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ABSTRACT: In this paper, a more general deadbeat controller design algorithm for the m- 
dimensional discrete-time multivariable system is introduced. Since the internal stability 
requirement is achieved, this algorithm can easily handle any stable or unstable minimum or 
nonminimum phase m-dimensional system. A simple technique is employed to achieve the 
following design purposes in the m-dimensional discrete-time multivariable feedback systems : 
(i) input-output decoupling; (ii) reference signal tracking and disturbance rejection where 
reference signals and disturbances can be different at each channel; (iii) deadbeat response 
with minimum space interval. An example is given to illustrate the validity of the proposed 
method. 

I. Introduction 

The problems of m-dimensional systems are significant in that they can be applied 
to m-dimensional filters, one-dimensional time varying filters, circuits with varying 
elements, nonlinear systems, and systems with partial differential equations (1, 2, 
3,4,5). This paper refers to the general area of feedback control design techniques 
of linear time-invariant multidimensional (m-D) discrete-time multivariable 
systems. Although multidimensional linear systems have received extensive atten- 
tion in the last few years (l), very little work has been done in the area of multi- 
dimensional deadbeat control systems. Kaczorek (6) has examined a kind of 
deadbeat response in 2-D systems, in the sense that the output deviation from a 
reference input and plant input vanish after a minimum 2-D space interval. 
Tzafestas (7) developed a 2-D deadbeat controller using state feedback, which 
results in a steady output, after a minimum space interval, and for an appropriate 
input sequence. Recently, Tzafestas and Theodorou (8) examined a multi- 
dimensional open-loop deadbeat control problem, where the input sequence is 
specified such that the system achieves deadbeat response. However, in their work 
the concerned systems are restricted to the single-input single-output open loop 
systems. 
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In this paper, a more general control design problem for discrete-time m-dimen- 
sional multivariable feedback system is considered, i.e. a comparatively general 
control algorithm in one-dimensional systems advanced by Youla et al. (9) is 
extended to m-dimensional multivariable systems. Since the internal stability 
requirement is achieved, this algorithm can easily handle any stable or unstable, 
minimum or nonminimum phase m-dimensional system. This control algorithm 
can simultaneously achieve the following design purposes in the m-dimensional 
discrete-time multivariable systems : (i) input-output decoupling ; (ii) reference 
signal tracking and disturbance rejection where reference signals and disturbances 
can be different at each channel ; and (iii) deadbeat response with minimum space 
interval. 

II. The Model and Problem Formulation 

Consider the linear time-invariant m-dimensional discrete-time multivariable 
system (Fig.’ 1) described as an input-output model as follows: the reference 
signals r(dl, 4,. . . ,d,), error signals e(d,, d,, . . . ,d,,,), control signals 

u(d,,d,,... , d,), external disturbances d(d, , d2, . . . , d,) and output signals 

y(d, ,d,, . . . , d,,,) are vectors in C”. And the plant P(d,, dZ, . . . , d,) E C”““, the 
controller C(d,,d,,...,d,,,) E C”“” where d,=z;‘, i=1,2,...,m denote the 
delay operators of each dimension. We assume that the plant P(d,, d2, . . . , d,,,) 
is a rational matrix and det (P(d,, dZ, . . . , d,)) # 0. The design purposes are to 
synthesize a general parameterized controller C(d,, d2,. . . , d,) in order to 
stabilize the m-dimensional feedback system of Fig. 1; and to introduce a simple 
technique to specify the parameters of the above general controller to achieve 
the following purposes : (i) input-output decoupling ; (ii) reference signal 
tracking and disturbance rejection where reference signals and disturbances can 
vary at each channel ; and (iii) deadbeat response with minimum space interval. 

ZZI. Stabilizing Controller Synthesis 

Before considering the controller synthesis of m-dimensional discrete-time 
multivariable feedback systems, a control algorithm given by Youla et al. (9) 
on one-dimensional continuous-time multivariable systems will be extended to 
m-dimensional discrete-time multivariable feedback systems. 

