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探討缺陷石墨板之局部性質 

 

學生：謝孟哲                        指導教授：蔡佳霖 

 

國立交通大學機械工程學系碩士班 

 

摘  要 
 

本研究目的在探討具有自由面和裂紋之石墨板受到單軸拉伸載重下之

局部性質。利用分子動力模擬，可以得到石墨板受到單軸拉伸外力下，各

個碳原子的平衡位置。接著利用 Hardy，Lutsko 以及 Tsai 所提出的局部應

力公式，可以計算出石墨板之局部應力場。對於具有自由面的石墨板，研

究結果顯示在無應力(stress free)的條件下且凡德瓦爾(van der Waals)力存在

時，石墨板之自由面存在著壓縮應力，其他部分則受到些微的拉伸應力;而

在無應力(stress free)且凡德瓦爾力不存在的條件下，石墨板的每個位置均沒

有受力。 

對於具有裂紋之石墨板，同樣先利用分子動力模擬得到拉伸載重下碳

原子的平衡位置。接著利用局部應力公式以及線彈性破壞力學(linear elastic 

fracture mechanics)，有限元素法(finite element method)和非局部彈性理論

(non-local elasticity theory)來探討裂紋端附近的應力場。研究結果顯示，線
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彈性破壞力學以及有限元素法的裂紋應力場皆顯示出應力奇異性(stress 

singularity)，且在小裂紋情況下，線彈性破壞力學與有限元素法的應力場有

明顯的差異；而 Hardy 的應力場在靠近裂紋附近顯示出非局部(non-local)性

質，所得到的最大應力與非局部理論解非常近似。另外由 Hardy 的應力場，

也能直接從最大應力推導出石墨板之破壞性質。分析結果顯示，由 Hardy

應力場所得到的應力強度因子(stress intensity factor)與有限元素和線彈性破

壞力學一致；而破裂韌性(fracture toughness)在裂紋長度小於 40 個晶格時，

會隨著裂紋長度變小而降低；在裂紋長度大於 40 個晶格的時候，破裂韌性

才會趨於一個常數定值，此結果與非局部理論所推導出的結果一致。因此，

應力強度因子可有效地描述裂紋附近的應力場，而破裂韌性並不適合用來

描述具有小裂紋的破壞性質。
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Student：Meng-Jhe Sie 　                  Advisor：Dr. Jia-Lin Tsai 

 

Department of Mechanical Engineering  

 

National Chiao Tung University 

 
Abstract 

 

This paper aims to investigate the local properties of graphene sheet with free surface 

or central cracks subjected to uniaxial loading. The equilibrium configuration of the 

graphene sheet subjected to uniaxial loading was determined through molecular dynamic 

(MD) simulation. For the graphene with free surfaces, three local stress formulations, i.e., 

Hardy, Lutsko and Tsai stress, were employed to calculate the local stress distribution near 

the free surfaces. It was found that when van der Waals force was present, only Hardy stress 

expression can describe the stress field effectively. Results indicated that the graphene 

sustained compressive stress on the edge and tensile stress in the interior at stress free state. 

On the other hand, when van der Waals force was absent, both Hardy and Tsai stress can 

describe the stress distribution accurately. Results showed that the graphene sustained zero 

stress at every position at stress free state such that the bond length did not alter.  

Regarding the graphene with central cracks subjected to remote tensile loading, both 

the atomistic and continuum stress were employed to investigate the local stress distribution 

near the crack tip. For the discrete graphene sheet, Hardy and Tsai stress were adopted to 

calculate the near-tip stress field of the graphene in the absence of van der Waals interaction. 

For the continuum models, finite element method was used to calculate the stress 
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distribution. In order to describe the numerical results, two analytical solutions were 

incorporated, such as linear elastic fracture mechanics (LEFM) and the non-local elasticity 

solution. Results showed that for both LEFM and FEM solutions, the stress fields 

demonstrated the x/1  stress singularity near the crack tip. In addition, it was found 

LEFM solution cannot describe the stress accurately when the crack length is small. On the 

other hand, atomistic stress such as Hardy and Tsai stress yielded a more reasonable finite 

stress near the tip. It was found that the maximum stress obtained from Hardy’s formulation 

was in agreement with the non-local elasticity solution, whereas Tsai’s maximum stress is 

larger than the analytical solution; therefore only Hardy stress field exhibited non-local 

attribute near the crack tip. Based on the maximum stress hypotheses, the fracture properties 

such as stress intensity factor and fracture toughness were deduced directly from local stress 

field. Results indicated that stress intensity factor derived from Hardy stress field was in 

agreement with the FEM and the actual solution of LEFM. On the other hand, the fracture 

toughness defined in LEFM is found to be cracksize dependent when the crack length is 

small for discrete models. For crack lengths below 40 lattices, the fracture toughness would 

decrease with the decrease of the crack lengths; the result was in agreement with the 

non-local elasticity solution. Therefore, the fracture toughness defined as a material 

property may not be suitable for describing fracture with small cracks. 
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Chapter 1 Introduction 

1.1 Research Motive 

Graphene sheet, because of their superior mechanical performances and light 

weight properties, have been extensively employed in nanocomposites. This study 

aims to investigate the local properties of graphene sheet with free surface or central 

cracks. It is well known that the nanostructure of the graphene sheet may influence 

the mechanical performance of the nanocomposites. However, few studies have 

studied the local properties of the graphene sheet which are very crucial to composite 

design and application. In this paper, the local stress formulations, i.e. Hardy stress, 

Tsai stress and Lutsko stress, as well as the analytical solutions are introduced to 

investigate the local properties of the graphene sheet. Based on the local stress 

distributions, the influence of the nanostructure was characterized.    

 

1.2 Paper Review 

With the development of nanotechnology, the characterization of the mechanical 

properties in nano-scale is becoming an essential task and attracting lots of attention 

in materials community. The atomistic simulations with the advantage of simplicity 

have been employed to understand the fundamental mechanical properties of 

nanomaterials. For the nanomaterials with discreet characteristic, the stress originated 

based on the continuum concept would become an ambiguous physical quantity in 

atomistic scale. However, the determination of stress is necessary in atomistic 

simulation in order to correctly evaluate the mechanical properties of the materials.  

By considering the momentum change and the interatomistic interaction, several 

stress definitions suitable for the atomistic simulation have been developed. Virial 
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stress [1] derived from the virial theorem is first proposed and has been widely used 

in molecular dynamic (MD) simulations. Nevertheless, for the materials with defects 

or inhomogeneous deformation, only the averaged response can be demonstrated by 

the virial stress, and thus the “local” information which is essential in the defected 

material can not be clearly presented [2]. In order to modify the forward-mentioned 

problems, other stresses, such as Tsai stress [3], Lutsko stress [4], BDT stress [5] and 

Hardy stress [6] were proposed and implemented in the molecular simulation. Sun et 

al. [7] has systematically compared virial stress and Tsai stress and indicated that they 

are mathematically equivalent in calculating the overall average stress, whereas in 

calculating local stress distribution, virial stress exhibits unreasonable result, i.e. 

nonzero normal stress at free surface. As a result, Tsai's formula is more accurate than 

virial stress in describing the local stress field. Zimmerman and Web et al. [8, 9] based 

on their numerical simulations, demonstrated that Hardy stress is appropriate for both 

homogeneous and inhomogeneous deformation. For systems subjected to deformation, 

finite temperature, or both, the Hardy description of stress displays an accurate value 

expected from continuum theory; for the system with free surface, Hardy's expression 

near the surface is found to be consistent with the mechanical definition of stress. 

Moreover, it is very accurate and robust, and superior to BDT and Lutsko stress 

formulation in the local stress calculation. However, few studies concerning the local 

stress field of the graphene sheet with free surfaces have been reported. 

 One of the crucial defects in the graphene sheet is the crack, which was created 

during the manufacturing process. Hashimoto et al. [10] has observed several atomic 

defects in graphene layers by transmission electron microscopy (TEM). Meyer et al. 

