
958 IFEE TRANSACTIONS  ON  AUTOMATIC CONTROL, VOL. AC-31, NO. 10, OCTOBER 1986 

TABLE I 
SOLUTIONS FOR PARAMETERIZED INITIAL CONDITIONS 

Q =I =z -11 -12 C I  cz c3 CI 1 

0 . 0  18.028 0,000 -4.123 0.000 0.194 0.000 0.199 0.000 6.177 
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Fig. 1. Time optimal trajectory and control vector. 

The  reduction of the  problem  formulated  in this note  to a set  of 
nonlinear equations  makes  it  feasible  to  compute the optimal control in 
real  time. Thus, the simple  dynamic  model (1) could be used as the  basis 
for a feedback control scheme in which  the control is recomputed  at  each 
sampling  instant  using the current state. This open-loop feedback 
approach  to  real-time steering control is considered  in [lo], [l I]. The 
results  of this correspondence are currently  being  incorporated as a part of 
the feedback  algorithm  proposed  in [ 1 11. 
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Discrete Optimal Control with Eigenvalue  Assigned 
Inside a Circular Region 

TSU-TUN LEE AND SHIOW-HARN LEE 

Abstract-A discrete-time optimal control that guarantees that all the 
closed-loop  poles will lie inside a circle  centered at (B, 0) with radius Q is 
formulated. It is shown  bow the exposed  problem  can  be  reduced to a 
standard discrete-time linear quadratic regulator problem. Furthermore, 
a quantitative measure of the robustness of linear quadratic state 
feedback  design in the presence  of a perturbation is obtained. Bounds are 
derived for allowable nonlinear pertnrbations such that the resultant 
closed loop is stable. 

I. INTRODUCTION 

For a continuous-time  system  which is stabilizable  and  detectable, 
Anderson  and Moore [l] have  shown  how it is  possible to minimize a 
quadratic  performance  index and, at  the same time, to ensure that  the 
closed-loop  system  will  have  poles  with  real  parts all less  than  some  real 
number a. Similarly, Franklin  and  Powell 121 have  derived a state 
variable  feedback  law  that minimizes a discrete-time  quadratic perform- 
ance  index and, meanwhile, ensures that the closed-loop  system has poles 
all  less  than a 5 1. The aim of this note is to formulate a discrete-time 
quadratic  minimization  problem in such a way as to  give  rise to a linear 
state variable feedback  law  guaranteeing  that  closed-loop  poles all lie 
inside a circle centered at @, 0) with radius a, where a + I f l I  5 1. 
Moreover, it  is known that  the stability of a discrete-time linear quadratic 
regulator is guaranteed. But the behavior  of  such  regulated  discrete-time 
systems to nonlinear perturbations is unknown. We have, therefore, 
derived  bounds for allowable nonlinear perturbations  such  that  the 
resultant  closed-loop is stable. 

n. OPTIMIZATION WITH PRESCRIBED CLOSED-LOOP POLES INSIDE A 
CIRCULAR REGION 

Consider a linear time-invariant  discrete-time  controllable  system 

X ( p +  l ) = A X ( p ) + B U ( p ) ,  X(O)=& (1) 

where X is an n X 1 state vector, U is an r x 1 control vector, and A and 
B are n X n and n X r constant matrices, respectively. 
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The problem  considered in this section is to formulate an optimal 
control  problem  such  that  the  optimal  control that minimizes the  specified 
performance  index will at the same  time  place  the  closed-loop  poles  inside 
a circular region as shown in Fig. 1. Recall  that  given  plant  dynamics (1) 
and  the  performance  index 

J =  2 ( : )”{X‘(P)QX(P)+ U‘(p)RU(p)} (2) 

where Q = QT 2 0, and R = R T  > 0, it is well  known [2] that the 
optimal control which minimizes (2) will have  closed-loop  poles  inside  a 
circle centered at the origin  with  radius r = a. 

minimizes (2) are shifted by -8, then all the poles will be  inside the 
circular region as shown in Fig. 1. That is, if 

p = 0  

Now it that if all the Of the feedback control that Fig. 1. The desired circular region  for closed-loop poles. (0 < a s ],a + 161 5 1 ) .  

Proof: From (7)-(9), it  follows thatx(0) = X(0) and o(0) = U(0). 
d ( p +  l ) = A , X ( p ) + B u ( p ) ,  where A B = d - B I  ( 3 )  From (7), 

then the optimal  control  which  minimizes ~(1)~X(l)-~X(O)~AX(O)-~X(O)+B~(O)~(A-~r)X(O)+BO(O). 

