 18.56% 40.94% 32.04% 

E 326 861 168 57 96 57.10% 33.58% WR 

N 1003 1423 1872 404 675 34.81% 83.27% 39.69% 

P 36 18 56 70 35 32.56% 11.11% GR 

R 123 95 113 80 135 24.73% 13.66% 38.87% 

r180+i384 

A E N P R Recall Precision UR UP 

A 296 188 51 20 56 48.45% 21.48% 38.84% 31.74% 

E 262 800 280 30 136 53.05% 31.09% WR 

N 690 1444 2208 266 769 41.06% 80.79% 42.33% 

P 21 31 51 59 53 27.44% 13.82% GR 

R 109 110 143 52 132 24.18% 11.52% 37.07% 

Committee 

A E N P R Recall Precision UR UP 

A 353 154 48 18 38 57.77% 21.64% 42.52% 33.27% 

E 304 836 234 30 104 55.44% 33.07% WR 

N 831 1424 2173 281 668 40.41% 82.37% 43.24% 

P 25 18 52 74 46 34.42% 15.74% GR 

R 118 96 131 67 134 24.54% 13.54% 40.53% 

Expert 

A E N P R Recall Precision UR UP 

A 454 84 20 30 23 74.30% 16.19% 42.73% 32.36% 

E 503 719 125 99 62 47.68% 36.35% WR 

N 1625 1096 1548 635 473 28.79% 85.10% 35.30% 

P 32 15 44 97 27 45.12% 9.96% GR 

R 190 64 82 113 97 17.77% 14.22% 38.24% 

*The ”Expert” fusion scheme is achieved by this mechanism: r180 decides Anger and Positive and i384 

decides the other three emotions. 
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4.4 Inspection into RS Features 

4.4.1 Higher-Order Statistics 

Temporal higher-order statistics of RS were a suggested feature set in Yeh’s 

future work, so we made an attempt to investigate it. The 3rd and 4th central moments 

were tested and the results are shown in the following tables (all tests were conducted 

under clarity condition and white noise). The definition of the two statistics is given in 

the following formulae.  

Sample skewness: γ ؜

1
T ∑ ሺx୲ െ xതሻଷT

୲ୀଵ

ሺ1
T ∑ ሺx୲ െ xതሻଶT

୲ୀଵ ሻ
ଷ
ଶ

 

Sample ሺexcessሻ kurtosis: κ ؜

1
T ∑ ሺx୲ െ xതሻସT

୲ୀଵ

ሺ1
T ∑ ሺx୲ െ xതሻଶT

୲ୀଵ ሻଶ
െ 3 

Note that the original definition of skewness and kurtosis is: 

Skewness: γ ؜ E ቈ൬
X െ µ

σ
൰

ଷ

቉ 

ሺExcessሻ Kurtosis: κ ؜ E ቈ൬
X െ µ

σ
൰

ସ

቉ െ 3 

 

 

Figure 4.4.1 Illustration of positive and negative skewness. 

 

 Experimental results did not show any clues that indicates any forms of 

improvements. Since skewness and kurtosis are descriptors of the shape of 

distributions, no improvement indicates that shape is not a major issue or that the 

distributions are highly overlapped. 
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Table 4.4.1 

Database: Berlin Emotional Speech Database 

Random 10-fold cross-validation 

Clarity condition 

No. μ σ γ κ UR (%) WR (%) 

1 O ൈ ൈ ൈ 75.41 76.07 

2 ൈ O ൈ ൈ 63.16 65.42 

3 ൈ  ൈ O  ൈ 53.11 55.70 

4 ൈ  ൈ ൈ  O 45.74 48.59 

5 O O ൈ  ൈ  76.30 75.14 

6 O ൈ O ൈ 74.03 75.14 

7 O ൈ ൈ  O 70.63 71.77 

8 ൈ  O O ൈ 66.70 69.53 

9 ൈ  O ൈ O 64.94 66.54 

10 ൈ  ൈ O O 54.23 56.82 

11 O O O ൈ 74.41 75.32 

12 O O ൈ O 73.40 74.39 

13 O ൈ O  O  70.95 71.96 

14 ൈ O O  O  65.55 67.85 

15 O  O O  O  71.70 73.27 

 

 

Figure 4.4.2: Box plot of RSmu in ∞ and 0 dB SNR condition (white noise). 

