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for Cooperative Localization
Student: K. C. Lee Advisor : S. F. Hsieh

Department of Communication Engineering
National Chiao Tung University

Abstract

Cooperative localization has received extensive interest from the robotic, optimization,
and wireless communication. In-addition to the range measurements from the mobile and BSs
with known position, the extra information among mabiles is added to improve the accuracy
of position in cooperative localization. The Gauss-Newton (GN) method can be used to solve
the cooperative positioning problem with good performance, but its computational complexity
is quite high due to the matrix inversion. However, if the dimension is reduced, the
complexity of algorithm is reduced as well. In this thesis, a target mobile is selected as
reference mobile, we want to find the relationship between auxiliary mobiles and the target
mobile. Therefore, we propose three pre-linear methods, joint, parallel and sequential methods,
which can reduce dimension of the unknown parameters by searching the linear mapping
relations from auxiliary mobiles to target mobile. With the pre-linear mapping function, the
dimension-reduced GN method of target mobile is derived based on the conventional GN
method. The total computational cost can be reduced greatly in parallel and sequential
methods. Moreover, the choice of target mobile and compensation of inaccurate mobiles are
discussed to enhance the localization accuracy. Simulations validate the enhancement of
accuracy. In addition, we also compare performance of RMSE and total computation cost for

low-complexity pre-linear methods with GN method.
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Chapter 1
Introduction

In recent years, positioning technology has attracted attention and developed rapidly [1].
It finds applications in military, commercial, emergency search and rescue. The most
localization systems estimate the unknown position coordinates based on the information
between the unknown position node and base stations (BSs) with known positions. The
typical techniques of localization include measurements of time-of arrival (TOA) [2],
time-different-of-arrival (TDOA) [3], angle-of-arrival (AOA) [4] and received signal strength
(RSS) [5], hybrid TDOA/AOA and other mixture method [6]. In this thesis, we consider the
TOA localization technique. Besides, the measurements may suffer from non-line-of-sight
(NLOS) effect, [7] proposed an effective technique in NLOS environment by linearizing the
inequalities of range models.

It is a crucial estimation problem that the unknown position coordinates are nonlinear
because of the range equations. Nonlinear least-squares (NLS) estimator such as the Newton
method [8], the Gauss-Newton (GN) method [9] can be used to solve the problem. These
nonlinear iterative methods provide an estimator with high aceuracy which is close to the
Cramer-Rao Lower Bound (CRLB) under moderate measurement error. However, these
iterative methods need highly computation costs and an initial guess of the unknown position
Is needed to start the iteration; the poor initial guess may degrade the performance of
localization and the convergence rate. Another low cost method that attracts a lot of research
interest is the Linear Least-Squares (LLS) method. [10-12] linearize the nonlinear range
function and give a closed form solution. The advantage of the LLS method is its simplicity,
but the obtained solution is suboptimal since the linear approximation. [13] proposed a one

dimension iterative (1D-1) method which combined the LLS and GN method, the original
1



three-dimensions estimation can be reduced to one dimension by mapping x-axis and y-axis
coordinates to the fixed linear function of z-axis coordinate, then solve the remaining
one-dimension parameter by GN method iteratively.

In cooperative localization system, Mobiles exchange the information mutually can
improve the accuracy of location estimation. It is more difficult than conventional localization
since the additional measurements between mobiles are involved to enhance the accuracy. [14]
devised subspace approach to solve the problem. In NLOS scenario, [15] presented a location
verification protocol among cooperative neighboring vehicles to overcome NLOS condition.

Different from conventional localization, cooperative localization algorithm is more
complicate by the increasing of unknown positions of mobiles. To simplify the existed
algorithm, we extend the thought of 1D-I method of [13] in cooperative localization. In this
thesis, we propose three pre-linear methods which lower the unknown positions coordinates
by pre-linearizing the relation between mobiles, joint, parallel and sequential method. The
measurements between mobiles are additionally useful information to locate the positions of
mobiles in cooperative localization. For the reason, we select a mobile as target mobile, and
the proposed pre-linear methods concern about the linear relationship from target mobile to
auxiliary mobiles. Then, the dimension-reduced GN method of target mobile is used to
estimate the positions of target mobile by using the information of pre-linear mapping
function. Note that our research differs from [13] that the mapping we proposed is updated by
iteration while the mapping in [13] is fixed. The detailed description will be given in Chapter
3. Compared with traditional GN method, the computation cost is reduced successfully in
parallel and sequential methods with good location accuracy. On the other hand, the reliability
of measurements between mobiles is an important issue; the uncertain positions of virtual BSs
or the harsh environment between mobiles may degrade the accuracy. The weighting
compensation of uncertain positions of mobiles and the mobile selection scheme are helpful to

improve the accuracy of localization.



This thesis is organized as follow. In Chapter 2, the localization model is introduced
first. Then, Least-squares algorithm including GN method which applied in our method is
introduced. Three pre-linear methods are proposed and the dimension-reduced GN method is
derived in Chapter 3. Chapter 3 also compares the total costs of proposed methods and GN
method and discusses the issue of weighting compensation and mobile selection. Computer

simulations will evaluate the Root Mean Square Error (RMSE) between pre-linear methods

and GN method. Finally, we give a co i ork in Chapter 6.
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Chapter 2
Localization System

The localization estimation can be done by the measured data between mobiles and BSs.
The estimation is usually done using iterative algorithms which solve nonlinear least-square
(NLS) problem. The GN method is widely chosen to solve the nonlinear localization problem
iteratively by means of linear interference. The performance of Mean Square Error (MSE) is
known as well as the CRLB [1]. However, the computations of NLS estimator in
each-iteration and the total load are quite heavy especially when a large number of iteration is
required to converge. [10-12] proposed linear least-square (LLS) method to obtain the closed
form solution. The transformed least-squares iterative method has been proposed recently in
[13] which can reduce the complexity efficiently. In this chapter, Section 2.1 introduces the

system model. LSE estimator and the CRLB are introduced in Section 2.2.

2.1 System Model

Figure 2.1 shows a basic localization system. There are M unknown positions of
mobiles and N base stations with known positions. (X;, Y;,Z;)and (X5, Y5:27) are coordinates
of mobile i and BS j, where 1<i<M,1< j <N .Each mobile communicates with BSs
independently and mobiles can exchange the information from received signal with each

others. In this Chapter, we only concern measurements between mobiles and BSs, cooperative

localization will be introduced in next Chapter.
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Figure 2.1 A basic localization system

In TOA scenario, measured distance d from mobiles to BSs can be calculated by
multiplying the propagation time and the signal propagation speed. With TOA measurement

from mobile i and BS j, we have measured distance modeled as

d; =A;+n;, 1=12,,N (21

where A] is real distance between mobile i and BS | and n;~N(0,a5;) is modeled as

additive white Gaussian noise (AWGN). We further denote A as a distance function as follow

A (@) =H¢9i - BsiH, i=12,.N (2.2

where 6 =[x zi]T is the unknown coordinate vector of mobile i and

BS; :[x] y; z]]T is the coordinate vector of BS j. From Figure 2.1, we focus on the

position of mobile i, we can rewrite (2.1) in vector term by N measurement data as follow

d=A()+n (3

5
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_- n
where d;=| * [,A(6)=| *|.n=| *| arethe measurement vector, distance vector, and

d.. Aq n.

iN

measurement error vector.
We want to utilize these measurements to estimate the position of mobile i. In Section

2.2, some typical LS estimators are introduced.

2.2 Least-Squares Algorithm
According to the model, the unknown position coordinate vector € can be estimate

based on least-squares theory by searching the minimum of the objective function,

6, =min i%(dn—\\@—BS;H)Z @4)

1= i]

(2.4) is an optimal solution of LS estimator. It can be written as vector form as

A . 2
g, =argmin [di —A@)[,  (25)

where

¥ ("W, (+) denotes a weighted norm with the weight matrix W, which is

-1
chosen as the inverse of the measurement variance matrix, i.e., W. = (E[niniT ]) , Where W,
is a diagonal matrix with (af])‘l, j=1~N atj-th diagonal element. With the assumption of

normally distributed of measurement errors, the Weighted Least-Squares estimator (WLS) [16]
is identical to the Maximum Likelihood Estimator (MLE) [17]. In this thesis, weighting
coefficient will be considered and revised in next chapter.

(2.5) is a nonlinear problem since A involves the norm term, it can be solved by
iterative algorithm like the Steepest Descent method, the Newton method, the

Gaussian-Newton (GN) method [8-9]. These methods provide equivalent solution when they



successfully converge. Our research bases on GN method. Section 2.1.1 introduces the GN
method. In Section 2.2.2, some lineared LS methods are given. TLS framework which
reduces the unknown parameter will be introduced in Section 2.2.3. TOA-based CRLB will be

given in Section2.2.4.