[11] also observed some point defects in the graphene sheet by transmission electron 

microscopy (TEM). It seems that cracks are a common defect existing in the graphene 

sheet; however, few studies have examined the local properties of the cracked 
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graphene, especially from the stress point of view. Tsai et al. [12] has adopted Hardy 

stress expression to investigate the local stress field of the graphene sheet with central 

cracks. In their study, they indicated that the stress intensity factor defined based on 

singular assumption may not be suitable for describing the fracture in the discrete 

model. Jin and Yuan [13] utilized virial stress formula to investigate the local stress 

field near the crack tip of the central-cracked graphene subjected to remote uniaxial 

loading. However, in their study, they did not discuss the local properties 

comprehensively. In addition, they did not demonstrate the applicability of virial 

stress in describing the near-tip stress field, since it is found that virial stress is 

inappropriate for calculating the local stress distribution [2, 7]. 

 

1.3 Research Approach 

The outline of the thesis and the primary tasks of each chapter are addressed as 

the following. The graphene sheet with free surfaces or central cracks subjected to 

uniaxial loading was constructed through molecular dynamic simulation. The detail of 

the simulation procedures and associated potential functions and force fields were 

illustrated in Chapter 2.  

For the graphene sheet with free surfaces, three local stress formulations, i.e., 

Hardy stress, Lutsko stress, and Tsai stress were introduced to investigate the local 

stress distribution. Graphene sheet with and without long-range interaction, i.e. van 

der Waals force, was discussed, respectively. In order to demonstrate the applicability 

of local stress formulations, a periodic single-layer graphene sheet under uniaxial 

loading was constructed and discussed in advance, from which the accuracy of the 

formulations can be verified. After the determination of local stress formulations, the 

local stress distribution of the graphene with free surfaces under uniaxial loading was 

investigated and the results were presented in Chapter 3. 
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In addition to the free surface, graphene sheet with central cracks subjected to 

remote uniaxial loading is another concern. Discrete graphene models with different 

central crack lengths were constructed, respectively, in which Hardy and Tsai stress 

expressions were employed to investigate the local stress distribution near the crack 

tip. For the comparing purpose, the continuum graphene models with the same 

geometry and line cracks were also constructed by finite element method, and the 

corresponding near-tip stress field was compared and discussed in detail. In order to 

examine the above local stress fields, two analytical solutions, i.e. linear elastic 

fracture mechanics and non-local elasticity solutions were incorporated. Based on the 

numerical and analytical results of local stress calculations, the fracture properties of 

the cracked graphene subjected to remote uniaxial loading can be deduced. The 

discussion was presented in Chapter 4. 

 Finally, the conclusions of the thesis were summarized in the Chapter 5.   
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Chapter 2 Molecular dynamic simulation 

The atomistic structure of graphene sheet subjected to uniaxial loading was 

constructed through molecular dynamic simulations. In this chapter, the potential 

functions for describing the interaction between carbon atoms of graphene were 

presented. Two kinds of potential functions are introduced, i.e. intermolecular 

function and intramolecular function. Subsequently, the molecular dynamic 

simulation procedures were presented. The modified NPT ensemble was employed to 

construct the graphene sheet subjected to uniaxial loading. With the potentials and 

simulation procedures described, the atomistic structure of the graphene sheet 

subjected to uniaxial loading can be constructed accordingly. 

  

2.1 Construction of atomistic structure of graphene sheet 

Graphene is constructed by carbon atoms arranged in hexagonal pattern. The 

interatomistic distance between the adjacent carbon atoms is 1.42 Å, and the 

associated atomistic interaction is covalently bonded by SP2 hybridized electrons, the 

bond angle of which is 120° to each other [14]. In order to investigate the local stress 

field of the graphene, the atomistic structures have to be constructed in advance 

together with the appropriately specified atomistic interaction. In describing the 

graphene, two kinds of atomistic interactions are normally taken in account: one is 

bonded interaction, such as the covalent bond, and the other is the non-bonded 

interaction, i.e., van der Waals and electrostatic forces. Among the atomistic 

interactions, the covalent bond between two neighboring carbon atoms that provides 

the building block of the primary structure of the graphite may play an essential role 

in the mechanical responses. Such bonded interaction can be described using the 

potential energy that consists of bond stretching, bond angle bending, torsion, and 

inversion [15]. As a result, the total potential energy of the graphite contributed from 
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the covalent bond can be written explicitly as 

 

vdWinversiondihedralanglestretchtotal UUUUUU ++++=            (2.1.1) 

 

where Ustretch is a bond stretching potential, Uangle is a bond angle bending potential, 

Udihedral is a dihedral angle torsional potential, and Uinversion is an inversion potential. 

For graphite structures under in-plane deformation, the atomistic interaction is mainly 

governed by the bond stretching and bond angle bending; therefore, the dihedral 

torsion and inversion potentials that are related to the out-of-plane deformation can be 

disregarded in the modeling. The explicit form for the bond stretching and bond angle 

bending can be approximated in terms of elastic springs as [16] 

 

2
0 )(

2
1)( rrkrU ijrijstretch −=                 (2.1.2) 

2
0 )(

2
1)( θθθ θ −= jikjikangle kU               (2.1.3) 

 

where kr and kh are the bond stretching force constant and angle bending force 

constant, respectively. The constants kr=938 kcal/mol-Å2，kθ=126 kcal/mol-rad2 

selected from AMBER force field for carbon–carbon atomic-interaction [17] are 

employed in the molecular simulation. The parameters r0 and θ0 represent bond length 

and bond angle in equilibrium position, which are assumed to be 1.42 Å and 120°, 

respectively, for the graphite atomistic structures. In addition to the bonded 

interaction, the non-bonded interaction between the carbon atoms is regarded as the 

van der Waals force, which can be characterized using the equivalent Lennard-Jones 

(L-J) potential as 
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where rij is the distance between the non-bonded pair of atoms. For the hexagonal 

graphite, the parameters A =530739.960 Å12Kcal/mole, B =343.564502Å6Kcal/mole 

suggested in the literature [16] were adopted in the modeling. Moreover, the cutoff 

distance for the van der Waals force is assigned to be 10 Å, which means that beyond 

this distance, van der Waals interactions are small enough to be ignored. In atomistic 

mechanics, all atoms except those that are bound to each other or connected to a 

common atom have to be accounted for in the calculation of van der Waals 

interactions [18]. 

The atomistic structures of graphene sheet with a stress-free state was obtained 

by performing the modified NPT ensemble with the characteristics of varying 

simulation box in shape and size [19] in the MD simulation at the time increment of 1 

fs for 100 ps. Subsequently, the uniaxial tensile stress was applied on the graphene 

sheet in the y direction. After the modified NPT ensemble with time increment at 1 fs 

for 100 ps was performed, the deformed atomistic configuration of graphene sheet 

under the applied loading was obtained. It is noted that in the study, the DL-POLY 

package originally developed by Daresbury Laboratory [20] was modified to simulate 

the uniaxial loading on the graphene sheet. 

 

2.2 Amber force field 

In calculating the local stress field, one must obtain the interaction force between 

the atoms. Followed by the DL_POLY user manual [20], the force field derived from 

the above potential was presented in this section. There are three kinds of interaction 

force in this study. 
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(1) Stretching bond 

The stretching bond potential between atom i and atom j is expressed as 
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where h can be atom i or atom j. The first and second term in the RHS of eqn. (2.2.2) 
can be expressed, respectively as 
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with 
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As a result, the force field of stretching bond can be obtained as 
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(2) Angle bending bond 

The angle bending bond potential between atom i, atom j and atom k is expressed as 
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Therefore the force exerting on atom h is 
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where h can be atom i, atom j, or atom k. The first and second term in the RHS of eqn. 
(2.2.8) can be expressed, respectively as 
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where x=cosθ. The first and second term in the RHS of eqn. (2.2.10) can be expressed 
as 
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Introducing eqn. (2.2.11) and (2.2.12) into eqn. (2.2.10), one can obtain the force field 
of angle bending bond as 
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(3) van der Waals force 

The van der Waals potential between atom i and atom j is expressed as 
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Therefore the interaction force can be obtained as 
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where h can be atom i or atom j. The first term in the RHS of eqn. (2.2.15) can be 
expressed as 
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The second term in the RHS of eqn. (2.2.15) is identical to eqn. (2.2.4). As a result, 
the force field of van der Waal can be obtained as 
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With the force fields described above, one can employ them into the calculation of 

local stress. 
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Chapter 3 Local stress distribution of graphene with free surfaces 

In this chapter, Hardy stress along with other stress formulations, such as Tsai 

stress and Lutsko stress were employed to calculate the local stress distribution of 

graphene sheet with free surfaces. The purpose of the study is to investigate the stress 

distribution in the vicinity of free surface such that the applicability of local stress 

formulations can be demonstrated when free surfaces are present. Furthermore, the 

effect of free surface on the morphology of the graphene sheet associated with stress 

distribution was discussed.  

