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研究生：張舜婷                       指導教授：闕河鳴 

國立交通大學 

電信工程研究所 

碩士論文 

 

摘要 

癲癇是一種最常見的神經系統失調疾病之一，全球有 1%的人罹患癲癇，25%的癲

癇病患無法完全被治癒。在過去幾年，開迴路的癲癇控制器已經被提出，如迷走神經刺

激和腦深部刺激，但連續性或間歇性的電刺激會導致高功率消耗以及神經細胞損害的可

能性。相反的，近年來閉迴路的硬體和生理訊號處理器已經被提出。但這些研究中，在

癲癇發作 5 秒後才會偵測到癲癇或者是沒有提及偵測時間。此外，大部分的研究通常是

利用片段的腦電圖驗證癲癇演算法，無法全然地證實演算法的健全性。因此，在過去我

們提出一套無線可攜式即時癲癇偵測與抑制系統，並使用連續性的腦電圖長時間偵測癲

癇。 

在本篇論文中，改進上述所提出的即時癲癇偵測閉迴路系統的決定參數方式，提出

一個快速決定參數方法，使這些參數最適合每個老鼠的模型。這個快速決定參數方法比

先前決定參數的方法快了 41610
6 倍，同時也可達到 92-99%的高偵測率以及可以在

0.63-0.79 秒偵測到癲癇。此外，使用精簡指令集的技術實現一個低功耗的生理訊號處理

器，將偵測癲癇演算法實現在生理訊號處理器上可達到即時處理生理訊號以及只消耗 6 

mW。與先前提出的系統比較，可以降低 93.8%的功率消耗。本篇所提出的癲癇偵測器

可應用於即時偵測系統中，以及在未來可以與類比前端電路和後端刺激器整合成一個積

體化的閉迴路偵測系統。 
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Abstract 

Epilepsy is one of the most common neurological disorders. Approximately 1% of 

people in the world suffer from epilepsy, and 25% of epilepsy patients cannot be healed by 

today’s available treatments. In past years, open-loop seizure controllers have been proposed, 

such us vagus nerve stimulation and deep brain stimulation devices; however, the device 

drives a stimulator continuously or intermittently that causes high power consumption and the 

likelihood of neuronal damage. In contrast, the closed-loop implementation of hardware 

prototypes or biomedical signal processors has been proposed recently. Nevertheless, the 

average of seizure detection delay is either longer than 5 seconds or often not mentioned in 

these works, and it is insufficient to validate the robustness of detection algorithm. Moreover, 

most of studies often use the discontinuous electroencephalogram (EEG) signal fragments to 

validate seizure detection algorithm. As a result, a portable wireless online closed-loop seizure 

controller in freely moving rats was proposed, which validated seizure detection algorithm by 

using continuous online EEG signals. 
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In this thesis, the fast parameter determination method, which determines a fitting model 

for each rat, is proposed to improve our previous work. The proposed parameter 

determination method is 41610
6
 times faster than our previous work, and it can attain the 

same detection accuracy (92-99%) and detection delay (0.63-0.79 s). Additionally, a 

low-power biomedical signal processor which bases on reduced instruction set computer 

(RISC) technology consumes only 6 mW for real-time epileptic seizure detection algorithm. 

Compared with our previous prototype, the measurement results show that the implemented 

processor can reduce 93.8% power consumption. The developed seizure detector can be 

applied to monitor the online EEG signals and integrate with analog front-end circuitries and 

an electrical stimulator to perform a closed-loop seizure controller in the future. 
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Chapter 1 Introduction 

 

Epilepsy is one of the most common neurological disorders. Approximately 1% of 

people in the world suffer from epilepsy, and 25% of epilepsy patients cannot be healed by 

today’s available treatments [1, 2]. If seizures cannot be well controlled, the patients 

experience major limitations in family, social, educational, and vocational activities. 

 

1.1 Motivation 

Recently, numerous alternative techniques have been proposed, such us vagus nerve and 

deep brain stimulation devices [1, 2]. Most of the devices utilize open-loop controller to 

suppress the seizure. However, an open-loop controller drives a stimulator continuously or 

intermittently that causes high power consumption and the likelihood of neuronal damage. In 

contract, a closed-loop device combines a stimulator and seizure detector. Recently, one 

closed-loop epilepsy control system developed by NeuroPace called Responsive 

Neurostimulator (RNS
®

) System is in U.S. FDA clinical trials [2]. A closed-loop device can 

increase stimulus efficacy and reduce tissue damage over the long term. A closed-loop seizure 

controller drives a stimulator when a closed-loop device detects the seizure [2-4]. Despite 

additional hardware, a closed-loop device can increase stimulus efficacy and reduce tissue 

damage over the long term. As a result, compared with open-loop devices, closed-loop 

devices is more effective and attractive. In general, a robust on-line seizure detection method, 

which can drive antiepileptic device to suppress the seizure as early as possible when a 

seizure happens, is required for the development of a closed-loop seizure controller. 
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Recently, the implementation of hardware prototypes and biomedical signal processors 

has been proposed [5-19]. Among these projects, wavelet analysis, spectral analysis, entropy 

analysis, and variance analysis are applied to detect seizure events. Some closed-loop seizure 

controllers utilized analog to extract seizure features so epileptic seizure detection accuracy 

was high [15, 18]. Some seizure detection algorithm relied on powerful processing platform 

keeping real-time seizure detection and high detection accuracy [9-11, 13, 17]. However, the 

average response time for seizure detection is either longer than 5 seconds or often not 

mentioned in these works. Moreover, most of studies often use the discontinuous 

electroencephalogram (EEG) signal fragments to validate seizure detection algorithm; 

nevertheless, it is deficient in validating the robustness of detection algorithm. As a result, a 

portable wireless online closed-loop seizure controller in freely moving rats was proposed 

[20-23], which validated seizure detection algorithm by using continuous online EEG signals. 

Furthermore, the detection delay is shorter than 1 second. To summarize, an open-loop seizure 

controller with periodic stimulation is inaccurate and inefficient as shown in Fig. 1.1 (a). A 

closed-loop seizure controller with responsive stimulation which is proposed by other groups 

as mentioned above is more accurate and efficient; however, the detection delay is longer than 

5 seconds as shown in Fig. 1.1 (b). Fig. 1.1 (c) shows that a closed-loop seizure controller 

with responsive stimulation is proposed by our group. When a seizure occurs, the responsive 

stimulator starts to suppress the seizure, and the detection delay is shorter than 1 second. 
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Fig. 1.1 A diagram of (a) periodic stimulation, 

(b) responsive stimulation (other groups), and (c) responsive stimulation (our group). 

