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Abstract

Epilepsy is one of the most common neurological disorders. Approximately 1% of
people in the world suffer from. epilepsy, and 25% of epilepsy patients cannot be healed by
today’s available treatments. In past years, open-loop seizure controllers have been proposed,
such us vagus nerve stimulation and deep brain- stimulation devices; however, the device
drives a stimulator continuously or intermittently-that causes high power consumption and the
likelihood of neuronal damage. In contrast, the closed-loop implementation of hardware
prototypes or biomedical signal processors has been proposed recently. Nevertheless, the
average of seizure detection delay is either longer than 5 seconds or often not mentioned in
these works, and it is insufficient to validate the robustness of detection algorithm. Moreover,
most of studies often use the discontinuous electroencephalogram (EEG) signal fragments to
validate seizure detection algorithm. As a result, a portable wireless online closed-loop seizure
controller in freely moving rats was proposed, which validated seizure detection algorithm by

using continuous online EEG signals.



In this thesis, the fast parameter determination method, which determines a fitting model
for each rat, is proposed to improve our previous work. The proposed parameter
determination method is 416x10° times faster than our previous work, and it can attain the
same detection accuracy (92-99%) and detection delay (0.63-0.79 s). Additionally, a
low-power biomedical signal processor which bases on reduced instruction set computer
(RISC) technology consumes only 6 mW for real-time epileptic seizure detection algorithm.
Compared with our previous prototype, the measurement results show that the implemented
processor can reduce 93.8% power consumption. The developed seizure detector can be
applied to monitor the online EEG signals and integrate with analog front-end circuitries and

an electrical stimulator to perform a closed-loop seizure controller in the future.
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Chapter 1  Introduction

Epilepsy is one of the most common neurological disorders. Approximately 1% of
people in the world suffer from epilepsy, and 25% of epilepsy patients cannot be healed by
today’s available treatments [1, 2]. If seizures cannot be well controlled, the patients

experience major limitations in family, social, educational, and vocational activities.

1.1 Motivation

Recently, numerous alternative techniques have been proposed, such us vagus nerve and
deep brain stimulation devices [1, 2].-Most of the devices utilize open-loop controller to
suppress the seizure. However, an open-loop controller drives a stimulator continuously or
intermittently that causes high power consumption-and the likelihood of neuronal damage. In
contract, a closed-loop device-combines a stimulator and-seizure detector. Recently, one
closed-loop epilepsy control .system developed by NeuroPace called Responsive
Neurostimulator (RNS®) System is in U.S; FDA clinical trials [2]. A closed-loop device can
increase stimulus efficacy and reduce tissue damage over the long term. A closed-loop seizure
controller drives a stimulator when a closed-loop device detects the seizure [2-4]. Despite
additional hardware, a closed-loop device can increase stimulus efficacy and reduce tissue
damage over the long term. As a result, compared with open-loop devices, closed-loop
devices is more effective and attractive. In general, a robust on-line seizure detection method,
which can drive antiepileptic device to suppress the seizure as early as possible when a

seizure happens, is required for the development of a closed-loop seizure controller.



Recently, the implementation of hardware prototypes and biomedical signal processors
has been proposed [5-19]. Among these projects, wavelet analysis, spectral analysis, entropy
analysis, and variance analysis are applied to detect seizure events. Some closed-loop seizure
controllers utilized analog to extract seizure features so epileptic seizure detection accuracy
was high [15, 18]. Some seizure detection algorithm relied on powerful processing platform
keeping real-time seizure detection and high detection accuracy [9-11, 13, 17]. However, the
average response time for seizure detection is either longer than 5 seconds or often not
mentioned in these works. Moreover, most of studies often use the discontinuous
electroencephalogram (EEG) signal fragments to validate seizure detection algorithm;
nevertheless, it is deficient in validating the robustness of detection algorithm. As a result, a
portable wireless online closed-loop. seizure controller in freely moving rats was proposed
[20-23], which validated seizure detection-algorithm by using continuous online EEG signals.
Furthermore, the detection delay is shorter than 1 second. To summarize, an open-loop seizure
controller with periodic stimulation is inaccurate and inefficient as shown in Fig. 1.1 (a). A
closed-loop seizure controller with-responsive stimulation which is proposed by other groups
as mentioned above is more accurate and efficient; however, the detection delay is longer than
5 seconds as shown in Fig. 1.1 (b). Fig. 1.1 (c) shows that a closed-loop seizure controller
with responsive stimulation is proposed by our group. When a seizure occurs, the responsive

stimulator starts to suppress the seizure, and the detection delay is shorter than 1 second.
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(b) responsive stimulation (other groups), and (c) responsive stimulation (our group).

1.2  Study Objective

In our previous work, using implied approximate entropy and 64-point fast Fourier
transform, which contained large portion of digital processing, increased detection rate. In
order to decrease complex calculation and hardware area, a liner least squares (LLS) was
classifier in this project. Furthermore, it was observed that most of false detections occurred
in slow-wave sleep (SWS) state, so adaptive thresholds were utilized to switch the threshold
of the LLS for decreasing false detection rate. However, adaptive thresholds were obtained by
using exhaustive key search in training phase; as a result, this method wasted a lot of time on
training phase. In addition, implementation based on 8051-like microcontroller [24]

consumed more than 117mW to perform the real-time seizure detection.



In this study, it is proposed that using the mean and standard deviation of EEG training
data searches adaptive thresholds rapidly. The new parameter determination method is faster
than our previous work, and it can attain same performance. Moreover, the seizure detection
algorithm in previous work is implemented in a RISC-like processor to suppress seizures. The
flexibility, simplicity, and fixed instruction format of RISC [25] is feasible implementation
with high processing performance. Although more complicate hardware architecture is used to
realize real-time seizure detection, the RISC-like processor does not run algorithm at full
speed in processing biomedical signals. As a result, a slower clock rate is applied to reduce
the power and energy consumption of the proposed system. The continuous EEG signals of
four Long-Evens rats are applied to the proposed biomedical signal processor. The results
show the embedded processor is robustly processing 24 hours long-term and uninterrupted
EEG sequence. In the future, the development of proposed processor will integrate analog
front-end and antiepileptic circuitries into system-on-a-chip design for neural prosthesis

applications.

1.3  Thesis Organization

The content of this thesis is organized as follows. Chapter 1 introduces the motivation
and objective of this work. Chapter 2 describes the preparation of animal models and recorded
EEG training data. In Chapter 3, the system architecture of proposed biomedical signal
processor is described. Chapter 4 presents the epileptic seizure detection algorithm and the
proposed parameter determination method. Chapter 5 demonstrates the hardware and
firmware implementation. In Chapter 6, the evaluation procedure and measurement results are

presented. Finally the conclusion and future work are made in Chapter 7.



Chapter 2 EEG Data Acquisition

In this thesis, we use EEG signals of absence animal models to validate our seizure
detection algorithm. As a result, first, we introduce what absence seizure is, how we prepare

general animals, and how we define four state of continuous EEG recording.

