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摘 要       

 

針對經由頻率選擇性衰減通道傳送的 OFDM 信號，我們在本篇論文提出

一個結合錯誤更正以及通道估計的修正型 GLRT 解調器。模擬結果顯示，

修正型 GLRT 解調器比 GLRT 解調器有更好的效能。並且我們也為修正型

GLRT 解調器推導可以降低其解調複雜度的演算法。 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 i  

 



Modified GLRT Demodulation for OFDM Signal
Transmitted Over a Frequency-Selective Fading

Channel

Student: Hsin-yu Kuo kkk Advisor: Po-Ning Chen

Institute of Communications Engineering

National Chiao Tung University

Abstract

In this thesis, we propose the so-called Modified GLRT demodulator for combined channel

estimation and data correction for OFDM signals transmitted over a frequency selective

channel with unknown channel coefficients. Simulation results confirm that the Modified

GLRT can achieve an evidently better performance than the traditional GLRT. In order to

reduce the demodulation complexity, we further derive the recursive metric formula based

on the Modified GLRT criterion for use of the priority-first search algorithm. This results

in a much lower demodulation complexity in comparison with the exhaustive demodulator.
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Chapter 1

Introduction

1.1 Overview

Orthogonal frequency-division multiplexing (OFDM) is an effective multicarrier technique for

wireless systems over the frequency selective channel [1]. Conventionally, a typical receiver

for wireless communication system performs channel estimation, channel equalization and

data detection separately. However in recent researches [2][3], the demodulator combined

channel estimation and data detection has been considered a promising approach to combat

the effects of multi-path fading. The demodulation is regarded as blind because the channel

fading coefficients are unknown to both the receiver and transmitter. According to [3][4], the

generalized likelihood ratio test (GLRT) is the best decision maker for blind demodulation.

In this thesis, we develop a blind demodulator, termed as the Modified GLRT, for an

OFDM system transceived over a frequency selective channel with unknown channel coeffi-

cients. In short, it jointly performs the channel estimation and data correction. In order to

reduce the demodulation complexity, a priority-first search demodulation algorithm as well

as the recursive metric formula used by this algorithm is also proposed.

We organize the thesis as follows. Chapter 2 gives the necessary background for the non-

coherent OFDM system, GLRT demodulation and prority-first search algorithm. Chapter

1



3 introduces the Modified GLRT demodulator we propose, and derive the recursive metric

for its corresponding priority-first search demodulator. Chapter 4 presents and remarks the

simulation results. Chapter 5 concludes the thesis.

1.2 Acronyms and Notations

Some acronyms and common identifiers used in this thesis are listed below.

OFDM orthogonal frequency division multiplexing

AWGN additive white Gaussian noise

PSK phase shift keying

DFT discrete Fourier transform

GLRT general likelihood ratio test

ModGLRT modified general likelihood ratio test

BER bit error rate

ML maximum-likelihood

SNR signal-to-noise ratio

Symbol Meaning
x a time domain vector (The following notations are simple representative examples.

Similar notations are applied to other alphabets.)

X a frequency domain vector
Q a matrix
Xk the k-th component of a vector X
Qk,` the element of a matrix Q at row k and column `

‖X‖2 the norm of a vector X
XT transpose of a vector X

X† Hermitian transpose operation of a vector X
trace(Q) the trace of a square matrix Q

vec(Q) the operation to transform a matrix into a vector

2



Chapter 2

Technical Background

In this chapter, the background knowledges about the orthogonal frequency division mul-

tiplexing (OFDM) system, the general likelihood ratio test (GLRT) and the maximum-

likelihood priority-first search demodulation/decoding algorithm are provided. Specifically,

we first introduce the non-coherent OFDM system in Section 2.1 [6]. We then present in

Section 2.2 the GLRT criterion, also known as the joint maximum-likelihood (JML) crite-

rion. In Section 2.3, we give a brief overview of the maximum-likelihood priority-first search

demodulation/decoding algorithm that operates over a tree.

2.1 An OFDM System with Non-Coherent Receiver

Consider an OFDM system with N subchannels, for which the transmission suffers multipath

frequency-selective fading. Assume that the fading coefficients h =
[

hν · · ·h1 h0

]T
that are

unknown to both transmitter and receiver will remain constant in a time period T . Denote

the information transmitted at time j by

Sj =











S1,j

S2,j
...

SN,j











N×1

3



where each component Si,j is either ∈ {±1} for BPSK or ∈ {±1,±i} for QPSK. The OFDM

modulation can be realized by an N -point inverse discrete Fourier transform (DFT), given

by

sj = Q†Sj =











s1,j
s2,j
...

sN,j











N×1

where

Q =
1√
N















e−i
2π
N

(N−1)(N−1) · · · e−i
2π
N

2(N−1) e−i
2π
N

(N−1) 1

e−i
2π
N

(N−1)(N−2) · · · e−i
2π
N

2(N−2) e−i
2π
N

(N−2) 1
...

. . .
...

...
...

e−i
2π
N

(N−1) · · · e−i
2π
N

2 e−i
2π
N 1

1 · · · 1 1 1















N×N

(2.1)

and superscript “†” denotes the matrix Hermitian transpose operation. The so-called cyclic

prefix [8] of length ν will then be added before the transmission of sj, resulting in the

transmission signal vector as

pj =











p1,j
p2,j
...

pL,j











=



























s1,j
s2,j
...

sN,j

s1,j
s2,j
...

sν,j



























L×1

where L = N + ν. Here, we assume that pL,j = sν,j will be transmitted first, and p1,j = s1,j

will be the last one to be sent.

Together with the additive noise vj =
[

v1,j, v2,j , · · · , vL,j
]

T

, we can formulate the afore-

4



mentioned system by

yj =











y1,j
y2,j
...

yL,j











=























h0 h1 h2 · · · hν−1 hν 0 · · · 0
0 h0 h1 · · · hν−2 hν−1 hν · · · 0
...