 

3.1 Local stress formulations 

Tsai’s expression of local stress [3] is inherently the macroscopic description of 

stress-- the intermolecular force acting on the plane-- and at zero temperature it is 

expressed as 
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                       (3.1.1) 

 

where δA denotes the area of the dividing plane and αβf  is the interatomistic force 

between atom α and β acting on the plane. For the graphene system, the dimension of 

the dividing plane adopted in the study, shown in Fig. 3.1.1, is 3.4×2.46 Å 

corresponding to the thickness and lattice length of the graphene. Another local stress 

formulation was proposed by Lutsko [21] and extended by Cormier et al. [4]. At zero 

temperature, it is expressed as 
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where Ω is the averaging volume, αβr and αβF represent the distance and force 

between atom α and β, respectively. Moreover, αβl denotes the fraction of the length 

of the α−β bond lying inside the averaging volume and its value is 0 ≤ αβl ≤ 1. The 

averaging volume employed in the graphene is a sphere with radius of 3.4 Å. In this 

paper, Hardy stress formulation is the main concern and will be compared with the 

above formulations; therefore, in the following subsection, the Hardy formulation is 

briefly reviewed. 

Hardy derived the stress formulation based on the three assumptions, in which 

the mass density, momentum density and energy density are expressed as 
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where ρ, p and E0 represent the mass density, linear momentum and energy density, 

respectively; mα, vα, rα and φ α represent the mass, velocity, position and potential 

energy of atom α, respectively. The localization function ψ  serves the purpose of 

spreading out the properties of atoms to the space r, allowing each atom to contribute 

to the continuum properties. From the above equations and introducing the 

conservation of linear momentum, Hardy derived the local stress field in the 

following manner. 

1. Taking the derivative of eq. (3.1.3) with respect to time 
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where Fα is the force acting on atom α. According to an assumption made by 

Hardy, the force on any atom α can be written as 
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Since the potential employed in the present study is in the pair-wise form, Fαβ 

represents the force exerted on atom α from atom β. Moreover, based on 

Newton’s third law, Fαβ = - Fαβ, the above equation can be rewritten as the 

following 
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2. For the purpose of making the stress expression simple and plain, Hardy defined 

the bond function Bαβ as 
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where rαβ =rα-rβ. In order to obtain some insight into the bond function, the integration 

can be written in the summation form 
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where r1 and rm represent rβ-r and rα-r, respectively, as illustrated in Fig. 3.1.2. From 

eq. (3.1.10) and Fig. 3.1.2, it is clear to see that the bond function spreads out the 

property of bond by dividing the length between atom α and β into several segments 

and allowing each segment to contribute to the space x. By taking the derivative of 

ψ  in eq. (3.1.9) with respect to λ 
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and integrating both sides of the above equation with respect to λ from 0 to 1, 

respectively, the following relation can be obtained 
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Therefore, along with eq. (3.1.7) to eq. (3.1.12), the time derivative of linear 

momentum density can be written as  
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3. From the continuum balance of linear momentum, the following relation can be 

obtained 
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where σ, ρ, v denotes continuum stress, mass density and velocity, respectively.  

Hence eq. (3.1.13) and (3.1.14) can be connected and expressed as  
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where mα, vα, rα represent the mass, velocity and position of atom α, respectively; v 

and ψ  represent the continuum velocity and localization function, respectively. It is 

noted that when the system is simulated at 0 K, the kinetic contribution of eq. (3.1.15) 

is zero. As a result, Hardy’s local stress field can be finally derived as  
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From Hardy’s stress expression, one can see that the localization function plays an 

important role in the calculation of stress. In this study, Gaussian function with 

normal distribution property is employed in Hardy's formula. As a result, ψ  is 

expressed as 

 

,)(exp
)(

1),( 2

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=−

hh
h

d

rrrr
α

α

π
ψ       (3.1.17) 

 

where d is the dimension of the system and h is the smoothing length. Since the 
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graphene sheet can be viewed as a two-dimensional system with thickness of 3.4 Å 

[22], d is equal to 2 in this study. The smoothing length represents the way that the 

properties of discrete atoms are distributed to the continuum space. Different 

localization functions with various smoothing lengths are shown in Fig. 3.1.3. As one 

can see in the figure, a short smoothing length, such as h=1.8, represents a sharp drop 

in distribution while a long one stands for a smoothly-decayed distribution, like h 

equal to 3.0. It is noted that for 2-D Gaussian function, the following relation must be 

satisfied, 
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=∫∫ xx d

R
ψ                   (3.1.18) 

 

Since the value of the function is approaching zero at long distances as shown in Fig. 

3.1.3, for the purpose of reducing computing cost, an appropriate cut-off radius is 

needed in calculation. Table 3.1.1 lists the cut-off radius corresponding to each 

localization function with different smoothing lengths. With the cut-off radius 

suggested in Table 3.1.1, one can obtain a precise value with numerical error below 

10-7 %. In this chapter, the smoothing length employed in Hardy’s formulation is 2.5 

and the corresponding cut-off radius is 9 Å.  

 

3.2 The determination of local stress employed in graphene system 

Before applying local stress formulations to the graphene sheet with free surface, 

a perfect graphene sheet with periodic boundary conditions imposed in the in-plane 

directions was constructed through molecular dynamic simulation, such that the 

accuracy of local stress formulations can be verified in advance. In addition, for the 

purpose of showing the applicability of local stress formulations in terms of atomistic 

interactions, two types of force fields are considered: one includes only bonded 
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interaction, such as covalent bond, and the other comprises bonded as well as 

non-bonded interactions, i.e. covalent bond and van der Waals. Followed by the 

procedures mentioned in the previous chapter, the atomistic structures of graphene 

sheet with a uniaxial stress state of 10 GPa was obtained by performing the modified 

NPT ensemble and then taken as an illustration as shown in Fig. 3.2.1. Fig. 3.2.2 

shows the stress distribution of graphene sheet with only bonded interaction, i.e. 

covalent bond force field. From the figure, one can see that both Hardy and Tsai's 

local stress expressions demonstrate satisfactory accuracy of local stress distribution 

whereas a slight overestimate is found in Lutsko’s stress expression. Fig. 3.2.3 shows 

the stress distribution of graphene sheet with bonded as well as non-bonded 

interactions, calculated by Hardy and Lutsko’s formulations. It is apparent that Lutsko 

stress fluctuates substantially along the x axis while Hardy stress remains a uniform 

and precise distribution. For Tsai’s stress formula, it is seen from Fig. 3.2.4 that with 

the increase of the width of dividing plane, the stress tends to converge to the external 

applied stress, i.e. 10 GPa. It is found, however, the stress converges to 10 GPa only 

until the width of the dividing plane is exactly the same as the simulation box, and 

hence the local stress distribution can not be exhibited. Therefore, based on the above 

discussion, it is known that for the graphene sheet with only bonded interaction, 

Hardy as well as Tsai's formulations are demonstrated to be appropriate for 

calculation of local stress; on the other hand, for the graphene sheet with bonded 

interactions as well as the non-bonded interaction, due to the presence of long-range 

interaction from van der Waals force, only Hardy stress formulation is suitable for 

calculating local stress. The graphene sheet with free surface in the x direction is 

shown in Fig. 3.2.5 and the position for stress calculation is the x axis. 
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3.3 Stress distribution in the graphene with covalent bond interaction 

