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摘要 

 

本研究利用數值方法分析可壓縮流在三維垂直管道中的流動及熱傳機制。流場利用

有限差分法進行計算，計算方法可分為兩部分：第一部份為非黏滯性項的尤拉方程式採

用 Roe方法計算通量，並且加入 Preconditioning矩陣，讓程式在計算低速可壓縮流可獲

得良好之收斂結果，而程式因為在使用 Preconditioning時，加入 Artificial time term 時，

已破壞了整個統御方程式，因此需使用 Dual time stepping疊代使其在 Artificial domain 

收斂時才能進入下一個真實時階；第二部份為黏滯性項的計算，採用二階中央插分法。

在時間項方面則採用 LUSGS隱式法，利用 LUSGS疊代以求出下一時階物理量。出口

設非反射性邊界條件避免可壓縮流中壓力波的干擾。在許多應用例子中，溫差常常大於

30K，因此 Boussinesq assumption不適用。本文採用 OpenMP方法提升運算速度。 

由數值計算的結果得知，三維垂直管道之自然對流，因浮力效應往上推升，在出口

端產生最大速度，雷諾數(Re=400)之熱傳效應較雷諾數(Re=100、200)之熱傳還差，主要

是在出口端雷諾數(Re=100、200)所吸進的流量，大於雷諾數(Re=400)所吸進的流量，而

雷諾數(Re=100)從出口端吸入的速度衝擊到出口速度，故熱傳較雷諾數(Re=200)小。雷

諾數(Re=100、200)流場之迴流接近入口處，在流場中會有速度反曲點，造成流場的不

穩定。 
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Abstract 

An investigation of heat transfer in a three-dimensional tapered chimney with 

consideration of the flow compressibility is studied numerically.The finite difference method 

is adopted and the computational approaches are divided into two parts. One is the Roe 

scheme applied for the flux of inviscid terms and the preconditioning matrix is added for the 

efficiency in all speed fields. The other one is the central difference method of second order 

utilized to solve viscous terms. The temporal term is solved by LUSGS. Non-reflection 

conditions at the outlet is derived in order to resolve reflections induced by acoustic waves. In 

many important natural convection problems, the temperature differences are often higher 

than 30K. Boussinesq assumption is unreasonable. Besides, the OpenMP method is also used 

to promote the computing efficiency. 

By numerical results, there is the greatest flow speed near the outlet in the 

three-dimensional vertical natural convection pushed upward by buoyancy effect. The 

enhancement of heat transfer of Reynolds number 400 is worse than the enhancement of 

Reynolds number 100, 200. It is mainly due to the more flow rate sucked from exterior near 

the outlet in the case of Reynolds number 100, 200. And the flow sucked from the exterior 

impacted the flow exiting the outlet in the case of Reynolds number 100. The heat transfer is 

worse than the case of Reynolds number 200. Besides, the flow field is unstable due to the 

backflow near the outlet in the case of Reynolds number 100, 200. 
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Nomenclature 

a  sound speed[ 1m s−⋅ ] 

pC  constant-pressure specific heat[ 1 1J kg k− −⋅ ⋅ ] 

vC
 constant-volume specific heat[ 1 1J kg k− −⋅ ⋅ ] 

d  caliber of the vertical square tube [m ] 

e  internal energy[ 1J kg −⋅ ] 

g acceleration of gravity[ 2m s−⋅ ] 

h  enthalpy[J ] 

k  thermal diffusivity[ 1 1W m k− −⋅ ⋅ ] 

l  length of the vertical square tube [m ] 

xNu  
Nusselt number defined in Eq.(4-6) 
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d T
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k T T z
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2Re

Gr
Ri =

Q  Total flow in a section defined in Eq.(4-14) 

2

0Q u dρ=  

R  gas constant [ 1 1J kg k− −⋅ ⋅ ] 

Ra Rayleigh number defined in Eq.(4-11) 

2 3
0 0
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hg T T d

Ra Gr
T T
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Re Reynolds number defined in Eq.(4-5) 
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T  Kelvin temperature[K ] 

0T  Surrounding temperature[K ] 

hT  temperature of heat surface[K ] 

t∆  time difference[s ] 

u  velocity component in x -direction[ 1m s−⋅ ] 

v   velocity component in y -direction[ 1m s−⋅ ] 

w  velocity component in z -direction[ 1m s−⋅ ] 

x  Cartesian coordinate system x direction 

y  Cartesian coordinate system y direction 

z  Cartesian coordinate system z direction 

wτ  friction force acting per unit area on the surface 
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Greek symbols 

ρ  density[ 3kg m−⋅ ] 

0ρ  surrounding density[
3kg m−⋅ ] 

υ  kinematics viscosity[ 2 1m s−⋅ ] 

µ  absolute viscosity[ 11.. −− smkg ] 

γ  specific heat ratio 
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第一章第一章第一章第一章、、、、緒論緒論緒論緒論 

在科技日新月異及高污染的時代下，如何減少能源的損耗是重要的課題，為使能

源永續發展，管理能源的使用，是必須要關注的；消費性電子產品蓬勃發展，高功率電

子元件的發展與半導體製程技術的進步，促使消費性電子產品的使用與生活型態做結

合，因而目前許多電子產品皆走向高效能、微小化的趨勢，致使電子元件舉凡電腦 CPU，

顯示卡，筆記型電腦或智慧型手機等其封裝元件之發熱密度愈來愈高，其單位熱通量亦

相對地不斷增加，對性能及可靠度等方面均造成不容忽視之影響。因此在未來電子產品

的發展趨勢走向更輕薄短小之際，其性能及可靠度的提升將取決於其散熱技術。一般正

常電腦 CPU在執行程式下溫度大約為攝氏 50~60度之間，超過攝氏八十度則電腦會基

於保護狀態，自動關閉系統，長期下來內部零組件壽命將會減短。因此為了維持元件於

額定溫度下運作，必須將此密集的熱量能有效散逸於系統外之環境。傳統的散熱片大多

數是由鋁合金所製造，其熱傳導性只屬於中等程度，對於目前元件發熱功率越來越高的

情況，逐漸有捉襟見肘的情形發生，目前電子元件的發熱量達到每平方公分數十瓦的等

級，且接點可承受的溫度約在攝氏 150 度以下。因此如何改良空氣對流的方式以及增加

對流所能散逸之熱量成為研究的主要課題之一。在工程應用上，熱對流一直是很重要的

一環，其中以混合對流最接近生活中常見的對流形式；一般自然對流效果不足時，再加

進強制對流使之達到預期之效果。 

 以自然對流之浮力方向及強制對流流場之速度方向，可分為三種型式如下： 

1. 助流(Aiding flow)：其浮力方向與流場之速度方向相同。 

2. 逆流(Opposing flow)：其浮力方向與流場之速度方向相反。 

3. 交錯流(Cross flow)：其浮力方向與流場之速度方向垂直。 

Bergles[1, 2]將常見的增加熱傳效率方式，詳細地討論與整理，將其略分為兩大類：

一為外作工的被動方式，另一類為需外加能量的主動式方法。 

討論混合對流方面， Ingham[3]等人研究二維垂直平板等溫壁面混合對流之逆流現

象(flow reversal)，忽略軸向擴散，討論 300 Re 70Gr− ≤ ≤ 的區間，並與純強制對流作比
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較，發現在較高的 ReGr 比中，會有逆流的現象，其設定為Boussinesq assumption。

