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On the Scheduling of Belief Propagation Decoding for Polar Codes

Student : Chen-Feng Liu Advisors : Prof. Hsiao-Feng Lu

Institute of Communications Engineering
National Chiao Tung University

Abstract

Channel coding is a secheme that adds-redundancy to messages for reliable
transmission. Many works have been devoting to constructing a coding scheme
that can transmit messages reliably at ratés set below the channel capacity. Polar
code is one such scheme ‘that can achieves channel ¢apacity theoretically under

successive cancellation (SC) decoding.

Besides SC decoding, there are other decoding algorithms such that as code
length increases, error rates of polar codes decrease more rapidly. For instance,
belief propagation (BP) decoding has been used to decode polar codes with error

rates better than the SC decoding.

BP decoder uses the information ignored by SC decoder, and its superiority
over SC decoder has been established in [1]. In this thesis, we propose a
scheduling for the BP decoding of polar codes that resembles the SC decoding.
By simulation over binary-input AWGN channel, we see that in some cases,

error performance in this schedule is better than that of BP decoding alone.
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Chapter 0O

Notations and Terminologies

We denote random variables by capital letters, X, and their sample values by the
corresponding lower-case letters, x. Matrices are represented by boldface capitals like
G, and corresponding boldface lower-case letters with underline and subscript denote
row vectors of the matrix, g ls the kth row vector of matrix G. Vector (uq,--- ,uy)
is abbreviated as u}’. A is a subset of integer; |A] is the size of set A. Let u, denotes
| A|-tuple vector, and indices of elements are included in A, ie., (u; : i € A). 1(g) denotes
indicator function of event E.

Consider a binary-input.discrete memoryless-channel (B-DMC) with input alphabet
X, output alphabet ) and transition probability P(y|z), = € X', y € ). The input alpha-
bet X is GF(2), the output alphabet ) and transition probability P(y|z) are arbitrary.
Bhattacharyya parameter of the B-DMC is

Z =2 Plyle=0)- P(yle = 1)

yeY
Symmetric capacity of B-DMC is mutual information of input and output when input

random variable is uniform distributed, i.e.,

P(ylz)
= Z Plyle)log, 1 1P(ylr =0)+ 3 P(ylz =1)

yey xeX

In this thesis, codes construction will be carried out over GF(2).



Chapter 1

Introduction

Polar codes, introduced by Arikan in [2], are provable to achieve channel capacity
for symmetric B-DMCs. As code length grows larger, some of coordinate channels seen
by individual bits become more reliable while the others get worse. The effect is called
channel polarization. Thus as code length-4V.— o0, fraction of coordinate channels are
noiseless, and we transmit information bits via these reliable coordinate channels. Besides
low encoding complexity, the SC decoder, proposed together with polar codes [2], also

has low decoding complexity.

1.1 Channel polarization

Channel polarization is an operation that combines N independent copies of B-DMC
into a vector channel, and then splits the vector channel into N binary-input coordinate
channels. In this thesis, we denote transition probability of vector channel with suffix,
i.e., Py. Besides suffix N, superscript (¢) is together with transition probability of the ith

coordinate channel, P](Vi).

1.1.1 Channel combination

This operation combines two identical and independent vector channels with input
alphabet XN/2 and output alphabet YV/2 into another vector channel with input alphabet
XN and output alphabet YV recursively.

The first level of recursion is shown in Fig. 1.1, where u; and uy are used to produce

xr1 and 5. Then, z; and x5 are transmitted through two independent B-DMCs. We can
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Figure 1.1: Fundamental block of recursive structure.
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Figure 1.2: Vector channel ;.

get transition probability of vector channel, P5 @ X? — )?,

Po(yy, yolur, uz) = Py, yolr1, 2)
= P(yﬂwl) : P(?/z‘@)

= P(y;|u1 © ug) - p(ys|uz)

For N = 4, channel combination is shown in Fig. 1.2. At first, the vector (uq, us, us, uy)
are calculated over binary field and permuted via Ry; then the permuted vector (vy, va, v3,
vy4) are sent through two identical vector channels P. Finally, (x1, 29, 3, x4) is transmitted
through four B-DMCs.