2.1  Absence Seizure

Absence seizures are one of several kinds of seizures. These seizures are sometimes
referred to as petit mal seizures. People may appear to be staring into space blankly. These
periods last for seconds, or even tens.of ‘'seconds..-Sometimes, those experiencing absence
seizures move from one location to another without any purpose. In normal circumstances
thalamo-cortical oscillations maintain normal consciousness of an individual. However, in
abnormal circumstances the normal pattern may be disrupted; as a result, people are led to an
episode of absence [26].

The spike-wave discharge (SWD) is the archetype electroencephalographic characteristic
of non-convulsive epilepsy. SWDs can be found in various types of absence epilepsy,
including childhood absence epilepsy, juvenile absence epilepsy, juvenile myoclonic epilepsy,
myoclonic absence epilepsy, eyelid myoclonia with absence epilepsy, and generalized
tonic-clonic seizures in some patients.

Nowadays, genetic rodent models, such as GAERS and WAG/RIj rats, are most
commonly used for studying new antiepileptic drugs, basic mechanisms of seizures and
seizure related neurophysiological and neurochemical activities and processes. The frequency

of the discharges in genetic rodent strains is 7-10 Hz [27, 28].



2.2  General Animal Preparation

Adult Long-Evans rats with spontaneous spike-and-wave discharge (SWD) are used in
the thesis. There are two seizure types of Long-Evans rats in previous work, including
absence seizures and pentylenetetrazol (PTZ) induced seizures. The genetic defect of
Long-Evans rats causes spontaneous SWD. The EEG characteristic of spontaneous SWD is
much closer to epileptic patients’ EEG than PTZ induced SWD in the clinical aspect.

In this thesis, Long-Evans rats were 4-6 months old, and their weight was 500-700
grams. The rats were placed in a room under a 12:12-hour light-dark cycle with food and
water provided ad libitum. All surgical and experimental procedures were reviewed and
approved by the Institutional Animal Care and Use Committee of the National Cheng Kung
University. The rats were anesthetized with sodium pentobarbital (50 mg/kg, i.p.).
Subsequently, it was placed in a standard:stereotaxic apparatus. Screw electrodes were
bilaterally implanted over the-area of the frontal barrel cortex (anterior 2.0 mm, lateral 2.0
mm with regard to the bregma). A four-microwire -bundle, which was made of
Teflon-insulated stainless steel microwires (#7079, A-M Systems), was used to stimulate the
right-side zona incerta (ZI) (posterior 4.0 mm, lateral 2.5 mm, and depth 6.7-7.2 mm). A
ground electrode was implanted 2 mm caudal to the lambda. Dental cement was applied to
fasten the connection socket to the surface of the skull. Following suturing to complete the
surgery, animals were given antibiotics and housed individually in cages for recovery.

Two weeks after the surgery, each animal was placed in the recording environment at
least two times (1 hour/day) prior to testing to allow rats to habituate to the experimental
apparatus. In this procedure, about 90% of Long-Evans rats showed spontaneous SWD, which
were used for continuous EEG recording. Continuous EEG recording from 5 hours to 24
hours (contained one circadian cycle) were recorded and analyzed to assess our seizure

detector in this thesis.



2.3  Continuous EEG Recording

In order to validate the robust of seizure detection algorithm, EEG recording must be
continuous and uninterrupted for monitoring and analyzing. Fig. 2.1 shows an example of
EEG recording corresponding to various behavioral states, including wakefulness (WK),
spike-wave discharge (SWD), slow-wave sleep (SWS), and movement artifact in continuous
recording of Long-Evans rats.

In this thesis, two essential processing phases of EEG data were performed in
Long-Evans, including a training phase and a testing phase. In the training phase, continuous
EEG data of each rat were recorded for feature extraction without enabling electrical
stimulation. Then, marking recorded EEG data corresponds to seizures (SWD) and
non-seizures (WK, SWS, and artifact) by specialist. After four states (SWD, WK, SWS, and
artifact) of EEG data were used to train the seizure program off-line, the parameters of a
seizure detection model were-determined. In the testing phase, after applying the especial
parameters to each rat, we proceeding to on-line closed-loop seizure detection. The details of

training and testing methods describe in Chapter 4.

WK

SWD

SWS

Artifact 0.5mv

2 sec

Fig. 2.1 EEG examples during the wakefulness (WK), spike-wave discharge (SWD),

slow-wave sleep (SWS), and movement artifact.



Chapter 3  System Architecture

This chapter describes system architecture of closed-loop epileptic seizure control
system. The detail of epileptic seizure controller is also introduced. In previous work, a
seizure controller has been implemented based on an enhanced 8051 microcontroller. In this
thesis, in order to achieve high performance, the seizure controller is implemented by

OpenRISC processor.

3.1 Closed-Loop Epileptic Seizure Control System

The closed-loop epileptic seizure control. system is composed of three modules: 1) an
analog front end (AFE); 2) a biomedical signal processor; and 3) a stimulator. The functional
block diagram of the closed-loop epileptic seizure control system is illustrated in Fig. 3.1. The
AFE transforms EEG signals into digitized EEG signals. The BSP processes digitized EEG
signals. When the BSP detects seizures, it generates enable signals to stimulator. Then, the

stimulator generates electric current to suppress seizures.

|r Digitized EEG Signals

| Analog

l Front End  fejii»- _ _

: (AFE) Biomedical
Signal

| “®eeee..] Processor

: (BSP)
I Stimulator l‘—
[

Enable Signals
Closed-loop epileptic seizure control system

Experimental Subject

Fig. 3.1 Closed-loop epileptic seizure control system



In this thesis, the seizure detection scheme is based on a large proportion of digital signal
processing. Much technology have the high capability of processing digital signals, such as
field-programmable gate array (FPGA), DSP, application-specific integrated circuit (ASIC),
and RISC processor. Modern high-density FPGA can incorporate embedded processor with
custom hardware accelerator to attain high performance; nonetheless, it consumes high static
power (tens of milliwatts to hundreds of milliwatts) because of its advanced fabrication
technology. ASIC is an integrated circuit, which is highly specialized for particular scenarios
or applications. This solution is highly optimized in terms of area, power, and speed to
perform its designated task, but it is lack of flexibility. DSP also has high processing
capability, but it consumes power consumption highly because of other dedicated hardware
accelerators which are not required in our algorithm: Hence, a general purpose processor is

chosen in this research.

3.2 General Purpose Processor

3.2.1 Enhanced 8051 Microcontroller

In our previous work [20-23], a seizure controller has been implemented based on an
enhanced 8051 microcontroller in freely moving rats. The seizure controller was comprised of
a signal conditioning circuit, a microcontroller, and a stimulator. As shown in Fig. 3.2, a
closed-loop seizure controller was carried by an experimental subject, and a host computer
monitored spontaneous brain activities, which were communicated based on a wireless
ZigBee protocol. The EEG signals were amplified and band-pass filtered by the signal
conditioning block. Based on a single-channel, 200-Hz sampling rate, and 10-bit ADC
resolution, the microcontroller and the signal conditioning circuit consumed 117.66 mW. The

power consumption of biomedical implementation is significant for implantable devices.
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enhanced 8051 microcontroller.