Thus, (11) is true for P = 0. In the  following, we shall  prove  that  (11) J=i ( : ) z p ~ X ‘ ( P ) Q X ( p ) +  P ( P ) R l f ( P ) l  (4) holds for P = K ( X  = 1, 2, 0 . 0 ) .  

p = 0  Substitute P = K into (1 1)  yielding 

will  have all poles  inside  the circular region of Fig. 1. Thus, the problem X ( K + l ) = ( A - O I ) X ( K ) + B U ( K ) .  (12) 
boils down to finding  a  performance  index so that the  resultant  optimal 
control  subject  to (1) is equivalent to the optimal  control  that minimizes The  left-hand  side  of (12), after using  the  relation of (7), can be written as 
(4) subject  to (3). The following  theorem  states  the  result. 

performance  index (4) is equivalent to the  minimization  problem with X ( K + l ) =  C~+l(-p)K+l-jX(j)=X(K+l) 
respect  to (1) and  the  performance  index 

Theorem 1.- The minimhtion problem  with  respect  to (3) and  the K + I  

j=O 

where j =  I 

Q = QT 2 0, R = RT > 0, and (A, B, Ql”) is minimal, in the  Note  that  the term 

. .  

Note-that  Theorem 1 can be  proven from the  following  lemma. 
Lemma I :  The transformations 

. .  X 

= ( - p )  C:(-B)K-JX(j)= - B X ( K ) .  (16) 
j =O 

and 

where 

Hence, (15) can be  reexpressed as 
(7) K 

X ( K +  l ) = A C $ X ( K ) + B C $ U ( K ) + X  C ; - ] ( - I ~ ) ~ + ’ - ’  
j =  I 

(AXc j -  I ) + B U ( j -  l ) ) -OX(K)=AC$X(K)  
(8) K-  I 

+ BC$U(K) + E Cf( - B ) K - j ( A X ( j )  

j = O  

+sum - PX(K) (17) 
(9) 

which can be further simplified  to 
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Hence, 

Q.E.D. 

Note also that the minimization  problem  with  dynamics (3) and 
performance index (4) can be further reduced to  a linear quadratic 
regulator  problem. Indeed, if we let 

then  dynamical  equation (3) becomes 

The performance  index (4) can be rewritten as 

OI 

J= 2 [&p)Qg(p)  + O@)RO(p)l. (23) 
p = 0  

Thus, the minimization  problem  with  respect to dynamics (3) and  the 
performance  index (4) is equivalent to the minimization  problem  with 
respect  to  dynamics (22) and  performance  index (23) in  the  following 
sense. 

a) The minimum v!ue of (4) is the  same as the  minimum  value  of (23). 
b) IF O(p) = G(X(p))  is the  optimal  control  for (22) and (23). U(p) 

= (l/a)-W((l/a)P.$(p)) is the  optimal  control for (3) and (4) and 
conversely. 

Therefore, the  minimization  problem  with  plant  dynamics (1) and  the 
performance  index (5) is reduced  to  a  standard  LQ  optimization  problem 
with  plant  dynamics (22) and  performance  index (23). The  optimal 
control  law  that minimizes (23) subject to constraint (22) is 

O~(P>= - GJ*(P) (24) 

where 

G,= [ R  +BTSB]-'[BTSA] (25) 

and S is the unique  symmetric  positive definite solution  of  the  discrete 
Ricatti  equation 

S=ATSA^+Q-[BTSA]7[R+BTSB]-'[BTSA]. (26) 

Moreover, if [A. 81 is either completely  controllable or stabilizable,  and 
if [ A ,  Dl is completely observable, where D is any n X n matrix such 
that DDT = Q, then the feedback  system is asymptotically stable. The 
closed-loop  system is 

p(p+  1) =(A - B G f ) d ( p ) .  (27) 

Since the poles of this  system  being  given by the eigenvalues of ( A  - 
BG,) have  an  eigenvalue less than 1, it follows  that  the  eigenvalues of 
x ( p  + 1) = (AB - BG,).$(p) are less  than a. Hence, the eigenvalues of 

X@+ l)=(A-BGf)X(p) 

are all inside  a circle centered at (p, 0) with  radius a. Thus, the  optimal 
control  which  minimizes (5) subject to plant  dynamics (1) ensures  that al l  
the closed-loop  poles are inside  a circle centered  at (j3, 0) with radius CY. 
Notice  that  the  optimization  problem  with  dynamics (1) and  performance 
index (5 )  can be solved  in  the  following  way. 