From Fig. 1.1 and Fig. 1.2, the transition probability of vector channel, Py : X* — Y*,

18

P4(y17 Yo, Ys, y4|u1, Uz, U3, U4)



= Po(yy, yolur © ug, uz © ug) - Po(ys, yy|uz, us)

= P(y;|us © uz © uz © ua) - P(yplus © ua) - P(ys|us © ua) - P(yy|us)

To generalize channel combination, we let N =2". At first, vector (uy,--- ,uy) is
calculated over binary-field and then permuted in block Ry. Permutation function of Ry
is
wir, ifkisodd, 1<i< %

2

V; =
Wk N, ifk:iseven,%—klﬁiﬁ]\f
2 2
The permuted vector (vy,vs, -+ ,vy) is decomposed into two vectors, (vy, vg, - - - ,U%) and
(U%H, ---,vy). The former is sent through the upper vector channel, Py/2, and the latter

is sent through the lower one. With n levels recursive operations, we transmit the vector
(1,--- ,zn) through N independent B-DMCs, yielding channel output (y,,---,yy) at
the receiver.

From recursive structure, shewn in Fig. 1.3, we know

(.’ﬁl,"',xN):(Ul,"',UN)G
Y R e NN —>o—> p > y
A A A b P > J1
u2 >\ _ > > P > y2
(] ;/\/// ° ° .
u3 Vﬂ - \\\ ° ° : P2 :
u > * * —>>—> P >
4 R »D—> A yN/2—1
. Ny A e o 0 > P >
: Y/ . L Yni2
VA > P,
/\ P
o /V\ /\’\ N/2
. VARVAR\ I > m >
o K //\\ "% .. —*‘?—> P > yN/2+l
s
Uyvs | |7/ 0 > - P > Yn/2i2
> >y
A ° o : P .
uN_2 /// . L4 o 2 o
>y * to—> >\
u ‘/7 T~ ° -»A ’E y _
N—_1 > > - N-1
A A LU > P -
N - ———— > P,
Ry P2
PN

Figure 1.3: Vector channel Py.
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G=BF®* and F = ,
11

B is called bit-reversed matrix. For an N-tuple vector, (t1,ta,- -+ ,tx), we represent the
indices of elements in binary sequence. For example, N = 8, (1, t2, t3,t4, 5, g, t7, lg)

:(tooo, t001, t010, ton, thO; t101, tllO, tlll)- After multlphed by bit-reversed matrix,

(t17 t27 t37 t47 t57 t67 t77 tS) B
= (000, too1, to10, to11, t100, t101, t110, t111) B

= (to00, t100, to10, t110, toor, tio1, tort, t1i1)
= (tla t5a t37 t77 t?) t67 t47 tS)
Given the generator matrix G, the transition probability of vector channel, Py : XV —
YV is
PN(yh' — 7yN|u17' "N 7uN>
=Py |y = u G)

= P(yfe)= - Pyylzy)

1.1.2 Channel splitting

Having combined N independent B-DMCs into a vector channel, the next step is
to split it into N binary-input coordinate channels. The transition probability of each

coordinate channel is defined as

P](\;)(yh L YN, ULy 7ui—1|ui)

= Z P(y17'“7yN7u17'“7uN)
P(u;)

N N—i
“i+1€X g

1
- Z WPN(yla”'ny|ulv"'qu)

N N—i
gy €EXN

= Y Pk Pl o Plyley),

N N—1i
ug  €EXN

Y =ulG, 1<i<N, N=2" n>1,



where the (yy, -+, Yy, U1, -+ ,u;—1) is considered as channel output and w; is the input

of the ith coordinate channel. Bhattacharyya parameter of the ith coordinate channel is

2P = 3 PR i = 0) - PO, i s = 1)

YNV eYN yi-lexi1

It is shown [2] that the transition probabilities of coordinate channels have the follow-

ing recursive property.

