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學生：劉振灃 

 

指導教授：陸曉峯  教授 

 

 

國立交通大學電信工程研究所碩士班 

摘 要       

 
通道編碼藉由將訊息增加冗餘，讓訊息傳輸更可靠。一直以來有許多專家學者致力

於研究通道編碼系統，期望可以建構出一套在傳輸速率不大於通道容量的條件下，可以

可靠的傳送訊息的編碼系統。極碼（Polar codes）在使用接續消除解碼（Successive 

cancellation decoding）的方式下，理論上可以讓傳輸速率達到通道容量。 

    除了接續消除解碼之外，當我們把碼長增加時，尚有其他解碼方式可以讓錯誤率衰

減的更快速。可靠度傳遞解碼（Belief propagation decoding）為其中一種方法。可

靠度傳遞解碼已被用來當作極碼的解碼方式，解出的訊息錯誤率相對於接續消除解碼解

出的錯誤率，前者較低。 

    為了方便解碼，接續消除解碼器忽略了某些可利用的訊息，而這些訊息則被可靠度

傳遞解碼器善加利用。論文[1]說明了相對於接續消除解碼，將可靠度傳遞解碼作為極

碼解碼方式的優越性。 

    在本篇論文中，我們使用類似接續消除解碼的解碼方式，作為可靠度傳遞解碼的排

程。藉由模擬二位元輸入高斯通道，我們可以看出在某些情況下，將可靠度傳遞解碼加

入此排程會比單純使用可靠度傳遞解碼有較好的效能。 
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Abstract 

  Channel coding is a scheme that adds redundancy to messages for reliable 

transmission. Many works have been devoting to constructing a coding scheme 

that can transmit messages reliably at rates set below the channel capacity. Polar 

code is one such scheme that can achieves channel capacity theoretically under 

successive cancellation (SC) decoding. 

  Besides SC decoding, there are other decoding algorithms such that as code 

length increases, error rates of polar codes decrease more rapidly. For instance, 

belief propagation (BP) decoding has been used to decode polar codes with error 

rates better than the SC decoding. 

  BP decoder uses the information ignored by SC decoder, and its superiority 

over SC decoder has been established in [1]. In this thesis, we propose a 

scheduling for the BP decoding of polar codes that resembles the SC decoding. 

By simulation over binary-input AWGN channel, we see that in some cases, 

error performance in this schedule is better than that of BP decoding alone. 
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Chapter 0

Notations and Terminologies

We denote random variables by capital letters, X, and their sample values by the

corresponding lower-case letters, x. Matrices are represented by boldface capitals like

G, and corresponding boldface lower-case letters with underline and subscript denote

row vectors of the matrix, g
k

is the kth row vector of matrix G. Vector (u1, · · · , uN)

is abbreviated as uN1 . A is a subset of integer, |A| is the size of set A. Let uA denotes

|A|-tuple vector, and indices of elements are included in A, i.e., (ui : i ∈ A). 1(E) denotes

indicator function of event E.

Consider a binary-input discrete memoryless channel (B-DMC) with input alphabet

X , output alphabet Y and transition probability P (y|x), x ∈ X , y ∈ Y . The input alpha-

bet X is GF(2), the output alphabet Y and transition probability P (y|x) are arbitrary.

Bhattacharyya parameter of the B-DMC is

Z =
∑
y∈Y

√
P (y|x = 0) · P (y|x = 1)

Symmetric capacity of B-DMC is mutual information of input and output when input

random variable is uniform distributed, i.e.,

I(X;Y ) =
∑
y∈Y

∑
x∈X

1

2
P (y|x) log2

P (y|x)
1
2
P (y|x = 0) + 1

2
P (y|x = 1)

In this thesis, codes construction will be carried out over GF(2).
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Chapter 1

Introduction

Polar codes, introduced by Arikan in [2], are provable to achieve channel capacity

for symmetric B-DMCs. As code length grows larger, some of coordinate channels seen

by individual bits become more reliable while the others get worse. The effect is called

channel polarization. Thus as code length N → ∞, fraction of coordinate channels are

noiseless, and we transmit information bits via these reliable coordinate channels. Besides

low encoding complexity, the SC decoder, proposed together with polar codes [2], also

has low decoding complexity.

1.1 Channel polarization

Channel polarization is an operation that combines N independent copies of B-DMC

into a vector channel, and then splits the vector channel into N binary-input coordinate

channels. In this thesis, we denote transition probability of vector channel with suffix,

i.e., PN . Besides suffix N , superscript (i) is together with transition probability of the ith

coordinate channel, P
(i)
N .

1.1.1 Channel combination

This operation combines two identical and independent vector channels with input

alphabet XN/2 and output alphabet YN/2 into another vector channel with input alphabet

XN and output alphabet YN recursively.

The first level of recursion is shown in Fig. 1.1, where u1 and u2 are used to produce

x1 and x2. Then, x1 and x2 are transmitted through two independent B-DMCs. We can

2
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Figure 1.1: Fundamental block of recursive structure.
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Figure 1.2: Vector channel P4.

get transition probability of vector channel , P2 : X 2 → Y2,

P2(y1, y2|u1, u2) = P (y1, y2|x1, x2)

= P (y1|x1) · P (y2|x2)

= P (y1|u1 ⊕ u2) · p(y2|u2)

For N = 4, channel combination is shown in Fig. 1.2. At first, the vector (u1, u2, u3, u4)

are calculated over binary field and permuted via R4; then the permuted vector (v1, v2, v3,

v4) are sent through two identical vector channels P2. Finally, (x1, x2, x3, x4) is transmitted

through four B-DMCs.

