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Investigating Local Properties of Graphene Sheet with Defect

Student : Meng-Jhe Sie Advisor : Dr. Jia-Lin Tsai

Department of Mechanical Engineering

National Chiao Tung University

Abstract

This paper aims to investigate the local properties of graphene sheet with free surface
or central cracks subjected to uniaxial loading. The equilibrium configuration of the
graphene sheet subjected to uniaxial loading was determined through molecular dynamic
(MD) simulation. For the graphene with free surfaces, three local stress formulations, i.e.,
Hardy, Lutsko and Tsai stress, were employed to calculate the local stress distribution near
the free surfaces. It was found that when van der Waals force was present, only Hardy stress
expression can describe the stress field effectively. Results indicated that the graphene
sustained compressive stress on the edge and tensile stress in the interior at stress free state.
On the other hand, when van der Waals force was absent, both Hardy and Tsai stress can
describe the stress distribution accurately. Results showed that the graphene sustained zero
stress at every position at stress free state such that the bond length did not alter.

Regarding the graphene with central cracks subjected to remote tensile loading, both
the atomistic and continuum stress were employed to investigate the local stress distribution
near the crack tip. For the discrete graphene sheet, Hardy and Tsai stress were adopted to
calculate the near-tip stress field of the graphene in the absence of van der Waals interaction.

For the continuum models, finite element method was used to calculate the stress
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distribution. In order to describe the numerical results, two analytical solutions were
incorporated, such as linear elastic fracture mechanics (LEFM) and the non-local elasticity
solution. Results showed that for both LEFM and FEM solutions, the stress fields
demonstrated the 1/+/x stress singularity near the crack tip. In addition, it was found
LEFM solution cannot describe the stress accurately when the crack length is small. On the
other hand, atomistic stress such as Hardy and Tsai stress yielded a more reasonable finite
stress near the tip. It was found that the maximum stress obtained from Hardy’s formulation
was in agreement with the non-local elasticity solution, whereas Tsai’s maximum stress is
larger than the analytical solution; therefore only Hardy stress field exhibited non-local
attribute near the crack tip. Based on the maximum stress hypotheses, the fracture properties
such as stress intensity factor and fracture toughness were deduced directly from local stress
field. Results indicated that stress intensity factor derived from Hardy stress field was in
agreement with the FEM and the actual solution of LEFM. On the other hand, the fracture
toughness defined in LEFM is found to be cracksize dependent when the crack length is
small for discrete models. For crack lengths below 40 lattices, the fracture toughness would
decrease with the decrease of the crack lengths; the result was in agreement with the
non-local elasticity solution. Therefore, the fracture toughness defined as a material

property may not be suitable for describing fracture with small cracks.
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Chapter 1 Introduction
1.1 Research Motive

Graphene sheet, because of their superior mechanical performances and light
weight properties, have been extensively employed in nanocomposites. This study
aims to investigate the local properties of graphene sheet with free surface or central
cracks. It is well known that the nanostructure of the graphene sheet may influence
the mechanical performance of the nanocomposites. However, few studies have
studied the local properties of the graphene sheet which are very crucial to composite
design and application. In this paper, the local stress formulations, i.e. Hardy stress,
Tsai stress and Lutsko stress, as well as the analytical solutions are introduced to
investigate the local properties of the graphene sheet. Based on the local stress

distributions, the influence of the nanostructure was characterized.

1.2 Paper Review

With the development of nanotechnology, the characterization of the mechanical
properties in nano-scale is becoming an essential task and attracting lots of attention
in materials community. The atomistic simulations with the advantage of simplicity
have been employed to understand the fundamental mechanical properties of
nanomaterials. For the nanomaterials with discreet characteristic, the stress originated
based on the continuum concept would become an ambiguous physical quantity in
atomistic scale. However, the determination of stress is necessary in atomistic
simulation in order to correctly evaluate the mechanical properties of the materials.
By considering the momentum change and the interatomistic interaction, several

stress definitions suitable for the atomistic simulation have been developed. Virial



stress [1] derived from the virial theorem is first proposed and has been widely used
in molecular dynamic (MD) simulations. Nevertheless, for the materials with defects
or inhomogeneous deformation, only the averaged response can be demonstrated by
the virial stress, and thus the “local” information which is essential in the defected
material can not be clearly presented [2]. In order to modify the forward-mentioned
problems, other stresses, such as Tsai stress [3], Lutsko stress [4], BDT stress [5] and
Hardy stress [6] were proposed and implemented in the molecular simulation. Sun et
al. [7] has systematically compared virial stress and Tsai stress and indicated that they
are mathematically equivalent in calculating the overall average stress, whereas in
calculating local stress distribution, virial stress exhibits unreasonable result, i.e.
nonzero normal stress at free surface. As a result, Tsai's formula is more accurate than
virial stress in describing the local stress field. Zimmerman and Web et al. [8, 9] based
on their numerical simulations, demonstrated that Hardy stress is appropriate for both
homogeneous and inhomogeneous deformation. For systems subjected to deformation,
finite temperature, or both, the Hardy description of stress displays an accurate value
expected from continuum theory; for the system with free surface, Hardy's expression
near the surface is found to be consistent with the mechanical definition of stress.
Moreover, it is very accurate and robust, and superior to BDT and Lutsko stress
formulation in the local stress calculation. However, few studies concerning the local
stress field of the graphene sheet with free surfaces have been reported.

One of the crucial defects in the graphene sheet is the crack, which was created
during the manufacturing process. Hashimoto et al. [10] has observed several atomic
defects in graphene layers by transmission electron microscopy (TEM). Meyer et al.
[11] also observed some point defects in the graphene sheet by transmission electron
microscopy (TEM). It seems that cracks are a common defect existing in the graphene

sheet; however, few studies have examined the local properties of the cracked
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graphene, especially from the stress point of view. Tsai et al. [12] has adopted Hardy
stress expression to investigate the local stress field of the graphene sheet with central
cracks. In their study, they indicated that the stress intensity factor defined based on
singular assumption may not be suitable for describing the fracture in the discrete
model. Jin and Yuan [13] utilized virial stress formula to investigate the local stress
field near the crack tip of the central-cracked graphene subjected to remote uniaxial
loading. However, in their study, they did not discuss the local properties
comprehensively. In addition, they did not demonstrate the applicability of virial
stress in describing the near-tip stress field, since it is found that virial stress is

inappropriate for calculating the local stress distribution [2, 7].

1.3 Research Approach

The outline of the thesis and the primary tasks of each chapter are addressed as
the following. The graphene sheet with free surfaces or central cracks subjected to
uniaxial loading was constructed through molecular dynamic simulation. The detail of
the simulation procedures and associated potential functions and force fields were
illustrated in Chapter 2.

For the graphene sheet with free surfaces, three local stress formulations, i.e.,
Hardy stress, Lutsko stress, and Tsai stress were introduced to investigate the local
stress distribution. Graphene sheet with and without long-range interaction, i.e. van
der Waals force, was discussed, respectively. In order to demonstrate the applicability
of local stress formulations, a periodic single-layer graphene sheet under uniaxial
loading was constructed and discussed in advance, from which the accuracy of the
formulations can be verified. After the determination of local stress formulations, the
local stress distribution of the graphene with free surfaces under uniaxial loading was

investigated and the results were presented in Chapter 3.
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In addition to the free surface, graphene sheet with central cracks subjected to
remote uniaxial loading is another concern. Discrete graphene models with different
central crack lengths were constructed, respectively, in which Hardy and Tsai stress
expressions were employed to investigate the local stress distribution near the crack
tip. For the comparing purpose, the continuum graphene models with the same
geometry and line cracks were also constructed by finite element method, and the
corresponding near-tip stress field was compared and discussed in detail. In order to
examine the above local stress fields, two analytical solutions, i.e. linear elastic
fracture mechanics and non-local elasticity solutions were incorporated. Based on the
numerical and analytical results of local stress calculations, the fracture properties of
the cracked graphene subjected to remote uniaxial loading can be deduced. The
discussion was presented in Chapter 4.

Finally, the conclusions of the thesis were summarized in the Chapter 5.



Chapter 2 Molecular dynamic simulation

The atomistic structure of graphene sheet subjected to uniaxial loading was
constructed through molecular dynamic simulations. In this chapter, the potential
functions for describing the interaction between carbon atoms of graphene were
presented. Two kinds of potential functions are introduced, i.e. intermolecular
function and intramolecular function. Subsequently, the molecular dynamic
simulation procedures were presented. The modified NPT ensemble was employed to
construct the graphene sheet subjected to uniaxial loading. With the potentials and
simulation procedures described, the atomistic structure of the graphene sheet

subjected to uniaxial loading can be constructed accordingly.

