

國 立 交 通 大 學

電信工程研究所

碩 士 論 文

利用頻寬適應性技術之雲端資料中

心網路壅塞控制機制

Congestion Control in Cloud Datacenter

by Bandwidth Adaptation

研究生 ： 黎氏蘭香

指導教授 ： 王蒞君教授

中 華 民 國 一 百 年 八 月

國 立 交 通 大 學

電信工程研究所

碩 士 論 文

利用頻寬適應性技術之雲端資料中

心網路壅塞控制機制

Congestion Control in Cloud Datacenter

by Bandwidth Adaptation

研究生 ： 黎氏蘭香

指導教授 ： 王蒞君教授

中 華 民 國 一 百 年 八 月

利用頻寬適應性技術之雲端資料中心網路壅塞控制機制

Congestion Control in Cloud Datacenter

by Bandwidth Adaptation

研究生：黎氏蘭香 Student：Le Thi Lan Huong

指導教授：王蒞君 Advisor：Li-Chun Wang

國立交通大學

電信工程研究所

碩士論文

A Thesis

Submitted to Institute of Communication Engineering

College of Electrical and Computer Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of Master of Science

In

Communication Engineering

August 2011

Hsinchu, Taiwan, Republic of China

中 華 民 國 一 百 年 八 月

利用頻寬適應性技術之雲端資料中心網路壅塞控制機制
學生：黎氏蘭香 指導教授：王蒞君教授

國立交通大學

電機學院電信工程研究所

摘要

在過去十年來，雲端資料中心迅速崛起並成為運算上重要的一塊，

並且成為一個重要的研究議題。然而，最近的研究者著重於解決網路

設計，而網路通訊管理方面的議題仍值得深入。如何為網路流選擇正

確的路徑並不是個可以簡單回答的問題，尤其當需要保證分佈平均以

及負載平衡，還要能快速的識別以及回應故障時。而更加困難的是，

當這個問題還面臨著資料中心裡不確定的流量負載。

這份碩士論文意旨在研究雲端資料中心的壅塞問題。這份研究的

目標在於提出一個壅塞控制機制，並評估目前的多路徑繞徑技術的效

能。本文所提出的方法稱為「頻寬適應性技術之網路壅塞控制」，該

方法是基於雲端資料中心的網路流量的特性與行為為討論基礎。我們

透過兩個模型來檢驗所提出的方法的有效性，分別是 m-port n-tree fat-

tree 拓撲和英業達資料中心拓撲。模擬的情境是透過 NS-2 模擬器來實

作並完成測試。其效能結果顯示，透過「頻寬適應性技術」優於雲端

資料中心使用傳統 TCP 在吞吐量、封包錯誤率與延遲等問題的表現。

Congestion Control in Cloud Datacenter

by Bandwidth Adaptation

A THESIS Presented to

The Academic Faculty By

Le Thi Lan Huong

In Partial Fulfillment

of the Requirements for the Degree of

Master in Communications Engineering

Institute of Communications Engineering

College of Electrical and Computer Engineering

National Chiao Tung University

August, 2011

Copyright @2011 by Le Thi Lan Huong

Congestion Control in Cloud Datacenter by Bandwidth Adaptation

Student: Le Thi Lan Huong Advisor: Dr. Li-Chun Wang

Institute of Communications Engineering

National Chiao Tung University

Abstract

During the last decade, datacenters have risen to dominate the computing landscape

and become an important research topic. Among four main components of a datacenter

networking architecture: physical topology, routing over topology, selection between multiple

paths supplied by routing, congestion control technique on the high speed, low latency

network, the last three objects in the list haven’t investigated worthy. In this thesis, we

propose a congestion control mechanism in cloud datacenter by bandwidth adaptation and

evaluates the performance of multipath routing in its present in cloud datacenter. Both fat

tree and experimental topologies are considered in the testing of performance. Simulations

are conducted to compare the effectiveness of the proposed mechanism. The performance

results demonstrate that the proposed congestion control in cloud datacenter by dandwidth

adaptation can outperform the throughput, packet error rate and delay issues compare with

traditional Transmission Congestion Protocol (TCP) in cloud datacenter environments.

i

Acknowledgements

I would like to take this opportunity to express my thanks to those who helped me with

various aspects of conducting research and the writing of this thesis. First and foremost, my

advisor, Professor Li-Chun Wang for giving me the opportunity to do the research in MC3

Lab and special thanks for his time, patience, understanding and unconditional support

during the time I study here. His insights and words of encouragement have often inspired

me and renewed my hopes for completing my graduate education. I would additionally like

to thank Professor Hung-Pin Wen for giving me the opportunity to be part of the Inventec

research.

My gratitude also goes to the Mobile Computing and Cloud Computing lab, there are

not enough words to describe your excellent work and attitude in research. I learnt many

things from all of you. Kapin, Weiping, Alan, Ruwan and Gorden thanks for the help in the

first time I work in the cloud computing area. Dr. Sheng, thanks for your advice and for

acting as a mentor to me. The most special thanks goes to my family, including my parents,

my sister and brother, best partner and friend, my husband, and my little angle. You gave

me your unconditional support and love through all this long process.

ii

Contents

Abstract i

Acknowledgements ii

Contents iii

List of Tables vi

List of Figures vii

List of Abbreviations viii

1 Introduction 1

1.1 Thesis target and motivation . 1

1.2 Thesis outline . 3

2 Background 4

2.1 An overview on cloud datacenter networking 4

2.2 Cloud datacenter network design . 4

2.2.1 Topology . 4

2.2.2 Addressing . 5

2.2.3 Cost and equipment . 5

2.2.4 Routing mechanism . 6

2.3 Traffic management in datacenter . 6

2.3.1 Multipath routing for load balancing 6

2.3.2 Congestion control . 7

iii

2.4 Summary . 15

3 System Model and Problem Formulation 17

3.1 System Model . 17

3.1.1 Model . 17

3.1.2 Assumptions . 19

3.2 Problem Formulation . 21

3.2.1 Goal . 21

3.2.2 Overview of multipath routing and congestion control in cloud data-

center . 22

4 Adaptive Bandwidth Congestion Control Mechanism 24

4.1 Rate Prediction State . 24

4.1.1 Initial evaluate sending rate . 26

4.1.2 The rest traffic . 26

4.2 Updating Sending Rate . 27

4.3 Packet Loss . 28

5 Performance Results 29

5.1 Performance Metrics . 29

5.1.1 Throughput . 29

5.1.2 End to end delay . 29

5.1.3 Packet loss rate . 30

5.2 Design of simulation structure . 30

5.3 Testing Congestion Control Mechanism in the Single Link 32

5.4 Throughput comparisons . 34

5.4.1 Small-scale fattree topology . 34

5.4.2 Medium-scale fattree topology . 35

5.4.3 Large-scale experimental topology . 36

5.5 Delay Comparisons . 37

5.5.1 Medium-scale fattree topology . 37

5.5.2 Large-scale experimental topology . 40

iv

5.6 Error rate comparisons . 40

5.6.1 Small-scale fattree topology . 42

5.6.2 Large-scale experimental topology . 42

6 Conclusions 44

BIBLIOGRAPHY 46

VITA 49

v

List of Tables

2.1 Literature Survey . 15

2.2 Comparisions of TCP Variants and our proposed 16

5.1 Packet loss rate in small fat tree topology 42

5.2 Packet loss rate in large-scale experimental topology 43

vi

List of Figures

2.1 Bandwidth utilization by TCP in different link capacities. 14

3.1 4-port 3-tree Fat tree topology with 16 hosts and 20 switches. 18

3.2 8-port 3-tree Fat tree topology with 128 hosts and 80 switches. 19

3.3 An experimental cloud datacenter with 65 switches and 1000 hosts. 20

3.4 Assumption model. 21

3.5 Congestion control in multipath datacenter. 23

4.1 Adaptive Bandwidth Congestion Control Mechanism. 25

5.1 Block diagram of the over-all progress of the simulation. 31

5.2 Simple link model. 33

5.3 Simple link throughput comparison. 33

5.4 Throughput comparison in small-scale fattree topology. 35

5.5 Throughput comparison in a medium-scale fattree topology. 36

5.6 Throughput comparison in a large-scale experimental topology. 37

5.7 End-to-end delay comparisons in fat tree topology using Multipath in TCP

vs. Multipath in ABCC . 38

5.8 End-to-end delay comparisons in fat tree topology using single path vs. mul-

tipath routing. 39

5.9 End-to-end delay in experimental datacenter using Single Path vs. Multipath. 40

5.10 End-to-end delay in an experimental datacenter using multipath in TCP vs.

multipath in ABCC. 41

6.1 Packet-size awared ABCC scheme. 45

vii

List of Abbreviations

ABCC Adaptive Bandwidth Congestion Control

ACK Acknowledgment

AD Additive Decrease

AI Additive Increase

AIAD Additive Increase Additive Decrease

BIC-TCP Binary Increase Congestion Transmission Control Protocol

CPU Central Processing Unit

CRC Cyclical Redundancy Check

ECMP Equal Cost Multi Path

FTP File Transfer Protocol

FIFO First In First Out

GB GigaByte (1 GB = 1,024 MegaBytes = 1,048,576 KiloBytes)

