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Abstract: An adaptive algorithm is presented to incorporate pole/zero assignment as a principle design cri-
terion. As this algorithm does not require solving a diophantine equation at each sampling step, it possesses
much computational advantage over the existing approaches of an adaptive pole-assignment control algorithm.
This computational advantage is very important for the adaptive control system to the actual application. The
internal stability requirement is achieved so that this algorithm can easily handle any minimum- or
nonminimum-phase system. The desired zero assignment of the sensitivity function can make high-order refer-
ence signal tracking possible. Several simulations are given to illustrate that our approach is suitable for appli-
cation and easy to implement.

1 Introduction

Recently, various kinds of adaptive control have been
developed. Self-tuning regulators are an important class of
adaptive controllers, they are easy to implement and
process with a wide variety of characteristic unknown
parameters, the presence of time delay, time-varying
process dynamics [1-4]. Adaptive controllers based on
pole assignment design have been discussed by several
authors. The approaches taken by Wellstead et al. [5, 6]
can be detuned to avoid the excessive control effort of
minimum-variance controllers. Their methods can also be
applied to nonminimum-phase systems with unknown or
varying time delay. The adaptive pole assignment schemes
developed by Vogel and Edgar [7], Allidina and Hughes
[8] and Astrom and Wittenmark [9] contain several desir-
able features, such as robustness as well as ease of set-point
tracking. The approach of McDermott and Mellichamp
[10] has discussed the additional characteristic of treating
steady-state offset; this approach can also treat the
nonminimum-phase systems.

Almost all the adaptive pole-assignment algorithms
mentioned above need to solve a polynomial identity
(diophantine equation) at each sampling step. It is time
consuming and is an obvious obstacle to actual applica-
tion. To avoid solving the diophantine equation, Elliot
[11] has presented a direct adaptive control structure.
With his method, the nonlinear problem of estimating 2m
controller parameters should be replaced by a linear
parameter estimation problem involving Am parameters,
where m is the order of minimum realisation of the plant
transfer function. Leal and Landau [12] have proposed a
quasi-adaptation algorithm which employs two different
identification algorithms to avoid solving the diophantine
equation: the first one identifies the plant's parameters and
then provides the second one, which, in turn, identifies the
controller parameters. But no matter what has been done
by increasing the identified parameters or the times of
identification, it is still time consuming.

In this paper, we introduce a more general and simpler
algorithm to synthesise an adaptive controller with desired
pole/zero assignment. This algorithm is computationally
easier to implement than the approaches discussed above,
because it does not require the solution of the diophantine
equation nor the increase of the identified parameters or
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the times of identification. This algorithm also contains
several characteristics; the internal stability requirement is
achieved so that this algorithm can easily handle any
minimum- or nonminimum-phase system; the desired zero
assignment of the sensitivity function can make high-order
reference signal tracking possible [13-16]. Several simu-
lated examples are given to show that our approach is
suitable for application and easy to implement.

In Section 2, a design principle based on pole/zero
assignment is elaborated so as to ensure the internal stabil-
ity and reference signal tracking ability of the closed-loop
systems. In Section 3, the adaptive algorithm with desired
pole/zero assignment is derived. Several simulations are
given in Section 4.

2 Control of known plant

2.1 Problem formulation
Consider the pole/zero assignment problem of the control
system in Fig. 1.

reference r(z)*

signal

e(z) controller
C(z)

u(z) plant
P(z)=B(z)/A(z)

y(z)

Fig. 1 Basic feedback system

Let the process be described as

A(z)y(z) = B(z)u(z) (1)

where y(z) and u(z) denote the process output and input,
respectively. A(z) and B{z) are relatively prime polynomials
of degree na and nb, respectively, and are given by

A(z) = zn° + (2)

(3)

The plant is also described by the following rational form:

P(z) =
A(z)

(4)

Note that, if the system time delay is present, we are mod-
elling it as a set of zero coefficients in the polynomial B(z).
In this case, the degree of B(z) must be selected to be large
enough so that the deadtime of the process can be rep-
resented by z~k, while the k leading coefficients of B(z)
become zero [10].