2.1 Construction of atomistic structure of graphene sheet

Graphene is constructed by carbon atoms arranged in hexagonal pattern. The
interatomistic distance between the adjacent carbon atoms is 1.42 A, and the
associated atomistic interaction is covalently bonded by SP* hybridized electrons, the
bond angle of which is 120° to each other [14]. In order to investigate the local stress
field of the graphene, the atomistic structures have to be constructed in advance
together with the appropriately specified atomistic interaction. In describing the
graphene, two kinds of atomistic interactions are normally taken in account: one is
bonded interaction, such as the covalent bond, and the other is the non-bonded
interaction, i.e., van der Waals and electrostatic forces. Among the atomistic
interactions, the covalent bond between two neighboring carbon atoms that provides
the building block of the primary structure of the graphite may play an essential role
in the mechanical responses. Such bonded interaction can be described using the
potential energy that consists of bond stretching, bond angle bending, torsion, and

inversion [15]. As a result, the total potential energy of the graphite contributed from
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the covalent bond can be written explicitly as

U = Ustretch + U + Udihedml + U + UvdW (21 1)

total angle inversion

where Usyeen 1S @ bond stretching potential, Ugpgle 1s @ bond angle bending potential,
Ulinedral 18 @ dihedral angle torsional potential, and Ujpyersion 18 @an inversion potential.
For graphite structures under in-plane deformation, the atomistic interaction is mainly
governed by the bond stretching and bond angle bending; therefore, the dihedral
torsion and inversion potentials that are related to the out-of-plane deformation can be
disregarded in the modeling. The explicit form for the bond stretching and bond angle

bending can be approximated in terms of elastic springs as [16]

1

Ustremh (ry) = Ekr (rzj - 7"0 )2 (2 1 2)
1

Uangle (ejik ) 2 Eka (Hﬁk - 90 )2 (2 1 3)

where k; and k; are the bond stretching force constant and angle bending force
constant, respectively. The constants k=938 kcal/mol-A? > k=126 kcal/mol-rad?
selected from AMBER force field for carbon—carbon atomic-interaction [17] are
employed in the molecular simulation. The parameters ry and 8, represent bond length
and bond angle in equilibrium position, which are assumed to be 1.42 A and 120°,
respectively, for the graphite atomistic structures. In addition to the bonded
interaction, the non-bonded interaction between the carbon atoms is regarded as the
van der Waals force, which can be characterized using the equivalent Lennard-Jones

(L-J) potential as



A B
U, (1) = [FJ — [7} (2.1.4)

where r1j; is the distance between the non-bonded pair of atoms. For the hexagonal
graphite, the parameters A =530739.960 A'*Kcal/mole, B =343.564502A°Kcal/mole
suggested in the literature [16] were adopted in the modeling. Moreover, the cutoff
distance for the van der Waals force is assigned to be 10 A, which means that beyond
this distance, van der Waals interactions are small enough to be ignored. In atomistic
mechanics, all atoms except those that are bound to each other or connected to a
common atom have to be accounted for in the calculation of van der Waals
interactions [18].

The atomistic structures of graphene sheet with a stress-free state was obtained
by performing the modified NPT ensemble with the characteristics of varying
simulation box in shape and size [19] in the MD simulation at the time increment of 1
fs for 100 ps. Subsequently, the uniaxial tensile stress was applied on the graphene
sheet in the y direction. After the modified NPT ensemble with time increment at 1 fs
for 100 ps was performed, the deformed atomistic configuration of graphene sheet
under the applied loading was obtained. It is noted that in the study, the DL-POLY
package originally developed by Daresbury Laboratory [20] was modified to simulate

the uniaxial loading on the graphene sheet.

2.2 Amber force field

In calculating the local stress field, one must obtain the interaction force between
the atoms. Followed by the DL POLY user manual [20], the force field derived from
the above potential was presented in this section. There are three kinds of interaction

force in this study.



(1) Stretching bond

The stretching bond potential between atom i and atom j is expressed as
1 2
U(rij):Ekr(rij —1r)" (2.2.1)
Therefore the interaction force can be obtained as

__ouly)__ouly)er, 022
! or, or, or,’ -

i

where h can be atom i or atom j. The first and second term in the RHS of eqn. (2.2.2)

can be expressed, respectively as

f:-,-—%)z}kr(l,-—%) (22.3)

with

i(r42—2rjrl. +1',~2)=( r.6,—25,r, —20,r, +2rl.5l.h)=2(5 r —5l.hrij) (2.2.5)

J J Jh i
or,

As a result, the force field of stretching bond can be obtained as

f, =M(5 r,—5,r,) (2.2.6)

A
Ty

(2) Angle bending bond

The angle bending bond potential between atom i, atom j and atom k is expressed as



J

1
U(e/'ik) ZEkQ(H'ik _00)2- (2.2.7)

Therefore the force exerting on atom h is

f, =— aU(Hjik ) __ aU(eﬂk) 0 {cos_l(rij il J}, (2.2.8)

1 or, 00, or, T,

i ik

where h can be atom i, atom j, or atom k. The first and second term in the RHS of eqn.

(2.2.8) can be expressed, respectively as

8U(‘9j'k) o |1 >
- = —k\0., —06,] |=—k,\O0., —6 2.2.9
0= 5 hles ) [ hlou-a)  @29)
) =
2 cos!| 20w | 0 {cos_1 x}zécos x@_x’ (2.2.10)
or, Tl or, ox  Or,

where x=cos0. The first and second term in the RHS of eqn. (2.2.10) can be expressed
as

-1
0cos x__ 1 - .1 2.2.11)
Ox 1—x sin@

ox r, 0O (rij)+ r, 0 (l'ik)‘i‘l'g’riki L (2.2.12)
e on, | 1yt

or, ViV or, i

Introducing eqn. (2.2.11) and (2.2.12) into eqn. (2.2.10), one can obtain the force field
of angle bending bond as

_ké'(g‘ik - '90)

J:

sin(@,)

Ji

r r, r, r
{(5@- - 5111-)}’;]{ + (O = 0)——~— Cos(gjik) (511,' - 5111')%2 +(0) — 51“')%2{:]}

ik i T Tk

(2.2.13)



(3) van der Waals force

The van der Waals potential between atom i and atom j is expressed as

U(r,)= [’%J - (;J (2.2.14)

Therefore the interaction force can be obtained as

f :_aU(rzj):_aU(r;j)arzj (22 15)
! or, or, or,’ -

i

where h can be atom i or atom j. The first term in the RHS of eqn. (2.2.15) can be

expressed as

5U(@-)=i(i_£]:{12i_6£J (2.2.16)
_ 13 7 o

The second term in the RHS of eqn. (2.2.15) is identical to eqn. (2.2.4). As a result,

the force field of van der Waal can be obtained as

O,r, —0,T,
f, _(121—6£J—( L B ”). (2.2.17)

Ty

With the force fields described above, one can employ them into the calculation of

local stress.
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Chapter 3 Local stress distribution of graphene with free surfaces
In this chapter, Hardy stress along with other stress formulations, such as Tsai
stress and Lutsko stress were employed to calculate the local stress distribution of
graphene sheet with free surfaces. The purpose of the study is to investigate the stress
distribution in the vicinity of free surface such that the applicability of local stress
formulations can be demonstrated when free surfaces are present. Furthermore, the
effect of free surface on the morphology of the graphene sheet associated with stress

distribution was discussed.

3.1 Local stress formulations
Tsai’s expression of local stress [3] is inherently the macroscopic description of
stress-- the intermolecular force acting on the plane-- and at zero temperature it is

expressed as

A 1 Se
= S Fop (3.1.1)

affnoA

where 8A denotes the area of the dividing plane and f* is the interatomistic force
between atom a and £ acting on the plane. For the graphene system, the dimension of
the dividing plane adopted in the study, shown in Fig. 3.1.1, is 3.4x2.46 A
corresponding to the thickness and lattice length of the graphene. Another local stress
formulation was proposed by Lutsko [21] and extended by Cormier et al. [4]. At zero

temperature, it is expressed as

av; 1 N aff = of jaf
o, g=5224 F1, (3.1.2)

a=1 pf#a
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where Q is the averaging volume, r* and F® represent the distance and force
between atom a and S, respectively. Moreover, [“/ denotes the fraction of the length
of the a—p bond lying inside the averaging volume and its value is 0 </*’< 1. The
averaging volume employed in the graphene is a sphere with radius of 3.4 A. In this
paper, Hardy stress formulation is the main concern and will be compared with the
above formulations; therefore, in the following subsection, the Hardy formulation is
briefly reviewed.