The vertical purple line separates the two SNR conditions. 

Left: ∞ dB SNR; Right: 0 dB SNR. (Same setting for Figure 4.4.2-5) 
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This figure shows RSmu in the form of vector. Notice that feature distributions in high rate RSmu regions 

(right hand region of each part) become biased by a positive value (contaminated by noise) in low SNR 

compared to that high SNR. 

*The top, middle, and bottom of a blue bar stand for the upper quartile, median, and lower quartile, 

respectively. 

 

 

Figure 4.4.3: Box plot of RSsd in ∞ and 0 dB SNR condition (white noise). 

The distributions remains almost the same in ∞ and 0 dB SNR condition. 

 

 

Figure 4.4.4: Box plot of temporal skewness of RS features in ∞ and 0 dB SNR 

condition (white noise). 
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An apparent trend of decreasing is observable in some RS regions. The decrease 

comes from the additive white Gaussian noise (AWGN) because AWGN results in a 

negative-skewed distribution on the spectrogram (χ2 distribution). The change of the 

distribution of skewness directly reveals the fact that skewness is not a robust feature. 

 

 

Figure 4.4.5: Box plot of temporal kurtosis of RS features in ∞ and 0 dB SNR 

condition (white noise). 

The change of the distribution of kurtosis is not obvious. Nevertheless, using kurtosis 

as a feature did not show any sign of recognizibility or robustness. 

 

4.4.2 Subset Features 

Intrinsic Dimension and Feature Reduction 

The RS features have high correlations with one another, especially with 

adjacent regions. If a feature set consists of high correlation elements, the feature set 

may very well be further reduced in number (not necessarily; sometimes highly 

correlated features still facilitates performance). Experiments showed the possibility 

to reduce feature dimensionality for both r180 and i384 features. It is likely that the 

most intrinsic features are not fully exploited in current methods. 
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Table 4.4.2: Intrinsic dimension estimation for currently used feature sets. 

Intrinsic dimension Estimate 

Estimator            Features r180 i384 

Correlation dimension 4.6457 2.6871 

Eigenvalue evaluation 8 6 

Maximum likelihood 13.2327 26.1225 

Geodesic minimum spanning tree 12.4757 45.3283 

 

 In Yeh’s previous work, she discussed feature selection or reduction in a 

quantitative way. Nonetheless, the analysis was inconclusive. Which feature should be 

included or excluded is still an open question. Her final feature set is a chessboard 

selection version of the original r180. 

In the experiments this paper presents, feature selection was never the major 

attempt. The RS features certainly need refining, but the critical issue is feature 

extraction itself. The results of a basic feature reduction based on principal component 

analysis (PCA) are shown in the following tables and figures. Reducing 

dimensionality skews classification toward Neutral because Neutral comprises more 

samples and is easier to describe. The first principal component (pc1) of Aibo Corpus 

is similar to the first and the second one of Berlin Database (describing responses of 

ordinary speech). Resembling pairs can be also found in pc2 of Aibo Corpus and pc3 

of Berlin Database (describing very low rate region, possibly representing speech 

rate), and pc6 of Aibo Corpus and pc5 of Berlin Database (very low rate and scale, 

possibly intonation contour). 

As for the question “to what extent can we reduce the dimensionality,” our 

answer is “it depends on to what extent we can tolerate the performance loss.” 

Reducing feature dimensionality by PCA did not show any signs of performance 

enhancement. Rather, the relation between dimensionality and performance is a 

trade-off. 