...
...

. . .
...

...
... · · · ...

0 0 0 · · · 0 h0 h1 · · · hν

0 0 0 · · · 0 0 h0 · · · hν−1
...

...
...

. . .
...

...
... · · · ...

0 0 0 · · · 0 0 0 · · · h0

































p1,j
p2,j
...

pL,j











+











v1,j
v2,j
...

vL,j











where vj is a zero-mean Gaussian noise vector with independent and identically distributed

(i.i.d.) entities of covariance matrix σ2IL, and IL is the L× L identity matrix.

Upon reception of yj , the cyclic prefix will be removed first, which gives a received vector

of length N , denoted by xj, i.e.,

xj =











x1,j

x2,j
...

xN,j











=











y1,j
y2,j
...

yN,j











=























h0 h1 h2 · · · hν−1 hν 0 · · · 0
0 h0 h1 · · · hν−2 hν−1 hν · · · 0
...

...
...

. . .
...

...
... · · · ...

0 0 0 · · · 0 h0 h1 · · · hν

hν 0 0 · · · 0 0 h0 · · · hν−1
...

...
...

. . .
...

...
... · · · ...

h1 h2 h3 · · · hν 0 0 · · · h0























sj +wj

= Hsj +wj

where

wj =











w1,j

w2,j
...

wN,j











=











v1,j
v2,j
...

vN,j











.

Notably, by the circulant property of H, it can be decomposed to Q†ΛQ for some diagonal

matrix Λ; hence,

xj = Q†ΛQsj +wj .

5



The N -point DFT will then be applied onto xj to obtain

Xj = Qxj = QQ†ΛQ sj +Qwj = ΛSj +W j

where W j = Qwj. This results in the final formation of the considered system:

Xj = Sjλ+W j. (2.2)

In (2.2), we transform vector Sj to its equivalent diagonal matrix Sj as

Sj =











S1,j 0 · · · 0
0 S2,j · · · 0
...

...
. . .

...
0 0 · · · SN,j











N×N

and the elements of vector λ =
[

λN−1 · · · λ1 λ0

]

T

are the DFT values of the channel

fading h, given by

Λ =











λN−1 0 · · · 0
0 λN−2 · · · 0
...

...
. . .

...
0 0 · · · λ0











= Q























h0 h1 h2 · · · hν−1 hν 0 · · · 0
0 h0 h1 · · · hν−2 hν−1 hν · · · 0
...

...
...

. . .
...

...
... · · · ...

0 0 0 · · · 0 h0 h1 · · · hν

hν 0 0 · · · 0 0 h0 · · · hν−1
...

...
...

. . .
...

...
... · · · ...

h1 h2 h3 · · · hν 0 0 · · · h0























Q†.

After introducing the basic model of an OFDM system, we next turn to the non-coherent

detection of OFDM symbols. It can be verified that it requires at least two OFDM symbols

to perform non-coherent detection at the receiver; hence, we assume that T ≥ 2Ts, where as

having been defined previously, T is the period that channel coefficients h remain constant,

and Ts is the OFDM symbol duration. Without loss of generality, let the two OFDM symbols

received are indexed by 1 and 2. This gives

X1 = S1λ+W 1 (2.3)

6



and

X2 = S2λ+W 2 (2.4)

For convenience, we will combine (2.3) and (2.4) into

~X = ~Sλ+ ~W (2.5)

where

~X =

[

X1

X2

]

, ~S =

[

S1

S2

]

and ~W =

[

W 1

W 2

]

.

Notably, if T ≥ kTs, we can of course consider a non-coherent receiver for the information

~S =
[

S1, S2, . . . , Sk

]T
. However, since the demodulation complexity dramatically grows as k

increases and since a larger k implies the resulting system can be only used in a less mobile

environment, this thesis only considers the case of k = 2.

2.2 General Likelihood Ratio Test (GLRT) Criterion

Equation (2.5) defines the system model considered in this thesis. Two assumptions are

then made for this system: (i) both transmitter and receiver knows the memory order of

the channel ν, but (ii) none of them has the knowledge about channel fading λ. With the

assumptions above, it can be derived that the least square estimate of the channel coefficient

λ for a given ~S is equal to λ̂ = (~S
†~S)−1~S

† ~X, if the λ considered in the below minimization

lie in the N -dimensional complex space CN . Thus, the so-called general likelihood ratio test

(GLRT) decision [8] can be written as

~̂S = argmin
~S∈S

min
λ∈CN

‖ ~X − ~Sλ‖2 = argmin
~S∈S

‖ ~X − ~Sλ̂‖2 = argmin
~S∈S

‖ ~X − P~S
~X‖2 (2.6)

7



where

P~S
, ~S(~S

†~S)−1~S
†

= ~S











1
|S1,1|2+|S1,2|2 0 · · · 0

0 1
|S2,1|2+|S2,2|2 · · · 0

...
...

. . .
...

0 0 · · · 1
|SN,1|2+|SN,2|2











~S
†

=





































|S1,1|2
|S1,1|2+|S1,2|2 0 · · · 0

S1,1S
∗

1,2

|S1,1|2+|S1,2|2 0 · · · 0

0
|S2,1|2

|S2,1|2+|S2,2|2 · · · 0 0
S2,1S

∗

2,2

|S2,1|2+|S2,2|2 · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · |SN,1|2
|SN,1|2+|SN,2|2 0 0 · · · SN,1S

∗

N,2

|SN,1|2+|SN,2|2
S∗

1,1S1,2

|S1,1|2+|S1,2|2 0 · · · 0
|S1,2|2

|S1,1|2+|S1,2|2 0 · · · 0

0
S∗

2,1S2,2

|S2,1|2+|S2,2|2 · · · 0 0
|S2,2|2

|S2,1|2+|S2,2|2 · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · S∗

N,1SN,2

|SN,1|2+|SN,2|2 0 0 · · · |SN,2|2
|SN,1|2+|SN,2|2





































.