Hardy derived the stress formulation based on the three assumptions, in which

the mass density, momentum density and energy density are expressed as

p(r,t):Zm“t//(r” -1 (3.1.3)
p(r.0)= D m“Viy(r’ =r) (3.1.4)

(1
E’(r, t):Z{Em“(V“)Z +¢"’}1//(r“ -r) (3.1.5)

where p, p and E° represent the mass density, linear momentum and energy density,
respectively; m® v% r*and ¢ represent the mass, velocity, position and potential
energy of atom o, respectively. The localization function y serves the purpose of
spreading out the properties of atoms to the space r, allowing each atom to contribute
to the continuum properties. From the above equations and introducing the
conservation of linear momentum, Hardy derived the local stress field in the
following manner.

1. Taking the derivative of eq. (3.1.3) with respect to time

12



E or

a=1

P :g[;ma"al//(l’a —r)J= Z{F“l//(r“ —r)+m v (-v” Op(r” -r) —r)) ,

(3.1.6)

where F*is the force acting on atom a. According to an assumption made by

Hardy, the force on any atom o can be written as

ZN:F”‘t//(r“ -r)= ZN:ZN:FaﬁV/(r“ -r). (3.1.7)
a=1 a=l pra

Since the potential employed in the present study is in the pair-wise form, F*?
represents the force exerted on atom o from atom . Moreover, based on
Newton’s third law, FP = . F“B, the above equation can be rewritten as the

following

ZF“(//(r“ 1) =%ZZFW e —r)—pa? -n) (3.1.8)

a=1 a=1 p#a

2. For the purpose of making the stress expression simple and plain, Hardy defined

the bond function B® as
1
B (r) Ej;//(/lr“ﬂ +r” —r)dA, (3.1.9)
0

where " =r"-r*. In order to obtain some insight into the bond function, the integration

can be written in the summation form
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B (r) = Zw(r")M S T L (3.1.10)
n=1 m

where r' and ™ represent 1’-r and -, respectively, as illustrated in Fig. 3.1.2. From
eq. (3.1.10) and Fig. 3.1.2, it is clear to see that the bond function spreads out the
property of bond by dividing the length between atom a and P into several segments

and allowing each segment to contribute to the space x. By taking the derivative of

v ineq. (3.1.9) with respect to A

af B _ aff B —_
oy(r? +x’ ) oy +r 1) o (3.1.11)
oA or

and integrating both sides of the above equation with respect to A from 0 to 1,

respectively, the following relation can be obtained

ap
r af aB (r) )

y(r —r)—yr” -r) = - .
r

(3.1.12)

Therefore, along with eq. (3.1.7) to eq. (3.1.12), the time derivative of linear

momentum density can be written as

%I; ar{Z[m“v%v w1+ ZZ “’3®F“ﬂ3“ﬂ(r)} (3.1.13)

al/ﬁta

3. From the continuum balance of linear momentum, the following relation can be

obtained
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op O

P o= o) (3.1.14)

where 6, p, v denotes continuum stress, mass density and velocity, respectively.

Hence eq. (3.1.13) and (3.1.14) can be connected and expressed as

o(r) = {aZN;m“(v“ —v)®(v“ —V)//(r“ —r)+%ZN:ZN:r“ﬂ QF“*BY (r)} (3.1.15)

a=1 f#a

where m*®, v%, r” represent the mass, velocity and position of atom a, respectively; v
and y represent the continuum velocity and localization function, respectively. It is
noted that when the system is simulated at 0 K, the kinetic contribution of eq. (3.1.15)

is zero. As a result, Hardy’s local stress field can be finally derived as

N N
o, (r,t) = %Zzn“ﬁFi”ﬂB“ﬂ(r) . (3.1.16)

a=1 pra

From Hardy’s stress expression, one can see that the localization function plays an
important role in the calculation of stress. In this study, Gaussian function with
normal distribution property is employed in Hardy's formula. As a result, y is

expressed as

a _ 1 _ (ra —l')2
w(r r’h)_(\/;h)d exp( o J, (3.1.17)

where d is the dimension of the system and h is the smoothing length. Since the
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graphene sheet can be viewed as a two-dimensional system with thickness of 3.4 A
[22], d is equal to 2 in this study. The smoothing length represents the way that the
properties of discrete atoms are distributed to the continuum space. Different
localization functions with various smoothing lengths are shown in Fig. 3.1.3. As one
can see in the figure, a short smoothing length, such as h=1.8, represents a sharp drop
in distribution while a long one stands for a smoothly-decayed distribution, like h
equal to 3.0. It is noted that for 2-D Gaussian function, the following relation must be

satisfied,

.”Rgl(x)dzx _1. (3.1.18)

Since the value of the function is approaching zero at long distances as shown in Fig.
3.1.3, for the purpose of reducing computing cost, an appropriate cut-off radius is
needed in calculation. Table 3.1.1 lists the cut-off radius corresponding to each
localization function with different smoothing lengths. With the cut-off radius
suggested in Table 3.1.1, one can obtain a precise value with numerical error below
107 %. In this chapter, the smoothing length employed in Hardy’s formulation is 2.5

and the corresponding cut-off radius is 9 A.

3.2 The determination of local stress employed in graphene system

Before applying local stress formulations to the graphene sheet with free surface,
a perfect graphene sheet with periodic boundary conditions imposed in the in-plane
directions was constructed through molecular dynamic simulation, such that the
accuracy of local stress formulations can be verified in advance. In addition, for the
purpose of showing the applicability of local stress formulations in terms of atomistic

interactions, two types of force fields are considered: one includes only bonded
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interaction, such as covalent bond, and the other comprises bonded as well as
non-bonded interactions, i.e. covalent bond and van der Waals. Followed by the
procedures mentioned in the previous chapter, the atomistic structures of graphene
sheet with a uniaxial stress state of 10 GPa was obtained by performing the modified
NPT ensemble and then taken as an illustration as shown in Fig. 3.2.1. Fig. 3.2.2
shows the stress distribution of graphene sheet with only bonded interaction, i.e.
covalent bond force field. From the figure, one can see that both Hardy and Tsai's
local stress expressions demonstrate satisfactory accuracy of local stress distribution
whereas a slight overestimate is found in Lutsko’s stress expression. Fig. 3.2.3 shows
the stress distribution of graphene sheet with bonded as well as non-bonded
interactions, calculated by Hardy and Lutsko’s formulations. It is apparent that Lutsko
stress fluctuates substantially along the x axis while Hardy stress remains a uniform
and precise distribution. For Tsai’s stress formula, it is seen from Fig. 3.2.4 that with
the increase of the width of dividing plane, the stress tends to converge to the external
applied stress, i.e. 10 GPa. It is found, however, the stress converges to 10 GPa only
until the width of the dividing plane is exactly the same as the simulation box, and
hence the local stress distribution can not be exhibited. Therefore, based on the above
discussion, it is known that for the graphene sheet with only bonded interaction,
Hardy as well as Tsai's formulations are demonstrated to be appropriate for
calculation of local stress; on the other hand, for the graphene sheet with bonded
interactions as well as the non-bonded interaction, due to the presence of long-range
interaction from van der Waals force, only Hardy stress formulation is suitable for
calculating local stress. The graphene sheet with free surface in the x direction is

shown in Fig. 3.2.5 and the position for stress calculation is the x axis.
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3.3 Stress distribution in the graphene with covalent bond interaction

Similar to the procedures mentioned in the pervious chapter, the associated
atomistic structures of graphene sheet with free surfaces with bonded interactions at
the stress free state and uniaxial stress state of 10 GPa were obtained by performing
the modified NPT ensemble. When the deformed configuration of the atomistic
graphene structure is derived from the modified NPT ensemble, the corresponding
local stress distribution can be calculated using Hardy, Lutsko and Tsai’s stress
formulations. As shown in Fig. 3.3.1, all three formulations result in a uniform zero
stress at stress free state. The dotted lines marked in the figure locate the positions of
the free surfaces. The corresponding morphology is shown in Fig. 3.3.2. It is apparent
that with only the bonded potentials, the graphene sheet is quite stable at stress free
state and hence the configuration does not alter. The stress distribution at uniaxial
stress state (10 GPa) is shown in Fig. 3.3.3. It is noted that due to the difference of
cross section areas between graphene sheet and simulation box, the actual load carried
by the graphene is 14.4 GPa. As one can see from the figure, near the free surface, the
local stress calculated from the three expressions begins to drop gradually due to the
influence of free surface. The extent of the influence range from the free surface is
dependent on the expression of the local stress formula. For Hardy and Lutsko stress,
due to their larger radius employed in stress calculation (9A and 3.4A respectively),
the stress drops at the position relatively far away from the surface; on the contrast,
Tsai stress with smaller width of area (2.46 A) begins to drop only at the surface. If a
larger width of area (7.38 A) is adopted in Tsai's formulation, the stress will drop at
the position farther from the surface, as shown in Fig. 3.3.4. Besides, similar variation
can be found in the morphology of graphene sheet, as shown in Fig. 3.3.5. Fig. 3.3.5
illustrates the elongation of bond length in the y direction along the x axis. Due to the

applied uniaxial loading, the distance between atoms in y direction is elongated
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slightly at every position. As for the stress in the middle of the graphene, all three
stress formulations result in satisfactory uniform stress distribution (14.4 GPa), except

that a slight overestimate is found in Lutsko’s stress formulation.