 

1.2 Study Objective 

In our previous work, using implied approximate entropy and 64-point fast Fourier 

transform, which contained large portion of digital processing, increased detection rate. In 

order to decrease complex calculation and hardware area, a liner least squares (LLS) was 

classifier in this project. Furthermore, it was observed that most of false detections occurred 

in slow-wave sleep (SWS) state, so adaptive thresholds were utilized to switch the threshold 

of the LLS for decreasing false detection rate. However, adaptive thresholds were obtained by 

using exhaustive key search in training phase; as a result, this method wasted a lot of time on 

training phase. In addition, implementation based on 8051-like microcontroller [24] 

consumed more than 117mW to perform the real-time seizure detection. 
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In this study, it is proposed that using the mean and standard deviation of EEG training 

data searches adaptive thresholds rapidly. The new parameter determination method is faster 

than our previous work, and it can attain same performance. Moreover, the seizure detection 

algorithm in previous work is implemented in a RISC-like processor to suppress seizures. The 

flexibility, simplicity, and fixed instruction format of RISC [25] is feasible implementation 

with high processing performance. Although more complicate hardware architecture is used to 

realize real-time seizure detection, the RISC-like processor does not run algorithm at full 

speed in processing biomedical signals. As a result, a slower clock rate is applied to reduce 

the power and energy consumption of the proposed system. The continuous EEG signals of 

four Long-Evens rats are applied to the proposed biomedical signal processor. The results 

show the embedded processor is robustly processing 24 hours long-term and uninterrupted 

EEG sequence. In the future, the development of proposed processor will integrate analog 

front-end and antiepileptic circuitries into system-on-a-chip design for neural prosthesis 

applications. 

 

1.3 Thesis Organization 

The content of this thesis is organized as follows. Chapter 1 introduces the motivation 

and objective of this work. Chapter 2 describes the preparation of animal models and recorded 

EEG training data. In Chapter 3, the system architecture of proposed biomedical signal 

processor is described. Chapter 4 presents the epileptic seizure detection algorithm and the 

proposed parameter determination method. Chapter 5 demonstrates the hardware and 

firmware implementation. In Chapter 6, the evaluation procedure and measurement results are 

presented. Finally the conclusion and future work are made in Chapter 7. 
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Chapter 2 EEG Data Acquisition 

 

In this thesis, we use EEG signals of absence animal models to validate our seizure 

detection algorithm. As a result, first, we introduce what absence seizure is, how we prepare 

general animals, and how we define four state of continuous EEG recording. 

 

2.1 Absence Seizure 

Absence seizures are one of several kinds of seizures. These seizures are sometimes 

referred to as petit mal seizures. People may appear to be staring into space blankly. These 

periods last for seconds, or even tens of seconds. Sometimes, those experiencing absence 

seizures move from one location to another without any purpose. In normal circumstances 

thalamo-cortical oscillations maintain normal consciousness of an individual. However, in 

abnormal circumstances the normal pattern may be disrupted; as a result, people are led to an 

episode of absence [26]. 

The spike-wave discharge (SWD) is the archetype electroencephalographic characteristic 

of non-convulsive epilepsy. SWDs can be found in various types of absence epilepsy, 

including childhood absence epilepsy, juvenile absence epilepsy, juvenile myoclonic epilepsy, 

myoclonic absence epilepsy, eyelid myoclonia with absence epilepsy, and generalized 

tonic-clonic seizures in some patients. 

Nowadays, genetic rodent models, such as GAERS and WAG/Rij rats, are most 

commonly used for studying new antiepileptic drugs, basic mechanisms of seizures and 

seizure related neurophysiological and neurochemical activities and processes. The frequency 

of the discharges in genetic rodent strains is 7-10 Hz [27, 28]. 
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2.2 General Animal Preparation 

Adult Long-Evans rats with spontaneous spike-and-wave discharge (SWD) are used in 

the thesis. There are two seizure types of Long-Evans rats in previous work, including 

absence seizures and pentylenetetrazol (PTZ) induced seizures. The genetic defect of 

Long-Evans rats causes spontaneous SWD. The EEG characteristic of spontaneous SWD is 

much closer to epileptic patients’ EEG than PTZ induced SWD in the clinical aspect. 

In this thesis, Long-Evans rats were 4-6 months old, and their weight was 500-700 

grams. The rats were placed in a room under a 12:12-hour light-dark cycle with food and 

water provided ad libitum. All surgical and experimental procedures were reviewed and 

approved by the Institutional Animal Care and Use Committee of the National Cheng Kung 

University. The rats were anesthetized with sodium pentobarbital (50 mg/kg, i.p.). 

Subsequently, it was placed in a standard stereotaxic apparatus. Screw electrodes were 

bilaterally implanted over the area of the frontal barrel cortex (anterior 2.0 mm, lateral 2.0 

mm with regard to the bregma). A four-microwire bundle, which was made of 

Teflon-insulated stainless steel microwires (#7079, A-M Systems), was used to stimulate the 

right-side zona incerta (ZI) (posterior 4.0 mm, lateral 2.5 mm, and depth 6.7-7.2 mm). A 

ground electrode was implanted 2 mm caudal to the lambda. Dental cement was applied to 

fasten the connection socket to the surface of the skull. Following suturing to complete the 

surgery, animals were given antibiotics and housed individually in cages for recovery. 

Two weeks after the surgery, each animal was placed in the recording environment at 

least two times (1 hour/day) prior to testing to allow rats to habituate to the experimental 

apparatus. In this procedure, about 90% of Long-Evans rats showed spontaneous SWD, which 

were used for continuous EEG recording. Continuous EEG recording from 5 hours to 24 

hours (contained one circadian cycle) were recorded and analyzed to assess our seizure 

detector in this thesis. 
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2.3 Continuous EEG Recording 

In order to validate the robust of seizure detection algorithm, EEG recording must be 

continuous and uninterrupted for monitoring and analyzing. Fig. 2.1 shows an example of 

EEG recording corresponding to various behavioral states, including wakefulness (WK), 

spike-wave discharge (SWD), slow-wave sleep (SWS), and movement artifact in continuous 

recording of Long-Evans rats. 

In this thesis, two essential processing phases of EEG data were performed in 

Long-Evans, including a training phase and a testing phase. In the training phase, continuous 

EEG data of each rat were recorded for feature extraction without enabling electrical 

stimulation. Then, marking recorded EEG data corresponds to seizures (SWD) and 

non-seizures (WK, SWS, and artifact) by specialist. After four states (SWD, WK, SWS, and 

artifact) of EEG data were used to train the seizure program off-line, the parameters of a 

seizure detection model were determined. In the testing phase, after applying the especial 

parameters to each rat, we proceeding to on-line closed-loop seizure detection. The details of 

training and testing methods describe in Chapter 4. 

 

Fig. 2.1 EEG examples during the wakefulness (WK), spike-wave discharge (SWD), 

slow-wave sleep (SWS), and movement artifact. 
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Chapter 3 System Architecture 

 

This chapter describes system architecture of closed-loop epileptic seizure control 

system. The detail of epileptic seizure controller is also introduced. In previous work, a 

seizure controller has been implemented based on an enhanced 8051 microcontroller. In this 

thesis, in order to achieve high performance, the seizure controller is implemented by 

OpenRISC processor. 

 

3.1 Closed-Loop Epileptic Seizure Control System 

The closed-loop epileptic seizure control system is composed of three modules: 1) an 

analog front end (AFE); 2) a biomedical signal processor; and 3) a stimulator. The functional 

block diagram of the closed-loop epileptic seizure control system is illustrated in Fig. 3.1. The 

AFE transforms EEG signals into digitized EEG signals. The BSP processes digitized EEG 

signals. When the BSP detects seizures, it generates enable signals to stimulator. Then, the 

stimulator generates electric current to suppress seizures. 