From Fig. 1.1 and Fig. 1.2, the transition probability of vector channel, P4 : X 4 → Y4,

is

P4(y1, y2, y3, y4|u1, u2, u3, u4)

3



= P2(y1, y2|u1 ⊕ u2, u3 ⊕ u4) · P2(y3, y4|u2, u4)

= P (y1|u1 ⊕ u2 ⊕ u3 ⊕ u4) · P (y2|u3 ⊕ u4) · P (y3|u2 ⊕ u4) · P (y4|u4)

To generalize channel combination, we let N = 2n. At first, vector (u1, · · · , uN) is

calculated over binary-field and then permuted in block RN . Permutation function of RN

is

vi =

 w k+1
2
, if k is odd, 1 ≤ i ≤ N

2

w k
2
+N

2
, if k is even, N

2
+ 1 ≤ i ≤ N

The permuted vector (v1, v2, · · · , vN) is decomposed into two vectors, (v1, v2, · · · , vN
2

) and

(vN
2
+1, · · · , vN). The former is sent through the upper vector channel, PN/2, and the latter

is sent through the lower one. With n levels recursive operations, we transmit the vector

(x1, · · · , xN) through N independent B-DMCs, yielding channel output (y1, · · · , yN) at

the receiver.

From recursive structure, shown in Fig. 1.3, we know

(x1, · · · , xN) = (u1, · · · , uN) G











P

P



P

P



P

P



P

P

2P

2P

2P

2P

/2NP

/2NP









NR

Nu

2Nu 

3Nu 

1Nu 

4u
3u

1u

2u

NP

1y

/2 2Ny 

/2 1Ny 

/2 1Ny 

2y

1Ny 

Ny

/2Ny

Figure 1.3: Vector channel PN .
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G = B F⊗n and F =

1 0

1 1

 ,
B is called bit-reversed matrix. For an N -tuple vector, (t1, t2, · · · , tN), we represent the

indices of elements in binary sequence. For example, N = 8, (t1, t2, t3, t4, t5, t6, t7, t8)

=(t000, t001, t010, t011, t100, t101, t110, t111). After multiplied by bit-reversed matrix,

(t1, t2, t3, t4, t5, t6, t7, t8) B

= (t000, t001, t010, t011, t100, t101, t110, t111) B

= (t000, t100, t010, t110, t001, t101, t011, t111)

= (t1, t5, t3, t7, t2, t6, t4, t8)

Given the generator matrix G, the transition probability of vector channel, PN : XN →

YN is

PN(y1, · · · , yN |u1, · · · , uN)

= P (yN1 |xN1 = uN1 G)

= P (y1|x1) · · · · · P (yN |xN)

1.1.2 Channel splitting

Having combined N independent B-DMCs into a vector channel, the next step is

to split it into N binary-input coordinate channels. The transition probability of each

coordinate channel is defined as

P
(i)
N (y1, · · · , yN , u1, · · · , ui−1|ui)

=
∑

uN
i+1∈XN−i

P (y1, · · · , yN , u1, · · · , uN)

P (ui)

=
∑

uN
i+1∈XN−i

1

2N−1PN(y1, · · · , yN |u1, · · · , uN)

=
∑

uN
i+1∈XN−i

1

2N−1P (y1|x1) · P (y2|x2) · · · · · P (yN |xN),

xN1 = uN1 G, 1 ≤ i ≤ N, N = 2n, n ≥ 1,

5



where the (y1, · · · , yN , u1, · · · , ui−1) is considered as channel output and ui is the input

of the ith coordinate channel. Bhattacharyya parameter of the ith coordinate channel is

Z(P
(i)
N ) =

∑
yN1 ∈YN

∑
ui−1
1 ∈X i−1

√
P

(i)
N (yN1 , u

i−1
1 |ui = 0) · P (i)

N (yN1 , u
i−1
1 |ui = 1)

It is shown [2] that the transition probabilities of coordinate channels have the follow-

ing recursive property.

P
(2i−1)
N (y1, · · · yN , u1, · · · , u2i−2|u2i−1)

=
∑
u2i

1

2
· P (i)

N/2(y1, · · · , yN/2, u1 ⊕ u2, · · · , u2i−3 ⊕ u2i−2|u2i−1 ⊕ u2i)

· P (i)
N/2(yN/2+1, · · · , yN , u2, u4, · · · , u2i−2|u2i) (1.1)

and

P
(2i)
N (y1, · · · yN , u1, · · · , u2i−1|u2i)

=
1

2
· P (i)

N/2(y1, · · · , yN/2, u1 ⊕ u2, · · · , u2i−3 ⊕ u2i−2|u2i−1 ⊕ u2i)

· P (i)
N/2(yN/2+1, · · · , yN , u2, u4, · · · , u2i−2|u2i) (1.2)

1.2 Polar coding

Now, we consider block codes that contain polar codes as a special case. Let A be an

arbitrary subset of {1, 2, · · · , N}. We fix A and uAc , but let UA be free vector; then we

get a block code taking the following form

(x1, · · · , xN) = uA


g
j1
...

g
jK

+ uAc


g
l1
...

g
lN−K

 , K = |A| ,

ji ∈ A , and 1 ≤ i ≤ K,

lm ∈ Ac , and 1 ≤ m ≤ N −K.

In particular, it is a coset code of a linear block code with generator matrix
g
j1
...

g
jK

 , K = |A| , ji ∈ A , and 1 ≤ i ≤ K,

6



where the coset leader is

uAc


g
l1
...

g
lN−K

 , K = |A| , lm ∈ Ac , and 1 ≤ m ≤ N −K,

We denote this coset code as (N,A, uAc). We refer to A as information set and uAc as the

frozen vector. The code rate of this coset code is |A|/N . Given the coset code (N,A, uAc),

we encode (u1, · · · , uN) into (x1, · · · , xN), and transmit (x1, · · · , xN) through N copies of

B-DMC. Upon receiving channel output (y1, · · · , yN), the task is to decode (û1, · · · , ûN).

Polar codes are specified by the rule that minimizes an upper bound of error proba-

bility, and they are channel-specific, i.e., polar codes for two different channels may have

different information sets.

1.3 Thesis outline

In Chapter 2, we will introduce the successive cancellation (SC) decoder for the polar

codes. It is known that polar codes under SC decoding can achieve channel capacity over

symmetric B-DMCs [2]. In Chapter 3, we will introduce the factor-graph representation

of polar codes and coordinate channels. Another method has been developed to construct

polar codes for symmetric B-DMCs, it will also be introduced in Chapter 3. Knowing

that the belief propagation (BP) decoder exhibits good error performance on turbo codes

and LDPC codes, it will be used to eliminate some drawbacks of SC decoder and will be

shown to have good error performance. In the last section of chapter 3, we will compare

the performances of SC and BP decoders at moderate code length. In Chapter 4, we will

use the idea of SC decoding to modify the scheduling of BP decoder. Simulation results

will be provided.

