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合作式定位之低維度最小方差演算法 

 

學生:李冠杰             指導教授:謝世福 

 

國立交通大學電信工程研究所 

 

中文摘要 

    隨著無線通訊的發展，定位的研究已成為重要的議題。近年來，藉由待測物之間彼

此相互通訊的合作式定位更是目前發展的重點。在合作式定位系統中，多個待測目標之

間額外的合作量測可以有效提升其定位的精準度；但由於待測目標的增加，因此演算法

的複雜度相較於傳統定位法更是困難許多。在諸多演算法中，高斯-牛頓法被廣泛的應

用在定位的問題中，效能也與 Cramer-Rao Lower Bound (CRLB) 相當；然而其牽涉到反

矩陣的運算，使得伴隨而來的複雜度相當高。我們試著藉由降低矩陣的維度使反矩陣的

運算量降低，進而達到降低複雜度的目標。在論文中，我們設定一個待測物為目標待測

物，並試著尋找其餘附屬待測物與目標待測物之間的位置關係，藉此來達到降低運算度

的目的，並維持其定位準確度。因此，我們提出了聯合式、平行式與序列式三種預先線

性化的方法使附屬待測物的位置座標轉化成目標待測物的線性函式。接著再利用此線性

函式使原來的多待測物問題降階成一個目標待測物的估計問題並利用低維度高斯-牛頓

法來估計。其中平行式與序列式的演算法運算複雜度順利的被簡化。另外，基於目標待

測物的位置估計的影響，我們更進一步提出目標待測物的選擇機制，進而增進定位的效

能；另一方面，根據待測物的不確定性，我們對於權重也做了額外的補償。電腦模擬驗

證了目標待測物的選擇機制及權重補償能夠提高定位準確度；另外也比較了高斯-牛頓

法與我們提出的預先線性法，證明在不失定位準度的情況下，減少了運算複雜度。 
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Dimension-Reduced Least-Squares Algorithms 

for Cooperative Localization 

Student: K. C. Lee       Advisor：S. F. Hsieh 

Department of Communication Engineering  

National Chiao Tung University 

Abstract 

     Cooperative localization has received extensive interest from the robotic, optimization, 

and wireless communication. In addition to the range measurements from the mobile and BSs 

with known position, the extra information among mobiles is added to improve the accuracy 

of position in cooperative localization. The Gauss-Newton (GN) method can be used to solve 

the cooperative positioning problem with good performance, but its computational complexity 

is quite high due to the matrix inversion. However, if the dimension is reduced, the 

complexity of algorithm is reduced as well. In this thesis, a target mobile is selected as 

reference mobile, we want to find the relationship between auxiliary mobiles and the target 

mobile. Therefore, we propose three pre-linear methods, joint, parallel and sequential methods, 

which can reduce dimension of the unknown parameters by searching the linear mapping 

relations from auxiliary mobiles to target mobile. With the pre-linear mapping function, the 

dimension-reduced GN method of target mobile is derived based on the conventional GN 

method. The total computational cost can be reduced greatly in parallel and sequential 

methods. Moreover, the choice of target mobile and compensation of inaccurate mobiles are 

discussed to enhance the localization accuracy. Simulations validate the enhancement of 

accuracy. In addition, we also compare performance of RMSE and total computation cost for 

low-complexity pre-linear methods with GN method.  
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Chapter 1 

Introduction 

 

In recent years, positioning technology has attracted attention and developed rapidly [1]. 

It finds applications in military, commercial, emergency search and rescue. The most 

localization systems estimate the unknown position coordinates based on the information 

between the unknown position node and base stations (BSs) with known positions. The 

typical techniques of localization include measurements of time-of arrival (TOA) [2], 

time-different-of-arrival (TDOA) [3], angle-of-arrival (AOA) [4] and received signal strength 

(RSS) [5], hybrid TDOA/AOA and other mixture method [6]. In this thesis, we consider the 

TOA localization technique. Besides, the measurements may suffer from non-line-of-sight 

(NLOS) effect, [7] proposed an effective technique in NLOS environment by linearizing the 

inequalities of range models. 

It is a crucial estimation problem that the unknown position coordinates are nonlinear 

because of the range equations. Nonlinear least-squares (NLS) estimator such as the Newton 

method [8], the Gauss-Newton (GN) method [9] can be used to solve the problem. These 

nonlinear iterative methods provide an estimator with high accuracy which is close to the 

Cramer-Rao Lower Bound (CRLB) under moderate measurement error. However, these 

iterative methods need highly computation costs and an initial guess of the unknown position 

is needed to start the iteration; the poor initial guess may degrade the performance of 

localization and the convergence rate. Another low cost method that attracts a lot of research 

interest is the Linear Least-Squares (LLS) method. [10-12] linearize the nonlinear range 

function and give a closed form solution. The advantage of the LLS method is its simplicity, 

but the obtained solution is suboptimal since the linear approximation. [13] proposed a one 

dimension iterative (1D-I) method which combined the LLS and GN method, the original 
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three-dimensions estimation can be reduced to one dimension by mapping x-axis and y-axis 

coordinates to the fixed linear function of z-axis coordinate, then solve the remaining 

one-dimension parameter by GN method iteratively. 

     In cooperative localization system, Mobiles exchange the information mutually can 

improve the accuracy of location estimation. It is more difficult than conventional localization 

since the additional measurements between mobiles are involved to enhance the accuracy. [14] 

devised subspace approach to solve the problem. In NLOS scenario, [15] presented a location 

verification protocol among cooperative neighboring vehicles to overcome NLOS condition.  

Different from conventional localization, cooperative localization algorithm is more 

complicate by the increasing of unknown positions of mobiles. To simplify the existed 

algorithm, we extend the thought of 1D-I method of [13] in cooperative localization. In this 

thesis, we propose three pre-linear methods which lower the unknown positions coordinates 

by pre-linearizing the relation between mobiles, joint, parallel and sequential method. The 

measurements between mobiles are additionally useful information to locate the positions of 

mobiles in cooperative localization. For the reason, we select a mobile as target mobile, and 

the proposed pre-linear methods concern about the linear relationship from target mobile to 

auxiliary mobiles. Then, the dimension-reduced GN method of target mobile is used to 

estimate the positions of target mobile by using the information of pre-linear mapping 

function. Note that our research differs from [13] that the mapping we proposed is updated by 

iteration while the mapping in [13] is fixed. The detailed description will be given in Chapter 

3. Compared with traditional GN method, the computation cost is reduced successfully in 

parallel and sequential methods with good location accuracy. On the other hand, the reliability 

of measurements between mobiles is an important issue; the uncertain positions of virtual BSs 

or the harsh environment between mobiles may degrade the accuracy. The weighting 

compensation of uncertain positions of mobiles and the mobile selection scheme are helpful to 

improve the accuracy of localization. 
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This thesis is organized as follow. In Chapter 2, the localization model is introduced 

first. Then, Least-squares algorithm including GN method which applied in our method is 

introduced. Three pre-linear methods are proposed and the dimension-reduced GN method is 

derived in Chapter 3. Chapter 3 also compares the total costs of proposed methods and GN 

method and discusses the issue of weighting compensation and mobile selection. Computer 

simulations will evaluate the Root Mean Square Error (RMSE) between pre-linear methods 

and GN method. Finally, we give a conclusion and future work in Chapter 6. 
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Chapter 2 

Localization System 
 

The localization estimation can be done by the measured data between mobiles and BSs. 

The estimation is usually done using iterative algorithms which solve nonlinear least-square 

(NLS) problem. The GN method is widely chosen to solve the nonlinear localization problem 

iteratively by means of linear interference. The performance of Mean Square Error (MSE) is 

known as well as the CRLB [1]. However, the computations of NLS estimator in 

each-iteration and the total load are quite heavy especially when a large number of iteration is 

required to converge. [10-12] proposed linear least-square (LLS) method to obtain the closed 

form solution. The transformed least-squares iterative method has been proposed recently in 

[13] which can reduce the complexity efficiently. In this chapter, Section 2.1 introduces the 

system model. LSE estimator and the CRLB are introduced in Section 2.2.  

 

2.1 System Model 

Figure 2.1 shows a basic localization system. There are M unknown positions of 

mobiles and N base stations with known positions. ( , , )i i ix y z and ( , , )
j j j

x y z  are coordinates 

of mobile i and BS j , where 1 ,1i M j N    . Each mobile communicates with BSs 

independently and mobiles can exchange the information from received signal with each 

others. In this Chapter, we only concern measurements between mobiles and BSs, cooperative 

localization will be introduced in next Chapter.  
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Figure 2.1 A basic localization system 

 

     In TOA scenario, measured distance d from mobiles to BSs can be calculated by 

multiplying the propagation time and the signal propagation speed. With TOA measurement 

from mobile i and BS j, we have measured distance modeled as 

, 1,2,..,
i j i j i j

d A n j N      (2.1) 

where i j
A  is real distance between mobile i and BS j  and 2~ (0, )

i j i j
n N   is modeled as 

additive white Gaussian noise (AWGN). We further denote A as a distance function as follow 

( ) , 1,2,...i ii j j
A BS j N       (2.2) 

where  
T

i i i ix y z   is the unknown coordinate vector of mobile i and 

T

j j j j
BS x y z   

 is the coordinate vector of BS j . From Figure 2.1, we focus on the 

position of mobile i, we can rewrite (2.1) in vector term by N measurement data as follow 

( )i i i id A n     (2.3) 
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where 

1 1 1

2 2 2, ( ) ,

i i i

i i i

i i i i

iN iN iN

d A n

d A n
d A n

d A n



     
     
       
     
     
     

 are the measurement vector, distance vector, and 

measurement error vector. 

     We want to utilize these measurements to estimate the position of mobile i. In Section 

2.2, some typical LS estimators are introduced. 

 

2.2 Least-Squares Algorithm 

     According to the model, the unknown position coordinate vector i  can be estimate 

based on least-squares theory by searching the minimum of the objective function, 

 
2

 2
1  

1ˆ min
i

N

i ii j j
j i j

d BS


 


  
   

  
    (2.4) 

(2.4) is an optimal solution of LS estimator. It can be written as vector form as  

2ˆ arg min ( )
ii

i i i W
d A


      (2.5) 

where ( ) ( )
i

T

iW
W  denotes a weighted norm with the weight matrix 

iW  which is 

chosen as the inverse of the measurement variance matrix, i.e.,  
1

T

i i iW E n n


    , where 
iW  

is a diagonal matrix with 2 1( ) , 1 ~
i j

j N    at j-th diagonal element. With the assumption of 

normally distributed of measurement errors, the Weighted Least-Squares estimator (WLS) [16] 

is identical to the Maximum Likelihood Estimator (MLE) [17]. In this thesis, weighting 

coefficient will be considered and revised in next chapter. 

