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Abstract

Epilepsy is one of the most commaon neurological disorders, by which around 1% of the
people in the world are affected. Unfortunately, 25% of the epilepsy patients cannot be treated
sufficiently by antiepileptic drugs and epilepsy surgery. If seizures cannot be well controlled,
the patients experience major limitations in their lives. In.recent years, open-loop seizure
controllers, such as vagus nerve and deep brain stimulation devices, have been proposed, but

the effective rates of these devices are limited to 45%.

In addition, low power and small hardware area are two important targets for implantable
and portable devices. To overcome these issues, a real-time closed-loop seizure detection
method is proposed. A multi-channel closed-loop epileptic seizure detector (MCESD) receives
EEG signals of rats through ADC and delivers a stimulus at seizure. The seizure detection
algorithm is realized by MCESD. The MCESD is implemented in a TSMC 0.18um CMOS
process. The seizure detection accuracy of device is above 94.6% from seizure detection

algorithm with MCESD implementation, and the power of chip consumes 114.4p\W.

Keywords: Epilepsy, seizure detection, closed-loop, System-on-a-chip (SOC).
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Chapter 1 Introduction

1.1  Motivation

Epilepsy is a common neurological disorder characterized by a predisposition to an
unprovoked recurrent seizure. Approximately 1% of the people in the world have epilepsy.
Antiepileptic drugs are the mainstay of treatment but many suffer from systemic side effects,
and one-third of the patients are non-responsive. Half of the refractory patients may profit
from epilepsy surgery [1]. Unfortunately, 25% of the epilepsy patients cannot be treated
sufficiently by any available therapy [2]. If seizures cannot be well controlled, the patients

experience major limitations in family, social, educational, and vocational activities.

Epilepsy is caused by abnormal discharges in the brain, and electroencephalogram (EEG)
is the physiological signals reflecting the brain dynamics. Thus EEG has been an especially
valuable tool for evaluation, detection, and treatment of epilepsy. In recent years, there has
been growing interests in developing responsive epilepsy therapy devices that like electrical
stimulation to stop seizures at their onset. Hence, current devices for epilepsy can be

categorize two types, open-loop and closed-loop [3].

Open-loop devices chronically modulate brain activity, and the stimulation is regularly
switched through an internal clock to restrain seizures, such as the vagus nerve stimulation or
deep brain stimulation. However, the effective rates of these devices are limited to 45%.
Therefore, a closed-loop device is proposed, which is more complex devices that monitor
physiological signals and make a therapeutic response based on changes in these signals. One
important technique required for a on-line seizure detection system is that it can suppress the

seizure as early as possible when the seizure occurs.



A real-time signal process and feedback are the kernel of a closed-loop seizure controller.
Recent research has proposed the implementation of hardware prototypes for epileptic seizure
detection [4-12]. Some available epilepsy-related systems primarily focus on off-line analysis
of recording brain activities. Lately, some groups have developed real-time epileptic seizure
detection systems. Wavelet analysis, spectral analysis and support-vector machine (SVM) are
used to analyze signals and detect seizures, and the epileptic seizure detection accuracy
average is above 86% in most of papers. The response time for seizure detection is more than
3.7 seconds or often not mentioned. In [4, 7, 12], closed-loop seizure control systems relied
on analog circuits extracting seizure features. In these closed-loop systems, the discontinuous
EEG data fragments are often used to validate detection algorithm. However, it’s

unsatisfactory to validate the robustness of detection algorithm.

Therefore, the seizure detection algorithm combining approximate entropy (ApEn) with
the EEG spectrum to detect seizures has been proposed. We use the continuous EEG signals
to prove that the detection algorithm works and keeps the highly successful detection rate.
However, the previous implementations based.-on-8051 microprocessor consume more power
and occupy more area compared with pure hardware implementations. Consequently, we
propose a multi-channel closed-loop epileptic seizure detector (MCESD) for detection seizure
on different locations of brain, which designed and synthesized to register transfer language

(RTL). The MCESD is implemented in a TSMC 0.18um CMOS process.



1.2 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, the system architecture of
seizure detection will be the beginning. After that, the previous work, 8051 microcontroller
will be mentioned. Next, a brief introduction of multi-channel closed-loop epileptic seizure

detector is introduced. Finally, the animal models used will be end of Chapter 2.

Chapter 3 describes the epileptic seizure detection algorithm, which contain four parts.
First and second parts are feature extraction, and third part is linear classifier. Fourth part, the
adaptive threshold will be described. Finally, the training method will be presented. The topic
of Chapter 4 is design of the hardware. One is 2-channel seizure detector, which is main
function of the chip. Another is 1°Ciregister bank, which is an interface to transmit data. Last

are data receiver and clock generator to control external components.

The following Chapter 5 is-function verification and simulation. In Chapter 6, the testing
and experimental result of MCESD. is presented. Chapter 7 ends the whole thesis. Brief

conclusion and the future works will be‘arranged in this chapter.



Chapter 2  System Architecture

In this chapter, the architecture of seizure detection are introduced, including previous
work - 8051 microcontroller and this study - multi-channel closed-loop epileptic seizure
detector (MCESD). Next, the fundamental of seizure types are illustrated. Then, all kinds of
EEG patterns in a continuous recording of a Long-Evans rats are described. Finally, the

animal preparation is presented.

2.1  Architecture of Seizure Detection

The closed-loop seizure “control system  contains “implantable electrodes and an
implantable processor including epileptic seizure detector and analog front end, as shown in
Fig. 2.1. First, the EEG signals are delivered into analog front end by implantable electrodes.
Then analog front end, which consists-of amplifier, band-pass filter and A/D converter,
transform the small and analog signals into digital data. Next, the epileptic seizure detector
could perform continuous real-time detection and control stimulators. Finally, a 20-50pA

constant current stimulation pulse is generated to restrain seizure from simulators.

In this study, the real-time closed-loop system scheme is based on large portion of
epileptic seizure detector. Many technology can implement the digital seizure detector, such
as digital signal processor (DSP), field-programmable gate array (FPGA), and
application-specific integrated circuit (ASIC). DSPs have high processing capability but the
large power is consumed by other hardware accelerators. Modern high-density FPGA

combine embedded processor and custom hardware accelerator to achieve high performance;



however, it also consumes high static power cause of its advanced fabrication technology.
ASIC is an integrated circuit which is highly specialized for a particular scenario or
application. This solution is highly optimized in terms of area, power, and speed to perform its

designated task. Therefore, ASIC is chosen in this research.

W
\~‘~
/ Seo
§~~
L ]
§~~~
; Epileptic Seizure
Stimulators |-——
Detector
Regulators
N-channel
Electrodes |—® Analog Front End
N x Sampling N x Sampling
Implantable Rates =
Electrodes Implantable Processor

Fig. 2.1 The architecture of the proposed closed-loop seizure control system

2.1.1 Previous Work: 8051 Microcontroller

In our previous implementation, a wireless on-line seizure controller has been
implemented with an enhanced 8051 microcontroller in freely moving subjects [13]. The
seizure controller consisted of three modules: signal conditioning, microcontroller and
stimulator. Spontaneous brain activities of the rat were amplified and band-pass filtered by the
conditioning board. The core component on a microcontroller board was a CC2430
system-on-chip RF IC. The board was carried by each experimental subject, and a host
computer for remote real-time monitors of spontaneous brain activities, while they were

communicated based on a 2.4GHz wireless IEEE 802.15.4/ZigBee protocol.