3.2.2 OpenRISC Processor

Modern 32-bit RISC processors deliver better energy efficiency than traditional 8-bit
microcontrollers. Therefore, a powerful 32-bit processor which is OpenRISC 1200 (OR1200)
[29] is modified and implemented for real-time and low-power epileptic seizure detection. In
addition, it provides over one dhrystone 2.1. MIPS (DMIPS) per MHz and one DSP MAC
32x32 operations per MHz, and the speed of OpenRISC 1200 is up to 10 times faster than an
enhanced 8051 microprocessor’s (about 0.1 DMIPS/MHz [30], [31]). In biomedical
application, energy efficiency is an important characteristic of biomedical implant, so how
low power and energy is the central concern in this work. Our experimental results show the
energy per seizure event determination is about 1.15 mJ for OpenRISC and 18.8 mJ for
enhanced 8051 microprocessor. The details of evaluation results are described in Chapter 6.
The characteristic of OpenRISC is energy efficiency and flexibility; as a result, it can be

applied to not only epileptic seizure detection but also other biomedical applications.
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Chapter 4 Epileptic Seizure Detection Algorithm

This chapter describes the overall procedure and the seizure detection algorithm [32, 33]
in our closed-loop epileptic seizure control system. Briefly speaking, two essential stages of
EEG signal processing are performed in Long-Evans rats in this thesis as illustrated in Fig.
4.1. The overall procedure consists of the off-line training phase and the on-line testing phase.

In training phase, continuous EEG signals of each rat are recorded for marking and
training. After recorded, EEG signals which correspond to seizures (SWD) and non-seizures
(WK, SWS, and artifact) are marked by specialist. The marked events as mentioned above are
used to extract complexity measurement (CM) and fast Fourier transform (FFT) values, train
linear least square (LLS) classifier.and search the finest thresholds (T1 for WK, T2 for SWS,
TLsws, and THsws) in our closed-loop seizure control system.

In testing phase, while the parameters of a seizure detection model, which include
4-coefficient of LLS classifier and 4-threshold of seizure determination, are determined, the
parameters are downloaded to our ‘processor.-Finally, on-line seizure detection testing is
performed in OpenRISC.

The following are the details of feature extraction and classifier. Moreover, the details of

proposed training flow and testing flow are also described in 4.3.
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Seizure(SWD)
Non-seizure(WK, SWS, Artifact)
Off-Line
Training
Phase
in
Computer
Acquire 4-coefficient and 4-threshold
4-coefficient (CM, Band1, Band2, constant)
4-threshold (T1, T2, THsws, TLsws)
\J
Parameters setting from training
Set 4-coefficient and 4-threshold in OpenRISC
4-coefficient (CM, Band1, Band2, constant)
4-threshold (T1, T2, THsws, TLsws)
On-Line = v
Testing On-line seizure controller testing Data acquisition
Phase
in v
OpenRISC .
Calculate 4-feature, LLS value, Chil &1 51 BT
and seizure determination v
LLS computation
4-feature(CM, Band1, Band2, Band0) v
Seizure determination

Fig. 4.1 Overall procedure in closed-loop seizure detection system.
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4.1 Feature Extraction

Fig. 4.2 shows that 64 points of EEG data are packed with 32 points overlap from
previous 64 points of EEG data. In this thesis, combining chaotic and frequency domain
analysis can attain high detection accuracy and low computational cost. Complexity analysis
such as entropy can distinguish between WK and SWD [34]. The frequency bands of power
changes correlate closely with SWD. Spectral analysis can perform as the complementary

features of entropy to reduce false detection during SWS or movement artifact.

Size of EEG data

Fig. 4.2 Window size and window shift are applied to feature extraction.

4.1.1 Complexity Analysis

The EEG signals of a seizure are more ordered than those in normal state; as a result,
entropy has been used to analyze and detect the seizure. In order to reduce computational cost,
simplified entropy which is approximate entropy (ApEn) has been proposed for real-time
processing [34]. The value of the ApEn is determined as shown in the following.

1) Give an N-point time-series of data, which is formed the same space in time. X is

represented to be

X =[%(1),x(2),....x(N)] (1)
2) Let x(i) be a subsequence of X; that is,
x(i)=[x(i),x(i+1),...,x(i+m-1) ], forl<i<N-m+1 (2)

where m is the number of samples used for the comparison.
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3) Define d[x(i), x(j)], which is the maximum difference of the relative elements in vectors

x(i) and x(j) as follows:
d[ (i), ()] =max|[x(i+k)=x(j+k)||. fork=0,1,...,(m-1) (3)

4) C"(r)and C™*(r) is calculated below:

N-m+1
@
= (4)
C-m — i=1
") N-m+1
and
N-m+1
@i
Cim+l (r) — i=1 ( 5 )
N-m+1
where
Lifd{ x(1),x(j)I<r
a,jz{ [X(0)x(i)] (6)
0, else
5) We define ®™(r) and ®™**(r) as follows:
N-m+1 &
> In{C(r)) (7)
Q" (r)=—-=
N-m+1
and
> (e ()
In(C™(r
q)m+l(r): i=1 (8)
N-m+1
6) ApEn(m, r, N) is calculated in the following way:
ApEn(m,r,N)=®"(r)-®"™"(r) (9)

Ni_z_rjflln(cim (r) ) N§:+lln(cim*l(r)) (10)

 N-m+1 N-m+1
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== > In(Cim(r))— > In(Cim”(r))

L i=l i=1

1 [N-m+1 N-m+1
} (11)

SN . zm(f((?)ﬂ (12)

In order to reduce computational complexity, we modify Eq. ( 12 ) by eliminating

logarithmic calculation. As a result, we define complexity measurement (CM) as follows:

S m+1

CM" =

(13)

where

B > Cr(r) (14)

and

N-m-+1

Z Cim+1(r) (15)

Sm+1: i=1
N-m+1

In this thesis, the setting of parameters is m=1, N=16, and r which differs from one
another. The calculation of CM in this work is'schematically represented below. First, the
64-point of EEG data is divided into 4-vector for computing CM as shown in Fig. 4.3. Second,
to take an example from X(1), we calculate o of each square in Fig. 4.4 and Fig. 4.5. Third,
each ¢ is summed up in the S' in Fig. 4.4, and S* is calculate in the same way in Fig. 4.5.
Fourth, using Eq. ( 13 ) compute the sub-CM of each vector. Finally, we sum up sub-CM into
CM, and the results are depicted in four states as shown in Fig. 4.6. As a result, it is observed
that CM can quantify the regularity or complexity of a time series of signals. Because periodic
signal components of seizures reduce complexity levels, CM is utilized to analyze the
complexity of EEG signals. However, SWS and artifact also show rhythmic patterns, so

discrimination ability of CM is reduced. Therefore, to improve the performance of epileptic
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seizure detection, it is required to combine complementary features to CM analysis. Spectral

analysis is recruited for this purpose.

0 1

X1) 0 4 e 60 S%(1), S¥(1), and CM(1) calculation
X@) 1 5 e 61 S'(2), S%2), and CM(2) calculation
X@) 2 6| - - s'(3), S%(3), and CM(3) calculation
X&) By S'(4), S’(4), and CM(4) calculation

Fig. 4.3 Data size of EEG signals for CM calculation.