7



Chapter 2

Successive Cancellation Decoder

2.1 The decoding algorithm

For the coset code (N,A, uAc), since knowing uAc in advance, we set ûAc = uAc before

decoding. The output of SC decoder is

ûi =

 h(y1, · · · , yN , û1, · · · , ûi−1), if i ∈ A

ui , if i ∈ Ac

where the decoding function for information bits is

h(y1, · · · , yN , û1, · · · , ûi−1) =


0 , if

P
(i)
N (y1,··· ,yN ,û1,··· ,ûi−1|ui=0)

P
(i)
N (y1,··· ,yN ,û1,··· ,ûi−1|ui=1)

≥ 1

1 , otherwise

(2.1)

Decoding error occurs when ûA 6= uA. The block error probability is denoted by

Pe(N,A, uAc).

2.2 Block error of SC decoding

For a fixed information set A,

P (u1, · · · , uN , y1, · · · , yN) =
PN(y1, · · · , yN |u1, · · · , uN)

2N

and (u1, · · · , uN) ∈ XN , (y1, · · · , yN) ∈ YN ,

Define E as the error event of SC decoding, i.e.,

E = {(u1, · · · , uN , y1, · · · , yN) : ÛA(y1, · · · , yN , u1, · · · , uN) 6= uA}

8



Ûi(y
N
1 , u

N
1 ) =

 h(yN1 , û
i−1
1 ), if i ∈ A

ui , if i ∈ Ac

Given a fixed uAc , the error probability Pr(E|UAc=uAc ) = Pe(N,A, uAc). We denote by Bi
the first SC decoding error occurs at the ith bit, i.e.,

Bi = {(uN1 , yN1 ) : Û1(y
N
1 ) = u1, · · · , Ûi−1(y

N
1 , û

i−2
1 ) = ui−1,

Ûi(y
N
1 , û

i−1
1 ) 6= ui}

= {(uN1 , yN1 ) : Û1(y
N
1 ) = u1, · · · , Ûi−1(y

N
1 , u

i−2
1 ) = ui−1,

Ûi(y
N
1 , u

i−1
1 ) 6= ui}

⊆ {(uN1 , yN1 ) : Ûi(y
N
1 , u

i−1
1 ) 6= ui}

= {(uN1 , yN1 ) : P
(i)
N (y1, · · · , yN , u1, · · · , ui−1|ui)

≤ P
(i)
N (y1, · · · , yN , u1, · · · , ui−1|ui ⊕ 1)}

:= Ei

Note that E = ∪i∈ABi, and {Bi, i ∈ A} are disjoint. Then

Pr(E) =
∑

uAc∈XN−K

1

2N−K · P (E|UAc=uAc )

=
∑

uAc∈XN−K

1

2N−K ·
∑

uA∈XK ,yN1 ∈YN

PN(yN1 |uN1 )

2K
· 1(∪i∈ABi)

=
∑

uAc∈XN−K

1

2N−K ·
∑

uA∈XK ,yN1 ∈YN

PN(yN1 |uN1 )

2K
·
∑
i∈A

1(Bi)

≤
∑

(uN
1 ,yN1 )∈XN×YN

PN(yN1 |uN1 )

2N
·
∑
i∈A

1(Ei)

=
∑
i∈A

∑
(uN

1 ,yN1 )∈XN×YN

PN(yN1 |uN1 )

2N
· 1(Ei) =

∑
i∈A

Pr(Ei) (2.2)

≤
∑
i∈A

∑
(uN

1 ,yN1 )∈XN×YN

PN(yN1 |uN1 )

2N
·

√√√√P
(i)
N (yN1 , u

i−1
1 |ui ⊕ 1)

p
(i)
N (yN1 , u

i−1
1 |ui)
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=
∑
i∈A

∑
ui∈X

∑
(yN1 ,ui−1

1 )∈YN×X i−1

∑
uN
i+1∈XN−i

PN(yN1 |uN1 )

2N
·

√√√√P
(i)
N (yN1 , u

i−1
1 |ui ⊕ 1)

P
(i)
N (yN1 , u

i−1
1 |ui)

=
∑
i∈A

∑
ui∈X

∑
(yN1 ,ui−1

1 )∈YN×X i−1

P
(i)
N (yN1 , u

i−1
1 |ui)

2
·

√√√√P
(i)
N (yN1 , u

i−1
1 |ui ⊕ 1)

P
(i)
N (yN1 , u

i−1
1 |ui)

=
∑
i∈A

∑
ui∈X

1

2
· Z(P

(i)
N ) =

∑
i∈A

Z(P
(i)
N ) (2.3)

Following from (2.2) and (2.3), we arrive at the following inequality

Pr(E) ≤
∑
i∈A

Pr(Ei) ≤
∑
i∈A

Z(P
(i)
N ).

From the above, the notion of polar code can be defined.

Definition 2.1. For a given code rate K/N , the coset code (N,A, uAc) will be called a

polar code if the subsetA with |A| = K is chosen such that
∑

i∈A Z(P
(i)
N ) is minimized.

Remark 2.2. The frozen vector uAc can be chosen at will, because for additive-noise

channel the choice is insensitive to the code performance. For symmetric channels, choos-

ing 0 or 1 for frozen bits would not make any difference on error performance [2]. For

simplicity, we choose 0 as frozen bits over this thesis for simulation.

In [2], the functions Z(P
(i)
N ) are shown to possess the following recursive property

Z(P
(i)
N/2) ≤ Z(P

(2i−1)
N ) ≤ 2Z(P

(i)
N/2)− Z(P

(i)
N/2)

2

Z(P
(2i)
N ) = Z(P

(i)
N/2)

2

1 ≤ i ≤ N/2, 0 ≤ Z(P ) ≤ 1,

In particular, the equality holds for BEC, making the task of determining the information

set much easier.