GBps GigaBytes per second

IP Internet Protocol

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

HSTCP High Speed Transmission Control Protocol

NS-2 Network Simulator Version 2

NIC Network Interface Card

OSI Open Systems Interconnection

LAN Local Area Network

QoS Quality of Service

RED Random Early Detection

RTT Round Trip Time

viii

STCP Stratified Speed Transmission Control Protocol

SMSS Sender Maximum Segment Size

TCP Transmission Control Protocol

ix

Chapter 1

Introduction

1.1 Thesis target and motivation

Cloud datacenters have emerged in the past few years as a new paradigm for interconnect-

ing computing and storage in a massive scale. There are several viewpoints from which to

approach the development of cloud datacenters. Network design and management are chal-

lenging problems and raise questions regarding how to choose topology, link bandwidths,

and routes as well as how to quickly identify and react to failures. Many studies in cloud

datacenter designs recently such as [1], [2], [3], [4] have proven the attention of network

community. However, these researches only solve the problems in network design. Network

traffic management aspects are still open issues. Answering questions about how to control

the traffic flows and quickly identify and react to failure are not easy, these questions are

more difficult due to uncertainties in traffic workloads in cloud datacenter.

The cloud datacenter offer high aggregates bandwidth and robustness by creating multiple

paths in the core of the network. It’s different from Ethernet in the aspect of very short

distance, communications interconnection and also high bandwidth.

Due to those special points in designs and applications, traffic in cloud datacenter has

very different characteristics. Researches of the traffic in cloud datacenter show a highly

utilized links often. Among the 150 inter-switch links that carry the traffic of the 1500

monitored machines, 86% of the links observed congestion lasting at least 10 seconds and

15% observe congestion lasting at least 100 seconds. Short congestion periods are highly

correlated across many tens of links and are due to brief spurts of high demand from the

1

application [5]. They lead to the truth that cloud datacenters are different from traditional

enterprise network, and also cloud datacenter will experience its own congested phenomena.

In such cases, congestion requires an appropriate congestion technique that can leverage the

strengths of cloud datacenters.

While there are many congestion control protocols in use in the common network, the

most prevalent is the Transmission Control Protocol (TCP). TCP [6] is used to provide reli-

able communications on top of IP and Ethernet. Since TCP employs loss-based congestion

control algorithm, which continues to increase sending rate until it gets packet losses, its

queuing delay can grow till its maximum and it takes time to converge to the appropriate

sending rate. In very short distance communications environment as in cloud datacenters

where mechanisms cannot exploit high bandwidth due to too low increasing and big decreas-

ing in slow start and congestion avoidance phase, respectively. Recently, there are a number

of TCP variants having delay-based congestion control algorithm [7], [8], [9], but they are

also not very efficient because of not considering the unique congestion problem in cloud

datacenter.

Due to existing protocols for wired networks like TCP and its variants are not suitable for

cloud datacenter, the problem of congestion control and avoidance in multipath environment

of cloud datacenter remains largely open and not clearly described yet.

This thesis aims to study the problem of congestion in cloud datacenter by utilizing

unique characteristics in topology design and congestion symptoms strictly related to the

philosophy and traffic property of cloud datacenter. The main objective is to examine

the behavior of several cloud datacenter topologies and their impacts on congestion under

traditional TCP. We will propose a new congestion control and avoidance mechanism named

Adaptive Bandwidth Congestion Control (ABCC) that is different from existing traditional

schemes. Some performance issues are also examined, such as throughput, end-to-end delay

and packet loss rate. The simulation scenarios were implemented and tested with the use of

the NS-2 simulator.

2

1.2 Thesis outline

In this thesis, we investigate how to design a new congestion control mechanism in cloud

datacenters. We provide simulation results to show the improvements of our proposed mech-

anism. Chapter 2 introduces the background of cloud datacenter networking: cloud data-

center topology design, traffic management in cloud datacenter. Chapter 3 shows the system

model and two case studies that will be considered to test our proposed congestion control

mechanism in cloud datacenter by bandwidth adaptation mechanism, assumptions when set

up the simulation environment and problem formulations. Chapter 4 analyzes the proposed

scheme. Chapter 5 describes the deployment in NS2 environment and discusses the per-

formance results in terms of throughput, error rates and delay comparisons between single

path, equal cost multi path (ECMP) and adaptive bandwidth congestion control (ABCC).

Chapter 6 gives some concluding remarks and future work.

3

Chapter 2

Background

2.1 An overview on cloud datacenter networking

In recent years, cloud computing has become more popular. As a result, cloud datacenters

have risen to dominate the computing landscape. Today’s largest datacenter have hundreds

of thousands servers, and run distributed applications that spread computation and storage

across many thousands of machines. With so many hosts, it is impractical to manually man-

age the allocation of task to machines. While applications may be written to take advantage

of locality within the datacenter, large distributed computations inevitably are spread across

many racks of machines. As a result, the network can often be the bottleneck. Next part will

review the background for networking issues and techniques in cloud datacenters, including

topology, addressing, routing, forwarding loops, and multiple paths.

2.2 Cloud datacenter network design

2.2.1 Topology

A typical architecture for connecting hosts in a cloud datacenter is three tiers architecture,

consisting of core, aggregation, and access tiers. Core and aggregation tiers require higher

bandwidth than the access tier. The design of the three tier architecture needs to consider

the so called oversubscription ratio issue, defined as the sum of the bandwidth required from

all the end hosts in the access level over the provided bandwidth in the upper level [10].

4

The higher value of oversubscription ratio leads to higher blocking and lower throughput.

In a large-scale datacenter, the typical oversubscription ratios are 2.5 up to 8. To reduce

the oversubscription ratios, high-bandwidth equipments will be required in core and aggre-

gation levels. However, the high-bandwidth equipments are high cost. Fat-tree topology [11]

provided low oversubscription ratio using low-cost equipment.

2.2.2 Addressing

Addressing in inter-connected network can be classified into layer-2 and layer-3 addresses.

MAC addresses are defined in the layer-2 network, while IP addresses are defined in layer-

3. The structure of layer-2 MAC addresses is flat, which is different from the hierarchical

structure of layer-3 IP addresses. Usually, the layer-3 IP addresses are easier for management

and scalability.

2.2.3 Cost and equipment

The networking equipments employed in a cloud datacenter spend 15% of the total cost [12].

The price difference between the low-end and high-end equipment is huge, thereby providing

a strong incentive to build large-scale data center networks from low-price networking equip-

ments. For example, a 48-port GigE switch costs $7,000, and a 128-port 10 GigE switch costs

$700,000 [10]. Adopting commodity networking equipments also considered in the switching

design fifty year ago. Charles Clos designed a network topology that delivers high levels

of bandwidth for many end devices by appropriately interconnecting cheaper commodity

switches [13]. A special instance of a Clos topology called the fat-tree topology [11], which

was shown to reduce four to five times cost of networking equipments [10][14] . Beside the

commodity devices, cloud datacenter networking researches [6][7] also adopt NetFPGA [15]

as an experimental networking equipment (e.g. modified Ethernet switches and IP routers).

NetFPGA is a programmable PCI card which can process packets at line-rate on four 1Gbps-

ports. Researchers can create their designs in Verilog code, and then download them to the

NetFPGA board. The prices of NetFPGA boards are available at $500 [15]. That price is

acceptable.

5

2.2.4 Routing mechanism

Multipath routing is the desirable property in the network design, which can provide fault tol-

erance, load balance, and bandwidth enhancement. Equal cost multipath protocol (ECMP)

[20] is a widely used in the current networks. Nevertheless, the issues of packet reordering

and unfair flow splitting in ECMP are remained to be solved if it is implemented in cloud

datacenters.

