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Modified GLRT Demodulation for OFDM Signal
Transmitted Over a Frequency-Selective Fading
Channel

Student: Hsin-yu Kuo Advisor: Po-Ning Chen

Institute of Communications Engineering

National Chiao Tung University

Abstract

In this thesis, we propose thé so-called Modified GLRT demodulator for combined channel
estimation and data correction.for OFEDM signals transmitted over a frequency selective
channel with unknown channel coefficients. Simulation results confirm that the Modified
GLRT can achieve an evidently better performanece than the traditional GLRT. In order to
reduce the demodulation complexity, we further derive the recursive metric formula based
on the Modified GLRT criterion for use of the priority-first search algorithm. This results

in a much lower demodulation complexity in comparison with the exhaustive demodulator.
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Chapter 1

Introduction

1.1 Overview

Orthogonal frequency-division multiplexing (OFDM ) is an effective multicarrier technique for
wireless systems over the frequency selective channel {1].. Conventionally, a typical receiver
for wireless communication system. performs channel estimation, channel equalization and
data detection separately. However in recent researches [2][3], the demodulator combined
channel estimation and data deteetion has been-considered a promising approach to combat
the effects of multi-path fading. Thedemodulation is regarded as blind because the channel
fading coefficients are unknown to both the receiver and transmitter. According to [3][4], the

generalized likelihood ratio test (GLRT) is the best decision maker for blind demodulation.

In this thesis, we develop a blind demodulator, termed as the Modified GLRT, for an
OFDM system transceived over a frequency selective channel with unknown channel coeffi-
cients. In short, it jointly performs the channel estimation and data correction. In order to
reduce the demodulation complexity, a priority-first search demodulation algorithm as well

as the recursive metric formula used by this algorithm is also proposed.

We organize the thesis as follows. Chapter 2 gives the necessary background for the non-

coherent OFDM system, GLRT demodulation and prority-first search algorithm. Chapter



3 introduces the Modified GLRT demodulator we propose, and derive the recursive metric
for its corresponding priority-first search demodulator. Chapter 4 presents and remarks the

simulation results. Chapter 5 concludes the thesis.

1.2 Acronyms and Notations

Some acronyms and common identifiers used in this thesis are listed below.
OFDM orthogonal frequency division multiplexing

AWGN additive white Gaussian noise

PSK phase shift keying

DFT discrete Fourier transform

GLRT general likelihood ratio test

ModGLRT modified general likelihood ratio test

BER bit error rate

ML maximum-likelihood

SNR signal-to-noise ratio

Symbol | Meaning

€T a time domain vector (The following notations are simple representative examples.
Similar notations are applied to other alphabets.)
X a frequency domain vector
Q a matrix
Xy the k-th component of a vector X
o the element of a matrix Q at row k and column ¢
| X|I* | the norm of a vector X
X' transpose of a vector X
X7 Hermitian transpose operation of a vector X

trace(Q) | the trace of a square matrix Q
vec(Q) | the operation to transform a matrix into a vector




Chapter 2

Technical Background

In this chapter, the background knowledges about the orthogonal frequency division mul-
tiplexing (OFDM) system, the general likelihood ratio test (GLRT) and the maximum-
likelihood priority-first search demodulation/decodingsalgorithm are provided. Specifically,
we first introduce the non-coherent OFDM system in Seetion 2.1 [6]. We then present in
Section 2.2 the GLRT criterion; alse known as the joint maximum-likelihood (JML) crite-
rion. In Section 2.3, we give a brief overview of the maximum-likelihood priority-first search

demodulation/decoding algorithny that ‘operates over/a'tree.

2.1 An OFDM System with Non-Coherent Receiver

Consider an OFDM system with /N subchannels, for which the transmission suffers multipath
frequency-selective fading. Assume that the fading coefficients h = [hl, o hy hO}T that are
unknown to both transmitter and receiver will remain constant in a time period T'. Denote

the information transmitted at time j by

SlJ
Sj - S%j
SN,

Nx1



where each component S; ; is either € {£1} for BPSK or € {+£1, +i} for QPSK. The OFDM

modulation can be realized by an N-point inverse discrete Fourier transform (DFT), given

by
S1,5
8 .
S = @TSJ =
SN Nx1
Whel‘e _ Lon 27 27 T
67|W(N71)(N71) L. 67|W2(N71) 67|W(N71) 1
' 64%"(N71)(N72) o e’iQWWQ(N’Q) 67i2ﬁ(N72) 1
Q=— : : : : (2.1)
\/N _ 27 _ _i2m _j2m
el (N-1) e N2 e N 1
I 1 1 1 1 yon

and superscript “” denotes the matrix Hermitian transpose operation. The so-called cyclic
prefiz [8] of length v will then betadded before thestransmission of s;, resulting in the

transmission signal vector as

_Sl,j_
827]'
Py
S P2i | | sag
IRy N 9
PrL.,; 52,5
LSvid Lt

where L = N + v. Here, we assume that py ; = s, ; will be transmitted first, and p;; = s1

will be the last one to be sent.