     (2.5) is a nonlinear problem since A involves the norm term, it can be solved by 

iterative algorithm like the Steepest Descent method, the Newton method, the 

Gaussian-Newton (GN) method [8-9]. These methods provide equivalent solution when they 
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successfully converge. Our research bases on GN method. Section 2.1.1 introduces the GN 

method. In Section 2.2.2, some lineared LS methods are given. TLS framework which 

reduces the unknown parameter will be introduced in Section 2.2.3. TOA-based CRLB will be 

given in Section2.2.4. 

 

2.2.1 Gauss-Newton Method 

     The basic idea of GN method is to linearize the signal model. From (2.2), the non-linear 

function ( )ii j
A   can be linearized using Taylor series expansion 

 ,0 ,0 ,
( ) ( ) , 1,2,...i i i ii j i j i j ts i j

A A J n j N            (2.6) 

where 
,ts i j

n  is the higher order truncation error of Taylor expansion, and the gradient vector 

,0 ,0 ,0 ,0

, , ,,0

( )
, 1, 2,...

T

i i i ij j j j

i j

i j i j i ji j

BS x x y y z z
J j N

A A ABS





    
   

   

. Then (2.3) becomes 

,0 ,0 ,( ) ( )i i i i i i uncoop id A J n         (2.7) 

where 
,0i  is the initial vector and , ,uncoop i ts i in n n   denotes the total error including 

higher order truncation error of Taylor expansion and measurement noise, where 

, 1

, 2

,

,

T

ts i

ts i

ts i

ts iN

n

n
n

n

 
 
 

  
 
 
 

. 
3N

iJ R   (3 dimensions) is uncooperative Jacobian matrix [18], 

,0 ,0 ,01 1 1

1 1 1

1
,0 ,0 ,02 2 2

2

2 2 2

,0 ,0 ,0N N N

N N N

i i i

i i i

i
i i i

i

i i i i

iN

i i i

i i i

x x y y z z

A A A
J

x x y y z z
J

A A AJ

J
x x y y z z

A A A

   
 
 

 
    
 

    
 

 
 

 
 

   
 
 

   (2.8) 
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According to (2.7), the estimate location of the mobile i (2.5) can be written as  

2

,0 ,0
ˆ arg min ( ) ( )

uncoopi

i i i i i i i W
d A J


          (2.9) 

the GN method solves the problem by iteratively minimizing the new objective function, 

1

, 1 , , , , , , , , ,
ˆ ˆ ˆ( ) ( ( ))T T

i k i k i k uncoop i k i k i k uncoop i k i i i kJ W J J W d A  

       (2.10)  

where the weighting matrix is covariance inverse of ,uncoop in , 

 
1

, , , , , ,

T

uncoop i k uncoop i k uncoop i kW E n n


         (2.11) 

The element of , ,uncoop i kW
 
is a diagonal matrix with 

2 2

, , , , , ,
, 1 ~T

uncoop i k uncoop i k ts i j k i jj j
E n n j N           (2.12) 

In (2.10), there exists 3 3  matrix inverse with highly computational cost. Note that we can 

omit the Taylor truncation error if there is a good reference point. In (2.10), ,i kJ , ,( )i i kA   

can affect the position accuracy and will be updated with the k-th ,i k . The GN method 

explores the quadratic form of the objective function and is adequate for solving 

(small-residual) non-linear problem, but the complexity is cumbersome. In next Section, three 

linearization algorithms will be introduced to reduce its computational cost. 

 

2.2.2 Linearization of Least-Squares Method 

     There are three common linearization methods, Taylor-series expansion algorithm (TS) 

[10], distance-augmented algorithm (DA) [11] and hyperbolic-canceled algorithm [12]. We 

summarize them as follows. By linearizing the non-linear term, (2.2) can be written as 

i Lb H n     (2.13) 

the terms ,b H  of three linearization methods had been derived in the literature. Applying 

weighted least-squares to get the closed form solution 
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1ˆ ( )T T

i L LH W H H W b     (2.14) 

where LW  is the weighted matrix. The covariance matrix of ˆ
i i ie     is  

  
1

cov( ) T

i Le H W H


     (2.15) 

and the Mean-Square-Error (MSE) of the estimator is  

(cov( ))iMSE trace e     (2.16) 

     The LLS estimators are easy to operate and cost less computation compared with 

iterative methods. It is trade-off between cost and accuracy. Some researches try to reduce the 

complexity with high accuracy. [19] utilize constrained least-squares method. [20] uses one 

range measurement in each iteration to update the user position. We introduce transformed 

least-squares (TLS) framework [13] which reduced the parameter of unknown parameters in 

Section 2.2.3. 

 

2.2.3 Transformed Least-Squares Framework 

     Instead of the traditional LS estimator, Transformed Least-Squares (TLS) [13] tries to 

keep the required computations low in two steps. The first step is transforming the positioning 

problem to lower dimensions. There are three dimensions (3-D) in original 3-D localization 

problem. Once the dimensions are less, the unknown parameters to be estimated are less 

respectively. Second, solve the remaining parameters iteratively. [13] proposed a one 

dimensional iterative (1DI) method that the LLS method is used to transform the problem to 

one dimension and an iterative method is used to estimate the 1-D unknown parameter. 

     Actually, the idea of TLS can be explained as follow. In classical nonlinear LS (NLS) 

algorithm (2.4), the unknowns are estimated together. On the other hand, it can be divided to 

one unknown ( iz ) nonlinear problem and other two dimension ( ,i ix y ) nonlinear estimation. 

Assume that iz  parameters are fixed, ix  and iy  can be transformed to linear function of 
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iz , the estimation problem become one dimension, i.e., 

, , ,

ˆ min ( , , ) min min ( , , ) min ( ( ), ( ), )
i i i i i i i

i i i i i i i i i i i i
x y z z x y z

f x y z f x y z f x z y z z      (2.17) 

f denotes objective function in (2.4). From (2.17), [13] divides the original three dimensions 

nonlinear problem to one dimension since the x-axis and y-axis coordinate of mobile i is 

transferred to linear function of iz . The reduced-dimension localization problem can be 

solved based on the GN method introduced in Section 2.2.1. In [13], the mapping function is 

given based on hyperbolic-canceled algorithm mentioned in Section 2.2.2, 

  2
ˆ ˆ ( )

T

i i ix y m b H z      (2.18) 

where 2 2 , 1 ~ ,T T

j j i iN N N
b d d BS BS BS BS j N    

 

      
1

1 1 1( ) ,L Lm H W H H W  

 

1 2

1 1 1

1 2

1 1 1

2

N N N

N N NN N N

H H

x x y y z x

H H H

x x y y z z
  

 
   
 

    
   
 
  

. 

The mapping in (2.18) is fixed by mapping coefficients 1H , 2H  and b. Based on (2.18), the 

position of mobile i can be written as  

 
T

i i i i ix y z f Fz        (2.19) 

where ,
0

mb
f

 
  
 

 
2

,
1

mH
F

 
  
 

 3,f F R . Then, (2.5) can be written as  

2
ˆ arg min ( )

ii

i i i Wz
z d A f Fz       (2.20) 

Finally, the problem has transformed to one dimension nonlinear Least-Square problem 

according to the variable iz , which can be solved by GN method iteratively. The TLS method 

not only reduces the computations but preserves performance comparable with GN method. In 

cooperative localization, the dimensions of unknowns are quite high by the positions of 
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mobiles. We propose a dimension reduced Least-Squares algorithms based on TLS framework, 

and the additional challenge from measurements between mobiles are another issue which 

will be described in Chapter 3. 

 

2.2.4 Cramer-Rao Lower Bound 

     In previous section, mobile i can be estimated through uncooperative measurements. 

For comparison with these estimators, the CRLB is given as a criterion. Based on [22], the 

error covariance matrix of position error vector ˆ
î i ie     satisfies Information Inequality 

1ˆ ˆ ˆcov( )
i

T

i i ie E e e I
        (2.21) 

where 
1

i
I


 is the full uncooperative Fisher Information Matrix (FIM) for mobile i 

2

2 2 2

2

2 2 2 2

2

2 2 2

( ) ( )( ) ( )( )

( )( ) ( ) ( )( )1

( )( ) ( )( ) ( )

i

i i i i ij j j j j

i j i j i j

i i i i ij j j j j

i j i j i j i j

i i i i ij j j j j

i j i j i j

x x x x y y x x z z

A A A

x x y y y y y y z z
I

A A A

x x z z y y z z z z

A A A




     
 
 
 

     


 
 
     
 
  

1

N

j


    (2.22) 

Then, the trace of inverse of 
1

i
I


 in (2.21) is defined as the lower bound for MSE, Therefore, 

uncooperative CRLB is given by 

1

iuncoopCRLB tr I
        (2.23) 

In cooperative system, the cooperative CRLB will be introduced in Section 3.1.3. 
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Chapter 3 

Cooperative Localization System 

 

     Cooperative localization is raising up as a new branch of wireless localization in which 

several researches are being explored. By the development of short-range communication 

such as UWB, the direct communication of different terminals can be used in cooperative 

positioning. [17] considers that the short-range measurements are reliable to enhance the 

accuracy of location and investigate the data fusion of large-scale and small-scale. 

In cooperative system, the distance measurements between any pairs of unknown 

positions mobiles are utilized to improve the location estimation. To mobile i, the 

measurement distances between BSs and the other mobiles are combined as the information 

of which are used to solve the estimation problem. The other unknown mobiles play a role as 

virtual BSs to assist mobile i in localization. In cooperative localization, the location accuracy 

of virtual BS is important since the un-precise virtual BS may cause the degradation of 

localization. It is a more critical task than conventional localization due to the additional 

information from mobiles to mobiles. Figure 3.1 indicates the cooperative localization system. 