3.4 Stress distribution in the graphene with covalent bond and vdW interaction

The local stress distribution in the graphene sheet with bonded and non-bonded
interactions was also examined at both stress free state and uniaxial stress state. The
variation of bond length at stress free state is shown in Fig. 3.4.1, in which AL
represents the difference of bond length between graphene with and without free
surfaces. It is obvious to see that the bonds at the surface are compressed while the
others are elongated. Fig. 3.4.2 illustrates Hardy local stress distribution, from which,
it is seen that the graphene sheet sustains compressive force in the vicinity of surfaces
whereas in the middle, the graphene is under tensile loading. Besides, it is noted that
near the surface, the stress increases slightly first and then drops gradually toward the
surface, resulting in the distortion of configuration as found in Fig. 3.4.1. It is worthy
to mention that even though the graphene does not posses zero stress at every position,
the summation of stress from x=-35 to 35 along the x axis is still approximately zero
at stress free state. Fig. 3.4.3 and 3.4.4 illustrate Lutsko and Tsai local stress
distribution, respectively. From the figures, it is seen that the stress fluctuates
substantially at every position; therefore, these two stress formulations are not suitable
for describing the stress field when van der Waals is present.

Fig. 3.4.5 shows Hardy local stress distribution at uniaxial stress state of 10 GPa.
Similarly, due to the difference of cross section area between the graphene sheet and
simulation box, the actual load carried by graphene is 14.4 GPa. It is found that in the
middle of the graphene, Hardy stress formulation results in accurate and uniform

distribution; near the surface, the stress will drop gradually and the extent of
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deduction and influence range are dependent on the form of localization function
employed in Hardy stress expression. It can be seen that the bond length was
elongated as shown in Fig. 3.4.6, due to the tensile stress existing at every position.
Fig. 3.4.7 and 3.4.8 illustrate Lutsko and Tsai local stress distribution, respectively.
From the figures, it is seen that the stress fluctuates substantially at every position;
therefore, these two stress formulations are not suitable for describing the stress field

when van der Waals is present.
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Chapter 4 Graphene with central cracks subjected to uniaxial loading

This chapter aims to evaluate the local stress field of the graphene sheet with
central cracks subjected to remote tensile loading numerically and theoretically, from
which the fracture parameters can be deduced directly. In order to validate if the
fracture parameters defined in continuum fracture mechanics are still applicable for
atomistic structure, both the continuum and discrete models with the same geometry
and crack lengths under prescribed loading were established, respectively. The
continuum model and the corresponding stress field were obtained using finite
element analysis (FEA), and the analytical LEFM [23] (linear elastic fracture
mechanics) solution was also incorporated. For the discrete model, the atomistic
structure was constructed through MD simulation, in which Hardy and Tsai stress
formulations were employed to calculate the local stress distribution. For the purpose
of describing the stress field in discrete model, the non-local elasticity [24] solution
was introduced. Based on the results of stress distribution, the fracture parameters
concerning the linkage between the continuum and atomistic structure were obtained.

In the following section, the non-local elasticity solution regarding the graphene
with line crack under remote tensile loading was presented first. Subsequently, LEFM
solutions as well as finite element analysis were compared and discussed. Next, the
results of atomistic stress distribution in the equivalent discrete models were
presented and compared with non-local elasticity solutions. Finally, the suitability of
fracture parameters for characterizing the fracture behavior in atomistic structures was

discussed.

4.1 Non-local elasticity in crack-tip problem
In classical elasticity, the solution of stress field in the line-crack problem of an

elastic plate subject to remote uniform tension yields an infinite hoop stress at the
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crack tip. In order to overcome the forward problem, Eringen [24] has proposed the
non-local elasticity theory, in which the solution of stress field does not contain any
singularity; instead, a finite hoop stress is found at the crack-tip such that the physical

nature of the problem can be presented.
4.1.1 Near-tip stress field of non-local elasticity

The only difference between the non-local and classical elasticity is the

constitutive equation and it is of the form
t,(r)= j [Ale (")S, +2u'e, (r")]dv(r"), 4.1.1)

where v is the volume occupied by the body, and A'and 'are non-local moduli and
they are functions of the distance‘x'—x‘ between the reference point x and any other

point x' in the body. For isotropic elastic solids, they are given by

) (4.1.2)

(', 1) = (4, e

where o is the kernel function and is optionally given. In this study, two types of
kernel function will be considered: one is the triangular-shape distribution used in
Eringen's paper and the other is the Gaussian function employed previously in Hardy's

formulation. For the triangular-shape distribution, it is expressed as

K(a- |r'—r|), |r'—r| <a

ce-a)- {5

ol (4.1.3)
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where K=3/ma> for the 2-dimensional case and a is the lattice distance. For the

Gaussian function, it is expressed as

_{rry j (4.1.4)

where h is the smoothing length and is chosen to be 1.9 in this study. The two
distributions were shown in Fig. 4.1.1. From eqn. (4.1.1), it is known that the stress
t(r) at one point r depends on strains ey(r') at all points r'ev; as a result, the
interactions with the surroundings (r') can be taken into account at the reference point

r. If the following classical Hook's law is introduced

o, (')

o', =" (r')o,+2ue, (r'), (4.1.5)
eqn. (4.1.1) can be expressed as
£ (r)= Ia(|r'-r|)0'k1 (r') dv(r'). (4.1.6)

It is obvious to see that the stress at the point r is contributed from the stresses at other
points r' in the body with appropriate weighting by the kernel function a. The

equation of equilibrium with vanishing body force is
1,0 = [ alero, () dv(e) =0, @17)

By employing the Green-Gauss theorem on eqn. (4.1.7), one can obtain the following
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relation
Ja(]r'-rpaw (r")dv(r') = Ja(]r'-d)a” (r')dA(r'"), (4.1.8)

where ov is the boundary surface of the body v. It is noted that when the body
extends to infinity or the surface tensions are negligible, the surface integral in eqn.

(4.1.8) will vanish. As a result, the remaining becomes
J:a(}r'-rDO'M_k (Y dw(r') = 0. (4.1.9)
Since a is an arbitrary and continuous function, eqn. (4.1.9) is satisfied if and only if
o, (x")=0. (4.1.10)
Using the classical Hook's law of eqn. (4.1.5) and the following strain tensor

e '=e, (') =%(u'k_, +u',,) (4.1.11)

one can obtain the following governing equations in 2-dimensinal problems

A+plu' AV )+ VP u'=0
{( ) T (4.1.12)

(/1 + y)(u',x,y,+v"y,y,)+ LV V'=0.

Let the Fourier transform with respect to x defined as
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Zkn = [ i
f(k,y)=ﬂj{(x,y)e dx, (4.1.13)

then the Fourier transform of eqn. (4.1.12) with respect to x' gives the following

equations

—(A+2uk’u + i —ik(A+u)v =0
{( W + it~ ik (A + ), @114

—ik(A+ pyi, +(A+2up, —kuw =0,

where k is the variable in the transformed domain. For the above equations, the

solutions of the displacement fields can be obtained [25]

u(x'y')=Q2x)" | ik’ klAk) +| k|- =/ 584 B(k) |exp(—|k|y'—ikx")dk
A+u

vix'y') = I [A(k) + y' B(k)|exp(—|k|y'—ikx")dk (4.1.15)

where A(k) and B(k) are two functions to be determined from the boundary conditions

(Fig. 4.1.2)

t,=0,=0 y=0 VX (4.1.16)
t, =—1, y=0 |x|<L (4.1.17)
v=0 y=0 [x|>L (4.1.18)

From eqn. (4.1.16), one can obtain the following equation
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/“_3’”)}1/( —0. (4.1.19)
+ 4

o, (x',0)=(27)" r U iexp(—ikx‘){— 2kA(k) + B(k) (1 +

Therefore, based on the above relation, B(k) can be expressed in terms of A(k) as

B(k) =[ j:;; ]kA(k). (4.1.20)