+ C(dI.d2.....d,) P(dI,d2....,d,) + 

x 
> 

r(dl.d2,....d,) - Controller Plant y(dl.d2,...,dm) 

FIG. 1. m-Dimensional discrete-time multivariable feedback system. 
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Let (2) 

P(d,, dz, . . . . d,)=A-‘(d,,dz ,..., d,)B(d,,dz ,..., d,) 

=B,(d,,d,,...,d,)A;‘(d,,d,,...,d,) (1) 

where A(d,, dZ, . . . , d,) and B(d,, dZ, . . . , d,) constitute any left-coprime poly- 
nomial matrix decomposition of P(d,,d*, . . . ,d,) and Bl(d,,d2,. . . ,d,) and 

A,@,&, . . . , d,,,) constitute any right-coprime polynomial matrix decomposition 

of P(d,, dZ, . . . ,d,,,) and select stable rational matrices (i.e. the matrices which 
are analytic in ldil < 1, i = 1,2,. . . ,m) X(d,,d*, . . . , &A W,, 4,. . . , &A 
Yl(dl, 6,. . . ,4J and Xl@,, 4, . . . , d,) such that [Bezout identity (lo)] 

-Y~(d,,k . ..>dm) ~,(d,,4,...,4n) 

4d,,d,,...,GJ WA,d,,...,&) 1 
-B(d,,dz, . . . . d,J ~(d,,dz,...,&,) . 
A,(d,,dz,...,&) Y(d,,d,,..,d,)] = [: ;]’ (2) 

Since 

U(d, 3 4, . . ..&)W.,4, . . . . d,)=Z=>V(d,,d2 ,..., d,)U(d,,d, ,..., d,,,)=Z 

we obtain 

-B,(d,,&, . . .,dnJ JW,,d,,...,dJ A,V,,d,,...,&) W,, 4, . . . ,4J 1 
- Y,td,,dz, . . ..A) ~,M,dz,...,4n) . 
Atd,, 4, . . . > dm) B(d,,d, ,..., d,,J]= [: ;]. (3) 

Thus we achieve the following theorem. 

Theorem Z 

The controller, which stabilizes the m-dimensional discrete-time multivariable 
system of Fig. 1 must be of the following form: 

W,, & . . .,d,J = [Y(d,,d,,...,d,)+A,(d,,d,,...,d,)K(d,,d,,...,d,)l 

* WV,, 4, . . .,d,)-B,(d,,d,,...,d,)K(d,,d,,...,d,)l-’ (4) 

where K(d,, d2, . . . , d,,,) is any n x n rational stable matrix (i.e. K(d,, dZ, . . . , d,) 
which must be analytic in Idi/ < 1, i = 1,2, . . . , m) and satisfy the constraint 

det[X(d,,d,,...,d,)-B,(d,,d,,...,d,)K(d,,d,,...,d,)lfO. (5) 
Proof. See Appendix A. 

Remarks 
(i) From Theorem I, it is seen that the controller C(dl, d2, . . , d,) in Eq. (4) is a 

general parameterizing controller of the m-dimensional discrete-time multi- 
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variable feedback system, i.e. for any stabilizing controller, a stable m- 
dimensional matrix K(d,, dZ, . . . , d,,,) in Eq. (4) can be found to correspond 
with it (i.e. the stabilizing controller always exists). 

(ii) Suppose the plant P(d,, d2, . . . , &) has both strictly proper right-coprime and 
left-coprime factorizations, then there exists a proper controller as in Eq. (4) 
to stabilize P(d,, d2, . . . , d,) in the closed loop configuration of Fig. 1 (11). 

(iii) In a one-dimensional case, Theorem I will be reduced to Lemma 3 in (9). 
From the above analysis, the main work of our design problem then is how 
to find an adequate stable m-dimensional matrix K(d, , dZ, . . . , d,) to achieve 
the design purposes. 

Let us define the sensitivity function matrix S(d,, dZ, . . . , d,) as 

S(d,, &, . . . ,d,,J = V+W,,dz,.. .,dmMd,,d,,. . .,4,X (6) 
then the transfer function matrix is given as 

I- S(d,, dZ, . . .,d,)=P(d,,d,,...,d,)C(d,,d,,...,d,) 

.[I+P(d,,d*r...,d,)C(d,,dz,...,d,)l-’ (7) 

and we obtain the following lemma. 