There are N known positions of BSs and M unknown positions of mobiles. Our purpose is to 

estimate all the M unknown positions of mobiles by using total ( ( , 2))M N C M   

measurement data. From figure 3.1, mobile i receives N TOA measurement from known 

positions of BS and (M-1) measurements from unknown positions of mobile. 
 i j

A  is the real 

distance between mobile i and BS j  which is mentioned in section 2.1; the cooperative term 

ijA  is denoted as the real distance between mobile i and mobile j.  
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Figure 3.1 Cooperative localization system 

 

The cooperative measurement between mobile i and mobile j is denoted as  

,  ,  1, 2,.., 1 ,  , 1,..,ij ij ijd A n i j i M j i i M          (3.1) 

where 
2~ (0, )ij ijn N   is cooperative measurement error modeled as AWGN. Combining (2.1) 

and (3.1), the cooperative measurement model can be writtene as 

( )d A n      (3.2) 

where 1 2

T
TT T

M
    

 
 is the position vector of M mobile and 

1 1 1

( ,2)

12 12 12

1, 1, 1,

, ( ) , ; , ,

T T T

N N N M N C M

M M M M M M

d A n

d A n
d A n d A n R

d A n

d A n

  

  

     
     
     
     

        
     
     
     
          

.  

Further denote 
!

( , 2)
( 2)!2!

M
C M

M


 . The M unknown position coordinates can be estimated 

by minimizing the cost function based on least-squares estimator and it is written as 
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   
2 2

 2 2
1 1 1 

2

1 1ˆ min

arg min ( )

M N M

i ij i ji j j
i j i iji j

j i

Noncooperation
cooperation

W

d BS d

d A





   
 



  


 
 
 

      
 
 
 

 

 
   (3.3). 

Compared with (2.4), (3.3) takes additional information in account and we can see that 

cooperative localization is a tough issue than uncooperative localization. On the other hand, 

the reliability of additional cooperative measurements is another issue; if the unreliable 

measurements are used ( 2

ij  is large), the localization accuracy becomes worse. Simulation 

shows the influence on noise variance in Section 4.2.1. 

     There are several ways that can be used to solve LS estimator (3.3). Nonlinear iterative 

algorithms estimate the location with high performance, but the complexity is quite high. By 

linearized algorithm, the costs can be reduced, but the performance is sacrificed. Here, we 

propose three pre-linear methods with low complexity but good accuracy. The structure of the 

rest of this section is as follows. Section 3.1 discusses cooperative GN method. The pre-linear 

method of auxiliary mobiles is proposed in Section 3.2. Section 3.3 derives the 

dimension-reduced GN algorithm for target mobile. Weighting compensation and mobile 

selection are discussed in Section 3.4 and Section 3.5 respectively. In the end, the 

computation is compared in Section3.6. 

 

3.1 Cooperative Gauss-Newton Method 

     In cooperative localization, GN method is also useful to solve (3.3). According to 

Section 2.2.1, the additional cooperative term is discussed. Section 3.1.1 derives joint GN 

method. Divided GN method is given in Section3.1.2. 
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3.1.1 Joint GN Method 

     We know that unknown positions of mobiles are involved in cooperative system. In 

addition to (2.1), the remaining task is to linearize cooperative nonlinear distance function 

( , )ij i j i jA          (3.4) 

Apply Taylor-series expansion to (3.4) with initial value ,0 ,0,i j   as follows 

,0 ,0 ,0 ,0 ,

,

( , ) ( , ) ( , )

i j

T

ij i j ij i j ij i j ts ijA A A n
 

     
 

    
  

 

where ,ts ijn  is the higher order truncation error of the Taylor-series expansion for ,ijA  

,0 ,0 ,0 ,0

,0 ,0

,

( , ) ( , )
( , )

i j i j

T
ij i j ij i j T T

ij i j ij ij

A A
A h h

   

   
 

  
          

, 

and ijh  is the cooperative gradient vector between mobile i and mobile j.  

 ,0 ,0 ,0

,0,0 ,0

,
i j i i

ij

j ji j

h
   

  

  
    

  

    (3.5) 

Now the cooperative measurement model (3.1) becomes 

,0 ,0 ,( , ) T T

ij ij i j ij ij coop ijd A h h n             (3.6) 

where , ,coop ij ts ij ijn n n   denotes total cooperative error including Taylor truncation error 

and cooperative measurement error. (3.6) is a linear equation of cooperative measurement 

model. Collecting all the uncooperative linear equation (2.6) and cooperative linear equation 

(3.6) with M=4, joint GN Jacobian matrix equation is given by 

0 0( ) ( )d A J n          (3.7) 
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where 

1

2

3

4

12 12

13 13

14 14

23 23

24 24

34 34

 0 0 0

0  0 0

0 0  0

0 0 0  

0 0

0 0

0 0

0 0

0 0

0 0

T T

T T

T T

T T

T T

T T

J

J

J

J

h h
J

h h

h h

h h

h h

h h

 
 
 
 
 
 
 

  
 

 
 

 
 
 
  

, 

1 ,1

2 ,2

3 ,3

4 ,4

12 ,12

13 ,13

14 ,14

23 ,23

24 ,24

34 ,34

ts

ts

ts

ts

uncoop ts

coop ts

ts

ts

ts

ts

n n

n n

n n

n n

n n n
n

n n n

n n

n n

n n

n n

 
 


 
 
 

 
  
   

  
 
 

 
 
 
  

 (3.8)

 

J is cooperative Jacobian matrix. The term uncooperative Jacobian matrix 
iJ  is same as 

(2.8), 
( ,2)

0, ( ), M N C Md A R    are the measurement data, distance function which contained 

both uncooperative and cooperative term. Further denotes n  is the total error vector 

including Taylor high order truncation error and noise. According to (3.7), the objective 

function is denoted as 

2

0 0
ˆ arg min ( ) ( )

W
d A J


           (3.9) 

and the joint GN estimator solves (3.9) iteratively by 

1

1
ˆ ˆ ˆ( ) ( ( ))T T

k k k k k k k kJ W J J W d A  

        (3.10) 

,1

,

0
( )

0

uncoop kT

k k k

coop k

W
W E n n

W


 

     
 

    

Here, kJ  denotes kth cooperative Jacobian matrix which is different from iJ  in (2.8). 

and 
,coop kW  is covariance inverse of ,coop kn , 

 
1

, , ,

T

coop k coop k coop kW E n n


          

The element of , ,

T

coop k coop kE n n    is a diagonal matrix with 
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12

2 2

,12,

, ,

2 2

,12, ( 1)

0

0

ts k

T

coop k coop k

ts k M M

E n n

 

  

 
 

     
 
 

     

kW  is a diagonal matrix which including ,uncoop kW  in (2.12) and cooperative term. Note that 

there is 3 3M M  inverse matrix 1( )T

k k kJ W J   in (3.10) which includes highly computational 

cost. Besides, we can omit the Taylor truncation error as before if there is a good reference 

point. In Section 4.4.1, the effect on Taylor truncation error from initial value will be shown. 

In (3.10), the positions of mobiles are updated jointly with high position accuracy. In section 

3.1.2, the divided method which updates the position of mobile individually will be described. 

 

3.1.2 Divided GN Method 

     We know that if there exists a mobile j with known position, it can be regarded as a 

virtual BS to mobile i and can be helpful to estimate mobile i. Figure 3.2 illustrates the above 

description. 

 

Figure 3.2 Cooperative localization with virtual BS j  
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From Figure 3.2, the position of every single mobile can be estimated by measurements from 

true BSs and other virtual BSs. To mobile i, the LS searches a ˆ
i  which minimizes the 

objective function  

   
2 2

2 2
1 1,

1 1ˆ min , 1,2,..,
i

N M

i i i ij i jj
j j j i iji j

cooperationnoncooperation

d BS d i M


   
   

 
 
 

       
 
  

      (3.11) 

where j  denotes known position of virtual BS. Note that (3.11) only include the unknown 

parameter of mobile i. However, the uncertain positions of virtual BSs may degrade the 

accuracy. To deal with this problem, the individual uncooperative localization (2.4) is used to 

find a not-bad initial value of virtual BS. Then, (3.11) estimates the positions of mobile i. 

1

, ,
ˆ ( )T T

i i L i i i L i iH W H H W b      (3.12) 

Every individual mobile can be updated by other M-1 virtual BSs iteratively to improve the 

position accuracy. Actually, Jacobi and Gauss-Seidel methods [18] are used to choose the 

positions of virtual BSs. Our proposed parallel and sequential pre-linear methods are based on 

Jacobi and Gauss-Seidel methods, respectively. Figure 4.6 shows the comparison between 

divided method and pre-linear methods. The divided method can reduce the computation costs 

most in (3.10), but the performance is sacrificed. 

 

3.1.3 Cooperative CRLB 

     In cooperative system, cooperative CRLB is given as uncooperative system that is to be 

a standard to estimators in this Chapter. The full cooperative Fisher Information Matrix can be 

written as follows 
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1
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1 12 1

1
1

12 2 2

1
2
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1
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M
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i
i

M

i M

i
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M

M M Mi

i
i M

I

I
I

I


















 
   

 
 
   
 

  
 
 
 

   
 
 







C C C

C C C

C C C

    (3.13) 

where 
i

I  is the uncooperative FIM in (2.21) for mobile i and ijC  is cooperative 

information matrix between mobile i and mobile j which is denoted as  

2

2 2 2

2

2 2 2 2

2

2 2 2

( ) ( )( ) ( )( )

( )( ) ( ) ( )( )1

( )( ) ( )( ) ( )

i j i j i j i j i j

ij ij ij

i j i j i j i j i j

ij

ij ij ij ij

i j i j i j i j i j

ij ij ij

x x x x y y x x z z

A A A

x x y y y y y y z z

A A A

x x z z y y z z z z

A A A



     
 
 
 

    
 
 
 

     
 
 

C
    (3.14) 

Then, the cooperative CRLB for mobile i is  

1

coopCRLB tr I
        (3.15) 

Note that the cooperative CRLB for mobile 1 lies at the upper-left block 

1

1

, upper-left 3 3submatrix of coop mobileCRLB tr I
         

Simulation compares our methods with (3.15) in Section 4.1. In Section 3.2, we propose a low 

complexity with high accuracy pre-linear methods in cooperative localization. 

 

3.2 Pre-Linear Methods of Auxiliary Mobiles 

     In cooperative system, the M mobiles positioning problem is presented. In Section 3.1, 

joint GN method outperforms divided method, but the total costs are higher than divided 

method. Instead of GN method, we try to seek a relation between mobiles by re-formulating 

the positioning problem to reduce the number of unknown mobiles based on [13]. In this way, 

we expect that the proposed pre-linear methods have good performance in both accuracy and 
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complexity. The basic idea of pre-linear method consists of two steps: The unknown of 

parameters are reduced in step 1 by pre-linear mapping, and the localization algorithm for 

remaining unknown parameters in step 2 using the pre-linear function in step 1. Figure 3.3 

indicates the flowchart of the pre-linear method. In Figure 3.3, we aim at searching a mapping 

function between unknown positions of mobiles. 