Together with the additive noise v; = [v1;,va,- - - ,ULJ}T, we can formulate the afore-



mentioned system by

[ho hi he hy—1 h, 0O 0
0 hyo M h,_o h,_1 h, 0
Yij : : R : : . . Py V1,5
Yy, = Y25 | _ o 0 0 --- 0 hoe hy -+ hy p?,ﬂ n Q‘J
0 0 0 0 0 ho h,_1
YL,j : : . : : o . Pr.j VL. j
Lo 0 0 .- 0 0 0 -+ hy |

where v; is a zero-mean Gaussian noise vector with independent and identically distributed

(i.i.d.) entities of covariance matrix oIy, and I, is the L x L identity matrix.

Upon reception of y;, the cyclic prefix will be removed first, which gives a received vector

of length N, denoted by x;, i.e.,

T1j Y5
T2 j Y25
a:j = . = X
| UN,j YN.,j
[ho h1 “hs h,-i h, 0 0 7
0 hO hl hqu h,/,1 hu 0
= 0 0 0 «x 0 ho h1 h,/ Sj+1Dj
h, 0 0 0 0" hog -+ hy_q
hi ho hz h, 0 0 ho
= H-Sj + wj
where
wl,j Ul,j
UJQ,]' ’UQJ'
WN,j UN,j

Notably, by the circulant property of H, it can be decomposed to QTAQ for some diagonal

matrix A; hence,
z; = Q'AQs; + w;.

>



The N-point DFT will then be applied onto x; to obtain

X;=Qzx; =QQ'AQs; + Qw; = AS; + W,

where W; = Qw),. This results in the final formation of the considered system:

In (2.2), we transform vector S; to its equivalent diagonal matrix S; as

(2.2)

Si; 0 0
0 Sy, 0
A : :
0 0 SN NxN
and the elements of vector A = [/\N_l A1 )\O}T are the DFT values of the channel
fading h, given by
[ho h1 Do hy-1 hy, O 0 7
0 hy h hes hy—1 hy 0
Aot 0 0 Az S .
0 v 0 € 10 i : : :
A=| . TN | 2ate 00 0  hy M h, | Q.
: : : hy 0 0 0 0 ho h,_1
0 0 Ao et . . . .
Lhy hy hs hy, 0 O ho

After introducing the basic model of an OFDM system, we next turn to the non-coherent

detection of OFDM symbols. It can be verified that it requires at least two OFDM symbols

to perform non-coherent detection at the receiver; hence, we assume that T' > 27T}, where as

having been defined previously, 1" is the period that channel coefficients h remain constant,

and T is the OFDM symbol duration. Without loss of generality, let the two OFDM symbols

received are indexed by 1 and 2. This gives

X, =S;A+W,

(2.3)



and
Xy =SA+ W, (2.4)
For convenience, we will combine (2.3) and (2.4) into
X=8\x+W (2.5)

where

v Xl S Sl i Wl

%-[X] 5[] wa wo [
Notably, if T' > kT,, we can of course consider a non-coherent receiver for the information
S = [Sl, S, ... ,Sk}T. However, since the demoedulation complexity dramatically grows as k

increases and since a larger k implies the resulting system can be only used in a less mobile

environment, this thesis only considers-the case of k.= 2.

2.2 General Likelihood Ratio-Test (GLRT) Criterion

Equation (2.5) defines the system model eonsidered in this thesis. Two assumptions are
then made for this system: (i) both transmitter and receiver knows the memory order of
the channel v, but (i) none of them has the knowledge about channel fading A. With the
assumptions above, it can be derived that the least square estimate of the channel coefficient
X for a given S is equal to A = (S'TS' )_1,§'TX , if the A considered in the below minimization
lie in the N-dimensional complex space CV. Thus, the so-called general likelihood ratio test

(GLRT) decision [8] can be written as

~
—

S = argmin min | X — SA||? = argmin | X — SA||? = argmin || X — ]P’gXHQ (2.6)
Ses AecN Ses Ses



A = o2tz =t
Pg =5(S S) 1S'
\51,1|2+\S1,2\2 0
0 1
_ 3 [S2,1[2+[S2,2]2
0 0
[S1,1]? 0
[S1,1]2+51,2]?
0 S2,1]2
[S2,1]2+|52,2/?
0 0
- S7151,2 0
[S1,1]24]51,2]?
0 53 1522
[S2,112+]S52,2]2
0 0

We can further derive that

As a consequence of (2.7), (S;1,Si2) =
(1,

5 =

= argmax XTIP’g)Z"

Ses

= argmax Z

0
0 ot
) S
1
[Sn,112+[SN,2]2
0 51,157 5
[S1,112+51,212
0 0
|SN,1‘2 0
ISN,112+]SN 2|2
0 S1,2]2
[S1,1]%24(S1,2]2
0 0
5415 2
N, 1 O

[Sy.1[P+|Sy 2l

arg min X — ]P’gX'HQ
SeS

0
52,155 5

|S2,1]2+|S2,2[2

0

0
|S2,2]2

[S2,12+]S2,2]2

.
SN1SN 2

[Sn,112+[SN 212

0
0

|Sn,2|?

