MC-CDMA 與 MC-DS-CDMA 在多路徑通道下 之系統效能比較

研究生: 蔣政儒 指導教授: 張文鐘 教授

國立交通大學電信工程學系碩士班

中文摘要

下一代的蜂巢式行動通訊系統需提供高速傳輸之無線通訊網路,目前以OFDM/CDMA之多重進接方式最受重視,本篇論文將介紹並比較兩種不同的OFDM/CDMA 系統:多載波分碼多重進接(MC-DS-CDMA)。在下鏈的傳輸中,MC-CDMA在接收端需具備通道等化器以補償通道效應並抑制干擾與雜訊,主要有最大比例合併等化器(Maximum ratio combination)、等增益合併等化器(Equal gain combination)、強制歸零等化器(Zero forcing)與最小均方差等化器(MMSE),我們也將比較各等化器效能。對MC-DS-CDMA系統我們提供一個低複雜度的改良方式,改善效能的同時也完全抑制多用戶干擾。在通道估計方面我們以指標式通道估計搭配線性內插來完成。本論文最後將模擬比較MC-CDMA與MC-DS-CDMA在數種通道狀況下的效能。

Comparison of the Performance of MC-CDMA and MC-DS-CDMA under Multipath Fading Channel

Student: Cheng-Ju Chiang Advisor: Dr. Wen-Thong Chang

Department of Communication Engineering

National Chiao Tung University

Abstract

The next generation cellular mobile communication system will provide high data rate for internet and digital broadcasting. OFDM/CDMA is one of the most promising multiple access method. This thesis introduces and compares two different OFDM/CDMA systems: MC-CDMA and MC-DS-CDMA. For downlink MC-CDMA system, we design a channel equalizer to compensate the channel effect and suppress interference and noise at the receiver. There are mainly four kinds of channel matching methods: Maximum ratio combining, Equal gain combining, Zero forcing combining, and MMSE combining. We also compare the performance of these methods. We propose an improved MC-DS-CDMA system with low complexity and null interference. We use pilot based channel estimation to estimate the channel frequency response. The performance of MC-CDMA and MC-DS-CDMA is simulated by the computer under several channel models.

誌謝

本論文能夠順利完成,首先要感謝指導教授張文鐘這兩年來孜孜 不倦的指導,不僅讓我學到許多與多媒體通訊相關的知識,也讓我懂 得如何從各種角度去思考事物的道理。此外,也要感謝三位口試委 員:李大嵩博士、鐘嘉德博士,以及溫志宏博士,三位老師能蒞臨指 導我們的論文口試,並且給予很多正面的建議讓這篇論文能更加完 備。

在這兩年的研究生生涯,非常感謝與我共同努力的同窗好友承軒,承霈,以及明昇,我們彼此鼓勵,互相切磋,也一起度過重重的考驗;德倫,豬頭,趙爸,遠青,以及孋雅學長姐,你們解決了我的各種疑難雜症,感謝你們的耐心與關心。還有可愛的學弟們與所有實驗室成員,雖然相聚時間很短,但這段日子著實令人難忘。

感謝我的家人,你們的關心雖然有時是我的壓力,但也總是推動 我向前的助力。尤其是姊姊,辛苦照顧受傷的媽媽,讓我沒有後顧之 憂。最後,感謝總是無可救藥支持我、鼓勵我的俐珍,在我徬徨時讓 我堅定,在我難過時給我安慰,在我遲疑時催促我向前,謝謝妳。