 

                                                                

 

                step 1                         step 2 

 

Figure 3.3 Flowchart of pre-linear method 

 

In cooperative localization, mobiles exchange the information collaboratively, so we focus on 

the mapping between mobile-to-mobile. Unlike [13], the cooperative measurement between 

mobile i and mobile j 
i j   cannot be linearized by squaring the distance function (3.4) 

since both 
i  and 

j  are unknown parameters. Fortunately, the Taylor-Series expansion can 

linearize the equation which describes in Section 3.1.1. Furthermore, the pre-linear method 

works iteratively while pre-linear mapping in [13] is fixed. On the other hand, the actual 

mapping relations between mobiles are not existence, we can also correct the mapping by 

iteration.  

Once the pre-linear mapping is obtained, the dimension of unknown parameters to be 

estimated can be reduced, and the localization algorithm is simplified accordingly. However, 

there is a lot of combination of mapping relation, the choice of mapping function is based on 

different localization requirement. Our purpose is to simplify the algorithm in (3.10), so the 

linear mapping is a suitable choice which reduces the complexity most. The following 

1
ˆ
k 

 

Mapping function 

for auxiliary mobile 

Dimension-reduced 

cooperative localization 

algorithm for target mobile 

0̂
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describes the two steps of the pre-linear method. 

In Step 1, we select a mobile called “Target” mobile which is chosen as a reference 

mobile to be estimated in step 2; and the others called “Auxiliary” mobiles that are restricted 

to be a linear function of the target mobile. It is assumed that there exists some linear mapping 

relation between auxiliary mobile and target mobile. Without loss of generality, we select 

mobile 1 as a target mobile, and mobile 2 ~M as auxiliary mobiles, i.e., 1( )q qL  , q 

=2,3,…,M. Therefore, (3.2) can be rewritten as  

 1 1 1 2 1 1, ( ), ( ),.., ( )Md A L L L n          (3.16) 

By linear mapping function L, the auxiliary mobiles can be transformed to the linear function 

of the target mobile. However, mobiles are located at different positions independently so an 

error-free mapping is usually not available. How to find a proper mapping function by 

measurement data becomes a critical issue. We propose three linearized mapping methods to 

implement the mapping function. The detail will be described in the next section. 

In Step 2, once the mapping function is generated, LS estimator can solve the 

dimension-reduced cooperative localization problem based on (3.16). 

1

2

1 1 1 1 2 1 1
ˆ arg min ( , ( ), ( ),.., ( ))M W

d A L L L


           (3.17) 

We only consider the parameters of target mobile in this step unlike the original multiple 

mobiles in (3.3). In section 3.3, Dimension-reduced GN method is derived based on the GN 

algorithm mentioned at section 3.1. The original 3 3M M  (3-D case) inverse matrix 

problem in (3.10) can be transferred to 3 3  positioning problem. Therefore, the computation 

cost is reduced efficiently. The detail of computation costs will be described in Section 3.6. 

We note that if the position of target mobile is updated, the corresponding positions of 

auxiliary mobiles can be obtained by using mapping function and the position of target mobile 

we estimated. Figure 3.4 indicates the description above. 
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Target mobile                                    auxiliary mobiles 

Figure 3.4 The diagram of mapping from target mobile to auxiliary mobiles 

 

In Figure 3.4, the accuracy of target mobile affects the accuracy of auxiliary mobiles by the 

mapping function 1( )L  . The reliable target mobile can improve the accuracy of auxiliary 

mobiles. In Section 3.5, we propose a target mobile selection method to find the reliable target 

mobile. In fact, the auxiliary mobiles are used cooperatively to search the mapping function 

which is inserted in the cost function in step 2 (see (3.17)), so auxiliary mobiles and target 

mobile interact with each other. The uncertain position of mobiles may deteriorate the 

localization accuracy. Therefore, the compensation of weighting coefficient will be derived in 

Section 3.4. 

 

3.2.1 Joint Pre-Linear Method 

     There are M unknown positions of mobile in localization system. Our purpose is to find 

the relation between these M positions of mobile which is described in previous section. 

In joint pre-linear method, we want to find a mapping function so that all the (M-1) 

auxiliary mobiles can be written as a function of target mobile jointly. i.e.,  

2 3 1( )
T

T T T

M L           (3.18) 

where L is a linear mapping from 
3 3( 1)MR R  . Figure 3.5 depicts the mapping relation of 

joint pre-linear method. 

 

1

 

2 1( )L   

3 1( )L   
1( )ML   

1( )L   
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               … 

                                                target mobile 

                  

              Auxiliary mobiles 

 

Figure 3.5 Mapping relation of joint pre-linear method 

 

     In Figure 3.5, all the auxiliary mobiles cooperate with each other jointly to find their 

relations with the target mobile. If (3.18) is known, the position vectors of auxiliary mobile 

are transformed to a function of the target mobile successfully and can help to locate the 

position of the target mobile. Mapping function plays an important role that it replaces the 

original positions of auxiliary mobile; in other words, the dimension has been reduced in step 

2. The mapping function L will be derived in the next paragraph. The complete algorithm of 

joint pre-linear method is indicated in Figure 3.6. 

 

 

 

 

 

 

 

 

 

Figure 3.6 Joint pre-linear algorithm 
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Fortunately, we can get the mapping function by linearizing the cooperative nonlinear 

function (3.2) using Taylor-series expansion. Rearranging (3.7) with M mobiles and the linear 

equation is given  

y J n      (3.19) 

where J is cooperative Jacobian matrix which is same as (3.7), 

( ,2)

0; ,
uncoop M N C M

uncoop coop

coop

y
y d J y R y R

y
 

 
     
    

We further denote iF  as the i column of J, and (3.19) can be rewritten as 

 

1

2

1 2 M

M

y F F F n







 
 
  
 
 
 

    (3.20) 

Note that 1  is the position vector of the target mobile. From (3.20), we can see that if we 

regard 1  as a variable parameter of equation and shift the term 1 1F  to the left-hand side 

of the equation as follows, 

 

2

3

1 1 2 3 M

M

y F F F F n








 
 
   
 
 
 

    (3.21) 

the position vector of target mobile 1  is used to solve the linear equation (3.21) with 

unknowns  2 3'
T

M    . Note that the dimension in (3.20) is 3M but 3(M-1) in 

(3.21). According to (3.21), in the k-th iteration, the linear LS estimator mentioned in Section 

2.1.2 can solve the problem as follow 

' ' ' 1 '

1, 1,( ) ( )T T

k k k k k k k k kF W F F W y F       (3.22) 
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We denote auxiliary Jacobian matrix 
'

2, 3, ,k k k M kF F F F    , taget Jacobian matrix 

1,kF , and weighting matrix is same as (3.10). The linear mapping function is generated 

successfully in (3.22). The terms 
'

kF , 1,kF , and ky  include information of unknown 

parameter which are updated by the (k-1)-th solution shown in figure 3.6, we can understand 

that the mapping function is updated iteratively. We should note that 
'

k  is not the k-th 

iteration solution of auxiliary mobile since (3.22) is the function of variable 1,k . The 

solution will be updated after the algorithm in step 2. In addition, (3.22) can be simplified as 

'

int, int. 1k jo k jo k kg G       (3.23) 

where  

' ' 1 ' 3( 1)

int, ( )T T M

jo k k k k k k kg F W F F W y R    

' ' 1 ' 3( 1) 3

int, 1,( )T T M

jo k k k k k k kG F W F F W F R         (3.24) 

The mapping coefficients intjog  and intjoG  will be updated and become more accurate by 

iteration. We can obtain the linear mapping between every single auxiliary mobile and target 

mobile by separating (3.23), 

'

int, , int, , 1, ; 2,3,..,k jo i k jo i k kg G i M        (3.25) 

  In (3.25), we can see that the position vector of auxiliary mobiles becomes a linear function 

of position vector of target mobile. The linear mapping equation is generated by revising 

linear LS formulation. Here, we give a example if number of mobiles is equal to 4. The 

cooperative linear model in case M=4 can be written as 
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
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     
       

  
   
  
      








    (3.26) 

where  

, , , ,( ) ( )i k i i k i i k i kr A J     

, , , , , , , ,( , )ij k i j i k j k ij k i k ij k j kr A h h     
 

, , ,i k i i k i ky d r r 
 

           , ,ij k ij ij ky d r 
        (3.27) 

Note that the Taylor higher order truncation error can be omitted if the reference point is good 

enough. Here, there are 4N pairs of measurements between mobiles to BSs and C(M,2)=6 

pairs of cooperative measurement between mobiles. Based on (3.22), the mapping function 

can be written as 

' ' 1 '

2, 3, 4, , 1, 1,( ) ( )
T T T

k k k k k k k k l k k kF W F F W y F            (3.28) 

where '

2, 3, 4,k k k kF F F F    . We can see that the row 1~N are zeros in kF , and the mapping 

function is similar to the divided method which regards 1,k  as a virtual BS with known 

position to other M-1 mobiles. On the contrary, 1,k  in (3.28) is still a variable parameter 

that will be updated in the next step; 1, 1,k kF   is the revised term which adjust the cooperative 

measurement between target mobile and other 3 auxiliary mobile by gradient vector between 
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target mobile and auxiliary mobile j 1 , 2 ~ 4jh j  , and the first element 1,kJ  in 1,kF  is 

useless since 1,kJ  is the term that related to the uncooperative measurement between target 

mobile and BSs. The detail of mathematical expression for (3.28) will be given in Section 3.6. 

With the linear mapping function, the original model can be changed to one unknown mobile 

problem; it is same as the following two pre-linear method. In Section 3.3, the 

dimension-reduced GN algorithm will be derived. 

 

3.2.2 Parallel Pre-Linear Method 

     We have derived the joint pre-linear method in the previous Section. In (3.22), there 

still remains 3( 1) 3( 1)M M    matrix inversion even though it is better than 3 3M M  

matrix inversion in original GN algorithm. Based on section 3.1.2, we can further reduce the 

complexity of the mapping function. 

     Instead of joint method, we can derive the mapping function individually in parallel 

pre-linear method based on Jacobi method [18]. The following figure depicts the mapping 

relation of parallel pre-linear method.  