Lemma 1 
If we choose C(d,, d2, . . . , d,) in Eq. (4) with any stable matrix K(d,, d2,. . . ,d,) 

as a stabilizing controller of the m-dimensional multivariable feedback systems, 
then the sensitivity function matrix S(d, , d2, . . . , d,) and the transfer function 
matrix I- S(d,, d2, . . . , d,) must be of the following form : 

(9 W, ,dZ, . . .,4,) = [X(d,,d,,...,d,)-B,(d,,d,,...,d,) 

*W,,4, . . . ,4nM4,&, . . . ,4 (8) 

(3 Z-S(d,,d,,...,d,)=B,(d,,d,,...,d,)[Y,(d,,d,,...,d,) 

+K(d,,d,,...,d,)A(d,,d,,...,d,)l. (9) 

Proof. See Appendix B. 

Remarks 

6) 

(ii) 

288 

Since C(d,, dZ, . . . , d,,,) in Eq. (4) is the general stabilizing controller, Lemma 
1 implies that if a m-dimensional closed-loop feedback system is asymptotically 
stable, then S(d,, d2,. . . , d,) and I-S(d,, dZ, . . . , d,) must be of the form 
shown in Eqs. (8) and (9), respectively. 
Since S(d,, dZ, . . . ,d,,,) still contains A(d,,d,, . . . ,d,) as in Eq. (8) and 

I-S(d,,dz,..., d,) still contains B,(d,, dZ, . . . , d,) as in Eq. (9) it implies 
that there is not any pole-zero cancellation between C(d,, d2,. . . , d,,,) 
and P(d,,d,,..., d,) in ldil d 1, i = 1,2, . . . , m, i.e. the closed loop is 
internally stable (9, 12) (i.e. this controller can easily handle any stable or 
unstable, minimum or nonminimum phase system). 
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Under the above asymptotically stable constraints on S(dl , d2, . . . , d,,,) 
and I-S(dl,d2,..., d,,,) as in (8) and (9), respectively, we can choose an 
adequate K(d,, d2,. . . , d,,,) to achieve design purposes on S(dl, dZ, . . . , d,) 
and I- S(dl, d2,. . . , d,). 

IV. Multipurpose Deadbeat Controller Design 

In this section, a simple technique is employed to choose an adequate m-dimen- 
sional matrix K(d, , d2, . . . , d,,,) in the stabilizing controller C(dl, d2, . . . , d,) of 
Eq. (4) to achieve the following design purposes : (i) input-output decoupling ; 
(ii) reference signal tracking and disturbance rejection where reference signals 
and disturbances can be different at each channel ; and (iii) deadbeat response 
with minimum space interval. 

From Fig. 1, it is seen that the error signals e(d,, dZ, . . . , d,) are given as 

e(dl, 4, . ..,d,,J=S(d,,d, ,... ,d,)[r(d,,d,,...,d,)-d(d,,d,,...,d,)l (10) 

where reference signals r(dl, dZ, . . . , d,) and disturbances d(d,, d2,. . . , d,,,) are 
rational vectors, and the denominator of r(d,,d*, . . . , d,,,) and d(d,, d,, . . . ,d,,,) are 
known polynomials but the numerators of r(dl,dZ,. . . ,d,,,) and (dl,d2, . . . ,d,,,) 
can be arbitrarily unknown polynomials [i.e. r(d,, d2,. . . , d,) and d(d,, dz, . . . , d,,,) 
can denote a class of reference signals and disturbances, respectively, not only 
the particular reference signal and disturbance]. 

Under the decoupling and deadbeat response constraints, the sensitivity function 
matrix S(d,, dl, . . . , d,) can be chosen as a diagonal polynomial matrix of the 
following form : 

L 

s~(4,4,...,4n) . . . 0 

W,,dz, . . ..d.)= ! . i 1 (11) 
0 . . . .&A,d,,...,d,J 

wheresj(d,,d2 ,..., d,),j= 1,2 ,..., n are manic polynomials with zero-order (i.e. 
Sj(O,O,. . .) 0)= l,j= 1,2 ,..., n). 

Definition. Reference signal tracking and disturbance rejection with deadbeat 
response occur in the system of Fig. 1, if the error signal is a polynomial vector 
with a finite degree (i.e. the error signals vanish after a finite period of space 
interval). 

From Eq. (lo), in order to let the error signal be a polynomial vector, the 
sensitivity function matrix S(d,, dl, . . . , d,,,) must cancel all the poles of reference 
signals r(d,, d2, . . . , d,,,) and disturbances d(d,, dZ, . . . , d,). 

To achieve these purposes, the sensitivity function matrix takes the following 
form : 

HI M,& . . . . d,,,)W,(d,,d, ,..., d,,,) . . . 