The reference signal is assumed to have the representa-
tion
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r{z) =
N(z) N(z)

M(z) M.{z)M+{z)
(5)

where M(z) and N(z) are relatively prime polynomials, and
the polynomials M _(z) and M+(z) denote the factors of the
polynomial M(z), where M_{z) and M+(z) have their zeros
in | z | < 1 and | z | ^ 1, respectively.

Let us define the sensitivity function S(z) as [17]

S(z) = P(z)C(z)Y (6)

where C(z) denotes the controller. From Fig. 1, it is seen
that the tracking error signal e(z) is given as

e(z) = S(z)r(z) (7)

To track a high-order reference signal r(z) (for example,
unit step or ramp signal etc.), the right-hand side of eqn. 7
must not have any pole in \z\ ^ 1 [13-16], i.e. the sensi-
tivity function S(z) must have a sufficient number of zeros
to cancel the poles of r(z) in \z\ ^ 1 [13-16]. Hence the
zero assignment of 5(z) is very important in high-order
reference-signal tracking problems. The importance of pole
assignment has been shown in many previously published
papers [10, 18, 19]. Our design objective is to synthesise a
controller C(z) such that the sensitivity function S(z) has all
desired poles and some desired zeros for the purpose of
high-order reference signal tracking.

2.2 Pole/zero assignment with known plant
For the purposes of high-order reference signal tracking
and desired pole assignment, and from eqns. 5 and 7, the
sensitivity function must be of the following form:

S(z) = W(z)M+(z)
(8)

where g(z) is a Hurwitz polynomial containing the desired
poles in \z\ < 1, and W(z) is an undetermined monic poly-
nomial which should be determined to satisfy the following
internal stability constraint.

2.2.1 Definition: [17] The sensitivity function S(z) is said
to be internally stable (or realisable) if the closed loop of
Fig. 1 is asymptotically stable for some choices of the con-
troller C(z), i.e. no pole/zero cancellation between C(z) and
P(z) in |z \ ^ 1.

2.2.2 Lemma 1 : [17, 27] The sensitivity function S(z) # 0
is internally stable (or realisable) if, and only if, all the fol-
lowing conditions hold:

(a) S(z) is analytic in | z | ^ 1
(b) every zero of the polynomial A(z) in | z | ^ 1 is a zero

of S(z) of at least the same multiplicity
(c) every zero of the polynomial B(z) in | z | ^ 1 is a zero

of 1 — S(z) of at least the same multiplicity.

2.2.3 Remark: If S(z) satisfies the requirements of internal
stability, then we can directly obtain the controller
C(z) = (1 - S(z))/(P(z)S(z)) without worrying about any
unstable hidden mode [17, 15].

Let us factorise the denominator A(z) and numerator
B(z) of the plant P(z) as follows:

= A+(z)A_(z)

= B+(z)B_(z)

(9)

(10)

where the polynomials A+(z) and B+(z) have all their zeros
in \z\ ^ 1 while the polynomials /4_(z) and B_(z) have all
their zeros in | z | < 1. Let us denote
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(11)

where n is the number of distinct zeros qt of B{z) in | z | ^ 1,
and m, is the multiplicity of qt. From the condition (b) of
lemma 1, in order to let the desired S(z) satisfy the require-
ment of internal stability, the numerator of the sensitivity
function in eqn. 8 must contain A+(z), i.e. the sensitivity
function must be of the following form:

S(z) =
W(z)M+(z) l(z)A+(z)M+(z)

(12)

where g(z) and M+(z) contain the desired poles and zeros,
respectively, and l(z) is a polynomial to be determined by
the condition (c) of lemma 1. (Note that if some of the
zeros of A+(z) are equal to the zeros of M +(z), then the
least common multiplier of A+(z) and M+(z) is chosen to
be a factor of the numerator of the sensitivity function S(z)
[20].)