2.3 Traffic management in datacenter

Network design and management are challenging problems and raise questions regarding

how to choose topology, link bandwidths, and routes as well as how to quickly identify

and react to failures. Many studies in datacenter network designs recently such as [1], [2],

[3], [4] have proven the attention of network community. However, these researches only

solve the problems in network design and the network traffic management aspects are still

open issues. Answering questions about how to choose right path for flows to guarantee

fair distribution and load balancing and can quickly identify and react to failure are not

easy. These questions are further made difficult due to uncertainties in traffic workloads in

datacenters. Some studies continue the management aspect in cloud datacenter by providing

the solutions for load balancing with multipath, congestion control, combining multipath

routing and congestion control. We will consider each part individually in the following

sections.

2.3.1 Multipath routing for load balancing

Load-sharing is an important technique in communication networks. It allows a network

device (router, switch) to distribute the outgoing and incoming traffic among multiple paths.

Load-sharing can be achieved in two ways: through congestion-aware routing algorithms to

route the specific demand or routing the packets of the same demand over multiple paths

along the way. The latter called multipath routing provides fast resiliency as well as finer

degree of load sharing in the network. Current routing schemes typically focus on discovering

a single optimal path for routing, according to some desired metrics. Accordingly, traffic

6

is always routed over a single path, which often results in substantial waste of network

resources. Multipath routing is an alternative approach that distributes the traffic among

several good paths instead of routing all traffic along a single best path. Multipath routing

represents a promising routing method to achieve load balancing and is more resilient to

route failures. Multipath is not a new idea which is popular in wireless networks. Many

multipath routing protocols such as SMR, AODV, AOMDV, and AODV multipath have

been proposed and performance evaluations of these protocols showed that they achieve

lower routing overhead, lower end-to-end delay and alleviate congestion in comparison with

single path routing protocols. In wireless networks, multipath routing protocols establish

multiple disjoint paths from a source to a destination, thereby improving resilience to network

failures and allowing for network load balancing. These effects are particularly interesting in

networks with high node density (and the corresponding larger choice of disjoint paths) and

high network load (due to the ability to load balance the traffic around congested networks).

Fortunately, all above properties are right matched with the design of datacenter network,

multipath routing attracts the attention of network management designer by state of art

ECMP [16] and VLB [17]. Portland [2] adopts ECMP why VL2 [4] combines two related

mechanisms: VLB and ECMP for random traffic spreading over multiple paths. Anyway

ECMP is per flow static hashing. It can cause substantial bandwidth losses due to long term

collision. On the other hand, this static mapping flow-to-path does not account for either

current network utilization or flow size. With resulting collisions overwhelming switch buffer

and regarding overall switch utilization. HFMF [18] used adaptive flow-splitting schemes

according to the corresponding level in the three-tier fat-tree topology. Comparison results

proved that HFMF can reduce the packet disorder arrival and achieves a better performance

of load balancing compare with ECMP. By the way, multipath in cloud datacenters requires

more research to leverage the diversity of connections in its design.

2.3.2 Congestion control

Congestion typically occurs where multiple links feed into a single link where internal LANs

are connected to WAN links. Congestion also occurs at routers or switches in core networks

where nodes are subjected to more traffic than they are designed to handle. In cloud datacen-

ter, congestion happens at edge switch where is the point of a connection of dozens of servers

7

and core routers. Researches of the traffic in cloud datacenter show a highly utilized links

happen often. Among the 150 inter-switch links that carry the traffic of the 1500 monitored

machines, 86% of the links observe congestion lasting at least 10 seconds and 15% observe

congestion lasting at least 100 seconds. Short congestion periods are highly correlated across

many tens of links and are due to brief spurts of high demand from the application [5]. It

clearly shows that cloud datacenters are different from traditional enterprise network, and

also cloud datacenter will explicit its own phenomena when congested.

There are two commonly type of traffic in network: UDP and TCP. While UDP is

typically used for real-time audio and video streams, because there is no need to recover

lost packets. UDP is an unreliable transport protocol that does not send ACK signals back

to the source, TCP is a connection-oriented protocol. Thus congestion control adopts only

on TCP. TCP traffic is of particular importance in any networks as it currently carries the

great majority (more than 90%) of network traffic. We will give an overview of congestion

control mechanisms in the TCP protocol next part.

2.3.2.1 An Overview of Congestion Avoidance in TCP

TCP is one of two protocol standards commonly referred to as TCP/IP. TCP sits on top of

the IP layer and delivers segments onto the IP layer for further processing. These segments

are then delivered onto the lower level layers and finally on to the network. TCP was officially

adopted as a standard in RFC 1793 in 1981 and was designed to deal with flow control and

error correction traffic in network, TCP can ensure reliable delivery of a message from a

source to a destination application.

To understand how TCP works, the general features of TCP will be clearly described. In

the following part, we also provide an overview of features a TCP variant can possess. These

features will be dealt with in historical and chronological manner. In order to describe the

TCP protocol, some concepts are needed:

* Round Trip Time (RTT): Assume that there is no packet loss in network, RTT is the

required time for a packet to be sent from a source to a destination application and for the

corresponding acknowledgement to be received by the source appk.

* Advertised window (awnd): awnd is the value of the amount of data that a destination

has announced that it is willing to receive. This is advertised to source in every ACK sent

8

by the destination.

* Congestion window (cwnd): Assuming that the source is not restricted by the advertised

window, in that case, cwnd represents for the number of packets transmitted but not yet

acknowledged.

* Send window (swnd): sometimes denoted as w, it is the minimum of awnd and cwnd.

* Additive Increase Multiplicative Decrease (AIMD): this is a name for the technique

that TCP increases its congestion window by adding to it on receipt of ACK’s and decreases

the send window by a multiplicative factor on receipt of an indication of packet loss.

* Slow Start: In Slow Start mode the congestion window is doubled whenever it receives

ACK packet of previous sending packet. This mechanism creates an exponential shape of

increasing rate.

* Slow start threshold (ssthresh): state variable is used to determine whether the slow-

start or congestion avoidance phase is used to control data transmission. If cwnd <=

ssthresh the sender will follow the slow start phase. If cwnd > ssthresh, it will switch to

congestion avoidance phase.

* Fast Retransmit: a mechanism whereby the source retransmits a packet right after

receiving a number of duplicate ACK’s rather than waiting for a retransmit timer to timeout.

By that way, it can reduce the time that a sender waits before retransmitting a lost segment.

* Fast Recovery: the mode entered after a packet drop is detected via Fast Retransmit.

In this mode when packets (recognized through 3 duplicate ACKs) are not received, the

congestion window size is reduced to the slow-start threshold, rather than the smaller initial

value.

* Retransmission Time-Out (RTO): it is calculated based on current RTT and RTT

variance. It’s represented for an interval time that a source has to wait without receiving an

ACK before marking a packet as lost, retransmitting it and entering Slow Start mode.

* Congestion Avoidance: the mode the source enters after Fast Recovery. The source

uses an AIMD strategy, linearly increasing its congestion window at a rate of one packet per

RTT.

* Maximum Sized Segment (MSS): the maximum packet size that can be sent by a TCP

source. During the initial phase of a TCP connection the receiver (or receivers when the data

flow is bi-directional) provides details of the amount of incoming data that it can process.

9

This informs the source of the maximum data that the destination is currently willing to

receive.

Originally TCP’s flow control was adjusted by (1st) the maximum allowed window size

advertised by the receiver and (2nd) the policy that allowed the sender to send new packets

only after receiving the acknowledgement for the previous packet. To overcome the disad-

vantages due to the sluggishness of TCP, Tahoe TCP was released including three congestion

control algorithms: slow start, congestion avoidance and fast retransmit. After that, Reno

TCP provides one more algorithm called fast recovery. It introduces receiver’s advertised

window, awnd, which is used to prevent the sender from overrunning the resources of the

receiver. TCP’s congestion control also includes two new variables for the connection. The

congestion window, cwnd, is to prevent the sender from sending more data than the network

can accommodate in the current load conditions. The slowstart threshold, ssthresh, is the

estimate for the available bandwidth in the network. The window size of the sender, w, was

not only defined by the maximum allowed window size advertised from sender, but also set

by another parameter: congestion window: w = min (cwnd, awnd).