Remark 2.3. For a given B-DMC, Bhattachayya parameter of the channel approximates

to 0, while symmetric capacity of the channel is much closed to 1, and vice versa [2].
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On the other hand, the information theoretic view suggests

I(UN
1 ;Y N

1 ) =
N∑
i=1

I(Ui ;Y N
1 |U i−1

1 )

=
N∑
i=1

{
I(Ui ;Y N

1 , U i−1
1 )− I(Ui ;U i−1

1 )
}

=
N∑
i=1

I(Ui ;Y N
1 , U i−1

1 ) (2.4)

where the second equality follows from the independence among U1, · · · , UN ; hence we

get I(Ui ;U i−1
1 ) = 0. Furthermore, we remark that I(Ui ;Y N

1 , U i−1
1 ) is mutual information

of the ith coordinate channel. On the other hand, note

I(UN
1 ;Y N

1 ) = I(XN
1 ;Y N

1 ) = NI(X;Y ) (2.5)

where the first equality is due to that the generator matrix G is one-to-one and onto

mapping.

Since U1, · · · , UN are i.i.d. and uniform distributed, I(Ui ;Y N
1 , U i−1

1 ) and I(X;Y ) are

symmetric capacity of the ith coordinate channel and transmitting channel respectively.

Lemma 2.4 ([2]). As N →∞, I(Ui ;Y N
1 , U i−1

1 ) converge to 0 or 1 almost surely.

From (2.4) and (2.5), we can get
∑N

i=1 I(Ui ;Y N
1 , U i−1

1 )/N = I(X;Y ). It follows

that the fraction of noiseless coordinate channels is symmetric capacity of transmitting

channel as N → ∞. Furthermore, as N → ∞, fraction of coordinate channels whose

Bhattacharyya parameters approach 0 is symmetric capacity of transmitting channel. To

summarize, the above altogether shows that we can make code rate equals symmetric

capacity.

As N → ∞, we can encode information bits with R ≤symmetric capacity, with SC

decoding error tending to 0. We know that symmetric capacity is channel capacity for

symmetric B-DMCs. So, polar codes can achieve the capacity for symmetric B-DMCs [2].

2.3 Recursive property of SC decoding

In this section we provide the recursive property for the log-likelihood ratios (LLRs)

that will be used for the decoding function h (c.f. (2.8)) of SC decoding for polar codes.
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From (1.1) and (1.2), we get

L
(2i−1)
N (y1, · · · , yN , û1, · · · , û2i−2)

= ln
P

(2i−1)
N (y1, · · · , yN , û1, · · · , û2i−2|u2i−1 = 0)

P
(2i−1)
N (y1, · · · , yN , û1, · · · , û2i−2|u2i−1 = 1)

= 2 tanh−1{tanh[L
(i)
N/2(y1, · · · , yN/2, û1 ⊕ û2, · · · , û2i−3 ⊕ û2i−2)/2]

× tanh[L
(i)
N/2(yN/2+1, · · · , yN , û2, û4, · · · , û2i−2)/2]} (2.6)

and

L
(2i)
N (y1, · · · , yN , û1, · · · , û2i−1)

= L
(i)
N/2(yN/2+1, · · · , yN , û2, û4, · · · , û2i−2)

+ (−1)û2i−1 · L(i)
N/2(y1, · · · , yN/2, û1 ⊕ û2, · · · , û2i−3 ⊕ û2i−2) (2.7)

Each value in the pair(
L
(2i−1)
N (y1, · · · , yN , û1, · · · , û2i−2), L

(2i)
N (y1, · · · , yN , û1, · · · , û2i−1)

)
can be assembled from the same pair(

L
(i)
N/2(y

N/2
1 , û1 ⊕ û2, · · · , û2i−3 ⊕ û2i−2), L(i)

N/2(y
N
N/2+1, û2, û4, · · · , û2i−2)

)
.

The N values L
(i)
N , 1 ≤ i ≤ N , can be calculated from N values L

(j)
N/2, 1 ≤ j ≤ N/2. In

the following, if (a, b) is assembled from (c, d), we denote it by (a, b)←→ (c, d). This, for

example in the case of N=4,(
L
(1)
4 (y41), L

(2)
4 (y41, û1)

)
←→

(
L
(1)
2 (y1, y2), L

(1)
2 (y3, y4)

)
(
L
(3)
4 (y41, û1, û2), L

(4)
4 (y41, û1, û2, û3)

)
←→

(
L
(2)
2 (y1, y2, û1 ⊕ û2), L

(2)
2 (y3, y4, û2)

)

(
L
(1)
2 (y1, y2), L

(2)
2 (y1, y2, û1 ⊕ û2

)
←→

(
L
(1)
1 (y1), L

(1)
1 (y2)

)
(
L
(1)
2 (y3, y4), L

(2)
2 (y3, y4, û2)

)
←→

(
L
(1)
1 (y3), L

(1)
1 (y4)

)
The above relation is shown in Fig. 2.1.
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Figure 2.1: Recursive property of SC decoding function for N=4. The left pair in the

butterfly pattern can be assembled from the right pair.

The decoding function can be rewritten as

h(y1, · · · , yN , û1, · · · , ûi−1) =

 0 , if L
(i)
N (y1, · · · , yN , û1, · · · , ûi−1) ≥ 0

1 , otherwise
(2.8)

Thus, knowing LLR values of every channel output, we can successively decode informa-

tion bits by calculating N LLR values, L
(i)
N , which are functions of channel LLR values

and previously decoded bits.
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Chapter 3

Belief Propagation Decoder

3.1 Factor graph

In [3], Forney showed normalized factor graph of RM codes. Since polar codes are

sub-codes of full RM(n, n) codes, we know polar codes can also be represented by the

same factor graph, rendering the BP decoder to the decoding of polar codes. There are

n = log2N sections in the factor graph of polar codes, and each section consists of N/2

Z-shaped sub-graphs. Fig. 3.1 is the factor graph of polar codes for N = 8. In addition

to BP decoding, we remark that the SC decoding can also be illustrated by factor graph.

From (1.1) and (1.2), we can get factor graph of the ith coordinate channel from factor

graph of polar codes [4]. The factor graph of the ith coordinate channel can be obtained

through the following steps.

1. In the left-most section, eliminate the degree-3 check nodes that are not connected

to the ith variables nodes and the edges incident to the check nodes.