(i)
0‘4‘8‘12‘16‘20‘24‘28‘32‘36‘40‘44‘48‘52‘56‘60

. | Lif [X(28)-x(32) <r
"o, else

L,if [x(i)-x(j)<r
-:{0, | eIseJX

Fig. 4.4 Computation of the S* value.
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x()

x(i)

x(i)

0‘4‘8‘12‘16‘20‘24‘28‘32‘36‘40‘44‘48‘52‘56‘60

0‘4‘8‘12‘16‘20‘24‘28‘32‘36‘40‘44‘48‘52‘56‘60

= {1, if max [x(0) - x(4),

0, else

x(4)-x(@8)]<r -

x(i +1)-x(j +1)]<r
0, else

@] {1,if max [x(i) - x(j ),

Fig. 4.5. Computation of the S? value.
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Fig. 4.6 Complexity measurement in four behavioral states.
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4.1.2 Spectral Analysis

In this thesis, short-term Fourier transform is used to analyze spectral power distribution.
It is observed that enormous power of the absence seizure is at the fundamental frequency
(Bandl at 7-9 Hz) and at the second harmonic (Band2 at 14-18 Hz) as seen in Fig. 4.7. SWS
state contains delta rhythms (BandO) as well as some oscillations at higher frequencies.
Artifact state has high power at low and some high frequency bands. Therefore, EEG band

powers are combined with CM to improve the performance of epileptic seizure detection.

. WK . SWD
Ay A bt mwwww”ﬂm’\h\Lh" «*w«.w.w.wmw\\'\‘ﬂﬂ‘m“W'\‘["f\‘n‘”’?"ww
"

[1mv

40

800
35 700

30 600

o

T2 500

>

{400

1 {300
200
100

800
700
600
500
400
300
200
100

220

5

3

g15

* 10
5
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Fig. 4.7 Spectral analysis in four behavioral states.

The 64-point fast Fourier transform (FFT) is used to calculate the power of two
frequency bands (Bandl and Band2) of spontaneous brain waves because of its
well-established implementation in various microprocessors. Fig. 4.7 displays the highest
correlations between the power of two frequency bands (Bandl and Band2) and SWDs;
therefore, Band1 and Band?2 are selected as spectral indexes. To determine spectral indexes to

extract an SWD feature adequately, a seizure event (denominated as “1”) is correlated with
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the power of several specific frequency bands by using Pearson's product-moment correlation
coefficient. Fig. 4.8 shows that using correlation analysis between seizure event and a specific

frequency band identifies effective spectral indexes for seizure detection.

EEG: k™ SWD segment Seizure index: yx(m)
E> 0 1 0
- >
T

Correlation coefficient: Corr(m)

T —_— \3,%4
1T

Spectral index: x(m)

——

Spectrogram

Fig. 4.8 Using correlations analysis identifies spectral indexes (Bandl and Band?2).

The flowchart of the correlation analysis is shown in Fig. 4.8. Consider there are k SWD
segments. SP(t,f) is the spectrogram at time t in frequency f.

1) Define the spectral indexes X to be
X, =| % (m) (16)

where
X (m)=[SP, (Lm),SP (2,m),...,SP, (T, m)] (17)

xk(m) is the spectral index which is the spectrogram in frequency m.
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2) Define the seizure index

Ve =[4(1).4,(2).-. 4 (T)] (18)

where

(19)

(t) B 1 if thestateisSWD in timet
o, else

3) The correlation coefficient Corri(m) of the seizure index yx and the spectral index X is

(% (m) =% () (vi = ¥

Corr, (m) = = — (20)
\/Z(Xk(m)—xk(m)) > (%Y%)
4) The averaged correlation coefficient of k segments is
Corr, (m
= LRy, (21)

Slmy="*—

Fig. 4.9 shows an example of correlations between the spectral index and the seizure index.
The selected frequency bands are' Band1=8-11 Hz and Band2=17-20 Hz for subject #1. In this
project, the sampling frequency F is 200 Hz,-and the sampled data are N points. The spectral
index n of bands is calculated by the following equation, where F is spectral frequency. As a
result, the spectral index of selected frequency bands is n=4 for Band1 and n=7 for Band2 for

subject #1.

(22)
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Frequency(m)(Hz)

Fig. 4.9 'Result of correlation analysis.
After determining the selected frequency bands, we use 64-point radix-4 FFT to calculate

the power of Band1 and Band2 of 64-point EEG signals as shown in Fig. 4.10.

32
------
Time-
Size of EEG data
o123 cee.e 128129|30(31(32|33|34|35| -+ |60|61]|62]|63

Fig. 4.10 Data size of EEG signals for FFT calculation.
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Basically, discrete Fourier transform (DFT) is to compute the sequence X(k) of N

complex-valued numbers given another sequence of data x(n) of length N.
N-1

X (k)= x(n)wy" (23)

n=

where

—j2zkn
Wi =e N forO<k<N-1 (24)

The radix-4 decimation-in-time algorithm rearranges the DFT equation into four parts as

follows.

X (k) (25)
N/4-1 N/2-1 3N/4-1 N-1

= D x(MW+ D0 x(MW"+ D7 x(mWH D x(n)w" (26)
n=0 n=N/4 n=N/2 n=3N/4

n=0 n=0 n=0
(27)
N/4-1
W SN x(n + %)Wh',‘”
n=0
N/4-1
= Z(‘; |:X(n)+(—j)k x(n+%)+(—1)k x(n+%j+(])k x(n+%)}wk (28)

Using k;+4k; to substitute k, we rearrange Eq. ( 28 ) into Eq. (29 ). In this algorithm, there are

three stages involving 64-point uniform radix-4 algorithmic processes. The data flow of

64-point radix-4 FFT is shown in Fig. 4.11.
N/4-1

X (k+4k, )= {|:X(n)+(—j)kl x(n +%)+(—1)k1 x(n+%j+(j)k1 {m%ﬂwg‘h}wm (29)

n=0
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Fig. 4.11 64-point radix-4 FFT decimation-in-time algorithm.
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4.2  Classifier

Three feature indexes (CM and power of Bandl and Band?2) are input into a classifier to
verify seizure occurrences. In order to implement the proposed seizure detection method on
an embedded system, a linear classifier called linear least squares (LLS) [35] is utilized.
In mathematics, a system of linear equations is considered over-determined if there are more
equations than unknowns. The method of least squares is a standard approach to the
approximate solution of over determined systems. The LLS method finds the most
approximate linear model which is minimized the mean square error between the system
output and the desired output. Because the model’s output is only the weighted sum of three
input features, it is suitable for processing on-line system without complicated computation.