8051 microcontroller was built up on single-channel, 200Hz sampling rate, 32MHz
computing rate, and the execution time is 24.1ms. An 800Hz, 40% duty cycle, and
30-50146.19uA stimulation pulse train for 0.5s was feedback to the rat to stop spontaneous
SWDs. The 8051 microcontroller consumed 117.66mW, and the power consumption of such

implementation was significant for implantable devices.

2.1.2 Multi-channel Closed-loop Epileptic Seizure Detector (MCESD)

In this research, the hardware of epileptic seizure detector for closed-loop seizure control
is proposed. Fig. 2.2(a) illustrates the prototype. system, which supports 2-channel EEG
signals, is implemented in board level to- verify real-time capability. A multi-channel
closed-loop epileptic seizure detector (MCESD) receives EEG signals of rats through ADC
and delivers a stimulus at seizure. The seizure detection algorithm is realized by MCESD, and
the algorithm is detailed in Chapter 3. The hardware block diagram is shown in Fig. 2.2(b).
2-channel seizure detector is the main‘function-of MCESD chip, and detail of four blocks are

introduced in Chapter 4.

RESET

12C_ctrl[4:0]

__Channel

Data Rate >

Data[7:0] |

Data Recei Clock
ata Receiver Generator

| . STIM[1:0 )
Stimulator [1:0] CLKEN 2-channel I°C Register
Seizure Detector Bank

(@) (b)

Fig. 2.2 (a) The closed-loop system architecture; (b) the hardware block diagram



2.2  Materials

In order to develop an epileptic seizure controller, we have to understand the seizure type.
The epilepsy detection algorithm is applied to absence seizures that is described in this section.
In addition, the EEG signals are classified to five events, which are the materials for training

animal’s model. Finally, the surgery details of rats are evaluated for animal test.

2.2.1 Seizure Types

Seizures are often associated with a sudden and involuntary contraction of a group of
muscles and loss of consciousness. However, a seizure-can also be as subtle as a fleeting
numbness of a part of the body, a brief-or fong term loss-of memory. Clinicians organize
different types of seizure according to the source of the seizure within the brain. The two
major seizures are partial seizures and generalized seizures. Partial seizures are divided on the
extent to which consciousness is affected. If-consciousness is unaffected, then it is a simple
partial seizure; otherwise it is a complex partial seizure. Generalized seizures are classed
according to the effect on the body, but all involve loss of consciousness. These include
absence, myoclonic, clonic, tonic, tonic-clonic, and atonic seizures. Our experimental rats

with absence seizures are Long-Evans rats, so absence seizures is introduced in this study.

Absence seizure — also known as petit mal — involves a brief, sudden lapse of
consciousness. Absence seizures are more common in children than adults. Someone having
an absence seizure may look like he or she is staring into space for a few seconds. The
difference between absence seizure and normal trance is that someone made a response

immediately from external impetus when he or she was in a trance; however, the patient



didn’t answer until a absence seizure ended. Absence seizures appear mild compared with
other types of epileptic seizures, but they can be dangerous. Children must be supervised
carefully while swimming or bathing because of the danger of drowning. Teens and adults

may be restricted from driving and other potentially hazardous activities.

Absences seizures are brief, generalized epileptic seizures of sudden onset and
termination. They have 2 essential components: clinically the impairment of consciousness
and EEG generalized spike-and-slow (SWD) wave discharges. The time—frequency structure
of SWDs contains important information about the mechanisms of this type of brain
paroxysmal activity. The frequency of SWD in patients with absence epilepsy is typical in the

range of 3-5Hz [14, 15].

2.2.2 Animal Preparation

The genetic defect of Long-Evans.rats causes spontaneous SWD, so adult Long-Evans
rats with spontaneous spike-and-wave discharges (SWDs) were used in the study. The EEG
characteristic of spontaneous SWD is much more close to epileptic patients’ EEG in the
clinical aspect. The animals were kept in a room under a 12:12-hour light-dark cycle with
food and water provided ad libitum. All surgical and experimental procedures were reviewed
and approved by the Institutional Animal Care and Use Committee of the National Cheng

Kung University.

The rats were anesthetized with sodium pentobarbital (50mg/kg, i.p.). Subsequently, it
was placed in a standard stereotaxic apparatus. Screw electrodes were bilaterally implanted
over the area of the frontal barrel cortex (anterior 2.0mm, lateral2.0 mm with regard to the

bregma). A four-microwire bundle, each made of Teflon-insulated stainless steel microwires



(#7079, A-M Systems), was used to stimulate the right-side zona incerta (ZI). A ground
electrode was implanted 2mm caudal to the lambda. Dental cement was applied to fasten the
connection socket to the surface of the skull. Following suturing to complete the surgery,

animals were given antibiotics and housed individually in cages for recovery.

Two weeks after the surgery, each animal was placed in the recording environment at
least two times (1 hour/day) prior to testing. In this procedure, about 90% of Long-Evans rats
show spontaneous SWDs, which were used for continuous EEG recording. Continuous EEGs
from 5 hours to 24 hours (contained one circadian cycle) were recorded and analyzed to

assess our seizure detector in this study.

2.2.3 Continuous EEG Recording

(@WK MWWMWWMMWMWWWWWWWM

(b)SWD
(c)Sws

+
(d)Artifact I 1mV

1sec

Fig. 2.3 All kinds of EEG patterns in a continuous recording of a Long-Evans rats

In order to develop high accuracy of a seizure detection system, the controller must be
powerful enough to avoid false alarms caused by various activities. Fig. 2.3 shows all kinds of
EEG patterns in a continuous recording of a Long-Evans rat. (a) and (b) are wakefulness

(WK), spike-and-slow wave discharges (SWDs) respectively. We could observe obvious



shake-up waves in EEG signal. Slow-wave sleep (SWS) and movement artifact are included
in (c) and (d) respectively.

Two essential stages of EEG signal processing were executed in Long-Evans rats. In the
first stage, continuous EEG signals of each rat were recorded without providing electrical
stimulation, and the data were classified according to seizures (SWD) and non-seizures (WK,
SWS, and artifact) for feature extraction. These spontaneous events were used to off-line
training and got the parameters of a seizure detection model. The second stage, optimal
parameters is loaded into seizure detector at initial. The rats went through an on-line

closed-loop seizure controller with immediate feedback and electrical stimulation.

10



Chapter 3  Epileptic Seizure Detection Algorithm

The seizure detection algorithm is realized by MCESD. The chapter illustrate the four
parts of algorithm, entropy analysis, spectral analysis, linear least squares, and adaptive
threshold, respectively. In addition to the algorithm, experimental flow is described in the end

of this chapter.