Py, yny - s Uz olusg 1)

I _a
= Z 9 PJ(\/}2<3/1; T YNy, UL DUz, e U3 D Ugi—2|Ugi—1 D Us;)

u2q

' P](\/Z)2<yN/2+1v Y Uy U, Ui |U;) 1)
and
P](\T%)(yl? YN, UL, ,uzi_1|uzz’)

L
— 9 P](V;2<y1’ N YN U D Ut Uiy DU 2 ugi—1 D Ua;)

~P](\;)2<yN/2+1"" s Uy U, Uy~ 5 Ui ;) (12)

1.2 Polar coding

Now, we consider block codesthat contain-polar codes as a special case. Let A be an
arbitrary subset of {1,2,--- ,N}. We fix A and u 4, but let U 4, be free vector; then we

get a block code taking the following form

8, 8,

291 =4

(xla"'wrN)ZQA +QAC 7K:|A|a
ng glN—K

€A, and1<i<K,

I, € A and 1 <m < N — K.
In particular, it is a coset code of a linear block code with generator matrix

gj 1

, K=1|A], ;€ A, and1 <i< K,

=JK



where the coset leader is

gll
U ge : , K=]A],l,€ A, and1 <m <N — K,
8 x
We denote this coset code as (N, A, u 4 ). We refer to A as information set and u 4 as the
frozen vector. The code rate of this coset code is |A|/N. Given the coset code (IV, A, u4),
we encode (uq,- -+ ,uy) into (1, -+ ,xy), and transmit (zq,--- ,xy) through N copies of
B-DMC. Upon receiving channel output (y,,-- ,yy), the task is to decode (g, -+, uy).
Polar codes are specified by the rule that minimizes an upper bound of error proba-
bility, and they are channel-specific, i.e., polar codes for two different channels may have

different information sets.

1.3 Thesis outline

In Chapter 2, we will introduce the successive cancellation (SC) decoder for the polar
codes. It is known that polar codes under SC decoding can achieve channel capacity over
symmetric B-DMCs [2]. In Chapter 3, wewill introduce the factor-graph representation
of polar codes and coordinatechannels. Another method has been developed to construct
polar codes for symmetric B-DMCs;-it will also be introduced in Chapter 3. Knowing
that the belief propagation (BP) decoder exhibits good error performance on turbo codes
and LDPC codes, it will be used to eliminate some drawbacks of SC decoder and will be
shown to have good error performance. In the last section of chapter 3, we will compare
the performances of SC and BP decoders at moderate code length. In Chapter 4, we will
use the idea of SC decoding to modify the scheduling of BP decoder. Simulation results
will be provided.



Chapter 2

Successive Cancellation Decoder

2.1 The decoding algorithm

For the coset code (N, A, u 4 )¢Since knowing u 4+ in advance, we set 4 4. = u 4. before

decoding. The output of SC decoder is

h(:yl?"'7yN7ﬁ’17"'7ﬂi—1), ifre A
U; =
Uj , if i e A°

where the decoding function for information bits is

(%) . .
3 P (y 3y 7u17"'7ui—1‘ui:0)
N 1 N
N 1IN 3ty Ui — T (21)

h(yys - sy, Gy Ui o) =
1%, “otherwise

Decoding error occurs when @ 4 # u 4. The block error probability is denoted by

Pe(Na A> QAC)'

2.2 Block error of SC decoding

For a fixed information set A,

PN(?J LY ’u17'” 7“’]\/)
P(ul,"',uNayl)"'ayN): : 2]]\\[[

and (ulu"' 7UN) EXN? (yla"' 7yN) eyN7

Define £ as the error event of SC decoding, i.e.,

g:{(ula'” yUN, Ypy 00 7yN) :Q_A(yla'” yYn, U, -0 7uN)%II_L_A}



Given a fixed u 4, the error probability Pr(&|y c=u,.) =

Uiy, ul) =

hyY, i), ifie A
if 7 € A

Uy ,

P.(N, A,u ). We denote by B;

the first SC decoding error occurs at the i¢th bit, i.e.,

Pr(€)