The displacement fields then can be expressed as

Con [(2YT A [ TP
u(x',y') = (”] (i+2y).[)A(k)(—ﬂ+,u ky')exp(—ky')sin(x'k) dk (4.1.21)

Con (2) T A [ 2 .
v(x,y)—(ﬁj —(/1+2,u)£ A(k)(mﬂ Ly )exp(—ky'Ycos(x'k) dk.  (4.1.22)

The remaining two boundary conditions is used to determine the unknown function

A(k). From eqn. (4.1.15),

G L(X5y) dx'dy'

)

I
[

Naxay — (4.1.23)

where o,y is expressed as

o, y)= —2(£j MAE D) J‘O;CA(k)(l + ky")exp(—ky')cos(x'k) dk. (4.1.24)
Vd (A+2u) Jo
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It is noted that for the triangular-shape distribution curve, Eringen showed the result

of the integration, i.e. eqn. (4.1.23) as the following

()" 2uG+ 0 =k dl =
‘) _(;J ey L KA(K) cos(xk)a (ka) dk = 1,, (4.1.25)

where & is expressed as

a(ka) = _g{[ﬁ (ka)" +== 32 " (ka)” - %(ka)} cos(ka) + [% (ka)™ - %} sin(ka)

30 15
+B—2io(ka) }Sl(ka)—z—g(k) + 2 (ka)z}
with
Si(ka) = L‘”ar

0

For the Gaussian kernel function, the exact solution of the integration can be obtained
and the detail of the derivation will be shown in the following. The boundary

condition of eqn. (4.1.17) is shown again

II o, (x' )+aQ

)axdy'=—1, (4.1.26)

where
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o (x'.y) = —2(% MJ%A(@@ + Iy yexp(—ky' ) cos(x'k)dk (4.1.27)
T (/1 + 2/,!) 0

a= %p exp {— p[(x'—x)2 + (y'—y)z]} with p= (%T .

By introducing eqn. (4.1.27) into eqn. (4.1.26), one can obtain

H(A+ )
' _'HI (ﬂj KA1+ o) exp(-h) costo'h)

x—pexp{ p[ x x (y'—y)z]} dx'dy'dk +

" (At p)
III [;) (A+2 )kA(k)(”ky)eXp( ky')cos(x'k)

(4.1.28)
x—pexp{ p[x x (y'+y)2]}dx'dy'dk.

For the first term of eqn. (4.1.28), if the integration with respect to x' is performed

first, it can be rearranged as

HA+ 1)
III [ﬁj (412 )kA(k)(1+ky)eXP( ky") cos(x'k)

x—pexp{ p[ (x'—x)’ (y'—y)z]}dx'dy'dk

[ [(n2(2) ra+u etk ool vy )
[ [ 2 2] A Do i exntesnl o))

x{ cos(kx'") exp [— p(x'—x)z] dx' } dy'dk
(4.1.29)

Using the following integral relation [26]
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I = j wexp(—Px'z Ycos E(x + x)dx'= (Z£)"* exp(— A ) cos(&x), (4.1.30)
B P 4p

one can obtain the following equation

jo;os(kx') exp{— p(x'—x)2 }a’x’ = (—J exp(— i{—z) cos(kx). (4.1.31)
—o0 P

As aresult, eqn. (4.1.29) can be expressed as

[ [ 22 (;j AT 1)1+ kY exp(— Y expl- p—y)']

(+24)
«{ costhn'yexp |- plx'=x)| dx' } ayrak
-[ f(—z)g[;j BB b+ ke exof p(-sf ] 1

X {(ﬁj exp(—ﬁ) cos(kx)} dy'dk
p 4p

If the integration with respect to y' is performed next, eqn. (4.1.32) can be rearranged

as

[[] [ﬂj /(J)Eﬂ : ﬂ)) KD+ b yexphoyexpl p(r—y) ]

{ exp(— —) cos(kx)} dy'dk

_ j _( j M( J kA(k)cos(xk)exp(—ﬁ)
0 T 4p

(4.1.33)

(A +2u)

x { [+ mepl plo-ry |-w) dy'} dk .
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where

_[:Zl +hyyexpl plv—y) |-k} @y

= LeXp{— Py =(k—2py)y'} dy' exp(—py*) + L yexpl- py—(k - 2py)y'} dy’ exp(-py>)k .

Using the following integral relations [26]

L= exp(-Py - )dy'= (5" exp( f ){1 4 } (4.1.34)

e D2 g v:L_iﬁuz é:_ _ i
Is—J;yeXP( Py -&")dy P 4P(P) eXp(4p){1 ¢(2\/F)} (4.1.35)

with
#(z)=2x"" j exp(—t>)dt
0

one can obtain the following equations

_[)eXp{— Py —(k—2py)y'} dy'exp(—py*)

Y2 e—2py ‘o (4.1.36)
=exp(py2>{5@ exp( py {1 p ny }}

Lmy'eXp{— Py —(k—2py)y'} dy'exp(—py* )k

ko kGe—2py) 1/2 k= 2py)° b2 (4.1.37)
2 _k(k=2py) (= —209)" | _ g2, |
exp(—py ){—219 —4p [p} GXp(—4p )[ #( 2y )}}
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If eqn. (4.1.36) and eqn. (4.1.37) are introduced into eqn. (4.1.33), then eqn. (4.1.33)

can be expressed as

T_(2)" 2putir () K
J; ”) 2(h+220) [p} kA(k)cos(xk)exp( 4p)

Ja+tonexpt plomyy |-a) dy'} dk

- r—{zj M[ﬁj kAR cos(eh) exp(— )
T p 4p

! 7O+ 240
x {exp(—pyﬂ{ﬂm exp(%){l - ¢("2‘%>} B —%}f””} : %}} d.
(4.1.38)
Similarly for the second term of eqn. (4.1.28), it can be obtained as
[T]- (ﬂ] M(T “)) KA1 + k'Y exp(—k ) cos(x'k)
x—pexp{ p[ (r—x) +(+y) ]} dtdyak
x exp(—py’ ){[gjm exp(% {1 ¢(k +\/2§y)} B - %}fpy)} + %} dk.
(4.1.39)

Now with y=0, the boundary condition of eqn. (4.1.39) can be expressed as
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t,,(x,0)

_(2) 2000 (7 [ PR N Ol I S o
_ [ j o (}J J:) kA(k)cos(xk)ﬂl o \/;)}{1 2p}+ ﬁexp( 4p)}dk

r}}A(k) cos(xk) {[1 = g i— 20k ]+ 2% exp(- (sk)? )} dk
0 Jr

T

_ _(2]”2 242+ 1)

z)  (A+2u)

=—t,

(4.1.40)

with

For the purpose of making the above equation more brevity, one can rewritten eqn,

(4.1.40) as

2\ 2004 - /
tyy(x,0)=—(;j é(+—;l/;)LkA(k)cos(xk)a(gk)dk=—t0 x| <L (4.1.41)

where

@ (ck) = {[1 — g(eh)[1 - 2(ek) ]+ 2(ek) exp(— (gk)’ )}.
Jr

It is worth to mention that the only difference between eqn. (4.1.40) and Eringen's
result is in the form of « . Therefore, it is interesting to see the difference of stress
distribution with two different types of kernel functions. The other boundary

condition eqn. (4.1.18) gives
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v(x,0) = I Z(k)cos(xk)dk =0 |x>L (4.1.42)

As a consequence, the two boundary conditions lead to a pair of dual integral
equations, eqn. (4.1.41) and eqn. (4.1.42), which must be solved to determine A(k).
The only difference between the non-local elasticity and classical elasticity is in the
introduction of the function & . For the classical elasticity in the same crack-tip

problem, the boundary conditions are

o, =0, y=0 Vx (4.1.43)
o, =ty y=0 |x<L (4.1.44)
v=0, y=0 [>L (4.1.45)

The only difference is the eqn. (4.1.44), which is expressed as

(2 2+ ) [ _
o, (x,0)= (”j ez LkA(k)cos(xk)dk t,. (4.1.46)

As a result, the dual integral equations of classical elasticity satisfying eqn. (4.1.44)

and (4.1.45) are found to be [25]

j O}(A(K) cos(xK) dK =1 X <1 (4.1.47)

j il(K)cos(?cK)dK =0 X >1, (4.1.48)

with
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K=kl, x=2
L

_(2) ] 2uti+p
-] [

The solution of A(K) in the eqn. (4.1.47) and (4.1.48) has been obtained [25] as

A(K) = % (4.1.49)

where J; is the Bessel function of the first kind of order one. Eringen has
demonstrated the applicability of utilizing the classical displacement field to calculate
the non-local stress field in his work. For the purpose of introducing the above
classical elasticity solution into the non-local elasticity, the dual integral equations of

non-local elasticity, i.e. eqn. (4.1.41) and eqn. (4.1.42), are rewritten as

J‘xKA(K)cos(fK)ﬁ(gg)dK:I X <1 (4.1.50)
J'Z(K)cos(xK)dK =0 X >1 4.1.51)
with
K=k, x=2
L
_(2) ] 2u@+p
A(K)‘( ] {Ea(mzm} ©