 

Table 4.4.3: Classification results of features with reduced dimensionality 

The number M following r represents the first M principal components. 

r180 

A E N P R Recall Precision UR 

A 385 98 53 16 59 63.01% 18.64% 40.24% 

E 367 699 233 68 141 46.35% 33.21% WR 

N 1140 1207 1881 361 788 34.98% 81.43% 38.34% 

P 19 19 38 71 68 33.02% 12.03% GR 

R 155 82 105 74 130 23.81% 10.96% 38.11% 
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r127 

A E N P R Recall Precision UR 

A 382 107 42 29 51 62.52% 18.13% 40.97% 

E 368 738 209 67 126 48.94% 33.36% WR 

N 1180 1267 1775 432 723 33.01% 81.09% 37.58% 

P 24 20 51 79 41 36.74% 11.63% GR 

R 153 80 112 72 129 23.63% 12.06% 38.78% 

r89 

A E N P R Recall Precision UR 

A 371 102 43 32 63 60.72% 17.27% 38.95% 

E 370 715 212 73 138 47.41% 33.55% WR 

N 1219 1201 1765 447 745 32.82% 81.83% 36.82% 

P 30 25 43 68 49 31.63% 9.65% GR 

R 158 88 94 85 121 22.16% 10.84% 36.66% 

r47 

A E N P R Recall Precision UR 

A 335 122 57 21 76 54.83% 15.83% 37.17% 

E 350 718 226 69 145 47.61% 32.86% WR 

N 1252 1238 1707 440 740 31.75% 79.58% 35.63% 

P 28 23 48 65 51 30.23% 9.53% GR 

R 151 84 107 87 117 21.43% 10.36% 35.15% 

r13 

A E N P R Recall Precision UR 

A 265 116 90 62 78 43.37% 13.95% 34.21% 

E 322 589 362 134 101 39.06% 29.07% WR 

N 1120 1196 2008 690 363 37.34% 76.26% 36.43% 

P 32 28 49 87 19 40.47% 8.06% GR 

R 160 97 124 106 59 10.81% 9.52% 30.79% 

r6 

A E N P R Recall Precision UR 

A 277 136 91 86 21 45.34% 13.58% 31.02% 

E 341 587 384 126 70 38.93% 27.51% WR 

N 1219 1265 2009 596 288 37.36% 74.57% 35.95% 

P 38 45 67 57 8 26.51% 5.91% GR 

R 165 101 143 99 38 6.96% 8.94% 26.12% 

*The dimension reduction toolkit was provided by (van der Maaten, 2009). 
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Figure 4.4.6: First eight principal components on RS plot (Aibo Corpus) 

 Temporal mean Temporal standard deviation 
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*The meaning of the principal components latter than eighth is not obvious. 
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Table 4.4.7: First eight principal components on RS plot (Berlin Database) 

 Temporal mean Temporal standard deviation 
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Subsets and combining models 
This section investigates the performance the subsets of RS features can achieve 

and whether the combining models improve performance. The RS features were 

partitioned into several combinations. Details information and experiment settings are 

shown in following tables. All tests were conducted under strict mismatched condition 

using Aibo Corpus. 

We found that even if the combining model improves performance, the 

performance was still worse than that of the whole set. These results show indicate 

that not all sort of combining models improve performance. It is recommended that 

features with different properties be used in different classifiers (or systems). 

Classifiers using features that have similar properties are almost useless in combining 

models. For feature subsets with similar properties, “the whole is more than the sum 

of its parts.” 

 

Scale partition 

Table 4.4.3: Recognition rate of different scale subset 

Subset 1: scale = 2-1; Subset 2: scale = 20; Subset 3: scale = 21; Subset 4: scale = 22; Subset 5: scale = 23 

UR WR GR 

Subset 1 37.3423 38.0647 34.879

Subset 2 37.2518 33.2809 35.0134

Subset 3 37.7067 34.3951 35.1747

Subset 4 37.7015 36.0906 35.4039

Subset 5 37.5182 35.5577 35.319

Committee 39.5575 37.1459 36.7967

 

Rate partition 

Table 4.4.4: Recognition rate of different rate subset 

Subset 1: rate ranges from 21 – 22; Subset 2: rate ranges from 23 – 24; Subset 3: rate ranges from 25 – 26; 

Subset 4: rate ranges from 27 – 28; Subset 5: rate ranges from 29 

UR WR GR 

Subset 1 32.957 33.6442 31.7611

Subset 2 34.8385 33.9833 33.3662

Subset 3 36.6005 30.5438 34.4506

Subset 4 34.7996 27.9884 31.7499

Subset 5 30.6498 29.2964 28.0137

Committee 35.7428 32.7477 33.2654
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High-rate/low-rate partition 

Table 4.4.5: Confusion matrices using high-rate/low-rate features. 