A~

Bi = {(u,y)) Uh(yY) = ua,- - Uia(yy, 857%) = iy,
Uiyt i) # ui
= {(y) OiyY) = wr,- Ui (g, 0i™?) = wi,
Uiyt ui™") # ui}
C (Y, ) Uiyl ui™) # )
= {(Uivayiv) 3PJ(\;)(917"' SUNS UL Ui |;)
<P 1, st u 1)}
— &,
Note that & = U;eaBB;, and {B;, i € A} are disjoint. Then
1
- > v, L (Elvac=ua)
uc EXN-K
= > 2N1—K DY PN(yQ{ziluiv) Lieasy)
ugc€XN-K u €XK yNeyN
yl M)

IN

IN

1
Z ON-K

u_AcEXNfK

UAEXK NeyN

> DR

€A

P
Z N y1 ’U1 Z 1(e
(] yf )e XN x YN =
Py (y [uy’)

ooy Bl -y e (2.2)
€A (u{\,,y{V)EXNX)}N €A
D> Py(ylul) | PV, ui us @ 1)

N % i—

2 pfy\r)(y{V,ul 1|Uz)

€A (u]l y)eXN x YN



Yy 3 3 Py(yMud) | PR ui | @ 1)
2N i

@/, N i1
(€A W €X (yN yi=1)eYN x xi-1 ul, € XN~ Py (yr s vy Jug)

-y 3 PO i w) | PVl ui e 1)

2 @), N -1,
€A u;eX (y{\’,ufl)e)ﬂ\’x/\’ifl PN (yl , Uy |ul)

1 i i
=D D5 AP =D Z(FY) (2:3)
€A u;€X €A
Following from (2.2) and (2.3), we arrive at the following inequality
Pr(&) <> Pr(&) <> Z(PY).
icA icA

From the above, the notion of polar code can be defined.

Definition 2.1. For a given code rate K /N, the coset code (N, A, u 4.) will be called a
polar code if the subset A with | A] =/ is chosen such that "._ , Z (P](Vi)) is minimized. O

Remark 2.2. The frozen vector u . can be chosen at will, because for additive-noise
channel the choice is insensitive to the code performance. Forssymmetric channels, choos-
ing 0 or 1 for frozen bits would not make any difference on error performance [2]. For

simplicity, we choose 0 as frozen bits over this thesis for simulation. O]

In [2], the functions Z (P](Vi)) are shown to-possess the following recursive property

Z(P(i)

Vy) < Z(PETY) < 22(PY),) — Z(PY),)?

21 7
2(Py") = Z(P),)*

1<i<N/2,0<Z(P)<1

Y

In particular, the equality holds for BEC, making the task of determining the information

set much easier.

Remark 2.3. For a given B-DMC, Bhattachayya parameter of the channel approximates

to 0, while symmetric capacity of the channel is much closed to 1, and vice versa [2]. [

10



On the other hand, the information theoretic view suggests

N
IOy v =) 1y U

1

1

I
.MZ

{1 YN, UY) = (U U Y)}

=1

I(U; Y, U (2.4)

I
.MZ

=1
where the second equality follows from the independence among Uy, - - -, Uy; hence we
get I(U;; U™') =0. Furthermore, we remark that I(U;; V¥, U;™') is mutual information

of the ith coordinate channel. On the other hand, note
U YY) = I(X5 YY) = NI(X;Y) (2.5)

where the first equality is due to that the generator. matrix G is one-to-one and onto
mapping.
Since Uy, - - - , Uy are i.i.d: and uniformdistributed, 1(U;; YN, U;™") and I(X;Y) are

symmetric capacity of the ith coordinate channel and transmitting channel respectively.
Lemma 2.4 ([2]). As N %00, I[(U;; YUY converge to 0 or 1 almost surely.