[SNn,112+]SN,2[* ]

|Xz 1| ‘Sz 1‘2 + ‘Xz 2| |Sz 2|2 + Xz ls*lXZ*QSZQ + Xz*lsz le 2512

Ses

|Si1|? + [Si2]?

|511XZ*1+SZQX* |

= argmax Z

Ses [Si1]? + 1S 2)?

1) and (5@1, SZ"2> ==

(1 —1) and (Sz 1, SZ 2)

(2.7)

(—1,1) (similarly, (S;1,S:2) =

(—1,—1)) are indistinguishable at the receiver; hence, one of S;; and

S; o must be fixed (say, as —1) for BPSK. The same reason gives that one of S; ; and S; » must

be fixed (say, as f \[) also for QPSK. As an example, a GLRT-detectable transmission




signal can be assigned as

100 07
0 Sy 0 0
0 0 S
2 [ |0 o o .
5= {SJ S, 00 0 (28)
0 -1 0 0
0 0 -1 0
[0 0 0 - Syal

2.3 Maximum-Likelihood Priority-First Search Decod-
ing Algorithm

One effective structure for demodulating S.is to represent all possible transmission signals
by a tree. As an example for BPSK, each branch om a'tree is labelled by two information
bits S; 15,2 as shown in Figure.2.1. Each noede have only.two (respectively, four) branches
emitting from it for the case of"BPSK (respectively, QPSK) because one of S;; and S
must be fixed. In this figure, we cirele.these fixed bits so that they can be more clearly
seen. We denote the path ending at level ¢ by the labels it has traversed, i.e., S'(g) =
(511512591529 +Sp1Se2)". Here with no ambiguity, we abuse the notation by re-using

S ), which originally denotes the information signal matrix, to denote the equivalent vector.

For notational convenience, we will drop the subscript in notation S ¢y when £ = N.

The priority-first search algorithm is a kind of graph search algorithm. It searches the
graph by expanding the most promising path. It can then be used onto the tree we con-

structed for information signal S.

A typical priority-first search algorithm is given below [3]:

Step 1. Load the stack with the path that ends at the original node at level 0.

9



information bits S1,151,2 52,1522 53,1532

+10) *

level 0 1 2 3

Figure 2.1: Illustration of a treestructure, up to level 3, corresponding to information signal
in (2.8) with fixed bits circled.

Step 2. Insert the successor paths of the gurrent top path into the stack such that the paths
in the stack are ordered according to their ascending metric values f; then, delete this

top path from the stack.

Step 3. If the new top path in the stack ends at a terminal node in the tree at level NV,
output the labels corresponding to the top path, and stop the algorithm; otherwise, go

to Step 2.

Next we quote a sufficient condition from [3], under which the priority-first search algorithm
guarantees to expand the path (cf. Step 2), whose metric is the smallest among all paths of

the same length.

10



Lemma 2.1 If the metric f is nondecreasing along every path in the tree, i.e.,

f(S@)<  min f(8) (2.9)

B {E‘GS:‘%([):S'([)}
then the priority-first search algorithm always yields the path with the smallest metric value

among all paths of the same length.

Usually, a metric f is defined as the sum of two parts:

—

F(Sw) = 9(Sw) +0(Sw).
The former part g is determined based on the maximum-likelihood metric and hence satisfies

arg min g(S) = arg min X, — IP’gXHQ.
Ses Ses

The latter part ¢ is often named“heuristic function. It gives the prediction of the route from
the current node to an end node at level N so-as to speed up the search process. Note that
the heuristic function is not unique, anddifferent.designs will lead to distinct computational

complexities.

11



Chapter 3

Modified GLRT and Priority First
Search Demodulator

In this chapter, we will focus on the derivation,of the modified GLRT that we propose in
this thesis. The maximum-likelihood metrics respéetively for the GLRT and the modified

GLRT for use of the priority-first search-demodulator will.be subsequently derived.