Similar to the procedures mentioned in the pervious chapter, the associated 

atomistic structures of graphene sheet with free surfaces with bonded interactions at 

the stress free state and uniaxial stress state of 10 GPa were obtained by performing 

the modified NPT ensemble. When the deformed configuration of the atomistic 

graphene structure is derived from the modified NPT ensemble, the corresponding 

local stress distribution can be calculated using Hardy, Lutsko and Tsai’s stress 

formulations. As shown in Fig. 3.3.1, all three formulations result in a uniform zero 

stress at stress free state. The dotted lines marked in the figure locate the positions of 

the free surfaces. The corresponding morphology is shown in Fig. 3.3.2. It is apparent 

that with only the bonded potentials, the graphene sheet is quite stable at stress free 

state and hence the configuration does not alter. The stress distribution at uniaxial 

stress state (10 GPa) is shown in Fig. 3.3.3. It is noted that due to the difference of 

cross section areas between graphene sheet and simulation box, the actual load carried 

by the graphene is 14.4 GPa. As one can see from the figure, near the free surface, the 

local stress calculated from the three expressions begins to drop gradually due to the 

influence of free surface. The extent of the influence range from the free surface is 

dependent on the expression of the local stress formula. For Hardy and Lutsko stress, 

due to their larger radius employed in stress calculation (9Å and 3.4Å respectively), 

the stress drops at the position relatively far away from the surface; on the contrast, 

Tsai stress with smaller width of area (2.46 Å) begins to drop only at the surface. If a 

larger width of area (7.38 Å) is adopted in Tsai's formulation, the stress will drop at 

the position farther from the surface, as shown in Fig. 3.3.4. Besides, similar variation 

can be found in the morphology of graphene sheet, as shown in Fig. 3.3.5. Fig. 3.3.5 

illustrates the elongation of bond length in the y direction along the x axis. Due to the 

applied uniaxial loading, the distance between atoms in y direction is elongated 
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slightly at every position. As for the stress in the middle of the graphene, all three 

stress formulations result in satisfactory uniform stress distribution (14.4 GPa), except 

that a slight overestimate is found in Lutsko’s stress formulation. 

 

3.4 Stress distribution in the graphene with covalent bond and vdW interaction 

The local stress distribution in the graphene sheet with bonded and non-bonded 

interactions was also examined at both stress free state and uniaxial stress state. The 

variation of bond length at stress free state is shown in Fig. 3.4.1, in which ΔL 

represents the difference of bond length between graphene with and without free 

surfaces. It is obvious to see that the bonds at the surface are compressed while the 

others are elongated. Fig. 3.4.2 illustrates Hardy local stress distribution, from which, 

it is seen that the graphene sheet sustains compressive force in the vicinity of surfaces 

whereas in the middle, the graphene is under tensile loading. Besides, it is noted that 

near the surface, the stress increases slightly first and then drops gradually toward the 

surface, resulting in the distortion of configuration as found in Fig. 3.4.1. It is worthy 

to mention that even though the graphene does not posses zero stress at every position, 

the summation of stress from x=-35 to 35 along the x axis is still approximately zero 

at stress free state. Fig. 3.4.3 and 3.4.4 illustrate Lutsko and Tsai local stress 

distribution, respectively. From the figures, it is seen that the stress fluctuates 

substantially at every position; therefore, these two stress formulations are not suitable 

for describing the stress field when van der Waals is present. 

Fig. 3.4.5 shows Hardy local stress distribution at uniaxial stress state of 10 GPa. 

Similarly, due to the difference of cross section area between the graphene sheet and 

simulation box, the actual load carried by graphene is 14.4 GPa. It is found that in the 

middle of the graphene, Hardy stress formulation results in accurate and uniform 

distribution; near the surface, the stress will drop gradually and the extent of 
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deduction and influence range are dependent on the form of localization function 

employed in Hardy stress expression. It can be seen that the bond length was 

elongated as shown in Fig. 3.4.6, due to the tensile stress existing at every position. 

Fig. 3.4.7 and 3.4.8 illustrate Lutsko and Tsai local stress distribution, respectively. 

From the figures, it is seen that the stress fluctuates substantially at every position; 

therefore, these two stress formulations are not suitable for describing the stress field 

when van der Waals is present. 
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Chapter 4 Graphene with central cracks subjected to uniaxial loading 

This chapter aims to evaluate the local stress field of the graphene sheet with 

central cracks subjected to remote tensile loading numerically and theoretically, from 

which the fracture parameters can be deduced directly. In order to validate if the 

fracture parameters defined in continuum fracture mechanics are still applicable for 

atomistic structure, both the continuum and discrete models with the same geometry 

and crack lengths under prescribed loading were established, respectively. The 

continuum model and the corresponding stress field were obtained using finite 

element analysis (FEA), and the analytical LEFM [23] (linear elastic fracture 

mechanics) solution was also incorporated. For the discrete model, the atomistic 

structure was constructed through MD simulation, in which Hardy and Tsai stress 

formulations were employed to calculate the local stress distribution. For the purpose 

of describing the stress field in discrete model, the non-local elasticity [24] solution 

was introduced. Based on the results of stress distribution, the fracture parameters 

concerning the linkage between the continuum and atomistic structure were obtained.  

In the following section, the non-local elasticity solution regarding the graphene 

with line crack under remote tensile loading was presented first. Subsequently, LEFM 

solutions as well as finite element analysis were compared and discussed. Next, the 

results of atomistic stress distribution in the equivalent discrete models were 

presented and compared with non-local elasticity solutions. Finally, the suitability of 

fracture parameters for characterizing the fracture behavior in atomistic structures was 

discussed. 

 

4.1 Non-local elasticity in crack-tip problem 

In classical elasticity, the solution of stress field in the line-crack problem of an 

elastic plate subject to remote uniform tension yields an infinite hoop stress at the 
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crack tip. In order to overcome the forward problem, Eringen [24] has proposed the 

non-local elasticity theory, in which the solution of stress field does not contain any 

singularity; instead, a finite hoop stress is found at the crack-tip such that the physical 

nature of the problem can be presented.  

 

4.1.1 Near-tip stress field of non-local elasticity 

The only difference between the non-local and classical elasticity is the 

constitutive equation and it is of the form 
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where v is the volume occupied by the body, and 'λ and 'μ are non-local moduli and 

they are functions of the distance xx −' between the reference point x and any other 

point x' in the body. For isotropic elastic solids, they are given by  
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where α is the kernel function and is optionally given. In this study, two types of 

kernel function will be considered: one is the triangular-shape distribution used in 

Eringen's paper and the other is the Gaussian function employed previously in Hardy's 

formulation. For the triangular-shape distribution, it is expressed as 
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where K=3/πa3 for the 2-dimensional case and a is the lattice distance. For the 

Gaussian function, it is expressed as  
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where h is the smoothing length and is chosen to be 1.9 in this study. The two 

distributions were shown in Fig. 4.1.1. From eqn. (4.1.1), it is known that the stress 

tkl(r) at one point r depends on strains ekl(r') at all points r'∈v; as a result, the 

interactions with the surroundings (r') can be taken into account at the reference point 

r. If the following classical Hook's law is introduced 

 

( ) ),r' )r'r' ('2('' klklrrklkl ee μδλσσ +=≡                (4.1.5) 

 

eqn. (4.1.1) can be expressed as 

 

.)(()()( ∫= v
klkl dvt r' )r'r'-rr σα                     (4.1.6) 

 

It is obvious to see that the stress at the point r is contributed from the stresses at other 

points r' in the body with appropriate weighting by the kernel function α. The 

equation of equilibrium with vanishing body force is 

 

.0)(()()( ,, ∫ ==
v

kklkkl dvt r' )r'r'-rr σα            (4.1.7) 

 

By employing the Green-Gauss theorem on eqn. (4.1.7), one can obtain the following 
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relation 
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where v∂  is the boundary surface of the body v. It is noted that when the body 

extends to infinity or the surface tensions are negligible, the surface integral in eqn. 