2. Eliminate the rest degree-0 and 1 variable nodes except the ith variables nodes, the

edges incident to these eliminated variable nodes should also be eliminated.

3. Eliminate the rest degree-1 check nodes and the incident edges.

4. In the second left-most section, eliminate the degree-3 check nodes that are not

connected to the left-most ith variable node via left path.

5. Do the above steps iteratively until elimination in the right-most section is finished.
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Then, we can get the factor graphs of coordinate channels of all N bits, uN1 . They all are

trees. Fig. 3.2 is the factor graph of the 4th coordinate channel for N = 8.

3.2 Codes construction on symmetric B-DMCs

Let a
(i)
N denotes the probability density function (pdf) of L

(i)
N (yN1 , u

i−1
1 ) conditioned on

ui = 0. In [4], it’s shown that for the symmetric B-DMCs,

Pr(Ei) =
1

2

∫ ∞
−∞

a
(i)
N (x)e−

(
|x|
2
+x

2

)
dx, 1 ≤ i ≤ N (3.1)

For symmetric B-DMCs, the Bhattacharyya parameter of the channel is

Z =

∫ ∞
−∞

a(x)e−
x
2 dx

a(x) is pdf of LLR of the symmetric B-DMC output conditioned on input bit is zero [5].

For symmetric B-DMCs, we know that Bhattacharyya parameters of all N coordinate

channels are

Z(P
(i)
N ) =

∫ ∞
−∞

a
(i)
N (x)e−

x
2 dx, 1 ≤ i ≤ N

We can choose A to minimize
∑

i∈A Pr(Ei) or
∑

i∈A Z(P
(i)
N ).
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Figure 3.1: Factor graph of polar codes for N=8.
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Figure 3.2: Factor graph of the 4th coordinate channel for N=8, P
(4)
8 , dashed lines and

nodes are eliminated edges and nodes.

3.3 SC decoding in factor graph

The factor graphs of coordinate channels, introduced in the former section, can be used

to illustrate SC decoding. Since ui+1, · · · , uN are not characteristic of the ith coordinate

channel P
(i)
N , and û1, · · · , ûi−1 have been decoded, so these N − 1 variable nodes in the

factor graph of polar codes can be eliminated. We do the same eliminating procedure like

the former section to get the factor graph of the ith coordinate channel for SC decoding.

On the leaf nodes, the channel LLR values are effected by the former decoded bits. It’s

illustrated below and in Fig. 3.3 for N = 4 and i = 3.

The first leaf node:

Since x1 = u1 ⊕ u2 ⊕ u3 ⊕ u4, and P (y1|x1) = P (y1|u1 ⊕ u2 ⊕ u3 ⊕ u4)

Input = ln
P (y1|û1 ⊕ û2 ⊕ u3 ⊕ u4 = 0)

P (y1|û1 ⊕ û2 ⊕ u3 ⊕ u4 = 1)

= ln
P (y1|u3 ⊕ u4 = 0⊕ û1 ⊕ û2)
P (y1|u3 ⊕ u4 = 1⊕ û1 ⊕ û2)

= L(y1)[−2(û1 ⊕ û2) + 1]

The second leaf node:

Since x2 = u3 ⊕ u4, and P (y2|x2) = P (y2|u3 ⊕ u4)
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+

++

=

==

+

=

Figure 3.3: SC decoding diagram using factor graph, arrows represent message-passing

directions in decoding process.

Input = ln
P (y2|u3 ⊕ u4 = 0)

P (y2|u3 ⊕ u4 = 1)
= L(y2)

The third leaf node:

Since x3 = u2 ⊕ u4, and P (y3|x3) = P (y3|u2 ⊕ u4)

Input = ln
P (y3|û2 ⊕ u4 = 0)

P (y3|û2 ⊕ u4 = 1)
= ln

P (y3|u4 = 0⊕ û2)
P (y3|u4 = 1⊕ û2)

= L(y3)(−2û2 + 1)

The forth leaf node:

Since x4 = u4, and P (y4|x4) = P (y4|u4)

Input = ln
P (y4|u4 = 0)

P (y4|u4 = 1)
= L(y4)

Under SC decoding, we decode information bits successively, and use former i − 1

decoded bits, i.e., û1, · · · , ûi−1, as information for decoding ui. Since decoding errors

maybe occur while decoding the former information bits, the errors will propagate. In

order to get decoding convenience, i.e., recursive formulae (2.6) and (2.7), we assume all

the frozen bits are free variables. The assumption violates the actual message probability

distribution, so decoding errors will happen more frequently.
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Fig. 1. Comparison of (i) SC and (ii) BP decoder in terms of block error
probability, when transmission takes place over the BAWGNC(σ = 0.97865).
The performance curves are shown forn = 10 (top left), 11 (top right), 12
(bottom left), and13 (bottom right).
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Fig. 2. Figure (a) shows the trellis representation used by Arıkan. Figures
(b) and (c) show equivalent representations obtained by cyclic shifts of the3
sections of trellis (a).

in anovercomplete representation (similar to the concept used
when computing the stopping redundancy of a code [5]). For
the BEC any such overcomplete representation only improves
the performance of the BP decoder [5]. Further, the decod-
ing complexity scales linearly with the number of different
representations used. Keeping the complexity in mind, instead
of considering all then! factorial trellises, we use only the
n trellises obtained by cyclic shifts (e.g., see Figure 2). The
complexity of this algorithm isO(N(logN)2) as compared to
O(N logN) of the SC decoder and BP over one trellis. The
performance of the BP decoder is improved significantly by
using this overcomplete representation as shown in Figure 3.
We leave a systematic investigation of good schedules and

choices of overcomplete representations for general symmetric
channels as an interesting open problem.

C. Choice of Frozen Bits

For the BP or MAP decoding algorithm the choice of frozen
bits as given by Arıkan is not necessarily optimal. In the
case of MAP decoding we observe (see Figure 4) that the
performance is significantly improved by picking the frozen
bits according to the RM rule. This is not a coincidence;dmin

is maximized for this choice. This suggests that there might
be a rule which is optimized for BP. It is an interesting open
question to find such a rule.