2.2.1 Gauss-Newton Method

The basic idea of GN methaod is to linearize the signal model. From (2.2), the non-linear

function A;(6) can be linearized using Taylor series expansion

AB)=A;(6,)+3;(6-6,)+n,nT=12.N  (26)

where n ;. is the higher order truncation error of Taylor expansion, and the gradient vector

(ei,o_BS])T Xio=X5 VYio~VY; Zio—Z

J

6,85 | Ay A A;

ij

il j=12..N- Then (2.3) becomes

di & A1(9|0)+‘]|(9| _Hi,0)+nuncoop,i (2.7)
where @, is the initial vector and Nyneoopi = Nis 7 + i denotes the total error including

higher order truncation error of Taylor expansion and measurement noise, where

= T

nts,ii
n .-
ne;=| %1 . J; e R"® (3 dimensions) isuncooperative Jacobian matrix [18],
_nts,iN |
_Xi,O_Xl yi,O_yi Zio Zl |
A|1 Aui A|1
Jlf Xi0 X2 Yi,o - YQ Zio Zz
I=l = A Az As (2.8)
‘]il\]
Xi,O XN yi,O - yN Zio ZN
L AlN AuN AuN i




According to (2.7), the estimate location of the mobile i (2.5) can be written as

6 =argmin[d, - A6)-3,6 -6, 9

uncoop

the GN method solves the problem by iteratively minimizing the new objective function,

éi,k+1 = éi,k + (‘]i,kTWuncoop,i,k‘]i,k)71‘]i,kTWuncoop,i,k (d| - A (é|k )) (210)

where the weighting matrix is covariance inverse of Ncoqp i

-1
T
Wuncoop,i,k > (E |:nuncoop,i,k r-luncoop,i,k ]) (2-11)

The element of W, ,pix IS @ diagonal matrix with

E[n n' Lj—az +0:, J=1~N (2.12)

uncaop, i,k * ‘uncoop,i,k ' ts,i] k
In (2.10), there exists 3x3 matrix inverse with highly computational cost. Note that we can

omit the Taylor truncation error if there is a good reference point. In (2.10), J;, A (€,,)

can affect the position accuracy and will be updated with the k-th &, , . The GN method

explores the quadratic form of the objective function and is adequate for solving
(small-residual) non-linear problem, but the complexity is cumbersome. In next Section, three

linearization algorithms will be introduced to reduce its computational cost.

2.2.2 Linearization of Least-Squares Method
There are three common linearization methods, Taylor-series expansion algorithm (TS)
[10], distance-augmented algorithm (DA) [11] and hyperbolic-canceled algorithm [12]. We
summarize them as follows. By linearizing the non-linear term, (2.2) can be written as
b=H@+n  (2.13)
the terms b, H of three linearization methods had been derived in the literature. Applying

weighted least-squares to get the closed form solution



O=(HWH™ Wb (2.14)

A

where W, is the weighted matrix. The covariance matrix of € =6 -0, is

|
-1
cov(e) =(H'W,H) (2.15)
and the Mean-Square-Error (MSE) of the estimator is

MSE = trace(cov(e,)) (2.16)

The LLS estimators are easy to operate and cost less computation compared with
iterative methods. It is trade-off between cost and accuracy. Some researches try to reduce the
complexity with high accuracy. [19] utilize constrained least-squares method. [20] uses one
range measurement in each-iteration to update the user position. We introduce transformed
least-squares (TLS) framework [13] which reduced the parameter of unknown parameters in

Section 2.2.3.

2.2.3 Transformed Least-Squares Framework

Instead of the traditional LS estimator, Transformed Least-Squares (TLS) [13] tries to
keep the required computations low in two steps. The first step is transforming the positioning
problem to lower dimensions. There are three dimensions (3-D) in ariginal 3-D localization
problem. Once the dimensions are less, the unknown parameters to be estimated are less
respectively. Second, solve the remaining parameters iteratively. [13] proposed a one
dimensional iterative (1DI) method that the LLS method is used to transform the problem to
one dimension and an iterative method is used to estimate the 1-D unknown parameter.

Actually, the idea of TLS can be explained as follow. In classical nonlinear LS (NLS)

algorithm (2.4), the unknowns are estimated together. On the other hand, it can be divided to

one unknown ( z;) nonlinear problem and other two dimension (X, y;) nonlinear estimation.

Assume that z; parameters are fixed, X, and Y, can be transformed to linear function of
9



Z;, the estimation problem become one dimension, i.e.,

6, = min f(x,y,,z)=minmin f(x,y,z) =min f(x(z),Y(z).2) (217)

X1 YirZi i XY
f denotes objective function in (2.4). From (2.17), [13] divides the original three dimensions

nonlinear problem to one dimension since the x-axis and y-axis coordinate of mobile i is
transferred to linear function of z;. The reduced-dimension localization problem can be

solved based on the GN method introduced in Section 2.2.1. In [13], the mapping function is

given based on hyperbolic-canceled algorithm mentioned in Section 2.2.2,
[% 9] =m(b=H,z)  (2.18)
where b, =df-df-BSBS;+BS{BS;, j=1~N,

m= (H1WLH JlH Vle

X=Xy YiT Yo 4K
H=[H, H]--2 : :
1 2
Xii=Xg Yai=¥n Zna— %

Hy H,

The mapping in (2.18) is fixed by mapping coefficients H,, H, and b. Based on (2.18), the

position of mobile I can be written as

6.=[x vy, z] =f+Fz (2.19)

mb —-mH, . .
where f = ol F= P f,F eR”.Then, (2.5) can be written as

A . 2

2, =argmin|d, - ACf +Fz)[,,  (220)
Finally, the problem has transformed to one dimension nonlinear Least-Square problem
according to the variable Z;, which can be solved by GN method iteratively. The TLS method

not only reduces the computations but preserves performance comparable with GN method. In

cooperative localization, the dimensions of unknowns are quite high by the positions of

10



mobiles. We propose a dimension reduced Least-Squares algorithms based on TLS framework,
and the additional challenge from measurements between mobiles are another issue which

will be described in Chapter 3.

2.2.4 Cramer-Rao Lower Bound

In previous section, mobile i can be estimated through uncooperative measurements.

For comparison with these estimators, the CRLB is given as a criterion. Based on [22], the

~

error covariance matrix of position error vector € =6 — 6 satisfies Information Inequality

cov(é)=E[&¢ [21,' = (@21

where I;il is the full uncooperative Fisher Information Matrix (FIM) for mobile |

=% (=x-y) 6 -x)z -2 ]
A; A; Aj
|, = ZN:L (% _X])(yi - yj) (v - y,’)2 (v, - yj)(zi _Zj) (2.22)
W Ho Aj A; A;
x=x)Nz=2) @i=-y)z-2) (-7
| O Al Al

Then, the trace of inverse of Ia_.l in'(2.21) is defined as the lower bound for MSE, Therefore,

uncooperative CRLB is given by

CRLB 50 =T [ 1"

(2.23)

In cooperative system, the cooperative CRLB will be introduced in Section 3.1.3.

11



Chapter 3

Cooperative Localization System

Cooperative localization is raising up as a new branch of wireless localization in which
several researches are being explored. By the development of short-range communication
such as UWB, the direct communication of different terminals can be used in cooperative
positioning. [17] considers that the short-range measurements are reliable to enhance the
accuracy of location and investigate the data fusion of large-scale and small-scale.

In cooperative system, the distance measurements between any pairs of unknown
positions mobiles are utilized to-improve the location estimation. To mobile i, the
measurement distances between BSs and the other mobiles are combined as the information
of which are used to solve the estimation problem. The other unknown mobiles play a role as
virtual BSs to assist mobile i in localization. In cooperative localization, the location accuracy
of virtual BS is important since the un-precise virtual BS may cause the degradation of
localization. It is a more critical task than conventional localization due to the additional
information from mobiles to mobiles. Figure 3.1 indicates the cooperative localization system.
There are N known positions of BSs and M unknown positions of mobiles. Our purpose is to
estimate all the M unknown positions of mobiles by using total (M xN +C(M, 2))

measurement data. From figure 3.1, mobile i receives N TOA measurement from known

positions of BS and (M-1) measurements from unknown positions of mobile. A] is the real
distance between mobile i and BS ] which is mentioned in section 2.1; the cooperative term

Aij is denoted as the real distance between mobile i and mobile j.

12
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Figure 3.1 Cooperative localization system

The cooperative measurement between mobile i and mobile j is denoted as

d,=A+n,i<j 1=12.,M-1,j=ii+1..M (3.1

where N~ N(O, O'U?) is cooperative measurement error modeled as AWGN. Combining (2.1)

and (3.1), the cooperative measurement model can be writtene as

d=A(@)+n (3.2)

>
where 6= [6’] 6 -6y } is the position vector of M mobile and

- o _ e Y |
d1 A1 n,
d n
d= N ,A(0) = Ay n= N :d, A e RMN e,
d12 A12 n,
_dM—l,M_ | Avim | RLYERYE

M!
Further denote (M. 2) = {5 =511 . The M unknown position coordinates can be estimated

by minimizing the cost function based on least-squares estimator and it is written as

13



i=1 j=1 Oj

ommini 33 (eSS le ool
i 3.3).

Noncooperation -
cooperation

. 2
=argmin ld = A@)[|,
Compared with (2.4), (3.3) takes additional information in account and we can see that
cooperative localization is a tough issue than uncooperative localization. On the other hand,

the reliability of additional cooperative measurements is another issue; if the unreliable

measurements are used (crij? is large), the localization accuracy becomes worse. Simulation

shows the influence on noise variance in Section 4.2.1.

There are several ways that can be used to solve LS estimator (3.3). Nonlinear iterative
algorithms estimate the location with high performance, but the complexity is quite high. By
linearized algorithm, the costs can be reduced, but the performance is sacrificed. Here, we
propose three pre-linear methods with low complexity but good accuracy. The structure of the
rest of this section is as follows. Section 3.1 discusses cooperative GN method. The pre-linear
method of auxiliary mobiles is proposed in Section 3.2. Section 3.3 derives the
dimension-reduced GN algorithm for target mobile. Weighting compensation and mobile
selection are discussed in Section 3.4 and Section 3.5 respectively. In the end, the

computation is compared in Section3.6.