Consider an over-determined system
Y, = > X; By fori =1,2,...,m (30)
i=L

of m linear equations in n unknown coefficients, Sy, f, ..., f» with m>n. It can be written in

matrix form as

y=Xp (31)
where
Y1 X o X, :81
y=|: [, X=| : . = ||B=]": (32)
yn Xml ttt an ﬂn

In this thesis, we let the output of LLS be y, the input of LLS be X, and the weighted
coefficient of input be £. Such a system usually has no solution, so the goal is instead to find
the coefficients g which fit the equations best. The coefficients £ can be find by following

equations.
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The residual r is the difference between the observed value y and the calculated value X3

by the model:
L=y,—> X;B,fori=12,...,m (33)
j=1
Then the sum of square of the residuals S can be written

5=iri2 (34)

i=1
S is minimized when its gradient vector is zero. The elements of the gradient vector are the

partial derivatives of S with respect to the parametersf

oS u or, .
—=2) r| —-|=0,for j=1,2,...,n (35)
op; le (aﬂj
and the residuals r
or,
R R
%5, i (36)

We use Eq. (33) and Eqg. ( 36 ) in substitution for Eq. ( 35)

aS m n )
a—ﬂj—ZiZ_l:(yi—éxikﬂkj(—xij)—o,forJ—L2,...,n (37)

If B minimizes S, we have

m

Upon rearrangement, the normal equations can be rewritten

DN Xy XuBe =D X,y for j=1,2,...,n (39)
i=1 k=1 i=1

The normal equations are written in matrix notation as

(XTX)B=XTy (40)
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The optimal coefficients ,8 can be determined by following equation.

B=(X"X) X"y (41)

In training phase, all SWD durations and the non-seizure segments with the length
equivalent to the SWDs are selected for the LLS model training. In the non-seizure segments,
the ratios of the data corresponding to WK, SWS, and the artifact are 1:1:1. For example, in
Fig. 4.12, the ratios of the six data corresponding to SWD, WK, SWS, and the artifact are

3:1:1:1. The inputs X;j; of LLS classifier are formed into Eq. ( 42 ). The target value y; is O for
non-seizure segments, and 1 for seizure segments. The optimal coefficients ﬁ can be
determined by Eq. (41 ) for each rat through an off-line process.

Seizure Non-seizure
s -
-¢ |

SWD WK SWS Artifact
-

<l .
.|

CMop CMy CM; CMs; CM, CMs

Bandl, | Bandl; | Bandl, | Bandl; | Bandl, | Bandls

Bandzo Banle Band22 Band23 Band24 Band25

Fig. 4.12 An example of LLS classifier’s input X.

[CM, Bandl, Band2, 1]
CM, Bandl Band2, 1 Coeff.y,
CM, Bandl, Band2, 1| . |Coeffg, 4
CM, Bandl, Band2, 1 P Coeff, 4,
1
1_

(42)

CM, Bandl, Band2, Coeff
CM, Bandl, Band2,

Const

o O O - - B

In testing phase, the optimal coefficients ﬂ are applied for Eq. ( 43 ), where three features

are obtained from testing data. If the output LLS is larger than a threshold (T1 or T2), the
input EEG signals is classified as a seizure event.

LLS = CMx Coeff,, + Band1x Coeff,, ,, + Band 2x Coeff,,, + Coeff. .,  (43)
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4.3 EEG Data for Training and Testing

4.3.1 Training Phase

The purpose of training is to determine a fitting model which contains four coefficients
and four thresholds for each subject. Fig. 4.13 shows the procedure of training phase.
Continuous EEG signals of each rat are recorded for marking and training. After recorded,
EEG signals which correspond to seizures (SWD) and non-seizures (WK, SWS, and artifact)
are marked by specialist. The marked events as mentioned above are used to extract CM,
Band1, Band2, and BandO values. After that, we start to train eight parameters including four

coefficients and four thresholds. The following are the details of EEG data training.

Seizure(SWD)
Non-seizure(WK, SWS, Artifact)

Off-Line
Training | e
Phase
in
Computer

Acquire 4-coefficient and 4-threshold

4-coefficient (CM, Bandl, Band2, constant)
4-threshold (T1, T2, THsws, TLsws)

Fig. 4.13 Procedure of training phase.
First, we randomly select the EEG segments of four states, and the ratios of the segments
corresponding to SWD, WK, SWS, and the artifact must be 3:1:1:1 as shown in Fig. 4.14.
Second, we execute CM and FFT computation to obtain CM, Bandl, Band2, and BandO

values. Third, combined feature substitute the X of Eqg. ( 41 ), and desired output substitutes

the y of Eq. (41) like Eq. (42). Then, the optimal coefficients ﬂ can be determined. Fourth,
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the optimal coefficients ﬂ are applied for Eq. ( 43 ), where three features are obtained from

training data. Then, we search the optimal thresholds from LLS and BandO values in order to
recognize a seizure event. The flowchart of seizure determination is shown in Fig. 4.15, and
we test many sets of thresholds in detection rate and false detection rate for finding the most

optimal thresholds.

64 SWD segment

# | WK segment
SWS segment

64 artifact segment
[ e ]
[ e ]

Time

ired y
output

CM CM CM

Feature =l
extraction Band2

Bandl | Bandl | Bandl Input of LLS

Band2 Band2 | Band2

Band0

Band0 Band0 | Band0

Fig. 4.14 Feature extraction and LLS classifier training.

Y TLsws<Band0 &&

Start 3 Band0<TH5W5

—»| Seizure alarm |-

Fig. 4.15 The flowchart of seizure determination.
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In previous work, four thresholds are obtained by using exhaustive key search. In Fig.
4.16 (a), we do not calculate the distribution of seizure’s and non-seizure’s values of LLS and
Band0, and we use every set of 4-threshold to test detection rate and false detection. We need
(MxN)? times of iterations to find the best thresholds. As a result, original method wastes a lot
of time on parameter determination. To speed up parameter determination, it is proposed that
using the mean and the multiples of standard deviation finds four thresholds rapidly. We

calculate the distribution of seizure’s and non-seizure’s values of LLS and BandO. According

2
to the step as mentioned above, we only need (Mx Ej times of iterations to find the best

m n
thresholds.
M/m times to search T1 value
M times to search T1 value Mean Standard deviation
wiy Wiy Wiy v W ¥ ] v ¥ )
The value of LLS The value of LLS
1YY 1Y MR T T (Y131 3 S N ) ) [ t X
M times to search T2 value Mean Standard deviation
M/m times to search T2 value
N/n times to search TLsws value
N times to search TLsws value Mean Standa{d d=eviation
I T W e & Wity ) ¥ i ] ] | T ) )
The value of BandO The value of Band0
I - [TI1 [IIIY) [} N [} [} - [}
N times to search THsys value Mean Standard deviation

N/n times to search THsws value

(a) (b)
Fig. 4.16 (a) Original search for 4-threshold, (b) Proposed search for 4-threshold.
The following are the steps of the fast parameter determination method. Moreover, the

flowchart of fast parameter determination method is depicted in Fig. 4.17.
1) The four coefficients of Eqg. ( 43 ) is substituted for optimal coefficients ﬁ and we

calculate the LLS value of Eq. (43).
2) We compute the mean and the standard deviation of actual non-SWD’s LLS value as

shown in Fig. 4.18 (a), so T1 can be written

T1=nonSWD's LLS+ix o (nonSWD's LLS) (44)
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3)

4)

5)

6)

where i is multiple of standard deviation. We choose a real number to substitute i for
calculating T1, and the detection rate of our system is determined in this step.
We compute the mean and the standard deviation of actual SWD’s Band0 value as

depicted in Fig. 4.18 (a), so THsws can be written
THgys =SWD's Band 0+ jx o (SWD's Band 0) (45)

where j is multiple of standard deviation. We choose a real number to substitute j for
calculating THsws, and the false detection rate is reduced in this step.