The main idea of TCP congestion control is to modify cwnd adaptively to reflect the

current load of the network. In practice, congestion phenomenon is detected by the lost

packets. A packet loss can basically be detected either via a time-out mechanism or via

duplicate ACKs.

* Timeouts: Associated with each packet is a timer. If the time expires, timeout occurs,

and the packet is retransmitted. The value of the timer, denoted by RTO, should ideally

be of the order of an RTT. However, as the value of RTT is not known in practice, it is

measured by the TCP connection by using, e.g, the so called Jacobson/Karels algorithm.

* Duplicate ACKs: If a packet has been lost, the receiver keeps sending acknowledgements

but does not modify the sequence number field in the ACK packets. When the sender

observes several ACKs acknowledging the same packet, it concludes that a packet has been

lost.

The following parts describe basic phases in TCP: Slow Start, Congestion Avoidance,

Fast Retransmit and Fast Recovery. These phases will be included in the next sections to

describe TCP Variants.

* Slow Start and Congestion Avoidance: In slow start phase, when a connection is

10

established, the value of cwnd is first set to 1 and after each received ACK the value is

updated to cwnd = cwnd + 1 (exponential growth). The growth of cwnd continues until a

packet loss is observed. Whenever a packet loss is detected, the value of ssthresh is updated

to ssthresh = cwnd/2. After the packet loss, the connection starts from slow start again

with cwnd = 1, and the window is increased exponentially until it equals ssthresh. At

ssthresh point, the connection goes to congestion avoidance phase where the value of cwnd

is increased less aggressively with the pattern cwnd = cwnd+ 1/cwnd (linear growth). This

linear increasing will continue until a packet loss is detected.

* Fast Retransmit: Duplicate ACKs that were mentioned to be one way of detecting

lost packets can also be caused by reordered packets. When receiving one duplicate ACK

the sender cannot yet know whether the packet has been lost or just gotten out of order

but after receiving several duplicate ACKs it is reasonable to assume that a packet loss

has occurred. The purpose of fast retransmit mechanism is to speed up the retransmission

process by allowing the sender to retransmit a packet as soon as it has enough evidence that

a packet has been lost. This means that instead of waiting for their transmit timer to expire,

the sender can retransmit a packet immediately after receiving three duplicate ACKs.

* Fast Recovery: In Tahoe TCP the connection always goes to slow start after a packet

loss. However, if the window size is large and packet losses are rare, it would be better for

the connection to continue from the congestion avoidance phase, since it will take a while to

increase the window size from 1 to ssthresh. The purpose of the fast recovery algorithm in

Reno TCP is to achieve this behavior. In a connection with fast retransmit, the source can

use the flow of duplicate ACKs to clock the transmission of packets. When a possibly lost

packet is retransmitted, the values of ssthresh and cwnd will be set to ssthresh = cwnd/2 and

cwnd = ssthresh meaning that the connection will continue from the congestion avoidance

phase and increases its window size linearly.

2.3.2.2 TCP variants

In order to understand the current status of TCP it is important to look at its development

and in particular the reasoning behind specific design features. Early deployments of TCP

used a go-back-N model (sending sequence goes back N packets) when packets were lost.

These implementations had no congestion control and led to a series of serious congestion

11

problem on the Internet for long time. During these congestion collapses the data throughput

of connections was severely reduced due to excessive retransmission of packets. These issues

were addressed by a version of TCP called Tahoe [23] in which the problem of congestion

was approached by a “Conservation of Packets” principle whereby new packets were not

put into the network until the old ones left. TCP Tahoe was the first method to employ

three mentioned transmission phases: slow start, congestion avoidance, and fast retransmit

and is thus a self clocking system, formed by the transmission of data and the receipt of

acknowledgements.

Even thought Slow Start and Congestion Avoidance are implemented together, they are

independent algorithms with different objectives. Slow Start probes the network so that the

TCP source can get an initial indication of the network bandwidth available. In practice,

each TCP variants implement this step in different ways. Congestion Avoidance more gently

probes the network so that the TCP source can adapt to change network conditions. A TCP

connection will start in Slow Start mode but switch to Congestion Avoidance mode after

cwnd reaches the value of ssthresh. In addition to these enhancements Tahoe also includes

Fast Retransmit, better RTT variance estimation, and exponential retransmit timer back-

off. These enhancements dramatically enhanced the throughput performance of TCP [24].

In practice, each TCP variants implement these steps in different ways.

Reno TCP [25] is the next major variant of TCP. This is similar to the Tahoe TCP,

except it also includes Fast Recovery. Reno TCP does not return to Slow Start after Fast

Recovery (which ends on the receipt of the retransmitted packet). It reduces the congestion

window to reduce the current window size to one half. In this example the TCP flow goes into

Timeout mode following Slow Start due to excessive packet transmission during Slow Start

phase. The special point in Reno is delayed ACKs including. The two above mechanisms

experience poor performance when multiple packets are lost from one window (cwnd) of

data. With less information available from cumulative acknowledgments, TCP Tahoe and

Reno sources can only learn about a single lost packet per round trip time. An aggressive

source could choose to retransmit packets early, but such retransmitted packets may have

already been successfully received. To address this issue, TCP NewReno [25] modifies the

action taken when receiving new ACK’s. In order to exit Fast Recovery, the TCP NewReno

source must receive an ACK for the highest sequence number sent before entering Fast

12

Recovery. Thus, unlike TCP Reno, new partial ACK’s do not take TCP NewReno out of

Fast Recovery phase. In this way, Reno retransmits one packet per RTT until all lost packets

are retransmitted.

TCP NewReno almost addresses the problem of multiple dropped packets but it does not

use all the information on loss information available at the receiver. This issue is addressed by

the Selective Acknowledgment (SACK) mechanism [26], combined with a so called selective

repeat retransmission policy. The receiving TCP sends back ACK packets to the source.

This can inform the source of data all necessary information about dropped packets. The

source can then retransmit packets that have been dropped. This scheme has the benefits of

allowing the source to intelligently retransmit packets and react to multiple dropped packets

efficiently.

2.3.2.3 TCP variants for high speed networks

In particular, recent research has identified the following challenge faced by the conventional

transport control protocol: TCP cannot satisfy large data transfer requirements for future

data networks because it is unable to efficiently utilize the huge bandwidth provided by high

speed.

To understand the above identify let us consider Figure 2.1, which shows the bandwidth

utilization of links with several TCP connections, each one is 1KB in packet size. The 5 link

capacities are: 155Mbps, 622Mbps, 2.5Gbps, 5Gbps, 10Gbps. It is set up in NS2 simulation

with DropTail queuing model, the queue is set at 100 packets. Figure 2.1 clearly shows a big

descreasing of link utilize when link capacity increases. The result proves that TCP cannot

fully utilize the huge capacity of high speed network.

There are several TCP variants for addressing these issues. We consider here three of

TCP variants: AIMD, STCP and HSTCP.

* The additive increase/multiplicative-decrease (AIMD) algorithm is a feedback control

algorithm used in TCP Congestion Avoidance. AIMD combines linear growth of the conges-

tion window with an exponential reduction when congestion takes place. The taken approach

is to increase the transmission rate (window size), probing for usable bandwidth, until loss

occurs. The policy of additive increase may, for instance, increase the congestion window by

1 MSS (Maximum Segment Size) every RTT (Round Trip Time) until a loss packet is de-

13

Figure 2.1: Bandwidth utilization by TCP in different link capacities.

tected. When the lost is detected, the policy is changed to be one of multiplicative decrease,

which may, for instance, cut the congestion window in half after loss.

* Stratified TCP (STCP)[28] is a protocol designed to utilize bandwidth in an aggressive

and efficient way. It is based on the principle of virtual layers. In this technique, data trans-

mission starts off with a single layer (as in conventional TCP) and the layers are gradually

increased based on certain criteria. To determine the criteria for increasing the number of

layers, STCP applies the TCP sending rate equation and modifies the equation to make

it more dynamic to the changing network conditions. Hence, STCP owns following major

features: aggressive bandwidth utilization and responds to network changes.

* HighSpeed TCP [27] is a modification to TCP congestion control mechanism, proposed

by Sally Floyd from ICIR (The ICSI Center for Internet Research). The main problem of

TCP connection is that it takes a long time to make a full recovery from packet loss for high-

bandwidth long-distance connections. Like the others, new TCP implementations propose

a modification of congestion control mechanism for use with TCP connections with large

congestion windows. For the current standard TCP with a steady-state packet loss rate p,

an average congestion window is 1.2/
√
p segments. It places a serious constraint in realistic

environments.