From (2.4) and (2.5), we'can gét S [(Up; YN USY/N = I(X;Y). Tt follows
that the fraction of noiseless coordinate channels-is symmetric capacity of transmitting
channel as N — oo. Furthermore, as N — oo, fraction of coordinate channels whose
Bhattacharyya parameters approach 0 is symmetric capacity of transmitting channel. To
summarize, the above altogether shows that we can make code rate equals symmetric
capacity.

As N — oo, we can encode information bits with R <symmetric capacity, with SC
decoding error tending to 0. We know that symmetric capacity is channel capacity for

symmetric B-DMCs. So, polar codes can achieve the capacity for symmetric B-DMCs [2].

2.3 Recursive property of SC decoding

In this section we provide the recursive property for the log-likelihood ratios (LLRs)

that will be used for the decoding function h (c.f. (2.8)) of SC decoding for polar codes.

11



From (1.1) and (1.2), we get

2—1 N A
Lg\f )(yla"'7yN7ula"'>u2i72)
P(2i—1) N . .
—InXN (?ha"' s Yn, Uty - 7U2i—2|U2i—1 —0)
Pz(\?l_l)(yp YN Uy, ;7121'—2|U2i—1 = 1)

= 2tanh71{tanh[Lg\?/2(yl7 YNy Uy @ Ug, -~ -, Ugi—3 D Ugi—2)/2]

X tanh L)y (Yjap1s Y flay gy - 4 izi2)/2]} (2.6)
and
21 ~ N
LEV )(y17 L YN, ULyt 7u2i71)
— W sVITT AR
N/Q(yN/Q—Hv YN, U2, Us, JAlgi—o)
+ (=)L Lg\i,)/z(yl, et YNy U D Uy e U3 D Ugio) (2.7)

Each value in the pair
(Lﬁi_l)(ylv"' YA G, o ’@21._2)’L§3i)(y17... Y A, 71121._1))
can be assembled from the same pair
<L§\if)/2(yi\[/27 Uy @ Ug, -+, Ui 3D Ugi—2) Lg\if)/z(y]]\\[[/Q_g-l; Uy, Ug, * - 77121'72)) :

The N values Lgf,), 1 <4 < N, can be calculated from N values L%}W 1<j<N/2. In

the following, if (a, ) is assembled from (¢, d), we denote it by (a,b) «— (¢, d). This, for

example in the case of N=4,

1 2 ~
(L"), L)) = (L8 0 w2), 287 (v )

(L2t o), (0 i, ) ) (287 (0,0 0 @ ), L7 (31, 4, 02)

(Lél) (yh y2)7 Lé2) <y17 Yo, ﬁl & 1?62) — (Lgl) (y1)7 Lgl) <y2>>

1 2 N 1 1
(Lé )(937 ?J4)a Lg )(937 Yy U2)> A (Lg )(93)7 Lg )(y4)>

The above relation is shown in Fig. 2.1.

12



L2 (s y,.0,)

Figure 2.1: Recursive property of SC'decoding function for N=4. The left pair in the
butterfly pattern can be assembled from the right pair.

The decoding function can be rewritten as

07 if Lg\zf)(yb 7yN7al>"'aﬁi—l)20
h(yh'" ayNaﬂlv"' 7ai—1) - (28)
1, otherwise

Thus, knowing LLR values of every channel.output, we can successively decode informa-
tion bits by calculating N LLR values, L%), which are functions of channel LLR values
and previously decoded bits.

13



Chapter 3

Belief Propagation Decoder

3.1 Factor graph

In [3], Forney showed normalized factor-graph of:RM codes. Since polar codes are
sub-codes of full RM(n,n) codes; we know polar codes c¢an also be represented by the
same factor graph, rendering the BP-decoder to the decoding of polar codes. There are
n = log, N sections in thefactor graph of polar codes, and each section consists of N/2
Z-shaped sub-graphs. Fig. 3.1 is the factor graph of polar codes for N = 8. In addition
to BP decoding, we remark that the SC decoding can also be illustrated by factor graph.

From (1.1) and (1.2), we can get factor,graph of the ith coordinate channel from factor
graph of polar codes [4]. The factor graph of the ith coordinate channel can be obtained
through the following steps.