After executing three steps as mentioned above, we compute the mean and the standard
deviation of FP’s LLS value and FP’s BandO value as shown in Fig. 4.18 (c). T2 and

TLsws can be written

T2 =FPSLLS+kxo(FPsLLS) (46)

TLgys = FP'sBand0 +1x o (FP's Band 0) (47)

where k and | are multiple of standard deviation. We choose real numbers separately to
substitute k and | for calculating T2 and TLsws, and the false detection rate is also reduced
in this step.

We test the detection rate and the false detection rate for 4-threshold which is determined
by Step(2) to Step(4).

Changing the real number of i and j, we iterate form Step (2) to Step (5). In Step (4), we
also change the real number of k and |, we iterate form Step (4) to Step (5). Finally, we

can select the best threshold from the test in Step (5).
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Start to find T1, T2, THsws, TLsws
i=0, j=0, k=0, I=0
v

(1) Calculate LLS

v
(2) Calculate T1'
Tl’z[tll tly -t - tl(M/m)]
v

(3) Calculate THsws'
THsws'=[thsws; thsws; -+ thsws; --- thswSn)]

i=i+1

=i+l

v |
7Y

T1=tl;
THSWS=thSWSj
v
(4) Calculate T2'
T2'=[t2, t2; -+ 12y -+~ tZ(M/m)]
Calculate TLSWSI
TLsws'=[tIsws; tlsws; -+ tlsws; -+ tISwsnm)]

k=k+1

v |
A

I=1+1

T2=t2y
TLSWS=t|SWS]

(5) Calculate Performance

;

i1

=

Fig. 4.17 Flowchart of fast parameter determination method.
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4)T2

FP ™ ™

2T T1
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(b) Band0 (d) (@) TLsws THsws  Bando

Actual non-seizure

- Actual seizure

TN  True Negative: Actual non-seizure, tested non-seizure
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Fig. 4.18 (a) Original data; (b) Determine T1,

(c) Determine THsws, (d) Determine T2 and TLsws.

4.3.2 Testing Phase

Fig. 4.19 shows the procedure of testing phase. In testing phase, after the parameters of a
seizure detection model, which include 4-coefficient of LLS classifier and 4-threshold of
seizure determination, are determined from training phase, the parameters are downloaded to
our processor. The seizure detection algorithm as shown in Fig. 4.20 is executed on
OpenRISC. After initializing the system, we start to acquire 32-point EEG data. Then, we
compute 64-point data of time domain CM and frequency domain FFT. After the CM, Bandl,
and Band2 values are obtained, LLS value is calculated by Eq. ( 43 ). A seizure alarm is
discriminate from normal EEG signals by determining LLS and BandO values. When the
counter reaches “3”; that is, N¢ equals 3 in Fig. 4.20, a seizure is determined. In the meantime,

an enable signal is generated to stimulator in our system.
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Fig. 4.19 Procedure of testing phase.
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Fig. 4.20 Flowchart of on-line seizure detection algorithm.
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Chapter 5 Design and Implementation

This chapter presents the design and implementation of the proposed low-power BSP,

including hardware architecture and firmware.

5.1 The Low-Power Biomedical Signal Processor

The low-power BSP implementation bases on the OR1200 for epileptic seizure control.
OR1200 is a 32-bit scalar RISC with Harvard micro-architecture, five stage integer pipeline,
memory management units (MMU), and basic DSP capabilities. Supplemental facilities
include debug unit for real-time debugging, high resolution tick timer, programmable
interrupt controller, and power management support.-OR1200 is designed for embedded,
portable, and networking applications. Fig. 5.1 (a) shows the block diagram of OR1200.

Because the area is proportional to power consumption, the unnecessary interfaces and
modules are removed for optimizing power consumption. The external interfaces of the power
management, debug module and interrupt controller are removed. Some modules which
consist of the memory management units and the caches are also removed. Furthermore, the
instruction and data bus are controlled by an arbiter. Instruction and data bus are merged, so
the data bandwidth is reduced. Instruction bus has the highest priority to access bus. The
purpose of merged buses is a trade-off between power and execution time. Fig. 5.1 (b) shows

the block diagram of the proposed low-power BSP for epileptic seizure control.
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Fig. 5.1 (a) Block diagram of OR1200 processor, (b) Block diagram of the proposed

low-power BSP.

The proposed BSP is implemented in TSMC 0.18 um complementary—metal-oxide
semiconductor 1P6M process and ARM design kit by using cell-based design flow. Fig. 5.2
shows the chip layout and die photo. A total of 104 pads are utilized in this work, which are
71 input/output pads and 33 power pads. The core area is 1.0x1.0 mm and the chip area is
1.75x1.75 mm. The maximum operating clock rate is 110.0 MHz at 1.8 V core supply and 3.3
V input/output (1/0) pads supply. The power consumption of core and I/O pads is 0.23
mW/MHz and 0.26 mW/MHz, respectively. One vertical and two horizontal power strips are
distributed in the core to reduce voltage drop. The summary of circuit characteristics is listed

in Table 5.1.
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Fig.5.2 The (a)

(b)

chip layout and

(b) die photo of the implemented low-power BSP.

Technology

TSMC 0.18 um 1P6M Logic Process

Cell Library

TSMC SAGE-X Standard Cell Library

Core / Chip Area

1000%1000 mm? / 1750x1750 mm?

Core Supply Voltage / 1/0 Supply Voltage 1.8V / 3.3V
Maximum Operating Clock:Rate 110.0 MHz
Gate Count 60,132

Power Dissipation of Core 0.23 mW/MHz
Power Dissipation of 1/0 0.26 mW/MHz
Power Dissipation of Chip 0.49 mWI[MHz

Table 5.1 Summary of the proposed low-power BSP.
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5.2  Firmware Implementation

In brief, the firmware in the low-power BSP consists of three parts, data acquisition,
seizure detection, and stimulation pulse generation. Fig. 5.3 shows the flowchart of the main
program which comprises seizure detection algorithm and two interrupt service routines (ISRs)
for a timer. In previous work, ISR1 also computes S* and S, and the timing diagram is
depicted in Fig. 5.4 (b). It wastes time on calling subprogram which is S* and S? computation,
when ISR1 is started up. Moreover, because of the subprogram as mentioned above, the result
of previous 32 samples is delayed. As a result, we rearrange main program, and the timing
diagram is shown in Fig. 5.4 (a). The result of previous 32 samples is obtained earlier than

that of previous work. The following are the details of three sub-programs.

Stimulation Pulse

Data Acquisition Seizure Detection )
Generation

Current 32 samples

Seizure
Determination

Current 1'st EEG
Sample

System

Initialization LLS

Previous 32 samples

ISR1 ISR2

Update One EEG Sample

Fig. 5.3 Flowchart of (a) data acquisition, (b) seizure detection, and

(c) stimulation pulse generation.
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Previous Current Next
32 samples 32 samples 32 samples

< [
ot -

[ [
- |

Result of previous 32 samples

| |
1/ / (@)

Result of previous 32 samples

t-31 1t / t+32 I t+63
(b)

CM computation on previous 32 samples

1

FFT computation on previous 32 samples
. LLS classification on previous 32 samples
. Seizure determination on previous 32 samples
[ s'and s? computation on current 32 samples

Fig. 5.4 (a) The proposed timing diagram, (b) Original timing diagram.