最後感謝一群在背後無條件支持我的朋友們,你們的關心與鼓勵 讓我不斷的向前邁進,在此與各位分享這份榮耀與喜悅。

目錄

中文摘要		
英文摘要		
誌謝		
目錄		
表目錄		
圖目錄		
第一章	緒論	1
第二章	OFDM 簡介	4
2.1	OFDM 架構	4
2.2	OFDM 的正交性	8
2.3	防護區間的插入	8
2.4	時變通道下之載波間干擾	11
第三章	OFDM 指標式通道估測	14
3.1	指標式估測法系統模型	14
3.2	Pilot 位置的安排	15
3.3	Pilot 位置的通道響應估測	20
	3.3.1 LS 演算法	
	3.3.2 MMSE 與 LMS 演算法	
	3.3.3 通道內插	25
第四章	正交分頻分碼多工調變系統之比較	27
4.1	華氏碼	27
4.2	多載波分碼多重進接系統(MC-CDMA)	28
	4.2.1 傳送端架構	28
	4.2.2 接收端架構	31
	4.2.3 通道匹配方式	33
	4.2.4 效能分析	38
	4.2.5 完美通道估計之模擬分析	40
	4.2.6 多位元傳送系統	56
4.3	多載波直接序列分碼多重進接系統(MC-DS-CDMA)	60
	4.3.1 傳送端架構	60
	4.3.2 接收端架構	63
	4.3.3 效能分析	65
	4.3.4 完美通道估計之模擬分析	67
	4.3.5 改良型多載波直接序列分碼多重進接系統	69

第五章	基於 M	IATRICE 計畫之系統模擬	73
5.1	移動速	上率為 10 Km/hr($f_d T = 0.000$)	95)時的模擬結果77
	5.1.1	指標式通道估計	77
	5.1.2	MC-CDMA 系統模擬	83
	5.1.3	MC-DS-CDMA 系統模擬	89
5.2	移動速	上率為 300Km/hr($f_d T = 0.02$	84)時的模擬結果94
	5.2.1	指標式通道估計	94
	5.2.2	MC-CDMA 系統模擬	97
	5.2.3	MC-DS-CDMA 系統模擬	99
第六章	結論與	未來展望	101
參考文獻	ţ		103
附錄			107

表目錄

表格 4.2-1	MC-CDMA 單位元傳送系統模擬參數	40
表格 4.2-1	MC-CDMA 單位元傳送系統通道模型	41
表格 4.3-1	MC-DS-CDMA 系統模擬參數	67
表格5-1	基於MATRICE之系統模擬參數	74
表格 5-2	BRAN 無線诵道模刑	.75

圖目錄

圖 2.1-1 多載波調變系統傳送端	5
圖 2.1-2 非重疊次載波分配	6
圖 2.1-3 重疊次載波分配	6
圖 2.1-4 基於 FFT/IFFT 的 OFDM 傳送接收架構	7
圖 2.3-1 防護區間的插入方式	9
圖 2.3-2 沒有加防護區間	9
圖 2.3-3 加防護區間消除 ISI	9
圖 3.1-1 指標式估測法的 OFDM 系統模型	14
圖 3.2-1 Pilot 的安排樣式,灰色為 pilot 位置,白色為資料位置	16
圖 3.2-2 基本 pilot 排列方式 (a)Block-type (b)Comb-type	18
圖 3.3-1 一階線性通道內插	26
圖 4.2-1 MC-CDMA 系統第 k 個用戶傳送端	29
圖 4.2-2 MC-CDMA 系統之頻譜使用	
圖 4.2-3 MC-CDMA 系統第 k 個用戶接收端	31
圖 4.2-4 簡化後之 MMSE 通道匹配示意圖	35
圖 4.2-5 MC-CDMA 在通道 A 中完美通道估計的系統效能	49
圖 4.2-6 MC-CDMA 在通道 A 中多用户的系統效能	50
圖 4.2-7 MC-CDMA 在通道 A 中效能與理論值比較	50
圖 4.2-8 MC-CDMA 在通道 A 中多用戶效能與理論值比較	51
圖 4.2-9 EGC 匹配方式在通道 A 中內積所得信號,干擾及雜訊關係	51
圖 4.2-10 MRC 匹配方式在通道 A 中內積所得信號,干擾及雜訊關係 .	52
圖 $4.2-11$ EGC 匹配方式在通道 A 中, MC -CDMA 因展頻對 OFDM 造成	
SINR 的增益	52
圖 4.2-12 MRC 匹配方式在通道 A 中,MC-CDMA 因展頻對 OFDM 造成	ı
SINR 的增益	53
圖 4.2-13 OFDM 與 MC-CDMA 滿載時系統容量的比較	53
圖 4.2-14 MC-CDMA 在通道 B 中完美通道估計的系統效能	54
圖 4.2-15 MC-CDMA 在通道 B 中多用户的系統效能	54
圖 4.2-16 MC-CDMA 在通道 C 中完美通道估計的系統效能	55
圖 4.2-17 MC-CDMA 在通道 C 中多用户的系統效能	55
圖 4.2-18 MC-CDMA 在通道 D 中完美通道估計的系統效能	56
圖 4.2-19 多位元 MC-CDMA 系統傳送端架構	57
圖 4.2-20 區段交錯器	58
圖 4.2-21 多位元 MC-CDMA 系統接收端架構	59