S(d,,dz, . . ..d.,,)= 
i 

: . . 
0 . . . k(W,, 

(12) 
. . ..d.)W,(d,,d,,...,d,) 
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where the manic polynomials Wj(d,, dZ, . . . , d,,,), j = 1,2,. . . , n are with the desired 
zeros to cancel all the poles of reference signals and external disturbances in each 
channel for reference signal tracking and disturbance rejection. Hj(dl, dZ, . . . , d,,,), 
j= 1,2 , . . . , n are undetermined manic polynomials and will be determined by the 
asymptotical stability of feedback system [i.e. the analyticity of K(d,, dZ, . . . , d,) 
in]d,] d 1 fori = 1,2 ,..., m]. 

From Lemma 1, since we choose C(dl,dz,. . . , d,) as a stabilizing controller, 

W, 3 4, . . . , d,) must be of the form shown in Eq. (8), i.e. 

S(d, 94, . . . ,&) = VW,, 4, . . ..d.)-B,(d,,d,,...,d,) 

.JWl,dz,. . . ,4,&W,, 4,. . . , 4,) 
yH,(d,,d,,...,d,)W,(d,,d,,...,d,) . . . 0 

! 1. (13) 

L 0 . . . H,(d,,d, ,..-, d,,,)Wn(d,,d,,...,dm)~ 

From the above equation, we obtain 

KM, dl,. . . , d,,J= -B;‘(dl,d2,...,d,J 

ff,V,,dz, . . . . d,)W,(d,,d, ,..., d,) . . 
ii : . 

. . . 0 A-‘@,, 4,. . ,d,,J 
0 . . . %(& 3 d2, i 1 . . ..d.JK(d,,d,,. ..,d,) 

-Zd,,dz,. . . ,d,) 

i 

. (14) 

Since K(d,, dZ, . . . ,d,) must be analytic in ldJ < 1, i = 1,2,. . .m the m- 
dimensional polynomials Hj(dl, d2,. . . , d,,,), j = 1,2,. . . ,n are therefore deter- 
mined by the requirement of asymptotical stability of K(dl, d2, . . . , d,) [i.e. 
we choose adequate coefficients of Hj(d,,dZ, . . . ,d,), j = 1,2,. . . ,n to cancel 
thepolesin]d,]< l,i= 1,2,. . . , m on the right-hand side of Eq. (14) to guarantee 
the asymptotical stability of K(d,, d2, . . . , d,)]. After the m-dimensional 
polynomials Hj(dl, d2, . . . . d,), j= 1,2 ,..., n are specified by the requirement 

of analyticity of K(d,,d2,. . . ,d,) in ldil < 1, i = 1,2,. . . ,m and substitute 

Wd,, dl,. . . , d,) into the controller C(d,, dz, . . . , d,,,) as in Eq. (4), we obtain the 
corresponding deadbeat controller. From the above analysis, we obtain the 
following multipurpose deadbeat controller design algorithm in the m-dimensional 
discrete-time multivariable systems. 

Algorithm 
Step 1. Perform the left and right coprime factorization of the plant as in Eq. 

(l), and then from Eq. (2) we can solve the following equation : 

AM, 4, . . ..d.)X(d,,d,,...,d,)+B(d,,d,,. ..,d,)Y(d,,d,,...,d,) = 4 (15) 

to obtain the stable rational matrices X(d,, da,. . . , d,,,) and Y(d,, dZ, . . . , d,). 
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Step 2. Choose the sensitivity function matrix to be of the form as in Eq. (12), 
where the manic polynomials Wj(d,, dZ, . . . , d,), j = 1,2,. . . , n are with desired 
zeros to cancel all the poles of reference signals and external disturbances of each 
channel for reference signals tracking and disturbances rejection. 

Step 3. Determine the m-dimensional polynomials Hj(d,, d2, . . . , d,), j = 
192,. . . , n by the requirement of asymptotical stability of K(d,, d2,. . . , d,) [i.e. 
choose adequate coefficients of H,(d,, dZ, . . . . d,), j= 1,2 ,..., ntocancelthepoles 
in ldil < 1 on the right-hand side of Eq. (14)], then obtain the stable rational 
matrix K(d,, dl,. . . , d,) as in (14). 

Step 4. Substitute K(d,, dZ, . . . , d,,,) into Eq. (4) and obtain the corresponding 
multipurpose deadbeat controller as in (4). 