3.1 Cooperative Gauss-Newton Method

In cooperative localization, GN method is also useful to solve (3.3). According to
Section 2.2.1, the additional cooperative term is discussed. Section 3.1.1 derives joint GN

method. Divided GN method is given in Section3.1.2.
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3.1.1 Joint GN Method
We know that unknown positions of mobiles are involved in cooperative system. In

addition to (2.1), the remaining task is to linearize cooperative nonlinear distance function
A6, 0;) = HH. -0, H (3.4)

Apply Taylor-series expansion to (3.4) with initial value 9i,0 ) 9,-,0 as follows

A©@.0)= A (ei,o,e,-,o){aiﬁx,-(a,o,e,,o)}mnts,i,-

8.6,

where N is the higher order truncation error of the Taylor-series expansion for AJ‘ ,

aT
a@ [

(Rhd}

0A;(6,0.0,0)  OA;(6,0,0,0) L S
P 0, - NS

Aj (gi,o'ej,o) :{

]

and hij is the cooperative gradient vector between mobile i and mobile j.

(ei,o_ej,o) {‘2_&0}
i st e ' (3.5)
J ”Qo _gj,0|| 0] _91',0

Now the cooperative measurement model (3.1) becomes
dij - Aj (ei,O’ 0],0) + [hJ _hJ ]A = ncoop,ij (36)
where Ngo, 5 = MNyjj + My denotes total cooperative error including Taylor truncation error

and cooperative measurement error. (3.6) is a linear equation of cooperative measurement
model. Collecting all the uncooperative linear equation (2.6) and cooperative linear equation

(3.6) with M=4, joint GN Jacobian matrix equation is given by

d=A(6,)+J(@-6,)+n (3.7)
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J 0 0 0 4N,

0 J, 0 0 N+,

0 0 N 0 N, +N, 5

0 0 0 J, N, + N,

where J :2 B OT ° n= {n“”“’""} — LERALYP
3 0 -—h; 0 |- Neoop Nig + Ny 13 (3.8)

h, 0 0 -h| n .

0 hy -hy 0 y+ N

0 h, 0 _=h, e+ 1,

0 0 hg, —h3T4_ TSR

J is cooperative Jacobian matrix. The term uncooperative Jacobian matrix . J. is same as

2.8), d,A(d,),e RN M2 46 the measurement data, distance function which contained

both uncooperative and cooperative term. Further denotes N is the total error vector
including Taylor high order truncation error and noise. According to (3.7), the objective

function is denoted as
6 =arg m9in||d ~A@)-30-6), (39
and the joint GN estimator solves (3.9) iteratively by

ék+1 7 ék +(J kTWk‘]k )_1‘]kTWk (d- A(ék ) (3.10)

W, 0
e T -1 _ uncoop,k
W, = (E[nknk ]) —{ 0 Wcoop,kj|

Here, J, denotes kth cooperative Jacobian matrix which is different from J; in (2.8).

and W

coop,k

is covariance inverse of Ngoop i,

-1
T
Wcoop,k = ( E [ncoop,kncoop,k :')

The element of E [ncoopykngoop'k] is a diagonal matrix with

16
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W, is adiagonal matrix which including Wuncoop,k in (2.12) and cooperative term. Note that
there is 3M x3M inverse matrix (J3,'w,J,)™ in (3.10) which includes highly computational
cost. Besides, we can omit the Taylor truncation error as before if there is a good reference
point. In Section 4.4.1, the effect on Taylor truncation error from initial value will be shown.
In (3.10), the positions of mobiles are updated jointly with high position accuracy. In section

3.1.2, the divided method which updates the position of mabile individually will be described.

3.1.2 Divided GN Method
We know that if there exists a mobile j with known position, it can be regarded as a

virtual BS to mobile 1and can be helpful to estimate mobile i. Figure 3.2 illustrates the above

description.
(ce))
A
e
~ ~ 11 § mobile i iN_— BS ¥
BS 1 s
'
4_ “\\\‘ 1]
/2 h -
. .
) N

lﬁ J

BS_2 BS
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Il
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=
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Figure 3.2 Cooperative localization with virtual BS 6,

17



From Figure 3.2, the position of every single mobile can be estimated by measurements from

Py

true BSs and other virtual BSs. To mobile i, the LS searches a & which minimizes the

objective function

=3 {a-fasf + 3 Lo, |-l istzem e

i=1 Ojj j=1.j Ojj

noncooperation cooperation

where éj denotes known position of virtual BS. Note that (3.11) only include the unknown

parameter of mobile i. However, the uncertain positions of virtual BSs may degrade the
accuracy. To deal with this problem, the individual uncooperative localization (2.4) is used to

find a not-bad initial value of virtual BS. Then, (3.11) estimates the positions of mabile i.

éi :(HiTWL,iHi)_lHiTWL,ib. (3.12)
Every individual mobile can be updated by other M-1 virtual BSs iteratively to improve the
position accuracy. Actually, Jacobi and Gauss-Seidel methods [18] are used to choose the
positions of virtual BSs. Our proposed parallel and sequential pre-linear methods are based on
Jacobi and Gauss-Seidel methods, respectively. Figure 4.6 shows the comparison between

divided method and pre-linear methods. The divided method can reduce the computation costs

most in (3.10), but the performance is sacrificed.

3.1.3 Cooperative CRLB
In cooperative system, cooperative CRLB is given as uncooperative system that is to be
a standard to estimators in this Chapter. The full cooperative Fisher Information Matrix can be

written as follows
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M
Ial + IZ;, Cl| _Cl2 _ClM
i#l
M
-Cy, Iaz + Z C, —Cou (3,13)
ly = B
M
_ClM _CZM IaM + 21: CMi
i=M

where |, is the uncooperative FIM in (2.21) for mobile iand C; is cooperative

information matrix between mobile i and mobile | which is denoted as

(Xi_xj)2 (Xi_xj)(yi_yj) (Xi_xj)(zi_zj)
A A A
C. :i (Xi_xj)(yi_yj) (yi_yj)2 (yi_yj)(zi_zj) (314)
A= A A
(Xi—xj)(zi_zj) (yi—yj)(zi—zj) (Zi_zj)2
A A A
Then, the cooperative CRLB for mobile 1 is
CRLB,,, =tr[1,;']  (3.15)

Note that the cooperative CRLB for mobile 1 lies at the upper-left block

CRLB = tr | upper-left-3x3submatrix of 1," |

coop,mobile;

Simulation compares our methods with (3.15) in Section 4.1. In Section 3.2, we propose a low

complexity with high accuracy pre-linear methods in cooperative localization.

3.2 Pre-Linear Methods of Auxiliary Mobiles

In cooperative system, the M mobiles positioning problem is presented. In Section 3.1,
joint GN method outperforms divided method, but the total costs are higher than divided
method. Instead of GN method, we try to seek a relation between mobiles by re-formulating
the positioning problem to reduce the number of unknown mobiles based on [13]. In this way,

we expect that the proposed pre-linear methods have good performance in both accuracy and
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complexity. The basic idea of pre-linear method consists of two steps: The unknown of
parameters are reduced in step 1 by pre-linear mapping, and the localization algorithm for
remaining unknown parameters in step 2 using the pre-linear function in step 1. Figure 3.3
indicates the flowchart of the pre-linear method. In Figure 3.3, we aim at searching a mapping

function between unknown positions of mobiles.

>

00 k+1

Dimension-reduced

Mapping function
cooperative localization ;

7] for auxiliary mobile [~

\ 4

v

algorithm for target mobile

____________________________________________________________________

Figure 3.3 Flowchart of pre-linear method

In cooperative localization, mobiles exchange the information collaboratively, so we focus on

the mapping between mobile-to-mobile. Unlike [13], the cooperative measurement between

mobile i and mobile j ||0i -0, || cannot be linearized by squaring the distance function (3.4)

since both ¢, and ¢, are unknown parameters. Fortunately, the Taylor-Series expansion can

linearize the equation which describes in Section 3.1.1. Furthermore, the pre-linear method
works iteratively while pre-linear mapping in [13] is fixed. On the other hand, the actual
mapping relations between mobiles are not existence, we can also correct the mapping by
iteration.

Once the pre-linear mapping is obtained, the dimension of unknown parameters to be
estimated can be reduced, and the localization algorithm is simplified accordingly. However,
there is a lot of combination of mapping relation, the choice of mapping function is based on
different localization requirement. Our purpose is to simplify the algorithm in (3.10), so the

linear mapping is a suitable choice which reduces the complexity most. The following

20



describes the two steps of the pre-linear method.

In Step 1, we select a mobile called “Target” mobile which is chosen as a reference
mobile to be estimated in step 2; and the others called “Auxiliary” mobiles that are restricted
to be a linear function of the target mobile. It is assumed that there exists some linear mapping

relation between auxiliary mobile and target mobile. Without loss of generality, we select
mobile 1 as a target mobile, and mobile 2 ~M.as auxiliary mobiles, i.e., 8, =L,(6)) , q

=2,3,...,M. Therefore, (3.2) can be rewritten as

d=A(4,L(6),L,(8),..L,(6))+n . (@316)

By linear mapping function L, the auxiliary mobiles can be transformed to the linear function
of the target mobile. However, mobiles are located at different positions independently so an
error-free mapping is usually not available. How to find a proper mapping function by
measurement data becomes a critical issue. \We propose three linearized mapping methods to
implement the mapping function. The detail will be described in the next section.