Behzadmehr等人[4]探討垂直長管等熱通量之低雷諾數助流混合對流，在

8Re 1000,1500 and 10Gr= ≤ 利用  modelk ε− ，其出口之設定為完全展開流(fully 

developed flow) ，利用無因次參數Nu及Gr界定層流到紊流的區域，在Re = 1000的設定

下，當 54 10Gr > × ，其入口壓力會小於出口壓力( 0 LP P< )，且在 5 78 10 5 10Gr× < < × 之間

屬於紊流；在Re = 1500的設定下，當 53 10Gr > × ，其入口壓力會小於出口壓力( 0 LP P< )，

且在 6 82 10 10Gr× < < 之間屬於紊流。Barletta等人[5, 6]利用數值計算無限長之長方管等

溫及等熱通量之單面及多面壁面，使用Boussinesq assumption去探討層流混合對流在不

同長方管比例的逆流現象(flow reversal)。Barletta等人 [7]討論在二維垂直平板混合對流

之黏性耗散，左側為低溫壁面，右側為高溫壁面，使用Boussinesq assumption，downward 

flow之逆流現象較upward flow明顯，其黏性之耗散會增加浮力效應。Suastegui等人[8]

探討二維暫態層流有限管長之逆流混合對流，使用Boussinesq assumption，在一側中間

段等溫，其餘為絕熱壁面，研究不同浮慣比在加熱附近的迴流現象。Yang等人[9]研究二

維長直管，一面為等熱通量壁面，另一面為絕熱壁面，使用Boussinesq assumption探討

浮慣比分別為加溫壁面 100,400Ri = 及冷卻壁面 2, 3, 8Ri = − − − ，並討論 Re ReGr − 的關

係，達到Fully Developed或Flow Reversal之區域。Boulama與Galanis[10]探討二維垂直平

板，比較等溫及等熱通量壁面之計算，等溫(UTW)的影響參數較單一，等熱通量(UHF)

的影響參數為 MRe   ReTGr Gr及 與熱通量率。Desrayaud等人[11]探討二維垂直壁面高

溫管道之流體逆流現象，其工作流體為空氣，高溫壁面( 60hT = ℃)與流體溫差50度，討

論 4 64.71 10 ~ 1.24 10Gr = × × 、Re 300 ~ 1300= 及管道長寬比，研究指出雷諾數(Reynolds 

number)的增加，會使上述現象消失，亦與高Peclet number (Re PrL ⋅ )相關，此現象與管長

無關。Zghal等人 [12]研究二維垂直管道，絕熱管壁間有一段加熱壁面，此研究設定

Boussinesq hypothesis ，比較不同加熱管長、雷諾數(Reynolds numbers)及浮慣比

(Richardson numbers)之流線及紐塞數(Nusselt number)，而是否會有迴流的現象主要是由

Peclet number及浮慣比的關係來決定。 
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Mai 等人[13]討論二維垂直圓柱之不可壓縮混合對流不穩定現象，在加溫部分，不

穩定的渦流會出現在壁面附近，逆流現象出現在波不穩定之下方；在降溫部分，低雷諾

數會在頂部產生逆流之坡不穩定現象，其設定條件為 Boussinesq Assumption。Bhoite等

人[14]研究二維薄膜散熱，其條件設定亦是 Boussinesq assumption，文中提到強制對流

速度( forced convection velocity υin, fc )是由風扇帶動的等溫流體，自然對流速度(natural 

convection velocity υin, nc)則是由浮力效應所帶動，其混合對流進口速度設定則由強制對

流速度給定，且其壓力梯度(∆P)與雷諾數定義亦是與強制對流設定相同，在高雷諾數時

會有較強的迴流產生，此時浮力效應可忽略。Nguyen[15]等人研究三維壁面高熱通量圓

柱之暫態混合對流，其設定為 Boussinesq assumption，混合逆流(Opposing flow) 在

53 10Gr = × ，出口壁面附近會先出現逆流現象；混合助流(Aiding flow)在 610Gr = 會先在

軸中心出現逆流現象。Koizumi 等人[16]研究在三維空間中有一軸對稱發熱金屬球，其

實驗設定為 5103.3 ×=Gr 與 1900Re≤ ；其模擬是利用 Storm/CFD2000 software 設定條件

為 Boussinesq Assumption，溫差20 K，其浮慣比 ( )2ReGr 在 0.33~0.83之間，經由實驗

及模擬對照可以相輔相成。Stiriba等人[17]研究三維水平管道，入口處有一下凹處，下

凹處有一垂直壁面為高溫壁面，其他為絕熱壁面，在 63 10~10=Gr 範圍內及

Re  100, 1000= 這兩個雷諾數下去比較其速度場、流線、溫度分佈與在高、低溫面上之

平均紐塞數(averaged Nusselt number)，可以得其結果在 Re=100且(浮慣比) 100≤Ri 與

Re=1000且 1.0≤Ri 時，流場結構會趨於穩定，此研究之條件亦是使用 Boussinesq 

Assumption。以上之文獻多數使用Boussinesq Assumption作討論。 

Laaroussi等[18]研究二維垂直壁面高溫管道內密度變化，因高溫壁面附近受溫度影

響，密度會改變，應設定為理想氣體，並與 Boussinesq assumption 作討論，利用橢圓模

型流允許入口區域有逆流產生，混合對流會因高溫壁面產生的密度改變而迫使流場向軸

中心推進，造成逆流。 

    此外，亦有討論紊流入口之流場之混合對流，Azizi and Benhamou [19]討論在層流

混合對流中，浮力向上或向下對熱傳及質傳的影響，由研究中可得知，在重力與流動方

向相反的流動中，存在壁面與進口流體的高溫差，會產生流體不穩定性及紊流產生。
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Shahraeeni[20]研究垂直管中混合對流之紊流現象，以定熱通量的條件下觀察浮力效應對