Subset 1: rate ranges from 21 - 25; Subset 2: rate ranges from 26 - 29; Subset 3: All rates 

Low rates 

A E N P R Recall Precision UR UP 

A 345 120 51 27 68 56.46% 15.58% 37.88% 29.82% 

E 389 699 253 53 114 46.35% 31.98% WR 

N 1289 1269 1679 352 788 31.23% 78.02% 35.39%

P 31 19 52 67 46 31.16% 12.05% GR 

R 161 79 117 57 132 24.18% 11.50% 36.13%

High rates 

A E N P R Recall Precision UR UP 

A 399 99 35 14 64 65.30% 15.41% 37.77% 30.04% 

E 471 667 161 69 140 44.23% 33.02% WR 

N 1500 1148 1346 401 982 25.03% 81.63% 31.68%

P 39 27 36 60 53 27.91% 9.74% GR 

R 180 79 71 72 144 26.37% 10.41% 35.09%

All rates 

A E N P R Recall Precision UR UP 

A 392 104 44 24 47 64.16% 18.56% 41.24% 31.67% 

E 377 735 209 69 118 48.74% 34.17% WR 

N 1171 1214 1847 402 743 34.35% 81.94% 38.54%

P 21 19 54 74 47 34.42% 11.37% GR 

R 151 79 100 82 134 24.54% 12.30% 39.04%

*The combining model got 41.12% UR and 38.74% GR. It did not improve even 

class-wise performance, let alone overall performance. 
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4.5 Emotion in Perceptual Features 

4.5.1 Acted Emotions 

 Acted emotions are easier to recognize both to human and to machines. However, 

similarity does exist between some emotions. As mentioned in Section 2.3, anger and 

joy are prone to be misidentified through vocal communications in spite of the fact 

that it is highly unlikely that people confuse the two in facial expressions. The RS plot 

showing RSmu and RSsd features of the seven emotions in Berlin Database are shown 

in following figures.  

1. Climbing Voice 

High activation emotions, namely Anger and Happy, have strong 

responses in “climbing voice” (left part of RS plots); low activation 

ones (Neutral, Boredom, and Sadness), on the other hand, have weak 

response in climbing voice. This fits intuition and everyday experiences 

because people tend to speak with plainer intonations when they feel no 

interest in the conversation or feel nothing particular. When people are 

sad, they speak slower and with less upward intonation. The imbalance 

between upward and downward intonation is the most significant 

indicator of high and low activation emotions. 

2. Speaking rate 

Low rate areas are indicators of speaking rate. When the speaking rate is 

slow, very low rate area (rate<2) will have much response. Speaking 

rate is a good separator of low activation emotions. 

3. Pitch 

Pitch activities usually become much lively when people are activated. 

Although the RSmu plots showed no apparent differences, the RSsd plots 

do. The RSsd plots of Happy and Anger showed vivid activities, while 

those of Neutral and Boredom showed plain. Note that the maximum 

value of each plot is different. 

4. Low scale variation 

The variation of low scale regions is a secondary discriminative factor 

for emotions at similar activation level. Anger and Happy have strong 

variation (RSsd) in low scale regions while Disgust and Fear do not. 
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(a) Happy 

(b) Anger 
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(c) Digust 

(d) Fear 
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(e) Neutral 

(f) Boredom 
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(g) Sadness 

Figure 4.5.1: The RS features of 7 emotions in Berlin Database. 