In Step 2, once the mapping function is generated, LS estimator can solve the
dimension-reduced cooperative localization problem based on (3.16).

6,=argmin[d=A(6,L,(0).L,@)..L, @), = @1

We only consider the parameters of target mobile in this step unlike the original multiple
mobiles in (3.3). In section 3.3, Dimension-reduced GN method is derived based on the GN
algorithm mentioned at section 3.1. The original 3M x3M (3-D case) inverse matrix
problem in (3.10) can be transferred to 3x3 positioning problem. Therefore, the computation
cost is reduced efficiently. The detail of computation costs will be described in Section 3.6.

We note that if the position of target mobile is updated, the corresponding positions of
auxiliary mobiles can be obtained by using mapping function and the position of target mobile

we estimated. Figure 3.4 indicates the description above.
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Figure 3.4 The diagram of mapping from target mobile to auxiliary mobiles

In Figure 3.4, the accuracy of target mobile affects the accuracy of auxiliary mobiles by the

mapping function L(€,) . The reliable target mobile can improve the accuracy of auxiliary

mobiles. In Section 3.5, we propose a target mobile selection method to find the reliable target
mobile. In fact, the auxiliary mobiles are used cooperatively to search the mapping function
which is inserted in the cost function in step 2 (see (3.17)), so auxiliary mobiles and target
mobile interact with each other. The uncertain position of mobiles may deteriorate the
localization accuracy. Therefore, the compensation of weighting coefficient will be derived in

Section 3.4.

3.2.1 Joint Pre-Linear Method

There are M unknown positions of mobile in localization system. Our purpose is to find
the relation between these M positions of mobile which is described in previous section.

In joint pre-linear method, we want to find @ mapping function so that all the (M-1)

auxiliary mobiles can be written as a function of target mobile jointly. i.e.,
(60 & - 6] =L6) (318

where L is a linear mapping from R® — R*™™_ Figure 3.5 depicts the mapping relation of

joint pre-linear method.
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Figure 3.5 Mapping relation of joint pre-linear method

In Figure 3.5, all the auxiliary mobiles cooperate with each other jointly to find their
relations with the target mobile. If (3.18) is known, the position vectors of auxiliary mobile
are transformed to a function of the target mobile successfully and can help to locate the
position of the target mobile. Mapping function plays an important role that it replaces the
original positions of auxiliary mobile; in other words, the dimension has been reduced in step
2. The mapping function L will be derived in the next paragraph. The complete algorithm of

joint pre-linear method is indicated in Figure 3.6.

Uncooperative Lineared
Localization Algorithm

Him o
91 k 1k+1

9 | Dimension Reduced L(@,,.)
20 GN Algorithm

62‘k+1

v

A\ 4

: Mapping Function L Ot
9M,0 >

[0 & - 4] =16

Figure 3.6 Joint pre-linear algorithm
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Fortunately, we can get the mapping function by linearizing the cooperative nonlinear
function (3.2) using Taylor-series expansion. Rearranging (3.7) with M mobiles and the linear

equation is given
y=J@+n (3.19)
where J is cooperative Jacobian matrix which is same as (3.7),

yuncoop

y= =d+J6,;

ycoop

= RMXN c RC(M,Z)

yuncoop ) ycoop

We further denote Fi as the 1 column of J, and (3.19) can be rewritten as

y=[EF = Rl 1+ @)

Note that 6, is the position vector of the target mobile. From (3.20), we can see that if we

regard 6, as a variable parameter of equation and shift the term F191 to the left-hand side

of the equation as follows,

y_Fl‘glz[Fz R FM] . [tn (3.21)

the position vector of target mobile 91 Is used to solve the linear equation (3.21) with

unknowns 6'= [6’2 0, --- 0, ]T . Note that the dimension in (3.20) is 3M but 3(M-1) in

(3.21). According to (3.21), in the k-th iteration, the linear LS estimator mentioned in Section

2.1.2 can solve the problem as follow

‘9|‘< = (Fk'TWk Fk')_l Fk'TWk (Y — Fl,kel,k) (3.22)
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We denote auxiliary Jacobian matrix F, = [Fz,k Fo FM’kJ , taget Jacobian matrix
F., and weighting matrix is same as (3.10). The linear mapping function is generated

successfully in (3.22). The terms F,, F..and Y, include information of unknown
parameter which are updated by the (k-1)-th solution shown in figure 3.6, we can understand

that the mapping function is updated iteratively. We should note that 6’; is not the k-th

iteration solution of auxiliary mobile since (3.22) is the function of variable &, , . The

solution will be updated after the algorithm in step 2. In addition, (3.22) can be simplified as
O = Yioinek + Cjointx O (3.23)

where

D jointk = (FkITWk Fkl )™ FkITWk Yk € R

G —(F'WER) R WE, eRM° (329

jointk —

The mapping coefficients oy and Gy, will be updated-and become more accurate by

iteration. We can obtain the linear mapping between every single auxiliary mobile and target

mobile by separating (3.23),

6’@ = 0 joinc 0 8 0,,1=2,3..M (3.25)

joint,i,k

In (3.25), we can see that the position vector of auxiliary mobiles becomes a linear function
of position vector of target mobile. The linear mapping equation is generated by revising
linear LS formulation. Here, we give a example if number of mobiles is equal to 4. The

cooperative linear model in case M=4 can be written as
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i yl,k ] i Jl,k 0 0 O 1 i nts,l,k + nl ]
Yok 0 Jok 0 0 N2k TN
Yax 0 0 “]3,k 0 N3k T3
Yak 0 0 0 “]4,k 91,k Nisak TNy
Yok | thZk _thZ,k 0 0 0, N1z My
Yisk - tha,k 0 _thS,k 0 HS,k ' Nisazk M3 (3.26)
Yiax T4,k 0 0 _h1T4,k 04,k Nisaak T My
Yoz 0 hsz,k _hsz,k 0 Nis 23 T Mg
Yaak 0 hzTA,k 0 _hzTA,k Nis 24k T Moy
_y34,k 1 L 0 0 h;4.k —h3T4,k | _nts,34,k Ny, |

where
Fe =A (gi,k)_ J; (Qk)euk

Fij.k = A.j (Qk ' ej,k) + hij,kei,k N hij,kgj,k

Yiik = dij iy (3.27)
Note that the Taylor higher order truncation error can be omitted if the reference point is good
enough. Here, there are 4N pairs of measurements between mobiles to BSs and C(M,2)=6
pairs of cooperative measurement between mobiles. Based on (3.22), the mapping function

can be written as
T . i .
[az,k ‘93,k 94,1(] = (K TWk F) le TWk (yl,k = Fl,kel,k) (3.28)
where F =[F, F, F,, |- Wecan see thatthe row 1~Nare zeros in F., and the mapping
function is similar to the divided method which regards &, as a virtual BS with known

position to other M-1 mobiles. On the contrary, &,, in (3.28) is still a variable parameter

that will be updated in the next step; F, 6, isthe revised term which adjust the cooperative

measurement between target mobile and other 3 auxiliary mobile by gradient vector between
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target mobile and auxiliary mobile j h;;, j =2~ 4, and the first element J,, in F is

useless since J,, isthe term that related to the uncooperative measurement between target

mobile and BSs. The detail of mathematical expression for (3.28) will be given in Section 3.6.
With the linear mapping function, the original model can be changed to one unknown mobile
problem; it is same as the following two pre-linear method. In Section 3.3, the

dimension-reduced GN algorithm will be derived.

3.2.2 Parallel Pre-Linear Method

We have derived the joint pre-linear method in the previous Section. In (3.22), there
still remains 3(M —1) x 3(M-—1)--matrix inversion even though it is better than 3M x3M
matrix inversion in original GN algorithm. Based on section 3.1.2, we can further reduce the
complexity of the mapping function.

Instead of joint method, we can derive the mapping function individually in parallel
pre-linear method based on Jacobi method [18]. The following figure depicts the mapping

relation of parallel pre-linear method.

0, = L,(0) | |
mobile 2 & ® 9 ¥ mobile 2 ¥
target mobile
: - P
mobile 3 & mobile 3 ¥ @ =L, (6) o
target mobile
mobile M ® J mobile M ¥

Figure 3.7 Mapping relation of parallel pre-linear method

We illustrate the parallel method for mobile 2 and mobile 3 in Figure 3.7. Auxiliary

mobiles find the relation with target mobile individually. To auxiliary mobile q, it regards the
27



other (M-2) auxiliary mobile as virtual BSs; the localization scenario becomes N fixed BSs

and (M-2) virtual BSs with two unknown positions of mobiles that contained one target and

one auxiliary mobile. To every individual mobile in Jacobi method, other (M-1) are regarded

as virtual BS with known position. In pre-linear methods, the position of target mobile is still

unknown which is different from divided method, we find the linear mapping between

auxiliary mobiles and target mobile and utilize the pre-linear function to estimate the position

of target mobile. The LS estimator for mobile 1 (target mobile) and mobile g (auxiliary

mobile) is given by

w . ~
;G—S(du . ~es,|) +,.Zza_fj(du o=

Noncooperation

J%q

virtual BSs

N 1 R— 1 X
) e e )

Noncooperation -
virtual BSs

cooperation

1
+ el o) a2
. N\

(3.29)

where éj denotes known position virtual BS. The complete algorithm of parallel pre-linear

method is.indicated in figure 3.8.
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A
6, =L(6)
> o
6,.0,,..,.0,
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92,k+1

9Mk+1
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Figure 3.8 Parallel pre-linear algorithm

First, the position of virtual BSs are estimated by the uncooperative localization
algorithm, and utilized to estimate the position of mobile. In each iteration, the mapping
function can be generated in the sub-block of step 1 with the cooperation of virtual BSs. Then,
the GN algorithm solves the position of target mobile using these mapping function as well as
joint method. In the end, the target mobiles can be updated by the solution of GN algorithm
and mapping function in stepl. Note that the mapping function in each sub-block is obtained
separately which'is different from the joint method.