(4.1.8) will vanish. As a result, the remaining becomes 

 

( ) .0((, =∫ )r' )r'r'-r dv
v

kklσα          (4.1.9) 

 

Since α is an arbitrary and continuous function, eqn. (4.1.9) is satisfied if and only if 

 

0.)r' =(,kklσ         (4.1.10) 

 

Using the classical Hook's law of eqn. (4.1.5) and the following strain tensor 
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2
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one can obtain the following governing equations in 2-dimensinal problems 
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Let the Fourier transform with respect to x defined as 
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then the Fourier transform of eqn. (4.1.12) with respect to x' gives the following 

equations 
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where k is the variable in the transformed domain. For the above equations, the 

solutions of the displacement fields can be obtained [25] 
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where A(k) and B(k) are two functions to be determined from the boundary conditions 

(Fig. 4.1.2) 

 

x             ∀===  yt yxyx 00σ       (4.1.16) 

L ytt yy <=−= x                   00      (4.1.17) 

.00 L yv >== x                             (4.1.18) 

 

From eqn. (4.1.16), one can obtain the following equation 
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Therefore, based on the above relation, B(k) can be expressed in terms of A(k) as 
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The displacement fields then can be expressed as 
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The remaining two boundary conditions is used to determine the unknown function 

A(k). From eqn. (4.1.15),  
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where σyy is expressed as 
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It is noted that for the triangular-shape distribution curve, Eringen showed the result 

of the integration, i.e. eqn. (4.1.23) as the following 
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whereα is expressed as 
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with 
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For the Gaussian kernel function, the exact solution of the integration can be obtained 

and the detail of the derivation will be shown in the following. The boundary 

condition of eqn. (4.1.17) is shown again 
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where  
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By introducing eqn. (4.1.27) into eqn. (4.1.26), one can obtain 
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For the first term of eqn. (4.1.28), if the integration with respect to x' is performed 

first, it can be rearranged as 

 

( ) ( )[ ]{ }

( ) ( )[ ]
( )[ ]{ } dy'dkdx'xxpkx

yypkykykkAp

dkdydxyyxxpp

kxkykykkA

               

'               

2

0

2

2/1

0

22

0

2/1

0

'exp)'cos(

'exp)'exp()'1)((
)2(
)(22

'''exp1

)'cos()'exp()'1)((
)2(
)(22

−−×

−−−+
+
+

⎟
⎠
⎞

⎜
⎝
⎛−=

−+−−×

−+
+
+

⎟
⎠
⎞

⎜
⎝
⎛−

∫∫

∫ ∫ ∫

∞∞

∞ ∞

∞−

∞

μλ
μλμ

ππ

π

μλ
μλμ

π

    

(4.1.29) 

 

Using the following integral relation [26] 
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one can obtain the following equation 
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As a result, eqn. (4.1.29) can be expressed as 
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If the integration with respect to y' is performed next, eqn. (4.1.32) can be rearranged 

as 
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where 
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Using the following integral relations [26] 
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one can obtain the following equations 
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If eqn. (4.1.36) and eqn. (4.1.37) are introduced into eqn. (4.1.33), then eqn. (4.1.33) 

can be expressed as 
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 (4.1.38) 

 

Similarly for the second term of eqn. (4.1.28), it can be obtained as 
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(4.1.39) 

 

Now with y=0, the boundary condition of eqn. (4.1.39) can be expressed as 
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with 
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For the purpose of making the above equation more brevity, one can rewritten eqn, 

(4.1.40) as 

 

LtdkkxkkkAxt yy <−=
+
+

⎟
⎠
⎞

⎜
⎝
⎛−= ∫

∞

x      0
0

2/1

)()cos()(
)2(
)(22)0,( εα

μλ
μλμ

π
 (4.1.41) 
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It is worth to mention that the only difference between eqn. (4.1.40) and Eringen's 

result is in the form of α . Therefore, it is interesting to see the difference of stress 

distribution with two different types of kernel functions. The other boundary 

condition eqn. (4.1.18) gives 
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As a consequence, the two boundary conditions lead to a pair of dual integral 

equations, eqn. (4.1.41) and eqn. (4.1.42), which must be solved to determine A(k). 

The only difference between the non-local elasticity and classical elasticity is in the 

introduction of the function α . For the classical elasticity in the same crack-tip 

problem, the boundary conditions are 
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The only difference is the eqn. (4.1.44), which is expressed as 
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As a result, the dual integral equations of classical elasticity satisfying eqn. (4.1.44) 

and (4.1.45) are found to be [25] 
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with 
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The solution of A(K) in the eqn. (4.1.47) and (4.1.48) has been obtained [25] as 
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where J1 is the Bessel function of the first kind of order one. Eringen has 

demonstrated the applicability of utilizing the classical displacement field to calculate 

the non-local stress field in his work. For the purpose of introducing the above 

classical elasticity solution into the non-local elasticity, the dual integral equations of 

non-local elasticity, i.e. eqn. (4.1.41) and eqn. (4.1.42), are rewritten as 
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By employing eqn. (4.1.49) into eqn. (4.1.50), the non-local stress field can be 
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obtained as 
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It is worthy to mention that Eringen's method of introducing classical solution into 

non-local elasticity stress field cannot fully satisfy the boundary condition. The 

normal stress boundary condition 0)0,( txt yy −=  for Lx <  is satisfied in an 

approximate sense. One way to obtain the solution that fully satisfies the normal stress 

boundary condition can be found in Zhou et al [27]. In their work, they proposed 

Schmidt's method to solve the dual boundary conditions. However, it was found that 

the maximum stress position is far away from the crack tip in the current study, as 

shown in Fig. 4.1.4; therefore, Eringen's approach was adopted in this paper. Similarly, 

for triangular-shape kernel function, the dual integral equations are 
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whereα is expressed as 
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Since the method of introducing classical elasticity solution is independent of the 

form of α , eqn. (4.1.53) and (4.1.54) can be rewritten as 

 

11)()cos()(
0

<=∫
∞

x        dK
L
KaKxKKA α     (4.1.55) 

10)cos()(
0

>=∫
∞

x                      dKKxKA     (4.1.56) 

 

with 

 

L
xxkLK ==       ,  

.)()(
)2(

)(22)( 1

0

2

2/1

K
KJkA

tL
KA =⎥

⎦

⎤
⎢
⎣

⎡
+
+

⎟
⎠
⎞

⎜
⎝
⎛=

μλ
μλμ

π
 

 

The stress field then can be obtained as 

 

.)()cos()(
0

1

0

dK
L
KaKxKJ

t
t yy   α∫

∞

=         (4.1.57) 

 

It is noted that the stress field with Gaussian function (4.1.52) is identical in form to 

(4.1.57), except that the kernel function α employed is different. By superimposing t0 

on the stress fields, one can obtain the solution of the line-crack problem, in which the 

crack surface is free of traction whereas a uniform tension t0 is exerting on the plate at 

y=∞ (Fig. 4.1.3). Accordingly, the near-tip stress field is expressed as 
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4.1.2 Comparison of non-local stress fields with different distribution curves 

In this subsection, the non-local elasticity stress fields with two different kernel 

functions, i.e. triangular and Gaussian function were compared and discussed. The 

lattice length of the graphene is 2.46 Å and the remote tensile loading is 2 GPa. Fig. 

4.1.5 to 4.1.7 show the stress distribution near the crack tip with crack lengths equal 

to 3 lattices, 41 lattices, and 81 lattices, respectively. It is apparent to see that for all 

the crack lengths, the near-tip stress exhibits finite value instead of singularity at the 

crack tip, and the position of the maximum stress is slightly ahead of the tip within 

one lattice. With different kernel functions, the value and the position of the maximum 

stress shows some difference. The maximum stress obtained from triangular function 

is larger than the one with Gaussian function, and the position is slightly closer to the 

crack tip. Around one lattice away from the crack tip, the two stress fields coincides 

with each other and converges to unity. Based on the above results, it is demonstrated 

that the non-local elasticity theory can overcome the problem of singularity and the 

maximum stress position is close to the crack tip; therefore it is an effective approach 

to investigate the physical nature of crack problems. For the comparing purpose, the 

non-local elasticity solution with Gaussian function is adopted in the following 

discussion, since it is also employed in Hardy’s stress formulation.  

 

4.2 Comparison of stress fields in continuum models 

 The continuum graphene and the stress field were obtained through finite 

element analysis (FEA). Fig. 4.2.1 and Table 4.2.1 show the dimension of the three 

models with crack lengths of 3 lattices, 41 lattices, and 81 lattices, respectively. It is 

noted that the width of the graphene (2W) is ten times larger than the crack length and 

the corresponding height (2H) is around the same with the width. Because of 

symmetry, only one quadrant of the model was used. The dotted lines in Fig. 4.2.1 
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illustrate the representative volume elements (RVE) for the FEA. The material 

properties utilized in the FEA model were calculated based on the molecular dynamic 

simulation with the interatomistic energy described earlier, and the results are 

presented in Table 4.2.2. All the FEA results are obtained using finite element code 

ANSYS with four-node element (plane 42) applied in all cases. To ensure that the 

singularity stress field can be precisely simulated, a fine mesh is used near the crack 

tip, where the spacing between the nodes along the crack axis (y=0) is small enough 

with respect to crack length. A representative finite element model for crack lengths 

of 41 lattices is shown in Fig. 4.2.2. It is worthy to mention that the element size in 

the fine mesh is maintained uniform before and ahead of the crack tip and the ratio 

between crack size and element size is larger than 300 for all the cases. The remote 

tensile loading 2 GPa in the y direction was applied on the graphene sheet. In addition 

to finite element analysis, LEFM is an alternative approach to calculate the stress field 

in continuum models. For a finite plate with a central crack, the stress field can be 

obtained as [23] 
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where x is the distance from the crack tip along the crack axis. The stress intensity 

factor K can be approximated in a polynomial form [23] as 
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where 0σ  is the remote loading acting on the graphene sheet, L is the half crack 
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length and W is the half graphene width.  