By employing eqn. (4.1.49) into eqn. (4.1.50), the non-local stress field can be
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obtained as
t " _ ._. K
%:J‘JI(K)cos(xK)a(gf) dK. (4.1.52)

It is worthy to mention that Eringen's method of introducing classical solution into

non-local elasticity stress field cannot fully satisfy the boundary condition. The

normal stress boundary condition ¢ (x,0)=- for |x|<L is satisfied in an

0

approximate sense. One way to obtain the solution that fully satisfies the normal stress
boundary condition can be found in Zhou et al [27]. In their work, they proposed
Schmidt's method to solve the dual boundary conditions. However, it was found that
the maximum stress position is far away from the crack tip in the current study, as
shown in Fig. 4.1.4; therefore, Eringen's approach was adopted in this paper. Similarly,

for triangular-shape kernel function, the dual integral equations are

2 1/2 M A B )
(ﬂj (A+2u) J-okA(k )eos(xk)a (ka)dk =1, (4.1.53)
v(x,0) = I Dj‘l(k)cos(xk)dk =0 (4.1.54)

where & is expressed as

& (ka) = —g{[% (ka)™" + %(ka)‘3 —%(ka)} cos(ka) + [% (ka)” —%} sin(ka)

1 1

P T 32 3 7 2
+[§—2—O(ka) }Sl(ka)—g—g(ka) +4—0(ka) }
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Since the method of introducing classical elasticity solution is independent of the

form of « , eqn. (4.1.53) and (4.1.54) can be rewritten as

j KA(K) cos(xK) @ (a %) dK=1 [<I (4.1.55)
IA(K)cos()_cK)dK _0 %[> 1 (4.1.56)
0
with
K=k, ¥=2
i

A(K):[Ejm 2pu(A+ p) A(k)zJI(K)
) | L't (A+2u) K

The stress field then can be obtained as
t ” =np i\
%:J'JI(K)cos(xK)a(af)dK. (4.1.57)

It is noted that the stress field with Gaussian function (4.1.52) is identical in form to
(4.1.57), except that the kernel function & employed is different. By superimposing to
on the stress fields, one can obtain the solution of the line-crack problem, in which the
crack surface is free of traction whereas a uniform tension tois exerting on the plate at

y=o (Fig. 4.1.3). Accordingly, the near-tip stress field is expressed as

H(x,0) =1, (x,0)+1,. (4.1.58)
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4.1.2 Comparison of non-local stress fields with different distribution curves

In this subsection, the non-local elasticity stress fields with two different kernel
functions, i.e. triangular and Gaussian function were compared and discussed. The
lattice length of the graphene is 2.46 A and the remote tensile loading is 2 GPa. Fig.
4.1.5 to 4.1.7 show the stress distribution near the crack tip with crack lengths equal
to 3 lattices, 41 lattices, and 81 lattices, respectively. It is apparent to see that for all
the crack lengths, the near-tip stress exhibits finite value instead of singularity at the
crack tip, and the position of the maximum stress is slightly ahead of the tip within
one lattice. With different kernel functions, the value and the position of the maximum
stress shows some difference. The maximum stress obtained from triangular function
is larger than the one with Gaussian function, and the position is slightly closer to the
crack tip. Around one lattice away from the crack tip, the two stress fields coincides
with each other and converges to unity. Based on the above results, it is demonstrated
that the non-local elasticity theory can overcome the problem of singularity and the
maximum stress position is close to the crack tip; therefore it is an effective approach
to investigate the physical nature of crack problems. For the comparing purpose, the
non-local elasticity solution with Gaussian function is adopted in the following

discussion, since it is also employed in Hardy’s stress formulation.

4.2 Comparison of stress fields in continuum models

The continuum graphene and the stress field were obtained through finite
element analysis (FEA). Fig. 4.2.1 and Table 4.2.1 show the dimension of the three
models with crack lengths of 3 lattices, 41 lattices, and 81 lattices, respectively. It is
noted that the width of the graphene (2W) is ten times larger than the crack length and
the corresponding height (2H) is around the same with the width. Because of

symmetry, only one quadrant of the model was used. The dotted lines in Fig. 4.2.1
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illustrate the representative volume elements (RVE) for the FEA. The material
properties utilized in the FEA model were calculated based on the molecular dynamic
simulation with the interatomistic energy described earlier, and the results are
presented in Table 4.2.2. All the FEA results are obtained using finite element code
ANSYS with four-node element (plane 42) applied in all cases. To ensure that the
singularity stress field can be precisely simulated, a fine mesh is used near the crack
tip, where the spacing between the nodes along the crack axis (y=0) is small enough
with respect to crack length. A representative finite element model for crack lengths
of 41 lattices is shown in Fig. 4.2.2. It is worthy to mention that the element size in
the fine mesh is maintained uniform before and ahead of the crack tip and the ratio
between crack size and element size i1s larger than 300 for all the cases. The remote
tensile loading 2 GPa in the y direction was applied on the graphene sheet. In addition
to finite element analysis, LEFM is an alternative approach to calculate the stress field
in continuum models. For a finite plate with a central crack, the stress field can be

obtained as [23]

o, =—— 4.2.1)

where x is the distance from the crack tip along the crack axis. The stress intensity

factor K can be approximated in a polynomial form [23] as

JA 2 4
K=o Nl [sec[ﬂj }{1 - o.ozs(ij + 0.06(£j } (4.2.2)
W w W

where o, is the remote loading acting on the graphene sheet, L is the half crack
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length and W is the half graphene width.

Fig. 4.2.3 to 4.2.5 show the stress distribution near the crack tip obtained from
FEA and LEFM. It is apparent to see that for all the crack lengths, the stress field in
continuum models demonstrates 1/+/x stress singularity near the crack tip.
Moreover, it was found that for small crack lengths such as 3 lattices, the LEFM
solution deviated from the FEM solution at the position slightly away from the tip. It
is known that when the position is far way from the crack tip, the stress field should
be equal to the remote applied loading. It is found, however, that for the crack lengths
of 3 lattices, the stress field of LEFM is below unity when the position is one lattice
away from the crack tip. With the increase of crack lengths, the LEFM solution was
closer to the FEM solution. For crack lengths of 41 lattices, the LEFM solution
deviated from the FEM solution at the position around one lattice from the tip; for
crack lengths of 81 lattices, the LEFM solution was approximately in agreement with
the FEM solution. Based on the above results, it is demonstrated that the use of LEFM
solutions to describe the stress field with small crack length is not suitable; this result
was also obtained by Sun et al [28]. On the other hand, FEM solution is applicable for
describing the stress field with various crack lengths, even for crack length of few

lattices.

4.3 Comparison of stress fields in discrete models

The atomistic structure of single layer graphene sheet under uniaxial loading was
constructed through molecular dynamic simulation. Followed by the procedures
mentioned in Chapter 2, the atomistic structure of graphene sheet with a uniaxial
stress state of 2 GPa was obtained by performing the modified NPT ensemble. The
central crack of length 2L in the graphene sheet was created by eradicating the

associated covalent bond so that for the atom pairs across the crack surface, there was
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no atomistic interaction occurring, as illustrated in Fig. 4.3.1. It is noted that due to
the fact the non-bonded interaction exhibits less contribution to the mechanical
properties of graphene sheet as compared to the covalent bond, van der Waals
interaction is neglected in the current atomistic models. After the graphene sheet
achieved the stress state of 2 GPa, Hardy stress formulation with h=1.9 and R.=10 and
Tsai stress formulation with dividing area 3.4x2.46 A were adopted to calculate the
stress distribution. In order to determine the size of the graphene model such that the
geometry would not affect the result, the graphene with central cracks of 5 lattices and
three different widths were discussed first. The dimensions of the models with three
different widths are listed in Table 4.3.1 and the corresponding Hardy stress
distribution is shown in Fig. 4.3.2. It is clear to see that when the graphene width is
ten times larger than the crack length, the stress distributions are about the same. As a
result, for the discrete models, the width of the graphene (2W) is chosen to be ten
times of the crack length and the corresponding height (2H) is around the same with
the width. The dimension of the graphene sheet with different cracks lengths
considered in discrete models is shown in Table 4.3.2.