14

We summarize some TCP variants and provide comparisons of TCP and our work in the

table 2.2.

2.4 Summary

In this chapter we provided an overview on cloud datacenter, especially topology design and

traffic management. We described multipath routing technique in cloud datacenter and also

gave a briefly summary of congestion voidance control in network. We note that there are

many variants of TCP. The main variants of TCP in use today are favours of TCP Reno and

TCP Sack. For high speed networks, many other TCP variants proposed, such as AIMD,

STCP, HSTCP. The main difference between these TCP variants lies in the manner in which

they deal with lost packet recovery. However, there’s no TCP variant pays attention to the

congestion problem in cloud datacenters. Hence, there is a need to study how to enhance

the TCP performance in high speed and low latency cloud datacenter networks. In this

work, we propose a new TCP protocol, namely Adaptive Bandwidth Congestion Control

(ABCC) which modifies the TCP behavior with more aggressive bandwidth probing and

better utilization. A brief introduction to ABCC is given in the chapter 4.

Table 2.1 will explain what we do in the rest of thesis.

Table 2.1: Literature Survey

Topology Multipath TCP variants Simulation

VL2 Fat tree o x o

PortLand Clos o x o

Experimental Multi-root x x x

Our work Fat tree, Inventec o o o

15

Table 2.2: Comparisions of TCP Variants and our proposed

Types Slow Start Phase CA without Loss CA with Loss

TCP cwnd = cwnd+ 1 cwnd = cwnd+ 1
cwnd

cwnd = cwnd
(
1− 1

2

)
AIMD cwnd = cwnd+ 32 cwnd = cwnd+ 1

cwnd
cwnd = cwnd

(
1− 1

2

)
STCP cwnd = cwnd+ cwnd× 0.01 cwnd = cwnd+ 1

cwnd
cwnd = cwnd

(
1− 1

8

)
HSTCP cwnd = cwnd+ inc(cwnd) cwnd = cwnd+ 1

cwnd
cwnd = cwnd+ dec(cwnd)

Our work Bandwidth Adaptation Update Sending Rate cwnd = cwnd
(
1 − 1

δ

)

16

Chapter 3

System Model and Problem

Formulation

3.1 System Model

3.1.1 Model

The network model under consideration in this research is multi-root tree network topology

in cloud datacenters. We focus on the simulation of proposed mechanism in two models: a

m-port n-tree fat-tree topology and an experimental datacenter. The two models belong to

typical cloud datacenter architectures that are using widely in many datacenters nowadays.

They commonly consist of three-level trees of switches or routers. A three-tiered design has

a core tier in the root of the tree, an aggregation tier in the middle and an edge tier at the

third level of the tree. In the edge level or aggregation level, every device has two outlets for

the connection of high level devices.

3.1.1.1 Model 1: Fattree topology

There are many ways to construct the fat-tree network topology. The root switches in

traditional k-ary n-trees only use half of their communication ports. In order to utilize

every port of root switches, we use an m-port n-tree approach [22] to construct the cloud

datacenter. In this construction, the number of ports in each switch is denoted by m, and n

is signed for the number of tiers in network. An m-port n-tree consists of 2× (m/2)n hosts

17

Figure 3.1: 4-port 3-tree Fat tree topology with 16 hosts and 20 switches.

and (m/2)n−1 + mn−1 switches. Each switch has m communication ports 1, 2, 3,..., m that

are attached to other switches or hosts. There are (m/2)n−1 root switches. Every switch

other than root switches uses port 1, 2,..., m/2 connecting with its descendants or hosts,

and uses port m/2+1, m/2+2,..., m connecting with its ancestors. Hosts are connected at

leaf switches. In this study, we evaluate the proposed mechanism in two m-port n-tree fat-

tree topologies, a 4-port 3-tree constructed for small scale and 8-port 3-tree one for medium

scale cloud datacenter. The large-scale cloud datacenter is considered in the experimental

topology. Small-scale datacenter consists of 20 1Gb switches with 4 ports, where 4, 8 and 8

switches are in core, aggregate and edge tiers, respectively. This network serves for 16 hosts.

Medium-scale datacenter consists of 80 8-ports 1Gb switches with 16 in core, 32 in

aggregate and 32 in edge tier, respectively. This network serves for 128 hosts.

18

Figure 3.2: 8-port 3-tree Fat tree topology with 128 hosts and 80 switches.

3.1.1.2 Model 2: Experimental topology

A real datacenter designed by Inventec Inc. has 65 switches. There are 5 switches (10G,

48 ports) in core tier, each switch connects to 10 switches in Aggregate (Region) tier and

remains 10 links to 10 switches in region tier. Under the core tier, the network is divided into

two regions. Each region has 5 switches (10G, 48 ports) which aggregates 5 racks consist of

5 switches and 1 data node. Four switches in aggregate tier remain fully down-links to each

rack; there are always 2 links from 2 switches in aggregate tier to data node in each rack.

Each switch also connects to 10 data nodes. Each switch in region tier always has 5 up-links

to connect to core tier.

3.1.2 Assumptions

The multi-root cloud datacenter network is a packet-switching based network. Routing in

a subnet is based on the forwarding table stored in each switch. When a packet arrives in

a switch, the packet will be forwarded to the corresponding output port via the forwarding

table lookup. The table look up will find the destination in the shortest path condition or

send same content in the shortest path and one or several backup paths. When multiple hosts

want to send packets to the multiple other hosts at the same time, the link congestion may

occur while the bandwidth of multiple paths offered by the multi-root topology is wasted.

We assume applications that generate a series of relatively short data transfers for that

reason, agile rate adaptation is very important to improve communication efficiency.

19

Figure 3.3: An experimental cloud datacenter with 65 switches and 1000 hosts.

20

Figure 3.4: Assumption model.

Traffic will be created to fully load the network under all-to-all traffic with large and

small distributions so that we can observe the congestion phenomenon.

3.2 Problem Formulation

3.2.1 Goal

The goal of our research is to propose a multipath routing combined with congestion control

in datacenters which can improve throughput, acceptable delay and minimize packet lost

in cloud datacenter. Cloud datacenters are different from traditional enterprise networks.

In addition, cloud datacenters will face its own congested phenomena. Existing protocols

for wired networks like TCP and its variants are not suitable for cloud datacenters. The

problem of congestion (control and avoidance) in cloud datacenter remains largely open and

not clearly described yet. This thesis aims to study the problem of congestion and consider

the performance strictly related with the multipath environment in the design of cloud dat-

acenters. The main objective is to design a new congestion control mechanism based on the

behavior and characteristics of traffic in cloud datacenter and then put the proposed mech-

anism in the multipath routing network environment. It aims to evaluate the performances:

throughput, packet lost rate and delay in different cloud datacenter topologies in the com-

parison with existing traditional scheme. The simulation scenarios were implemented and

tested by using the NS-2 simulator.

21

3.2.2 Overview of multipath routing and congestion control in

cloud datacenter

We consider the network with several hosts connecting to source switches. These computers

would like to send the traffic through a multi-path network environment in which all paths

have the same cost. We do the communication by transferring through an Equal Cost Multi

Path (ECMP) routing. For the purpose of congestion control in the network, we design an

Adaptive Bandwidth Congestion Control (ABCC) mechanism and implement in the presence

of Multi Path routing environment.

ABCC is a protocol designed to utilize bandwidth in an adaptive and efficient way. It is

based on the principle of real time sending rate updating. In this technique, data transmission

starts in slow start phase as in conventional TCP and sending rate are quickly increased

based on specific calculating. To determine the criteria for increasing or decreasing the rate

of traffic, ABCC applies the updating sending rate equation and modifies the equation when

congestion happens. The purpose is to make it more dynamic when network conditions

change. Hence, ABCC has four major features:

* Quickly achieve bandwidth utilization,

* Respond to network changes by update sending rate,

* More flexible with error detection in network,

* Keep the basic principle of TCP congestion control unchanged.

Details of the mechanism will be introduced clearly in the next chapter.

22

Figure 3.5: Congestion control in multipath datacenter.