Remarks 

(9 

(ii) 

(iii) 

If some of the zeros of Hj(dI, dl, . . . , d,) are equal to the zeros of 

Wj(di,d,,..* , d,), then the least common multiplier of Hj(dl, dZ, . . . , d,) and 
Wj(di 2 d2, * . .y d,,,) is chosen to be a factor of sj(dI, dt, . . . . d,,,), j= 1, 2,. . . , n. 
If the minimum number of free parameters of Hj(d,, d2,. . . , d,), j = 1,2,. . . n 
in (14) is just uniquely determined by the requirement of analyticity of 
KM,&, . . . , d,) in Idil< 1, then it is the solution of the minimum space interval 
deadbeat controller. As the number of free parameters of Hj(di, dz, . . . , d,,,), 
j= 1,2,. . . , n increase, this leads to an over-parameterized solution, and we 
have more freedom to assign some coefficients of Hj(d,,dz,. . . ,d,), 
j= 1,2,. . . , n (of course, this is not the case of minimum space interval 
deadbeat response again). 
In the rectangular full rank plant case, B; ’ (d,, d2, . . . , d,) in (14) must be 
substituted by the pseudo inverse 

B:(d,,dz,. . . ,d,n) = [KM,& . . . ,dm)B~(d,>d,,. . .,&)I-' 

*BT(d,,d,,...,d,n). (16) 

V . Example 

In this example, we consider the 3-dimensional system (Fig. l), where the 
reference signals and disturbances are different at each channel. Assume the plant 
can be described as 

1 dl+dz+d3-1 

P(d,, 4, . . . , 4,) = 
d,+dz+d,-5 d,+dz+d3-5 

1 

I 

(17) 

0 
d,+dz+d3-1 

and the disturbances are given as d(d,, d,, d,) = 
[l_x&,d,.‘]l’ 

where xi is an 

arbitrary scale. 
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How do we synthesize a controller to decouple the system, track the reference 
signals r(d, , dZ, d,) = [x0/( 1 - d3), yO/( 1 - d,)lT where x0 and y. are arbitrary scales, 
and reject the disturbances and simultaneously achieve the deadbeat response with 
minimum space interval? 

Solution. Follow our algorithm step by step. 
Step 1. Performing the left and right coprime factorizations of P(d, , dZ, d3), we 

obtain 

W,, 44) = A - ‘(4 3 4, WW,, 4,dd 

= B,(d,,d2,d3)A;‘(d,,dZ,d~) (18) 

where 

d, +dz+d3-5 0 
A(d,, dz, d3) = 0 d,+dz+d3--1 1 

B(d,, dz, d,) = 
1 d,+dz+d3-1 
o 1 1 

(19) 

(20) 

(d, +dz+d3-5)’ 0 
A,(d,,d,,d,) = 0 (d,+dz+d3-5)(d,+dz+d3-1) 1 

(21) 
B,(d,>dz,dA = [ d,+dz+ds-5 (d,+d2+dJ-I)* 

0 d, +dz+d3-5 1 ’ 
Solving the following equation 

A(d, 3 4, d&W,, 64) + W,, 4, d,) Y(d,, d2, d3) = I,, 

(22) 

(23) 

we obtain 

1 4(d,+d2+dy-1) 

X(d, 3 4,dd d,+dz+ds--5 (d,+d2+d3-5)* = 1 

0 
1 

d,+d*+d,-5 

and 

(24) 

(25) 
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Step 2. In order to achieve the reference signal tracking and disturbance rejection 
with deadbeat response, the sensitivity function matrix S(d, , d2, d3) can be chosen 
in the following fprm : 

k 

H,td,,d2,d3)(1-d,d*)tl-d3) 0 
Std,, 64) = 0 Hddl,&,&)(l-4) 1 

where Hj(d,, d2, d3), j = 1,2 are to be determined by the analyticity of 
K(dl,dl,d3)in ldil < 1, i= 1,2,3. 