1. In the left-most section, eliminate the degree-3 check nodes that are not connected

to the ith variables nodes and the edges incident to the check nodes.

2. Eliminate the rest degree-0 and 1 variable nodes except the ¢th variables nodes, the

edges incident to these eliminated variable nodes should also be eliminated.
3. Eliminate the rest degree-1 check nodes and the incident edges.

4. In the second left-most section, eliminate the degree-3 check nodes that are not

connected to the left-most ¢th variable node via left path.

5. Do the above steps iteratively until elimination in the right-most section is finished.
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Then, we can get the factor graphs of coordinate channels of all N bits, ul¥. They all are

trees. Fig. 3.2 is the factor graph of the 4th coordinate channel for N = 8.

3.2 Codes construction on symmetric B-DMCs

Let a%) denotes the probability density function (pdf) of Lg\i,) (yV, ut™') conditioned on
u; = 0. In [4], it’s shown that for the symmetric B-DMCs,

Pr(&) = 5/ ag\lf)(x)e_(%Jri)da:, 1<i<N (3.1)

o0

For symmetric B-DMCs, the Bhattacharyya parameter of the channel is

Z:/ a(z)e 2 dx

o0

a(z) is pdf of LLR of the symmetric B-DMC output conditioned on input bit is zero [5].

For symmetric B-DMCs, we know-that Bhattacharyya parameters of all N coordinate

channels are

®—{+ @ +
=] =]
=] =@
® +
=] =]
=1
=l

Figure 3.1: Factor graph of polar codes for N=8.
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Figure 3.2: Factor graph of the 4th coordinate channel for N=8§, P§4), dashed lines and

nodes are eliminated edges and nodes.

3.3 SC decoding in factor graph

The factor graphs of coordinate channels; introduced in the former section, can be used

to illustrate SC decoding. Since w1, - -+ , uy are not characteristic of the ith coordinate
channel P](\f), and uq,--- ,uw;—q have been decoded, so these N — 1 variable nodes in the

factor graph of polar codes can be eliminated. ‘We do the same eliminating procedure like
the former section to get the factor graph of the ith-coordinate channel for SC decoding.
On the leaf nodes, the channel LLRvalues are effected by the former decoded bits. It’s
illustrated below and in Fig. 3.3 for N =4 and 7 = 3.

The first leaf node:

Since x1 = uy B ug ® uz G uy, and P(y,|x1) = Py, |us & us & ug S uy)

(yy|t1 B Uy ®ug Buyg =0
(Y1)t B Uy Bus Bug =1

P
Input =1
npu nP

)
)
_lnP(y1|u3@U4:O€Bﬁ1@a2>
) )

P(y;|us ®ug =1 0y & o

= L(y)[—2(t ® dg) + 1]
The second leaf node:

Since o = ug P uy, and P(y,|xe) = P(y,|us B uy)
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L(y,)«(-20,+1)

L(Y,)

Figure 3.3: SC decoding diagram using factor graph, arrows represent message-passing

directions in decoding process.

P(ysluz @ uy = 0)
Inpute= In =L
P el s 1), o 02

The third leaf node:

Since x5 = ug @ Uy, and P(ys|xs) = P(ys|us B )

P(ys|ts Dy =0) P(ysltia =0 & 1p) N
Input = In - =In —- =L —2Uy + 1
P P(yslts ® uy = 1) P(ysluy = 1@ 1y) (45)(—282 + 1)

The forth leaf node:

Since x4 = uy, and P(y,|xs) = P(y,|us)

P(y4|u4 =0)

Input = In
P(yslus = 1)

= L(y,)

Under SC decoding, we decode information bits successively, and use former ¢ — 1
decoded bits, i.e., Uy, -+ ,U;_1, as information for decoding w;. Since decoding errors
maybe occur while decoding the former information bits, the errors will propagate. In
order to get decoding convenience, i.e., recursive formulae (2.6) and (2.7), we assume all
the frozen bits are free variables. The assumption violates the actual message probability

distribution, so decoding errors will happen more frequently.
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Figure 3.4: Comparison ofsSC decoding (uppercurve) and BP decoding (lower curve) in

terms of word error rate, when transmission takes place over binary-input AWGN channel

(0=0.97865) [1].