From eqn. 12, we obtain

1 - S(z) =
g(z)-l(z)A+{z)M+(z)

9(z)
(13)

To satisfy the condition (c) of the internal stability of
lemma 1, the numerator g(z) — l(z)A +{z)M+{z) of 1 — S(z)
must contain B+(z), i.e. it must be of the following form:

h(z) = g(z) - l(z)A + (z)M+(z) = B + {z)F{z) (14)

i.e.

+fad = o
i=l,2,...,n (15)

where n is the number of distinct zeros q{ of B(z) in | z | ^ 1.
And then

Kqd = "

Let

/(z) = z" + /1z""1

We obtain

i = 1, 2, .. . , n (16)

(17)

92

1

1

i

l2

X.

=

g(Qi)

A+(q2)M
(18)

By solving the n simultaneous equations in eqn. 18, the
polynomial /(z) can be determined. And then the sensitivity
function S{z) in eqn. 12 is internally stable.

Remarks:
(i) If B+(z) has coincident zeros in \z\ ^ 1, instead of

solving eqn. 18, we can compare the coefficients between
both sides of eqn. 14, and then a set of n + nf simulta-
neous equations must be solved to determine the poly-
nomials /(z) and F(z), where n and nf are the number of
undetermined coefficients of polynomials /(z) and F(z),
respectively. In general, the assumed order of the plant to
be identified in the adaptive system will not be too high, so
that the number of the zeros of the plant in | z | ^ 1 is few,
i.e. the number of simultaneous equations should be solved
is few. Especially, in the identification model, because the
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disturbance is introduced, it is almost impossible to have
coincident zeros of plant in \z\ ^ 1. If B+(z) has nearly
coincident zeros in \z\ ^ 1, we can follow the algorithms
described by Golub and Van Loan (Algorithms 5.6-1 and
5.6-2 of Reference 28) to solve eqn. 18.

(ii) In order to satisfy the requirement of causality, the
sensitivity function S(z) must be proper, i.e. the following
inequality must be satisfied

-1- deg (M+(z)) (from eqn. 12) (19)

where deg (•) denotes the degree of a polynomial. And as

deg (/(z)) = deg (B+(z)) (20)

we obtain

deg (g(z)) ^ deg {A+{z)) + deg (B+(z)) + deg (M+(z)) (21)

where deg (A+(z)) and deg (B+(z)) denote the numbers of
poles and zeros of the plant in \z\ ^ 1, respectively, and
deg (M +(z)) denotes the number of poles of the reference
signal r(z) in \z\ ^ 1. Thus the number of assigned poles,
i.e. deg (g(z)) must be chosen to be large enough to satisfy
the inequality eqn. 21.

From the above analysis, to satisfy the requirement of
internal stability, the sensitivity function S(z) with desired
poles and zeros must be of the form in eqn. 12. And then
we can obtain the corresponding controller C(z) as

C^ = TT^\ (from eqn. 6)P(z)S(z)

A(z)(g(z)-l(z)A+(z)M+(z))
B(z)l(z)A+(z)M+(z)

(from eqns. 4, 12 and 13)

A.(z)F{z)
B_(z)l(z)M + {

(from eqns. 9, 10 and 14) (22)

i.e. if we synthesise the controller C(z) as in eqn. 22, then
the sensitivity function S(z) must contain g(z), with desired
poles, and M+(z), with desired zeros, and there is no pole/
zero cancellation between C(z) and P(z) in \z\ ^ 1, or we
can obtain the corresponding control law

B_(z)l(z)M+(z)u(z) = A_(z)F(z)e(z) (23)

Remarks:
(i) If the plant is free of zeros in \z\ ^ 1, then /(z) = 1,

and we don't need to solve /(z) from any equation
(ii) If the plant is free of poles and zeros in | z | ^ 1, then

all the poles and zeros of S(z) can be arbitrarily assigned
without worrying about the problem of internal stability.