Upper left: RSmu in low rate region; Upper right: RSmu in high rate region. 

Lower left: RSsd in low rate region; Lower right: RSsd in high rate region. 

The figures were displayed in a zoomed-in fashion in order to highlight the nuance. 

 

4.5.2 Spontaneous Emotions 

 Spontaneous emotions are intrinsically similar to one another, especially when 

the emotions are not particularly strong. Another difficulty is that most of the 

emotions in Aibo Corpus have low validity. In this case, recognizing emotion by 

analyzing RS plot with bare eyes is barely feasible. 
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(a) Anger (b) Emphatic 

(c) Neutral (d) Positive 

(e) The Rest 

 

Figure 4.5.2 The RS features of the 5 emotions in Aibo Corpus. 

*RSsd plots were not displayed here for they provide equally low recognizibility. 
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Chapter 5  

Future Work and the Big Picture 

 

I always keep in mind that the ultimate goal of this research is to recognize affect 

in many different situations. Recognizing emotions in speech is just the starting point. 

Audio cues such as non-speech uttering, visual cues such as facial expression or 

gestures, text cues, and social context cues are candidates for horizontal expansion. 

Vertical expansion research including speaker or gender or age normalization 

continues to be a challenge under current research paradigm in the future. 

 

5.1 Speaker Normalization 

Some issues of speaker normalization have to be considered under current 

paradigm of RS features. The speech samples from speakers of different genders or 

ages have different “hot areas” on the RS plot. For example, speech samples from 

male speaker have stronger response in 128-rate region while those from female 

speaker have strong response in 256-rate region. Response of scales also differs due to 

speakers. The plight is equivalent to a translation invariant problem. This could be 

solved if speaker identification or gender recognition is applied prior to emotion 

recognition. 

 

5.2 Extension to Other Databases 

If the learning result can be extended to other databases, the learning is not only 

successful but also robust to the change of databases. If emotions do have 

prototypicality, inter-database validation should not be unfeasible. Here are some 

issues to be overcome: 

1. Definition of emotions in different database 

Emotions with the same name in different databases differ from their 

definition or expressional representation. They may very well share some 

prototypicality, but they are not the same. 
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2. Speaker variability 

Databases are constructed by different groups of people, containing different 

languages, ages, and cultural background. 

3. Emotion content 

Different databases include different types of emotions. If the emotions have 

no union, inter-database trial cannot be practiced. 

4. Multimodality and other cues 

As the main modality of emotion expression, vision plays an important role 

in affect recognition. For example, visual cues of anger and joy are so 

distinct that they hardly confusion us, but vocal cues of them are sometimes 

confusing. Besides vision, some database even include blood pressure, heart 

beat, electroencephalogram (EEG), functional magnetic resonance imaging 

(fMRI), galvanic skin response (GSR, a.k.a. skin conductance), etc. 

5. Interference 

Although contemporarily popular databases seldom contains defect, in the 

future, databases will be obtained with less control. On the occasion, 

problems such as missing data, reverberation, packet loss (such as that in 

voice over Internet protocol), or issues about codices will be met. 

As for database, the Danish Emotional Speech Database (Engberg et al., 1997), 

the Speech under Simulated and Actual Stress Database (SUSAS) (Hansen and 

Bou-Ghazale, 1997), and the 2002 Emotional Prosody Speech and Transcripts acted 

database (Hirschberg et al., 2003) are some early audio database; the Vera Am Mittag 

Corpus (VAM) (Grimm et al., 2008) offers audiovisual data. 

 

5.3 Other Forms of Implementation 

5.3.1 Sparer Kernel Machines 

 In our implementation, the support vector machine (SVM) was the core classifier. 

However, the kernel was not sparse at all. Most of the samples were support vectors. 