III. SOURCE CODING

In this section we show the performance of polar codes in
the context of source coding. We consider both lossless and
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Fig. 3. Comparison of (i) SC, (ii) BP, (iii) BP with multiple trellises, and
(iv) MAP in terms of block error probability, when transmission takes place
over the BEC(ǫ = 1

2
). The performance curves are shown forn = 10 (top

left), 11 (top right), 12 (bottom left),13 (bottom right).
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Fig. 4. Comparison of block error probability curves under MAP decoding
between codes picked according to Arıkan’s rule and RM rule.The perfor-
mance curves are shown forn = 10 (left) and11 (right).

lossy cases and show (in most cases) empirically that they
achieve the optimal performance in both cases. Let Ber(p)
denote a Bernoulli source withPr(1) = p. Let h2(·) denote
the binary entropy function andh−1

2 (·) its inverse.

A. Lossless Source Coding

1) Single User: The problem of lossless source coding
of a Ber(p) source can be mapped to the channel coding
problem over a binary symmetric channel (BSC) as shown
in [6], [7]. Let x̄ = (x0, . . . , xN−1)

T be a sequence of
N i.i.d. realizations of the source. Consider a code of rate
R represented by the parity check matrixH. The vector
x̄ is encoded by its syndromēs = Hx̄. The rate of the
resulting source code is1 − R. The decoding problem is
to estimatex̄ given the syndromēs. This is equivalent to
estimating a noise vector in the context of channel coding over
BSC(p). Therefore, if a sequence of codes achieve capacity
over BSC(p), then the corresponding source codes approach a
rateh2(p) with vanishing error probability.

We conclude that polar codes achieve the Shannon bound
for lossless compression of a binary memoryless source.
Moreover, using the trellis of Figure 2(a), we can compute
the syndrome with complexityO(N logN). The source coding
problem has a considerable advantage compared to the channel
coding problem. The encoder knows the information seen by
the decoder (unlike channel coding there is no noise involved
here). Therefore, the encoder can also decode and check
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(bottom left), and13 (bottom right).
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Fig. 2. Figure (a) shows the trellis representation used by Arıkan. Figures
(b) and (c) show equivalent representations obtained by cyclic shifts of the3
sections of trellis (a).

in anovercomplete representation (similar to the concept used
when computing the stopping redundancy of a code [5]). For
the BEC any such overcomplete representation only improves
the performance of the BP decoder [5]. Further, the decod-
ing complexity scales linearly with the number of different
representations used. Keeping the complexity in mind, instead
of considering all then! factorial trellises, we use only the
n trellises obtained by cyclic shifts (e.g., see Figure 2). The
complexity of this algorithm isO(N(logN)2) as compared to
O(N logN) of the SC decoder and BP over one trellis. The
performance of the BP decoder is improved significantly by
using this overcomplete representation as shown in Figure 3.
We leave a systematic investigation of good schedules and

choices of overcomplete representations for general symmetric
channels as an interesting open problem.

C. Choice of Frozen Bits

For the BP or MAP decoding algorithm the choice of frozen
bits as given by Arıkan is not necessarily optimal. In the
case of MAP decoding we observe (see Figure 4) that the
performance is significantly improved by picking the frozen
bits according to the RM rule. This is not a coincidence;dmin

is maximized for this choice. This suggests that there might
be a rule which is optimized for BP. It is an interesting open
question to find such a rule.

III. SOURCE CODING

In this section we show the performance of polar codes in
the context of source coding. We consider both lossless and
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lossy cases and show (in most cases) empirically that they
achieve the optimal performance in both cases. Let Ber(p)
denote a Bernoulli source withPr(1) = p. Let h2(·) denote
the binary entropy function andh−1

2 (·) its inverse.

A. Lossless Source Coding

1) Single User: The problem of lossless source coding
of a Ber(p) source can be mapped to the channel coding
problem over a binary symmetric channel (BSC) as shown
in [6], [7]. Let x̄ = (x0, . . . , xN−1)

T be a sequence of
N i.i.d. realizations of the source. Consider a code of rate
R represented by the parity check matrixH. The vector
x̄ is encoded by its syndromēs = Hx̄. The rate of the
resulting source code is1 − R. The decoding problem is
to estimatex̄ given the syndromēs. This is equivalent to
estimating a noise vector in the context of channel coding over
BSC(p). Therefore, if a sequence of codes achieve capacity
over BSC(p), then the corresponding source codes approach a
rateh2(p) with vanishing error probability.

We conclude that polar codes achieve the Shannon bound
for lossless compression of a binary memoryless source.
Moreover, using the trellis of Figure 2(a), we can compute
the syndrome with complexityO(N logN). The source coding
problem has a considerable advantage compared to the channel
coding problem. The encoder knows the information seen by
the decoder (unlike channel coding there is no noise involved
here). Therefore, the encoder can also decode and check
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Fig. 2. Figure (a) shows the trellis representation used by Arıkan. Figures
(b) and (c) show equivalent representations obtained by cyclic shifts of the3
sections of trellis (a).

in anovercomplete representation (similar to the concept used
when computing the stopping redundancy of a code [5]). For
the BEC any such overcomplete representation only improves
the performance of the BP decoder [5]. Further, the decod-
ing complexity scales linearly with the number of different
representations used. Keeping the complexity in mind, instead
of considering all then! factorial trellises, we use only the
n trellises obtained by cyclic shifts (e.g., see Figure 2). The
complexity of this algorithm isO(N(logN)2) as compared to
O(N logN) of the SC decoder and BP over one trellis. The
performance of the BP decoder is improved significantly by
using this overcomplete representation as shown in Figure 3.
We leave a systematic investigation of good schedules and

choices of overcomplete representations for general symmetric
channels as an interesting open problem.

C. Choice of Frozen Bits

For the BP or MAP decoding algorithm the choice of frozen
bits as given by Arıkan is not necessarily optimal. In the
case of MAP decoding we observe (see Figure 4) that the
performance is significantly improved by picking the frozen
bits according to the RM rule. This is not a coincidence;dmin

is maximized for this choice. This suggests that there might
be a rule which is optimized for BP. It is an interesting open
question to find such a rule.