38



5.2.1 Data Acquisition

In data acquisition stage, the processor download digitized 8-bit EEG signals from GPIO
registers which save the digitized data of ADC conversion. The acquisition rate is 200 Hz in
this project. As a result, ISR1 is configured as 5-ms period for the data acquisition.

In previous work, declaring three arrays processes digitized data in the main program as
shown in Fig. 5.5. A data buffer downloads digitized data from GPIO registers every 5ms.
Before computing S, S?, and FFT, main program must copy data to the $'S? buffer and the
FFT buffer. It wastes a lot of time on duplicating data. In this work, declaring two arrays
processes digitized data in the main program as shown in Fig. 5.6. The main program also
downloads digitized data to data buffer. However, the program directly computes S* and S°
from the data buffer’s data. It does not need time to copy data. The program also copy data to
the FFT buffer because the values of FFT buffer are changed after computed. Despite
additional memory the program declared, the main program which we proposed is more

efficient than previous one.

EEG Packet 1 2
DataBuffer[32] S'S?Buffer[32*2] FFTBuffer[32*2]

Stepl-1] 1 > 1

Step1-2| 1 1|1 >
Step1-3| 1 111 o 1] 1
Step2-1| 2 1> 2 1 1
Step2-2| 2 2 | 2 ™ 2
Step2-3| 2 2 | 2 ol 2] 2

32 samples
FFT computation on previous 32 samples

D st and S? computation on current 32 samples

Fig. 5.5 Original data flow.
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EEG Packet | 1 2131 4]|5]6
FFTBuffer[32*2] DataBuffer[32*4]
Step 1 » 1
Step 2 1] 1 2
Step 3 1 2 < 3 1 2 3
Stepd | 2 | 3 | 314123
Step 5 3 4 3 4 5 3
Step6 | 4 | 5 < 6 |4]5]|6

32 samples
FFT computation on previous 32 samples

[[] s"and S’ computation on current 32 samples

Fig. 5.6 ~The proposed data flow.

5.2.2 Seizure Detection

After 32-sampled data are buffered, program.start to execute digital signal processing
(DSP) including time domain CM, frequency domain FFT, classification LLS, seizure
determination. In order not to interfere with the precise sampling time, the DSP computation
is performed in the background with the lowest priority. The CM is calculated by Eq. ( 13)
after the S* and S? values are updated by the 32-sampled data. The FFT is accomplished by
applying 64-point radix-4 FFT algorithm. The counter of seizure detection is incremented if a
seizure alarm is determined by the LLS calculation; otherwise, the counter is cleared. When
the counter reaches “3”, the flag for the seizure suppression is set. Then, stimulation pulses

are generated in ISR2.
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5.2.3 Stimulation Pulse Generation

When classifier determines a seizure occurrence, the processor starts tick timer to
generate 800-Hz, 40% duty cycle pulses for 0.5 s. ISR2 is set to a lower interrupt priority than

ISR1, so the sampling time of EEG signals is guaranteed.
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Chapter 6 Evaluation

A prototype system is implemented for the purpose of verifying the functionality and
evaluating real-time performance. Fig. 6.1 illustrates the functional block diagram of the
experiment setup, and Fig. 6.2 shows the testing board of the proposed low-power BSP with
FPGA-based evaluation platform. In the prototype system, DE-2 70 FPGA-based evaluation
board links the implemented processor and the host computer together. The host computer is
used to train optimal parameters and save EEG signals of Long-Evans rats. The evaluation
board which is able to upload instructions, start processor, halt processor, download results,
etc. plays a role of a debugger of the processor. The EEG dataset and the instructions of
processor are stored in the 2 MB memory. The proposed processor executes main program of
seizure detection algorithm. Fig. 6.3 presents function verification flow of this prototype
system. The power of the processor is supplied by the Keithly 2400 digital source meter,
which provides 100-nA resolution under 10-mA measurement range [36]. After the system is
started up, the evaluation board downloads-codes of seizure detection and an EEG dataset
from the host computer. Then, evaluation board enables processor. The processor accesses an
EEG dataset and executes seizure detection algorithm continuously. As long as the execution
is finished, the detection results are downloaded into the host computer for functional

verification and performance evaluation.
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Fig. 6.1 Functional block diagram of experiment setup.
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Fig. 6.2 The testing board of the proposed low-power BSP with FPGA-based evaluation

platform.
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Fig. 6.3 Function verification flow.

6.1 Real-Time Seizure Detection

Fig. 6.4 shows the timing diagram of the seizure detection firmware. The highest
operating clock rate can be 110 MHz. However, in order to reduce power consumption, we
decrease clock rate of the low-power BSP as low as possible: In this thesis, the proposed BSP
operates at 12.56 MHz clock rate for real-time seizure detection. The execution time is
obtained by ticking timer between the start and the end of each task. Then, each task of the
execution time downloads to host computer. In Fig. 6.4, when previous 32 samples are
retrieved, the S* and S? values for CM computation are updated. After the computation of CM,
FFT, and LLS classification is finished in current 32-sample cycle, the seizure determination
is started to calculate. Although the DSP computation spans several sampling periods,
sampled data collection which performs with the highest priority is not interfered. As shown
in Fig. 6.4, after 32 sampled data are collected, determining the seizure occurrence requires
about 38.8 ms latency. The total computation time is 159.35 ms, and it is less than a
32-sample cycle (160 ms). The timing diagram shows that the seizure detection algorithm can

be executed continuously in the implemented processor. In order to optimize power
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consumption, the subprograms are rescheduled to reduce data hazard and branch hazard,
which can slow down operation frequency. After a seizure is onset, determining the seizure
occurrence requires from three to four times of 32-sample (0.48-0.64 s) cycles along with
DSP computation duration. As a result, it takes about 0.52-0.68 s to start the seizure
suppression. Theoretically, we consider one 32-sample cycle for tolerance. The range of
seizure determination delay is from four to five times of 32-sample cycles (0.64-0.80 s) and
DSP computation duration (38.8 ms); that is, it needs about 0.68-0.84 s for seizure detection.
Fig. 6.5 presents the EEG signals with accurate or false seizure detection. It shows that the

seizure detection delay is about 0.6-0.8 s after the seizure onset.

Previous Current Next
32 samples 32 samples 32 samples

< .
ot >

<l .
- >

A
\i

t-31 7 t t+8 t+31t+32 t+63
CM computation on previous 32 samples 1.74 ms
FFT computation on previous 32 samples 36.76 ms

LLS classification on previous 32 samples 0.14 ms
Seizure determination on previous 32 samples 0.16 ms

S' and S? computation on current 32 samples 120.55 ms

Fig. 6.4 Timing diagram of the seizure detection firmware.
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Fig. 6.5 EEG data.and the seizure events detection by proposed BSP.

(@) SWD in WK state, (b) SWD. in SWS state, (c) false detection in SWS state.