We can further derive that

~̂S = argmin
~S∈S

‖ ~X − P~S
~X‖2

= argmax
~S∈S

~X
†
P~S

~X

= argmax
~S∈S

N
∑

i=1

|Xi,1|2|Si,1|2 + |Xi,2|2|Si,2|2 +Xi,1S
∗
i,1X

∗
i,2Si,2 +X∗

i,1Si,1Xi,2S
∗
i,2

|Si,1|2 + |Si,2|2

= argmax
~S∈S

N
∑

i=1

|Si,1X
∗
i,1 + Si,2X

∗
i,2|2

|Si,1|2 + |Si,2|2
(2.7)

As a consequence of (2.7), (Si,1, Si,2) = (1,−1) and (Si,1, Si,2) = (−1, 1) (similarly, (Si,1, Si,2) =

(1, 1) and (Si,1, Si,2) = (−1,−1)) are indistinguishable at the receiver; hence, one of Si,1 and

Si,2 must be fixed (say, as −1) for BPSK. The same reason gives that one of Si,1 and Si,2 must

be fixed (say, as 1√
2
− i√

2
) also for QPSK. As an example, a GLRT-detectable transmission

8



signal can be assigned as

~S =

[

S1

S2

]

=



































−1 0 0 · · · 0
0 S2,1 0 · · · 0
0 0 S3,1 · · · 0
...

...
...

. . .
...

0 0 0 · · · −1
S1,2 0 0 · · · 0
0 −1 0 · · · 0
0 0 −1 · · · 0
...

...
...

. . .
...

0 0 0 · · · SN,2



































. (2.8)

2.3 Maximum-Likelihood Priority-First Search Decod-

ing Algorithm

One effective structure for demodulating ~S is to represent all possible transmission signals

by a tree. As an example for BPSK, each branch on a tree is labelled by two information

bits Si,1Si,2 as shown in Figure 2.1. Each node have only two (respectively, four) branches

emitting from it for the case of BPSK (respectively, QPSK) because one of Si,1 and Si,2

must be fixed. In this figure, we circle these fixed bits so that they can be more clearly

seen. We denote the path ending at level ` by the labels it has traversed, i.e., ~S(`) =

[S1,1S1,2S2,1S2,2 · · ·S`,1S`,2]
T. Here with no ambiguity, we abuse the notation by re-using

~S(`), which originally denotes the information signal matrix, to denote the equivalent vector.

For notational convenience, we will drop the subscript in notation ~S(`) when ` = N .

The priority-first search algorithm is a kind of graph search algorithm. It searches the

graph by expanding the most promising path. It can then be used onto the tree we con-

structed for information signal ~S.

A typical priority-first search algorithm is given below [3]:

Step 1. Load the stack with the path that ends at the original node at level 0.
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level 0 1 2 3

Figure 2.1: Illustration of a tree structure, up to level 3, corresponding to information signal
in (2.8) with fixed bits circled.

Step 2. Insert the successor paths of the current top path into the stack such that the paths

in the stack are ordered according to their ascending metric values f ; then, delete this

top path from the stack.

Step 3. If the new top path in the stack ends at a terminal node in the tree at level N ,

output the labels corresponding to the top path, and stop the algorithm; otherwise, go

to Step 2.

Next we quote a sufficient condition from [3], under which the priority-first search algorithm

guarantees to expand the path (cf. Step 2), whose metric is the smallest among all paths of

the same length.
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Lemma 2.1 If the metric f is nondecreasing along every path in the tree, i.e.,

f(~S(`)) ≤ min
{~̃S∈S:~̃S(`)=~S(`)}

f(~̃S) (2.9)

then the priority-first search algorithm always yields the path with the smallest metric value

among all paths of the same length.

Usually, a metric f is defined as the sum of two parts:

f(~S(`)) , g(~S(`)) + ϕ(~S(`)).

The former part g is determined based on the maximum-likelihood metric and hence satisfies

argmin
~S∈S

g(~S) = argmin
~S∈S

‖ ~X − P~S
~X‖2.

The latter part ϕ is often named heuristic function. It gives the prediction of the route from

the current node to an end node at level N so as to speed up the search process. Note that

the heuristic function is not unique, and different designs will lead to distinct computational

complexities.

11



Chapter 3

Modified GLRT and Priority First
Search Demodulator

In this chapter, we will focus on the derivation of the modified GLRT that we propose in

this thesis. The maximum-likelihood metrics respectively for the GLRT and the modified

GLRT for use of the priority-first search demodulator will be subsequently derived.

3.1 The Modified GLRT

In Section 2.1, the channel coefficient matrix H can be decomposed into Q†ΛQ. Equivalently,

we can write Λ = QHQ†. The GLRT then demodulates the transmitted signal through (2.6),

i.e.,

~̂S = argmin
~S∈S

min
λ∈CN

‖ ~X − ~Sλ‖2. (3.1)

The range of minimization in (3.1) is the entire N -dimensional complex domain CN . We

however observe that the possible values of λ should be much smaller than thisN -dimensional

12



complex domain. Take N = 3 and ν = 1 as an example. We obtain from (2.1) that

Q =
1√
3





−1
2
− i

√
3
2

−1
2
+ i

√
3
2

1

−1
2
+ i

√
3
2

−1
2
− i

√
3
2

1
1 1 1





=
1√
3

[

q1 q2 q3

]

.

Also note that

H =





h0 h1 0
0 h0 h1

h1 0 h0



 .