Biomedical 

Signal 

Processor 

(BSP) 

Analog 

Front End 

(AFE)

Stimulator

Experimental Subject Enable Signals

Digitized EEG Signals

Closed-loop epileptic seizure control system
 

Fig. 3.1 Closed-loop epileptic seizure control system 
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In this thesis, the seizure detection scheme is based on a large proportion of digital signal 

processing. Much technology have the high capability of processing digital signals, such as 

field-programmable gate array (FPGA), DSP, application-specific integrated circuit (ASIC), 

and RISC processor. Modern high-density FPGA can incorporate embedded processor with 

custom hardware accelerator to attain high performance; nonetheless, it consumes high static 

power (tens of milliwatts to hundreds of milliwatts) because of its advanced fabrication 

technology. ASIC is an integrated circuit, which is highly specialized for particular scenarios 

or applications. This solution is highly optimized in terms of area, power, and speed to 

perform its designated task, but it is lack of flexibility. DSP also has high processing 

capability, but it consumes power consumption highly because of other dedicated hardware 

accelerators which are not required in our algorithm. Hence, a general purpose processor is 

chosen in this research. 

 

3.2 General Purpose Processor 

 

3.2.1 Enhanced 8051 Microcontroller 

In our previous work [20-23], a seizure controller has been implemented based on an 

enhanced 8051 microcontroller in freely moving rats. The seizure controller was comprised of 

a signal conditioning circuit, a microcontroller, and a stimulator. As shown in Fig. 3.2, a 

closed-loop seizure controller was carried by an experimental subject, and a host computer 

monitored spontaneous brain activities, which were communicated based on a wireless 

ZigBee protocol. The EEG signals were amplified and band-pass filtered by the signal 

conditioning block. Based on a single-channel, 200-Hz sampling rate, and 10-bit ADC 

resolution, the microcontroller and the signal conditioning circuit consumed 117.66 mW. The 

power consumption of biomedical implementation is significant for implantable devices. 
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Fig. 3.2 Closed-loop epileptic seizure control system based on 

enhanced 8051 microcontroller. 

 

3.2.2 OpenRISC Processor 

Modern 32-bit RISC processors deliver better energy efficiency than traditional 8-bit 

microcontrollers. Therefore, a powerful 32-bit processor which is OpenRISC 1200 (OR1200) 

[29] is modified and implemented for real-time and low-power epileptic seizure detection. In 

addition, it provides over one dhrystone 2.1 MIPS (DMIPS) per MHz and one DSP MAC 

3232 operations per MHz, and the speed of OpenRISC 1200 is up to 10 times faster than an 

enhanced 8051 microprocessor’s (about 0.1 DMIPS/MHz [30], [31]). In biomedical 

application, energy efficiency is an important characteristic of biomedical implant, so how 

low power and energy is the central concern in this work. Our experimental results show the 

energy per seizure event determination is about 1.15 mJ for OpenRISC and 18.8 mJ for 

enhanced 8051 microprocessor. The details of evaluation results are described in Chapter 6. 

The characteristic of OpenRISC is energy efficiency and flexibility; as a result, it can be 

applied to not only epileptic seizure detection but also other biomedical applications. 
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Chapter 4 Epileptic Seizure Detection Algorithm 

 

This chapter describes the overall procedure and the seizure detection algorithm [32, 33] 

in our closed-loop epileptic seizure control system. Briefly speaking, two essential stages of 

EEG signal processing are performed in Long-Evans rats in this thesis as illustrated in Fig. 

4.1. The overall procedure consists of the off-line training phase and the on-line testing phase. 

In training phase, continuous EEG signals of each rat are recorded for marking and 

training. After recorded, EEG signals which correspond to seizures (SWD) and non-seizures 

(WK, SWS, and artifact) are marked by specialist. The marked events as mentioned above are 

used to extract complexity measurement (CM) and fast Fourier transform (FFT) values, train 

linear least square (LLS) classifier and search the finest thresholds (T1 for WK, T2 for SWS, 

TLSWS, and THSWS) in our closed-loop seizure control system. 

In testing phase, while the parameters of a seizure detection model, which include 

4-coefficient of LLS classifier and 4-threshold of seizure determination, are determined, the 

parameters are downloaded to our processor. Finally, on-line seizure detection testing is 

performed in OpenRISC. 

The following are the details of feature extraction and classifier. Moreover, the details of 

proposed training flow and testing flow are also described in 4.3. 
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Fig. 4.1 Overall procedure in closed-loop seizure detection system. 
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4.1 Feature Extraction 

Fig. 4.2 shows that 64 points of EEG data are packed with 32 points overlap from 

previous 64 points of EEG data. In this thesis, combining chaotic and frequency domain 

analysis can attain high detection accuracy and low computational cost. Complexity analysis 

such as entropy can distinguish between WK and SWD [34]. The frequency bands of power 

changes correlate closely with SWD. Spectral analysis can perform as the complementary 

features of entropy to reduce false detection during SWS or movement artifact. 

# Size of EEG data

64

64

64
32

32

Time

… …

 

Fig. 4.2 Window size and window shift are applied to feature extraction. 

 

4.1.1 Complexity Analysis 

 The EEG signals of a seizure are more ordered than those in normal state; as a result, 

entropy has been used to analyze and detect the seizure. In order to reduce computational cost, 

simplified entropy which is approximate entropy (ApEn) has been proposed for real-time 

processing [34]. The value of the ApEn is determined as shown in the following. 

1) Give an N-point time-series of data, which is formed the same space in time. X is 

represented to be 

      1 , 2 , ,X x x x N     ( 1 ) 

2) Let x(i) be a subsequence of X; that is, 

        , 1 , , 1 , for1 1i x i x i x i m i N m           x  ( 2 ) 

where m is the number of samples used for the comparison. 
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3) Define d[x(i), x(j)], which is the maximum difference of the relative elements in vectors 

x(i) and x(j) as follows: 

          , max , for 0,1, , 1d i j x i k x j k k m             x x  ( 3 ) 

4)  m

iC r and  1m

iC r
 is calculated below: 

 
 

1

1

1

N m

j
m i
iC r

N m


 


 


 

( 4 ) 

and 

 
 

1

1 1

1

N m

j
m i
iC r

N m


 

 
 


 

( 5 ) 

where 

 
   if ,1,

0, else
j

d i j r


     


x x
 ( 6 ) 

5) We define 
m
(r) and 

m+1
(r) as follows: 

 
 

  
1

1

ln

1

N m
m

i
m i

C r

r
N m

 

 
 


 

( 7 ) 

and 

 
 

  
1

1

1 1

ln

1

N m
m

i
m i

C r

r
N m

 


  
 


 

( 8 ) 

6) ApEn(m, r, N) is calculated in the following way: 

                1ApEn , , m mm r N r r   ( 9 ) 

 
          

     
1 1

1

1 1

ln ln

1 1

N m N m
m m

i i

i i

C r C r

N m N m

   


  
   

 
 

( 10 ) 
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                
1 1

1

1 1

1
ln ln

1

N m N m
m m

i i

i i

C r C r
N m

   


 

 
     

   ( 11 ) 

           
 

 

1

1
1

1
ln

1

mN m
i

m
i i

C r

N m C r

 




  
         

  ( 12 ) 

In order to reduce computational complexity, we modify Eq. ( 12 ) by eliminating 

logarithmic calculation. As a result, we define complexity measurement (CM) as follows: 

 
1

CM
m

m

m

S

S



  ( 13 ) 

where 

 
 

1

1

1

N m
m

i
m i

C r

S
N m

 


 


 

( 14 ) 

and 

 
 

1
1

1 1

1

N m
m

i
m i

C r

S
N m

 


 
 


 

( 15 ) 

In this thesis, the setting of parameters is m=1, N=16, and r which differs from one 

another. The calculation of CM in this work is schematically represented below. First, the 

64-point of EEG data is divided into 4-vector for computing CM as shown in Fig. 4.3. Second, 

to take an example from X(1), we calculate j of each square in Fig. 4.4 and Fig. 4.5. Third, 

each j is summed up in the S
1
 in Fig. 4.4, and S

2
 is calculate in the same way in Fig. 4.5. 