6.2  Seizure Detection Accuracy

Performance of the seizure detection algorithm which applies on four adult male
Long-Evans rats is assessed. The four rats are affected by absence seizures. After the training
procedure which describes in Chapter 4 is executed in each individual rat, and then the
parameters of a training model are used for on-line seizure detection. In order to evaluate the
performance of the algorithm, two rats are measured under a 5-hour execution of the system,
and other two rats are measured under a 24-hour execution of the system to verify robustness.
Table 6.1 shows the observed SWD duration, and the two selected frequency bands for each

rat.
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Total SWD SWD SWD SWD Band1 Band?
Subjects Duration Duration Min Mean Max (H2) (H2)
(h:m:s)  (h:m:s) (s) (s) (s)
#1 05:00:00 00:27:34  0.50 5.09 25.69 7-10 15-18
#2 05:00:00 00:16:42  0.50 3.96 42.75 7-10 15-18
#3 24:00:00 00:49:34  0.19 4.94 43.32 7-10 15-18
#4 24:00:00 01:11:36 0.20 6.17 4951 7-10 15-18
Table 6.1 Observed SWD duration and two selected frequency bands.

The function of the seizure detection algorithm is depicted in Fig. 6.5. The SWD signals
of subject #2 in WK state, and the detection event are shown in Fig. 6.5 (a). Fig. 6.5 (b) also
shows a similar detection event when the SWD signals of subject #2 occurs in SWS state. Fig.
6.5(c) shows a false detection happens on subject #2 in SWS state because the seizure
detection algorithm regards the EEG signals in SWS as a seizure event. Fig. 6.6 shows that
five SWDs are marked by neurologist during40.seconds on subject #2. These SWDs are all
detected by the proposed processor. One SWD.marked by specialist may contain more than
one detected event because of calculation of 32-sample window. We regard these detected
events within marked SWD as'same event; otherwise, we treated them as false detection. The
definition of detection accuracy is

Detection Accuracy (%)= Detected SWD _ g5 (48)

SWD

Table 6.2 shows the results of the seizure detection algorithm. The seizure detection
accuracy is above 92% as shown in Table 6.2, and it demonstrates the functionality of the
implemented processor and the effectiveness of the algorithm. The robustness of the
algorithm is also verified by 24-hour execution of the continuous EEG signals of rats.
Although the theoretical seizure detection delay of the proposed algorithm is about 0.68
s-0.84 s, the delay would be slightly varied among subjects due to variation of EEG
complexity and spectrum energy. Table 6.2 shows the detection delay is varied from 0.63 s to

0.79 s, and the average is 0.6975 s. Table 6.3 summarizes the performance of two parameter
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4
determination methods. The fast parameter determination method is (@j times faster

than previous work. The seizure detection algorithm is still shown several advantages,
including high seizure detection rate and low detection delay after seizure onset, with the fast

parameter determination method.
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Fig. 6.6 EEG containing multiple absence seizure SWDs and detected seizure events by

proposed low-power BSP.

. Detected Accuracy  False Detection
Subjects  State A\ SWD (%) Detection delay (s)

Awake 294 285 8
L 28 gee! 28 0.79
Awake 222 215 14
#2 Sleep 30 30 97.22 4 0.69
g Awake g, 554 92.33 150 0.63
& Sleep
gy Awake gy 631 92.25 94 0.68
& Sleep
Table 6.2 Accuracy and false detection of
the epileptic seizure detection algorithm.
Original Parameter Proposed Parameter
Determination Method Determination Method
Iteration 1000* 7'
Detection Accuracy (%) 92-99 92-99
Detection delay (s) <1 0.63-0.79

Table 6.3 Performance of two parameter determination methods.
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6.3 Power Consumption Comparison

The clock rate of the implemented processor is 12.56 MHz for real-time seizure
detection algorithm computation, and the BSP consumes 6.66 mW. The power consumption
of core and 1/0 is 3.128 mW and 3.536 mW, respectively. The total power consumption is
evaluated about 7.21 mW, including our low-noise pre-amplifier, filter [37, 38] (468 uW),
10-bit analog-to-digital converter (80 uW), and proposed BSP (6.66 mW). In previous work
[23], using enhanced 8051 microcontroller and a signal conditioning board consumes 117.66
mW. Energy per seizure event determination (32-sample window) is 1.15 mJ for this work
and 18.8 mJ for enhanced 8051 prototype, respectively. Compared with previous
microcontroller implementation, over 90% power reduction and energy saving are improved.
The evaluation results show that the.overall system-is powered by a 3.7-V, 1100-mAh battery,
and it can be operated for 18.9 weeks. Mareover, the proposed BSP has passed the stress
testing for 2 weeks to guarantee the stability. Table 6.4 summarizes the comparison of

epileptic seizure detectors.

Enhanced 8051

microcontroller This work
+ signal conditioning board +OUrAFE
Operating Frequency 32 MHz 12.56 MHz
Power Consumption of
Analog Part N/A 0.548 mW
Power Consumption of
Digital Part NIA 6.66 mw
Total Power Consumption 117.66 mW 7.21 mW
Energy per Seizure Event
Determination 18.8mJ 1.15m)
Power Normalization 100% 6.2%
Battery Life 28 hours 18.9 weeks

(3.7V, 1100 mAh)

Table 6.4 Comparison of epileptic seizure detectors.
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Chapter 7 Conclusion and Future Work

7.1  Conclusion

In this thesis, a fast parameter determination method is proposed. It is proposed that
using the mean and the multiples of standard deviation finds the optimal model rapidly. The
proposed parameter determination method is 416x10° times faster than our previous work,
and it can attain the same performance. Moreover, a processor core which bases on RISC
technology consumes only 6 mW for real-time epileptic seizure detection algorithm.
Compared with our previous prototype, the measurement results show that the implemented
processor can reduce 93.8% power. consumption.. The developed bio-signal processor,
firmware and epileptic seizure detection algorithm is able to detect the seizure signals in
0.63-0.79 s, and the detection accuracy is 92-99%. The measurement results are based on the

recorded EEG signals of four free moving animal models.
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7.2  Future Work

The OpenRISC core will be integrate with analog front-end circuitries and stimulators to
realize a chip-on-board seizure controller as shown in Fig. 7.1 (a). The AFE and stimulator
board is shown in Fig. 7.1 (b), and the epileptic seizure detector board which uses Altera
Cyclone 111 FPGA is shown in Fig. 7.1 (c). The successful of this research provides a solid
base to integrate with analog front-end circuitries and stimulators to build up a
system-on-a-chip solution. The developed seizure detector can be applied to monitor the
online EEG signals and integrate with analog front-end circuitries and an electrical stimulator

to perform a closed-loop seizure controller in the future.

27 mm x 25 mm 37 mm x 39 mm

Seizure Detector
on the Back

AFE Board
on the Head

Experimental Subject

(@)
AFE and Epileptic Seizure
Stimulator Board Detector Board
EEG Data
=, = TS B (Digital) o R
BEA | . I
| e |Gt :
AFE : -
- = Control f
.. ic Seizure Detector i
)| @D _:P35E14C',\,',FFLGA
(b) ()

Fig. 7.1 Closed-loop seizure controller using FPGA.
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