3.1 The Modified GLRT

In Section 2.1, the channel coefficient matrix H ¢an be decomposed into QT AQ. Equivalently,
we can write A = QHQ'. The GLRT then demodulates the transmitted signal through (2.6),
ie.,

S = argmin min || X — SA|%. (3.1)
Ses AecN

The range of minimization in (3.1) is the entire N-dimensional complex domain CV. We

however observe that the possible values of A should be much smaller than this N-dimensional

12



complex domain. Take N =3 and v = 1 as an example. We obtain from (2.1) that

] —%—i@ +I\2[ 1
Q = —=|-14p8 1 i
V3 1 1 1
1
= %[(h qd; CI:'J
Also note that
ho hi 0
H=10 hy h
hi 0 hg
Hence,
A 0 0 h0+h1<— I?) 0 0
A=QHQ' = |0 A 0= 0 hot b (5 =) 0
0 0 X
0 ho + Iy
or equivalently,
Ao L
A = Al — (h0q3+h1q2) =3 [q2 q3] |: 1:| th
Ao

Therefore, A should lie only in & 2-dimensional plane over the 3-dimensional complex space.

By following the same derivation, it can be dérived for general N and v < N that

A=Qh (3.2)
where
Q = [an_ - an]-

Thus, the non-coherent GLRT demodulator/decoder can be written as

2,

S—argmm min || X — SQ,h|?

cS hecvt!
With the two assumptions in Section 2.2, the least square estimate of channel fading h for
given S is equal to h = (STS)_lgTX . here § 2 SQ,. Therefore, the modified version of

general likelihood ratio test (i.e., the modified GLRT) decision can be written as

~

S = argmin || X — SQ,h|?* = argmin || X — PgX||? (3.3)
Ses SeSsS

13



where Pg = S(STS)_lgT. In comparison with the estimate of A without any limitation (i.e.,

the GLRT), the resulting A corresponding to the new estimate of h now lies in a (v + 1)-

dimensional hyperplane, defined via A = Q,h. By using the modified GLRT instead of the

GLRT, we expect that the probability of error will decrease as the latter may give an A

estimate that cannot be obtained by the real channel.

We can further derive that

s

Ses

Ses

arg min (||)Z*||2 XX - X'P
S

arg min HX' — IP’SX'H2
Ses

argrpin(X' —IP’SX')T(X' —IP’SX')

tx X pip. ¥
X+ XPLPsX)

It is apparent that || X |2 can be remeved as it is-nothing to do with the optimizer. Also, by

we have

which implies

So

(5'8)" = (QFs'5@)) 7 = (@G, " = SLo

w0

— 5(5'5)'8"
—Ss

2

1 - .
- 5 x5Q,08"
Pg =PL = PLPg.

arg min ( — XTIP’SX')
Ses

argmax XTIP’SX
Ses

arg max XTS'@VQZS’TX.
Ses

14



(3.4) will be used in later simulations for performance comparisons between the modified

GLRT and the GLRT. Again, we take N =2 and v =1 as an

In such case, we have

example for its computation.

51,1 0 Xl,l
= 0 Sgl v X21
S = ’ and X = ’
51,2 0 X1,2
0 Sio Xo2
For convenience, we denote
t_ |41 2
2.Q {92,1 (&,2]
Hence,
-5171 0
P. — 0 52,1 i1 q1,2 Sil 0 iz 0
o Sie 01 @055, 0 S5,
L 0 S272
-51,1(11,1 51,1(]1,2
_ 52,1(12,1 S2,1Q2,2 ik,1 0 f,z 0
51,2%,1 S1,2Q1,2 0 5,1 0 5,2
_52,2612,1 52,2(]2,2
-Silsl,lch,l 55,151,1%,2 Sf,zsl,lCh,l 55,251,1611,2
_[STaS21%21 53102402 " 519521021 552521022
51151,291,1 557151,2%,2 Sf,251,291,1 557251,291,2
_51152,292,1 557152,2%,2 Sf,252,292,1 557252,292,2

where the superscript “*” denotes the complex conjugate operation. Consequently, the de-

15



modulator/decoder output with respect to S is given by:

S = arg max XTIP’SX
SeSs
-Sf,151,1Q1,1 557151,1611,2 51251,1%,1 55,251,1%,2 X1,1
_ [XﬁX;le 2X§‘ 2} Si152,1Q2,1 557152,1612,2 51252,1%,1 55,252,1%,2 X2,1
’ ' ’ ' Sf,151,2Q1,1 557151,2611,2 51251,2%,1 53,251,2%,2 X2
_Si152,2Q2,1 557152,2612,2 51252,2%,1 53,252,2%,2 X2,2
_X1,1Sf,151,1Q1,1 + X2,1S§7151,1Q1,2 + X1,2Sf7251,1Q1,1 + X2,2S§,251,1Q1,2
_ [Xf X3 X7, X3 2} X1,15T,152,1C]2,1 + X2,1S§7152,1C]2,2 + X1,2ST7252,1Q2,1 + X2,2S§,252,1Q2,2
oon e s X1,15T,151,2C]1,1 + X2,1S§7151,2C]1,2 + X1,2ST7251,2Q1,1 + X2,2S§,251,2Q1,2
_X1,15f7152,2CI2,1 + X2,1S§7152,2C]2,2 + X1,2ST7252,2Q2,1 + X2,2S§,252,2Q2,2