As an example in the following, we follow the design
procedure mentioned here to present the design algorithm
proposed. For a given nonminimum-phase system

P(z) =
z+ 1.1

z(z - 1.2)
(24)

how do we synthesise a controller C(z) for three poles of
S(z) at z = —0.3, —0.3 and 0.5, and one zero at z = 1, to
be able to track a unit step signal? To satisfy condition (b)
of the internal stability of lemma 1 and the reference signal
tracking requirement, and as there is only one zero of the
plant in | z | ^ 1, S(z) must be of the following form:

(25)

From eqn. 14, to satisfy condition (c) of the internal stabil-
ity of lemma 1, we have

h(z) = {z + 0.3)2(z - 0.5) - (z + Mz - 1.2)(z - 1)

= (z + l.l)F(z) (26)

The term F(z) should be determined as long as /(z) =
(z + /J is determined. And, from eqn. 15, we obtain

h(- 1.1) = (-1.1 + 0.3)2(-1.1 - 0.5)

- ( - 1.1 + /i)(- 1.1 - 1.2)(- 1.1 - 1) = 0 (27)

i.e.

(-1.1 +0.3)2(-l . l -0.5)
+ 1.1=0.888 (28)

(-1.1 - 1.2X-1.1 - 1)

and then, from eqn. 26, we obtain

F{z)= 1.412(z- 0.715) (29)

From eqn. 22, we obtain the corresponding controller

1.412z(z - 0.715)
C(z) =

(z + 0.888)(z - 1)
(30)

2.2.4 Discussion: The pole assignment algorithms intro-
duced in References 5, 7, 8, 9 and 10 need to solve the
following diophantine equation [21]:

A'(z)R(z) + B'(z)T(z) = G(z) (31)

where A'(z) and B'(z) are the denominator and numerator
polynomials of the plant, respectively, and G(z) is the
desired closed-loop polynomial with desired poles. If A'(z)
and B'(z) are relatively prime and r = max (deg (A'(z)),
deg (B'(z))), any polynomial G(z) of degree 2r — 1 can be
obtained from eqn. 31 for unique polynomials R(z) and
T(z) of degree r — 1 (Theorem 5.3.1 in Reference 21). In the
preceding example, if we want to assign the desired poles
G{z) = (z + 0.3)2(z — 0.5), by applying the diophantine eqn.
31, we have to solve the following equations for R(z) and
T(z), where R(z) = roz + rx and T(z) = toz + tl

1

-1.2
0
0

0
1

-1.2
0

0
1
1.1
0

0 '

0
1
1.1.

' ro

r0

t _

" 1

0.1
-0.21

.-0.045.

(32)

In our method, the pole/zero assignment of the above
example only needs to solve eqn. 28. But the pole assign-
ment by the diophantine algorithm needs to solve four
simultaneous equations in eqn. 32.

2.2.5 Comments:
(a) For 2r — 1 pole assignments, the diophantine algo-

rithm needs to solve 2r simultaneous equations [21], our
algorithm only needs to solve n simultaneous equations,
where n is the number of zeros of the plant in |z | ^ 1. In
practical problems 2r >̂ n.

(b) The algorithms produced by solving the diophantine
equation [5, 7-10] cannot solve the zero assignment of the
sensitivity function to track the reference signal, but our
algorithm can treat this problem very easily.

Because our method takes much computational advan-
tage over the approaches by solving diophantine equation,
this method is especially suitable for the adaptive control
system.

In the adaptive case, as the plant is unknown, we need
parameter identification at every sampling step to estimate
A(z) and B(z) and compute /(z) and F(z) from eqns. 18 and
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14, and then substitute these values into control law in
eqn. 23 to generate the control signal u(z). There are many
methods for recursive parameter estimation. Least square
scheme, which is one of the simplest recursive estimation
schemes [9, 19, 21] can be applied to achieve the param-
eter estimation.