 

Figure 3.7 Mapping relation of parallel pre-linear method 

 

We illustrate the parallel method for mobile 2 and mobile 3 in Figure 3.7. Auxiliary 

mobiles find the relation with target mobile individually. To auxiliary mobile q, it regards the 
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other (M-2) auxiliary mobile as virtual BSs; the localization scenario becomes N fixed BSs 

and (M-2) virtual BSs with two unknown positions of mobiles that contained one target and 

one auxiliary mobile. To every individual mobile in Jacobi method, other (M-1) are regarded 

as virtual BS with known position. In pre-linear methods, the position of target mobile is still 

unknown which is different from divided method, we find the linear mapping between 

auxiliary mobiles and target mobile and utilize the pre-linear function to estimate the position 

of target mobile. The LS estimator for mobile 1 (target mobile) and mobile q (auxiliary 

mobile) is given by  

   

   
1,

2 2

1 1 11 2 2
1 2 1 1 

1 virtual BSs

2 2

q q 2 2
1 2 q q 

1 1

ˆ
min

ˆ 1 1q

N M

j jj j
j j jj

j q

Noncooperation

N

q
q j q jj j

j j jj
j

Noncooperation

d BS d

d BS d
 

  
 




  

 

 


 

    

 
 

        

 


 

2

1 12

1

virtual BSs

1
; 2 ~q qM

q

cooperation

q

d q M 




  
  
  
   

     
  
  
  
    



    (3.29) 

where j  denotes known position virtual BS. The complete algorithm of parallel pre-linear 

method is indicated in figure 3.8. 
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Figure 3.8 Parallel pre-linear algorithm 

 

     First, the position of virtual BSs are estimated by the uncooperative localization 

algorithm, and utilized to estimate the position of mobile. In each iteration, the mapping 

function can be generated in the sub-block of step 1 with the cooperation of virtual BSs. Then, 

the GN algorithm solves the position of target mobile using these mapping function as well as 

joint method. In the end, the target mobiles can be updated by the solution of GN algorithm 

and mapping function in step1. Note that the mapping function in each sub-block is obtained 

separately which is different from the joint method. 

     Based on (3.29), the linear TS equation in matrix form at kth iteration can be written as  

_ , _ , _ , _ , , 2 ~p q k p q k p q k p q ky J n q M       (3.30) 

where _ , 1, ,

T

p q k k q k      . Without loss of generality, let q=2,  
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    (3.31), 

_ 2,p kJ
 denotes the cooperative Jacobian matrix for parallel method, where 

, 3, 4, , ; 1, 2
T

T T T

j k j k j k jM kv h h h j     denotes as virtual Jacobian matrix; 

_ 2, 1, 13, 1 , 2, 23, 2 , 12,

T

p k k k M k k k M k ky y y y y y y y        (3.32), 

and 

_ 2, ,1, ,13, ,1 , ,2, ,23, ,2 , ,12,

T

p k uncoop k coop k coop M k uncoop k coop k coop M k coop kn n n n n n n n     
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(3.33) 

is the sum of Taylor truncation error and measurement noise. In (3.30), the k-1 iteration 

solutions are used as the virtual BSs instead of the true position, so we further denote 
 

the location error at the kth iteration as follows 

, , , 1~j k j k je j M         (3.34) 

The location error may degrade the location accuracy if the virtual BS is unreliable. In Section 

3.4, the location error is considered and we will compensate its effect. The computer 

simulation shows the compensation in next chapter. 

Denote _ , _ 1, _ 2,p q k p q k p q kJ F F    , based on (3.21), (3.30) can be written as  

_ , _ 1, 1, _ 2, , _ ,( ) ; 2 ~p q k p q k k p q k q k p q ky F F n q M         (3.35) 

The mapping function between ,q k  and target mobile in Figure 3.8 is obtained as follows 

, _ , _ , 1, ; 2 ~q k p q k p q k kg G q M     

 
1

_ , _ 2, _ , _ 2, _ 2, _ , _ ,

T T

p q k p q k p q k p q k p q k p q k p q kg F W F F W y


  

          
 

1

_ , _ 2 , _ , _ 2 , _ 2 , _ , _ 1 ,

T T

p q k p q k p q k p q k p q k p q k p q kG F W F F W F


       (3.36). 

where  
1

_ , _ , _ ,

T

p q k p q k p q kW E n n


     is a diagonal matrix with inverse of variance of noise and 

truncation error on the diagonal element. The mapping coefficients _ ,p q kg  and _ ,p q kG  are 

updated by iteration as joint method. The computation is reduced greatly in (3.36) since there 

is only 3 3  matrix inversion. The dimension-reduced GN algorithm solves the position of 

target mobile with these mapping function as well as joint method. In next Section, sequential 

pre-linear method, similar to parallel pre-linear method, will be given. 

 

3.2.3 Sequential Pre-Linear Method 

     The difference between parallel pre-linear method and sequential pre-linear method is 



 

31 
 

that in the former, the information got at last iteration are parallelized used in the sub-block in 

the mapping function, i.e., 
2, 1 1, 1 1, 1 , 1k i k i k M k        

 
   are used as virtual BSs to 

mobile i; to mobile j,
 2, 1 1, 1 1, 1 , 1k j k j k M k        
 
   

are utilized for mapping 

function searching. The idea of sequential pre-linear method comes from Gauss-Seidel 

method [18], the following figure depicts the mapping relation of sequential pre-linear 

method.
 

 

Figure 3.9 Mapping relation of sequential pre-linear method 

 

     From Figure 3.9, the pre-linear mapping is generated sequentially. To mobile 2, parallel 

and sequential are same. To mobile 3, mobile 4 ~M are regarded as virtual BSs and we want 

to find the linear relation between mobile 3 and target mobile (mobile 1) and mobile 2 (the 

virtual target). The pre-linear mapping function of mobile 2 can be used to find the mapping 

of mobile 3, the mathematical expression is derived later. Then mapping of mobile 4 can be 

generated by cooperation with mapping of mobile 2 and mobile3 respectively and so on. 

Sequential pre-linear method updates the mapping section by section in each iteration, and the 

mapping function is delivered among auxiliary mobiles. To mobile q, the LS estimator of 

sequential pre-linear method is given by  
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(3.37) 

where , 1 2
ˆ ˆ ˆ ˆ

T

s q q    
 

, j  denotes known position virtual BS. There are q 

unknowns of positions contained one target mobile and (q-1) auxiliary mobiles in (3.37) that 

is different from parallel method in (3.29). The complete algorithm of sequential pre-linear 

method is indicated in Figure 3.10. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 Sequential pre-linear algorithm 
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2, _ 2, _ 2, 1,k s k s k kg G   .    (3.38), 

this is same as parallel pre-linear method in mobile 2, i.e., _ 2, _ 2, _ 2, _ 2,;s k p k s k p kg g G G  . 

After the mapping of mobile 2 is obtained, mobile 3 can be written as the function of target 

mobile and mobile 2 which is called virtual target, i.e., 3 1 2 1( , ( ))    ; based on the thought, 

mobile M can get the mapping of target mobile by using mobile 1 and other (M-2) virtual 

target respectively, i.e., 1 2 1 3 1 1 1( , ( ), ( ),.., ( ))M M        . The linear TS equation in matrix 

form at the kth iteration can be written as  

_3, _3, _3, _3,s k s k s k s ky J n      (3.39) 

where 
_3, 1, 2, 3,

T

s k k k k       . 
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ks k

k

T T

k k

T T

k k

T T

k k

J

v

J

v

JJ

v

h h

h h

h h

 
 
 
 
 
 
 
 
 
 
 

 
  

    (3.40) 

where , 4, 5, , ; 1, 2,3
T

j k j k j k jM kv h h h j     denotes the virtual Jacobian matrix. 

and 

1 2 3_ 3, 1, , 2, , 3, , 12, 13, 23,

T

s k k v k k v k k v k k k ky y y y y y y y y y         

1 2 3_ 3, ,1, , , ,2, , , ,3, , , ,12, ,13, ,23,

T

s k uncoop k coop v k uncoop k coop v k uncoop k coop v k coop k coop k coop kn n n n n n n n n n     

(3.41) 

where , , ,,
i iv k coop v ky n  are the terms related to mobile i and virtual BSs. 
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Denote _ 3, _ 31, _ 32, _ 33,s k s k s k s kJ F F F    , (3.39) can be written as  

_ 3, _ 31, 1, _ 32, 2, _ 33, 3, _ 3,( )s k s k k s k k s k k s ky F F F n          (3.42) 

the LS estimator is given by  

1

3, _33, _3, _33, _33, _3, _3, _31, 1, _32, 2,( ) ( )T T

k s k s k s k s k s k s k s k k s k kF W F F W y F F         (3.43). 

We can see that 3,k  is written as function of 1,k  and 2,k . We insert (3.38) into (3.43), 

the mapping function between 3,k and target mobile is obtained as follows 

3, _ 3, _ 3, 1,k s k s k kg G    

 
1

_ 3, _ 33, _ 3, _ 33, _ 33, _ 3, _ 3, _ 32, _ 2,( )T T

s k s k s k s k s k s k s k s k s kg F W F F W y F g


   

 
1

_ 3, _ 33, _ 3, _ 33, _ 33, _ 3, _ 31, _ 32, _ 2,( )T T

s k s k s k s k s k s k s k s k s kG F W F F W F F G


        (3.44). 

where  
1

_3, _3, _3,

T

s k s k s kW E n n


     is diagonal weighting matrix. The location errors of 

virtual BSs will be discussed in Section 3.4. 

Now mobile 3 transfers the function to target mobile successfully, the rest mobiles repeat the 

above procedure and the mapping function of mobile q in Figure 3.10 can be written as 

 
1

1

_ , _ , _ , _ , _ , _ , _ , _ , _ ,

2

( ); 3 ~
q

T T

s q k s qq k s q k s qq k s qq k s q k s q k s qj k s j k

j

g F W F F W y F g q M






    

 
1

1

_ , _ , _ , _ , _ , _ , _ 1, _ , _ ,

2

( ); 3 ~
q

T T

s q k s qq k s q k s qq k s qq k s q k s q k s qj k s j k

j

G F W F F W F F G q M






        (3.45). 

The mapping coefficients _ ,s q kg  and _ ,s q kG  are updated by iteration as before. The mapping 

is generated sequentially in each iteration, mapping function ,q kL  for sequential method 

needs the information of 2, 1,~k q kL L   that is different from parallel pre-linear method. In 

next Section, the dimension-reduced GN algorithm is derived to solve the position of target 

mobile. 
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3.3 Dimension-Reduced GN Method of Target Mobile 

     The mapping functions of proposed three pre-linear methods are derived in previous 

Section. The next task is how to estimate the position of target mobile by using these mapping 

function. The dimension-reduced GN algorithm is derived based on GN method in Section 

3.1. 

In general, the size of mapping function g and G are same no matter what methods 

are used, so we denote the mapping function as  

1 1( )q q q qL g G         (3.46). 