Fourth, using Eq. ( 13 ) compute the sub-CM of each vector. Finally, we sum up sub-CM into 

CM, and the results are depicted in four states as shown in Fig. 4.6. As a result, it is observed 

that CM can quantify the regularity or complexity of a time series of signals. Because periodic 

signal components of seizures reduce complexity levels, CM is utilized to analyze the 

complexity of EEG signals. However, SWS and artifact also show rhythmic patterns, so 

discrimination ability of CM is reduced. Therefore, to improve the performance of epileptic 
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seizure detection, it is required to combine complementary features to CM analysis. Spectral 

analysis is recruited for this purpose. 
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Fig. 4.3 Data size of EEG signals for CM calculation. 
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Fig. 4.4 Computation of the S
1
 value. 
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Fig. 4.5 Computation of the S
2
 value. 

 

 

Fig. 4.6 Complexity measurement in four behavioral states. 
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4.1.2 Spectral Analysis 

In this thesis, short-term Fourier transform is used to analyze spectral power distribution. 

It is observed that enormous power of the absence seizure is at the fundamental frequency 

(Band1 at 7-9 Hz) and at the second harmonic (Band2 at 14-18 Hz) as seen in Fig. 4.7. SWS 

state contains delta rhythms (Band0) as well as some oscillations at higher frequencies. 

Artifact state has high power at low and some high frequency bands. Therefore, EEG band 

powers are combined with CM to improve the performance of epileptic seizure detection. 

 

WK SWD

SWS Artifact

Band1

Band2

Band0

 

Fig. 4.7 Spectral analysis in four behavioral states. 

 

The 64-point fast Fourier transform (FFT) is used to calculate the power of two 

frequency bands (Band1 and Band2) of spontaneous brain waves because of its 

well-established implementation in various microprocessors. Fig. 4.7 displays the highest 

correlations between the power of two frequency bands (Band1 and Band2) and SWDs; 

therefore, Band1 and Band2 are selected as spectral indexes. To determine spectral indexes to 

extract an SWD feature adequately, a seizure event (denominated as “1”) is correlated with 
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the power of several specific frequency bands by using Pearson's product-moment correlation 

coefficient. Fig. 4.8 shows that using correlation analysis between seizure event and a specific 

frequency band identifies effective spectral indexes for seizure detection. 
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Fig. 4.8 Using correlations analysis identifies spectral indexes (Band1 and Band2). 

 

The flowchart of the correlation analysis is shown in Fig. 4.8. Consider there are k SWD 

segments. SP(t,f) is the spectrogram at time t in frequency f. 

1) Define the spectral indexes Xk to be 

  k kX x m

 
 


 
  

 ( 16 ) 

where 

        SP 1, ,SP 2, , ,SP T,k k k kx m m m m     ( 17 ) 

xk(m) is the spectral index which is the spectrogram in frequency m. 
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2) Define the seizure index 

      1 , 2 , , Tk k k ky        ( 18 ) 

where 

  
1, if  the state is SWD in time

0, else
k

t
t


 


 ( 19 ) 

3) The correlation coefficient Corrk(m) of the seizure index yk and the spectral index xk is 

  
     

      
2 2

k k k k

k

k k k k

x m x m y y
Corr m

x m x m y y

 


 



 
 ( 20 ) 

4) The averaged correlation coefficient of k segments is 

  
 k

K

Corr m

C m
k




 ( 21 ) 

 

Fig. 4.9  shows an example of correlations between the spectral index and the seizure index. 

The selected frequency bands are Band1=8-11 Hz and Band2=17-20 Hz for subject #1. In this 

project, the sampling frequency Fs is 200 Hz, and the sampled data are N points. The spectral 

index n of bands is calculated by the following equation, where Fn is spectral frequency. As a 

result, the spectral index of selected frequency bands is n=4 for Band1 and n=7 for Band2 for 

subject #1. 

 
 1s

n

F n
F

N

 
  ( 22 ) 
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Fig. 4.9 Result of correlation analysis. 

After determining the selected frequency bands, we use 64-point radix-4 FFT to calculate 

the power of Band1 and Band2 of 64-point EEG signals as shown in Fig. 4.10. 
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Fig. 4.10 Data size of EEG signals for FFT calculation. 
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Basically, discrete Fourier transform (DFT) is to compute the sequence X(k) of N 

complex-valued numbers given another sequence of data x(n) of length N. 

    
1

0

N
kn

N

n

X k x n W




  ( 23 ) 

where 

 
2

, for 0 1
j kn

kn N
NW e k N



       ( 24 ) 

The radix-4 decimation-in-time algorithm rearranges the DFT equation into four parts as 

follows. 

 X k  ( 25 ) 

       
4 1 2 1 3 4 1 1

0 4 2 3 4

N N N N
kn kn kn kn

N N N N

n n N n N n N

x n W x n W x n W x n W
   

   

        ( 26 ) 

 
4 1 4 1 4 1

4 2

0 0 04 2

N N N
kn Nk kn Nk kn

N N N N N

n n n

N N
x n W W x n W W x n W

  

  

   
       

   
    

4 1
3 4

0

3

4

N
Nk kn

N N

n

N
W x n W





 
  

 
  

( 27 ) 

       
4 1

0

3
1

4 2 4

N
k k k nk

N

n

N N N
x n j x n x n j x n W





      
              

      
  ( 28 ) 

Using k1+4k2 to substitute k, we rearrange Eq. ( 28 ) into Eq. ( 29 ). In this algorithm, there are 

three stages involving 64-point uniform radix-4 algorithmic processes. The data flow of 

64-point radix-4 FFT is shown in Fig. 4.11. 

         1 1 1 1 2

4 1

1 2 4
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4 1

4 2 4
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k k k nk nk

N N

n

N N N
X k k x n j x n x n j x n W W





       
                

       


 
( 29 ) 
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Fig. 4.11 64-point radix-4 FFT decimation-in-time algorithm. 
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4.2 Classifier 

Three feature indexes (CM and power of Band1 and Band2) are input into a classifier to 

verify seizure occurrences. In order to implement the proposed seizure detection method on 

an embedded system, a linear classifier called linear least squares (LLS) [35] is utilized. 

In mathematics, a system of linear equations is considered over-determined if there are more 

equations than unknowns. The method of least squares is a standard approach to the 

approximate solution of over determined systems. The LLS method finds the most 

approximate linear model which is minimized the mean square error between the system 

output and the desired output. Because the model’s output is only the weighted sum of three 

input features, it is suitable for processing on-line system without complicated computation. 