Hence,

Λ = QHQ† =





λ2 0 0
0 λ1 0
0 0 λ0



 =









h0 + h1

(

−1
2
+ i

√
3
2

)

0 0

0 h0 + h1

(

−1
2
− i

√
3
2

)

0

0 0 h0 + h1









or equivalently,

λ =





λ2

λ1

λ0



 = (h0q3 + h1q2) =
[

q2 q3

]

[

h1

h0

]

= Q1h.

Therefore, λ should lie only in a 2-dimensional plane over the 3-dimensional complex space.

By following the same derivation, it can be derived for general N and ν < N that

λ = Qνh (3.2)

where

Qν =
[

qN−ν · · ·qN

]

.

Thus, the non-coherent GLRT demodulator/decoder can be written as

~̂S = argmin
~S∈S

min
h∈Cν+1

‖ ~X − ~SQνh‖2

With the two assumptions in Section 2.2, the least square estimate of channel fading h for

given ~S is equal to ĥ = (S̃
†
S̃)−1S̃

† ~X ; here S̃ , ~SQν . Therefore, the modified version of

general likelihood ratio test (i.e., the modified GLRT) decision can be written as

~̂S = argmin
~S∈S

‖ ~X − ~SQνĥ‖2 = argmin
~S∈S

‖ ~X − P
S̃
~X‖2 (3.3)
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where P
S̃
= S̃(S̃

†
S̃)−1S̃

†
. In comparison with the estimate of λ without any limitation (i.e.,

the GLRT), the resulting λ corresponding to the new estimate of h now lies in a (ν + 1)-

dimensional hyperplane, defined via λ = Qνh. By using the modified GLRT instead of the

GLRT, we expect that the probability of error will decrease as the latter may give an λ

estimate that cannot be obtained by the real channel.

We can further derive that

~̂S = argmin
~S∈S

‖ ~X − P
S̃
~X‖2

= argmin
~S∈S

( ~X − P
S̃
~X)†( ~X − P

S̃
~X)

= argmin
~S∈S

(

‖ ~X‖2 − ~X
†
P
S̃
~X − ~X

†
P
†
S̃

~X + ~X
†
P
†
S̃
P
S̃
~X
)

It is apparent that ‖ ~X‖2 can be removed as it is nothing to do with the optimizer. Also, by

(S̃
†
S̃)−1 =

(

Q†
ν
~S

†~SQν

)−1

=
(

Q†
ν2INQν

)−1
=

1

2
Iν+1,

we have

P
S̃

= S̃(S̃
†
S̃)−1S̃

†

=
1

2
× S̃S̃

†

=
1

2
× ~SQνQ

†
ν
~S

†
,

which implies

P
S̃
= P

†
S̃
= P

†
S̃
P
S̃
.

So

~̂S = argmin
~S∈S

(

− ~X
†
P
S̃
~X
)

= argmax
~S∈S

~X
†
P
S̃
~X

= argmax
~S∈S

~X
†~SQνQ

†
ν
~S

† ~X. (3.4)
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(3.4) will be used in later simulations for performance comparisons between the modified

GLRT and the GLRT. Again, we take N = 2 and ν = 1 as an example for its computation.

In such case, we have

~S =









S1,1 0
0 S2,1

S1,2 0
0 S2,2









and ~X =









X1,1

X2,1

X1,2

X2,2









.

For convenience, we denote

QνQ
†
ν =

[

q1,1 q1,2
q2,1 q2,2

]

.

Hence,

P
S̃

=









S1,1 0
0 S2,1

S1,2 0
0 S2,2









[

q1,1 q1,2
q2,1 q2,2

] [

S∗
1,1 0 S∗

1,2 0
0 S∗

2,1 0 S∗
2,2

]

=









S1,1q1,1 S1,1q1,2
S2,1q2,1 S2,1q2,2
S1,2q1,1 S1,2q1,2
S2,2q2,1 S2,2q2,2









[

S∗
1,1 0 S∗

1,2 0
0 S∗

2,1 0 S∗
2,2

]

=









S∗
1,1S1,1q1,1 S∗

2,1S1,1q1,2 S∗
1,2S1,1q1,1 S∗

2,2S1,1q1,2
S∗
1,1S2,1q2,1 S∗

2,1S2,1q2,2 S∗
1,2S2,1q2,1 S∗

2,2S2,1q2,2
S∗
1,1S1,2q1,1 S∗

2,1S1,2q1,2 S∗
1,2S1,2q1,1 S∗

2,2S1,2q1,2
S∗
1,1S2,2q2,1 S∗

2,1S2,2q2,2 S∗
1,2S2,2q2,1 S∗

2,2S2,2q2,2









where the superscript “∗” denotes the complex conjugate operation. Consequently, the de-
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modulator/decoder output with respect to ~S is given by:

~̂S = argmax
~S∈S

~X
†
P
S̃
~X

=
[

X∗
1,1X

∗
2,1X

∗
1,2X

∗
2,2

]









S∗
1,1S1,1q1,1 S∗

2,1S1,1q1,2 S∗
1,2S1,1q1,1 S∗

2,2S1,1q1,2
S∗
1,1S2,1q2,1 S∗

2,1S2,1q2,2 S∗
1,2S2,1q2,1 S∗

2,2S2,1q2,2
S∗
1,1S1,2q1,1 S∗

2,1S1,2q1,2 S∗
1,2S1,2q1,1 S∗

2,2S1,2q1,2
S∗
1,1S2,2q2,1 S∗

2,1S2,2q2,2 S∗
1,2S2,2q2,1 S∗

2,2S2,2q2,2

















X1,1

X2,1

X1,2

X2,2









=
[

X∗
1,1X

∗
2,1X

∗
1,2X

∗
2,2

]