In (3.3), M unknown position coordinates are considered. According to (3.46), the original M 

unknown positions can be reduced to one unknown position. First, the uncooperative distance 

function (2.3) can be written as 

1 1( ) , 2 ~ , 1 ~q qq j j
B g G BS q M j N          (3.47), 

Note that the term 1 11
( )

j j
B BS    is same as the original model. The cooperative 

distance function (3.4) can be written as  

1 1 1( , ) ( ) , 2 ~q q q qB I G g q M       

1( , ) ( ) ( ) , 2 ~ 1, 1 ~qj q j q j q jB G G g g q M j q M              (3.48)  

The model has been changed to one position coordinate of mobile in (3.47) and (3.48). Then, 

the cost function (3.3) is given as 

   

   
1

2 2

1 11 q 2 2
1 2 11 q 

1 12 2

1 1 q 12 2
2 2 11 q 

1 1

ˆ min
1 1

( ) ( ) ( )

N M N

q qj j j j
j q jj j

Noncooperation

M M M

q q q j q j q j

i q j qq j

cooperation

d BS d g G BS

d I G g d G G g g


 
 



 
 

  



   

     



        

 

  

 
 
 
 
 
 
 
 
 

    

(3.49) 
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The dimension-reduced GN method can solve (3.49). Apply Taylor-series expansion to (3.47) 

and (3.48) as follows 

 1 1,0 1 1,0 _ ,
( ) ( ) ; 2 ~ , 1 ~T

q j q j q j B ts q j
B B B n q M j N              (3.50) 

Note that the Taylor-series expansion of 
11

( )
j

B   is same as the original model,  

i.e., 
1 1

; 1~
j j

B J j N   , and 

 1 1 1 1,0 1 1 1,0 _ ,1( ) ( ) , 2 ~T

q q q B ts qB B B n q M          

 1 1,0 1 1,0 _ ,( ) ( ) , 2 ~ 1, 1 ~T

q j q j q j B ts q jB B B n q M j q M                (3.51) 

where _B tsn  denotes the higher order truncation error vector of Taylor approximation, and 

the gradient vector 

1

1,0

( )
, 2 ~ , 1~

( )

T

q q jT

qqj

q j

g G BS
B G q M j N

B





 
     

1

1

1 1,0

(( ) )
( ), 2 ~

( )

T

j jT

j j

j

I G g
B I G j M

B





 
     

1

1,0

(( ) ( ))
( ), 2 ~ 1, 1 ~

( )

T

q j q jT

q j q j

q j

G G g g
B G G q M j q M

B





  
        (3.52) 

Contrast with the original model, the terms 
qG , ( )qI G  and ( )q jG G  in (3.52) are the 

revised terms which adjust the gradient vector between mobile q and BSs, target mobile, 

mobile j, respectively. It is different from original GN algorithm since the mapping functions 

are considered to reduce the dimension to avoid the 3 3M M  matrix inversion. In case 

M=4, dimension-reduced TS matrix equation is given by 

1,0 1 1,0( ) ( ) rGNd B B n            (3.53) 

where   

1 2 3 4 12 13 14 23 24 34

T
T T T TB J B B B B B B B B B                
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1 2 3 4

T

q q q q q
B B B B B      

 
 

 (3.54) 

1 1 2 3 4 12 13 14 23 24 34( )
T

T T T TB A B B B B B B B B B      

1 2 3 4

T

q q q q q
B B B B B 

 
 

(3.55) 

          _r G N B t sn n n      (3.56) 

The only different term between rGNn  and n  in (3.7) is the Taylor high order truncation 

error _B tsn  and tsn . According to (3.53), the objective function is denoted as 

1

2

1 1,0 1 1,0
ˆ arg min ( ) ( )

rW
d B B


           (3.57) 

and the dimension-reduced GN estimator solve (3.57) iteratively by 

1

1, 1 1, , , 1,
ˆ ˆ ( ) ( ( ))T T

k k k r k k k r k kB W B B W d B  

           (3.58) 

where the 
,r kW  is covariance inverse of ,rGN kn , 

 
1

, , ,

T

r k rGN k rGN kW E n n


          

, ,

T

rGN k rGN kE n n    is a diagonal matrix with variance of Taylor truncation error and 

measurement noise. 

     After 1  is updated, the auxiliary mobiles can be obtained by the pre-linear mapping 

function which is generated at step 1. We note that target mobile affect the accuracy of 

auxiliary mobiles. The choice of target mobile is another issue and will be discussed in 

Section 3.5. However, estimate of the target mobile still suffers location error, and it can affect 

the accuracy of auxiliary mobiles. The location errors of target mobile and virtual BSs will be 

discussed and compensated in Section 3.4. 
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3.4 Weighting Compensation in Inaccurate Cooperative Mobiles 

     The position uncertainty is known to degrade the localization accuracy [21]. The 

pre-linear method in Section 3.2, virtual BSs with uncertain position are utilized to estimate 

the position of mobiles, the presence of location error may degrade the performance in 

location estimation. [21] derived the variance of uncertain sensor error. In cooperative system, 

the effect on location errors of uncertain positions of virtual BSs can be derived based on [21]. 

     The cooperative measurement model between mobile i and mobile j is given by  

ij i j ijd n        (3.59) 

In (3.59), the position of mobile i and mobile j are estimated jointly. If the uncertain position 

coordinate of mobile j is gotten, mobile j is a virtual BS to mobile i and (3.59) can be written 

as 

ij i j j ijd e n         (3.60) 

where 
3,1

je R  is the location error which is denoted in (3.34). Compared with (3.29) and 

(3.37), the location error je  in (3.60) is inside the norm; if the error term can get out of the 

norm function, the virtual measurement model between mobile i and virtual BS j is obtained. 

Therefore, we apply Taylor-series expansion to (3.60) as follows  

higher order terms+T

ij i j ij j ijd h e n         (3.61) 

where 
( )i j

ij

i j

h
 

 





 is the gradient vector between mobile i and virtual BS j.  

Assume that the higher order term is neglected due to the good reference point, (3.61) can be 

written as 

+T

ij i j ij j ijd h e n        (3.62) 

In (3.62), the location error is out of the norm function and the total error includes virtual BS 
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error _

T

ij v jh e  and measurement noise ijn . The variance of total error is  

 
2

2

_ +T

T ij ij j ijE h e n  
  

    (3.63) 

We assume that the measurement noise and virtual BS error are independent, then (3.63) can 

be written as 

2 2 2

_T ij j ij        (3.64) 

where 
2 cov( )T

j ij j ijh e h  . 

Actually, the covariance matrix of virtual BS error is hard to derive. We simply use the result 

of (2.15) in our algorithm, and an example is given in parallel pre-linear method. Based on 

(2.15), it is assumed that the virtual BS errors are i,i,d. The covariance matrix of je  can be 

written according to (3.36) as follow 

1

_ 2 _ _ 2cov( ) ( ( ))T

j p j p j p je diag F W F      (3.65) 

The error variance of virtual BSs 2

_v j  is smaller and smaller by iteration since the position 

of virtual BS becomes more accurate. 

     On the other hand, the position of target mobile can affect the accuracy of auxiliary 

mobiles. If the position of target mobile is given, the corresponding auxiliary mobile i can be 

obtained by the mapping function. The location error of target mobile 1, 
3

1 1 1
ˆ ,e R     is 

involved in localization by the inner product with 1

T

jh , which is similar to virtual BSs, i.e., 

1

2

1 1 1cov( )
j

T

e j jh e h  . The variance of total error in target mobile 1 and auxiliary mobile j is  

1,

2 2 2

_1 1 , 2 ~
jTotal j e j j M         (3.66) 

Assuming that the location error of target mobile is i.i.d, the covariance matrix of 1e  can be 

written according to (3.58) as follows 
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1

1cov( ) ( ( ))T

re diag B W B        (3.67) 

By iteration, 
1

2

ie  is smaller because of the accurate target mobile. 

     The weighting compensation on target mobile error improves the accuracy of mapping 

function in all algorithms in Section 3.2, while the virtual BSs errors are applied in parallel 

and sequential methods. We note that the target mobile error and virtual BSs error can be 

combined together to enhance the localization accuracy. The performance is improved as seen 

by computer simulation. 

 

3.5 Target Mobile Selection 

     In fact, we know that the choice of mapping function is unlimited that is mentioned in 

Section 3.2. In pre-linear methods, the position coordinates of auxiliary mobiles are written as 

the linear function of target mobile, i.e., 1( )q qL  . Actually, the true position of target 

mobile is unknown, so the mapping includes the location error of target mobile. How to 

choose a probable target mobile is an important issue since the target mobile also affects the 

convergence and the RMSE which are shown in simulations. In [23], the reference selection 

on hyperbolic-canceled linear algorithm is proposed to select the reference by using the 

minimum measurement. Here, the target mobile selection scheme is based on [23]. 

     The reliability of measurements and positions of mobile affect the performance of 

localization; we believe that the small measured distance is reliable contrast to the large 

measured distance. A simple method for target mobile selection is to choose the mobile with 

the smallest square measurement from fixed BS and other mobiles, the mathematical 

expression is given as follow 

2 2

1 1,

min
N N

i iji j
i

j j j i

mobile d d
  

       (3.68) 
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where 
i j

d  and ijd  are measured distance from mobile i to BS j  and mobile j, respectively. 

According to (3.68), mobile i is selected as target mobile. In Section 4.3, simulations validate 

that the target mobile selection scheme is useful to improve the performance. 

 

3.6 Computation Cost 

In this section, the computation cost of three pre-linear methods in Section 3.2 and 

dimension-reduced GN method in Section 3.3 are compared with joint GN algorithm. The 

total numbers of multiplications in each iteration are computed as the complexity evaluation. 

Here, the 3-D space is considered with N fixed BSs and M unknown positions of mobiles. 

(a). Joint GN method 

First, the computation load of joint GN algorithm comes from (3.10), we rewrite (3.10) 

as follows 

1
ˆ ˆ( )( ) ( ( ))T T

k k kJ WJ J W d A          (3.69) 

From (3.69), there are two parts of computation that include the matrix multiplication part 

among matrix and updating part , ( )kJ A  . The weighting matrix W
 
is assumed to be an  

identity matrix for simplicity. The detail multiplication is given as follows 

1. 

1 1 1 1 12 12 1 1

2

12 12 2 2 2 2 2 2

1
2

1

1 1 2 2

1 3 3

M
T T T T

j j M M

j

M
T T T T

j j M M
T

j
j

M
T T T T

M M M M M M Mj Mj

j M M

J J h h h h h h

h h J J h h h h
J J

h h h h J J h h








 

 
   

 
 

   
  
 
 
 
   
  







(3.70) 

where 3 3 1,N

i ijJ R h R   . The multiplication include total 9NM  for , 1 ~T

i iJ J i M , and 

9 ( , 2)C M  for T

ij ijh h . 
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2.
 