Based on (3.29), the linear TS equation in matrix form at kth iteration can be written as

Yo_ak =Jpqip_qk ¥Mp g d=2~M (3.30)

where @, = [Hlvk Hq,k]T . Without loss of generality, let q=2,

Jii 0

b 0

: 0 el

h1T|v|,k 0 Vik 0

Jy =0 e 1=/ 0 -

0 h2T3,k 0 Vak o
0 i | [hpy —he]

0 My,

_thZ,k _thZ,k_

Jo_2x denotes the cooperative Jacobian matrix for parallel method, where

T T T T .o . . .
Vie =[ Mo e = Mui] 11=12 denotes as virtual Jacobian matrix:

N
yp_Z,k:[yl,k Yz 0 Yimk Yok Yak 0 Yomk Y12,k} (3.32),

and

T
np_Z,k = I:nuncoop,l,k ncoop,13,k “' r]coop,lM K r]uncoop,Z,k ncoop,23,k o ncoop,ZM K r]coop,lz,k :I
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(3.33)
is the sum of Taylor truncation error and measurement noise. In (3.30), the k-1 iteration
solutions are used as the virtual BSs instead of the true position, so we further denote

the location error at the kth iteration as follows
ej,k =t9j’k—(9j,j=1~M (334)
The location error may degrade the location accuracy: if the virtual BS is unreliable. In Section

3.4, the location error is considered and we will compensate its effect. The computer

simulation shows the compensation in next chapter.

Denote J, = [Fp_quk Fp_qz,kJ , based on (3.21), (3.30) can be written as
Vo ok —Fo aclui) = Fp oo t Ny q:d=2~M (3.35)

The mapping function between Hq,k and target mobile in Figure 3.8 is obtained as follows

Hq,kzgp_q,k_'_G gl,k;q=2~M

p_g.k

=l
gl i T
9 p_qk — ( Fp_q&kwp_mk Fp_qZ,k ) Fp_qZ,kWp_q,k yp_q,k

=]
Gp_qk =_(FpT q kW,p qk_Fp|q k)_ EDT q kWp_q W-Fp q k (3.36).
1}
where W, = (E Y, }) is a diagonal matrix with inverse of variance of noise and

truncation error on the diagonal element. The mapping coefficients g, ., and G are

p_gk
updated by iteration as joint method. The computation is reduced greatly in (3.36) since there
isonly 3x3 matrix inversion. The dimension-reduced GN algorithm solves the position of

target mobile with these mapping function as well as joint method. In next Section, sequential

pre-linear method, similar to parallel pre-linear method, will be given.

3.2.3 Sequential Pre-Linear Method

The difference between parallel pre-linear method and sequential pre-linear method is
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that in the former, the information got at last iteration are parallelized used in the sub-block in

the mapping function, i.e., |:9~2,k—1 o Oy O HMH] are used as virtual BSs to

mobile i; to mobile j, [@H v 0, 0

s Ou .| are utilized for mapping

function searching. The idea of sequential pre-linear method comes from Gauss-Seidel

method [18], the following figure depicts the mapping relation of sequential pre-linear

method.
6,=L,(6) nﬁobrie_l 6, - 1,(6,6,(6)) mobﬂr!e_l
mobile 2 & ® v Y mobile 3 Y ® e ¥
target mobile \_>. é
bile 3 % mobile 4 %
e s mobile 2
mobile_M 3 : mobile M Y

Figure 3.9 Mapping relation of sequential pre-linear method

From Figure 3.9, the pre-linear mapping is generated sequentially. To mobile 2, parallel
and sequential are same. To mobile 3, mobile 4 ~M are regarded as virtual BSs and we want
to find the linear relation between mobile 3 and target mobile (mabile 1) and mobile 2 (the
virtual target). The pre-linear mapping function of mobile 2 can be used to find the mapping
of mobile 3, the mathematical expression is derived later. Then mapping of mobile 4 can be
generated by cooperation with mapping of mobile 2 and mobile3 respectively and so on.
Sequential pre-linear method updates the mapping section by section in each iteration, and the
mapping function is delivered among auxiliary mobiles. To mobile g, the LS estimator of

sequential pre-linear method is given by
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where équ:[é?l 6,

4

q

virtual BSs

(3.37)

cooperation

T ~
] , Hj denotes known position virtual BS. There are g

unknowns of positions contained one target mobile and (g-1) auxiliary mobiles in (3.37) that

is different from parallel method in (3.29). The complete algorithm of sequential pre-linear

method is indicated in Figure 3.10.
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First, in the kth iteration, we focus on mobile 2. 4,, ,,0,, ,,..0, ,, are virtual BSs

Figure 3.10 Sequential pre-linear algorithm

which help mobile 2 to find the mapping function




O = Os_2x +Gs_2,k91,k . (3.38),

this is same as parallel pre-linear method in mobile 2, i.e., g, ,, =9, 5.:Gs 24 =G, 2 -
After the mapping of mobile 2 is obtained, mobile 3 can be written as the function of target
mobile and mobile 2 which is called virtual target, i.e., 6,(6,,6,(4,)); based on the thought,
mobile M can get the mapping of target mobile by using mobile 1 and other (M-2) virtual
target respectively, i.e., 6y (6,,6,(6,),65(6)),..,6,, ,(6)). The linear TS equation in matrix
form at the kth iteration can be written as

Ys 3k =Js 305 ax TN g (3.39)

where 6, ,, =[6, 6, Gl -
guai N (lase20 ]
Vi, 0 0
a4
057 5k 0
T (3.40)
0 0 Ve
thS,k 0 _thS,k
” 0 hZTS,k _h2T3,k_
where Vix =[x Msx - ]+ 1=128 Genotes the virtual Jacobian matrix.

and
N
ysf3,k:':y1,k Yo Yok Yux Yak Yk Yok Yisk y23,k:|

T
nsis,k = [nuncoop,l,k ncoop‘vl,k nuncoop,z,k r1c00p,v2,k nuncoop,3,k ncoop,va,k ncoop,lz,k ncoop,ls,k ncoop,23‘k :'

(3.41)

where Y, ., Noopy « are the terms related to mobile i and virtual BSs.
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Denote J, ,, =[F, 51 F sx Fose |- (3:39) can be written as

(ys sk — Fs 31 <O Fs 2k ) = F 33,k93,k +Ns 5 (3.42)
the LS estimator is given by
W ] T
Gy =(F s W, axF si) F san We s (Vs sk = Fs k@ — K 524Go) (3.43).

We can see that &, is written as function of &, and &, . We insert (3.38) into (3.43),
the mapping function between H&k and target mobile Is obtained as follows

O =9s sk TG 501

=)
O 3k = (FsT 33 Ws_ak Fs_33k ) FsT_SS,kWs_S,k (Y 5 — F 2k Js 2x)

1

Gs_3,k 3 _( FsT_ss,kWs_s,k Fs_33,k )7 FsT 33, kWs 3,k i s 3tk T F 32, st_z,k) (3-44)-

=1L
where W, ;. =(E[n, 5l 5, |) is diagonal weighting matrix. The location errors of

virtual BSs will be discussed in Section 3.4.
Now mobile 3 transfers the function to target mobile successfully, the rest mobiles repeat the

above procedure and the mapping function of mobile g.in Figure 3.10 can be written as

gs_q,k :(FsT_qq,kWs_q,sz_qq,k)_ s qqk s qk(ys g,k Z qugS jk) q 3~M

-1
Gs_q,k =_(FsT_qq,k\Ns_q,k Fs_qq,k) FsT qqk s_d, k( s_glk +Z s_qj.k s_j,k);q :3~ M (345)

The mapping coefficients g, ., and G, ., are updated by iteration as before. The mapping

is generated sequentially in each iteration, mapping function Lq,k for sequential method

needs the information of L,, ~L,,, thatis different from parallel pre-linear method. In

next Section, the dimension-reduced GN algorithm is derived to solve the position of target

mobile.
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3.3 Dimension-Reduced GN Method of Target Mobile

The mapping functions of proposed three pre-linear methods are derived in previous
Section. The next task is how to estimate the position of target mobile by using these mapping
function. The dimension-reduced GN algorithm is derived based on GN method in Section

3.1.