Step 3. From Eq. (14), since 

J44,4,4) = -B;‘td,,dz,d,) [S(d,,d,,d3)A-'td,,d2,d3)-Xtd,,d2,d3)1 

1 l-H,tdl,d2,d3)(l-d,d*)(l-d~) 

= (d,+dz+dJ-5)’ 0 

-(d,+dz+&-l)(l-Hz(d,,dz,d3)(1-dl)) 

1_ d,+dz+dj-5 
d +d +d _lfMd,,dz,d,)(l-dl) 1 (27) 

I 2 3 

must be analytic in ldil < 1, i = 1,2,3, we obtain 

H,(dl,dz,dd = 1 (28) 

and 

Hz(d,,dz,d3) = d,+dz+d3-1. (29) 

Substituting Eqs. (28) and (29) into Eq. (27), we obtain 

1 
K(d1,d2,d3) = (d,+d2+d3_5)2 

l-(l-d,d2)(1-d3) -(d,+dz+dj-l)(l-(d,+dz+d3-1)(1-d,)) 

0 l-(d,+dz+d3-5)(1-d,) l- 
(30) 
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Step 4. Substituting (30) into (4 ), we obtain the multipurpose deadbeat controller 
as 

C(d,,&,d,) = [Ytd,,d;?,d~)+Al(dl,dz,d,)K(d,,d,,d,)l 

. LW,, 4, dd-B,(4,4> 4W,, 4,4)1- ’ 

(d,+d,+d,-5)(1-(I-d,d,)(l-d,)) 

= (1 -d,d,) (1 -d3) 

0 

-(d,+d,+d,-l)(l-(d,+d,+d,-1)(1-d,))\ 
l-d, 

1-(d,+dz+ds-1)(1-d,) 
1 -d, 1 . (31) 

Check: From Eq. (6), we have 

SW,,&,&) = [I+P(d,,dz,d3)C(d~,d2,d3)1-’ 

1 d,+dz+d3-1 

d,+dz+d3-5 d,+dl+d3-5 

0 
1 

d, +dz+dx- 1 

(d,+dz+d3-5)(1 -(l -d,d,)(l -dJ) 

. (1 -d&)(1 -dJ 

-(d,+dZ+d3-l)(l-(d,+da+d3-1)(1-d,)) -’ 
l-d, 

1-(d,+d,+d,-1)(1-d,) 
l-d, 

(1 -d,dd (1 -d,) 0 
= 

0 (d,+d>+d3-1)(1-d,) I 
(32) 

and the error signals 

e(dl, dZ, dJ = WI, A, d3) W,, & &)-WI, d2, 41 

= [(x,-x,)+x,d3-xgdld2ryO(-1+d,+d2+d3)lr, (33) 

i.e. the system can track reference signals and reject disturbances and achieve 
deadbeat response with minimum space interval. 
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VI. Conclusion 

In this paper, a very simple and direct algorithm is introduced to synthesize a 
more general deadbeat controller which simultaneously ensures a variety of pur- 
poses in the m-dimensional discrete-time multivariable systems. Internal stability 
is achieved so that this algorithm can easily handle any stable or unstable, minimum 
or nonminimum phase system. 

References 

(1) N. K. Bose, “Multidimensional System : Theory and Applications”, IEEE Press, New 
York, 1979. 

(2) D. C. Youla and G. Gnavi, “Notes on n-dimensional system theory”, IEEE Trans. 
Circuit Systems, CAC-26, pp. 105-l 11, 1979. 

(3) J. F. Delansky, “Some synthesis methods for adjustable networks using multivariable 
techniques”, IEEE Trans. Circuit Theory, CT-16, pp. 435443, 1969. 

(4) S. K. Mitra and M. P. Ekstrom, “Two-dimensional Digital Signal Processing”, 
Dowden, Hutchison & Ross, Stroudsbery, 1978. 

(5) S. Y. Kung, B. Levy, M. Morf and T. Kailath, “New results in 2-D system theory, pt 
II : State-space models, realization and the notations of controllability, observability 
and minimality”, IEEE Trans. Aut. Control, AC-22, pp. 945-961, 1977. 

(6) T. Kaczorek, “Dead-beat servo problem for 2-dimensional linear systems”, Znt. J. 
Control, Vol. 37, pp. 1349-1353, 1983. 

(7) S. G. Tzafestas, “Feedback dead-beat control of 2-dimensional systems”, in Multi- 
variable Control : Concepts and Tools”, Reidel, Dordrecht, 1984. 

(8) S. G. Tzafestas and N. J. Theodorou, “Open-loop deadbeat control of multi- 
dimensional systems”, J. Franklin Inst., Vol. 319, pp. 31 l-324, 1985. 