1 1 1 1

2

2 2 2 2

2
1

1

1

( ( ))

M
T

j j

j

M
T

j j
T

j
k j

s

M
T

M M Mj Mj

j

J s h s

J s h s
J d A

J s h s



















   




 








    (3.71) 

, 1 ~T

i iJ x i M  requires 3NM  ,and 3 ( , 2)C M  for 
ij ijh s  

3. The explicit computation of the inverse of the ( )TJ J  is avoided by applying Cholesky 

decomposition [24], i.e., ( )T TJ J LL , which requires 3(3 )M . 

4. To generate 
1

ˆ( )k k    from 
1

ˆ( )T

k kLL    , it needs 2(3 ) 3M M . 

5. The updating terms 3 3 1,N

i ijJ R h R    need 1 division in every element, so requiring 

3 3 ( ,2)NM C M   in total. The distance vector ( )kA   contains an inner product and one 

division in every element, so total 4( ( , 2))NM C M  are needed. 

The total multiplication for joint GN method is 3 219( ( ,2)) 27 9 3MN C M M M M    . 

(b). Dimension-Reduced GN method of target mobile 

     The computation of dimension-reduced GN method is as follows 

1, 1 1, 1,
ˆ ˆ( )( ) ( ( ))T T

k k kB B B d B            (3.72) 

where 
( ( ,2)) 3MN C MB R    .  

1. 
3 3TB B R     requires 9( ( , 2))MN C M . 

2. 1,( ( )) :3( ( ,2))T

kB d B MN C M      

3. Cholesky decomposition: 3( ) :3T TJ J LL   

4. 2

1
ˆ( ) :3 3 12k k      

5. The updating terms is same as joint GN method. 

6. The different term from joint GN method is that (3.52) includes revised term G  in each 
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row except the first block in B  that requires 9(( 1) ( , 2))M N C M  . 

(c). Joint pre-linear method 

     The calculations of joint pre-linear mapping function is given as 

1 1,( ) ' ( )T T

k kF F F y F    

3*( 1),1

int( )T T M

joF F g F y R    

3( 1) 3( 1)

int 1( )T T M M

joF F G F F R        (3.73) 

The terms 
intjog  and 

intjoG  should be calculated individually since
intjoG  is used in the 

dimension-reduced GN method. The term TF F  can be written as follows 

2 2 2 2 23 23 2 2

1
2

23 23 3 3 3 3 3 3

1
3

1

2 2 3 3

1 3( 1) 3( 1)

M
T T T T

j j M M

j
j

M
T T T T

j j M MT
j
j

M
T T T T

M M M M M M Mj Mj

j M M

J J h h h h h h

h h J J h h h h
F F

h h h h J J h h









   

 
   

 
 
   
 
 
 
 
 

   
 







 (3.74) 

The cost in TF F  is same as the lower-right 3( 1) 3( 1)M M    sub-block of (3.70). and 

TF y  is same as the sub-block of (3.71). We can see that the total cost in 
intjog  is similar to 

joint GN method with ( 1)M M  . On the other hand, the inverse of matrix of 
intjoG  is same 

as 
intjog ; the additional calculations in term

intjoG  is generating 
intjoG  with triangular matrix 

multiplication: 23((3( 1)) 3( 1))M M   . However, according to the 

term

12 12

(M-1) 313 13

1

1 1

T

T

T

T

M M

h h

h h
F F R

h h



 
 
  
 
 
  

 , we can see that there is no need to compute 
1

TF F  since the 

sub-block 
1 1

T

i ih h  is obtained from (3.74). 

(d). Parallel pre-linear method 

     Same as joint method, the mapping function 
_p qg  and 

_p qG  should be  
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calculated individually. The term 
_ _

1

; 2 ~
M

T T T

p q p q q q qj qj

j
j q

F F J J h h q M



    is equal to the diagonal 

block of (3.102). The total cost in 
_p qg  include the first and second terms in joint GN 

method with ( 1)M M  , 33 ( 1)M   for Cholesky decomposition and 
2(3 3)( 1)M   for 

generating 
_p qg . Same as joint method, the additional computation for 

_p qG  is 

23(3 3)( 1)M  . 

(e). Sequential pre-linear method 

     We know that the sequential method and parallel method are same in mapping function 

of mobile 2. Compared with (3.36) and (3.45), the only difference between parallel and 

sequential method is that 

1

_ , _ ,

2

q

s qj k s j k

j

F g




 in 
_ ,s q kg  and 

1

_ , _ ,

2

q

s qj k s j k

j

F G




  in 
_ ,s q kG . 

Compared with parallel method, the additional 12 ( 1, 2)C M   multiplication is needed.  

     Table 3.1 compare the difference between joint GN and proposed methods. Note that 

the total computation cost in our methods includes pre-linear method in step 1 and 

dimension-reduced method in step 2.  

 

Table 3.1 compare the difference between joint GN and proposed methods. Note that the total 

computation cost in our methods includes pre-linear method in step 1 and dimension-reduced 

method in step 2. 
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 GN joint parallel sequential DR-GN 

1. TJ J  9( ( , 2))MN C M  1M M   1M M   1M M   M  

2. ( ( ))T

kJ d A    3( ( , 2))MN C M  1M M   1M M   1M M   M  

3. ( )T TJ J LL   1M M   
33

( 1)
3

M   
33

( 1)
3

M   
33

3
 

4. LU   1M M   2(3 3)( 1)M   2(3 3)( 1)M   23 3  

5. ,k kJ A  7( ( , 2))MN C M  1M M   1M M   1M M   M  

6.G  X 23((3( 1)) 3( 1))M M    23(3 3)( 1)M   23(3 3)( 1)M   X 

7. B G   X X X X 9( ( , 2))MN C M  

Table 3.1 Comparison of computation for joint GN method and prelinear methods 

The dominate term in joint GN and joint per-linear method is Cholesky decomposition, 

which need roughly 3M  computation. In parallel, sequential and DR-GN mehods, the term 

can be reduced to 
33

( 1)
3

M  . On the other hand, the terms 1, 2, 4 and 5 in DR-GN method 

equals to joint GN method, so computation in these terms needs additional cost. The term 6 

and 7 involve the computation of mapping function, which is no need in joint GN method. 

Table 3.2 summarizes the total costs in joint GN method and three pre-linear methods 

 

algorithms Number of multiplications per iteration 

GN 3 29 19 19 16M M NM M    

joint 3 29 33 47 88 28 39M M NM M N      

parallel 224 47 13 38 40M NM M N     

sequential 230 47 5 38 52M NM M N     

Table 3.2 Total computation cost 

31
(3 )

3
M

23 3M M
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    From Table 3.2, we can see that the major multiplication 
39M  in GN method and joint 

method caused by the inverse matrix in (3.10) and (3.22). The different between joint GN and 

joint method is that the dimension of inverse matrix is 3 3M M  in GN method, while 

3( 1) 3( 1)M M    in joint method, but the total cost is higher than joint GN by 214M  

when M>>N due to the extra cost in dimension-reduced GN and computation in G . However, 

in parallel and sequential method, the dimension of inverse matrix in (3.36) and (3.45) is 

3 3 , this is why there is no 3M  terms in total multiplication and total cost is reduced 

greatly. We conclude that parallel and sequential methods reduce the cost successfully. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

47 
 

Chapter 4 

Computer Simulations 

 

     In this Chapter, computer simulations show the performance of methods we proposed. 

In Section 4.1, we compare three pre-linear methods which are mentioned in Section 3.2 with 

joint GN method and CRLB. In Section 4.2, we show that how the reliability of 

measurements affects the localization accuracy. Section 4.3 shows the target mobile selection 

scheme helps to improve the accuracy and convergence. In Section 4.4, the effects on 

weighting including noise variance, Taylor modeling error and the compensation of virtual 

BSs and target mobile are shown. 

     The performance measure for localization evaluation is Root Mean Square Error 

(RMSE) which is denoted as 

2

500

1

ˆ
1

500

k

k

rmse
M

 



 
 
 
 
 

     (5.1) 

where ˆ
k  is the estimate in the kth trial, M is the number of mobiles as before and 500 

independent trials are run. Here, noise is AWGN and standard deviation (std) of 

measurements are based on [13], 

1.50.016(0.64exp( / 0.6) 1)ij ijA        (5.2) 

The noise variance is affected by the true distance between mobile i and BS j  (or mobile j) 

and   is an adjustable coefficient. However, the true distance is not known in practice; the 

real distance ijA  in (5.2) is replaced by the measurement distance ijd  in simulations. We 

note that even only the 3-D environment is mentioned in previous Chapters, our simulations 

present both 2-D and 3-D cases, and the geometries are as follow  
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Figure 4.1 2-D geometry 

 

Figure 4.2 3-D geometry 

BSs are placed at [0 0], [10 0], [0 10] and [10 10] in 2-D case, [0 0 0], [6 6 0], [6 0 6] and  

[0 6 6] in 3-D case. Mobiles are randomly selected within the geometry.  
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4.1 The Comparison of Pre-Linear Methods and Joint-GN method 

     We compare the RMSE to CRLB in cooperative localization in Section 4.1.1. Then, in 

cooperative scheme, the proposed pre-linear methods are compared with the joint GN method 

in Section 4.1.2. 

 

4.1.1 The Comparison to CRLB 

 

 

Figure 4.3 RMSE versus noise variance for pre-linear methods and GN method 

with CRLB in 2-D case 
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Figure 4.4 RMSE versus noise variance for pre-linear methods and GN method 

with CRLB in 3-D case 

 

     From Figure 4.3 and 4.4, joint GN method in (3.10) is very close to CRLB (3.14) noth 

in 2-D and 3-D case, but its high computation load is sacrificed. The RMSE of joint pre-linear 

method is better than parallel and sequential methods and approaches to joint GN method. On 

the other hand, sequential method is better than parallel method because the estimated 

positions are close to the true positions. For example in M=3 for sequential method, when 

1, 1k   is updated, it is used to locate the position of 2, 1k   , and the updated 1, 1k   and 2, 1k    

are used to locate the position of 3, 1k  ; while the parallel method only use the k-th position of 

mobiles. We believe that the updated position is useful in our simulation so that the 

performance will be enhanced in sequential method. 

. 
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4.1.2 Comparison of Pre-Linear Methods and Joint-GN method 

     In this Section, convergence and effect on number of mobiles are considered. In Figure 

4.5, the convergence rate is considered. 