熱傳係數之實驗研究，並利用 εκ − model作模擬對照有用的實驗數據，由模擬可得向下

流動之熱傳與浮力效應都較大；對照向上流動之熱傳可增可減，則取決於浮力效應之強

度；在實驗數據中顯示強浮力效應時，Nusselt number會劇降，其結果與模擬相同。Balaji 

[21]探討紊流計算時，以 direct numerical simulations (DNS)去計算紊流，而靠近壁面的區

域需要加入一個由流量分析的壁面函數，作討論與比較。 

綜合以上論述，前人在探討此類混合對流之垂直管道的研究，多數限制較多，其一

是數值模擬多假設二維流場，實際三維流場之流動現象因而無法仔細探討；再者是為求

符合 Boussinesq Assumption必須用溫差 30度以內[22]之限制且流體均視為不可壓縮流，

壁面與流體溫度差設定受限，與實際應用之溫差相距甚大；而依目前大部分的計算方

式，在計算流場部份依照流體速度將其區分為可壓縮流(大於 0.3馬赫)與不可壓縮流(小

於 0.3馬赫)，此種區隔卻嚴重的影響其應用範圍。 

混合對流中給定的速度所帶給流場的質量流率是否能讓熱傳效益增加，是本文主要

探討的問題，故此研究著重在高浮慣比 ( )2ReGr 之助流(aiding flow)混合對流。本研究針

對三維的流場作模擬且在自然對流流場中加入強制對流，考慮一垂直方型管之混合流

場，其重力方向與強制對流流動方向相反，此時浮力效應方向與強制對流流動方向相

同，觀察此時流場的熱傳增益及溫度場、速度場變化。因為密度會隨著壓力與溫度的變

化而改變，對於實際工業界中的應用較為廣泛與實際，因此在本研究中的工作流體不論

高速或低速皆視為可壓縮流，而不使用 Boussinesq Assumption，以增加應用範圍。本研

究為三維垂直方形壁面加熱管道，流體在管道中因受到壁面加熱產生溫度梯度，探討此

垂直方形管道對高溫壁面附近及出口之溫度及速度場的影響，並說明高溫壁面上之平均

紐塞數隨著管道位置而變化，進而比較不同對流方式(自然對流及混合對流)與溫度場之

影響及熱傳效率之增益。李[23]發展出黏性流場之全域速度場數值解法，此種方法最大

的困難處在於計算低速流場時，由於可壓縮流必須遵守 Courant-Friedrichs-Lewy (CFL)

條件，因此在低速流體時，受限於流體變化傳遞速度(約等於聲速)，時階將會極小。在

此種情況造成計算過程將耗費極大的時間與整體過低的計算效率。為了改善此缺點，本
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研究在計算可壓縮流時加入 Preconditioning 法，藉此讓流體即使在低速時，也可有較高

的效率與良好的收斂性。在計算此種低馬赫數流體的方面，目前有密度基底法

(Density-based method)與壓力基底法(Pressure-based method)。本研究以密度基底法為

主。而在密度基底法中又以 Turkel[24]提出 Preconditioning 法最為廣泛應用，不僅可同

時應用在可壓縮流與不可壓縮流中，更可以讓程式的收斂性增加。在邊界設定最棘手的

問題是流體的流動速度和壓力波的速度相差過大，導致在出口反射回彈的壓力波會干擾

流體流動，故在入口及出口處設置非反射性(non-reflecting)邊界條件[25]，避免干擾發

生，若設定為完全展開流，則會與實際流場有所差異。 

故本文需要求解完整的 Navier-Stokes方程式與理想氣體方程式(ideal gas equation)

以得此可壓縮流中密度的變化，以期能同時考慮密度與壓力變化之效應符合實際物理現

象。採用中央插分法處理黏性項部分；而非黏性項則必須採用 Roe法[26]，以解決偏微

分方程式的不連續問題；本研究在作數值計算時，主要是利用網格之間的物理量，因此

使用 MUSCL(Monotone Upstream-centered Schemes for Conservation Laws)法[27]來計算

ROE法中網格與網格間的物理量；為了處理在低速可壓縮流時不易收斂的困擾，計算時

加入了 Preconditioning法[28]，可有效提高收斂效率，使其在高速與低速可壓縮流場均

可適用，但卻破壞原統御方程式，為了彌補此一缺點，故需要加入 Artificial time term來

修正；並使用 Dual time stepping[29]來計算暫態的物理量；最後使用 LUSGS(implicit 

lower-upper symmetric Gauss-Seidel algorithm)法[30]做迭代運算。 

此外，在處理複雜的流體力學問題時需要大量的計算過程，利用多核心處理器來提

升運算速度已為目前的發展主流。多核心處理器對於單一執行緒在平行運算方面，並無

法提升計算速度；若利用多執行緒的程式架構，可透過不同核心來同時計算，達到提升

計算效率、節省計算時間之目的；但是多執行緒的程式在撰寫、編輯上，也都比單一執

行緒的程式架構複雜。常見的平行運算方法有 MPI 和 OpenMP兩種方法；本文採用

OpenMP方法提升運算速度。MPI (Message Passing Interface)是一種分散式記憶體

(distributing memory)的觀念，而 OpenMP (Open Multi-Processing)為共享式記憶體(sharing 

memory)的觀念，而兩種方法各有優缺點。MPI 在撰寫程式上面相較於 OpenMP較困難，
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且計算速度較慢且會受限於網路效率，在設備擴充方面較昂貴；反之 OpenMP在程式撰

寫上較簡單，計算速度快且不會受限於網路效率，在設備擴充方面需較少的經費。因此

本程式利用 OpenMP來進行平行化運算，效率為原程式的四倍，減少計算時間及成本。 

結果發現，三維高溫壁面之自然對流，其隨時間從逆流產生至穩定狀態之變化，因

浮力效應往上推升，在出口端產生最大速度。若控制入口流量與自然對流流量相同，因

已強制入口之流量，浮力效應無法發揮到最大，其熱傳效果會較自然對流略低一些；若

控制入口流量在 1/2之自然對流流量，在出口端會吸進流量造成逆流，以彌補流場不足

的部分，因出口之逆流縮減出口流量，故其熱傳效果較差；若控制入口之流量低於自然

對流可吸進量之 1/4，其浮慣比，其出口會大量吸入不足之流量並與強制之速度造成碰

撞，造成內部流場之不穩定，其熱傳效果高於自然對流可吸進量 1/4流量之混合對流。 
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圖 1-1 MPI Method 
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 圖 1-2 OpenMP Method 
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第二章第二章第二章第二章 物理模式物理模式物理模式物理模式 