Consider an over-determined system 

 
1

, for 1,2, ,
n

i ij j

j

y X i m


     ( 30 ) 

of m linear equations in n unknown coefficients, 1, 2, …, n with mn. It can be written in 

matrix form as 

 y X  ( 31 ) 

where 
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          

 ( 32 ) 

In this thesis, we let the output of LLS be y, the input of LLS be X, and the weighted 

coefficient of input be . Such a system usually has no solution, so the goal is instead to find 

the coefficients  which fit the equations best. The coefficients  can be find by following 

equations. 
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The residual r is the difference between the observed value y and the calculated value X 

by the model: 

 
1

, for 1,2, ,
n

i i ij j

j

r y X i m


      ( 33 ) 

Then the sum of square of the residuals S can be written 
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S r


  ( 34 ) 

S is minimized when its gradient vector is zero. The elements of the gradient vector are the 

partial derivatives of S with respect to the parameters 

 
1

2 0, for 1,2, ,
m

i
i

ij j

rS
r j n

 

 
     

   
  ( 35 ) 

and the residuals r 
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We use Eq. ( 33 ) and Eq. ( 36 ) in substitution for Eq. ( 35 ) 
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If ̂  minimizes S, we have 
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Upon rearrangement, the normal equations can be rewritten 

 
1 1 1

ˆ , for 1,2, ,
m n m

ij ik k ij j

i k i

X X X y j n
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The normal equations are written in matrix notation as 

   ˆT TX X X y   ( 40 ) 
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The optimal coefficients ̂  can be determined by following equation. 

  
1

ˆ T TX X X y


  ( 41 ) 

 

In training phase, all SWD durations and the non-seizure segments with the length 

equivalent to the SWDs are selected for the LLS model training. In the non-seizure segments, 

the ratios of the data corresponding to WK, SWS, and the artifact are 1:1:1. For example, in 

Fig. 4.12, the ratios of the six data corresponding to SWD, WK, SWS, and the artifact are 

3:1:1:1. The inputs Xij of LLS classifier are formed into Eq. ( 42 ). The target value yi is 0 for 

non-seizure segments, and 1 for seizure segments. The optimal coefficients ̂  can be 

determined by Eq. ( 41 ) for each rat through an off-line process. 

Seizure Non-seizure

CM0 CM1 CM2 CM3 CM4 CM5

Band10 Band11 Band12 Band13 Band14 Band15

Band20 Band21 Band22 Band23 Band24 Band25

SWD WK SWS Artifact

 

Fig. 4.12 An example of LLS classifier’s input X. 
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 ( 42 ) 

In testing phase, the optimal coefficients ̂  are applied for Eq. ( 43 ), where three features 

are obtained from testing data. If the output LLS is larger than a threshold (T1 or T2), the 

input EEG signals is classified as a seizure event. 

 CM Band1 Band2 ConstLLS CM Band1 Band2Coeff Coeff Coeff Coeff        ( 43 ) 
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4.3 EEG Data for Training and Testing 

 

4.3.1 Training Phase 

The purpose of training is to determine a fitting model which contains four coefficients 

and four thresholds for each subject. Fig. 4.13 shows the procedure of training phase. 

Continuous EEG signals of each rat are recorded for marking and training. After recorded, 

EEG signals which correspond to seizures (SWD) and non-seizures (WK, SWS, and artifact) 

are marked by specialist. The marked events as mentioned above are used to extract CM, 

Band1, Band2, and Band0 values. After that, we start to train eight parameters including four 

coefficients and four thresholds. The following are the details of EEG data training. 

EEG recording

EEG data marking 

EEG data training 

Seizure(SWD)

Non-seizure(WK, SWS, Artifact)

Acquire 4-coefficient and 4-threshold

4-coefficient (CM, Band1, Band2, constant)

4-threshold (T1, T2, THsws, TLsws)

Off-Line

Training 

Phase

in

Computer

EEG data selection

CM and FFT computation

LLS 4-coefficient computation

4-threshold search

 

Fig. 4.13 Procedure of training phase. 

First, we randomly select the EEG segments of four states, and the ratios of the segments 

corresponding to SWD, WK, SWS, and the artifact must be 3:1:1:1 as shown in Fig. 4.14. 

Second, we execute CM and FFT computation to obtain CM, Band1, Band2, and Band0 

values. Third, combined feature substitute the X of Eq. ( 41 ), and desired output substitutes 

the y of Eq. ( 41 ) like Eq. ( 42 ). Then, the optimal coefficients ̂  can be determined. Fourth, 
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the optimal coefficients ̂  are applied for Eq. ( 43 ), where three features are obtained from 

training data. Then, we search the optimal thresholds from LLS and Band0 values in order to 

recognize a seizure event. The flowchart of seizure determination is shown in Fig. 4.15, and 

we test many sets of thresholds in detection rate and false detection rate for finding the most 

optimal thresholds. 

64

64

64

64

64

… … 

CM CM CM CM CM

Band1 Band1 Band1 Band1 Band1

Band2 Band2 Band2 Band2 Band2

Time

#

CM

Band1

Band2

Feature

extraction

#

#

#

64

SWD segment

WK segment

SWS segment

artifact segment

0 0 1 1 1 0
Desired 

output
output of LLS

Input of LLS

Band0 Band0 Band0 Band0 Band0 Band0

 

Fig. 4.14 Feature extraction and LLS classifier training. 
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Start
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Fig. 4.15 The flowchart of seizure determination. 
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In previous work, four thresholds are obtained by using exhaustive key search. In Fig. 

4.16 (a), we do not calculate the distribution of seizure’s and non-seizure’s values of LLS and 

Band0, and we use every set of 4-threshold to test detection rate and false detection. We need 

(MN)
2
 times of iterations to find the best thresholds. As a result, original method wastes a lot 

of time on parameter determination. To speed up parameter determination, it is proposed that 

using the mean and the multiples of standard deviation finds four thresholds rapidly. We 

calculate the distribution of seizure’s and non-seizure’s values of LLS and Band0. According 

to the step as mentioned above, we only need 

2
M N

×
m n

 
 
 

 times of iterations to find the best 

thresholds. 

The value of LLS

… … 

M times to search T1 value

M times to search T2 value

The value of Band0

… … 

N times to search TLSWS value

N times to search THSWS value

… … … … 

… … … … 

… … … … 

The value of LLS

The value of Band0

Mean Standard deviation

M/m times to search T1 value

… … … … 

… … … … 

Standard deviationMean

M/m times to search T2 value

Mean Standard deviation

… … … … 

N/n times to search TLSWS value

… … … … 

Standard deviationMean

N/n times to search THSWS value

(a) (b)  

Fig. 4.16 (a) Original search for 4-threshold, (b) Proposed search for 4-threshold. 

The following are the steps of the fast parameter determination method. Moreover, the 

flowchart of fast parameter determination method is depicted in Fig. 4.17. 

1) The four coefficients of Eq. ( 43 ) is substituted for optimal coefficients ̂ , and we 

calculate the LLS value of Eq. ( 43 ). 

2) We compute the mean and the standard deviation of actual non-SWD’s LLS value as 

shown in Fig. 4.18 (a), so T1 can be written 

  T1 nonSWD's LLS nonSWD's LLSi     ( 44 ) 
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where i is multiple of standard deviation. We choose a real number to substitute i for 

calculating T1, and the detection rate of our system is determined in this step. 