In general, the size of mapping function g and G are same no matter what methods

are used, so we denote the mapping function as

0,=L,0)=9,+G,0, (3.46).
In (3.3), M 'unknown position coordinates are considered. According to (3.46), the original M
unknown positions can be reduced to one unknown pasition. First, the uncooperative distance
function (2.3) can be written as

B, (&) :ng +G,6, - BSiH g=2~M,j=1~N  (3.47),
Note that the term B,;(6)) = Hel -2 BSiH IS same as the original model. The cooperative

distance function (3.4) can be written as

By(6,6,)=|(1-G)0, -9, a=2~M
B;(6,.0,) =[(Gy =66, +(9,-9))|. a=2~M -Lj=q+1~M (3.48)

The model has been changed to one position coordinate of mobile in (3.47) and (3.48). Then,

the cost function (3.3) is given as

> (d-Jo-Bs | + 222 (d, - o, + 66~ B
q

i=1 Oy ¢=2 j=1 Oy

A Noncooperation

¢ =min M 2 MA Mo 2
+ 2 — (4 =0 -GG -aa) + 2 2 —(de; =[G, -6))6+ (g, - 9))])

1
i=2 O_lq =2 j=q+1 Y qj

cooperation

(3.49)
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The dimension-reduced GN method can solve (3.49). Apply Taylor-series expansion to (3.47)

and (3.48) as follows

B,;(6) =B (6,,)+B (6,—6,5)+Ng . ;id=2~M,j=1~N  (350)

B_ts.aj
Note that the Taylor-series expansion of B (&) is same as the original model,
ie, oB;,=J,;;j=1~N,and
By (6,) = Big(6L0) + 8B, (6= 6,4 )+ N5 150 =2~ M
B, (6) =By (B5)+0B]; (6, —6,5)+ Ny 0.0 =2~M -1 j=0q+1~ M (3.51)
where ng 4 denotes the higher order truncation error vector of Taylor approximation, and

the gradient vector

(9, + Gyt~ BS))"

! Bq](al,o) ;
1-G.)é —-qg.)'
aBlsz(( A" P (1-G)).j=2~M
By; (Gr0)
—_G. )L
aBth:((Gq G;)6,+(9,-9;)) (G,-5)q—2-M L j=q+1-M (352)

qu(el,o)
Contrast with the original model, the terms G, (1-G,) and (G,-G,) In(3.52) are the

revised terms which adjust the gradient vector between mobile q and BSs, target mobile,
mobile j, respectively. It is different from original GN algorithm since the mapping functions
are considered to reduce the dimension to avoid the 3M x3M matrix inversion. In case
M=4, dimension-reduced TS matrix equation is given by

d =B(6,,)+0B(6, —0,,)+ngy (3.53)

where

T

oB=[J/ oB; oB; oB] 0B, OB, 0B, 0B, 0B, 0B, |
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(3.54)

T
8(91):[A‘1T BzT B; BI B, B; By, By By B34}

el (3.56)
The only different term between N,y and N in(3.7) is the Taylor high order truncation

error ng o and ng. According to(3.53), the objective function is denoted as

A . 2
6, =argmin |d=B(6,5)- BB, - 6,,)[ - (357)
and the dimension-reduced GN estimator solve (3.57) iteratively by

0,1 =0, +(0BW. 8B ) 3B W, (d-B(6,)) (358

where the W, is covariance inverse of  Nigy i,

Wiy = ( E [anN,kanGN,k ])_1
E [anN'kn:GNyk:I Is a diagonal matrix with variance of Taylor truncation error and
measurement noise.
After &, is updated, the auxiliary mobiles can be abtained by the pre-linear mapping

function which is generated at step 1. We note that target mobile affect the accuracy of
auxiliary mobiles. The choice of target mobile is another issue and will be discussed in
Section 3.5. However, estimate of the target mobile still suffers location error, and it can affect
the accuracy of auxiliary mobiles. The location errors of target mobile and virtual BSs will be

discussed and compensated in Section 3.4.
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3.4 Weighting Compensation in Inaccurate Cooperative Mobiles

The position uncertainty is known to degrade the localization accuracy [21]. The
pre-linear method in Section 3.2, virtual BSs with uncertain position are utilized to estimate
the position of mobiles, the presence of location error may degrade the performance in
location estimation. [21] derived the variance of uncertain sensor error. In cooperative system,
the effect on location errors of uncertain positions of virtual BSs can be derived based on [21].

The cooperative measurement model between mobile 1 and mobile j is given by
d;=[6-0,[+n; (359
In (3.59), the position of mobile i and mobile j are estimated jointly. If the uncertain position

coordinate of mobile j is gotten,-mobile j isa virtual BS to mobile 1 and (3.59) can be written

as
dy=[6-6,+e]+n;  (3.60)
where €, € R*" is the location error which is denoted in (3.34). Compared with (3.29) and

(3.37), the location error ' €; in(3.60) is inside the norm; if the error term can get out of the

norm function, the virtual measurement model between mobile i and virtual BS | is obtained.

Therefore, we apply Taylor-series expansion to (3.60) as follows

d; = ”6’, y 67j ” + hie; +higher order terms+n, (3.61)

~
SN
|
D1
N—r

where h, = is the gradient vector between mobile i and virtual BS j.

Assume that the higher order term is neglected due to the good reference point, (3.61) can be

written as
d; =6, -6;|+hje+n;  (3.62)

-]

In (3.62), the location error is out of the norm function and the total error includes virtual BS
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error h e

€, ; and measurement noise N;; . The variance of total error is

ot =E|(Weym )| @63
We assume that the measurement noise and virtual BS error are independent, then (3.63) can

be written as
GTZ_"- = O'j2 + Ji]? (3.64)
2 T
where o =h; cov(e;)h.

Actually, the covariance matrix of virtual BS error is hard to derive. We simply use the result

of (2.15) in our algorithm, and an example is given in parallel pre-linear method. Based on

(2.15), it is assumed that the virtual BS errors are i,i,d. The covariance matrix of €; can be
written according to (3.36) as follow

cov(e;) = (diag(F, W, |F, ;,)" (3.65)
The error variance of virtual BSs avz_j is smaller and smaller by iteration since the position

of virtual BS becomes more accurate.
On the other hand, the position of target mobile can affect the accuracy of auxiliary

mobiles. If the position of target mobile is given, the corresponding auxiliary mobile i can be

obtained by the mapping function. The location error of target mobile 1, € = él -0 e R® is
involved in localization by the inner product with thJ , which is similar to virtual BSs, i.e.,
aju = thj cov(e )h;;. The variance of total error in target mobile 1 and auxiliary mobile j is

O-1?0talflj = O-ei]. +O—12j ) J =2~M (366)

Assuming that the location error of target mobile is i.i.d, the covariance matrix of €, can be

written according to (3.58) as follows
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cov(e, ) = (diag(6B'W.6B)) (3.67)
By iteration, G:“ is smaller because of the accurate target mobile.

The weighting compensation on target mobile error improves the accuracy of mapping
function in all algorithms in Section 3.2, while the virtual BSs errors are applied in parallel
and sequential methods. We note that the target mobile error and virtual BSs error can be
combined together to enhance the localization accuracy. The performance is improved as seen

by computer simulation.

3.5 Target Mobile Selection

In fact, we know that the choice of mapping function is unlimited that is mentioned in

Section 3.2. In pre-linear methods, the position coordinates of auxiliary mobiles are written as
the lingar function of target mobile, i.e., &, =L, (6)) . Actually, the true position of target

mobile is unknown, so the mapping includes the location error of target mobile. How to
choose a probable target mobile is an important issue since the target mobile also affects the
convergence and the RMSE which are shown in simulations. In [23], the reference selection
on hyperbolic-canceled linear algorithm is proposed to select the reference by using the
minimum measurement. Here, the target mobile selection scheme is based on [23].

The reliability of measurements and positions of mobile affect the performance of
localization; we believe that the small measured distance is reliable contrast to the large
measured distance. A simple method for target mobile selection is to choose the mobile with
the smallest square measurement from fixed BS and other mobiles, the mathematical

expression is given as follow

N N
mobile =min Y df+ >’ df  (3.68)

=1 j=Lji
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where d; and d; are measured distance from mobile i to BS j and mobile j, respectively.

According to (3.68), mobile i is selected as target mobile. In Section 4.3, simulations validate

that the target mobile selection scheme is useful to improve the performance.

3.6 Computation Cost

In this section, the computation cost of three pre-linear methods in Section 3.2 and
dimension-reduced GN method in Section 3.3 are compared with joint GN algorithm. The
total numbers of multiplications in each iteration are computed as the complexity evaluation.
Here, the 3-D space is considered with N fixed BSs and M unknown paositions of mobiles.
(a). Joint GN method

First, the computation load of joint GN algorithm comes from (3.10), we rewrite (3.10)

as follows

(W)@, —6)=IW(d-A@)) (369
From (3.69), there are two parts of computation that include the matrix multiplication part
among matrix and updating part - J, A(6,) . The weighting matrix W is assumed to be an

identity matrix for simplicity. The detail multiplication is given as follows

B M
‘]1T‘]1+Zhljthj _hizthz _thrﬁTM
j=2
T T - T T
1 o —hy,hy, J;J; +Zh2jh2j =hy oy (3.70)
= %
M-1
_th thM _hZM hzTM JI\TA‘]M +ZhMjhr\T/|j
L =1 13mxam

where J; e R™ h, e R**. The multiplication include total 9NM for 37J,,i=1~M , and

9xC(M,2) for hh.
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M
J1T31+zh1151j
j=2

M
2. 3;8,+ ) s, 3.71
egoaay-] TR BT
@-A6)

j#1
S .

T M-1
J0Sw + 2 hyiSus
j=1
J/x,i=1~M requires 3NM ,and 3xC(M,2) for h;s;

3. The explicit computation of the inverse of the (J"J) isavoided by applying Cholesky

decomposition [24], i.e., (3"J)=LL", which requires (am)3.
4. To generate. (8,,,~6,) from LU x(f.;=6,)itneeds (3M)’+3M .