3 Adaptive control with desired pole/zero
assignment

From the above analysis, adaptive control with desired
pole/zero assignment will be described by the following
algorithm:

Step 1: Calculate the estimations A(z) and B(z) of poly-
nomials A(z) and B(z) by the recursive least-squares
scheme, and perform the factorisation A(z) = A+(z)A_(z)
and B(z) = B+(z)B_(z).

Step 2: Solve the coefficients of l(z) from eqn. 16 or eqn.
18, with A+(q{) replaced by A+{q^), i = I, 2, ..., n. And
then, from the following equation,

g(z) - l(z)A+(z)M+(z) = B + (z)F(z) (33)

we can obtain the polynomial F(z).
Step 3: Substitute the obtained l(z) and F(z) into eqn. 23,

and we can obtain the adaptive control law as in eqn. 23,
with A_(z) and B_(z) replaced by A_(z) and B_(z), respec-
tively.

By performing step 1 to step 3 at each sampling inter-
val, the sensitivity function S(z) will achieve the desired
pole/zero assignment as A(z) and B(z) approach to A(z)
and B(z), respectively.

Remarks:
(a) In general, the assumed order of the plant to be iden-

tified will not be too high, so that, in step 1, we can apply
the existing formula tô  factorise A(z) and B{z) when the
polynomials A(z) and B(z) are quadratic, cubic or quartic
[13-15, 22]. When the polynomials A(z) and B(z) are of
higher degree than quartic, the numerical method should
be applied to solve the roots of A(z) and B(z).

(b) In step 2, when determining the polynomial F(z), we
can compare the coefficients between both sides of eqn. 33.
As a result, the coefficients of F(z) can be described as
functions of the coefficients of l(s) a priori, and then, as
long as the coefficients of /(z) are solved, the polynomial
F(z) should be determined immediately.

Because our adaptive pole/zero-assignment control
algorithm is extendable to the nonminimum-phase
systems, the possibility of pole/zero cancellation between
A(z) and B(z) in | z \ ^ 1 must be avoided. So that the con-
vergence analysis of this adaptive pole/zero-assignment
algorithm depends on how to show that all limit points of
the parameter estimator correspond to the model (i.e. A(z)
and B(z)) are relatively prime. Several papers have been
written to deal with the convergence problem of adaptive
pole assignment to ensure that A(z) and B(z) are relatively
prime [21, 33, 24]. Goodwin and Sin [21] have introduced
a convergent algorithm of the adaptive pole assignment.
However, the result is local in nature. Goodwin et al. [23]
have suggested an alternative strategy which leads to
global convergence of the adaptive pole-assignment algo-
rithm. This strategy requires an addition of a persistently
exciting external input to ensure that the parameters con-
verge to their true values and to avoid pole/zero cancel-
lation. Recently, Anderson and Johnstone [24] presented a
detailed analysis of globally convergent algorithm for
achieving a prescribed set of closed-loop poles without any
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pole/zero cancellation. In their algorithm, persistency of
excitation of an external input is also required.

4 Simulation

A demonstration of how the adaptive controller with pole/
zero assignment works will now be given in terms of simu-
lated examples:

Example 1: A nonminimum-phase system is considered
with the following system description

P(z) =
z + 2

(z - 0.5)(z - 0.7)
(34)

An adaptive control design with the following objectives is
considered:

(i) two poles of the transfer function at z = 0.2 for
robustness [19]

2.0r

1.0

s 0

-1.0

-2.0

N

0

2.0r

1.0 L

N

*3 0

-1.0

-2.0

50 100
time

150 200

1 1 . . . . . . . . . t . . . . . . . . . l

50 100
time

150 200

Fig. 2 Output response y(z) and control signal u(z) of the adaptive pole/
zero assignment design in example 1

2.0

1.0

N

r o
-1.0

-2.0
50 100

time
150 200

2.or-

1.0

r o

-1.0

-2.0
50 100

time
150 200

Fig. 3 As in Fig. 2 but with a load disturbance
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(ii) one zero of the sensitivity function at z = 1 for track-
ing square-wave reference signal.