First, solve the optimal  control  problem  with  dynamics (22) and 
performance  index (23) to obtain @), and  then  from (20) to obtain D(p) 
= (I/cY) -PO@). Now the  problem  remains  to  obtain U ( p )  from U(p) .  

From (19), it is easy to show  that 

U(0) = O(0) 

U(1) = 0(1)+80(0) 

U(2) = O(2) + 28U(l) + 8*O(O). 

In fact, the general expression for U(p) is 

U @ ) = i  CfBkO(p-K) .  
k=O 

From (29), the  optimal  control that minimizes  ( 5 )  is achieved. 

Ill. NONLINEAR PERTURBATIONS 

In this section, we will study the robustness  of a discrete-time linear 
quadratic state feedback (LQSF) design in the  presence of some  nonlinear 
perturbations. 

Consider  a discrete-time system  with  dynamics 

W P +  i ) = A X ( p ) + B U ( p ) + F ( X ( p ) ,  UP)} (30) 

where F is a nonlinear  vector  function. A difference equation of this form 
may be  considered as a linearizationof a general nonlinear  equation  of  the 
fonnX(p + 1) = G{ X(p) ,  V ( p ) } ,  A and B denoting the Jacobian of G 
with respect  to  the state vector X ( p )  and  the  control  vector Qp), 
respectively,  and F denoting  higher order terms. 

Since  the exact expression  of  the  nonlinear  function F is  not  usually 
available  but only some  bound on this function may be evaluated by a 
designer, we shall  study  the  robustness  of  an  LQSF  design for the linear 
model 

-W + 1 )  = A W p )  + BU(P)  (3 1) 

in the  presence  of  some  nonlinear  perturbation F [ X ( p ) ,  U ( p ) ] .  The  pair 
(A, B) is assumed to be controllable. The  performance  index  to  be 
minimized  is 

(32) 

where Q = QT 2 0, R = R' > 0 and CY > 0. 
The  optimal  control  that minimizes (32) will  ensure all closed-loop 

poles inside the circular region as shown in Fig. 1. 
Recall that  the  minimization  problem  with  respect  to  dynamics (31) and 

performance  index (32) is equivalent  to  the  minimization  problem  with 
respect to dynamics (3) and  performance  index (4). Therefore, the 
problem  considered in this section may be restated as follows. 

Given  a  plant  dynamics 

R ( p + l ) = A B R ( p ) + B o ( p ) + F t R ' ( p ) ,  O(P)l. (33)  

We shall study the robustness  of an LQSF  design for the linear model 

R ( p +  l ) = A , X ( p ) + B O ( p )  (34) 

in the  presence of some  nonlinear  perturbation F [ x ( p ) ,  &I)]. The 
performance  index  to be minimized is 
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The  optimization of performance  index (35) with the  system  model (34) 
yields  a state feedback  control 

O(p)  = - [R+BTsB]-lB?sAX(p) (36) 

where B = (I/@, A = (I/a)Ao, and S is the solution  of  (26).  The 
resulting  closed-loop  system is given by 

X(p+l)=(Ag-B(R+B'SB)-'B'SA)X(P)+F[X(P)]. (37) 

The  problem which  we  will investigate in this section  is  to  determine  the 
bound on perturbation F which  preserves  the  stability of (37). 

Let a  Lyapunov  function  be  defined as 

U P )  X T ( P ) W P )  (38) 

where S is  the  solution of (26). Since S is positive definite, V(p)  > 0, for 
all nonzero x ( p ) ,  and V(p)  + cp as 11q1 + 01. Here, and in the sequel, 

11 WllE denotes  the  Euclidean norm of a vector W (matrix W), 

and 

Note  that AV(p)  < 0 is  required for the  stability of the  closed-loop 
system of (38). Now consider 

A V ( p )  = V ( p  + 1) - V ( p )  = X r ( p  + l)SX(p + 1) -8'(p)SX(p) .  

(39) 
By simple  manipulations,  it  yields 

AV(p)=Rr(p){A~SA,-2(BTSA,)T(R+BrSB)-'(BrSA^) 

+ (BrSA)r(R+BrSB)-lB'SB(R +BTSB)-I(B'SA) 
- S } 8 ( p ) + 2 F r ( X @ ) ) S { A , - B ( R + B r S B ) - '  

. (87SA)}X@)+F7(X(p) )SF(R(p) ) .  (40) 

The bounds on  the  nonlinear  perturbation F(X(p) )  for the  stability of (37) 
can  be  summarized as the  following  theorem. 