If the problem itself is highly overlapping or the intrinsic noise is severe, maybe it is 

wiser to adopt a sparser kernel machine. Relevance vector machine (RVM) is reported 

to be sparser than SVM and sometimes it even has better performance (Tipping, 

2001). 
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5.3.2 Regression-converted classification 

Emotion research differs other classification problems from one aspect: in the 

process of labeling during the construction of a database, the final label is determined 

by several expert labelers. Every labeler has their recognition result, and the average 

result is the validity and the majority label becomes the final ground truth. Now that 

we have validity of an emotion category, we can implement several regressions and 

convert their results to a final soft-label classification. 

 

5.3.3 Decomposition 

The only thing forbidden under strict condition is the consistency between 

training and testing conditions because it is not a general solution and has suspicion 

on being ad hoc. Building up this paradigm of strict condition aims at finding out the 

most general system or the most robust features to deal with real-life situations. 

A graphical model helps to decompose the whole problem. It can take different 

situations into consideration. This could establish a system having approximately the 

same performance as that in matched condition.  

Incorporating noisy samples into training set is certainly useful for tackling noise, 

but it also has a risk of contaminating the original clean set. It might cause more 

intrinsic noise which undermines the recall rate if the noise space is not orthogonal to 

the signal space. Allowing to include noisy samples into training set is an equivalent 

justification of applying noise reduction technique in advance.  

 

5.3.4 Boosting 
Combining models is a possible way to boost performance. Preliminary 

experiments have shown that direct addition of a robust feature set did not help the 

original set to counter the effect of noise. However, combination of several learning 

machines can possibly boost their total performance as well as robustness. The 

INTERSPEECH 2009 Emotion Challenge is an evidence for the former; the latter can 

probably be achieved by similar schemes. 

 

5.3.5 Feature Set 
Since the intrinsic dimension estimation showed lower dimensionality for RS 

features (than that of i384), there may very well be some information that current RS 

does not extract. Temporal derivatives become a main category of suspicion. 
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Combination with prosodic or short-term or dynamic features in HTK or other 

traditions might also have some help. Pitch, on the other hand, is still an issue. Under 

current extraction scheme, r180 only contains “pitch information” rather than pitch 

itself. However, before any addition of feature set, robustness should always come in 

first place. 

Whether current RS feature extraction scheme has fully uncovered its potential is 

a question that requires exploration. In recent reports, features based on mechanisms 

similar to RS achieve over 80% UR in Berlin Database and over 90% UR when 

combining with prosodic features (Wu et al, 2010). 

 

5.4 Miscellaneous 

5.4.1 Manifold and Dimension Reduction 

The issue of manifold directly links the issue of feature reduction. Sometimes the 

features have very high dimensionality but the samples might distribute on a manifold 

that has very low intrinsic dimension. If this is the case, then the problem of manifold 

might be worthy of inspection. A manifold is a topological space that resembles the 

Euclidean space on a small enough scale. The surface of the Earth is a good example. 

On the surface of the Earth, as naïve version of our world view, it looks like that the 

world is flat and we can actually describe any place by two dimensions— longitude 

and latitude. See Figure 5.4.1 for more examples. Reduction of dimension is not the 

only merit we can obtain from manifold topology; it also helps to understand the 

physical meaning of our features. 

 

5.4.2 Discussion about Performance Metric 

 Classification results are usually shown in the form of confusion matrices. A 

confusion matrix consists of integer elements because a sample is either misclassified 

or not. However, in emotion research, even the ground truth is not always certain. We 

argue that a sample with high uncertainty should not be counted one misclassified 

sample; rather, it should be counted according to its validity. Therefore, a sample with 

60% validity should be counted as 0.6 sample, and the confusion matrix should be a 

real-valued one as opposed to an integer-valued one. 

 Another issue about confusion matrix is about data imbalance. In an imbalanced 

dataset, testing samples are not uniformly distributed through classes. In such a case, 
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precision becomes a biased metric (even useless) because it overestimates the actual 

precision of the majority and underestimates that of the minority. Whether to 

normalize the number of each class numerically deserves consideration. 

 

 

Figure 5.4.1: Surface of the Earth is the best example for manifold. 

The sphere (surface of a ball) is a two-dimensional manifold since it can be 

represented by a collection of two-dimensional maps. 
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