23

Chapter 4

Adaptive Bandwidth Congestion

Control Mechanism

Fig. 4.1 shows an overview of the proposed mechanism. We assume that an upper-layer

application sends a group of packets to the proposed mechanism, which is located at the

transport layer. The application will get the highest quality of transmission if it can be

transferred at the highest capacity in the network layer. The proposed mechanism tries to

achieve this demand. The proposed congestion control algorithm starts whenever a con-

nection starts transferring or a connection time out. The algorithm modifies three states

corresponding with slow start phase, no packet loss and packet loss detection in congestion

avoidance phase in TCP.

The algorithm is started by the sender whenever it detects a new started connection.

When a new group of packets arrives at the sender host, it will check the value of sending

rate in R. If R = 0 then the algorithm will switch to Rate Prediction State to initial establish

the sending rate.

4.1 Rate Prediction State

When a new connection starts, as shown by a new group of packets arrives, the algorithm

will do the two following tasks in parallel.

24

Figure 4.1: Adaptive Bandwidth Congestion Control Mechanism.25

4.1.1 Initial evaluate sending rate

First n groups of packets are sent out after a random interval individually that don’t need

to wait for their previous ACKs. Each group has N packets that randomly chosen in range

(x,y). This is the number of packets that a sender can transmit in the cloud datacenters

under the limitation of discarding when an interface runs out of resources. In our proposed

mechanism, the resource is the memory for queuing . After receiving all ACK packets, the

sender host calculates the instantaneous sending rate by the following formula:

R =
D

T2 − T1
(4.1)

We have n groups then the sending rate can be written by:

R =
D1

T21−T11 + D2

T22−T12 + ...+ Dn

T2n−T1n
n

(4.2)

where:

* R: sending rate

* D1, D2,..., Dn : amount of data sent in the group 1,2,...,n

* T1 ,T2 : reception time of the first and last ACK packets, respectively in each group.

As a result, T2 − T1 is regarded as the time for the data packets to traverse through

the entire path from sending host to receiving host (or sessions). Thus, (4.2) estimates the

average sending rate and reflects the instantaneous available bandwidth of the network at

that time. Although the calculated initial sending rate would be useful if only use one first

group of packets, it should be more exactly to verify by sending n groups to get the exact

sending rate.

4.1.2 The rest traffic

Following the Slow Start Phase in TCP, the algorithm begins in the exponential growth

phase initially with a congestion window size of 1 or 2 segments, which is increased by one

segment size for each ACK received. This state is done during the time the sender waiting

for the result from the above calculation to get exactly the sending rate that can be achieved.

During this time, the sender seems to blind the residual bandwidth. For the reason of on-

time transmission, data should be sent without any delay. Right after the sending host

26

(session) get the value of sending rate R, the sender now forces all the data flows following

the transmitting as the sending rate R. By this method, sender can rapidly increase sending

rate when the network path is under-utilized.

4.2 Updating Sending Rate

The purpose of this step is to achieve the target throughput in real time by update sending

rate. In high speed and short distance datacenter, TCP requires a very high sending rate to

efficiently utilize the network resource. However, the standard TCP increases its congestion

window by one packet for each ACK received and reduces it by half on packet loss detection.

Because the bandwidth delay product is large in cloud datacenters, it requires a really long

time for TCP to achieve transmitting at the maximum capacity of the network. We almost

solve the above problem by the mechanism of specifying the instantaneously sending rate of

traffic. How to keep updating the bandwidth available is also a big challenge. The updating

sending rate should have the following properties: (1) it should have an aggressive, scalable

increase rule when the network is sensed to be under-utilized; and (2) it should also reduce

sending rate accordingly when the network is sensed to be fully utilized. Our updating of

sending rate is derived from TCP Vegas. A state variable, called baseRTT, is maintained

as an estimation of the transmission delay of a packet over the network path. When the

connection is started, baseRTT is updated by the minimal RTT that has been observed

so far. An exponentially smoothed RTT, sRTT, is also maintained. Then, the number of

backlogged packets of the connection can be estimated by following algorithm:

Expected =
w

baseRTT

Actual =
w

RTT

Diff = baseRTT ∗ (Expected− Actual)

where:

w: window size of the sender.

The Expected gives the estimation of throughput we get if we do not overrun the network

path. The Actual stands for the throughput we really get. Then, (Expected − Actual) is

27

the difference between the expected throughput and the actual throughput. Multiplying

by baseRTT, it stands for the amount of data that injected into the network in last round

but does not pass through the network in this round, i.e. the amount of data backlogged

in the bottleneck queue. An early congestion is detected if the number of packets in the

queue is larger than a threshold γ. If Diff < γ, the network path is determined as under-

utilized; otherwise, the network path is considered as busy and delay-based component should

gracefully reduce its w. We solve this problem by defining the sending rate updating:

R = R + (α− (RTT −RTTmin) ∗R)× β

RTT
(4.3)

where:

α: target value for backlogged data,

RTT −RTTmin: the throughput we really get at that time,

β
RTT

: state variable and is maintained as an estimation of the transmission delay of a

packet over the network path.

As in TCP Vegas, if α − (RTT − RTTmin) ∗ R < γ, the network path is determined as

underutilized and the sending rate will be increased more value. Otherwise, the network

path is considered as busy and the sender should gracefully reduce its sending rate.

4.3 Packet Loss

When a packet loss is detected through duplicate ACK or retransmission timeout, the sending

rate is

R = R× (1− 1/δ) (4.4)

In the bandwidth probing state, sending rate is reduced to 0 because the rate is not de-

termined yet in this state. Compare with TCP, we do the same thing as in Multiplicity

Decreasing algorithm but adjust the decreasing parameters basing on estimates of queuing

delay and buffer size. On loss, the sending rate is decreased as in (4.4). If the RTT is close

to the maximal observed value, then the loss is as a buffer overflow of R× (1− 1/2) , while

decreases to R × (1 − 1/8) as the RTT becomes smaller (as loss is then taken as packet

corruption).

28

Chapter 5

Performance Results

5.1 Performance Metrics

Testing of the simulation results should be measured and analyzed using some performance

metrics. In this simulation, the following performance metrics are used: throughput, packet

loss rate and delay. We define those metrics in the following formulas.

5.1.1 Throughput

Throughput in cloud datacenters is the average rate of successful message delivery over a

communication channel.

Tp =
number of received packets

number of forwarded packets
=
Pa
Pf

(5.1)

where:

Tp : throughput of network.

Pa : packets received over certain time interval

Pf : forwarded packets over certain time interval.

5.1.2 End to end delay

End-to-end delay refers to the time taken for a packet to be transmitted across a network

from source to destination.

D = packet receive time− packet send time = Td − Ts (5.2)

29

where:

* D : time taken for a packet to be transmitted across a network from the source to the

destination node.

* Td : packet receive time at the destination

* Ts : packet send time at source node

5.1.3 Packet loss rate

The packet loss ratio in cloud datacenters is measured using only end-point packets counter

or byte counter data received from ingress and egress network elements:

Td =
number of packets drop

number of packets drop+ number of packets receive
× 100% =

Pd
Pd + Pa

× 100%

(5.3)

where:

Td: number of packets get dropped before get the destination

Pd: amount of packets drop

Pa : amount of packets received

5.2 Design of simulation structure

In this part we design the general process of simulations. Figure 5.1 shows the overall

simulation progress of our work.

* Input packets (traffic sources) and source hosts: We use both long-lived and short-live

flows to represent the real traffic in cloud datacenters. A typical distribution that describes

the file size is the Pareto with the shaping parameter β between 1 and 2. For β = 1.16, the

Pareto distribution will produce the traffic flows with mean 10KB, minimum size of 1.37KB

and median size of 2.5KB. The distribution of the inter-arrival time of new connections is

frequently taken to be exponential. In both fat tree and experimental topologies, multiple

sources share a common bottleneck edge switch. We define the number of sources as the

number of hosts under edge switch. In NS-2 simulation, TCP sources are parameterized by

two parameters: the source node and the session number from that node. For each TCP

agent, we define a new FTP application. New TCP connections arrive according to a Poisson

30

Figure 5.1: Block diagram of the over-all progress of the simulation.

31

process. We therefore generate the beginning of a new TCP connection using exponentially

distributed random variables.

* Edge switches and bottleneck links: To observe the characteristics of the two TCP

types. The details are listed in Section 3.1.

* Queue: We try to create source traffic to flood the network so that all the packets

from the source nodes cannot transmit immediately to destination. Thus a Drop-Tail queue

system is implemented in the intermediate switches.