Fig. 4.3.3 to 4.3.11 show the stress distribution near the crack tip obtained from
Hardy stress, Tsai stress and non-local elasticity solution. It is apparent to see that the
stress fields obtained in the discrete models deviate from the 1/+/x singularity
solution near the crack tip and exhibit finite value. The maximum stress obtained from
Hardy's formulation is in agreement with the non-local elasticity solution, whereas
Tsai stress shows less agreement and is larger than the non-local elasticity solution, as
shown in Table 4.3.3 and Fig. 4.3.12. As a result, it is indicated that the expression of
Hardy stress exhibits non-local attribute within about one lattice from the crack tip.
From Fig. 4.3.12, it is also found that with the increase of crack lengths, the maximum

stress will increase accordingly. This attribute is similar to the result of LEFM that the
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stress intensity factor will increase with the increase of crack lengths, except that the
result can be deduced directly from maximum stress without other extraneous
consideration. The stress distribution diagrams shown in Fig. 4.3.3 to 4.3.11 also
illustrate that the position of maximum stress obtained from Hardy’s formula is closer
to the crack tip, compared to the non-local elasticity theory; in other words, Hardy
stress can more effectively exhibit the stress field near the crack tip in terms of the
maximum stress position, where supposed to be the crack tip. Though the maximum
stress position obtained from Tsai's formulation is exactly at the crack tip, however,
the maximum stress is larger than non-local elasticity solution. In addition, it was
found that due to the limitation that the dividing plane mush be located at the position
where the interaction force acting, the local stress distribution of Tsai's formulation
shows less smoothness near the crack tip. Therefore, only Hardy stress field was
suitable for investigating the fracture properties directly from maximum stress
hypothesis. The results would be compared with the non-local elasticity solution and

the discussion was presented in the following section.

4.4 Characterizing the fracture properties of graphene sheet

Based on the calculation of Hardy stress field and non-local elasticity solutions,
the fracture properties of the graphene sheet with various crack lengths can be
characterized directly from maximum stress hypothesis. The purpose of the study is to
validate if the fracture parameters defined in continuum fracture mechanics, such as
stress intensity factor and fracture toughness, are still applicable to atomistic structure,
thus being able to bridge the gaps between the discrete and continuum models of

graphene sheet.
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4.4.1 Stress intensity factor K
The stress intensity factor of the continuum solid can be determined from the

near-tip stress field [23] as

K, =lim+2mo , (4.4.1)
x—0 -

where o, is the tensile stress component near the crack tip and x is the distance

from the crack tip along the crack axis. For the continuum models, o, is singular

near the crack tip (x=0) and K is usually determined by the projection based on the

converged values of +2mxo, at a distance from the crack tip. For the discrete

models, the same projection approach was employed in the Hardy stress field to

obtain the corresponding stress intensity factor. Fig. 4.4.1 to 4.4.3 demonstrate the
Vv2mo,, plot with the projection and the actual solution K, =o vzl for the 3

models, crack lengths of 3 lattices, 41 lattices, and 81 lattices, respectively. The
projected K; is also listed in Table 4.4.1. It is found that for all the crack lengths, the
stress intensity factor obtained from FEA was in agreement with the actual solution

and it would increase with the increase of crack lengths. As a result, the projection

method based on the converged value of +2mxo,, is an effective approach to

characterize the stress intensity factor. For the discrete model, the stress intensity
factor obtained from Hardy stress field was also close to the FEA and the actual
solution. Though the value is slightly lower than the others, the difference is small for
all the crack lengths. Therefore, the stress intensity factor is able to characterize the

stress field near the crack tip effectively for both the continuum and discrete models.
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4.4.2 Fracture toughness K;c

In fracture mechanics, the fracture toughness in a continuum solid is a material
property which should be independent of crack lengths in the continuum model. In
order to obtain the fracture toughness in the discrete model, the stress concentration

factor defined by Eringen et al. [24] 1s introduced and expressed as
-1/2
C- (2_Lj P 4.4.2)

where P is the stress concentration and defined as

where G, 1s the maximum local stress and oy is the applied remote loading. The
relation between the crack lengths and the stress concentration factor can be seen in
Fig. 4.4.4. and Table 4.4.2. It is found that with crack lengths less than 40 lattices, the
stress concentration factor is dependent of the crack length. The shorter the crack
length is, the higher the stress concentration will be. With crack lengths over 40
lattices, it can be seen that the stress concentration is approaching a constant. For
Hardy’s formula, the value is approaching 0.66, which is close to the non-local
elasticity solution 0.64. It is known that if the maximum local stress achieves the
cohesive strength, the fracture of the covalent bond will occur. In this condition, Gmax

is equivalent to the cohesive strength 6., so eqn. (4.4.2) can be expressed as

o, :—[—j o.. (4.4.3)



For the purpose of convenience in calculation, the cohesive strength o.is assumed to
be 1 GPa in the following discussion. The relation between the applied loading with
different crack lengths is shown in Fig. 4.4.5 and Table 4.4.3. It is found that with
shorter crack lengths, the required loading is higher than those with larger crack
lengths. In other words, the graphene sheets with short crack lengths are more
resistant to crack extension than those with larger crack lengths. According to the

above discussion that the stress intensity factor for the graphene atomistic structures is
equal to K, =o,+4/zL , combination of eqn.(4.4.2) yields to the stress intensity factor

as

K= () 0 = (er)”%(%J .., (4.4.4

If the local maximum stress o, achieves the cohesive strength, the fracture

toughness is derived as
1 (ar)"
K, :—(—j o.. (4.4.5)

The relation between the fracture toughness and different crack lengths is shown in
Fig. 4.4.6. and Table 4.4.4. It is apparent that when the crack length is larger than 40
lattices, the fracture toughness is approaching a constant. For Hardy’s formula, the
value is approaching 2.97, which is closed to the non-local elasticity solution 3.10. It
is found, however, that for the crack length less than 40 lattices, the fracture

toughness is dependent of the crack length. The smaller the crack length is, the lower
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the fracture toughness will be. Therefore, it is demonstrated that the fracture
toughness may not be a material constant when the crack length is less than 40 lattices.
The similar result was also obtained by Sun. et al. [28] who indicated that the fracture

toughness of NaCl system is relied on the crack length as the crack is small (below 40

A).
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Chapter 5 Conclusion

Hardy local stress formulation was employed successfully to calculate the local
stress distribution of the graphene sheet with free surface and central cracks. Based on
the local stress distribution, the local properties of graphene sheet with presence of
free surface and cracks were determined. Results indicated that for the graphene with
free surfaces, when van der Waals force is present, the bond length at the edge is
shortened; therefore the edge of the graphene sustains compressive stress. However,
when van der Waals force is absent, the bond length in the whole atomistic graphene
structure is remaining constant and therefore there is no stress induced on the
atomistic structure. Moreover, the local stress distribution near the free surface of the
graphene can be characterized successfully using Hardy stress formulation which
exactly exhibits the local deformation of the microstructures within the graphene
sheet.

With regard to the graphene with central cracks subjected to remote uniaxial
loading, it was observed that for continuum models, both FEA and LEFM solution
yield stress singularity near the crack tip. In addition, for small cracks, LEFM solution
would deviate from the FEA. For discrete models, it was found that Hardy stress
formulation exhibits non-local attribute near the crack tip and the maximum stress is
in agreement with the non-local elasticity solution. Based on the local stress
distribution, the fracture properties such as stress intensity factor and fracture
toughness can be deduced directly from the maximum stress hypotheses. It is revealed
that the stress intensity factors obtained from continuum models and discrete models
are close to each other; therefore it can be used to predict the state of stress field near
the crack tip for both continuum solids and atomistic structures. On the other hand, in

the discrete models, the fracture toughness is found to be sensitive to the crack length
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when the length is below 40 lattices. The smaller the crack length is, the lower the
fracture toughness will be. Therefore, for the small crack length, the concept of LEFM
may not be applicable to characterize the fracture behaviors of atomistic graphene

structure.
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Appendix A
MATLAB code of calculating non-local stress field for crack-tip problem using Gaussian function

as distribution curve

§-——————- beginning of the code---------------"--"—-—-——-
clc;

clear;

Gm——————- Eringen's non-local elasticity-----------------
% Reference:

o\

Eringen, A.C., Speziale, C.G., Kim, B.S., 1977.

o

¢ Crack-tip problem in non-local elasticity. Journal of the Mechanics and
Physics of Solids 25, 339;V355.

o)

% Distribution curve alpha is Gaussian function

G————————— input parameters-—-—-—----——-—-—-"-"-"""-"—"—"—-"—"—-"—"—"—"—"—"—~—~—"——~—~—~—~——
ad=2.46; % graphene lattice length