X1,1S
∗
1,1S1,1q1,1 +X2,1S

∗
2,1S1,1q1,2 +X1,2S

∗
1,2S1,1q1,1 +X2,2S

∗
2,2S1,1q1,2

X1,1S
∗
1,1S2,1q2,1 +X2,1S

∗
2,1S2,1q2,2 +X1,2S

∗
1,2S2,1q2,1 +X2,2S

∗
2,2S2,1q2,2

X1,1S
∗
1,1S1,2q1,1 +X2,1S

∗
2,1S1,2q1,2 +X1,2S

∗
1,2S1,2q1,1 +X2,2S

∗
2,2S1,2q1,2

X1,1S
∗
1,1S2,2q2,1 +X2,1S

∗
2,1S2,2q2,2 +X1,2S

∗
1,2S2,2q2,1 +X2,2S

∗
2,2S2,2q2,2









= X∗
1,1X1,1S

∗
1,1S1,1q1,1 +X∗

1,1X2,1S
∗
2,1S1,1q1,2 +X∗

1,1X1,2S
∗
1,2S1,1q1,1 +X∗

1,1X2,2S
∗
2,2S1,1q1,2

+ X∗
2,1X1,1S

∗
1,1S2,1q2,1 +X∗

2,1X2,1S
∗
2,1S2,1q2,2 +X∗

2,1X1,2S
∗
1,2S2,1q2,1 +X∗

2,1X2,2S
∗
2,2S2,1q2,2

+ X∗
1,2X1,1S

∗
1,1S1,2q1,1 +X∗

1,2X2,1S
∗
2,1S1,2q1,2 +X∗

1,2X1,2S
∗
1,2S1,2q1,1 +X∗

1,2X2,2S
∗
2,2S1,2q1,2

+ X∗
2,2X1,1S

∗
1,1S2,2q2,1 +X∗

2,2X2,1S
∗
2,1S2,2q2,2 +X∗

2,2X1,2S
∗
1,2S2,2q2,1 +X∗

2,2X2,2S
∗
2,2S2,2q2,2

It is obvious from the above expression that ~X
†
P
S̃
~X = ~X

†
P−S̃

~X. In other words, the

following two OFDM symbols are indistinguishable at the receiver.

~S =









−1 0
0 −1
+1 0
0 −1









and −~S =









+1 0
0 +1
−1 0
0 +1









.

Therefore, we should fix at least one component of an OFDM symbol ~S. For instance, we

can fix S1,1 = −1 for BPSK or S1,1 = 1√
2
− i√

2
for QPSK. This is contrary to the GLRT

(cf. (2.8)), where half of the OFDM components should be fixed. Note that although the

modified GLRT can reach a much higher data rate by fixing only one component in an

OFDM symbol, we will in later simulations fix half of the components in order to compare

the performance of the modified GLRT with that of the GLRT under the same data rate.

We close this subsection by a simple lemma about the equivalence of the modified GLRT

and the GLRT.
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Lemma 3.1 When ν = N − 1, (3.4) is reduced to the GLRT.

Proof: When ν = N − 1, we immediately have

Qν =
[

q1q2 · · ·qN

]

=
√
NQ

and

S̃ = ~SQν = ~S
√
NQ.

The resulting P
S̃
is therefore equal to

P
S̃

= S̃(S̃
†
S̃)−1S̃

†

= (~S
√
NQ)

(

(~S
√
NQ)†(~S

√
NQ)

)−1

(~S
√
NQ)†

= (~SQ)(Q†~S
†~SQ)−1(~SQ)†

= ~SQQ−1(~S
†~S)−1(Q†)−1Q†~S

†

= ~S(~S
†~S)−1~S

†

= P~S.

Hence, (3.4) is reduced to the GLRT. 2

By this lemma, we conclude that the modified GLRT decision is equivalent to the GLRT

decision when ν = N − 1. In such case, the range of minimization with respect to h for the

modified GLRT and that of the λ for the GLRT are both the N -dimensional complex space

CN .

3.2 The Maximum-Likelihood DemodulationMetric for

the Modified GLRT

In this section, we will derive the recursive metric formulas that are used by the priority-

first search algorithm under the modified GLRT criterion. Two formulas will be provided:
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The first metric f1 allows the demodulation to be performed by sequentially feeding the

components of an OFDM symbol, while the second one f2 requires parallelly using all com-

ponents of an OFDM symbol at each recursion step. Both recursive metric formulas can be

represented into sum of two portions:

f1(~S(`)) , g(~S(`)) + ϕ1(~S(`)), (3.5)

f2(~S(`)) , g(~S(`)) + ϕ2(~S(`)), (3.6)

where g, ϕ1 and ϕ2 will be defined in Sections 3.2.1, 3.2.2 and 3.2.3, respectively. Notably,

both metrics give the optimal performance. Their difference is mainly that the recursive

computation of f1 can be conducted by feeding the components of an OFDM symbol in a

sequential fashion, while that of f2 requires all the components at the same time; however,

f2 is more efficient since it expands less nodes during the priority-first search.

3.2.1 Recursive Maximum-Likelihood Metric g

By following a similar procedure to [3], we will derive the recursive ML metric g that can

be used in the priority-first search algorithm. From (3.3), we obtain

~̂S = argmin
~S∈S

‖ ~X − P
S̃
~X‖2

= argmin
~S∈S

( ~X − P
S̃
~X)†( ~X − P

S̃
~X)

= argmin
~S∈S

−trace(P
S̃
~X ~X

†
)

= argmin
~S∈S

−trace

(

S̃(S̃
†
S̃)−1S̃

† ~X ~X
†)

= argmin
~S∈S

−trace

(

S̃S̃
† ~X ~X

†)
since (S̃

†
S̃)−1 =

1

2
Iν+1

= argmin
~S∈S

−trace

(

~SQνQ
†
ν
~S

† ~X ~X
†)

= argmin
~S∈S

−trace

(

QνQ
†
ν
~S

† ~X ~X
†~S
)

= argmin
~S∈S

−vec(QνQ
†
ν)

†
vec(~S

† ~X ~X
†~S). (3.7)
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In its detail, (3.7) can be written as