2-1、、、、物理尺寸與分析模式物理尺寸與分析模式物理尺寸與分析模式物理尺寸與分析模式：：：： 

圖(2-1)為本文之物理模式圖，正方形截面之三維垂直方形管道，正方形截面之邊長

為 d ，其管道總長度為 l ，全長皆為等溫加熱壁面。初始溫度 0T 的冷卻空氣以均勻流等

速度 0u 由管道入口(ABCD)進入，在管道壁面為高溫壁面 hT ， hT 對管道內的空氣加溫，

進行熱交換；探討自然對流現象時，入口速度 0u 為零，流體在管道中因受到壁面加熱溫

度上升，產生效應。其中 x方向為流動方向，  y z、 皆為垂直壁面方向。u、v、w分

別為其所對應的速度。為簡化管道流研究，以往大多將出口設為速度完全發展流條件及

壓力為大氣壓力邊界，但此方式在可壓縮流中壓力波在出口處易會反射回計算區域而影

響收斂性，較不適用於此低速可壓縮流流場；且以往為使熱管道內的熱流場更容易成為

完全發展流，在管道的長度以及寬度上需要一定的比例，但此一方式會使網格需求增

加，計算時間較長，因此本研究在出口條件部分設為非反射性(non-reflecting)邊界[25]

條件，此時可視其出口為遠處的邊界條件，大幅減少網格數量。此研究分別探討純自然

對流及高浮慣比之混合對流，討論其質量流率、流場方向及密度分布作分析，並以與自

然對流進口流量相同之混合對流、1/2自然對流流量之混合對流及 1/4自然對流流量之

混合對流做分析比較。 
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2-2、、、、分析假設及統御方程式分析假設及統御方程式分析假設及統御方程式分析假設及統御方程式：：：： 

本研究選擇層流流場作為模擬流場，設定如下： 

1. 可壓縮流，空氣密度會隨溫度與壓力而改變。 

2. 工作流體為空氣，假設為理想氣體。流體性質為牛頓流體(Newtonian fluid)，黏滯係

數為等方向性。 

3. 有重力效應影響。 

4. 進出口條件皆為完全非反射條件。 

5. 考慮溫度變化對流體所造成的影響。 

6. 所有壁面均為不可滑移(No slip condition)。 

統御方程式分別為連續方程式(Continuity equation)、動量方程式(Momentum equation)與

能量方程式(Energy equation)，壓力方面則假設流體為理想氣體，利用理想氣體狀態方程

式定義。 

 

連續方程式、動量方程式、能量方程式如下： 
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ρ 為密度， p 為壓力。u、v、w 分別為 x、 y、z 方向的速度。k為 thermal diffusivity。

2 2 21
( )

2ve C T u v w= + + + ， vC 為等容比熱。 

 

理想氣體狀態方程式： 

P RTρ=                                                                (2-7) 
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2-3、、、、邊界條件邊界條件邊界條件邊界條件：：：： 

    本研究所採用的統御方程式為可壓縮 Navier-stokes方程式，因此需要給定的邊界條

件有：初始狀態、入口條件、出口條件、壁面邊界。 

2-3.1 初始狀態：初始速度、初始壓力、初始密度 

初始速度 u： 0 /m s  

初始速度 v： 0 /m s  

初始速度 w： 0 /m s  

初始壓力 p： 一大氣壓力(101300Pa ) 

初始密度 ρ ： 空氣密度( 31842.1 mkg ) 

2-3.2 入口條件： 

入口速度 u：  0u    (混合對流)、非反射性邊界(自然對流) 

入口速度 v： 0 /m s  (混合對流)、非反射性邊界(自然對流) 

入口速度 w： 0 /m s  (混合對流)、非反射性邊界(自然對流) 

入口壓力 p：非反射性邊界 

入口溫度 T：非反射性邊界 

2-3.3 出口條件： 

 出口速度 u：非反射性邊界 

出口速度 v：非反射性邊界 

出口速度 w：非反射性邊界 

出口壓力 p：非反射性邊界 

入口溫度 T：非反射性邊界 

2-3.4 壁面邊界： 

邊界速度： 不可滑移條件， smwvu /0===   

邊界溫度： 加熱壁面溫度 hT  

邊界壓力：在垂直壁面方向，梯度為零， 0
p

n

∂ =
∂
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圖 2-1  垂直管道之物理模式圖 
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第三章第三章第三章第三章 數值計算模式數值計算模式數值計算模式數值計算模式 

本章主旨在說明本論文的數值計算所使用的所有模式。第一節首先要知道所求解的

方程式為 Navier-Stokes方程式。參考 Fu和 Li 等人[22]之數值方法，本研究將方程式拆

解為非黏滯項與黏滯項。其中在計算黏滯性項則採用二階精度的中央差分法。第二節介

紹的為黎曼解中的 ROE法(Roe Scheme)[26]，利用 ROE法來求出非黏滯項的通量。接

著第三節介紹 MUSCL 法 (Monotone Upstream-centered Schemes for Conservation 

Laws)[27]，此法是為了要解出 ROE法中使用的網格之間的物理量，然後為了防止在高

階插分時產生震盪現象，在 MUSCL法插分的結果方程式中加入 Minmod limiter以確保

程式不會發散。第四節為介紹 Preconditioning法[28]，因為當計算低速可壓縮流時，因

速度和音速的數量級(order)上差距過大，在數值分析時不好計算，所以為彌補此一缺點

須使用 Preconditioning 法。第五節為 Dual time stepping，因使用 Preconditioning 法時，

加入 Artificial time term而破壞了完整的統御方程式，為了使計算暫態結果較準確，因此

需使用 Dual time stepping疊代，使其在 Artificial domain收斂時才能進入下一個真實時

階，更提高程式的效率。第六節為 LUSGS法(implicit lower-upper symmetric Gauss-Seidel 

algorithm)[30]，程式因為在使用 Preconditioning法，故而在統御方程式中修改了計算時

階，故需要加入 Artificial time term，待時階項收斂時才能達到真實穩態。第七節為完全

非反射邊界之介紹，為了使自然對流之邊界可以更接近真實狀態，在程式的出入口邊界

使用完全非反射邊界。綜合上述，本論文在數值上的計算過程為，利用 MUSCL法算出

ROE 法所需要的網格間物理量，求出非黏滯的通量，並且在計算通量時加入

Preconditioning法，以拉近與音速的數量級(order)。接下來使用二階中央插分法對黏滯

項做插分進而求出黏滯項；然後再與 ROE 法求出的通量結合得到真正的物理通量。最

後使用 Dual time stepping及 LUSGS法疊代以求出正確時階的物理量。 
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3-1、、、、統御方程式統御方程式統御方程式統御方程式：：：： 

本研究在計算流場的方面其統御方程式分可為兩大部分，第一部份為非黏滯性項的尤拉

方程式，第二部份為黏滯性項。 

S
z

H

y

G

x

F

t

U =
∂
∂+

∂
∂+

∂
∂+

∂
∂

                        (3-1) 

其中 

( )T
U u v w eρ ρ ρ ρ ρ=                               (3-2)