3.1 Detection Algorithm

The seizure detection algorlthm is reallzed byf::MCESD Fig. 3.1 shows the flow of

the algorithm. In this algorlthm the sampllng rate |s 200Hz (5ms) and 64-point EEG data is
defined a sampling window (O 325) with 50% overlap, in Flg 13.2. The 64- -point window is to

reduce the detection delay time and .|nSp|r|t qwck selzure detectlon

Entropy Analysis

Evaluate S1 Evaluate Linear Least
and S2 CM Squares (LLS)
and Stimulator
EEG Data Seizure
Detection

Adaptive
Threshold

Fig. 3.1 The steps of seizure detection algorithm

64-point Short-Term
Fourier Transform

Spectral Analysis

11



64 points (0.32s) 5ms

T »> <>

EEG Sighals e—e—e *—o—o—o » Time

A Sampling Window

e » A Sampling Window
32 points
(0.16s)

A Sampling Window

Fig. 3.2 Asampling window include 64 EEG data with 50% overlap

The time-domain and frequency-domain characteristics of EEG signals were integrated
as the features and the linear least square (LLS) model was utilized to implement seizure
classifier. Entropy has been used for seizure because the EEG pattern of a seizure is more
regular than that in normal states [16]. According to the animal test, the absence seizure has
large power at 7-9 Hz and 14-18Hz [17]..The fast Fourier transform (FFT) was used to
calculate powers of frequency bands. Therefore, EEG band powers were combined to ApEn
analysis to improve the performance of epileptic seizure detection. Because the objects’
seizure conditions are different, we need- to train the optimal parameters by EEG of subjects
through an off-line process. The three features and the parameters of LLS classifier compute

at on-line seizure detector [18].

3.1.1 Complexity Analysis

According to the phenomenon that the EEG signals of a seizure is more regular than that
in normal states, entropy has been used for analysis and detection. Approximate entropy
(ApEn) is a measure, quantifying a time series of signals and is therefore a preferred measure

of randomness or regularity.

12



Approximate entropy

First, given a time-series of data u(1), u(2),. . ., u(N), from measurements equally spaced
in time, forming a sequence of vectors x(1), X(2), . . ., X(N-m+1) in R™, defined by x(i) = [u(i),
u(i+1), . . ., u(i+m-1)] for 1<i < N-m+1, where N is the window size, and m is the compared

length. Then, We must define d[x(i), x(j)] for vectors x(i) and x(j). The two vectors compare

each element. For each i and j, 1<j, i <N-m+1.

dx@@), x()]= k:{’g’%_l(l u(i+k)—u(j+k)|) (3.1)
N—m+1a)j . | |
M- o ={1’ it dD(@) x(Dl<r (32)
N-m+1 ! 0, else

where r is the tolerance of d. Finally, the approXimate entropy is calculated by

N-m+1

> InC™(r)
(Dm(r): 1=1 (33)
N-m+1
ApEn(m;r,N) = d" (r)=®™"(r) (3.4)

CM Entropy

A simplified measurement based on the ApEn is proposed to reduce the computational

cost, so we define a complexity measurement, CM.

N-m+1
C™(r
m_ ,Z:l: (1) (3.5)
N-m+1
m+1
CM™ = Ssm (3.6)

The average of r is 5 for Long-Evan rats which is determined in off-line training, but in

fact it’s variable for each object. Therefore, we could define the four steps to calculate the CM,

13



as shown in Fig. 3.3 . The first step is to load EEG signals. Although we define the sampling
window size is 64-point EEG before, at this step the entropy window is divided to four parts,
N= 16, to decrease the complicated of algorithm, as shown in Fig. 3.4. Besides, the parameter

setting is m=1.

Evaluate Evaluate Evaluate
HeERlEEE Decision Bits (@) S1land S2 CM

Fig. 3.3 The Entropy Extraction Flow

Part 1

Part 2

Part 3

Part 4

- 16 points >

Fig. 3.4 The 64-point window is divided to four parts

The second step evaluates decision bit (wj), and next step evaluates S' and S$% The
equations are (3.7) to (3.10). The decision bits are shown in Fig. 3.5, in which (a) correspond
to d[x(i), x(g)]= |u(i) — u@)|; (b) correspond to d[x(i+1), x(j+1)]= |u(i+1) — u(j+1)|. If the
comparison distance between data is less than a threshold (r), decision bits are set to be logic
1; else are set to be logic 0. The decision bits, Aj;, Bjj, and Cj; are one bits (0 or 1), and C;;
equate A;& B;j in equation (3.10) which correspond to d[x(i), x(j)]= max| u(i) — u(j), u(i+1) —
u(j+1)|, in Fig. 3.5(c). S" is evaluated by Ao; to Age, and S$%is evaluated by Co; to Cge. Then, the
CMP is evaluated by S% S*for p = 1, 2, 3, 4. Finally, the CM is evaluated by four CMP, which

ranging from 0 to 4.
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Fig. 3.5 Evaluate decision bit (w;)
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However, the sleep signal is similar to seizure signals at time-domain, because those

signals revealed a rhythmic-like pattern. Fig. 3.6 shows the results of entropy. According to

Fig. 3.6(c) and (d), the entropy result of SWS and artifact are instable. Thus, to improve the

performance, spectral features combine with entropy analysis.
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3.1.2 Spectral Analysis

The fast Fourier transform (FFT) is used to calculate powers of frequency bands, and it is
well-established in various microprocessor. Fig. 3.7 shows the methods to build the
correlation between time domain and frequency domain. In time domain, seizure events are
set to one, or else are set to zero. The vectors are correlated with powers of specific frequency
bands. In this algorithm, we use Pearson correlation coefficient to determine spectral features.
Consider there are k segments, and let SPy (t,f) be the spectrogram of the k™ segment. Define
Xk(m) as the spectrum index which is the spectrogram in frequency m. Then, define y as the
SWD index. The correlation coefficient Corry(m) of the seizure index and spectrum index is

given by (3.14). Finally the average correlation coefficient of k segments is given by (3.15).

X, (M)=[SP. (1, m);SP, (2, m), ] (3.12)

Y, =[40.4.0e] 40 ={]5 gl VJET T e

Corr, (i) = 2= R0 % M) X (V) 1)
I 05 M) =X M)P XY (v, - ¥i)?

c(m) = m (3.15)

The absence seizure has large power at first harmonic (7-11 Hz) and second harmonic
(14-18 Hz). Sleep states contain delta rhythms and have large power under 4Hz. Artifact does
not have large power obviously. Fig. 3.8 shows the spectrogram in four states of
time-frequency analysis, which based on short-term Fourier transform. Therefore, spectral
analysis is combined to entropy analysis to improve the performance of epileptic seizure
detection [17, 19-21]. In this study, three frequency bands (0-4Hz, 7-11Hz, and 15-18Hz) are

selected as spectral indexes.
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3.1.3 Linear Classifier

Because the objects’ seizure conditions are different, the algorithm must have flexible
model by EEG of subjects. The linear least squares (LLS) method is used to find a best fitting
linear model. LLS is the problem in approximately solving an over-determined system of
linear equations, where the best approximation is defined as that which minimizes the sum of
squared differences between the data and the desired data. Besides, the method could reduce
the computational cost for implementation, because the model output is only the weighted

sum of the input.

At first, consider an over-determined system (3.16), m is number of data pair for training
in n coefficients. y; is the output of LLS. f; s the weight parameter. This can be written in
matrix form as (3.17). The residual is the difference between.the observed value and the value
calculated by the model (3.18). Next, S is minimized when its gradient vector is zero. The
elements of the gradient vector-are the partial derivatives of 'S with respect to the parameters
(3.19). We obtain the normal equations (3.20), and the ,B is minimizes S. Finally, the normal

equations are written in matrix notation as (3.21). Thus, the solution of the normal equations

yields the vector of ﬁ the optimal parameter values (3.22).