3.4 Belief propagation decoding

Polar codes with SC decoding are asymptotically capacity achieving, but not record
breaking for moderate length. Under BP decoding, it uses information provided by frozen
bits, and without using the hard-decision bits decoded previously, it can avoid error
propagation. We can conclude BP decoding is better than SC decoding.

BP decoding was used to compare performance of polar codes constructed on Bhat-
tacharyya parameters and RM codes in [6]. Performance of polar codes under SC decoding
and BP decoding was already shown in [1], we can see that BP decoding is obviously better

than SC decoding with various code rates and block lengths.
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Chapter 4

Scheduling of BP Decoding

Although BP decoding is better than SC decoding for polar codes, there still exists a
gap between BP decoding and MAP decoding for the error rate curve [1]. Some methods

have been proposed to improve error performance over BP decoding [1][7].

4.1 Incremental updating schedule

From Section 2.2, we know that if @{,«- . @; 1 are correctly decoded, then u; almost
can be decoded correctly for long block dength. But it’s not easy to correctly decode infor-
mation bit successively for moderate code length. Since SC decoding can be regarded as
a case of BP decoding, the successive decoding netion can be used to modify BP decoding
schedule. The proposed decoding schedule is called incremental updating schedule.

We partition the N bits including frozen bits and information bits into many equal-
sized blocks according to index-order. Each block has a factor graph that consists of
factor graphs associated with coordinate channels described in Section 3.1. For example,
for N = 8 we partition IV bits into 4 blocks. The first block is (u1,us), second is (ug, u4)
and so on. Fig. 4.1 shows factor graph of the first block, and factor graph for the second
one is shown in Fig. 4.2.

For code length is N, block size is 2! and [ > 1, there are N/2! iteration times in
incremental updating decoding schedule. The steps of decoding process are showing

below, some figures are also shown for illustration:

1. We first set the initial condition using information provided by information bits and

frozen bits, and calculate LLR of every path in the factor graph of polar codes from
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Figure 4.3: Calculate initial LLR values of polar codes factor graph.

left-most level to right~most level. It’s shown in Fig. 4.3.

. At the first iteration, we consider the factor graph of the first block, and calculate
LLR of every path in‘the factor graph from right-most-level to left-most level. It’s
shown in Fig. 4.4.

. Update the LLR of every path in the factor graph from left-most level to the right-

most level as shown in Fig. 4.5.

. Consider the factor graph union of block1 and block 2, revise message passing
through every path of the factor graph from right-most level to the left-most level
and update back. Updating from right side to left side is shown in Fig. 4.6.

. During the ith iteration, consider the first ¢ blocks and the associated factor graph,

repeat the updating procedure described above.

. At the last iteration, consider all block, and the associated factor graph is the
factor graph of polar codes. We only update LLR from right to left, and add the

information provided by frozen bits.

. Quantize the LLR values associated with every information bit and frozen bit. Fi-

nally, decide whether they are 0 or 1.
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Figure 4.6: Update iR from right to left in iteration 2.

4.2 Simulation results

In this thesis, we simulate polar codes with code rates 1/3;,1/2 or 5/6 and code length
ranging form 2! to 2!3 over binary-input AWGN channel.
The task of finding A is according to (2.2) and (3.1); i-e.,

Pr(€) < Y Pr(&)

icA
1 [ 4 A
Pr(&) = 5/ ag\l,)(a:)e_(‘ +5) dr, 1<i<N

Specifically, we simulate 10000 trials to find A. In each trial, we first calculate L%)(yl, s
YN, Ui, -+ ,u;—1) while the sent bit u; = 0. After the 10000 trials, we find the expected
values

L (e
—e

5 2 172 >,conditioned onu; =0, for1 <i< N
We note that the above expected values would converge to Pr(&;) as the number of trials
increases. After obtaining the value associated with each 4, for any specific code rate, we
choose the subset of {1,---, N} so as to minimize ) _,_ , Pr(&;). Having fixed the code

rate and code length, there are two parts in the following simulations.