Following the proposed design algorithm, the behav-
iour of this system is shown in Fig. 2. It is seen that the
behaviour of the closed-loop system is good enough in the
second transient, because the parameters have converged
after the first transient. Fig. 3 shows the behaviour when
the output load is changed. It is seen that this adaptive
pole/zero-assignment control algorithm is quite robust in
its response to the load disturbance.

Example 2: The adaptive control with nonminimum-
phase system (eqn. 24) discussed in Section 2.2 is simulated
in this example. Fig. 4 shows the behaviour of this system

2.0i-

1.

0

-1.0

-2.0

0 -

H-
50 100

time
150 200

2.0r

1.0-

~ o

-1.0

-2.0
50 100

time
150 200

Fig. 4 Output response y[z) and control signal u{z) of the adaptive pole/
zero assignment design in example 2

for tracking a square-wave reference signal. Again the
behaviour of the closed-loop system is good enough in the
second transient, because the parameters have converged
after the first transient.

Example 3: A frequent problem encountered during
machining systems is deterioration of system stability,
which is caused by changes in the process parameters such
as depth in cut. In order to solve this problem, the pro-
posed adaptive pole/zero-assignment algorithm is applied.
This machining system is modelled as in Fig. 5 [25]:

Fr = cutting force
vf = feed rate
n = spindle speed
/ = feed
a = cutting depth
ks = specific cutting force
h = sampling period

the value of the parameters of this system are chosen as

£ =0.7
Wn = 60 rad/s
n = 900 rev
p = 0 . 7
ks = 9 3 3

/ = 0 . 1 9 7 mm/rev
Vf = 2.96 mm/s
h = 0.01 s

IEE PROCEEDINGS, Vol. 133, Pt. D, No. 6, NOVEMBER 1986

By employing the z-transformation [Table 3.1 in Reference
19], Fig. 5 can be represented as in Fig. 6; where a is the

Fr , J c '•
_ \ \ s2«2ewn

2.wn
2

Vf L"
1 n

f a w -

Fig. 5 Machine system

Fr(z) e(z)
C(z)

u(z) 13.67a(z*0.478)
z2-1.2z*0.432

Fc(z)

Fig. 6 Equivalent system of Fig. 5

2.0r

1.5

1.0

0.5

20 40 60
time

80 100

0.02r

^0.01

: W~
0 20 60 80 100

time
Fig. 7 Output response Fc{z) and control signal u(z) of the adaptive pole/
zero assignment design in example 3
Fr(z) is normalised

cutting depth. By applying the adaptive pole/zero-
assignment algorithm proposed in this paper, the simu-
lated result is shown in Fig. 7 with one pole of the transfer
function at z = 0.5 and one zero of the sensitivity function
at z = 1. The data were taken after the parameters had
converged. The cutting depth a = 2 mm before t = 10,
a = 3 mm between t = 10 and t = 40, a = 4 mm between
t = 40 and t = 70 and a = 5 mm after t = 70. The result
shows that our adaptive pole/zero-assignment algorithm
can quickly converge the cutting force to the desired
steady-state value after the cutting depth is changed.

5 Conclusion

The adaptive control algorithm described in this paper is
computationally easier to implement than the existing
approaches of adaptive pole-assignment control algo-
rithms, because the algorithm does not require solving a
diophantine equation at each sampling step. This compu-
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tational advantage is very important for the adaptive
control system to the actual application. The internal sta-
bility requirement is achieved so that this algorithm can
easily handle any minimum- or nonminimum-phase
system. As well as the pole assignment, because the zeros
of a system play an important role in the interaction
between the closed-loop systems and their external
environments, the zero assignment of control systems
becomes very important. The desired zero assignment of
the sensitivity function can make high-order reference-
signal tracking possible. These characteristics are demon-
strated by several simulations. This same approach can be
extended to multivariable systems, and this is, presently,
the subject of continuing research.
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