 Fig. 4.2.3 to 4.2.5 show the stress distribution near the crack tip obtained from 

FEA and LEFM. It is apparent to see that for all the crack lengths, the stress field in 

continuum models demonstrates x/1  stress singularity near the crack tip. 

Moreover, it was found that for small crack lengths such as 3 lattices, the LEFM 

solution deviated from the FEM solution at the position slightly away from the tip. It 

is known that when the position is far way from the crack tip, the stress field should 

be equal to the remote applied loading. It is found, however, that for the crack lengths 

of 3 lattices, the stress field of LEFM is below unity when the position is one lattice 

away from the crack tip. With the increase of crack lengths, the LEFM solution was 

closer to the FEM solution. For crack lengths of 41 lattices, the LEFM solution 

deviated from the FEM solution at the position around one lattice from the tip; for 

crack lengths of 81 lattices, the LEFM solution was approximately in agreement with 

the FEM solution. Based on the above results, it is demonstrated that the use of LEFM 

solutions to describe the stress field with small crack length is not suitable; this result 

was also obtained by Sun et al [28]. On the other hand, FEM solution is applicable for 

describing the stress field with various crack lengths, even for crack length of few 

lattices. 

 

4.3 Comparison of stress fields in discrete models 

The atomistic structure of single layer graphene sheet under uniaxial loading was 

constructed through molecular dynamic simulation. Followed by the procedures 

mentioned in Chapter 2, the atomistic structure of graphene sheet with a uniaxial 

stress state of 2 GPa was obtained by performing the modified NPT ensemble. The 

central crack of length 2L in the graphene sheet was created by eradicating the 

associated covalent bond so that for the atom pairs across the crack surface, there was 
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no atomistic interaction occurring, as illustrated in Fig. 4.3.1. It is noted that due to 

the fact the non-bonded interaction exhibits less contribution to the mechanical 

properties of graphene sheet as compared to the covalent bond, van der Waals 

interaction is neglected in the current atomistic models. After the graphene sheet 

achieved the stress state of 2 GPa, Hardy stress formulation with h=1.9 and Rc=10 and 

Tsai stress formulation with dividing area 3.4×2.46 Å were adopted to calculate the 

stress distribution. In order to determine the size of the graphene model such that the 

geometry would not affect the result, the graphene with central cracks of 5 lattices and 

three different widths were discussed first. The dimensions of the models with three 

different widths are listed in Table 4.3.1 and the corresponding Hardy stress 

distribution is shown in Fig. 4.3.2. It is clear to see that when the graphene width is 

ten times larger than the crack length, the stress distributions are about the same. As a 

result, for the discrete models, the width of the graphene (2W) is chosen to be ten 

times of the crack length and the corresponding height (2H) is around the same with 

the width. The dimension of the graphene sheet with different cracks lengths 

considered in discrete models is shown in Table 4.3.2.  

Fig. 4.3.3 to 4.3.11 show the stress distribution near the crack tip obtained from 

Hardy stress, Tsai stress and non-local elasticity solution. It is apparent to see that the 

stress fields obtained in the discrete models deviate from the x/1  singularity 

solution near the crack tip and exhibit finite value. The maximum stress obtained from 

Hardy's formulation is in agreement with the non-local elasticity solution, whereas 

Tsai stress shows less agreement and is larger than the non-local elasticity solution, as 

shown in Table 4.3.3 and Fig. 4.3.12. As a result, it is indicated that the expression of 

Hardy stress exhibits non-local attribute within about one lattice from the crack tip. 

From Fig. 4.3.12, it is also found that with the increase of crack lengths, the maximum 

stress will increase accordingly. This attribute is similar to the result of LEFM that the 
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stress intensity factor will increase with the increase of crack lengths, except that the 

result can be deduced directly from maximum stress without other extraneous 

consideration. The stress distribution diagrams shown in Fig. 4.3.3 to 4.3.11 also 

illustrate that the position of maximum stress obtained from Hardy’s formula is closer 

to the crack tip, compared to the non-local elasticity theory; in other words, Hardy 

stress can more effectively exhibit the stress field near the crack tip in terms of the 

maximum stress position, where supposed to be the crack tip. Though the maximum 

stress position obtained from Tsai's formulation is exactly at the crack tip, however, 

the maximum stress is larger than non-local elasticity solution. In addition, it was 

found that due to the limitation that the dividing plane mush be located at the position 

where the interaction force acting, the local stress distribution of Tsai's formulation 

shows less smoothness near the crack tip. Therefore, only Hardy stress field was 

suitable for investigating the fracture properties directly from maximum stress 

hypothesis. The results would be compared with the non-local elasticity solution and 

the discussion was presented in the following section. 

 

4.4 Characterizing the fracture properties of graphene sheet 

Based on the calculation of Hardy stress field and non-local elasticity solutions, 

the fracture properties of the graphene sheet with various crack lengths can be 

characterized directly from maximum stress hypothesis. The purpose of the study is to 

validate if the fracture parameters defined in continuum fracture mechanics, such as 

stress intensity factor and fracture toughness, are still applicable to atomistic structure, 

thus being able to bridge the gaps between the discrete and continuum models of 

graphene sheet. 
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4.4.1 Stress intensity factor K 

 The stress intensity factor of the continuum solid can be determined from the 

near-tip stress field [23] as 

 

yyxI xK σπ2lim
0→

=       (4.4.1) 

 

where yyσ  is the tensile stress component near the crack tip and x is the distance 

from the crack tip along the crack axis. For the continuum models, yyσ  is singular 

near the crack tip (x=0) and KI is usually determined by the projection based on the 

converged values of  yyxσπ2  at a distance from the crack tip. For the discrete 

models, the same projection approach was employed in the Hardy stress field to 

obtain the corresponding stress intensity factor. Fig. 4.4.1 to 4.4.3 demonstrate the 

yyxσπ2  plot with the projection and the actual solution LK I πσ 0=  for the 3 

models, crack lengths of 3 lattices, 41 lattices, and 81 lattices, respectively. The 

projected KI is also listed in Table 4.4.1. It is found that for all the crack lengths, the 

stress intensity factor obtained from FEA was in agreement with the actual solution 

and it would increase with the increase of crack lengths. As a result, the projection 

method based on the converged value of yyxσπ2  is an effective approach to 

characterize the stress intensity factor.  For the discrete model, the stress intensity 

factor obtained from Hardy stress field was also close to the FEA and the actual 

solution. Though the value is slightly lower than the others, the difference is small for 

all the crack lengths. Therefore, the stress intensity factor is able to characterize the 

stress field near the crack tip effectively for both the continuum and discrete models. 
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4.4.2 Fracture toughness KIC 

 In fracture mechanics, the fracture toughness in a continuum solid is a material 

property which should be independent of crack lengths in the continuum model.  In 

order to obtain the fracture toughness in the discrete model, the stress concentration 

factor defined by Eringen et al. [24] is introduced and expressed as 
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where P is the stress concentration and defined as 
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where σmax is the maximum local stress and σ0 is the applied remote loading. The 

relation between the crack lengths and the stress concentration factor can be seen in 

Fig. 4.4.4. and Table 4.4.2. It is found that with crack lengths less than 40 lattices, the 

stress concentration factor is dependent of the crack length. The shorter the crack 

length is, the higher the stress concentration will be. With crack lengths over 40 

lattices, it can be seen that the stress concentration is approaching a constant. For 