III. SOURCE CODING

In this section we show the performance of polar codes in
the context of source coding. We consider both lossless and
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Fig. 4. Comparison of block error probability curves under MAP decoding
between codes picked according to Arıkan’s rule and RM rule.The perfor-
mance curves are shown forn = 10 (left) and11 (right).

lossy cases and show (in most cases) empirically that they
achieve the optimal performance in both cases. Let Ber(p)
denote a Bernoulli source withPr(1) = p. Let h2(·) denote
the binary entropy function andh−1

2 (·) its inverse.

A. Lossless Source Coding

1) Single User: The problem of lossless source coding
of a Ber(p) source can be mapped to the channel coding
problem over a binary symmetric channel (BSC) as shown
in [6], [7]. Let x̄ = (x0, . . . , xN−1)

T be a sequence of
N i.i.d. realizations of the source. Consider a code of rate
R represented by the parity check matrixH. The vector
x̄ is encoded by its syndromēs = Hx̄. The rate of the
resulting source code is1 − R. The decoding problem is
to estimatex̄ given the syndromēs. This is equivalent to
estimating a noise vector in the context of channel coding over
BSC(p). Therefore, if a sequence of codes achieve capacity
over BSC(p), then the corresponding source codes approach a
rateh2(p) with vanishing error probability.

We conclude that polar codes achieve the Shannon bound
for lossless compression of a binary memoryless source.
Moreover, using the trellis of Figure 2(a), we can compute
the syndrome with complexityO(N logN). The source coding
problem has a considerable advantage compared to the channel
coding problem. The encoder knows the information seen by
the decoder (unlike channel coding there is no noise involved
here). Therefore, the encoder can also decode and check
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Fig. 2. Figure (a) shows the trellis representation used by Arıkan. Figures
(b) and (c) show equivalent representations obtained by cyclic shifts of the3
sections of trellis (a).

in anovercomplete representation (similar to the concept used
when computing the stopping redundancy of a code [5]). For
the BEC any such overcomplete representation only improves
the performance of the BP decoder [5]. Further, the decod-
ing complexity scales linearly with the number of different
representations used. Keeping the complexity in mind, instead
of considering all then! factorial trellises, we use only the
n trellises obtained by cyclic shifts (e.g., see Figure 2). The
complexity of this algorithm isO(N(logN)2) as compared to
O(N logN) of the SC decoder and BP over one trellis. The
performance of the BP decoder is improved significantly by
using this overcomplete representation as shown in Figure 3.
We leave a systematic investigation of good schedules and

choices of overcomplete representations for general symmetric
channels as an interesting open problem.

C. Choice of Frozen Bits

For the BP or MAP decoding algorithm the choice of frozen
bits as given by Arıkan is not necessarily optimal. In the
case of MAP decoding we observe (see Figure 4) that the
performance is significantly improved by picking the frozen
bits according to the RM rule. This is not a coincidence;dmin

is maximized for this choice. This suggests that there might
be a rule which is optimized for BP. It is an interesting open
question to find such a rule.

III. SOURCE CODING

In this section we show the performance of polar codes in
the context of source coding. We consider both lossless and
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mance curves are shown forn = 10 (left) and11 (right).

lossy cases and show (in most cases) empirically that they
achieve the optimal performance in both cases. Let Ber(p)
denote a Bernoulli source withPr(1) = p. Let h2(·) denote
the binary entropy function andh−1

2 (·) its inverse.

A. Lossless Source Coding

1) Single User: The problem of lossless source coding
of a Ber(p) source can be mapped to the channel coding
problem over a binary symmetric channel (BSC) as shown
in [6], [7]. Let x̄ = (x0, . . . , xN−1)

T be a sequence of
N i.i.d. realizations of the source. Consider a code of rate
R represented by the parity check matrixH. The vector
x̄ is encoded by its syndromēs = Hx̄. The rate of the
resulting source code is1 − R. The decoding problem is
to estimatex̄ given the syndromēs. This is equivalent to
estimating a noise vector in the context of channel coding over
BSC(p). Therefore, if a sequence of codes achieve capacity
over BSC(p), then the corresponding source codes approach a
rateh2(p) with vanishing error probability.

We conclude that polar codes achieve the Shannon bound
for lossless compression of a binary memoryless source.
Moreover, using the trellis of Figure 2(a), we can compute
the syndrome with complexityO(N logN). The source coding
problem has a considerable advantage compared to the channel
coding problem. The encoder knows the information seen by
the decoder (unlike channel coding there is no noise involved
here). Therefore, the encoder can also decode and check

(d) N = 213

1

Figure 3.4: Comparison of SC decoding (upper curve) and BP decoding (lower curve) in

terms of word error rate, when transmission takes place over binary-input AWGN channel

(σ=0.97865) [1].

3.4 Belief propagation decoding

Polar codes with SC decoding are asymptotically capacity achieving, but not record

breaking for moderate length. Under BP decoding, it uses information provided by frozen

bits, and without using the hard-decision bits decoded previously, it can avoid error

propagation. We can conclude BP decoding is better than SC decoding.

BP decoding was used to compare performance of polar codes constructed on Bhat-

tacharyya parameters and RM codes in [6]. Performance of polar codes under SC decoding

and BP decoding was already shown in [1], we can see that BP decoding is obviously better

than SC decoding with various code rates and block lengths.
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Chapter 4

Scheduling of BP Decoding

Although BP decoding is better than SC decoding for polar codes, there still exists a

gap between BP decoding and MAP decoding for the error rate curve [1]. Some methods

have been proposed to improve error performance over BP decoding [1][7].

4.1 Incremental updating schedule

From Section 2.2, we know that if û1, · · · , ûi−1 are correctly decoded, then ui almost

can be decoded correctly for long block length. But it’s not easy to correctly decode infor-

mation bit successively for moderate code length. Since SC decoding can be regarded as

a case of BP decoding, the successive decoding notion can be used to modify BP decoding

schedule. The proposed decoding schedule is called incremental updating schedule.

We partition the N bits including frozen bits and information bits into many equal-

sized blocks according to index-order. Each block has a factor graph that consists of

factor graphs associated with coordinate channels described in Section 3.1. For example,

for N = 8 we partition N bits into 4 blocks. The first block is (u1, u2), second is (u3, u4)

and so on. Fig. 4.1 shows factor graph of the first block, and factor graph for the second

one is shown in Fig. 4.2.