* Destination Hosts: Since our main aim is to receive all the packets from the source

node to destination node, we create the end of the path with a TCP and proposed sink agent

where the results to be collected.

* Trace Files: Here we get all the data from all sources together in a tabular form.

* Data Filtering: Since all packets are collected from all nodes in the network sources

filtering should be done here. To do so, AWK programs are used for collecting the sorted

data for each TCP type separately.

* Output: Output of the filtered data is finally changed into graph formats and used for

analysis.

5.3 Testing Congestion Control Mechanism in the Sin-

gle Link

We firstly test the proposed mechanism in simple link with and without packet loss. The

network model is established in Figure 5.2. Both TCP and ABCC are checked in the same

scenario. We wish to run FTP application between each pairs of which the default packet

size is 1 KB. Two pairs of hosts are connected by two switches with a bi-directional link

that has 5 msec of propagation delay and a capacity of 100 Mbps for each direction. Buffer

capacity has the value of 100 packets. In this scenario, we also simulate the error by insert

an error model started at the second of 1.5 sec with a random rate in the simple link to

evaluate the performance of proposed congestion control in the comparison with TCP.

Figure 5.3 shows the throughput performance of the TCP and ABCC with and without

congestion.

As showed in Figure 5.2, without error or no congestion happen, both TCP and ABCC

32

Figure 5.2: Simple link model.

Figure 5.3: Simple link throughput comparison.

33

mechanisms achieve almost the same throughput during short evaluate time. When con-

gestion happens, indicated by packets loss due to error link, the throughput decreases in

both cases. However ABCC has higher throughput than TCP. This simple test proves the

effective of proposed mechanism. We will check the performance in details in the following

sections.

5.4 Throughput comparisons

5.4.1 Small-scale fattree topology

We use the model that described early in the Section 3.1.1.1 to evaluate the proposed con-

gestion control mechanism in datacenters. To observe the currently used congestion control

behaviors of the algorithms, traffic source is created in all-to-all with FTP application be-

tween each pairs of which its default packet size is 1KB. Each TCP type is running for 36

sec. Packets sent from TCP sources starting at 0 sec and stops at 36 sec. Figure 5.4 shows

the throughput comparisons of single path routing, multipath routing with TCP and ABCC.

Three different models are tested under the same condition. In the single path routing

distance vector protocol is chosen in all switches, ECMP with TCP is implemented in NS2

by attaching ECMP ability in all switches, while all the hosts run TCP. We set the same for

the ECMP with ABCC, but TCP is replaced by ABCC.

At the beginning of communication, light traffic load created from least load, packets

exchange and topology discovery, throughput is the same in three cases: Single Path, ECMP

with TCP, ECMP with ABCC. When the traffic in network increases, single path routing has

the lowest throughput. The reason is that one path is used and the chosen links transmit

traffic load at almost full bandwidth utilization. Making full use of available bandwidth

of core links, ECMP with TCP and ECMP with ABCC have the best throughput. In

these two models, there are more paths in transmission than flow-based and single path

scheme. By the way, both schemes achieve same throughput because no congestion happens

in the network. When bottleneck happens in the network, causes by high traffic load is

created while there is limited size buffer at switches. Single path has the lowest throughput.

Throughput in case ECMP with TCP decreases because there’s no effective mechanism for

dealing with congestion control. ECMP with ABCC has the best throughput because of

34

Figure 5.4: Throughput comparison in small-scale fattree topology.

effective congestion control mechanism.

5.4.2 Medium-scale fattree topology

We use the model described early in Section 3.1.1.1 to evaluate the proposed congestion

control mechanism in a larger fat tree topology. The network consists of 128 hosts and

80 switches. To observe the currently used congestion control behaviors of the proposed

algorithm, traffic source is created as in Section 5.2. Several-to-several traffic is created to

observe the congestion phenomenon in the network. All setting in routing and congestion

control technique follow the descriptions as in Section 5.4.1.

One of the main and good qualities of ABCC is that it achieves higher throughput than

the single path routing and ECMP with TCP as seen from Figure 5.5. The traffic pattern is

oscillating due to traffic source creating. As shown in Figure 5.5, ECMP with ABCC gets the

peak throughput value far away from other two mechanisms. After estimating the average

sending rate, ABCC can achieve the highest bandwidth capacity. TCP just increases its

35

Figure 5.5: Throughput comparison in a medium-scale fattree topology.

window size continuously till the loss of the packets occurs.

5.4.3 Large-scale experimental topology

We use the model descrided early in Section 3.1.1.2 to evaluate the proposed congestion

control mechanism in the multipath routing in real cloud datacenter. The system consists of

65 switches and 500 hosts which every 10 hosts under each edge switch. All setting in routing

and congestion control technique follow the descriptions as in Section 5.4.1. For diversity the

traffic in cloud datacenter, traffic sources from each host include the one which is described

in Section 5.2 and several independent long-lived flows; first flow starts at 0 msec, and then,

two flows start at 10 msec, 4 flows start at 20 msec, 8 flows start at 30 msec, 16 flows start

at 40 msec. At 5 min, all flows except for the first one terminate.

As showed in Figure 5.6 ECMP with ABCC still achieves highest throughput because

links transmit traffic at almost full bandwidth utilization. Due to some early sending long-

lived flows, the time for achieving the real sending rate is late. Peak value cannot be observed

36

Figure 5.6: Throughput comparison in a large-scale experimental topology.

as in the medium-size fat tree scheme. With additional long-lived flows, the throughput in

this scheme is more stable than as in the medium-scale fat tree topology simulation.

5.5 Delay Comparisons

5.5.1 Medium-scale fattree topology

Figure 5.7 shows the delay comparison of the single path and multipath routing in the fat

tree topology. Single path has the larger end-to-end delay because the forwarding paths

have been in a congestion state and a large number of packets wait in the queue. Multipath

routing strategy has the better performance of delay. Figure 5.8 shows the delay comparison

of the multipath routing with TCP vs. multipath routing with ABCC. Using adaptive

bandwidth scheme and flow-splitting forwarding, multipath with ABCC reduces the delay

greatly than single path routing and obtains almost the same performance with multipath

with TCP scheme.

37

Figure 5.7: End-to-end delay comparisons in fat tree topology using Multipath in TCP vs.

Multipath in ABCC

38

Figure 5.8: End-to-end delay comparisons in fat tree topology using single path vs. multipath

routing.

39

Figure 5.9: End-to-end delay in experimental datacenter using Single Path vs. Multipath.

5.5.2 Large-scale experimental topology

Figures 5.9 and 5.9 show the same results as in the fat tree topology. Only one different

thing is the fluctuation. ABCC seems more stable than TCP. The duration for sending a

packet from source to destination seems no changing in some interval. When congestion

decreases, ABCC tries to send more packets and reaches the queue limit quickly. Once it

reaches the limit, it slows down its window and at the same time decreases its number of

queued packets. This case is different when using TCP, because TCP never reaches the

maximum queue limit. Most of the time TCP keeps very less packet in a queue because

TCP’s main target is to leave more space free in the queue as much as possible.

5.6 Error rate comparisons

In this step, the number of dropped and received packets are used to observe the behavior

of the single path routing and multipath routing with two TCP types when working in the

40

Figure 5.10: End-to-end delay in an experimental datacenter using multipath in TCP vs. multi-

path in ABCC.

41

same topology, and the results are displayed in the following tables.

5.6.1 Small-scale fattree topology

The number of the received and dropped packets from the simulation is shown in the Table

5.1. As seen from the table, with flooding traffic, all algorithms are suffering from dropped

packets. Single path routing is the weakest mechanism. Because the behaviour of ABCC, it

tries to keep updating the sending rate so that ABCC has more ability to face congestion

than TCP. TCP has no idea about the available bandwidth so that it continously increases

the sending packets and tries to keep many packets in the queue till the buffer is full and a

packet is lost. This opposite behaviour challenges TCP and many of its packets are dropped.

Table 5.1: Packet loss rate in small fat tree topology

Type No.of recv. packets No.of drop packets Packet loss rate

Single path 3580 160 4.3%

ECMP with TCP 4012 57 1.4%

ECMP with ABCC 4045 46 1.1%

5.6.2 Large-scale experimental topology

As showed in Table 5.2, ABCC works especially well in the large-scale network. The reason

is that the high aggregate bandwidth and the bandwidth adaptive mechanism help ABCC

quickly and stably utilize the link capacity even under congestion. ECMP with ABCC

reduces the packet loss greater than the single path routing and obtains almost the same

performance with TCP.