Y, => Xy B, i=12,..,m (3.16)
=1
y=Xp
Y1 X Xy X B
X X X
= 3{2 X = 21 :22 2n B= 18:2 (3.17)
ym ><ml Xml an ﬂn

S(ﬂ)=i£yi —Z Xijﬂ,} (3.18)
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é:_ern:)(ij(yi_Zn:xijﬁk)zo ) j:1,2,...,n (3.19)
aﬂi i=1 k=1

zxijyj Zzzxijxikﬁk (3.20)
i-1 i1 k-1

(X™X)B=X"y (3.21)
B=(X"X)*X"y (3.22)

In this study, LLS is used in two stages. The first stage is off-line training. Three feature
indexes, which are CM, band 1 (7-1Hz), and band 2 (17-22Hz), are input into classifier to
verify seizure occurrences. The target output values are zero for non-seizure windows, and
one for seizure windows. Therefore, the equation (3.17) can be written to (3.23), and used
(3.22) to find the best model g for.each subject. The second stage is on-line computing.
Optimal parameters ware determined at last stage, which compute with three features at

on-line seizure detector (3.24).

0(non — seizure) Lew
B 1(seizure) f= yu o/
: IBBandZ
lor0O Beons
cont (3.23)
CM, Bandl Band2, 1
X = CM, Bandl, Band2, 1
CM, Bandl, Band2,6 1
I‘I‘Son—line = CM X ﬂCM + BanleﬁBandl + Band 2><:BBandZ +ﬂConst (3-24)
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3.1.4 Adaptive Threshold

Because the entropy analysis of SWS state usually leads to false detection easily, but the
state has large power less than 4Hz, an adaptive threshold is proposed to decrease the false
alarms. Adaptive threshold is to switch the threshold of LLS between SWS state and SWD
state. According to Fig. 3.6 and Fig. 3.8, although the SWS signals resemble with SWD
signals at time-domain, the frequency power of SWS has an oscillation within delta frequency
range (0.5-4Hz). Therefore, the frequency band O is used to determine the SWS state. If band
0 has higher energy than a threshold of sleep (Thsys), the threshold of LLS is switched to a
higher value to avoid the false alarms. Equation (3.25) shows an adaptive threshold. At
training stage, average band0 of the sleep EEGrminus or plus standard deviation of the sleep
EEG (3.26). Thyake is decided by.the LLS result of seizure event, and Thgeep IS based on the
LLS result of seizure event in SWS state, (3.27). Fig. 3.9 shows the false detection without

adaptive threshold.

Th,,.. Otherwise ,Wake state
LLS;, = : (3.25)
Thy..,, if Band0>Th . Sleep state
Th,,, = mean[Band0]+ Std [Band0] (3.26)
Thy,,, = mean[LLS,, ]+ Std[LLS,, ] (3.27)

In addition, the window constraint is set to avoid the influence of EEG signals. If the
LLS classifier output is larger than the LLSy, in consecutive three 32-sample, the seizure
event is detected. Therefore, the delay time of seizure detection is 0.48s least (5msx32x3), but
it is the tolerable delay time to restrain seizure. Fig. 3.10 shows the seizure detection

algorithm include three features and Band 0.
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3.2  Experimental Flow

Recording Determining LLS i |Parameter S(,)eril!:ree
EEG EEG State Classifier | Setting
' Detector
Training on Computer Testing on Chip

Fig. 3.11 Experimental flow

To make sure the seizure detector is useful, experimental flow is divided into five stages,
in Fig. 3.11. The first stage is recording EEG data. In this study, the long-term recording is
five hours and twenty-four hours of continuous EEG data without electrical stimulation. The
second stage is determining EEG state. After recording the EEG data, the EEG data is
distinguished behavioral states'by experts. The spontaneous events include AW, SWD, SWS,
and artifact. The first stage and the second stage are both executed at the Institutional Animal

Care and Use Committee of the National Cheng Kung University.

Next stage is LLS classifier. For finding the best model of objects, LLS classifier is
utilized by Matlab. In the train step, seizure and non-seizure segments with equivalent length
are selected for LLS model, and the ratio of non-seizure segments including WK, SWS, and
artifice are 1:1:1, as shown in Fig. 3.12. Two hours of three feature indexes are trained to get a
pair of parameters, and those parameters is testing five hours of EEG data. When the detection
accuracy is above 92%, the parameters are applied to on-line stage, else data is trained

repeatedly.
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Then, the optimal parameters are downloaded to MCESD chip by 1°C interface at initial

stage. 1°C interface will be described in next section. Finally, the online seizure detector is

developed to seizure detection.

1:1:1

Seizure

AW

SWS

Artifact

A

»
I

1:1

Fig. 3.12 The weight of training segments
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Chapter 4 Design and Implementation

According to Fig. 2.2, the block diagram shows four blocks in MCESD chip, including
2-channel seizure detection, I°C register bank, data receiver, and clock generator. The first
part, 2-channel seizure detector implements the seizure detection algorithm. The computing
rate is 3.2 kHz. MCESD needs to generate the control signal and clock for different ADC
circuits, so the second part and third part are clock generator and data receiver, which
synchronized ADC signal and generated the clock for seizure detector (3.2kHz). The last part
is 1°C register bank, which loads the parameters to system at initial, and saves the value of

seizure detector for verifier function.

4.1  2-channel Seizure Detector

In Chapter 3, the seizure detection algorithm is described in detail, and it is implemented
in the 2-channel seizure detector.'Fig. 4.1 shows the block diagram of seizure detector. The
2-channel seizure detector is composed of two 1-channel seizure detector, and a switch

determining that data are delivered to channel O or channel 1, as shown in Fig. 4.1(a).

Fig. 4.1 (b) illustrates the blocks of 1-channel seizure detector which correspond with the
algorithm. Clk means clock of detector. In this block, the computing clock is 3.2kHz (200Hz
x16). Because the sampling clock is 200Hz, and the entropy window size is 16-point, 3.2kHz
is the lowest clock of computing to handle the data in real-time. Rst is 1 in normal state, and
all registers are cleared when Rst is 0. Clken is clock enable; the system is paused when Clken
is set to 0. The block detail will be introduced in following section. Clk, Clken, and Rst all

connect to each block.
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Fig. 4.1 Block diagram of seizure detector (a) 2-channel detector (b) one channel detector

4.1.1 Read Memory

—>
—>

Datain(7:0)

R_

FFTo(7:0) |
FR_O |
Start |

ReadMem

Entropyo1(7:0) |
Entropyo2(7:0) |
State(2:0) |
Part(1:0)
ER_o0 |

b

Fig. 4.2

Interface of read memory

This block receives EEG data and saves data, than it feds data to entropy block and FFT

block. Read memory contains a 2-port 128x8 memory. An input port of memory writes the

Datain into memory when the R_1 is set to 1, and the other is unused. One output port is for

entropy, and the other is for FFT. Entropyol is output which correspond to u(i) — u(j);

Entropyo?2 corresponds to u(i+1) — u(j+1). Because the 64-point is divided into four segments,
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Part is display the segments, and State is show the order of the 16-point data. On the other
hand, there are three signals for FFT block. Start is used to wake up the FFT block to be ready
for received FFT data, and FFTo will deliver continuous data to next block. ER_o and FR_o
are set to 1, which means the data are ready to be delivered. All inputs and outputs are shown

in Fig. 4.2.