~̂S = argmin
~S∈S

(

−
N
∑

m=1

N
∑

n=1

δm,n

2
∑

i=1

2
∑

j=1

S∗
m,iXm,iSn,jX

∗
n,j

)

(3.8)

where Si,j and Xi,j are the components of ~S and ~X , respectively, and δm,n is the (m,n)th

entry of (QνQ
†
ν)

T . By denoting

wm,n =
2
∑

i=1

2
∑

j=1

Re{δm,nS
∗
m,iXm,iSn,jX

∗
n,j},

we obtain an equivalent expression of (3.8) as

~̂S = argmin
~S∈S

[

−2

N
∑

m=1

(

m
∑

n=1

wm,n −
1

2
wm,m

)]

. (3.9)

A sufficient condition for the optimality of the priority-first search is that the path metric

is nondecreasing along any path over the tree. To achieve this goal, we can add a constant

um,n, independent of ~S, to (3.9) so that the metric becomes non-negative. According to the

(3.9), a convenient choice that satisfies the need is um,n = |wm,n|. By this, we know that for

BPSK-modulated OFDM symbols,

um,n =

2
∑

i=1

2
∑

j=1

|Re{δm,nXm,iX
∗
n,j}| (3.10)

and for QPSK-modulated OFDM symbols,

um,n =

2
∑

i=1

2
∑

j=1

|δm,nXm,iX
∗
n,j|. (3.11)

We then conclude the derivation as

~̂S = argmin
~S∈S

[

2

N
∑

m=1

(

m
∑

n=1

um,n −
1

2
um,m

)

− 2

N
∑

m=1

(

m
∑

n=1

wm,n −
1

2
wm,m

)]

= argmin
~S∈S

[

N
∑

m=1

(

m
∑

n=1

um,n −
1

2
um,m

)

−
N
∑

m=1

(

m
∑

n=1

wm,n −
1

2
wm,m

)]

(3.12)
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Based on (3.12), we can define the metric g for every path ~S` over a tree to be

g(~S(`)) ,
∑̀

m=1

(

m
∑

n=1

um,n −
1

2
um,m

)

−
∑̀

m=1

(

m
∑

n=1

wm,n −
1

2
wm,m

)

, (3.13)

which can be recursively computed via

g(~S(`+1)) = g(~S(`)) +

(

`+1
∑

n=1

u`+1,n −
1

2
u`+1,`+1

)

−
(

`+1
∑

n=1

w`+1,n −
1

2
w`+1,`+1

)

. (3.14)

3.2.2 The First Heuristic Function ϕ1

We now derive the heuristic function in accordance with Lemma 2.1. Taking the ML metric

g into the sufficient condition in (2.9) yields

∑̀

m=1

(

m
∑

n=1

um,n −
1

2
um,m

)

−
∑̀

m=1

(

m
∑

n=1

wm,n −
1

2
wm,m

)

+ ϕ(~S(`))

≤ min
{~̃S∈S:~̃S`=~S`}

[

N
∑

m=1

(

m
∑

n=1

um,n −
1

2
um,m

)

−
N
∑

m=1

(

m
∑

n=1

wm,n −
1

2
wm,m

)

+ ϕ(~̃S)

]

, (3.15)

where ϕ denotes the heuristic function. By noting that ϕ(~̃S) = 0, the first heuristic function

ϕ = ϕ1 should satisfy

ϕ1(~S(`)) ≤ min
{~̃S∈S:~̃S`=~S`}

[

N
∑

m=1

(

m
∑

n=1

um,n −
1

2
um,m

)

−
N
∑

m=1

(

m
∑

n=1

wm,n −
1

2
wm,m

)]

−
[

∑̀

m=1

(

m
∑

n=1

um,n −
1

2
um,m

)

−
∑̀

m=1

(

m
∑

n=1

wm,n −
1

2
wm,m

)]

. (3.16)

If we demand that ϕ1(~S(`)) is independent of the future routes of ~S(`), it is obvious that

the all-zero heuristic function is the largest one that satisfies (3.16). Hence, we choose

ϕ1(~S(`)) = 0 for every ~S(`). This selection makes f1 = g + ϕ1 = g on-the-fly computable.

By simulations, the use of this metric in the priority-first search algorithm decreases the

computational complexity in comparison with the straightforward exhaustive search.
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3.2.3 The Second Heuristic Function ϕ2

In comparison with f1 (or ϕ1) derived in the previous subsection, the computational com-

plexity can be further reduced if we drop the requirement that the metric cannot depend on

the future routes. Based on (3.16), we define

ϕ2(~S(`)) ,

[

N
∑

m=1

(

m
∑

n=1

um,n −
1

2
um,m

)

−
N
∑

m=1

(

m
∑

n=1

wm,n −
1

2
wm,m

)]

−
[

∑̀

m=1

(

m
∑

n=1

um,n −
1

2
um,m

)

−
∑̀

m=1

(

m
∑

n=1

wm,n −
1

2
wm,m

)]

. (3.17)

We can simplify (3.17) to:

ϕ2(~S(`)) ,

N
∑

m=`+1

(

m
∑

n=1

um,n −
1

2
um,m

)

−
N
∑

m=`+1

(

m
∑

n=1

wm,n −
1

2
wm,m

)

. (3.18)

At the end of this subsection, we stress again that the trade-off between metrics f1 and f2

is that the recursion computation due to f1 = g in (3.14) requires only the next component,

while adopting f2 can yield a lower computational complexity.