+

+

XTaXST0Saqn + X7 X019 1511q12 + X1 X1 257 0511q10 + X1 X2255 5511412

X§,1X1,1Si152,192,1 + X§71X2,1S§7152,1Q2,2 + X§,1X1,2Sf7252,192,1 + X§71X2,2S§,252,1Q2,2

Xf,2X1,1Si1S1,2Q1,1 + Xf72X2,1S;7151,2Q1,2 + Xf,2X1,2SigS1,2Q1,1 + Xf72X2,2S§,251,2Q1,2

X50X11571522G2,1 + X555 195552 o2+ X5 0 X10.57 9522G21 + X55X2255 5522022

It is obvious from the above éxpression that X T]P)SX' e TIP’_ SX . In other words, the

following two OFDM symbols are indistinguishable at the-receiver.

—17.0 +1 0
~ 0 -1 = 0 +1
S = 410 and’ —S = 1 0

0 -1 0 +1

Therefore, we should fix at least one component of an OFDM symbol S. For instance, we

can fix S;; = —1 for BPSK or S, = L —_ for QPSK. This is contrary to the GLRT

V2 V2
(cf. (2.8)), where half of the OFDM components should be fixed. Note that although the
modified GLRT can reach a much higher data rate by fixing only one component in an

OFDM symbol, we will in later simulations fix half of the components in order to compare

the performance of the modified GLRT with that of the GLRT under the same data rate.

We close this subsection by a simple lemma about the equivalence of the modified GLRT

and the GLRT.

16



Lemma 3.1 Whenv =N — 1, (3.4) is reduced to the GLRT.

Proof: When v = N — 1, we immediately have

and
S =S0Q, = SVNQ.
The resulting Py is therefore equal to
P, = 5(5'8)'8
- (3VFQ) ((8VNQI(5VFQ)  (3VFQ)
= (5Q)(Q'S.SR)L(SQ)

Hence, (3.4) is reduced to the GLRT:. O

By this lemma, we conclude that the modified GLRT decision is equivalent to the GLRT
decision when v = N — 1. In such case, the range of minimization with respect to h for the
modified GLRT and that of the A for the GLRT are both the N-dimensional complex space
cV.

3.2 The Maximum-Likelihood Demodulation Metric for
the Modified GLRT

In this section, we will derive the recursive metric formulas that are used by the priority-

first search algorithm under the modified GLRT criterion. Two formulas will be provided:
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The first metric f; allows the demodulation to be performed by sequentially feeding the
components of an OFDM symbol, while the second one f; requires parallelly using all com-
ponents of an OFDM symbol at each recursion step. Both recursive metric formulas can be

represented into sum of two portions:

f1(S0) £ 9(S@) + e1(S ), (3.5)

—

fo(Se)

lI>

9(Sw) + 2(S ), (3.6)

where g, ¢, and @ will be defined in Sections 3.2.1, 3.2.2 and 3.2.3, respectively. Notably,
both metrics give the optimal performance. Their difference is mainly that the recursive
computation of f; can be conducted by feeding the components of an OFDM symbol in a
sequential fashion, while that of f, requires;all the components at the same time; however,

f2 is more efficient since it expands less nodes duringthe priority-first search.

3.2.1 Recursive Maximum-Likelihood Metric g

By following a similar procedure-te [3], we will derive the recursive ML metric g that can

be used in the priority-first search ‘algorithm. From™(3:3), we obtain

S = argmin|X —P;X|?
Ses

Ses
= argmin —trace(]P’SXX'T)
Ses
= argmin —trace (S(STS)_ISTXXT>
Ses
st oo 1
— argmin —trace (SSTXXT> since (8'8)"! = ~I,,,
Ses 2
= argmin —trace (g(@legTX'XT)
Ses
= argmin —trace <QVQZ§TXXT§
Ses
= argmin —vec(@yQi)Tvec(gTXXTg) (3.7)

SeS

18



In its detail, (3.7) can be written as

2

~ N N
S = argmin (— 3 > D s;ﬁixm,isn,jxg» (3.8)