Theorem 2: Let 

H 8 S { A , - B ( R + B r S B ) - ' ( B T S a ) }  (41) 

D P (BTsA)'(R+B~sB)-~(B~sA~+Q-(B~s~)T 
. ( R + B 7 S B ) - l B ~ ' S B ( R + B = S B ) - ' ( B r S A )  

8 Q+G/TRGf (42) 

and let max X( W )  and min X( W )  denote  the  maximum  and  the  minimum 
eigenvalue of a  matrix W,  respectively.  Then  if  the  nonlinear  vector 
function F(X(p))  satisfies  the  condition 

for arbitrary nomero n X 1 state vector x@), the  closed-loop  system 
(37) is  asymptotically  stable. 

Proof: Since D = Q + GrRGf,  D is  positive  definite. f Substitution of (26) into (40) yields 

A V ( p ) =  -azXr(p)D~(p)-(1-Lu2)dr(p)S~(p) 

+2FT(%p))HX(p). (44) 
Since 

~ r ' ( ~ @ ) ) ~ ~ ( P ) ~ I I ~ ( ~ ( P ) ) I I € I I ~ I I € I I ~ ( ~ ) l l €  

where relation (43) has  been  used  to  obtain (45). Therefore, 

A V ( p ) =  -J ir(p){aZ[D-min X(D)Z,] 

+(1 -a2)[S-min X(S)Z,]]X(p) .  (46) 

It is easy to see that for a < 1, A V(p)  < 0 for arbitrary nonzero x ( p )  

Q.E.D. 
Note  that Theorem 2  reveals  that for any  weighting  matrix Q = DDT 

2 0 such  that (A #, 0) is observable, and  any  weighting  matrix R = R 
> 0, the  optimal  control  law  that  minimizes (35) subject  to  the  constraint 
of (34) will  always  have the closed-loop  poles all inside  a circular region 
as specified as long as the  nonlinear  function F satisfies (43). 

and  hence (37) is asymptotically  stable. 

N. ILLUSTRATIVE EXAMPLE 

Consider  a  discrete-time  controllable  system 

In order to formulate an optimal  control  problem  that will have all the 
closed-loop  poles  inside  a circle centered at (0.5, 0) with radius a = 0.5, 
we  redefine  a  plant  dynamics  given by 

b ( p +  1) = A g b ( p )  + B i i ( p )  (48) 

where 

AB= [ o: , B= [ (49) 

and the performance  index 

m 

J= [ X r ( p ) Q X ( p ) +  OT(p)RO(p)]2'p. (50) 
p=o 

It is clear that for any Q satisfying Q = DDT 2 0 such  that (AB, D) is 
observable, and  any R = R > 0, the  optimal  control  that minimizes  
(50) with  plant  dynamics (49) will  have  its  closed-loop  poles  inside  a 
circle centered at (0.5, 0) with radius a = 0.5. 

For simplicity, let Q = [A t ] ,  R = 1. Then  the  steady-state solution 
of the discrete Riccati  equation is 

r -I 

7.9176 5.4771 
5.4771 7.4556 I 

and the regulator gain  is 

G~=[0.5061 0.76731. (52) 

It is easy to verify  that  the  closed-loop  poles are at 

0.9335 kj0.0662 

which are located  inside  the  specified circular region. 

following  equation: 
Let  the  plant  include  a  nonlinear  function F(X(p)) ,  as described by the 

Since 
r 1 

, h(S)=2.2046; 13.1686 
5.4771 7.4556 

, h(H)= 12.9568; 2.0746 

D= [ 1.2561  0.38831 , x ( ~ ) = 0 . 4 1 0 4 ;   1 . 4 3 4  

5.0861 7.4107 

0.3883 0.5887 
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if the  nonlinear  function F(x(’(p)) satisfies  the bound First, the  output data sequences of the original  and  reduced  models  with 
respect to unit-step  input  data  sequence are transferred into discrete Walsh 

II F(m))ll€10.0678 spectra. Then, by  matching the two spectra, the parameters of the  reduced 
1 1 m €  model can thus  be  determined. 

then  the  closed-loop  system is stable. D. DISCRETE WALSH SERIES 

V .  CONCLUSIONS Kak [l] defined &(k) as the ith discrete Walsh  series of k. The series is 
deiined on N = 2” points; rn is an integer, and i and k are less  than N.  