Hardy’s formula, the value is approaching 0.66, which is close to the non-local 

elasticity solution 0.64. It is known that if the maximum local stress achieves the 

cohesive strength, the fracture of the covalent bond will occur. In this condition, σmax 

is equivalent to the cohesive strength σc, so eqn. (4.4.2) can be expressed as 
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For the purpose of convenience in calculation, the cohesive strength σc is assumed to 

be 1 GPa in the following discussion. The relation between the applied loading with 

different crack lengths is shown in Fig. 4.4.5 and Table 4.4.3. It is found that with 

shorter crack lengths, the required loading is higher than those with larger crack 

lengths. In other words, the graphene sheets with short crack lengths are more 

resistant to crack extension than those with larger crack lengths.  According to the 

above discussion that the stress intensity factor for the graphene atomistic structures is 

equal to LK I πσ 0= , combination of eqn.(4.4.2) yields to the stress intensity factor 

as 
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If the local maximum stress maxσ  achieves the cohesive strength, the fracture 

toughness is derived as 
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The relation between the fracture toughness and different crack lengths is shown in 

Fig. 4.4.6. and Table 4.4.4. It is apparent that when the crack length is larger than 40 

lattices, the fracture toughness is approaching a constant. For Hardy’s formula, the 

value is approaching 2.97, which is closed to the non-local elasticity solution 3.10. It 

is found, however, that for the crack length less than 40 lattices, the fracture 

toughness is dependent of the crack length. The smaller the crack length is, the lower 
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the fracture toughness will be. Therefore, it is demonstrated that the fracture 

toughness may not be a material constant when the crack length is less than 40 lattices. 

The similar result was also obtained by Sun. et al. [28] who indicated that the fracture 

toughness of NaCl system is relied on the crack length as the crack is small (below 40 

Å).  
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Chapter 5 Conclusion 

Hardy local stress formulation was employed successfully to calculate the local 

stress distribution of the graphene sheet with free surface and central cracks. Based on 

the local stress distribution, the local properties of graphene sheet with presence of 

free surface and cracks were determined. Results indicated that for the graphene with 

free surfaces, when van der Waals force is present, the bond length at the edge is 

shortened; therefore the edge of the graphene sustains compressive stress. However, 

when van der Waals force is absent, the bond length in the whole atomistic graphene 

structure is remaining constant and therefore there is no stress induced on the 

atomistic structure. Moreover, the local stress distribution near the free surface of the 

graphene can be characterized successfully using Hardy stress formulation which 

exactly exhibits the local deformation of the microstructures within the graphene 

sheet.   

With regard to the graphene with central cracks subjected to remote uniaxial 

loading, it was observed that for continuum models, both FEA and LEFM solution 

yield stress singularity near the crack tip. In addition, for small cracks, LEFM solution 

would deviate from the FEA. For discrete models, it was found that Hardy stress 

formulation exhibits non-local attribute near the crack tip and the maximum stress is 

in agreement with the non-local elasticity solution. Based on the local stress 

distribution, the fracture properties such as stress intensity factor and fracture 

toughness can be deduced directly from the maximum stress hypotheses. It is revealed 

that the stress intensity factors obtained from continuum models and discrete models 

are close to each other; therefore it can be used to predict the state of stress field near 

the crack tip for both continuum solids and atomistic structures. On the other hand, in 

the discrete models, the fracture toughness is found to be sensitive to the crack length 
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when the length is below 40 lattices. The smaller the crack length is, the lower the 

fracture toughness will be. Therefore, for the small crack length, the concept of LEFM 

may not be applicable to characterize the fracture behaviors of atomistic graphene 

structure.  
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Appendix A 

MATLAB code of calculating non-local stress field for crack-tip problem using Gaussian function 

as distribution curve 

%--------beginning of the code------------------------ 

clc; 

clear; 

%--------Eringen's non-local elasticity----------------- 

% Reference: 

% Eringen, A.C., Speziale, C.G., Kim, B.S., 1977.  

% Crack-tip problem in non-local elasticity. Journal of the Mechanics and 

Physics of Solids 25, 339¡V355. 

% Distribution curve alpha is Gaussian function 

%----------input parameters----------------------------------- 

ad=2.46;                       % graphene lattice length 

L=2.46*23/2;                   % half crack length (L) 

h=1.9;                         % smoothing length in Gaussian function 

beta=ad/h;        

e=ad/(2*beta); 

tou=-2;                        % applied loading on "crack surface" unit: GPa 

ndiv=1000;                     % output data number 

tol=1e-10;                     % integral error tolerance 

x=linspace(0.0*L,2.0*L,ndiv);  % interval of stress field 

  

%-------------calculating non-local stress field----------------- 

for i=1:ndiv 

    xx=x(i)/L; 

    

f=@(K)besselj(1,K).*cos(K*xx).*((1-erf(e*K/L)).*(1-2*(e*K/L).^2)+(2*(

e*K/L)/sqrt(pi)).*exp(-(e*K/L).^2));    % eqn. (4.1.52) in the thesis 

    

y(i)=quadgk(f,0,inf,'RelTol',tol,'AbsTol',tol,'MaxIntervalCount',8000

); 

end 

  

%------------superposition of stress field----------------------- 

str=tou*y-tou; 

xx=(x'-L)./ad;       % plot data from crack tip and normalized the position 

% with respect to lattice 
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str=str'./(-tou);             % normalized the stress field with respect 

% to applied loading 

plot(xx,str,'r') 

  

%------------end of the code-------------------------------- 
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Appendix B 

MATLAB code of calculating non-local stress field for crack-tip problem using Triangular 

function as distribution curve 

%--------beginning of the code------------------------ 

clc; 

clear; 

%--------Eringen's non-local elasticity----------------- 

% Reference: 

% Eringen, A.C., Speziale, C.G., Kim, B.S., 1977.  

% Crack-tip problem in non-local elasticity. Journal of the Mechanics and 

Physics of Solids 25, 339¡V355. 

% Distribution curve alpha is Triangular function 

  

%----------input parameters----------------------------------- 

ad=2.46;                        % graphene lattice length 

L=2.46*23/2;                    % half crack length (L) 

e=ad/L; 

ndiv=3000;                      % output data number 

tol=1e-10;                      % integral error tolerance 

uplim=2*pi*L/ad;                % upper limit of integral, as suggested in 

%Eringen's paper 

x=linspace(0.0*L,2*L,ndiv);     % interval of stress field 

p=2;                           % applied loading on "crack surface" unit: GPa 

  

%-------------calculating non-local stress field----------------- 

xx=x./L; 

% the following is the eqn. (4.1.57) in the thesis 

f=@(K)(-6/pi*((13/30*(K*e).^-1+32/15*(K*e).^-3-1/20*(K*e)).*cos((K*e)

)+(19/30*(K*e).^-2-1/20).*sin((K*e))+(1/3-1/20*(K*e).^2).*sinint(K*e)

-1/6*pi-32/15*(K*e).^-3+pi/40*(K*e).^2)).*besselj(1,K).*cos(K.*xx).*(

-p); 

y=quadv(f,0,uplim); 

  

%------------superposition of stress field----------------------- 

yy=y+p; 

yy=yy./p;                       % normalized the stress field with respect 

% to applied loading 

xx=x-L;                         % plot data from crack tip and normalized the 
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%position with respect to lattice 

xx=xx'./ad; 

plot(xx,yy,'b') 

  

%------------end of the code-------------------------------- 
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Table 3.1.1 Cut-off radius corresponding to different smoothing lengths h 

 h=1.8 h=2.5 h=3.0 

Rc (Å) 8 9 12 

 
 
 
 
 
 
 
 
 

Table 4.2.1 Dimension of finite element model with different crack lengths 

Unit: Å 2L/a=3 2L/a=41 2L/a=81 

2W 73.8 1008.6 1992.6 

2H 76.68 1005.36 1985.16 

 
 

 
 
 
 
 
 
 
 
 
 

 
Table 4.2.2 Material properties of graphene sheet obtained from MD simulation 

Young's Modulus (GPa) Poisson's ratio 

790.7 0.27 
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Table 4.3.1 Different widths of discrete graphene model with crack length of 5 lattices 

Unit: Å L/W=0.05 L/W=0.1 L/W=0.3 
2W 246 123 49.2 
2H 247.08 119.28 51.12 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 4.3.2 Dimension of discrete graphene model with different crack lengths 