 2

2

2

xx

xy

xz

xx xy xz

u

u P

uv
F

uw

V T
e u Pu k u v w

x

ρ
ρ τ

ρ τ
ρ τ

ρ τ τ τ

 
 + − 
 −

=  − 
 ∂ + + − − − −   ∂     



























−−−
∂
∂−+








+

−
−+

−

=

yzyyyx

yz

yy

yx

wvu
y

T
kPvv

V
e

vw

Pv

vu

v

G

τττρ

τρ
τρ

τρ
ρ

2

2

2

       

 

( )

( ) 





















−−

−−
=

gu

g

S

0

0

0

0

0

ρρ

ρρ

 

 

2

2

2

zx

zy

zz

zx zy zz

w

wu

wv
H

w P

V T
e w Pw k u v w

z

ρ
ρ τ
ρ τ

ρ τ

ρ τ τ τ

 
 − 
 −

=  + − 
   ∂
 + + − − − −  ∂  

(3-3) 

(3-4) 

(3-5) 

(3-6) 
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ρ 為密度， p 為壓力。u、v、w 分別為 x、 y、z 方向的速度。k為 thermal diffusivity。

2 2 21
( )

2ve C T u v w= + + + ， vC 為等容比熱。 

上式可拆解為黏滯性項與非黏滯性項： 

 























++

−

























∂
∂−+








+

+

=+=

xzxyxx

xz

xy

xx

viscidinviscid

wvu
x

T
kPuu

V
e

uw

uv

Pu

u

FFF

τττ
τ
τ
τ

ρ

ρ
ρ

ρ
ρ

0

2

2

2

      (3-7) 

    (3-8) 























++

−

























∂
∂−+








+

+
=+=

zzzyzx

zz

zy

zx

viscidinviscid

wvu
z

T
kPww

V
e

Pw

wv

wu

w

HHH

τττ
τ
τ
τ

ρ

ρ
ρ
ρ
ρ

0

2

2

2

 

 

左式由非黏滯項組成的方程式即稱為尤拉方程式。 

 

 

 

 

 

 

2

2

0

2

yx

yyinviscid viscid

yz

yx yy yz

v

vu

v P
G G G

vw

V T
u v we v Pv k

y

ρ
ρ

τ
ρ

τ
ρ

τ
τ τ τρ

 
  
  
  +
 = + = − 
  
    ∂    + ++ + −    ∂  

(3-9) 
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3-2、、、、Roe scheme：：：： 

在雙曲線的守恆形式方程式中，若其初始條件包含有不連續的片段連續(piecewise)

常數，此類型的問題通稱為黎曼(Riemann)問題。因為其包含有不連續解，因此在流體計

算上有著相當廣泛的應用。一維線性黎曼方程式如下： 

0
u u

a
t x

∂ ∂+ =
∂ ∂

                                                       (3-10) 

其中a為一常數 Jacobian矩陣。  

初始條件為 ( ) ( )0

   0
,0

   0
L

R

u x
u x u x

u x

<
= =  >  

從新改寫(3-10) 

0
U U

A
t x

∂ ∂+ =
∂ ∂

 

求出 A之特徵值矩陣以及特徵向量。 

1A K K −= Λ ，其中Λ為特徵值矩陣：
1 0

0 m

λ

λ

 
 

Λ =  
 
 

⋯

⋮ ⋱ ⋮

⋯

。 

(1) ( ), ,
TmK K K =  ⋯ 為特徵向量，故 ( ) ( )i i

iAK Kλ= 。 

接著定義特徵變數W 〈characteristic variables〉，其定義如下： 

( , )W W t x= ， ( 1)W K U−= 或U KW= 。 

因此
U W

K
t t

∂ ∂=
∂ ∂

且
U W

K
x x

∂ ∂=
∂ ∂

， 

將此結果代入(3-10)式中可得： 

0t xKW AKW+ = ， 

可再繼續簡化成： 

0t xW W+ Λ =                                                         (3-11) 

方程式(3-11)稱為 canonical form或 characteristic form。 

將以上的結果簡單整理如下： 
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0i i
i

W W

t x
λ∂ ∂+ =

∂ ∂
，或 

1 1 1

2 2

3 3

... 0

0 ... 0
0

: : : : :

0 ... mt x

w w

w w

w w

λ

λ

     
     
     + =
     
     
          

                          (3-12) 

上式可由特徵曲線法求得其解為： 

 (0)    0
( , ) ( )

   0
i i

i i i
i i

x t
w x t w x t

x t

α λ
λ

β λ
− <

= − =  − >
                                     (3-13) 

其中， iα 與 iβ 為初始值的特徵變數。由於U KW= ，可以得到 

(0) ( )( , ) ( )
m

i
i i

i

u x t w x t Kλ= −∑  

參照圖(3-1)，可以進一步推導出 

( ) ( )

1 1

( , )
p m

i i
i i

i i p

U x t K Kα β
= = +

= +∑ ∑                                              (3-14) 

除此之外，還可決定出 ( , )U x t 中的 jump U∆ ： 

( )

1

m
i

R L i
i

U U U Kα
=

∆ = − =∑ ɶ                                                  (3-15) 

其中 i i iα β α= −ɶ 。 

在一維線性黎曼問題中，雖然有 exact solution，但在非線性問題裡需利用疊代等方

法，這些動作將耗費大量的時間，因此在實際應用上並不廣泛。為了解決此問題，一般

皆求解近似黎曼問題〈approximation Riemann problem〉解而不直接求其 exact solution。

在求解近似黎曼問題中最被廣泛應用的方法為 Roe所提出，亦即為 Roe scheme，其內容

如下： 

假設一維尤拉方程式： 

0
U F

t x

∂ ∂+ =
∂ ∂

                                                           (3-16) 

根據 chain rule，可將方程式(3-16)改寫如下： 
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0
U F U

t U x

∂ ∂ ∂+ =
∂ ∂ ∂

  

再令 ( )
F

A U
U

∂=
∂

，於是方程式(3-16)可以表示成： 

( ) 0
U U

A U
t x

∂ ∂+ =
∂ ∂

                                                      (3-17) 

其中， ( )A U 就稱為 Jacobian矩陣。 

而 Roe scheme將原本的 Jacobian矩陣 ( )A U 用常數 Jacobian矩陣〈constant Jacobian 

matrix〉 ( , )L RA U Uɶ 代替，因此本來的黎曼問題可以改寫成近似黎曼問題： 

( ) 0
U U

A U
t x

∂ ∂+ =
∂ ∂

ɶ  

  0
( ,0)

  0
L

R

U x
U x

U x

<
=  <

                                                     (3-18) 