 

(a) 

 

(b) 

Figure 4.5 RMSE vs. convergence rate for pre-linear methods and joint GN method in  

(a) 2-D case (b) 3-D case  
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In Figure 4.5, six mobiles are considered. We can see that joint method and GN method need 

two iterations to converge both in 2-D and 3-D case, while sequential and parallel are about 5.  

     In the following figure, divided method for Jacobi and Gauss-Seidel methods 

mentioned in Section 3.1.2 are compared to parallel and sequential methods in 3-D case. Note 

that parallel and sequential methods use the additional mapping information between target 

and auxiliary mobiles while Jacobi and Gauss-Seidel method regard the other mobiles as  

virtual BSs with known position. The number of mobiles is set to 3 and randomly located in 

6 6 6   geometry. 

 

 

(a) 
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(b) 

Figure 4.6 RMSE vs. convergence rate for (a) parallel method and Jacobi method  

(b) sequential and Gauss-Seidel method in 3-D case  

 

     Figure 4.6 compares proposed parallel and sequential methods with Jacobi and 

Gauss-Seidel method respectively. We can see that parallel method is better than Jacobi 

method in Fig 4.6 (a) and sequential method is better than Gauss-Seidel method in Fig 4.6 (b). 

This simulation shows that the transformed mapping functions in parallel and sequential 

methods are useful to improve the accuracy of positions. However, the extra computation cost 

is needed for parallel and sequential methods.  
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(a) 

 

(b) 

Figure 4.7 RMSE vs. the number of mobiles for pre-linear methods and GN method in (a) 2-D 

(b) 3-D case 
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In (3.3), we expect that the cooperative terms can improve the localization accuracy 

because of the information exchange between mobiles. Number of mobile from 2 to 6 is set in 

our simulation. From Figure 4.7, the RMSE improves when the number of mobiles increases. 

The worst RMSE occurs in number of mobiles equals to one, which means uncooperative 

localization. However, the quality of the cooperative information is important, or the 

localization accuracy may be degraded, which will be discussed in Section 4.2. 

 

4.2 The Reliability of Cooperative Localization 

     We take two factors of cooperative localization into consideration in this Section. The 

discussion of noise variance of cooperative measurements is given in Section 4.2.1. The 

reliability of positions of mobiles is discussed in Section 4.2.2. 

 

4.2.1 Measurement between Mobiles 

     We explore the cooperative localization when mobiles are in noisy channel. The 

measured distance is affected by measured noise, i.e., ij ij ijd A n  .The noise variance of 

measurement between mobile i and mobile j 2

ij  in (3.1) affects the accuracy of localization. 

The simulation setup is as follows 

     The noise variances of uncooperative measurements are based on (4.2) with   set to 

0.3. we The cooperative measurements are set with the factor   equals to 0.5 (reliable) and 

0.1 (unreliable), respectively. We expect that the reliable cooperative measurements can 

improve the accuracy of position. The simulation results compare CDF (Cumulative Density 

Function) which are given in Figure 4.8 to Figure 4.10. 
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(a) 

 

(b) 

Figure 4.8 Comparison of CDF of location error for joint pre-linear method in (a) 2-D (b) 3-D 

case 
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(a) 

 

(b) 

Figure 4.9 Comparison of CDF of location error for parallel pre-linear method in (a) 2-D (b) 

3-D case 
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(a) 

 

(b) 

Figure 4.10 Comparison of CDF of location error for sequential pre-linear method in (a) 2-D 

(b) 3-D case 
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     We can see that the reliable measurements (red line) upgrade the performance no matter 

in joint pre-linear method in Figure 4.8, parallel pre-linear method in Figure 4.9 and 

sequential pre-linear method in Figure 4.10. In addition, the positions of mobiles also affect 

the localization. The details will be given in Section 4.2.2. 

 

4.2.2 Positions of Mobiles 

     In (3.22), (3.35) and (3.43), ,k kF y  include the position of mobiles in k-th iteration  

and it also effect the estimation of mobiles. The position of mobiles plays a role that the 

measurements are unreliable if two mobiles are far away between each other. Futher, the poor 

geometry location cause the uncertain virtual BSs and lead to degradation of localization. In 

Figure 4.11(a), we discuss the influnce on parallel and sequential methods. Mobiles are placed 

at [1 1], [9 1], [9 9], [1 9] (distance between mobiles is far and in poor geometry) and [3 3], [7 

3], [7 7], [3 7] respectively. In 3-D case, the mobiles are placed at [1 1 1], [5 1 5],[5 5 1], [1 5 

5] and [2 2 2], [4 2 4], [4 4 2], [2 4 4]. The simulation results are shown in the following 

figures. 

 

(a) 
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(b) 

Figure 4.11 Influence of positions of mobiles on different noise variance in (a) 2-D (b) 3-D 

case 

 

     In parallel and sequential pre-linear method, the positions of uncertain virtual BSs are 

used in (3.29) and (3.37) respectively, and it can affect the performance. The RMSE of 

parallel and sequential pre-linear methods are shown in Figure 4.11. We can see that the 

performance is better if the positions are set closer and near in the middle of geometry. The 

influence of uncertainty of mobile will be modified based on mobile selection and weighting 

compensation in Section 4.3 and Section 4.4. 
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4.3 Effect on Target Mobile 

     In this Section, the target mobile selection schemes are considered. We want to modify 

the performance with the probable target mobile. In 2-D case, mobile 1 is selected at [2 2] and 

others are randomly selected in 2 2( )m  in the middle of geometry. Note that we select 

mobile1 as target mobile in general case, and pick a mobile from all candidates as target 

mobile in target mobile selection scheme. In 3-D case, the procedures are identical with 2-D 

case. We select mobile 1 at [2 2 2], and others are in 3.5 3.5 3.5( )m   in the middle of 

geometry. 

 

 

(a) 

 

 



 

62 
 

 

(b) 

Figure 4.12 Influence of target mobile selection in (a)2-D (b) 3-D case 

 

     From Figure 4.12, we can see that the performance of mobile selection (solid line) is 

improved compared with the genaral case (dashed line), especially in parallel (blue) and 

sequential (green) pre-linear methods, while the joint method improves slightly. We infer that 

in joint method, the mapping function comes from the cooperation of all the auxiliary mobile, 

and the influence on target mobile is less than parallel and sequential methods.. 
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4.4 Weighting Compensation 

    In this Section, the effect on weighting are discussed. Section 4.4.1 shows the poor initial 

value degrades the performance. The improvement on weighting of noise variance is shown in 

Section 4.4.2. In Section 4.4.3, weighting compensation on virtual BSs and target mobile 

upgrades the RMSE of localization. 

 

4.4.1 Initial Value  

     It is known that a good initial value is important when the Taylor-series expansion is 

used to linearize the nonlinear function, or the Taylor higher order truncation error can not be 

neglected. Our pre-linear methods are based on GN method which applies Taylor-series 

expansion to non-linear range function. The following figure shows the effect when the poor 

initial value is used.  

 

 

Figure 4.13 RMSE vs. iteration for a poor initial value  
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     In Figure 4.13, the number of mobiles is equal to 2 and randomly located within 

10 10 4( )m   in 12 12 6( )m   cube with four BSs at the corner like Figure 4.2. We give an 

initial value at [6 6 3] and [5 5 4]. Note that it is a special case of pre-linear methods in M=2 

that there is only one way to generate the mapping function. We can see that in GN method 

(red line) and pre-linear method (blue line), the algorithm with variance of noise (solid line) 

can not improve the RMSE. The term ,ts ijn  in (3.6) dominate the total error, i.e., ,ts ij ijn n . 

In Section 4.4.2, a good initial value is used so that the noise dominates the total error. 

 

4.4.2 Effect on Weighting of Noise Variance 

     Here, the statistics of noise variance ij  is considered in the following figures  

 

 

(a) 
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(b) 

Figure 4.14 The effect on weighting of noise variance in (a) 2-D (b) 3-D case 

 

     We can see that RMSE is improved with the weighting of noise variance obviously in 

three pre-linear methods. Different from 4.4.1, the uncooperative LLS estimator offers a not 

bad initial value in this section. From Figure 4.14, we further know that the noise variance 

dominates the localization rather than the Taylor truncation error, i.e., ,ij ts ijn n . 

 

4.4.3 Weighting Compensation 

     The compensation of uncertain position of virtual BSs and the target mobile in three 

pre-linear methods in (3.23), (3.36) and (3.44) are considered. The simulations are given in 

following figure. 
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(a) 

 

(b) 

Figure 4.15 Weighting compensation on joint method in (a) 2-D (b) 3-D case 



 

67 
 

 

(a) 

 

(b) 

Figure 4.16 Weighting compensation on parallel method in (a) 2-D (b) 3-D case 
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(a) 

 

(b) 

Figure 4.17 Weighting compensation on sequential method in (a) 2-D (b) 3-D case 
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     From Figure 4.15 to 4.17, we can see that the compensation improves the RMSE. Note 

that there is an improvement for convergence in 3-D case. By iteration, the accurate positions 

of mobiles are obtained, the effect on location errors become smaller. The extra computation 

are 9( 1)M   for joint method, 29( 1)M   for parallel and sequential methods. In parallel 

and sequential methods , it is still less than joint GN method, we conclude that the 

compensation is useful in our proposed pre-linear methods. 
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Chapter 5 

Conclusions and Future Works 

 

     In cooperative localization, three pre-linear methods based on distance measurement 

have been proposed to reduce the dimensions of unknown parameters in this thesis. Using the 

concept of linear mapping from target mobile to auxiliary mobiles, we expect that the 

complexity can be reduced. Compared with joint GN method, the total computation cost in 

each iteration saves roughly 3M  multiplication in parallel and sequential methods when the 

number of mobiles is increased. Simulation results validate that the RMSE of proposed 

methods are still comparable with joint GN method, but the total cost is reduced greatly. 

Simulations also show the influence on reliability of cooperative measurement; because the 

additional weighting compensation for uncertain position of mobiles not only improves the 

location accuracy, the convergence is also improved. Moreover, we can see that target mobile 

selection scheme enhances the RMSE. In a word, the contribution of this thesis is that we 

propose three low complexity pre-linear methods with good accuracy. 

     In fact, there exist lots of mapping relation that the mapping can be generated based on 

different localization requirement. Here, the linear mapping we proposed is based on the 

requirement for low complexity. Besides, the proposed methods can be also applied in NLOS 

environment. In the end, the theoretical analysis of proposed methods are another attractive 

issue to verify the performance. 
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