4.1.2 Entropy Extractor

Threshold(7:0)
Entropyil(7:0)
Entropyi2(7:0)
Statei(2:0)

Parti(1:0) CM(15:0) ——p
R_|  Entropy_Top R.o—Pp

Lhbald

Fig-4.3 Interface of entropy extractor

Fig. 4.3 shows the input and output of entropy extractor, and the threshold is equal to "r".
The inputs (Entropyi, Statei, Parti, and R_l) are connected with outputs of ReadMem
(Entropyo, State, Part, and ER_0), and CM is output. Fig. 4.4 and Fig. 4.5 illustrate the
hardware implementation of entropy extractor. First, u(i)-u(j) and u(i+1)-u(j+1) are
implemented with two subtracters, and decision bits (w;j) are decided that the values compare
with r and 2r. Next, accumulators save the decision bits, and S +1= ™ +S™41 + ™1, S a1 i
also. The detail of S** and S* is shown in Fig. 4.6. A divider computes S%S*. The complexity

measurement is sun of CMP. The output of CM is 4-bit unsigned integer and 12-bit fractional.
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4.1.3 64-point FFT

The overview of the 64-point FFT is shown in Fig. 4.7, including FFT main function and
FFT _process. FFT is a core from SoC Design Lab, Instituation of Communication
Engineering, NCTU, which supports 9-bit signed complex input and 15-bit signed complex
output. Four modes are selected, because the FFT core could compute 8, 16, 32, and 64 size
of FFT. In this study, the size of FFT are always 64 points, so mode is fix value. When the
IN_VALID is high, the data will deliver the data to do the computation. Due to EEG signals is
real numbers, imaginary numbers are zero.

The architecture of 64-point radix-2/4/8 FFT is shown in Fig. 4.8, and the main

advantage of radix-2/4/8 is reducing number of complex multipliers. Fig. 4.9 shows the signal
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flow of 64-point radix-2/4/8 FFT [22]. Fixed multiplicand like £j and «/2/2(1J_rj) are used to

replace complex multipliers. Therefore, the algorithm apply to length of 8n FFT and decrease
the computational cost. Consider to the SQNR is achieve 30dB, so the bit of output increase 2
bits at radix-2 butterfly stages. Then, the least three stage fix the bit number to retrench area.

Twiddle factor is used one bit integer and sixteen bits fractional.

—p{ FFTi(7:0) Band(1:0) {——p>
(@) —P{ R FFT0(15:0) ——p»
/—» Start FFT_Top R 0 ‘—>\
- ~ g
B~ ~.

IN_R(8:0) OUT_R(14:0)
IN_I(8:0) OUT _I(14:0)
R IN_VALID OUT_ADDR(5:0)
MODE(1:0) FFT OUT_VALID

DR(14:0) Band(1:0) [ Band(1:0)
DI(14:0) FFTo(15:0) [™) FFTo(15:0)
Addr(5:0) R o | D R0

FFT process

Fig. 4.7 (a) interface of 64-point FET (b) block diagram of FFT
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Fig. 4.8 The architecture of 64-point radix-2/4/8 FFT
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FFT_process calculates power of specific frequency bands by spontaneous brain waves.

FFT output is DR+DIj, and the power of FFT is means | FFTo|=+DR?+DI?. The input of
DR and DI are 16 bits signed integer, and ADDR display the frequency of FFT. When the
address is 0, 4, and 7 which correspond with BandO, Bandl, and Band2, the FFTo are

computed. The output of FFTo is 9-bit unsigned integer and 7-bit fractional. Fig. 4.10
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Fig. 4.9 Signal flow of 64-point radix-2/4/8 FFT

illustrates the hardware implementation of FFT_process.

31

X[0]
X[31]
X[16]
X[48]

X[8]
X[30]
X[24]
X[56]

X[7]
X[39]
X[23]
X[55]
X[15]
X[47]
X[31]
X[63]



FFT_Process

ADDR [D—t
DR D—%— D

Py

DID—?— D

Addil
CCH =

| FETo |=+/DR? + DI

Fig. 4.10 The implementation of FFT_process

4.1.4 LLS Classifier

Fig. 4.11 shows the input and output-ports of LLS block. Input acquire data by last stage,
and the parameters are input from I°C register bank,which detail is on next section. LLSo will
save into I°C register bank to check the values. In the training phase, the large matrix are used
to training on computer, but the hardware implementation on chip just need three features
from previous blocks and the parameters in registers. Band 0 is a condition to switch the
LLSt. Fig. 4.12 illustrate the hardware implementation of LLS. First, LLS out is calculated
by the input. Next, the seizure detection counter is incremented when a seizure occur;
otherwise, the counter is zero. If the counter reaches DET_WINDOW, STIM, a flag of

stimulation is set, and the flag keep DET_STIMx0.16 seconds. The optimal parameters' detail

——pp| Parameters(115:0)

——P CMi(15:0) STIM |

—Pp{ R CM LLS0(32:0) |
LLS Ro |

—p» Band(1:0)

—| FFTi(15:0)

—Pp R FFT LLS

Vi

Fig: 4.11 Interface of LLS Classifier

is shown in Table 4.1, and the default values of DET_WINDOW and DET_STIM are 3.
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LLS COEF_BAND1 + Band2 x LLS_COEF_BAND2

[

\

LLS

Paramters

Adaptive
Threshold

Adaptive Threshold \

If (DETSWS_TH_HIGH.> Band0 > DETSWS TH_LOW) \

LLSt = [(LLS_COEF :CONST1- DETSWD_TH_SWS), \\
LLS_COEF_CONST2 ] \

Else If (Band0 < DETSWS_TH_LOW) AN

LLSt = [LLS_COEF_CONST1, LLS COEF_CONSTZ2] \

Stimulation Scheme
If (LLSon-tine - LLSth> 0, Continuous DET_WINDOW times)
Enable Stimulator , and continue DET_STIM x 0.16 seconds

Fig. 4.12 The implementation of LLS Classifier
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Table 4.1 Specifics of features and parameters

Name Integer (bits) Fractional (bits) Default Value

Features
CM 4 12 N/A
BandO 9 7 N/A
Bandl 9 7 N/A
Band?2 9 7 N/A
Parameters

THRESHOLD(r) 8 0 5
LLS COEF_CM 12 4 N/A
LLS_COEF_BAND1 7 9 N/A
LLS_COEF_BAND2 7 9 N/A
LLS COEF_CONST1 16 0 N/A
LLS_COEF_CONST2 0 16 N/A
DETSWD_TH_SWS 16 0 N/A
DETSWS_TH_LOW 9 7 N/A
DETSWS_TH_HIGH 9 7 N/A

DET_WINDOW 4 0 3

DET_STIM 4 0 3
LLSt, 16 16 N/A
LLSon-line 17 16 N/A

4.2 1°C Register Bank

Because there are many parameters is need to set in MCESD chip at initial, 1°C interface
is used to save numbers of pad. Inter-integrated circuit register bank (1°C register bank) is an
interface integrated with 8-bitxN register bank for sub-circuit configuration, and 8-bitxM
inputs for sub-circuits status readout [23]. The block diagrams are shown in Fig. 4.13. Control
pins of target sub-circuits can be reduced to only 3 pins (sda, saddr and scl), because clk and
reset are integrated with 2-channel seizure detector. The pins are controlled by I°C master, as

shown in Fig. 4.14.
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Scl is a clock signal, and being utilized for synchronizing 1°C data input. Sdain, Sdaout,
Oe are the data and direction control pin for bidirectional pad. Saddr is used for 1°C slave
identification. In this case, only less significant bit is connected out, and the other two pins are
set to zero. ctrl0 — ctrIN are 8-bitx64 registers and they connect to 2-channel seizure detector
for configuration purpose. readin0 — readingM are 8-bitx64 reading registers for 2-channel
seizure detector status readout purpose. Table 4.2 shows the relation between seizure detector

and I1°C register bank.