於是前述方法可以得到(3-18)的近似解。由以上的原理可得知，在近似黎曼問題上，

Roe利用常數 Jacobian矩陣取代原本的 Jacobian矩陣使方程式由非線性轉變成線性，但

是初始條件並沒有改變，因此可以得到方程式(3-16)的近似解。為了要求得合理的常數

Jacobian矩陣，須合乎 Roe所提出的四項條件： 

1. U 與 F 之間，存在著線性轉換的關係。 

2. 當 R LU U U− → ，則 ( , ) ( )L RA U U A U→ɶ ，此處
F

A
U

∂=
∂

。 

3. ( )L R L RA U U F F− = −ɶ 。 

4. 矩陣 Aɶ 的特徵向量必須線性獨立。 

這四項條件都是雙曲線方程式所需具備的，這同時也說明了 Roe所提出的常數

Jacobian矩陣必須有實數特徵值，其所對應的特徵向量必須線性獨立。除此之外，條件

3.則是為了符合守恆定律（conservation law）與 Rankine-Hugoniot條件。 

線性黎曼問題的解析解，可以直接從(3-13)與(3-15)式得到， 1

2

( / )
i

U x t
+

的解可以利用

下面的方程式計算： 

( )
1

02

( / )
i

i
L i

i
U x t U K

λ
α

+ <
= +∑ ɶ                                                 (3-19) 
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或 ( )
1

02

( / )
i

i
R i

i
U x t U K

λ
α

+ >
= −∑ ɶ                                              (3-20) 

其中
1

2
i + 表示網格與網格之間的交界面(face)。 

而黎曼問題的近似解，則須從解近似黎曼問題著手： 

( )
0

U F U

t x

∂ ∂+ =
∂ ∂

ɶ
，根據(3-18)式可得知 F AU= ɶɶ  

為了符合守恆的條件，因此下式必須成立： 

( ) ( ) ( ) ( )R L R LF U F U F U F U− = −ɶ ɶ                                            (3-21) 

接著在固定體積的條件下，積分近似解 1

2

(0)
i

U
+

，可得到通量(flux)的數值公式： 

1 1

2 2

( (0)) ( ) ( )R R
i i

F F U F U F U
+ +

= − −ɶ ɶ                                          (3-22) 

再從 F AU= ɶɶ 的關係中可進一步求得： 

1 1

2 2

(0) ( )R R
i i

F AU F U AU
+ +

= − −ɶ ɶ                                             (3-23) 

再根據(3-19)式與(3-20)式可以推導出： 

( ) ( )
1

0 12

( ) ( )
i

m
i i

R i R i i
i

i

F F U A K F U K
λ

α λ α+

+ > =
= − = −∑ ∑ɶ ɶ ɶɶ ɶ                            (3-24) 

或 ( ) ( )
1

0 12

( ) ( )
i

m
i i

R i L i i
i

i

F F U A K F U K
λ

α λ α−

+ > =
= + = +∑ ∑ɶ ɶ ɶɶ ɶ                             (3-25) 

(3-24)與(3-25)所指的 iλ−ɶ 與 iλ+ɶ 分別是代表負的特徵值與正的特徵值，接著再利用平均的

方法將 1

2
i

F
+
更進一步表示成： 

( )
1

12

1
( ) ( )

2

m
i

R L i i
i

i

F F U F U Kλ α
+ =

 = + − 
 

∑ ɶ ɶ                                     (3-26) 

再由(3-14)式可再次改變 1

2
i

F
+
的形式如下： 

1

2

1
( ) ( )

2 R L
i

F F U F U A U
+

 = + − ∆ 
ɶ                                          (3-27) 

其中 R LU U U∆ = − 、 1A A A K K+ − −= − = Λɶ ɶ ɶ ɶ ɶ ɶ ，
1 0

0 m

λ

λ

 
 

Λ =  
  
 

⋯

ɶ ⋮ ⋱ ⋮

⋯

。 
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接下來需找出 Aɶ 中所需的物理量，必須利用下列方法： 

現考慮一維等溫尤拉方程式： 

( ) 0t xU F U+ =                                                     (3-28) 

其中 1

2

u
U

u u

ρ
ρ

   
= =   

  
； 1

2 2
2

f u
F

f u a p

ρ
ρ

   
= =   +  

，a為聲速 

方程式(3-28)的 Jacobian矩陣與其對應的特徵值與特徵向量如下所示： 

2 2

0 1
( )

2

F
A U

a u uU

 ∂= =  −∂  
                                               (3-29) 

特徵值： 1 u aλ = − ， 2 u aλ = +  

特徵向量： (1) 1
K

u a

 
=  − 

， (2) 1
K

u a

 
=  + 

 

接著選定 parameter vector Q 

1

2

q U
Q

q u

ρ
ρ ρ

  
= =   
    

                                                   (3-30) 

再將 F 與U 利用Q 表示： 

2
1 1

1
2 1 2

u q
U q Q

u q q

  
= = =   
   

                                                  (3-31) 

1 1 2
2 2 2

2 2 1

f q q
F

f q a q

   
= =   +   

                                                   (3-32) 

為了表示出 U∆ 與 F∆ 需在定義 averaged vectorQɶ： 

1

2

1 1
( )

2 2
L R

L R

L L R R

q
Q Q Q

q u u

ρ ρ
ρ ρ

 + 
= = + =    +    

ɶ
ɶ

ɶ
                                 (3-33) 

再找出 ( )B B Q= ɶɶ ɶ 與 ( )C C Q=ɶ ɶ ɶ 使得 

U B Q∆ = ∆ɶ ； F C Q∆ = ∆ɶ                                                  (3-34) 

將(3-34)結合可得 
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1( )F CB U−∆ = ∆ɶ ɶ                                                         (3-35)  

再根據上述條件 3求出近似 Jcaobian矩陣 

1A CB −=ɶ ɶ ɶ                                                               (3-36) 

為了滿足(3-34)，可以求得 

1

2 1

2 0q
B

q q

 
=  
 

ɶ
ɶ

ɶ ɶ
； 2 1

2 2
1 22

q q
C

a q q

 
=  
 

ɶ ɶ
ɶ

ɶ ɶ
                                          (3-37) 

再帶入(3-36)可得 

2 2

0 1

2
A

a u u

 
=  − 
ɶ

ɶ ɶ
                                                       (3-38) 

uɶ為 Roe averaged velocity 

L L R R

L R

u u
u

ρ ρ
ρ ρ

+
=

+
ɶ                                                     (3-39) 

因此可以用同樣方法得到以下物理量： 

L L R R

L R

v v
v

ρ ρ
ρ ρ

+
=

+
ɶ                                                      (3-40)   

L L R R

L R

w w
w

ρ ρ
ρ ρ

+
=

+
ɶ (3-41)                                         

L L R R

L R

H H
H

ρ ρ
ρ ρ

+
=

+
ɶ  (3-42)                                     

1/2[( 1)( 1/ 2 )]a H Vγ= − −ɶ ɶɶ                                                   (3-43) 

其中uɶ、vɶ、wɶ 分別代表 x方向、y 方向、z 方向的速度。Hɶ、aɶ則分別為焓和音速。(3-39)