3) We compute the mean and the standard deviation of actual SWD’s Band0 value as 

depicted in Fig. 4.18 (a), so THSWS can be written 

  SWSTH SWD's Band 0 SWD's Band 0j     ( 45 ) 

where j is multiple of standard deviation. We choose a real number to substitute j for 

calculating THSWS, and the false detection rate is reduced in this step. 

4) After executing three steps as mentioned above, we compute the mean and the standard 

deviation of FP’s LLS value and FP’s Band0 value as shown in Fig. 4.18 (c). T2 and 

TLSWS can be written 

  T 2 FP's LLS FP's LLSk     ( 46 ) 

  SWSTL FP's Band 0 FP's Band 0l     ( 47 ) 

where k and l are multiple of standard deviation. We choose real numbers separately to 

substitute k and l for calculating T2 and TLSWS, and the false detection rate is also reduced 

in this step. 

5) We test the detection rate and the false detection rate for 4-threshold which is determined 

by Step(2) to Step(4). 

6) Changing the real number of i and j, we iterate form Step (2) to Step (5). In Step (4), we 

also change the real number of k and l, we iterate form Step (4) to Step (5). Finally, we 

can select the best threshold from the test in Step (5). 
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Fig. 4.17 Flowchart of fast parameter determination method. 
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Fig. 4.18 (a) Original data, (b) Determine T1, 

(c) Determine THSWS, (d) Determine T2 and TLSWS. 

 

4.3.2 Testing Phase 

Fig. 4.19 shows the procedure of testing phase. In testing phase, after the parameters of a 

seizure detection model, which include 4-coefficient of LLS classifier and 4-threshold of 

seizure determination, are determined from training phase, the parameters are downloaded to 

our processor. The seizure detection algorithm as shown in Fig. 4.20 is executed on 

OpenRISC. After initializing the system, we start to acquire 32-point EEG data. Then, we 

compute 64-point data of time domain CM and frequency domain FFT. After the CM, Band1, 

and Band2 values are obtained, LLS value is calculated by Eq. ( 43 ). A seizure alarm is 

discriminate from normal EEG signals by determining LLS and Band0 values. When the 

counter reaches “3”; that is, NC equals 3 in Fig. 4.20, a seizure is determined. In the meantime, 

an enable signal is generated to stimulator in our system. 



 

 33 

Parameters setting from training 
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Fig. 4.19 Procedure of testing phase. 
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Fig. 4.20 Flowchart of on-line seizure detection algorithm. 
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Chapter 5 Design and Implementation 

 

This chapter presents the design and implementation of the proposed low-power BSP, 

including hardware architecture and firmware. 

 

5.1 The Low-Power Biomedical Signal Processor 

The low-power BSP implementation bases on the OR1200 for epileptic seizure control. 

OR1200 is a 32-bit scalar RISC with Harvard micro-architecture, five stage integer pipeline, 

memory management units (MMU), and basic DSP capabilities. Supplemental facilities 

include debug unit for real-time debugging, high resolution tick timer, programmable 

interrupt controller, and power management support. OR1200 is designed for embedded, 

portable, and networking applications. Fig. 5.1 (a) shows the block diagram of OR1200. 

Because the area is proportional to power consumption, the unnecessary interfaces and 

modules are removed for optimizing power consumption. The external interfaces of the power 

management, debug module and interrupt controller are removed. Some modules which 

consist of the memory management units and the caches are also removed. Furthermore, the 

instruction and data bus are controlled by an arbiter. Instruction and data bus are merged, so 

the data bandwidth is reduced. Instruction bus has the highest priority to access bus. The 

purpose of merged buses is a trade-off between power and execution time. Fig. 5.1 (b) shows 

the block diagram of the proposed low-power BSP for epileptic seizure control. 
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Fig. 5.1 (a) Block diagram of OR1200 processor, (b) Block diagram of the proposed 

low-power BSP. 

The proposed BSP is implemented in TSMC 0.18 m complementary–metal–oxide 

semiconductor 1P6M process and ARM design kit by using cell-based design flow. Fig. 5.2 

shows the chip layout and die photo. A total of 104 pads are utilized in this work, which are 

71 input/output pads and 33 power pads. The core area is 1.01.0 mm and the chip area is 

1.751.75 mm. The maximum operating clock rate is 110.0 MHz at 1.8 V core supply and 3.3 

V input/output (I/O) pads supply. The power consumption of core and I/O pads is 0.23 

mW/MHz and 0.26 mW/MHz, respectively. One vertical and two horizontal power strips are 

distributed in the core to reduce voltage drop. The summary of circuit characteristics is listed 

in Table 5.1. 
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(b)(a)
 

Fig. 5.2 The (a) chip layout and 

(b) die photo of the implemented low-power BSP. 

 

Technology TSMC 0.18 m 1P6M Logic Process 

Cell Library TSMC SAGE-X Standard Cell Library 

Core / Chip Area 10001000 mm
2
 / 17501750 mm

2
 

Core Supply Voltage / I/O Supply Voltage 1.8V / 3.3V 

Maximum Operating Clock Rate 110.0 MHz 

Gate Count 60,132 

Power Dissipation of Core 0.23 mW/MHz 

Power Dissipation of I/O 0.26 mW/MHz 

Power Dissipation of Chip 0.49 mW/MHz 

Table 5.1 Summary of the proposed low-power BSP. 
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5.2 Firmware Implementation 

In brief, the firmware in the low-power BSP consists of three parts, data acquisition, 

seizure detection, and stimulation pulse generation. Fig. 5.3 shows the flowchart of the main 

program which comprises seizure detection algorithm and two interrupt service routines (ISRs) 

for a timer. In previous work, ISR1 also computes S
1
 and S

2
, and the timing diagram is 

depicted in Fig. 5.4 (b). It wastes time on calling subprogram which is S
1
 and S

2
 computation, 

when ISR1 is started up. Moreover, because of the subprogram as mentioned above, the result 

of previous 32 samples is delayed. As a result, we rearrange main program, and the timing 

diagram is shown in Fig. 5.4 (a). The result of previous 32 samples is obtained earlier than 

that of previous work. The following are the details of three sub-programs. 

ISR1 ISR2

System

Initialization

Current 1'st EEG

Sample
CM FFT LLS

Seizure

Determination

Set Stimulation 

Flag

Update One EEG Sample
Generate 800Hz 

Pulses

S
1
 and S

2

Computation

Data Acquisition

Y

N

Y

N

Seizure Detection
Stimulation Pulse 

Generation

Previous 32 samples

Current 32 samples

 

Fig. 5.3 Flowchart of (a) data acquisition, (b) seizure detection, and 

(c) stimulation pulse generation. 
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CM computation on previous 32 samples

FFT computation on previous 32 samples

LLS classification on previous 32 samples

Seizure determination on previous 32 samples 

S
1
 and S

2
 computation on current 32 samples

Previous
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Current

32 samples 

Next

32 samples 

t+32

(b)

t-31 t t+63

(a)

Result of previous 32 samples

Result of previous 32 samples

 

Fig. 5.4 (a) The proposed timing diagram, (b) Original timing diagram. 
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5.2.1 Data Acquisition 

In data acquisition stage, the processor download digitized 8-bit EEG signals from GPIO 

registers which save the digitized data of ADC conversion. The acquisition rate is 200 Hz in 

this project. As a result, ISR1 is configured as 5-ms period for the data acquisition. 