For code length is N , block size is 2l and l ≥ 1, there are N/2l iteration times in

incremental updating decoding schedule. The steps of decoding process are showing

below, some figures are also shown for illustration:

1. We first set the initial condition using information provided by information bits and

frozen bits, and calculate LLR of every path in the factor graph of polar codes from
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Figure 4.1: Factor graph of the first block for N=8.
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Figure 4.2: Factor graph of the second block for N=8.
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Figure 4.3: Calculate initial LLR values of polar codes factor graph.

left-most level to right-most level. It’s shown in Fig. 4.3.

2. At the first iteration, we consider the factor graph of the first block, and calculate

LLR of every path in the factor graph from right-most level to left-most level. It’s

shown in Fig. 4.4.

3. Update the LLR of every path in the factor graph from left-most level to the right-

most level as shown in Fig. 4.5.

4. Consider the factor graph union of block 1 and block 2, revise message passing

through every path of the factor graph from right-most level to the left-most level

and update back. Updating from right side to left side is shown in Fig. 4.6.

5. During the ith iteration, consider the first i blocks and the associated factor graph,

repeat the updating procedure described above.

6. At the last iteration, consider all block, and the associated factor graph is the

factor graph of polar codes. We only update LLR from right to left, and add the

information provided by frozen bits.

7. Quantize the LLR values associated with every information bit and frozen bit. Fi-

nally, decide whether they are 0 or 1.
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4.2 Simulation results

In this thesis, we simulate polar codes with code rates 1/3, 1/2 or 5/6 and code length

ranging form 211 to 213 over binary-input AWGN channel.

The task of finding A is according to (2.2) and (3.1), i.e.,

Pr(E) ≤
∑
i∈A

Pr(Ei)

Pr(Ei) =
1

2

∫ ∞
−∞

a
(i)
N (x)e−

(
|x|
2
+x

2

)
dx, 1 ≤ i ≤ N

Specifically, we simulate 10000 trials to find A. In each trial, we first calculate L
(i)
N (y1, · · · ,

yN , u1, · · · , ui−1) while the sent bit ui = 0. After the 10000 trials, we find the expected

values
1

2
e−
( |L(i)

N
|

2
+

L
(i)
N
2

)
, conditioned on ui = 0, for 1 ≤ i ≤ N

We note that the above expected values would converge to Pr(Ei) as the number of trials

increases. After obtaining the value associated with each i, for any specific code rate, we

choose the subset of {1, · · · , N} so as to minimize
∑

i∈A Pr(Ei). Having fixed the code

rate and code length, there are two parts in the following simulations.

The first part: For a specific rate and code length, we simulate incremental updating

schedule with three partition types, i.e., the decoded bits in the three types are

23



partitioned into 28, 29 or 210 blocks respectively, and show the results of increasing

number of blocks in incremental updating schedule.

The second part: We partition decoded bits into 210 in incremental updating schedule.

The iteration times of BP decoding without scheduling is set to 640 so that the two

decoding algorithms almost have the same complexity, i.e., the average iteration

times of degree-3 nodes are the same. Besides error performance comparison of

SC decoding, BP decoding without scheduling and BP decoding in incremental

updating schedule, we also show the results of increasing iteration times under BP

decoding without scheduling.

In both simulations we observe that the scheduling based on incremental updating per-

forms better than the one without.
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Figure 4.7: Error performance comparison of increasing block number in incremental

updating schedule. Code rate is 1/3 and block length is 2048.
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Figure 4.8: Error performance comparison of increasing block number in incremental

updating schedule. Code rate is 1/2 and block length is 4096.
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Figure 4.9: Error performance comparison for code rate is 1/2 and block length is 4096.
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Figure 4.10: Error performance comparison of increasing iteration times under BP decod-

ing for code rate is 1/2 and block length is 4096.
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Figure 4.11: Error performance comparison for code rate is 5/6 and block length is 4096.
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Figure 4.12: Error performance comparison of increasing iteration times under BP decod-

ing for code rate is 5/6 and block length is 4096.

27



0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
10

−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

B
E

R

Binary−input AWGN channel, N=8192, Rate=0.5

 

 

SC decoding
BP decoding without scheduling
BP decoding in incremental updating schedule

Figure 4.13: Error performance comparison for code rate is 1/2 and block length is 8192.
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Figure 4.14: Error performance comparison of increasing iteration times under BP decod-

ing for code rate is 1/2 and block length is 8192.
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Figure 4.15: Error performance comparison for code rate is 5/6 and block length is 8192.
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Figure 4.16: Error performance comparison of increasing iteration times under BP decod-

ing for code rate is 5/6 and block length is 8192.
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Chapter 5

Conclusion

In the incremental updating schedule, if we partition N bits into more blocks, the error

performance will get better. In Fig. 4.7 and Fig. 4.8 we can see that the type with 210

blocks is better than the other two types. The type with 28 blocks is the worst one among

all three. For BP decoding, error performance will get better as number of iterations

grows. For incremental updating schedule, if we partition N bits into more blocks, error

rates will get better, too. For the cases, in Fig. 4.9, Fig. 4.11, Fig. 4.13 and Fig. 4.15, error

performance in incremental updating schedule is better than error performance under BP

decoding.

However, in some cases like Fig. 5.1 and Fig. 5.3, decoding error rate in incremental

updating schedule is not better than that under BP decoding. In Fig. 5.1, we even have

partitioned with minimum block size. For a specific rate or block length, the block number

we should partition into so that decoding in incremental updating schedule will be better

than BP decoding is not easy to choose and calls for future works.
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Figure 5.1: Error performance comparison for code rate is 1/3 and block length is 2048.
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Figure 5.2: Error performance comparison of increasing iteration times under BP decoding

for code rate is 1/3 and block length is 2048.
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Figure 5.3: Error performance comparison for code rate is 1/3 and block length is 4096.
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Figure 5.4: Error performance comparison of increasing iteration times under BP decoding

for code rate is 1/3 and block length is 4096.
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