～(3-42)式中的 LU 以及 RU 則是利用 MUSCL法求出。 
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               0x <            0x =             0x >            x  

 

             

 

 

 

圖 3-1 黎曼問題特徵值結構圖 
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3-3、、、、Monotonic Upstream-Centered Scheme for Conservation Laws(MUSCL)：：：： 

本論文使用的是採用I. Abalakin等[27]中所使用的插分法。其方程式如下： 

1/ 2 1/ 21/ 2L L
i i iu u u+ += + ∆                                                  (3-44) 

1/ 2 1/ 21/ 2R R
i i iu u u+ += − ∆                                                  (3-45) 

1 / 2 1 1(1 )( ) ( )L
i i i i iu u u u uβ β+ + −∆ = − − + −

1 1 2( 3 3 )c
i i i iu u u uθ − + ++ − + − +  

2 1 1( 3 3 )d
i i i iu u u uθ − − ++ − + − +                                              (3-46) 

1/ 2 1 2 1(1 )( ) ( )R
i i i i iu u u u uβ β+ + + +∆ = − − + − 1 1 2( 3 3 )c

i i i iu u u uθ − + ++ − + − +  

1 2 3( 3 3 )d
i i i iu u u uθ + + ++ − + − +                                              (3-47) 

其中(3-46)、(3-47)式中的 β 、 cθ 、 dθ  值可由表(3-1)中查得。代入不同的值可以得到不

同的精度。本論文則是使用三階精度，以減少數值計算的消散性。 

在程式中，高次項的插分法在不連續的情況下，容易使震盪變大，為了降低震盪，本研

究在 MUSCL法插分出來的方程式中加入 minmod limiter，用來確保程式不會發散。 

因此(3-44)與(3-45)式需改寫如下： 

1/ 2 1/ 21/ 2 min mod( )L L
i i iu u u+ += + ∆                                            (3-48) 

1/ 2 1/ 21/ 2min mod( )R R
i i iu u u+ += − ∆                                            (3-49) 

minmod( , ) ( ) {0, [ ], ( )}x y Sgn x Max Min x ySgn x=  
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表 3-1 精度係數值 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

β  cθ  dθ  Order 

1/3 

1/3 

1/3 

1/3 

 

0 

-1/6 

0 

-1/10 

0 

0 

-1/6 

-1/15 

 

3 

4 

4 

5 
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3-4、、、、Preconditioning 法法法法：：：： 

為了提高程式的應用範圍，在 Navier-Stokes方程式中加入 preconditioning法，讓程式不

論在高速或低速流內計算可壓縮流，皆可獲得精確的結果。 

S
U F G H

t x y z

∂ ∂ ∂ ∂+ + + =
∂ ∂ ∂ ∂

                                                 (3-50) 

上式為原始方程式，接著將保守形式（conserved variables）轉變成主要變數形式（primitive 

variables），其形式如下： 

SpU F G H
M

t x y z

∂ ∂ ∂ ∂+ + + =
∂ ∂ ∂ ∂

                                              (3-51) 

其中 [ ]T
pU p u v w T= ，M 為轉換矩陣： 

0 0 0

0 0

0 0

0 0

1

p T

p T

p T

p
p T

p T p

u u
U

v vM
U

w w

H u v w H C

ρ ρ
ρ ρ ρ
ρ ρ ρ
ρ ρ ρ

ρ ρ ρ ρ ρ ρ

 
 
 ∂
 = =

∂  
 
 − + 

                           (3-52) 

其中 p p

ρρ ∂=
∂

； T T

ρρ ∂=
∂

 

接著將(3-51)式的方程式乘上矩陣 K  

2

1 0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

( ) 1

u

vK
w

H V u v w

 
 − 
 −=
 − 
 − − − − −  

                                        (3-53) 

再將 K 與M 相乘 

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

p T

p

KM

C

ρ ρ
ρ

ρ
ρ

ρ

 
 
 
 =
 
 
 − 

                                             (3-54) 

將(3-54)式帶入(3-51)式，連續方程式： 
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( ) Sp

p u v w

t x y z

ρ ρ ρρ ∂ ∂ ∂ ∂+ + + =
∂ ∂ ∂ ∂

                                            (3-55) 

在理想氣體中可將(3-55)再表示成 

2
( ) S

p u v w

C t x y z

γ ρ ρ ρ∂ ∂ ∂ ∂+ + + =
∂ ∂ ∂ ∂

                                           (3-56) 

其中C 為聲速 

由(3-56)式可以看出，在等密度條件下，由於 pρ 為零，(3-55)式將變成 

S
u v w

x y z

ρ ρ ρ∂ ∂ ∂+ + =
∂ ∂ ∂

                                                    (3-57) 

上式即為不可壓流的連續方程式。 

綜上所述，可以得知只要改變(3-54)式中的 pρ 項，利用當地流場速度（local velocity）的

倒數取代，即可轉換系統中的特徵值，藉此改變低速情況下流場的聲速，使聲速與流場

速度冪次級數(order)相同，系統不再受到 CFL(Courant-Friedrichs-Lewy Condition)條件的

限制，提高程式的計算效率。 

利用θ 取代 pρ 項： 

2

1 1
( )

r pU TC
θ = −

                                                         
(3-58) 

max      if   

                  if   

         if    
r

U u C

U u C u C

C u C

ε ε
ε

 × < ×
= × < <
 >

                                     (3-59)  

其中ε 為一極小的值，約等於 510− ，其主要是用來防止停滯點（stagnation point）在

計算時所造成的奇異點（singular point）現象。對於黏制性流體而言， rU 必須大於流體

的當地擴散速度（local diffusion velocity），因此 rU 還需加入下列限制： 

max( , )r rU U
x

ν=
∆  

將θ 帶入(3-54)式後，可得到一新矩陣 ncΓ  
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0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

T

nc

pC

θ ρ
ρ

ρ
ρ

ρ

 
 
 
 Γ =
 
 
 − 

                                             (3-60)  

經過上述推導之後，方程式從(3-51)式轉變如下： 

( ) Sp
nc

U F G H
K

t x y z

∂ ∂ ∂ ∂Γ + + + =
∂ ∂ ∂ ∂

                                          (3-61) 

為了讓(3-61)式中的通量項再度轉換成保守形式，在乘上 1K −  

1( ) Sp
nc

U F G H
K

t x y z
− ∂ ∂ ∂ ∂Γ + + + =

∂ ∂ ∂ ∂
                                         (3-62) 

根據(3-62)式，定義 

1

0 0 0

0 0

0 0

0 0

1

nc

p

T
u

u
T

v
K v

T
w

w
T

H u v w H C
T

ρθ

ρθ ρ

ρθ ρ

ρθ ρ

ρθ ρ ρ ρ ρ

−

− 
 
 