Ses m=1 n=1 i=1 j=1

where S; ; and X;; are the components of S and X , respectively, and 0,,,, is the (m,n)th

entry of (Q,Q)T. By denoting

2 2
Wy = Z Z Re{ém,nS;7iXm,iSn,jX;;,j}7

i=1 j=1
we obtain an equivalent expression of (3.8) as
5 N m 1
S = arg Iélelg [—2 Z (Z Wy — éwmm)] . (3.9)
A sufficient condition for the optimality of the-prierity-first search is that the path metric
is nondecreasing along any path over the-tree. To achieve this goal, we can add a constant
U, n, independent of S , to (3.9)-80 that the metric becomes non-negative. According to the
(3.9), a convenient choice that satisfies the'need is w,, ,, = {w,, ,,|. By this, we know that for
BPSK-modulated OFDM symbols;
202
U = 3 Y Re{n X i X5 (3.10)
i=1 j=1
and for QPSK-modulated OFDM symbols,
2 2
U = DY Omn X i X . (3.11)
i=1 j=1

We then conclude the derivation as

. N m 1 N m 1
S = argmin |2 Z <Z U — §umm) -2 Z < Wyn g — §wmm)]

Ses L m=1 n=1 m=1 \n=1
N m 1 N m 1
= argmin Z Zumn — Eumm — Z Z Wi — §wm7m (3.12)
Ses Lm=1 \n=1 m=1 \n=1
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Based on (3.12), we can define the metric g for every path Sy over a tree to be
4 m 4 m 1
—’ A
= umn__ mm | T Wmmn — 3Wmm | » 3.13
ST o o N 310 L N

which can be recursively computed via

/+1 1 /+1 1
9(Swrr) = 9(Sw)+ ( Up1,n — §Ue+1,e+1) - < Wei1,n — §we+1,e+1) - (3.14)

n=1 n=1

3.2.2 The First Heuristic Function ¢,

We now derive the heuristic function in accordance with Lemma 2.1. Taking the ML metric

g into the sufficient condition in (2.9) yields

> (z =y - 3 (Bl S

m=1

< [z (z (A umm> > (Zwm,n - %wm,m) el8)

{SGS S@ S[}

(3.15)

where ¢ denotes the heuristic funetion. By noting that 90(5' ) = 0, the first heuristic function

¢ = 7 should satisfy
. N m N m 1
SCTIEIE T ) o1 ST B o1 ) ot o |
{Ses sz 5. 1 =\ =
¢ m L m
[Z (Z“mn—— Unn,m ) Z(Zwmn = ,m>].(3.16)
m=1 m=1 \n=1

If we demand that 901(5' (vy) is independent of the future routes of S (1), it is obvious that
the all-zero heuristic function is the largest one that satisfies (3.16). Hence, we choose
901(5'(3)) = 0 for every 5'(@). This selection makes f; = g + ¢1 = g on-the-fly computable.
By simulations, the use of this metric in the priority-first search algorithm decreases the

computational complexity in comparison with the straightforward exhaustive search.
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3.2.3 The Second Heuristic Function ¢,

In comparison with f; (or ¢p) derived in the previous subsection, the computational com-
plexity can be further reduced if we drop the requirement that the metric cannot depend on

the future routes. Based on (3.16), we define

902(‘§(€)) = [Z <Z Um,n — %um,m> - Z <Z Wmn — %wm,m>]

m=1 n=1 m=1 n=1
¢ m l m
_ [Z <Z Umn,n 1um m) — Z <Z Winn — %wmm>] (3.17)
m=1 \n=1 m=1 \n=1

We can simplify (3.17) to:
B N m 1 N m 1
©2(S () = Z (Z U — Eum,m> — Z (Z Wy — iwm7m> . (3.18)
m=(+1 \n=1 m=(+1 \n=1
At the end of this subsection, we.stress-again that the trade-off between metrics f; and fs
is that the recursion computation due to fi = g in (3.14) requires only the next component,

while adopting fo can yield a lower computational .complexity.

3.3 The Maximum-Likelihooed Demodulation Metric for
the GLRT

For completeness, we also provide the maximum-likelihood demodulation metrics for the
GLRT in this section. Similar to the discussion for the modified GLRT criterion in Section
3.2, two metric functions f; and fy will be introduced. With no ambiguity, we re-use the

same notations g, f; and fy as those used in the previous section.
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3.3.1 Recursive Maximum-Likelihood Metric g
We begin the derivation from (2.6) and obtain
S = argmin || X — PgX|?
SeSs

— argmin | X — §(8'8)18' X
Ses

= argmin —trace <(§T§)*1§T;{XT§')
Ses
= argmin —trace <§TXXT§) since (S’TS') = 20,44
Ses
= argmin —vec (/) vec gTXXTg') . (3.19)
Ses
In its detail, (3.19) can be written as
. e
S = argmin~ Z Z Z S, iSm, i X m. i (3.20)

N/ =R e
Similar to the derivation in Section 3.2.1, we add a ¢onstant so as to make the resultant
metric nondecreasing along the'paths over the tree:

A N NJLS
S = arg min (Z Z Z | X X = Z Z Z S;viXm,iSm,jX;,j> . (3.21)

Ses

The above formula is suitable for both BPSK- and QPSK-modulated OFDM symbols. In

light of (3.21), the ML metric function used in the priority-first search can be defined as

V4 2 2
9(Sw) £ Z Z X X0 i1 =Y Z Z S i Xomi S X - (3.22)

Accordingly, its recursive form is given by

2 2 2 2
9(S ) = 9(S ZZ (XerraXipngl = D0 D SiniXeniSer1Xiyn,;  (3:23)
i=1 j=1 i=1 j=1

As anticipated, the g function just derived for the GLRT is less complicated than its coun-
terpart for the modified GLRT in (3.14).
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3.3.2 The First Heuristic Function ¢,

By following similar procedure to Section 3.2.2; the heuristic function for the GLRT should

satisfy
¢ 2 ¢ 2 B
SO XXl =) Y0 S i X iSm i X + (S )
m=1 i=1 j=1 m=1 i=1 j=1
’ N 2 ’ N 2 -
< _min DO XX =YD D Sk XS X+ 0(S)|(3.24)
{8€8:5,=5,} |m=1 i=1 j=1 m=1 i=1 j=1

—

So the choice gp(g(g)) = ¢1(S() = 0 results in the desired fi, which is required to be

independent of the future receptions.

3.3.3 The Second Heuristic'Function -

Again, by relaxing the requirement that-the heuristic function should be independent of the

future receptions, we can define.the second heuristic function ¢, according to (3.24) as:

N 2 2 N 2 2
02(Si) = Y D N XX RN S XS X (3.25)
m=~0+1 1=1 j=1 m=~0+11=1 j=1

Similar to the situation for the modified GLRT, the selection @9 helps lowering the compu-

tational complexity when it is compared with .
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Chapter 4

Simulation Results

In this chapter, we will examine the Modified GLRT by simulations. Specifically, the simu-
lation results are summarized in Section 4.1, and their corresponding discussions are given

in Section 4.2.

4.1 System Settings

In Sections 2.2 and 3.1, we have mentioned that half of the transmission bits should be fixed
as specified in (2.8). We however did not.explain why they are so chosen and what the

differences are for other choices.

Figures 4.1-4.5 summarize the performances and demodulation complexities of alterna-
tive assignments for these fixed bits. By taking N = 6 as an example, the notation “2222”
in these figures represents that S; 259255254255 25 2 are chosen fixed instead. Similarly,
“22117 and “2121” indicate that S1 259,255 254,1551561 and S1 255155 254155251 are cho-
sen fixed, respectively. It can then be observed that different assignments only have negligible
influence on the performance and demodulation complexity. We thus use the bit assignment

“21217 in the following simulations.
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Similar to [3], in these figures, the demodulation complexity is measured by the average
path expansions per information bit. This kind of measurement is generally considered
to be proportional to the average number of metric calculations per information bit. In
Tables 4.1 and 4.2, the detailed correspondence of the metric calculation to additions and
multiplications are provided. It indicates from the two tables that this usual measure, i.e., the
average node expansions per information, does not completely reflect the execution speed
of a decoding algorithm. Usually, the Modified GLRT requires more operations than the

GLRT and metric f5 is more complex than metric f;.

Figure 4.6 illustrates the BER performances of the BPSK-OFDM systems. The corre-
sponding demodulation complexities with metrics f; and fs, respectively, are summarized in

Figures 4.7 and 4.8.

The BERs of the QPSK-OFDM systems are then given in Figure 4.9. Its respective

demodulation complexities are provided in Figure 4.10.

Finally, Figure 4.11 compares the BER performances of BPSK- and QPSK-OFDM sys-
tems that are demodulated by the'Modified GLRT.

The discussions regarding these figures will be given in the next section.
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Figure 4.1: The BERs and demodulation complexities of different 3 bit assignments with
BPSK transmission symbols demodulated by the Modified GLRT and the GLRT, respec-
tively. Here, N =6 and v = 1.
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Figure 4.2: The BERs and demodulation complexities of 3 bit assignments with BPSK

transmission symbols demodulated by the Modified GLRT and the GLRT, respectively.
Here, N =6 and v = 4.
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Figure 4.3: The BERs and demodulation complexities of different 3 bit assignments with
BPSK transmission symbols demodulated by the Modified GLRT and the GLRT, respec-

tively. Here, N = 10 and v = 1.
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Figure 4.4: The BERs and demodulation complexities of different 3 bit assignments with

BPSK transmission symbols demodulated by the Modified GLRT and the GLRT respectively.
Here, N =10 and v = 4.
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Figure 4.5: The BERs and demodulation complexities of different 3 bit assignments with
QPSK transmission symbols demodulated by the Modified GLRT and the GLRT respectively.