2L/a  

3 5 7 19 21 23 41 61 81 

2W 73.8 123 172.2 467.4 516.6 565.8 1008.6 1500.6 1992.6

2H 76.68 119.28 170.4 468.6 519.72 562.32 1005.36 1499.52 1985.16

Unit: Å 
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Table 4.3.3 Maximum local stress with different crack lengths 

Maximum stress (GPa) 
2L/a 

Non-local (Gaussian function) Hardy stress Tsai stress 
3 2.705 2.588 3.29 

5 3.224 3.171 4.19 

7 3.678 3.672 4.94 

19 5.701 5.850 8.08 

21 5.967 6.141 8.49 

23 6.230 6.412 8.88 

41 8.198 8.503 11.84 

61 9.950 10.356 14.44 

81 11.431 11.923 16.64 

 
 
 
 
 
 
 
 
 
 
 

Table 4.4.1 Stress intensity factor from Hardy, FEM and continuum mechanics 

KI ( mPa )x104 
2L/a 

Hardy stress FEM KI = Lπσ 0  
Error  

(Hardy with FEM) 
3 6.44 6.99 6.81 -7.87 % 
5 8.26 8.92 8.79 -7.40 % 
7 9.67 10.39 10.40 -6.93 % 
19 16.12 17.02 17.14 -5.29 % 
21 17.02 17.88 18.02 -4.81 % 
23 17.87 18.70 18.85 -4.44 % 
41 24.23 25.26 25.17 -4.08 % 
61 29.34 30.42 30.71 -3.55 % 
81 34.04 35.28 35.38 -3.51 % 
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Table 4.4.2 Stress concentration factor with different crack lengths 

C 
2L/a 

Non-local (Gaussian function) Hardy stress 
3 0.781 0.747 

5 0.721 0.709 

7 0.695 0.694 

19 0.654 0.671 

21 0.651 0.670 

23 0.649 0.669 

41 0.640 0.664 

61 0.637 0.663 

81 0.635 0.662 

 
 
 
 
 
 
 
 
 
 
 

Table 4.4.3 Applied loading to achieve σc with different crack lengths 
σ0 (GPa) 

2L/a 
Non-local (Gaussian function) Hardy stress 

3 0.739 0.773 

5 0.620 0.631 

7 0.544 0.545 

19 0.351 0.342 

21 0.335 0.326 

23 0.321 0.312 

41 0.244 0.235 

61 0.201 0.193 

81 0.175 0.168 
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Table 4.4.4 Fracture toughness with different crack lengths 

KIC ( mPa )x104 
2L/a 

Non-local (Gaussian function) Hardy stress 
3 2.517 2.632 

5 2.726 2.773 

7 2.828 2.832 

19 3.006 2.930 

21 3.020 2.934 

23 3.029 2.938 

41 3.071 2.960 

61 3.086 2.965 

81 3.096 2.969 
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Fig. 3.1.1 Dimension of the dividing plane adopted in Tsai's stress formulation 
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Figure 3.1.2 Interpretation of bond function 
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Figure 3.1.3 Localization functions with various smoothing lengths 
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Figure 3.2.1 Continuous graphene sheet with periodic boundary conditions 
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Figure 3.2.2 Local stress in the periodic graphene with bonded interaction 
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Figure 3.2.3 Hardy and Lutsko stress in the periodic graphene with bonded and 
non-bonded interaction 
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Figure 3.2.4. Tsai stress in the periodic graphene with bonded and non-bonded 

interaction with different dividing planes 
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Figure 3.2.5 Finite graphene sheet with free surfaces in the x direction 
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Figure 3.3.1 Local stress in the finite graphene sheet with bonded interaction 
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Figure 3.3.2 Bond length of finite graphene sheet with bonded interactions at stress 

free state 
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Figure 3.3.3 Local stress distribution in the finite graphene sheet with bonded 

interactions (a) global view (b) local view 
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Figure 3.3.4 Tsai stress with different dividing planes in the finite graphene sheet with 

bonded interactions near surface 
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Figure 3.3.5 Bond length of the finite graphene sheet with bonded interactions at 

uniaxial stress state 
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Figure 3.4.1 Variation of bond length for the finite graphene sheet with bonded and 

non-bonded interactions at stress free state 
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Figure 3.4.2 Hardy stress distribution of the finite graphene sheet with bonded and 

non-bonded interactions at stress free state (a) global view (b) local view 
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Figure 3.4.3 Lutsko stress distribution of the finite graphene sheet with bonded and 

non-bonded interactions at stress free state  
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Figure 3.4.4 Tsai stress distribution of the finite graphene sheet with bonded and 

non-bonded interactions at stress free state 
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Figure 3.4.5 Hardy stress distribution of the finte graphene sheet with bonded and 

non-bonded interactions at uniaxial stress state (a) global view (b) local view 
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    Figure 3.4.6 Variation of bond length for the finite graphene sheet with bonded 

and non-bonded interactions at stress state of 10GPa 
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Figure 3.4.7 Lutsko stress distribution of the finite graphene sheet with bonded and 

non-bonded interactions at uniaxial stress state 



 72

X(Å)

σ y
y(G
P
a)

-30 -20 -10 0 10 20 30
-12

-8

-4

0

4

8

12

16

20

24

28

 
Figure 3.4.8 Tsai stress distribution of the finite graphene sheet with bonded and 

non-bonded interactions at uniaxial stress state 
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Fig. 4.1.1 Distribution curves α employed in non-local elasticity 
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Fig. 4.1.3 Superimposition of the boundary condition in the non-local elasticity 
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Fig. 4.1.4 Different methods of solving non-local elasticity problem  
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Fig. 4.1.5 Stress distribution in the graphene with crack lengths of 3 lattices  
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Fig. 4.1.6 Stress distribution in the graphene with crack lengths of 41 lattices  
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Fig. 4.1.7 Stress distribution in the graphene with crack lengths of 81 lattices  
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Fig. 4.2.1 Finite element model for continuum graphene sheet. Note that the 

dimension has different values for the three different models. 
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Fig. 4.2.2 Finite element mesh for the graphene with crack lengths of 41 lattices: (a) 
mesh for the entire model (quarter model) and (b) magnified view of the fine mesh 

around the crack tip. 
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Fig. 4.2.3 Stress distribution in the graphene with crack lengths of 3 lattices  
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Fig. 4.2.4 Stress distribution in the graphene with crack lengths of 41 lattices  
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Fig. 4.2.5 Stress distribution in the graphene with crack lengths of 81 lattices 
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Figure 4.3.1 Atomistic structure of the graphene sheet subjected to uniaxial loading. 
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Figure 4.3.2 Local stress distribution of the graphene with crack lengths of 5 lattices 
and different graphene widths. 
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Fig. 4.3.3 Stress distribution in the graphene with crack lengths of 3 lattices 
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Fig. 4.3.4 Stress distribution in the graphene with crack lengths of 5 lattices 
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Fig. 4.3.5 Stress distribution in the graphene with crack lengths of 7 lattices 
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Fig. 4.3.6 Stress distribution in the graphene with crack lengths of 19 lattices 
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Fig. 4.3.7 Stress distribution in the graphene with crack lengths of 21 lattices 
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Fig. 4.3.8 Stress distribution in the graphene with crack lengths of 23 lattices 
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Fig. 4.3.9 Stress distribution in the graphene with crack lengths of 41 lattices 
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Fig. 4.3.10 Stress distribution in the graphene with crack lengths of 61 lattices 
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Fig. 4.3.11 Stress distribution in the graphene with crack lengths of 81 lattices 
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Fig. 4.3.12 Maximum local stress in the graphene with different crack lengths. 
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Fig. 4.4.1 yyxσπ2 plot to determine stress intensity factor of the graphene with 

crack lengths of 3 lattices 
 
 

 

Fig. 4.4.2 yyxσπ2 plot to determine stress intensity factor of the graphene with 

crack lengths of 41 lattices 
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Fig. 4.4.3 yyxσπ2 plot to determine stress intensity factor of the graphene with 

crack lengths of 81 lattices 
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Fig. 4.4.4 Stress concentration factor in discrete models with different crack lengths 
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Fig. 4.4.5 Applied loading to achieve σc with different crack lengths 

 
 

 

Figure 4.4.6 Fracture toughness of the graphene with different crack lengths 
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