In previous work, declaring three arrays processes digitized data in the main program as 

shown in Fig. 5.5. A data buffer downloads digitized data from GPIO registers every 5ms. 

Before computing S
1
, S

2
, and FFT, main program must copy data to the S

1
S

2
 buffer and the 

FFT buffer. It wastes a lot of time on duplicating data. In this work, declaring two arrays 

processes digitized data in the main program as shown in Fig. 5.6. The main program also 

downloads digitized data to data buffer. However, the program directly computes S
1
 and S

2
 

from the data buffer’s data. It does not need time to copy data. The program also copy data to 

the FFT buffer because the values of FFT buffer are changed after computed. Despite 

additional memory the program declared, the main program which we proposed is more 

efficient than previous one. 

1 1

FFTBuffer[32*2]

1 1 1 1

2 1 2 1 1

1 1 1 1 1

2 2 2 1 2

2 2 2 2 2

DataBuffer[32] S
1
S

2
Buffer[32*2]

Step 1-1

Step 2-1

FFT computation on previous 32 samples

S
1
 and S

2
 computation on current 32 samples

# 32 samples

Step 1-2

Step 1-3

Step 2-2

Step 2-3

1 2EEG Packet

 

Fig. 5.5 Original data flow. 
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2 3

3 4

4 5

FFTBuffer[32*2]

1 2 3 4 5 6EEG Packet
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1
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2
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# 32 samples

 

Fig. 5.6 The proposed data flow. 

 

5.2.2 Seizure Detection 

After 32-sampled data are buffered, program start to execute digital signal processing 

(DSP) including time domain CM, frequency domain FFT, classification LLS, seizure 

determination. In order not to interfere with the precise sampling time, the DSP computation 

is performed in the background with the lowest priority. The CM is calculated by Eq. ( 13 ) 

after the S
1
 and S

2
 values are updated by the 32-sampled data. The FFT is accomplished by 

applying 64-point radix-4 FFT algorithm. The counter of seizure detection is incremented if a 

seizure alarm is determined by the LLS calculation; otherwise, the counter is cleared. When 

the counter reaches “3”, the flag for the seizure suppression is set. Then, stimulation pulses 

are generated in ISR2. 
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5.2.3 Stimulation Pulse Generation 

When classifier determines a seizure occurrence, the processor starts tick timer to 

generate 800-Hz, 40% duty cycle pulses for 0.5 s. ISR2 is set to a lower interrupt priority than 

ISR1, so the sampling time of EEG signals is guaranteed. 
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Chapter 6 Evaluation 

 

A prototype system is implemented for the purpose of verifying the functionality and 

evaluating real-time performance. Fig. 6.1 illustrates the functional block diagram of the 

experiment setup, and Fig. 6.2 shows the testing board of the proposed low-power BSP with 

FPGA-based evaluation platform. In the prototype system, DE-2 70 FPGA-based evaluation 

board links the implemented processor and the host computer together. The host computer is 

used to train optimal parameters and save EEG signals of Long-Evans rats. The evaluation 

board which is able to upload instructions, start processor, halt processor, download results, 

etc. plays a role of a debugger of the processor. The EEG dataset and the instructions of 

processor are stored in the 2 MB memory. The proposed processor executes main program of 

seizure detection algorithm. Fig. 6.3 presents function verification flow of this prototype 

system. The power of the processor is supplied by the Keithly 2400 digital source meter, 

which provides 100-nA resolution under 10-mA measurement range [36]. After the system is 

started up, the evaluation board downloads codes of seizure detection and an EEG dataset 

from the host computer. Then, evaluation board enables processor. The processor accesses an 

EEG dataset and executes seizure detection algorithm continuously. As long as the execution 

is finished, the detection results are downloaded into the host computer for functional 

verification and performance evaluation. 
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Fig. 6.1 Functional block diagram of experiment setup. 
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Fig. 6.2 The testing board of the proposed low-power BSP with FPGA-based evaluation 

platform. 
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Fig. 6.3 Function verification flow. 

 

6.1 Real-Time Seizure Detection 

Fig. 6.4 shows the timing diagram of the seizure detection firmware. The highest 

operating clock rate can be 110 MHz. However, in order to reduce power consumption, we 

decrease clock rate of the low-power BSP as low as possible. In this thesis, the proposed BSP 

operates at 12.56 MHz clock rate for real-time seizure detection. The execution time is 

obtained by ticking timer between the start and the end of each task. Then, each task of the 

execution time downloads to host computer. In Fig. 6.4, when previous 32 samples are 

retrieved, the S
1
 and S

2
 values for CM computation are updated. After the computation of CM, 

FFT, and LLS classification is finished in current 32-sample cycle, the seizure determination 

is started to calculate. Although the DSP computation spans several sampling periods, 

sampled data collection which performs with the highest priority is not interfered. As shown 

in Fig. 6.4, after 32 sampled data are collected, determining the seizure occurrence requires 

about 38.8 ms latency. The total computation time is 159.35 ms, and it is less than a 

32-sample cycle (160 ms). The timing diagram shows that the seizure detection algorithm can 

be executed continuously in the implemented processor. In order to optimize power 
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consumption, the subprograms are rescheduled to reduce data hazard and branch hazard, 

which can slow down operation frequency. After a seizure is onset, determining the seizure 

occurrence requires from three to four times of 32-sample (0.48-0.64 s) cycles along with 

DSP computation duration. As a result, it takes about 0.52-0.68 s to start the seizure 

suppression. Theoretically, we consider one 32-sample cycle for tolerance. The range of 

seizure determination delay is from four to five times of 32-sample cycles (0.64-0.80 s) and 

DSP computation duration (38.8 ms); that is, it needs about 0.68-0.84 s for seizure detection. 

Fig. 6.5 presents the EEG signals with accurate or false seizure detection. It shows that the 

seizure detection delay is about 0.6-0.8 s after the seizure onset. 

t-31

Previous

32 samples 

t t+8 t+31 t+32 t+63

Current

32 samples 

Next

32 samples 

CM computation on previous 32 samples

FFT computation on previous 32 samples

LLS classification on previous 32 samples

Seizure determination on previous 32 samples 

S
1
 and S

2
 computation on current 32 samples

1.74

36.76

0.14

0.16

120.55

ms

ms

ms

ms

ms
 

Fig. 6.4 Timing diagram of the seizure detection firmware. 
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Fig. 6.5 EEG data and the seizure events detection by proposed BSP. 

(a) SWD in WK state, (b) SWD in SWS state, (c) false detection in SWS state. 

 

6.2 Seizure Detection Accuracy 

Performance of the seizure detection algorithm which applies on four adult male 

Long–Evans rats is assessed. The four rats are affected by absence seizures. After the training 

procedure which describes in Chapter 4 is executed in each individual rat, and then the 

parameters of a training model are used for on-line seizure detection. In order to evaluate the 

performance of the algorithm, two rats are measured under a 5-hour execution of the system, 

and other two rats are measured under a 24-hour execution of the system to verify robustness. 