5. The updating terms J, € R h. e R** .need 1.division in every element, so requiring

3NM +3xC(M,2)in total. The distance vector A(6,) contains an inner product and one

division in every element, so total 4(NM +C(M,2)) are needed.
The total multiplication for joint GN method is 19(MN +C(M,2)) +27M®+9M?* +3M .
(b). Dimension-Reduced GN method of target mobile

The computation of dimension-reduced GN method is as follows
(6B'0B)(@,,.,—6,)=B"(d-B(4,)) (372
where OB e RIMN+EM 208,
1. 0B'0B € R*® requires 9(MN +C(M,2)).
2. 0B" x(d - B(4,,)):3(MN +C(M,2))
3. Cholesky decomposition: (J7J)=LL" :3°
4. 0,,-6):F+3=12

5. The updating terms is same as joint GN method.

6. The different term from joint GN method is that (3.52) includes revised term G in each
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row except the first block in 0B that requires 9((M —1)N +C(M,2)).
(c). Joint pre-linear method

The calculations of joint pre-linear mapping function is given as

(FT F)ek '=F' (y_ Flel,k)
(FT l:)gjomt — FTy c R3*(|\/|—l),l

(FEE BB AW a(3.73)

joint —

Theterms g, and G, should be calculated individually sinceG,,;, is used in the

dimension-reduced GN method. The term F'F can be written as follows

[ M ]
‘]zT‘]z +Zh2jh;j _h23h2T3 _hzm hzTM
1%
M
3.74
T W _hzshsz J;J3+Zhsjh3Tj _h?.Mh?TM ( )
FTF= =
j#3
T T T = T
_h2M th _h3M h3M ‘]M‘]M +ZhMthj
L i=t 3(M-1)x3(M-1)

The costin. F'F is same as the lower-right 3(M —1)x3(M —1) sub-block of (3.70). and

F'y is same as the sub-block of (3.71). We can see that the total cost in' g, is similar to

joint GN method with ‘M — (M -1). On the other hand, the inverse of matrix of G IS same

joint

as g, the additional calculations in‘term G, ~is generating G, with triangular matrix

oint t

multiplication: 3((3(M —1))* +3(M —1)) . However, according to the

hy,h,

T . .
termpTp - hushys < RMD-2 , We can see that there is no need to compute F'F, since the

by P
sub-block h;h| is obtained from (3.74).

(d). Parallel pre-linear method

Same as joint method, the mapping function g, , and G, , should be
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h:q=2~M isequal to the diagonal

qj’ qj

calculated individually. The term F, o F, =313, +ih
a Fp_ ,-:1

J2q

block of (3.102). The total costin g, , include the first and second terms in joint GN

method with M — (M -1), 3*(M 1) for Cholesky decomposition and (3 +3)(M —1) for
generating g, ,.Same as joint method, the additional computation for G, is

3(F +3)(M -1).
(e). Sequential pre-linear method
We know that the sequential method and parallel method are same in mapping function
of mobile 2. Compared with (3.36) and (3.45), the only difference between parallel and
g-1 g-1
sequential method is that Z Fs qikds_jxIn g, ., and Z F 454G ik IN'G .
j=2 j=2
Compared with parallel method, the additional 12C(M —1,2) multiplication is needed.
Table 3.1 compare the difference between joint GN and proposed methods. Note that
the total computation cost in our methods includes pre-linear method in step 1 and

dimension-reduced method in step 2.
Table 3.1 compare the difference between joint GN and proposed methods. Note that the total

computation cost in our methods includes pre-linear method in step 1 and dimension-reduced

method in step 2.
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GN joint parallel sequential DR-GN
1.3"xJ 9(MN +C(M,2)) M—>M-1 M—>M-1 M—>M-1 M
2.3"x(d-A®,)) | 3(MN+C(M,2) M—>M-1 M—>M-1 M—->M-1 M
3.7 =L %(3M)3 M—>M-1 ?;:(M y) 333(|v| 1) 3;
4.LU 3M 2 +3M MM -1 (3+3) (M -1) | (F+3)(M -1 3?+3
5.3, A 7(MN +C(M,2)) M->M-1 MSM-1 M—>M-1 M
6.G X 3((3(M -)2+3M=1) | 3(3+3)(M-1) 33 +3)(M -1 X
7.0BxG X X X X 9(MN +C(M,2)

Table 3.1 Comparison of computation for joint GN method and prelinear methods
The dominate term in joint GN and joint per-linear method is Cholesky decomposition,

whichneed roughly M?* computation. In parallel, sequential and DR-GN mehods, the term
can be reduced to i(M -1). On the other hand, the terms 1, 2,4 and 5 in DR-GN method
equals to joint GN method, so computation in these terms needs additional cost. The term 6

and 7 involve the computation of mapping function, which is no need in joint GN method.

Table 3.2 summarizes the total costs in joint GN method and three pre-linear methods

algorithms Number of multiplications per iteration
GN 9M*® +19M? +19NM —16M
joint 9M*® +33M? +47NM —88M — 28N +39
parallel 24M? +47NM +13M —38N +40
sequential 30M % +47NM —5M —38N +52

Table 3.2 Total computation cost
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From Table 3.2, we can see that the major multiplication 9M?® in GN method and joint
method caused by the inverse matrix in (3.10) and (3.22). The different between joint GN and

joint method is that the dimension of inverse matrix is 3M x3M in GN method, while
3(M -1)x3(M —1) in joint method, but the total cost is higher than joint GN by 14M ?

when M>>N due to the extra cost in dimension-reduced GN and computation in G . However,

in parallel and sequential method, the di sion of inverse matrix in (3.36) and (3.45) is

33, this is why there is /..:-mmmm.... and total cost is reduced
greatly. We conclude that p el and sequential methods reduce st successfully.
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Chapter 4
Computer Simulations

In this Chapter, computer simulations show the performance of methods we proposed.
In Section 4.1, we compare three pre-linear methods which are mentioned in Section 3.2 with
joint GN method and CRLB. In Section 4.2, we show that how the reliability of
measurements affects the localization accuracy. Section 4.3 shows the target mobile selection
scheme helps to improve the accuracy and convergence. In Section 4.4, the effects on
weighting including noise variance, Taylor modeling error and the compensation of virtual
BSs and target mobile are shown.

The performance measure for localization evaluation is Root Mean Square Error

(RMSE) which is denoted as

A 2
6, ~ 9||
5002 M

500

rmse = (5.1)

where 6, is the estimate in the kth trial, M is the number of mobiles as before and 500

independent trials are run. Here, noise is AWGN and standard deviation (std) of

measurements are based on [13],
oy, = 0.016(0.64exp(—a./0.6) §'5+1) (5.2)

The noise variance is affected by the true distance between mobile i and BS | (or mobile j)

and « isan adjustable coefficient. However, the true distance is not known in practice; the

real distance A; in (5.2) is replaced by the measurement distance d; in simulations. We

note that even only the 3-D environment is mentioned in previous Chapters, our simulations

present both 2-D and 3-D cases, and the geometries are as follow
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Figure 4.1 2-D geometry

Figure 4.2 3-D geometry

BSs are placed at [0 0], [10 0], [0 10] and [10 10] in 2-D case, [0 0 0], [6 6 O], [6 0 6] and

[0 6 6] in 3-D case. Mobiles are randomly selected within the geometry.
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4.1 The Comparison of Pre-Linear Methods and Joint-GN method

We compare the RMSE to CRLB in cooperative localization in Section 4.1.1. Then, in
cooperative scheme, the proposed pre-linear methods are compared with the joint GN method

in Section 4.1.2.

4.1.1 The Comparison to CRLB

MS=[33], [73].[7 7], [37].[63]
0.13 T T T T T

CRLB
—+—GN

—*— joint

012 | —+—parallel .

sequential

| | | | |
0.12 013 0.14 0.15 0.16 017 0.18

standard deviation of noise

Figure 4.3 RMSE versus noise variance for pre-linear methods and GN method

with CRLB in 2-D case
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MS=[22 2[4 2 4];[4 4 2);[2 4 4];[2 4 2]
0.16 T T T T T T T T

CRLB
—+—GN
—*— joint
—+—parallel

~— sequential

0.08 | | | | | | | |
0.065 0.07 0.075 0.08 0.085 0.09 0.095 0.1 0.105 0.1

standard deviation of noise

Figure 4.4 RMSE versus noise variance for pre-linear methods and GN method

with CRLB in 3-D case

From Figure 4.3 and 4.4, joint GN method in (3.10) is very close to CRLB (3.14) noth
in 2-D and 3-D case, but its high computation load is sacrificed. The RMSE of joint pre-linear
method is better than parallel and sequential methods and approaches to joint GN method. On
the other hand, sequential method is better than parallel method because the estimated

positions are close to the true positions. For example in M=3 for sequential method, when

0,,,. 1supdated, itis used to locate the position of 4,,,, ,andthe updated 6,,,, and 6,, ,

are used to locate the position of &, ; while the parallel method only use the k-th position of

mobiles. We believe that the updated position is useful in our simulation so that the

performance will be enhanced in sequential method.
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4.1.2 Comparison of Pre-Linear Methods and Joint-GN method

In this Section, convergence and effect on number of mobiles are considered. In Figure

4.5, the convergence rate is considered.