(9) D. C. Youla, J. J. Bongiomo, and H. A. Jabr, “Modem Winer-Hopf design of optimal 
controllers-part II”, IEEE Trans. Aut. Control, AC-21, pp. 319-338, 1976. 

(10) T. Kailath, “Linear Systems”, Prentice Hall, Englewood Cliffs, 1980. 
(11) M. Vidyasagar, H. Schneider and B. A. Francis, “Algebraic and topological aspects 

of feedback stabilization”, IEEE Trans. Aut. Control, AC-27, pp. 88&894, 1982. 
(12) W. A. Wolovich, “Multipurpose controllers for multivariable systems”, IEEE Trans. 

Aut. Control, AC-26, pp. 162-170, 1981. 
(13) A. S. Morse, “Mathematical System Theory”, Springer, Heidelberg, 1975. 

Appendix A. Proof of Theorem I 

If we assume the stabilizing controller C is of the following form : 

C= ND-’ (A. 1) 

where N and D are coprime m-dimensional polynomial matrices, then the system input- 
output transfer function matrix of Fig. 1 is of the following form : 

T,, = A-‘BND-‘[Z+A-‘BND-‘I-’ 

= I-D[AD+BN]-‘A 

[fromEq. (l)and(W’+X’Y’Z’)-’ = II”-‘-- w’-‘x’(Y’-‘+Z’w’-lx’)-‘Z’w’-‘1. 

(A.2) 
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As D and A are polynomial matrices, then C will be a stabilizing controller if 

AD+BN=L (A.3) 

has a stable inverse (i.e. L is a minimum phase matrix): The synthesis of the stabilizing 
controller C = ND-’ becomes how to choose m-dimensional polynomial matrices D and 
N such that L has a stable inverse. 

Since A and B are coprime, it follows that homogeneous solution for N and D in the 
algebra Eq. (A3) is given as (13) 

D, = -B,Q 64.4) 

N,, = A,Q (A.9 

which satisfy the homogeneous equation (since BA, = AB,) : 

AD+BN=O 66) 

for any m-dimensional polynomial matrix Q. 
From Eq. (2), we obtain the following equation : 

AX+BY=I,. 64.7) 

Multiplying the above equation from the right by L, we obtain 

AXL+ BYL = L. 64.8) 

By comparing (A3) with (A8), we can obtain a particular solution of (A3) as, (13), 

D, = XL (A.9) 

N, = YL. (A.10) 

From the above analysis, the solution of D and N in (A3) is given by 

D= -B,Q+XL (A.1 1) 

N= A,Q+YL (A.12) 

where Q is any m-dimensional polynomial matrix and L is any m-dimensional polynomial 
matrix which has a stable inverse. 

As a result, the stabilizing controller C must be of the following form : 

C= ND-’ = [YL+A,Q][XL-B,Q]-‘. 

Since L has a stable inverse, the stabilizing controller takes the following form : 

C= [Y+A,KJ[X-BJ-* 

where K = QL-’ is any stable m-dimensional rational matrix. 
Let us choose the controller in Fig. 1, as in (4), then 

T,, = Pc[z+ PC] ’ 

(A.13) 

(A. 14) 

= B,A;‘[Y+A&j[X-BJ-‘{I+B,A;‘[Y+A,Kj[X-B&j-’}-’ 

[from Eqs. (1) and (4)] 

= B,A;‘[Y+A,K][X+A-‘BY]-’ 

= B,A;‘[Y+A,KJA [from(2)andX+A-‘BY= A-‘] 

= B,[A;‘YA+KA] 

= B,[Y, +KA] [from (2) and A, Y, = YA]. (A.15) 
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Since B, and A are m-dimensional polynomial matrices and K and Y, are stable rational 
matrices analytic in Id,1 < 1, i = 1,2,. ,. . , m, hence T, is stable. Q.E.D. 

Appendix B. Proof of Lemma 1 

(i) S= {Z+B,A;‘[Y+A,~[[X--B,KJ-‘}-I [fromEqs.(l)and(4)] 

= {(X--B,K+B,A;‘[Y+A1lY1)[X--B,~-‘}-I 

= {[X+B,A;‘Y][X-BIK]-‘)-’ 

= {A-‘[X-B,K]-‘}-I [fromEq.(3)andA-‘B= B,A;‘] 

= [X-B,ZCjA. 

(ii) The proof is obvious from (8) and B, Y, +X,4 = Z,, in (3). 
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(B.1) 

Q.E.D. 
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