42

Table 5.2: Packet loss rate in large-scale experimental topology

Type No.of recv. packets No.of drop packets Packet loss rate

Single path 104565 6783 6.09 %

ECMP with TCP 234567 678 0.29%

ECMP with ABCC 267895 579 0.22%

43

Chapter 6

Conclusions

In this thesis, we discussed the performance of the cloud datacenter in a multipath scenario

under different congestion control mechanisms. Existing protocols for wired networks like

TCP and its variants are not suitable for cloud datacenter. Therefore, we concentrated on

designing a new TCP variant for high speed and low latency cloud datacenter network.

From the observe results, we find that multipath routing is the good choice for cloud

datacenter with any congestion control mechanism. The performance evaluation shows that

Adaptive Bandwidth Congestion Control achieves higher efficiency than traditional TCP in

the multipath environment. Our proposed ABCC scheme also yields fewer packet retransmis-

sions. This is because of their different congestion avoidance mechanisms. Traditional TCP

increases continuously its window size till the loss of the packets occurs. However ABCC

has the mechanism for achieving bandwidth available capacity. With real traffic pattern, the

end-to-end delay in ECMP with ABCC is more stable than in the condition of fluctuation

traffic. ECMP with ABCC works well in the large scale network in the aspect of reducing

packet loss.

In the future, as shown in Fig 6.1, we will design a new packet size aware classifier and

combine with Adaptive Bandwidth Congestion Control to control the traffic in a size-aware

art to get further investigation results.

44

Figure 6.1: Packet-size awared ABCC scheme.

45

BIBLIOGRAPHY

[1] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and S. Lu,

“BCube: A high performance, server-centric network architecture for modular data

centers,” ACM SIGCOMM Computer Communication Review, vol. 39, no. 4, pp.

63-74, 2009.

[2] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. adhakrishnan,

V. Subramanya, and A. Vahdat, “Portland: a scalable fault-tolerant layer 2 data

center network fabric,” in Proceedings of the ACM SIGCOMM 2009 conference on

Data communication, ser. SIGCOMM ’09. New York, NY, USA: ACM, 2009, pp.

39-50. [Online]. Available: http://doi.acm.org/10.1145/1592568.1592575.

[3] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “Dcell: a scalable and fault-

tolerant network structure for data centers,” ACM SIGCOMM Computer Communi-

cation Review, vol. 38, no. 4, pp. 75-86, 2008.

[4] A. Greenberg, J. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. Maltz, P.

Patel, and S. Sengupta, “VL2: A scalable and flexible data center network,” ACM

SIGCOMM Computer Communication Review, vol. 39, no. 4, pp. 51-62, 2009.

[5] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “Nature of Data-

center Traffic: Measurements and Analysis,” IMC Internet Measurement Conference,

2009.

[6] Sally Floyd, Mark Allman, Amit Jain, and Pasi Sarolahti, “Quick-Start for TCP and

IP,” RFC 4782. [Online]. Available: http://tools.ietf.org/html/rfc4782.

[7] D. Leith, et. al., “Delay-based AIMD congestion control,” In PFLDnet 2007, 2007.

46

[8] R. Stewart, Q. Xie, K. Morneault, H. Schwarzbauer, ‘Stream Control Transmission

Protocol,” RFC 2960. [Online]. Available: http://www.ietf.org/rfc/rfc2960.txt.

[9] S. Floyd, “HighSpeed TCP for Large Congestion Windows,” Network Working Group.

[Online]. Available: http://www.ietf.org/rfc/rfc3649.txt.

[10] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center network

architecture,” SIGCOMM Comput. Commun. Rev., vol. 38, pp. 63-74, August 2008.

[Online]. Available: http://doi.acm.org/10.1145/1402946.1402967.

[11] E. CHARLES, “Fat-trees: universal networks for hardware-efficient supercomputing,”

IEEE Transactions on Computers, vol. 34, no. 10, pp. 892-901, 1985.

[12] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a cloud: research

problems in data center networks,” SIGCOMM Comput. Commun. Rev., vol. 39, pp.

68-73, 2008. [Online]. Available: http://doi.acm.org/10.1145/1496091.1496103.

[13] C. Clos, “A study of non-blocking switching networks,” Bell System Technical Journal,

19 vol. 32, no. 2, pp. 406-424, 1953.

[14] A. Greenberg, P. Lahiri, D. Maltz, P. Patel, and S. Sengupta, “Towards a next gener-

ation datacenter architecture: scalability and commoditization,” in Proceedings of the

ACM workshop on Programmable routers for extensible services of tomorrow. ACM,

2008, pp. 57-62.

[15] J. Naous, G. Gibb, S. Bolouki, and N. McKeown, “Netfpga: reusable router archi-

tecture for experimental research,” in Proceedings of the ACM workshop on Pro-

grammable routers for extensible services of tomorrow, pp. 1-7, 2008. [Online]. Avail-

able: http://doi.acm.org/10.1145/1397718.1397720.

[16] D. Thaler and C. Hopps, “Multipath Issues in Unicast and Multicast Next-Hop Selec-

tion” RFC 2991 (Informational), Internet Engineering Task Force, Nov. 2000. [Online].

Available: http://www.ietf.org/rfc/rfc2991.txt.

[17] M. Kodialam, T. V. Lakshman, and S. Sengupta, “Efficient and Robust Routing of

Highly Variable Traffic,” IEEE/ACM Transactions on Networking (TON) archive, vol.

17, 2009.

47

[18] L. Han, J. Wang, and C. Wang, “A Novel Multipath Load Balancing Algorithm in

Fat-Tree Data Center,” CloudCom 2009, LNCS 5931, pp. 405-412, 2009.

[19] J. Postel, “Transmission Control Protocol,” RFC1122, RFC3168, RFC6093, RFC0793.

[Online]. Available: http://www.ietf.org/rfc/rfc793.txt.

[20] J. Postel, “Internet Protocol,” Advanced Research Projects Agency Information Pro-

cessing Techniques. [Online]. Available: http://www.ietf.org/rfc/rfc791.txt1981.

[21] M. Al-Fares, S. Radhakrishnan, B. Raghavan Nelson Huang, and A. Vahdat, “Hedera:

Dynamic Flow Scheduling for Data Center Networks,” NSDI’10 Proceedings of the

7th USENIX conference on Networked systems design and implementation USENIX

Association Berkeley, CA, USA 2010.

[22] Xuan-Yi Lin, Yeh-Ching Chung, and Tai-Yi Huang, “A Multiple LID Routing Scheme

for Fat-Tree-Based InfiniBand Networks,” 18th International Parallel and Distributed

Processing Symposium IPDPS USA 2004.

[23] V. Jacobson, “Congestion Avoidance and Control,” ACM Computer Communication

Review; Proceedings of the Sigcomm ’88 Symposium in Stanford, vol. 18, 1988.

[24] V. Jacobson, “Re: maximum ethernet throughput...,” comp.protocols.tcp-ip News-

group. [Online]. Available: http://comp.protocols.tcp-ip Newsgroup.

[25] W. Stevens, “TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast

Recovery Algorithms,” [Online]. Available: http://www.ietf.org/rfc/rfc2001.txt.

[26] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP Selective Acknowledgement

Options,” [Online]. Available: http://www.ietf.org/rfc/rfc2018.txt.

[27] S. Floyd, S. Ratnasamy, and S. Shenker, “Modifying TCPs Congestion Control for

High Speeds,” [Online]. Available: http://www.icir.org/floyd/hstcp.html.

[28] T. Kelly, “STCP: improving performance in highspeed wide area networks,” ACM

SIGCOMM Computer Communication Review Homepage archive, vol. 33, 2003.

48

VITA

Le Thi Lan Huong was born in June 05, 1981 in Quang Binh province, Viet Nam. She re-

ceived her B.Sc degree from the Electronic and Telecommunication Engineering Department

at Danang University of Technology in Vietnam in 2003. From September 2009 to August

2011, she worked on her master degree in the Mobile Computing and Cloud Computing Labo-

ratory of the Department of Communication Engineering at National Chiao-Tung University,

Taiwan. Her research interests are in the fields of network design and traffic management in

cloud datacenter. You can contact her via e-mail: ltlhuong@gmail.com.

49