Table 6.1 shows the observed SWD duration, and the two selected frequency bands for each 

rat. 
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Subjects 

Total 

Duration 

(h:m:s) 

SWD 

Duration 

(h:m:s) 

SWD 

Min 

(s) 

SWD 

Mean 

(s) 

SWD 

Max 

(s) 

Band1 

(Hz) 

Band2 

(Hz) 

#1 05:00:00 00:27:34 0.50 5.09 25.69 7-10 15-18 

#2 05:00:00 00:16:42 0.50 3.96 42.75 7-10 15-18 

#3 24:00:00 00:49:34 0.19 4.94 43.32 7-10 15-18 

#4 24:00:00 01:11:36 0.20 6.17 49.51 7-10 15-18 

Table 6.1 Observed SWD duration and two selected frequency bands. 

The function of the seizure detection algorithm is depicted in Fig. 6.5. The SWD signals 

of subject #2 in WK state, and the detection event are shown in Fig. 6.5 (a). Fig. 6.5 (b) also 

shows a similar detection event when the SWD signals of subject #2 occurs in SWS state. Fig. 

6.5(c) shows a false detection happens on subject #2 in SWS state because the seizure 

detection algorithm regards the EEG signals in SWS as a seizure event. Fig. 6.6 shows that 

five SWDs are marked by neurologist during 40 seconds on subject #2. These SWDs are all 

detected by the proposed processor. One SWD marked by specialist may contain more than 

one detected event because of calculation of 32-sample window. We regard these detected 

events within marked SWD as same event; otherwise, we treated them as false detection. The 

definition of detection accuracy is 

  
Detected SWD

Detection Accuracy % = 100%
SWD

  ( 48 ) 

Table 6.2 shows the results of the seizure detection algorithm. The seizure detection 

accuracy is above 92% as shown in Table 6.2, and it demonstrates the functionality of the 

implemented processor and the effectiveness of the algorithm. The robustness of the 

algorithm is also verified by 24-hour execution of the continuous EEG signals of rats. 

Although the theoretical seizure detection delay of the proposed algorithm is about 0.68 

s-0.84 s, the delay would be slightly varied among subjects due to variation of EEG 

complexity and spectrum energy. Table 6.2 shows the detection delay is varied from 0.63 s to 

0.79 s, and the average is 0.6975 s. Table 6.3 summarizes the performance of two parameter 
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determination methods. The fast parameter determination method is 

4
1000

7

 
 
 

 times faster 

than previous work. The seizure detection algorithm is still shown several advantages, 

including high seizure detection rate and low detection delay after seizure onset, with the fast 

parameter determination method. 

 

 

Fig. 6.6 EEG containing multiple absence seizure SWDs and detected seizure events by 

proposed low-power BSP. 

 

Subjects State SWD 
Detected 

SWD 

Accuracy 

(%) 

False 

Detection 

Detection 

delay (s) 

#1 
Awake 

Sleep 

294 

31 

285 

28 
96.31 

8 

28 
0.79 

#2 
Awake 

Sleep 

222 

30 

215 

30 
97.22 

14 

4 
0.69 

#3 
Awake 

& Sleep 
600 554 92.33 150 0.63 

#4 
Awake 

& Sleep 
684 631 92.25 94 0.68 

Table 6.2 Accuracy and false detection of 

the epileptic seizure detection algorithm. 

 

 
Original Parameter 

Determination Method 

Proposed Parameter 

Determination Method 

Iteration 1000
4
 7

4
 

Detection Accuracy (%) 92-99 92-99 

Detection delay (s) <1 0.63-0.79 

Table 6.3 Performance of two parameter determination methods. 
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6.3 Power Consumption Comparison 

The clock rate of the implemented processor is 12.56 MHz for real-time seizure 

detection algorithm computation, and the BSP consumes 6.66 mW. The power consumption 

of core and I/O is 3.128 mW and 3.536 mW, respectively. The total power consumption is 

evaluated about 7.21 mW, including our low-noise pre-amplifier, filter [37, 38] (468 μW), 

10-bit analog-to-digital converter (80 μW), and proposed BSP (6.66 mW). In previous work 

[23], using enhanced 8051 microcontroller and a signal conditioning board consumes 117.66 

mW. Energy per seizure event determination (32-sample window) is 1.15 mJ for this work 

and 18.8 mJ for enhanced 8051 prototype, respectively. Compared with previous 

microcontroller implementation, over 90% power reduction and energy saving are improved. 

The evaluation results show that the overall system is powered by a 3.7-V, 1100-mAh battery, 

and it can be operated for 18.9 weeks. Moreover, the proposed BSP has passed the stress 

testing for 2 weeks to guarantee the stability. Table 6.4 summarizes the comparison of 

epileptic seizure detectors. 

 

Enhanced 8051 

microcontroller 

+ signal conditioning board 

This work 

+ our AFE 

Operating Frequency 32 MHz 12.56 MHz 

Power Consumption of 

Analog Part 
N/A 0.548 mW 

Power Consumption of 

Digital Part 
N/A 6.66 mW 

Total Power Consumption 117.66 mW 7.21 mW 

Energy per Seizure Event 

Determination 
18.8 mJ 1.15 mJ 

Power Normalization 100% 6.2% 

Battery Life 

(3.7V, 1100 mAh) 
28 hours 18.9 weeks 

Table 6.4 Comparison of epileptic seizure detectors. 
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Chapter 7 Conclusion and Future Work 

 

7.1 Conclusion 

In this thesis, a fast parameter determination method is proposed. It is proposed that 

using the mean and the multiples of standard deviation finds the optimal model rapidly. The 

proposed parameter determination method is 41610
6
 times faster than our previous work, 

and it can attain the same performance. Moreover, a processor core which bases on RISC 

technology consumes only 6 mW for real-time epileptic seizure detection algorithm. 

Compared with our previous prototype, the measurement results show that the implemented 

processor can reduce 93.8% power consumption. The developed bio-signal processor, 

firmware and epileptic seizure detection algorithm is able to detect the seizure signals in 

0.63-0.79 s, and the detection accuracy is 92-99%. The measurement results are based on the 

recorded EEG signals of four free moving animal models. 
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7.2 Future Work 

The OpenRISC core will be integrate with analog front-end circuitries and stimulators to 

realize a chip-on-board seizure controller as shown in Fig. 7.1 (a). The AFE and stimulator 

board is shown in Fig. 7.1 (b), and the epileptic seizure detector board which uses Altera 

Cyclone III FPGA is shown in Fig. 7.1 (c). The successful of this research provides a solid 

base to integrate with analog front-end circuitries and stimulators to build up a 

system-on-a-chip solution. The developed seizure detector can be applied to monitor the 

online EEG signals and integrate with analog front-end circuitries and an electrical stimulator 

to perform a closed-loop seizure controller in the future. 

27 mm × 25 mm 37 mm × 39 mm

AFE Board 

on the Head

Experimental Subject

Seizure Detector 

on the Back

AFE and 

Stimulator Board

Epileptic Seizure 

Detector Board

AFE I/F

Epileptic Seizure Detector in 

EP3C25E144C8N FPGA 

Pre-amplifier 

and Filter

10-bit ADC

EEG Data

(Digital)

AFE 

Control

Host I/F & Flash I/F
25.0 MHz 

Oscillator

(a)

(b) (c)  

Fig. 7.1 Closed-loop seizure controller using FPGA. 
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