3.3 The Maximum-Likelihood DemodulationMetric for

the GLRT

For completeness, we also provide the maximum-likelihood demodulation metrics for the

GLRT in this section. Similar to the discussion for the modified GLRT criterion in Section

3.2, two metric functions f1 and f2 will be introduced. With no ambiguity, we re-use the

same notations g, f1 and f2 as those used in the previous section.
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3.3.1 Recursive Maximum-Likelihood Metric g

We begin the derivation from (2.6) and obtain

~̂S = argmin
~S∈S

‖ ~X − P~S
~X‖2

= argmin
~S∈S

‖ ~X − ~S(~S
†~S)−1~S

† ~X‖2

= argmin
~S∈S

−trace

(

(~S
†~S)−1~S

† ~X ~X
†~S
)

= argmin
~S∈S

−trace

(

~S
† ~X ~X

†~S
)

since (~S
†~S) = 2Iν+1

= argmin
~S∈S

−vec (I) vec
(

~S
† ~X ~X

†~S
)

. (3.19)

In its detail, (3.19) can be written as

~̂S = argmin
~S∈S

−
N
∑

m=1

2
∑

i=1

2
∑

j=1

S∗
m,iXm,iSm,jX

∗
m,j . (3.20)

Similar to the derivation in Section 3.2.1, we add a constant so as to make the resultant

metric nondecreasing along the paths over the tree:

~̂S = argmin
~S∈S

(

N
∑

m=1

2
∑

i=1

2
∑

j=1

|Xm,iX
∗
m,j| −

N
∑

m=1

2
∑

i=1

2
∑

j=1

S∗
m,iXm,iSm,jX

∗
m,j

)

. (3.21)

The above formula is suitable for both BPSK- and QPSK-modulated OFDM symbols. In

light of (3.21), the ML metric function used in the priority-first search can be defined as

g(~S(`)) ,
∑̀

m=1

2
∑

i=1

2
∑

j=1

|Xm,iX
∗
m,j | −

∑̀

m=1

2
∑

i=1

2
∑

j=1

S∗
m,iXm,iSm,jX

∗
m,j . (3.22)

Accordingly, its recursive form is given by

g(~S(`+1)) = g(~S(`)) +

2
∑

i=1

2
∑

j=1

|X`+1,iX
∗
`+1,j| −

2
∑

i=1

2
∑

j=1

S∗
`+1,iX`+1,iS`+1,jX

∗
`+1,j (3.23)

As anticipated, the g function just derived for the GLRT is less complicated than its coun-

terpart for the modified GLRT in (3.14).
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3.3.2 The First Heuristic Function ϕ1

By following similar procedure to Section 3.2.2, the heuristic function for the GLRT should

satisfy

∑̀

m=1

2
∑

i=1

2
∑

j=1

|Xm,iX
∗
m,j | −

∑̀

m=1

2
∑

i=1

2
∑

j=1

S∗
m,iXm,iSm,jX

∗
m,j + ϕ(~S(`))

≤ min
{~̃S∈S:~̃S`=~S`}

[

N
∑

m=1

2
∑

i=1

2
∑

j=1

|Xm,iX
∗
m,j | −

N
∑

m=1

2
∑

i=1

2
∑

j=1

S∗
m,iXm,iSm,jX

∗
m,j + ϕ(~̃S)

]

(3.24)

So the choice ϕ(~S(`)) = ϕ1(~S(`)) = 0 results in the desired f1, which is required to be

independent of the future receptions.

3.3.3 The Second Heuristic Function ϕ2

Again, by relaxing the requirement that the heuristic function should be independent of the

future receptions, we can define the second heuristic function ϕ2 according to (3.24) as:

ϕ2(~S(`)) ,
N
∑

m=`+1

2
∑

i=1

2
∑

j=1

|Xm,iX
∗
m,j| −

N
∑

m=`+1

2
∑

i=1

2
∑

j=1

S∗
m,iXm,iSm,jX

∗
m,j . (3.25)

Similar to the situation for the modified GLRT, the selection ϕ2 helps lowering the compu-

tational complexity when it is compared with ϕ1.
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Chapter 4

Simulation Results

In this chapter, we will examine the Modified GLRT by simulations. Specifically, the simu-

lation results are summarized in Section 4.1, and their corresponding discussions are given

in Section 4.2.

4.1 System Settings

In Sections 2.2 and 3.1, we have mentioned that half of the transmission bits should be fixed

as specified in (2.8). We however did not explain why they are so chosen and what the

differences are for other choices.

Figures 4.1–4.5 summarize the performances and demodulation complexities of alterna-

tive assignments for these fixed bits. By taking N = 6 as an example, the notation “2222”

in these figures represents that S1,2S2,2S3,2S4,2S5,2S6,2 are chosen fixed instead. Similarly,

“2211” and “2121” indicate that S1,2S2,2S3,2S4,1S5,1S6,1 and S1,2S2,1S3,2S4,1S5,2S6,1 are cho-

sen fixed, respectively. It can then be observed that different assignments only have negligible

influence on the performance and demodulation complexity. We thus use the bit assignment

“2121” in the following simulations.
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Similar to [3], in these figures, the demodulation complexity is measured by the average

path expansions per information bit. This kind of measurement is generally considered

to be proportional to the average number of metric calculations per information bit. In

Tables 4.1 and 4.2, the detailed correspondence of the metric calculation to additions and

multiplications are provided. It indicates from the two tables that this usual measure, i.e., the

average node expansions per information, does not completely reflect the execution speed

of a decoding algorithm. Usually, the Modified GLRT requires more operations than the

GLRT and metric f2 is more complex than metric f1.

Figure 4.6 illustrates the BER performances of the BPSK-OFDM systems. The corre-

sponding demodulation complexities with metrics f1 and f2, respectively, are summarized in

Figures 4.7 and 4.8.

The BERs of the QPSK-OFDM systems are then given in Figure 4.9. Its respective

demodulation complexities are provided in Figure 4.10.

Finally, Figure 4.11 compares the BER performances of BPSK- and QPSK-OFDM sys-

tems that are demodulated by the Modified GLRT.