I’C Register Bank

Clk ctrlo(7:0)
Rst .
In(7:0 b_out(7:0 : -
n(7:0) th_out(7:0) ctiNG0) 2 channel
out(7:0) rb_in(7:0) ) Seizure
- readin0(7:0)
out_en rbin_en . Detector
addr_reset addr_reset

rw_out w readinM(7:0)

in_strobe rbout_strobe
Register Bank

Inv_sdaout

1°C Slave Interface

Fig. 4.14 The interface of I1°C master in computer
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Table 4.2 Parameters of MCESD correspond with I°C register bank

Parameters

I’C Register

(8bits)

Parameters

I°C Register
(8bits)

Clock Generator ctrl29,ctrl28
DIV_3200 ctrl1[3:0],ctrl0 CH1_LLS COEF_CONST2 ctrl31,ctr130
DIV_500K ctrl1[7:4] CH1_DETSWD_TH_SWS ctrl33,ctrl32
MODE ctrl2[1:0] CH1_DETSWS_TH_LOW ctrl35,ctrl34
CHO Parameters CH1 DETSWS TH_HIGH ctrl37,ctrl36
CHO_THRESHOLD(r) ctrl3 CH1_DET_WINDOW ctrl38[3:0]
CHO_LLS COEF_CM ctrl5,ctrl4 CH1_DET_STIM ctrl38[7:4]
CHO_LLS_COEF_BAND1 ctrl7,ctrl6 CHO Results
CHO_LLS COEF_BAND2 ctrl9,ctrl8 CHO_FFTo readinl,readin0
CHO_LLS COEF_CONST1 ctrl11,ctrl10 CHO_CMo readin3,readin2
CHO_LLS COEF_CONST?2 ctrl13,ctrl12 CHO_LLSo readin8[0],readin7
CHO_DETSWD_TH_SWS ctrl15,ctrl14 ,readin6,readin5
CHO_DETSWS_TH_LOW ctrl17,ctrll6 ,readin4
CHO_DETSWS_TH_HIGH ctrl19,ctrl18 CHO.R LLS reading[1]
CHO_DET_WINDOW ctrl20[3:0] CH1 Results
CHO_DET_STIM ctrl20[7:4] CH1 FFTo readinl0,readin9
CH1 Parameters CH1 CMo readinl2,readinll
CH1_THRESHOLD(r) ctri21 CH1 LLSo readinl17[0],readin16
CH1 LLS COEF_CM ctrl23,ctrl22 readinl5,readinl4,
CH1 LLS COEF_BAND1 ctrl25,ctrl24 readinl3

CH1_LLS_COEF BAND?2

ctrl27,ctrl26

CH1 R LLS

readinl17[1]
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4.3 Clock Generator and Data Receiver
— | CLK ——p CLK Data Receiver
—p RST CLK_OUT (——p —p RST CHANNEL +——p
—p CLKEN CLK_500K ——p» —p| CLKEN R_IX t—Pp
Clock CLK_3200 —p»
Generator
— MODE(1:0) —p{R |
—{ DIV_3200(11:0)
—»{ DIV_500K(3:0)

@) (b)

Fig. 4.15 Interface of (a) CLK_GEN and (b) DATA_REQ

MCESD needs to generate the control signal and clock for different ADC circuits, so the
third part is clock generator and data receiver, which synchronized ADC signal and generated
the clock for seizure detector (3.2kHz). The interface of clock generator and data receiver are
shown in Fig. 4.15. MCESD clock can input 10MHz to 1IMHz. The clock is equal CLK_OUT,
and CLK also divide to CLK_ 3200, CLK_500K. CLK 3200 is always 3.2KHz whatever the
clock is input frequency. Meanwhile, CLK 500K-can be regulate by DIV_500K, so the
frequency of CLK 500K is frequency/N where N is. between 2 to 32. MODE control
CLK_OUT, and CLK 500K, in Table 4.3. In Fig. 4.15 (b), the R_I is a 400Hz clock, and it

synchronize ADC datain.

Table 4.3 The active of CLK_OUT and CLK_500K with MODE

MODE ‘ CLK_OUT CLK_500K
00 Frequency Frequency/N
01 Frequency 1
10 1 Frequency/N
1 1 1
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4.4  The Timing of MCESD

Fig. 4.16 presents the timing diagram of the epileptic seizure detector based on the above
setup. At initial, the 1°C register bank is utilize to load the parameters of MCESD. The
frequency of MCESD can regulate the computing cycles, and cycles of I°C setting is 19 at
1MHz. The epileptic seizure detector operated at 3.2kHz. When previous 32 sampled data is
retrieved, the computation of entropy, FFT, and LLS classification is finished in current
32-sample cycle and then determine the seizure event. As shown in the figure, each time when
32-sampled data have been collected, about 23.5 ms latency is required to determine the seizure
occurrence. Again, a seizure detection need 32-sample cyclex3+23.5ms latency at 3.2kHz
clock rate at least. The timing diagram shows the seizure detection algorithm can be executed

continuously in the implemented epileptic seizure detector.

Previous Current Next
32-sample cycle - 32-sample cycle 32-sample cycle
/_H A A
Sampling Period: 46 cycles” A
- (5 ms)
A A A A
:
! >
Reset 0 41 ''n31°7 n+1 "n#31 n+35"  n+63 Time
I°C Setting 19 |
Entropy Extractor Tl
FFT :IG 7
LLS classifier
<59 ms» <75 (23.5 ms)-» «23.5>

Fig. 4.16 The timing diagram of the MCESD
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Chapter 5 Result and Comparison

After system level design and considerations is dealt with Chapter 4, this chapter
describes the implementation flow at first. Next, behavior simulation is displayed. Then, the
functional verification in FPGA and implementation results are described. The test setup and
experimental results are illustrated. Finally, the seizure detection accuracy and comparison

with related researches are discussed in the end of this chapter.

5.1 Design and Implementation Flow

Algorithm Analysis
Matlab

v
Architecture Design
Verilog

|
v v

FPGA Design
and Optimize
Quartusll

FPGA Gate Level

Simulation

Logic Synthesis
and Optimize
Design Compiler

Gate Level
Simulation

Program to FPGA
EP3C25E144C8N

Function Verification

Simulation

APR
SOC Encounter

v

Layout Verification
Calibre

Post Gate Level
Simulation

Tape-out

Fig. 5.1 The design and implementation flow

39




Fig. 5.1 show the design and implementation flow. At first, the seizure detection
algorithm is analyzed by Matlab. the architecture design is implemented to RTL. Then the
behavior code is turned into logic gates by two tools, FPGA and Design Compiler. On  the
one hand, after the gate level simulation of FPGA is correct, it program in FPGA to test the
function. On the other hand, the gate level code is changed to physical layout by SOC

Encounter, and Caliber verify the layout. Finally, the MCESD is tape-out in CIC.