The first part: For a specific rate and code length, we simulate incremental updating

schedule with three partition types, i.e., the decoded bits in the three types are
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partitioned into 2%, 22 or 2! blocks respectively, and show the results of increasing

number of blocks in incremental updating schedule.

The second part: We partition decoded bits into 2!9 in incremental updating schedule.
The iteration times of BP decoding without scheduling is set to 640 so that the two
decoding algorithms almost have the same complexity, i.e., the average iteration
times of degree-3 nodes are the same. Besides error performance comparison of
SC decoding, BP decoding without scheduling and BP decoding in incremental
updating schedule, we also show the results of increasing iteration times under BP

decoding without scheduling.

In both simulations we observe that the scheduling based on incremental updating per-

forms better than the one without.
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Binary—input AWGN channel, N=2048, Rate=0.333
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Figure 4.7: FError performance comparison: of -increasing block number in incremental

updating schedule. Code rate is 1/3-and block length is 2048.

Binary—-input AWGN channel, N=4096, Rate=0.5
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Figure 4.8: FError performance comparison of increasing block number in incremental

updating schedule. Code rate is 1/2 and block length is 4096.
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Binary—input AWGN channel, N=4096, Rate=0.5
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Figure 4.9: Error performance ¢comparison for code rate is 1/2 and block length is 4096.
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Figure 4.10: Error performance comparison of increasing iteration times under BP decod-

ing for code rate is 1/2 and block length is 4096.
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Binary—-input AWGN channel, N=4096, Rate=0.833
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Figure 4.11: Error performanee comparison for code rate is'5/6 and block length is 4096.
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Figure 4.12: Error performance comparison of increasing iteration times under BP decod-

ing for code rate is 5/6 and block length is 4096.
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Figure 4.13: Error performance comparison for code rate is 1/2 and block length is 8192.

Binary—input AWGN channel, N=8192, Rate=0.5
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Figure 4.14: Error performance comparison of increasing iteration times under BP decod-

ing for code rate is 1/2 and block length is 8192.
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Binary—input AWGN channel, N=8192, Rate=0.833
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Figure 4.15: Error performance comparison for code rate is 5/6 and block length is 8192.
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Figure 4.16: Error performance comparison of increasing iteration times under BP decod-

ing for code rate is 5/6 and block length is 8192.
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Chapter 5

Conclusion

In the incremental updating schedule, if we partition /N bits into more blocks, the error
performance will get better. In Fig. 4.7 and Fig. 4.8 we can see that the type with 2!
blocks is better than the other two types. The type with 2% blocks is the worst one among
all three. For BP decoding, error performance will get better as number of iterations
grows. For incremental updating schedule, /if we partition V. bits into more blocks, error
rates will get better, too. For the cases, in Fig. 4.9, Fig. 4.11,Fig. 4.13 and Fig. 4.15, error
performance in incremental updating schedule is better than error performance under BP
decoding.

However, in some cases like'Fig. 5.1 and Fig. 5.3y decoding error rate in incremental
updating schedule is not better than that - under BP decoding. In Fig. 5.1, we even have
partitioned with minimum block size. For a specific rate or block length, the block number
we should partition into so that decoding in incremental updating schedule will be better

than BP decoding is not easy to choose and calls for future works.

30



Binary—input AWGN channel, N=2048, Rate=0.333
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Figure 5.1: Error performance ¢omparison for code rate is 1/3 and block length is 2048.
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Figure 5.2: Error performance comparison of increasing iteration times under BP decoding

for code rate is 1/3 and block length is 2048.
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Blnary input AWGN channel, N=4096, Rate=0.333
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Figure 5.3: Error performance ¢comparison for code rate is 1/3 and block length is 4096.
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Figure 5.4: Error performance comparison of increasing iteration times under BP decoding

for code rate is 1/3 and block length is 4096.
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