The discussions regarding these figures will be given in the next section.
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Figure 4.1: The BERs and demodulation complexities of different 3 bit assignments with
BPSK transmission symbols demodulated by the Modified GLRT and the GLRT, respec-
tively. Here, N = 6 and ν = 1.
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Figure 4.2: The BERs and demodulation complexities of 3 bit assignments with BPSK
transmission symbols demodulated by the Modified GLRT and the GLRT, respectively.
Here, N = 6 and ν = 4.
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Figure 4.3: The BERs and demodulation complexities of different 3 bit assignments with
BPSK transmission symbols demodulated by the Modified GLRT and the GLRT, respec-
tively. Here, N = 10 and ν = 1.
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Figure 4.4: The BERs and demodulation complexities of different 3 bit assignments with
BPSK transmission symbols demodulated by the Modified GLRT and the GLRT respectively.
Here, N = 10 and ν = 4.
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Figure 4.5: The BERs and demodulation complexities of different 3 bit assignments with
QPSK transmission symbols demodulated by the Modified GLRT and the GLRT respectively.
Here, N = 6 and ν = 1.
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Figure 4.6: The BERs of the BPSK-OFDM systems demodulated by the Modified GLRT
and the GLRT, respectively. The lengths examined are N = 4, 6, 10, 14.
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Figure 4.7: The demodulation complexities corresponding to Figure 4.6, using the demodu-
lation metric f1
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Figure 4.8: The demodulation complexities corresponding to Figure 4.6, using the demodu-
lation metric f2
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Figure 4.9: The BERs of the QPSK-OFDM systems demodulated by the Modified GLRT
and the GLRT, respectively. The lengths examined are N = 4, 6, 10.
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Figure 4.10: The demodulation complexities corresponding to Figure 4.9, using the demod-
ulation metrics f1 and f2
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Figure 4.11: The BERs of the BPSK-OFDM and QPSK-OFDM systems demodulated by
the Modified GLRT. The lengths examined are N = 4, 6.
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4.2 Observations and remarks

From Figures 4.6 and 4.9, it can be observed that when N is fixed, the BERs of the Modified

GLRT increase as ν grows. Take the N = 6 BPSK-OFDM system as an example. The case

of ν = 5 requires extra 2.2 dB transmission power to achieve BER=10−2 when it is compared

with the case of ν = 1. These figures also show that the BERs of the Modified GLRT are

always below those of the GLRT, for which the performance remains unchanged for different

ν. In the special case that ν = N − 1 (for example, N = 4, ν = 3 and N = 6, ν = 5), the

performances of the Modified GLRT and the GLRT are identical. This is consistent with

what have been proved in Lemma 3.1.

In Figure 4.11, the BERs of the BPSK-OFDM and the QPSK-OFDM systems demodu-

lated by the Modified GLRT are examined, and are shown to have comparable performances.

Next we turn to the decoding complexities. We first look at those cases that ν 6= N − 1.

From Figures 4.7, 4.8 and 4.10, we observe that the demodulation complexities of the Modi-

fied GLRT are always larger than that of the GLRT, no matter which of the metrics f1 and

f2 is implemented. Besides, when N is fixed, the demodulation complexities of the Modified

GLRT increases significantly with ν. For example, when metric f2 is considered under the

N = 14 BPSK-OFDM system, the number of average node expansions approximately equals

5 for ν = 1 but increases to 30 for ν = 5 at SNR=15 dB. A final observation for the cases of

ν 6= N − 1 is that the demodulation complexities can be greatly reduced when metric f2 is

employed instead of metric f1. For example, for the N = 14 BPSK-OFDM system, adopting

metric f2 results in only 33 node expansions while it requires 63 node expansions for metric

f1 at SNR=15 dB.

Regarding the special case of ν = N − 1, we found that the two decoding metrics f1 and

f2 are identical because ϕ2 is zero; so both metrics will yield the same decoding complexi-

37



ties. A striking observation for this special case is that the Modified GLRT has an evidently

lower demodulation complexity than the GLRT, and can actually achieve the minimum node

expansions (i.e., two node expansions) per information bit when BPSK-OFDM systems are

adopted. When QPSK-OFDM systems are employed instead, the demodulation complexities

of the Modified GLRT are the same as the GLRT since the demodulation metrics of both

demodulation schemes are identical at ν = N − 1.

additions for f1 multiplications for f1
GLRT 7 16
Modified GLRT 8`+ 1 24`+ 2

Table 4.1: Numbers of operations required for calculating metric f1 for a node expansion at
level `

additions of f2 multiplications of f2
GLRT 7(N − `+ 1) 16(N − ` + 1)
Modified GLRT 4(N2 + 3N − `2 − `) 12(N2 + 3N − `2 − `) + 4

Table 4.2: Numbers of operations required for calculating metric f2 for a node expansion at
level `
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Chapter 5

Conclusion Remarks and Future Work

In this thesis, we proposed the Modified GLRT criterion for blind demodulation of the

OFDM signals transmitted over a frequency-selective channel. As anticipated, the proposed

Modified GLRT demodulator can jointly perform channel estimation and data correction.

By deriving the recursive formula corresponding to the Modified GLRT criterion, we can

apply the priority first search algorithm to the Modified GLRT, and hence the demodulation

complexity is significantly reduced in comparison with the exhaustive demodulator. By

simulations, we found that the BER performance can be improved by using the Modified

GLRT demodulator when it is compared with the GLRT demodulator.

As for the future work, we mainly put effort in the OFDM system based on BPSK

and QPSK modulations in this thesis. However, it should be interesting to examine our

Modified GLRT demodulation for the QAM-modulation-based OFDM system, which is of

more common use in OFDM system and which can provide a higher data rate. In addition,

although the demodulation complexity of the Modified GLRT is reduced by introducing

the priority-first search, the complexity still grows exponentially with respect to the symbol

length N . Efforts should be placed to further reduce the demodulation complexity without

sacrifice much of the good performance of the Modified GLRT.
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