5.2  Behavior Simulation

The simulation environment is based on TSMC 0.18 libraries and simulated after logic
synthesizing. The clock cycle is set up with 1us. In other.words it is simulated in 1IMHz. The
simulation has four steps. The first.one is to write coefficients into MCESD. As shows in Fig.
5.2, 10_I12C_SDA is controlled-by 1°C master; and total numbers of coefficients written in the

first step are thirty-nine. They will'be fed into the ctrl0-ctrl38.

Configure the parameters

Fig. 5.2 Waveform of I°C register bank initial MCES

The second step is read-write memory. R_I is a sampling clock which is 400Hz for two
channel. The sampling data is written when R_I is high, and the entropy data is read after

writing data. After 64-point sampling data are collected, FFT data are read to FFT blocks, as
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shown in Fig. 5.3. Next, Fig. 5.4 shows the result of CM and FFT Bands. Three features and
one condition(Band0) are loaded into LLS classifier when R_o is high. Finally, after all data
are ready, a pulse is sent to start computing LLS classifier. The computing cycles spends
12cycles at 3.2kHz, as shown in Fig. 5.5. When successive EEG data are received, the second

step to fourth step are executed repeatedly

| Write memory: R_I || Read memory: FFT |

Fig. 5.3 Waveform of read and write memory

mﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂi

4000 [

|Band2 ||Band0||Band1|

Fig. 5.4 Waveform of CM and FFT bands

| Result:STIM=1 |

Fig. 5.5 Waveform of LLS classifier and STIM
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5.3  Functional Verification in FPGA

1-channel seizure detector is verified function by FPGA for optimized architecture. The
integration result of closed-loop seizure control system is shown in Fig. 5.6(a). The AFE and
stimulator board is shown in Fig. 5.6(b)[24, 25]. The die of pre-amplifier and ADC is bonded
on the board. The epileptic seizure detector board shown in Fig. 5.6(c) consists of an Altera
Cyclone 111 FPGA. The utilized FPGA, EP3C25E144C8N [26], is manufactured with 65nm
CMOS technology; it provides 25K logic elements and 600K memory bits.

(a) 27mm x25 37mm x 39
e mm mm

AFE Board on the\ -
head \ '~ “Seizure Detector

on the back

(b) (c)

25.0 MHz

£3 Pre-amplifier EEG DATA | ocillator (NS —— ,
o Bl o5 e oo 7]

: AFE I/F &
@l 10-bit ADC <::I i 3
. : AFE Control 5!
3 U
| Epileptic Seizure Detector in
_ y \ EP3C25E144C8N FPGA

Fig. 5.6 Closed-loop seizure control system on FPGA
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The total logic Elements and memory bits are 3160/1828. The total dynamic, static and
I/0 power consumption are evaluated about 0.01mW, 82.34mW, and 16.86mW, respectively.
The summary of circuit characteristics of this work is listed in Table I. The static power of
proposed design can be eliminated in future ASIC implementation was caused by leakage
currents of idle transistors in FPGA.

Table 5.1 Summary of 1-channel Epileptic Seizure Detector on FPGA

Read 64-point entropy  64-point LLS

memory extractor FFT core classifier

Operating frequency (kHz) 3.2
1-channel execution time (cycles) N/A 27 64 11
Logic elements usage 196 846 1868 360

Memory (bits) 1024 31 0 0
Dynamic / static / 1/0 power dissipation
(W) 0.01/82.34/16.86
Total power dissipation (mW) 99.2

5.4  Implementation Results. of MCESD

The summary of implementation results are listed in Table 5.2. It is through 0.18um
process of TSMC and cell based design kit of CIC. The operating frequency of post-layout
simulation is 10MHz. The MCESD chip size is about 1760x1760um?, and the core size is
1230x1230um?. The gate count of the chip is 169905. It must be noted that the 2-channel are
implemented in MCESD. There for, we need two 128x8 dual port static RAM (SRAM) which

are generated by memory compiler with Artisan library.

The power dissipation of total chip is 581.2uW at 10MHz, and 114.1uW at 1MHz. The
details of power consumption are listed in Table 5.3. The ratio of 10 pads is 17%. Meanwhile

the ratio of core power is 83%, including 1°C register bank, clock generator, data receiver, and
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2-channel seizure detector. In 1- channel seizure detector, FFT accounts for 12.4%, which is
the most distribution rate. Therefore, decreasing the power consumption of FFT is feature
work.

Table 5.2 Summary of Implementation Results

Technology TSMC 0.18um CMOS
Package SB32
Die Size 1760x1760um?
Core Size 1230x1230pum?
Utilization 91%
Gate Count 169,905
) 128x8 Dual port SRAM x 2
On-Chip Memory
2048bits
CHIP:1MHz-10MHz
Clock Rate s
Epileptic seizure detector: 3.2kHz
Execution Time 23.5ms
Power Consumption 1141 W@ 1MHz,1.8V
Input Pads/Output Pads/ 14/5/
Inout Pads/Power Pads 1/12

The die photo is shown in Fig.'5.7(a), and two memories are in right location. The floor
plan of MCESD is in Fig. 5.7(b). MCESD are fourteen input pads, five output pads, and one
inout pad for 12C_SDA. The first pad is VSSCO, and the least pad is 12C_ADDR according to
counterclockwise order. There are three pairs of power pads for core and three pairs of power

pads for chip pads. The package of MCESD is SB32. The detail of pads is listed as Table 5.4.
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Table 5.3 Detail of power consumption

Internal | Switch | Leakage  Total

Power Power Power Power

10 Pads (uW) 7.322 11.600 0.200 19.000 17 %
I°C Register Bank (W) 0.001 21.100 2.430 33500 | 29.4%
Clock Generator (uW) 0.125 1.180 0.095 1.400 1.2%
Data Receiver (uW) 0.001 0.002 0.028 0.031 0.0%
2-channel Seizure Detector (uW) 0.505 2.530 56.800 59.900 524 %
1-channel Seizure Detector

Read Memory (uW) 0.006 0.459 10.500 10.900 9.6 %
Entropy (W) 0.008 0.104 2.510 2.620 2.3%

FFT (uW) 0.237 0.637 13.200 14.100 | 12.4%

LLS (pW) 0.001 0.051 2.150 2.200 1.9%

1760 UM

(=3 E=N ESN Kl B BTl Kol N
HEEHEEEHEE
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CORNERO g‘ g‘ g‘ gl g‘ g‘ gl gl CORNER1
[N I=N =N =N =N =N E=X fe
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VDDP1 N VDDPO
VSSP1 VSSPO
VDDC1 VDDCO
VSSC1 VSSCO 1
w CHIP E
PAD_CHANNEL PAD_I2C_ADDR | 32
PAD_R_| PAD_RST
PAD_STIM1 PAD_I2C_SCL
PAD_STIMO s PAD_IO_I2C_SDA
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Fig. 5.7 (a) Die photo of the MCESD, (b) floor plan of MCESD
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Table 5.4 The pin assignment of the chip with SB32 package