1=2.46%23/2; % half crack length (L)

h=1.9; % smoothing length in Gaussian function
beta=ad/h;

e=ad/ (2*beta) ;

tou=-2; % applied loading on "crack surface" unit: GPa
ndiv=1000; % output data number
tol=1e-10; % integral error tolerance

[}

x=1linspace(0.0*L,2.0*L,ndiv); % interval of stress field
Gm——m—m calculating non-local stress field------—-—--—-----—---
for i=l:ndiv

xx=x (1) /L;

f=@ (K)besselj (1,K) .*cos (K*xx) .* ((l-erf (e*K/L)) .* (1-2* (e*K/L) ."2)+ (2* (

e*K/L) /sqrt (pi)) .*exp (- (e*K/L) ."2)); % eqn. (4.1.52) in the thesis

y (i)=quadgk (f,0,inf, "RelTol',tol, 'AbsTol',tol, '"MaxIntervalCount', 8000
)

end

G——————————— superposition of stress field-————----------"""-"-"---—-
str=tou*y-tou;

xx=(x"'-L) ./ad; % plot data from crack tip and normalized the position

o)

% with respect to lattice
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str=str'./(-tou);

[}

°

[

normalized the stress field with respect
% to applied loading
plot (xx,str,'r")

o)
°

———————————— end of the code
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Appendix B
MATLAB code of calculating non-local stress field for crack-tip problem using Triangular

function as distribution curve

Fm——————- beginning of the code---------------—-—-—-——-
clc;

clear;

F-——————- Eringen's non-local elasticity-------------—--—--
% Reference:

oe

Eringen, A.C., Speziale, C.G., Kim, B.S., 1977.

\O

5 Crack-tip problem in non-local elasticity. Journal of the Mechanics and
Physics of Solids 25, 339;V355.

o)

% Distribution curve alpha is Triangular function

————————— input parameters—--—----—-——"---""""""-"-"-"—-"—"—"—"-"—"—"———"—"—~"—~—~——

ad=2.46; % graphene lattice length

1=2.46%23/2; % half crack length (L)

e=ad/L;

ndiv=3000; % output data number

tol=1e-10; % integral error tolerance

uplim=2*pi*L/ad; % upper limit of integral, as suggested in
$Eringen's paper

x=linspace (0.0*L,2*L,ndiv) ; % interval of stress field

p=2; % applied loading on "crack surface" unit: GPa

F———————————— calculating non-local stress field-—-———-----------—-

xx=x./L;

o)

% the following is the egn. (4.1.57) in the thesis

f=@(K) (-6/pi* ((13/30* (K*e) ."-1+32/15* (K*e) ."=-3-1/20* (K*e) ) . *cos ( (K*e)
)+(19/30* (K*e) ."=2-1/20) .*sin((K*e) )+ (1/3-1/20* (K*e) .”2) .*sinint (K*e)
-1/6*pi-32/15*% (K*e) ."=-3+pi/40* (K*e) ."2)) .*besselj (1,K) .*cos (K. *xx) . * (
-p);

y=quadv (f,0,uplim) ;

Fm——————————- superposition of stress field-------------—-—-—-—-—-
yy=y+p;
YY=YY./P; % normalized the stress field with respect

o)

% to applied loading

xx=x-1L; % plot data from crack tip and normalized the
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%position with respect to lattice
xx=xx"'./ad;

plOt (xx, YYr 'b")

§m—mm end of the code---——-------——————————————————-——-
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Table 3.1.1 Cut-off radius corresponding to different smoothing lengths h

h=1.8 h=2.5 h=3.0

R. (A) 8 9 12

Table 4.2.1 Dimension of finite element model with different crack lengths

Unit: A 21./a=3 21./a=41 21./a=81
2W 73.8 1008.6 1992.6
2H 76.68 1005.36 1985.16

Table 4.2.2 Material properties of graphene sheet obtained from MD simulation

Young's Modulus (GPa) Poisson's ratio

790.7 0.27
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Table 4.3.1 Different widths of discrete graphene model with crack length of 5 lattices

Unit: A L/W=0.05 L/W=0.1 L/W=0.3
2W 246 123 492
2H 247.08 119.28 51.12

Table 4.3.2 Dimension of discrete graphene model with different crack lengths

2L/a

3 5 7 19 21 23 41 61 81

2W 738 123 1722 4674 516.6 565.8 1008.6 1500.6 1992.6
2H 76.68 119.28 1704 468.6 519.72 562.32 100536 1499.52 1985.16

Unit: A
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Table 4.3.3 Maximum local stress with different crack lengths

Maximum stress (GPa)

2L/ Non-local (Gaussian function) Hardy stress Tsai stress

2.705 2.588 3.29

3.224 3.171 4.19

3.678 3.672 4.94
19 5.701 5.850 8.08
21 5.967 6.141 8.49
23 6.230 6.412 8.88
41 8.198 8.503 11.84
61 9.950 10.356 14.44
81 11.431 11.923 16.64

Table 4.4.1 Stress intensity factor from Hardy, FEM and continuum mechanics

Ki (Pam )x10*

2L/a Error
Hardy stress FEM Ki=0o, \/E )
(Hardy with FEM)
3 6.44 6.99 6.81 -7.87 %
5 8.26 8.92 8.79 -7.40 %
7 9.67 10.39 10.40 -6.93 %
19 16.12 17.02 17.14 -5.29 %
21 17.02 17.88 18.02 -4.81 %
23 17.87 18.70 18.85 -4.44 %
41 24.23 25.26 25.17 -4.08 %
61 29.34 30.42 30.71 -3.55%
81 34.04 35.28 35.38 -3.51 %
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Table 4.4.2 Stress concentration factor with different crack lengths

2L/a =
Non-local (Gaussian function) Hardy stress

0.781 0.747

0.721 0.709

0.695 0.694
19 0.654 0.671
21 0.651 0.670
23 0.649 0.669
41 0.640 0.664
61 0.637 0.663
81 0.635 0.662

Table 4.4.3 Applied loading to achieve o, with different crack lengths
L/a oo (GPa)
Non-local (Gaussian function) Hardy stress

0.739 0.773

0.620 0.631

0.544 0.545
19 0.351 0.342
21 0.335 0.326
23 0.321 0.312
41 0.244 0.235
61 0.201 0.193

81 0.175 0.168
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Table 4.4.4 Fracture toughness with different crack lengths

Kic (Pav/m )x10*
2L/a
Non-local (Gaussian function) Hardy stress
2.517 2.632
2.726 2.773
2.828 2.832
19 3.006 2.930
21 3.020 2.934
23 3.029 2.938
41 3.071 2.960
61 3.086 2.965

81 3.096 2.969
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Fig. 3.1.1 Dimension of the dividing plane adopted in Tsai's stress formulation

Figure 3.1.2 Interpretation of bond function
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Figure 3.2.3 Hardy and Lutsko stress in the periodic graphene with bonded and

non-bonded interaction
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Figure 3.2.5 Finite graphene sheet with free surfaces in the x direction
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Figure 3.4.1 Variation of bond length for the finite graphene sheet with bonded and
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67



0.4

0.0

Stress (GPa)
I

|
|
|
|
|
|
|
- |
|
|
|
|
|
|
|
|

-35-30 -25 -20 -15-10 -5 0 5 10 15 20 25 30 35

X(A)

(2)

0.4

0.0

Stress (GPa)
I

X(A)

(b)

Figure 3.4.2 Hardy stress distribution of the finite graphene sheet with bonded and

non-bonded interactions at stress free state (a) global view (b) local view

68



s,,(GPa)

10 20 30

0
X(A)

Figure 3.4.3 Lutsko stress distribution of the finite graphene sheet with bonded and
non-bonded interactions at stress free state

i
M

_12I|I|I|I|I|I|I|I|I|I|I||I
-30 26 -20 15 10 -5 0 S5 10 15 20 25 30

X(A)

s,,(GPa)
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Fig. 4.2.1 Finite element model for continuum graphene sheet. Note that the

dimension has different values for the three different models.
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Fig. 4.2.2 Finite element mesh for the graphene with crack lengths of 41 lattices: (a)
mesh for the entire model (quarter model) and (b) magnified view of the fine mesh

around the crack tip.
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Fig. 4.2.3 Stress distribution in the graphene with crack lengths of 3 lattices
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Fig. 4.2.5 Stress distribution in the graphene with crack lengths of 81 lattices
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Fig. 4.3.5 Stress distribution in the graphene with crack lengths of 7 lattices
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Fig. 4.3.6 Stress distribution in the graphene with crack lengths of 19 lattices
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