T T
—+—GN

035 : - -

—*—jont
—+— parallel
—— sequential

RMSE(m)

number of iterations

(a)

T T

—+—GN

03F =%~ joint -
—+—parallel

= sequential

RMSE(m

number of iterations

(b)
Figure 4.5 RMSE vs. convergence rate for pre-linear methods and joint GN method in

(@) 2-D case (b) 3-D case
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In Figure 4.5, six mobiles are considered. We can see that joint method and GN method need
two iterations to converge both in 2-D and 3-D case, while sequential and parallel are about 5.

In the following figure, divided method for Jacobi and Gauss-Seidel methods
mentioned in Section 3.1.2 are compared to parallel and sequential methods in 3-D case. Note
that parallel and sequential methods use the additional mapping information between target
and auxiliary mobiles while Jacobi and Gauss-Seidel method regard the other mobiles as

virtual BSs with known position. The number of mobilesis set to 3 and randomly located in

6x6x6 geometry.

0.32 T T T T T

—+— parallel

—&— jacobi

RMSE(m)

number of iterations

(@)
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0.3 T T T T T

—&— Gauss-Seidel
% —+— sequential

0.28

02

number of iterations

(b)
Figure 4.6 RMSE vs. convergence rate for (a) parallel method and Jacobi method

(b) sequential and Gauss-Seidel method in 3-D case

Figure 4.6 compares proposed parallel and sequential methods with Jacobi and
Gauss-Seidel method respectively. We can see that parallel method is better than Jacobi
method in Fig 4.6 (a) and sequential method is better than Gauss-Seidel method in Fig 4.6 (b).
This simulation shows that the transformed mapping functions in parallel and sequential
methods are useful to improve the accuracy of positions. However, the extra computation cost

is needed for parallel and sequential methods.
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012+
01k
0.08 | ] ] | 1 ] | | ]
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(b)
Figure 4.7 RMSE vs. the number of mobiles for pre-linear methods and GN method in (a) 2-D

(b) 3-D case
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In (3.3), we expect that the cooperative terms can improve the localization accuracy
because of the information exchange between mobiles. Number of mobile from 2 to 6 is set in
our simulation. From Figure 4.7, the RMSE improves when the number of mobiles increases.
The worst RMSE occurs in number of mobiles equals to one, which means uncooperative
localization. However, the quality of the cooperative information is important, or the

localization accuracy may be degraded, which will be discussed in Section 4.2.

4.2 The Reliability of Cooperative Localization

We take two factors of cooperative localization into consideration in this Section. The
discussion of noise variance of cooperative measurements is given in Section 4.2.1. The

reliability of positions of mobilesis discussed in Section 4.2.2.

4.2.1 Measurement between Mobiles

We explore the cooperative localization when mobiles are in noisy channel. The

measured distance is affected by measured noise, i.e., d; = A; +n; .The noise variance of

measurement between mobile i and mobile j oij? in (3.1) affects the accuracy of localization.

The simulation setup is as follows

The noise variances of uncooperative measurements are based on (4.2) with « set to
0.3. we The cooperative measurements are set with the factor « equals to 0.5 (reliable) and
0.1 (unreliable), respectively. We expect that the reliable cooperative measurements can
improve the accuracy of position. The simulation results compare CDF (Cumulative Density

Function) which are given in Figure 4.8 to Figure 4.10.
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We can see that the reliable measurements (red line) upgrade the performance no matter
in joint pre-linear method in Figure 4.8, parallel pre-linear method in Figure 4.9 and
sequential pre-linear method in Figure 4.10. In addition, the positions of mobiles also affect

the localization. The details will be given in Section 4.2.2.

4.2.2 Positions of Mobiles
In (3.22), (3.35) and(3.43), F ¥ include the position of mobiles in k-th iteration

and it also effect the estimation of mobiles. The position of mobiles plays a role that the
measurements are unreliable if two mobiles are far away between each other. Futher, the poor
geometry location cause the uncertain virtual BSs and lead to degradation of localization. In
Figure 4.11(a), we discuss theinflunce on parallel and sequential methods. Mabiles are placed
at [11],[9 1], [9 9], [1 9] (distance between mobiles is far and in poor geometry) and [3 3], [7
3], [7 7], [3 7] respectively. In 3-D case, the mobiles are placed at [1 1 1], [515],[551],[15
5]and [22 2], [4 2 4], [4 4 2], [2 4 4]. The simulation results are shown in the following

figures.
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Figure 4.11 Influence of positions of mobiles on different noise variance in (a) 2-D (b) 3-D

case

In parallel and sequential pre-linear method, the positions of uncertain virtual BSs are

used in (3.29) and (3.37) respectively, and it can affect the performance. The RMSE of

parallel and sequential pre-linear methods are shown in Figure 4.11. We can see that the

performance is better if the positions are set closer and near in the middle of geometry. The

influence of uncertainty of mobile will be modified based on mobile selection and weighting

compensation in Section 4.3 and Section 4.4.
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4.3 Effect on Target Mobile

In this Section, the target mobile selection schemes are considered. We want to modify
the performance with the probable target mobile. In 2-D case, mobile 1 is selected at [2 2] and
others are randomly selected in 2x2(m) in the middle of geometry. Note that we select
mobilel as target mobile in general case, and pick a mobile from all candidates as target
mobile in target mobile selection scheme. In 3-D case, the procedures are identical with 2-D

case. We select mobile 1 at [2 2 2], and others are in 3.5x3.5%3.5(m) in the middle of

geometry.
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Figure 4.12 Influence of target mobile selection in (a)2-D (b) 3-D case

From Figure 4.12, we can see that the performance of mobile selection (solid line) is
improved compared with the genaral case (dashed line), especially in parallel (blue) and
sequential (green) pre-linear methods, while the joint method improves slightly. We infer that
in joint method, the mapping function comes from the cooperation of all the auxiliary mobile,

and the influence on target mobile is less than parallel and sequential methods..
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4.4 Weighting Compensation

In this Section, the effect on weighting are discussed. Section 4.4.1 shows the poor initial
value degrades the performance. The improvement on weighting of noise variance is shown in
Section 4.4.2. In Section 4.4.3, weighting compensation on virtual BSs and target mobile

upgrades the RMSE of localization.

4.4.1 Initial Value

It is known that a good Initial value is important when the Taylor-series expansion is
used to linearize the nonlinear function, or the Taylor higher order truncation error can not be
neglected. Our pre-linear methods are based on GN method which applies Taylor-series
expansion to non-linear range function. The following figure shows the effect when the poor

initial value is used.

—&— pre-lin with weighting
— G- pre-lin without weighting | _|
—+— GN with weighting

— - Gn without weighting

number od iteration

Figure 4.13 RMSE vs. iteration for a poor initial value
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In Figure 4.13, the number of mobiles is equal to 2 and randomly located within
10x10x4(m) in 12x12x6(m) cube with four BSs at the corner like Figure 4.2. We give an
initial value at [6 6 3] and [5 5 4]. Note that it is a special case of pre-linear methods in M=2
that there is only one way to generate the mapping function. We can see that in GN method

(red line) and pre-linear method (blue line), the algorithm with variance of noise (solid line)

can not improve the RMSE. The term n; in (3.6) dominate the total error, i.e., ng; >n;.
In Section 4.4.2, a good initial value is used so that the noise dominates the total error.
4.4.2 Effect on Weighting of Noise Variance
Here, the statistics of noise variance .o; is considered in the following figures
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Figure 4.14 The effect on weighting of noise variance in (a) 2-D (b) 3-D case

We can see that RMSE is improved with the weighting of noise variance obviously in
three pre-linear methods. Different from 4.4.1, the uncooperative LLS estimator offers a not

bad initial value in this section. From Figure 4.14, we further know that the noise variance
dominates the localization rather than the Taylor truncation error, I.e., n. >n

ij ts,ij *

4.4.3 Weighting Compensation

The compensation of uncertain position of virtual BSs and the target mobile in three
pre-linear methods in (3.23), (3.36) and (3.44) are considered. The simulations are given in

following figure.
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Figure 4.15 Weighting compensation on joint method in (a) 2-D (b) 3-D case
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From Figure 4.15 to 4.17, we can see that the compensation improves the RMSE. Note
that there is an improvement for convergence in 3-D case. By iteration, the accurate positions
of mobiles are obtained, the effect on location errors become smaller. The extra computation
are 9(M —1) for joint method, 9(M —1)* for parallel and sequential methods. In parallel
and sequential methods , it is still less than joint GN method, we conclude that the

compensation is useful in our proposed pre-linear methods.




Chapter 5
Conclusions and Future Works

In cooperative localization, three pre-linear methods based on distance measurement
have been proposed to reduce the dimensions of unknown parameters in this thesis. Using the
concept of linear mapping from target mobile to auxiliary mobiles, we expect that the
complexity can be reduced. Compared with joint GN method, the total computation cost in
each iteration saves roughly M?* multiplication in parallel and sequential methods when the
number of mobiles is increased. Simulation results validate that the RMSE of proposed
methods are still comparable with-joint GN method, but the total cost is reduced greatly.
Simulations also show the influence on reliability of cooperative measurement; because the
additional weighting compensation for uncertain position of mobiles not only improves the
location accuracy, the convergence is also improved. Moreover, we can see that target mobile
selection scheme enhances the RMSE. In a word, the contribution of this thesis is that we
propose three low complexity pre-linear methods with good accuracy.

In fact, there exist lots of mapping relation that the mapping can be generated based on
different localization requirement. Here, the linear mapping we proposed is based on the
requirement for low complexity. Besides, the proposed methods can be also applied in NLOS
environment. In the end, the theoretical analysis of proposed methods are another attractive

issue to verify the performance.
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