PAD Name ‘ PAD Type Description
PAD_DATAINO-7 Input EEG signals
PAD_RST Input Reset system
PAD_CLKEN Input Clock enable
PAD CLK Input Clock
PAD_CHANNEL Output Display the channel
PAD R | Output Clock of sampling data
PAD_STIMO-1 Output A flag for stimulus
PAD_CLK_10M Output Clock output
PAD_CLK_500K Output Divided clock
PAD_12C_ADDR Input Address of 1°C
PAD_I2C_SCL Input Clock of sampling data for I°C
PAD_I2C_SDA Inout put Data input for I°C
VDDC, VSSC Core power 1.8V vDD
VDDP, VSSP Chip power 3.3VVvDD
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5.5  Testing Environment Setup

‘ i g
Sampling clock m | 0=z ;- A=

400Hz

EE -IZC Master m
Pattern MCESD
DATA_|

Generator
EEG Signals _ 0.18um CMOS process | Ty

s — I:> ﬂ> LED
e——— Clock

4AMHz

Fig. 5.8 Testing environment

Fig. 5.8 is the testing environment of the MCESD chip. The input signal, 4MHz clock,
and 400Hz sampling clock are -generated by the -Agilent Technologies 16720A pattern
generator. The power supply for the chip core is 1.8V, and the supply voltage of MCESD pads
and components on PCB board is 3.3V. Initial set is configured by 1°C master, and the values
of FFT, CM, and LLS classifier are checked through 1°C master read. Meanwhile, the LEDs
light when STIM is set to logic 1. Fig. 5.9 show the PCB photo. The power consumption of
measurement is listed in Table 5.5. The frequencies include 1MHz (lowest), 4MHz, and
10MHz (highest), and the 4MHz clock is for the CoB system in the future. The core power

and pad power are the worst case, which enable CLK_OUT and CLK_500K.
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Table 5.5 The power consumption of measurement

Fig. 5.9 Photo of MCESD PCB

Frequency Core Power (1.8V) Pad Power (3.3V) Total Power
203.07uW
4MHz 217.82uW 569.58uW 787.40pW
10MHz 54054 W 1408.11uW 1948.65uW

5.6  Seizure Detection Accuracy

Functionality of seizure detector is-assessed by continuous EEG signals acquired from
four Long-Evans rats. Four rats are subjected to absence seizures. The optimal parameters of
train model are used to detect seizures for each rat. The training procedure is described in
previous section 3.2. The length of data is 5 hours for subject #1 and #2, and the other two

rats are measure under 24 hours execution time. Table 5.6 shows the SWD duration and the

detail of SWD.
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Table 5.6 The detail of SWD duration and two frequency bands

ToTAL SWD
SWD Min SWD SWD Max Band1
Subjects DURATION Duration
(s) Mean (s) (s) (Hz)

(GHYES) (h:m:s)
#1 05:00:00 00:27:34 0.50 5.09 25.69 7-10 15-18
#2 05:00:00 00:16:42 0.50 3.96 42.75 7-10 15-18
#3 24:00:00 00:49:34 0.19 4.94 43.32 7-10 15-18
#4 24:00:00 01:11:36 0.20 6.17 49.51 7-10 15-18

EEG Data
o Ground Truth
* Seizure Event Detecion

22—

16—
14 |~
12L r r

20 25 30 35 40
Time(sec)

Fig. 5.10 Detected seizure events by MCESD

The function of the seizure detector-is demonstrated in-Fig. 5.10. Three seizures' events
are detected by our proposed detector during a 40-s period on rats #1. The ground truth is
distinguished by specialist in neurology. Fig. 5.11 shows the different statuses of simulation.
Three seizures' times occur as shown in Fig. 5.11(a), which determined that a seizure event is
detected; Fig. 5.11(b) shows that a miss event occurs at 39984s; Fig. 5.11(c) shows that a false
detection event occurs between 758s and 759s. Accuracy and false stimulation of seizure
detection algorithm as shown in Table 5.7. Detection accuracy equation show in (27). As
shown in the table, the seizure detection accuracy average 94.59%, which was consistency
with previous works (92%-99%) [13]. The delay would be slightly varied among subjects due
to variation of EEG complexity and spectrum energy. Therefore, the seizure detection delay is

about 0.63 s-0.8 s, which is the tolerable delay time to restrain seizure.
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Detection Accuracy (%) = Dete(;t\jr\;jDSWD x100% (5.1)
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Fig. 5.11 The different type of simulation

Table 5.7 Performance of the seizure detection algorithm

. Detected Accuracy False Hardware
Subjects SWD _ )
SWD (%) Detection  Detection delay (s)
Awake 294 285 28
#1 97.23 0.80
Sleep 31 31 25
Awake 223 214 28
#2 96.83 0.68
Sleep 30 30 4
#3 Awake & Sleep 600 553 92.17 218 0.63
#4 Awake & Sleep 684 630 92.11 193 0.69
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5.7  Comparison with Related Researches

The previous 8051 implementation[13] operated at 32MHz and consumed 117.66mW.
The MCESD operated at 3.2 kHz clock rate and consumed 114.1uW, and it is capable of
detecting the seizure signals in 0.63s to 0.8s with 94.59% accuracy. The power consumption
of our low-noise pre-amplifier, filter, [24] (468uW), and 10-bit analog-to-digital converter [25]
(80uW) was evaluated about 548uW. The totally power of our system is 662.1uW, which
decrease 99.5% power compared with previous system. The evaluation results show that the
overall system powered by a 3.7-V, 1100-mAh battery can be operated for 7.5 months. The
detail of two system are listed in Table 5.8.

Table 5.8 Comparison of seizure detector

} Previous 8051 implementation +

) . This work +AFE[24], [25]
| signal conditioning board [13]

Operating Frequency(Hz) 32M 3.2k
Single-channel processing time (ms) 24.1 235
Area e 1230 x 1230pum? (Core) /
1760 x 1760pum? (Chip)
Power Consumption of Analog Part N/A 548uW
Power Consumption of Digital Part N/A 114.1uW
Total Power Consumption 117.66mwW 662uW
Power Normalization 100 % 0.5%
Battery Life (3.7V, 1100 mAh) 28 hours 7.5 months
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Chapter 6 Conclusion and Future Work

In this thesis, a 2-channel epileptic seizure detector for closed-loop seizure control is
proposed to achieve low power consumption and continuous real-time processing. Both
detection accuracy and functions has been verified by continuous EEG signals recorded from
freely moving Long-Evans rats. The implementation results have been showed the proposed
epileptic seizure detector in FPGA reduced 15% power consumption while achieve the same
real-time performance compared with previous prototype, and it is reduced above 99% in
MCESD. An implantable continuous time seizure detector is implemented, and the detection
accuracy is 94.6%. Recently, the chip on board include MCESD, AFE, and stimulator is
proceeding, as shown in Fig. 6.1.n the future, the MCESD chip will integrate with analog
front-end circuitries and stimulators to-a real-time closed-loop seizure detector to build up a

system-on-a-chip solution.

(___Electrodes ) | Seizure Detection System Board |

6 mm 16-Channel -amplif 10-bit ADC Seizure Detector |} 4.096MHz
x EEG Signals W _andfilter |EN{ pmmmm (MCESD) Oscillator

e

2-Channel

— H e Signals
— - LTTTTY

-
— = System Board 400Hz
on the back Sampling Clock

Stimulators -
- 409.6 KHz Clock

800Hz Pulse
Stimulation ; Enable Signals
electric current =

Experimental Subject 1.8V System 3.3V System

Reset for Reset for
Analog Blocks Digital Blocks

Fig. 6.1 The block diagram of CoB
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