Here, N =6 and v = 1.
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Figure 4.6: The BERs of the BPSK-OFDM systems demodulated by the Modified GLRT
and the GLRT, respectively. The lengths examined are N = 4,6, 10, 14.
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Figure 4.7: The demodulation complexities corresponding to Figure 4.6, using the demodu-
lation metric f;
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Figure 4.9: The BERs of the QPSK-OFDM systems demodulated by the Modified GLRT
and the GLRT, respectively. The lengths examined are N = 4,6, 10.
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Figure 4.11: The BERs of the BPSK-OFDM and QPSK-OFDM systems demodulated by
the Modified GLRT. The lengths examined are N = 4, 6.
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4.2 Observations and remarks

From Figures 4.6 and 4.9, it can be observed that when N is fixed, the BERs of the Modified
GLRT increase as v grows. Take the N = 6 BPSK-OFDM system as an example. The case
of v = b requires extra 2.2 dB transmission power to achieve BER=10"2 when it is compared
with the case of v = 1. These figures also show that the BERs of the Modified GLRT are
always below those of the GLRT, for which the performance remains unchanged for different
v. In the special case that v = N — 1 (for example, N = 4,v = 3 and N = 6,v = 5), the
performances of the Modified GLRT and the GLRT are identical. This is consistent with

what have been proved in Lemma 3.1.

In Figure 4.11, the BERs of the BPSK-OQFDM and the QPSK-OFDM systems demodu-

lated by the Modified GLRT are examined, and are shown to have comparable performances.

Next we turn to the decoding complexities. We first look at those cases that v # N — 1.
From Figures 4.7, 4.8 and 4.10, we observe that the demodulation complexities of the Modi-
fied GLRT are always larger than that of the GLRT, no matter which of the metrics f; and
f2 is implemented. Besides, when N'is fixed, the demodulation complexities of the Modified
GLRT increases significantly with v. For example, when metric f5 is considered under the
N = 14 BPSK-OFDM system, the number of average node expansions approximately equals
5 for v = 1 but increases to 30 for v = 5 at SNR=15 dB. A final observation for the cases of
v # N — 1 is that the demodulation complexities can be greatly reduced when metric fs is
employed instead of metric f;. For example, for the N = 14 BPSK-OFDM system, adopting
metric fy results in only 33 node expansions while it requires 63 node expansions for metric

f1 at SNR=15 dB.

Regarding the special case of ¥ = N — 1, we found that the two decoding metrics f; and

fo are identical because ¢ is zero; so both metrics will yield the same decoding complexi-
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ties. A striking observation for this special case is that the Modified GLRT has an evidently
lower demodulation complexity than the GLRT, and can actually achieve the minimum node
expansions (i.e., two node expansions) per information bit when BPSK-OFDM systems are
adopted. When QPSK-OFDM systems are employed instead, the demodulation complexities
of the Modified GLRT are the same as the GLRT since the demodulation metrics of both

demodulation schemes are identical at v = N — 1.

additions for f;

multiplications for f;

GLRT

7

16

Modified GLRT

8¢ +1

240 + 2

Table 4.1: Numbers of operations required for calculating metric f; for a node expansion at
level ¢

additions of 5
GLRT T(N =/{ 1)
Modified GLRT | 4(N*4 3N — {2 —4)

multiplications of f,
I6(N —(+1)
12(N?+3N —*—0) + 4

Table 4.2: Numbers of operationsrequired for calculating metric f5 for a node expansion at
level ¢
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Chapter 5

Conclusion Remarks and Future Work

In this thesis, we proposed the Modified GLRT criterion for blind demodulation of the
OFDM signals transmitted over a frequency-selective channel. As anticipated, the proposed
Modified GLRT demodulator can jeintly perform-channel estimation and data correction.
By deriving the recursive formula corresponding to.the Modified GLRT criterion, we can
apply the priority first search algorithm to the Modified GERT, and hence the demodulation
complexity is significantly reduced in. comparison with the exhaustive demodulator. By
simulations, we found that the BER\performance can'be improved by using the Modified

GLRT demodulator when it is compared with'the GLRT demodulator.

As for the future work, we mainly put effort in the OFDM system based on BPSK
and QPSK modulations in this thesis. However, it should be interesting to examine our
Modified GLRT demodulation for the QAM-modulation-based OFDM system, which is of
more common use in OFDM system and which can provide a higher data rate. In addition,
although the demodulation complexity of the Modified GLRT is reduced by introducing
the priority-first search, the complexity still grows exponentially with respect to the symbol
length N. Efforts should be placed to further reduce the demodulation complexity without

sacrifice much of the good performance of the Modified GLRT.
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