圖 4.2-22 區段解交錯器	59
圖 4.3-1 MC-DS-CDMA 系統第 k 個用戶傳送端	60
圖 4.3-2 MC-DS-CDMA 在時域展頻示意圖	61
圖 4.3-3 MC-DS-CDMA 系統第 k 個用戶接收端	63
圖 4.3-4 MC-DS-CDMA 在通道 A 中系統效能與理論值比較	68
圖 4.3-5 MC-DS-CDMA 在通道 B 中系統效能與理論值比較	69
圖 4.3-6 具頻率分集之 MC-DS-CDMA 系統傳送端	70
圖 4.3-7 P=4, S=3 時傳送信號頻譜圖(相同顏色代表相同信號)	71
圖 4.3-8 具頻率分集之 MC-DS-CDMA 系統接收端	72
圖 5-1 MATRICE 提供傳輸鮑率與移動速率關係	73
圖 5.1-1 通道 A 演算法之收斂曲線	79
圖 5.1-2 通道 B 演算法之收斂曲線	79
圖 5.1-3 通道 A 中不同演算法 Pilot 估計效能	80
圖 5.1-4 通道 B 中不同演算法 Pilot 估計效能	80
圖 5.1-5 在通道 A 經內插後通道估計之效能	81
圖 5.1-6 在通道 B 經內插後通道估計之效能	81
圖 5.1 -7 D_f = 8 ,在通道 A 經內插後通道估計之效能	82
圖 5.1 -8 D_f =8,在通道 B 經內插後通道估計之效能	82
圖 5.1-9 MC-CDMA 系統在通道 A 中效能	86
圖 5.1-10 MC-CDMA 系統在通道 A 中多用戶效能影響	86
圖 5.1-11 MC-CDMA 系統在通道 B 中效能	87
圖 5.1-12 MC-CDMA 系統在通道 B 中多用戶效能影響	87
圖 5.1-13 通道狀況對多用戶 MC-CDMA 效能影響	88
圖 5.1-14 不同演算法對 MC-CDMA 在通道 B 下的效能影響	88
圖 5.1-15 D_f =8 時,MC-CDMA 系統在通道 B 中效能	89
圖 5.1-16 MC-DS-CDMA 系統在通道 A 中效能	92
圖 5.1-17 MC-DS-CDMA 系統在通道 B 中效能	92
圖 5.1-18 具頻率分集之 MC-DS-CDMA 系統在通道 A 中效能	93
圖 5.1-19 具頻率分集之 MC-DS-CDMA 系統在通道 B 中效能	93
圖 5.2-1 通道 A 中 Pilot 通道估計效能, v=300Km/hr	95
圖 5.2-2 在通道 A 經內插後通道估計之效能, $v=300 Km/hr$	95
圖 5.2-3 通道 B 中 Pilot 通道估計效能, v=300Km/hr	96
圖 5.2-4 在通道 B 經內插後通道估計之效能, $v=300 Km/hr$	96
圖 5.2-5 在通道 A 中移動速率對單用戶效能的影響比較	97
圖 5.2-6 在通道 B 中移動速率對單用戶效能的影響比較	98
圖 5.2-7 在通道 A 中移動速率對多用戶效能的影響比較	98
圖 5.2-8 MC-DS-CDMA 於通道 A 中效能, v=300Km/hr	99
圖 5.2-9 MC-DS-CDMA 於通道 B 中效能, v=300Km/hr	100