A discrete-time  optimal  control  that  guarantees  that all the  closed-loop 
poles  will  be  inside a circular region  has  been  formulated.  The  robustness 
properties of the  exposed  discrete-time  quadratic  regulator  have been (i)dm=(im-lim-2 ioAbmary ( 1 )  
investigated.  Results  have  been  generated which quantitatively character- 
ize the  bounds  of  the  nonlinear  perturbations so that  the  resultant  closed- (k)d&d=(km-lkm-2 . ‘ * (2)  
loop  system is stable. A related  topic  concerning  how  to  synthesize a 
feedback  law  with a prescribed  robustness sector is  under  investigation. then the set Of discrete Walsh series  are defined  by 

REFERENCES 

B. D. 0. Anderson  and J. B. Moore, “Linear system optimization  with  prescribed 
degree of stability,” h o c .  IEE, vol. 116. no. 12, pp. 2083-2087, 1969. 
G. F. Franklin  and J .  D. Powell, Digital Control for Dynamic Systems. where 
Reading, M A :  Addison-Wesley, 1980. 
M. G. Safonov and M. Athans, “Gain and  phase margin for rnultiloop LQG 
regulators,” IEEE Trans. Automat.  Contr., vol. AC-22, no. 2, pp. 173-179, 
1977. 
B. V. Patel, M. Tcda, and B. Sridhar,  “Robusmess of linear quadratic  state 
feedback designs in the presence of system uncertainty,” IEEE Trans. Automat. 
Contr., vol.  AC-22, no. 6, pp. 945-952, 1977. 

g d i ) = i m - l  

g l ( i ) = i m - l + i m - 2  

g z ( i ) = i m - 2 + i m - 3  
. . . . . . . . . 

g m - , ( i ) = i l + i 0 .  

For example,  to  obtain &(k) for N = 24 ,  we first express (3)- in its 
binary  representation  using (1) as 

Model  Reduction of Digital  Systems  Using  Discrete 
Walsh Series 

and 
ING-RONG HORNG, JYH-HORNG CHOU, AND TUAN-WEN 

YANG 
g l ( 3 ) = i 3 + i t = 0  

g 2 ( 3 ) = i z + i l = 1  
Abstract-This study discusses the application of discrete  Walsh  series 

expansion to reduce the order of a linear time-invariant digital system 
described by z-transfer function. The approach is based on matching the 
discrete Walsb spectra to determine both the coefficients of the  denomi- 
nator and numerator of the reduced  model. The proposed  method is using (3) we now 
simple for computation, can  preserve the dynamic characteristic of the 
original  model satisfactorily, and guarantees to have the same  zero  initial Q 3 ( k ) = ( -  ~ ) ~ P O ~ ~ ~ ~ o + P ~ ~ ~ ~ ~ ~ + ~ z ~ ~ ~ ~ z + 8 ) ~ 3 ~ ~ 1  

response as the original system. 

g3(3 )= i l+ io=2 .  

That is, 

I. INTRODUCTION .$,(k)=[l 1 1  1 - 1  - 1  - 1  - 1  1 1   1 1  - 1  - I  - 1  -11. 

It is often desirable and  sometimes  necessary  to  reduce  the order of a 
hear dynamic  system in the  analysis  and  design of  complex systems.  The 
main  objective of  model order reduction is to provide a simplified  model 
which is computationally simpler to handle  than  the original high-order 
system. In order to facilitate digital  image  processing,  the discrete Walsh 
series was developed by Kak [l] to manipulate  the  integral  transform 
characterization of patterns of finite binary  sequences. The order of the 
discrete Walsh spectra is a permutation of  the continuous ones. Recently, 
Horng and Ho [2], [3] use  the discrete Walsh series to deal with the 
analysis, identification,  and  optimal  control  of  linear  digital system. 
Chou and Horng [4] introduce  simple  methods  for  finding  three 
operational  matrices to facilitate  the  study of control  systems using 
discrete Walsh series. In this study, a new approach  is  presented for the 
model  reduction of a discrete system  described by a z-transfer function. 
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The discrete polynomials (4i(k), i = 0, 1, 2, - * , N - 1 } form a 
complete set and  satisfy the orthogonal  property 

x-  I 
W C ) & , ( ~ ) = N ~ ~ ~ ;  i, j = o ,  1, 2 ,  ..., N - 1  (5) 

* = 0  

where 6ij is  the  Kronecker delta. 

sequence  and can be expanded  in t e r n  of  the  discrete  Walsh series as 
Letf(k), k = 0, 1, 2, e - . ,  N - 1, be an  arbitrary  bounded  signal 

where the superscript T means transpose, F is the discrete Walsh 
coefficient vector, and g(k)  is the discrete Walsh  vector.  These two 
vectors are defined as 

F = l f O ,  fl, .‘., fN-11‘ (7) 
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