− 
 
 − Γ = Γ =
 
 −
 
 
 −− +   

                                    

最後方程式簡化成如下形式： 

SpU F G H

t x y z

∂ ∂ ∂ ∂Γ + + + =
∂ ∂ ∂ ∂

                                              (3-63) 

其中Γ為 preconditioning矩陣， pU 為 primitive form[ , , , , ]TP u v w T  

由於方程式在時間項經過改變，因此必須重新推導 Roe所提出的近似黎曼解。在(3-27)

式中，可以觀察到 1

2
i

F
+
項，是由

1
( ( ) ( ))

2 R LF U F U+ 的中央差分法加上為了解決不連續面

問題的 artificial viscosity term 
1

2
A U∆ɶ 所組成。加入 preconditioning的方程式只需在

artificial viscosity term做改變即可，其推導如下： 
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1 -1

1 -1

1 -1

S

( ) S

( ) S

( ) S

p

p

p

p p p p

U F G H

t x y z

U F G H

t x y z

U U U U
A B C

t x y z

U U U U
AM BM CM

t x y z

−

−

−

∂ ∂ ∂ ∂Γ + + + =
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂+ Γ + + = Γ
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂+ Γ + + = Γ
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
+ Γ + + = Γ

∂ ∂ ∂ ∂

                            (3-64) 

其中
p

U
M

U

∂=
∂

 

所以 artificial viscosity terms改寫如下： 

1
1

2

1 1
( )

2 2R L P
i

F F F AM U−

+
= + − Γ ∆                                         (3-65) 

其中 1 1AM KA DA KA− −Γ = × ×                                     

黏滯性項；在黏滯性項方面，採用二階中央差分法。由於在尤拉方程式中計算的範圍皆

為網格與網格之間的通量項，因此在黏滯性項方面，所需要得到的速度梯度項也必須是

網格之間的通量項。下列以三維的 X 方向為例，圖 3-2為其示意圖。 

圖 3-2中各編號所代表的位置分別為： 

1� ),1,( kji + ；2� ),,
2

1
( kji + ；3� ),1,1( kji ++ ； 

4� )1,,( −kji ；5� )1,,
2

1
( −+ kji ；6� 1,,1( −+ kji ； 

7� ),,( kji ；8� ),,
2

1
( kji + ；9� ),,1( kji + ； 

10� )1,,( +kji ；11� )1,,
2

1
( ++ kji ；12� )1,,1( ++ kji ； 

13� ),1,( kji − ；14� ),1,
2

1
( kji −+ ；15� ),1,1( kji −+ ； 

其各速度梯度差分分別如下表示： 

X

UU

X

U

X

U

∆
−=

∆
∆=

∂
∂ )7()9(

                                                (3-66) 
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X

VV

X

V

X

V

∆
−=

∆
∆=

∂
∂ )7()9(

                                                 (3-67) 

X

WW

X

W

X

W

∆
−=

∆
∆=

∂
∂ )7()9(

                                                (3-68)  

 

Y

UU

Y

U

Y

U

∆
−=

∆
∆=

∂
∂

2
)14()2(

2
                                               (3-69)

其中
2

)1()3(
)2(

UU
U

+= ；
2

)15()13(
)14(

UU
U

+=  

所以 

Y

UUUU

Y

UU

Y

UU

Y

U

∆
+−+=

∆

+

−
∆

+

=
∂
∂

4

)15()13()1()3(

2

)
2

)15()13(
(

2

)
2

)1()3(
(

            (3-70) 

同理 

Y

VVVV

Y

VV

Y

VV

Y

V

∆
+−+=

∆

+

−
∆

+

=
∂
∂

4

)15()13()1()3(

2

)
2

)15()13(
(

2

)
2

)1()3(
(

              (3-71) 

Y

WWWW

Y

WW

Y

WW

Y

W

∆
+−+=

∆

+

−
∆

+

=
∂
∂

4

)15()13()1()3(

2

)
2

)15()13(
(

2

)
2

)1()3(
(

           (3-72) 

 

Z

UU

Z

U

Z

U

∆
−=

∆
∆=

∂
∂

2
)5()11(

2
                                               (3-73) 

其中
2

)12()10(
)11(

UU
U

+= ；
2

)6()4(
)5(

UU
U

+=  

所以 

Z

UUUU

Z

UU

Z

UU

z

U

∆
+−+=

∆

+

−
∆

+

=
∂
∂

4

)6()4()12()10(

2

)
2

)6()4(
(

2

)
2

)12()10(
(

           (3-74)

同理 

Z

VVVV

Z

VV

Z

VV

z

V

∆
+−+=

∆

+

−
∆

+

=
∂
∂

4

)6()4()12()10(

2

)
2

)6()4(
(

2

)
2

)12()10(
(

       (3-75) 

Z

WWWW

Z

WW

Z

WW

z

W

∆
+−+=

∆

+

−
∆

+

=
∂

∂
4

)6()4()12()10(

2

)
2

)6()4(
(

2

)
2

)12()10(
(

         (3-76) 
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圖 3-2 差分示意圖 
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3-5、、、、Dual time stepping : 

方程式(3-51)中的 Navier-Stokes方程式在時間項方面遭到修改，因此利用修改後的

方程式來計算暫態結果並不恰當，因此本程式再加入 dual time stepping[29]的模組，不

僅讓程式在計算暫態結果方面較準確，更提高程式的效率，縮短計算時間。 

    首先，先在原始 Navier-Stokes方程式加入一虛擬時間項，稱為 artificial time term。

方程式改變如下： 

S
U U F G H

t x y zτ
∂ ∂ ∂ ∂ ∂+ + + + =
∂ ∂ ∂ ∂ ∂

                                             (3-77) 

其中τ 即為 artificial time， t為 physical time 

U 為 conservative form( ), , , ,
T

u v w eρ ρ ρ ρ ρ  

接著在 artificial time term加入 preconditioning method： 

pU U F G H
S

t x y zτ
∂ ∂ ∂ ∂ ∂Γ + + + + =
∂ ∂ ∂ ∂ ∂

                                           (3-78) 

最後對 artificial time term採一階的有限差分離散，對 physical time term採二階的後

項差分離散，
F

x

∂
∂

、
G

y

∂
∂

、
H

z

∂
∂

利用中央插分法可得 

 

1 1 1
1 1 1 1 1 1

1 1 1 1 1 1
, , , , , , , , , , , ,

2 2 2 2 2 2

3 4 1 1 1
( ) ( ) ( )

2

k k k n n
p p k k k k k k

i j k i j k i j k i j k i j k i j k

U U U U U
F F G G H H S

t x y zτ

+ + −
+ + + + + +

+ − + − + −

− − +Γ + + − + − + − =
∆ ∆ ∆ ∆ ∆

                                                                                                

                                                                      (3-79) 

接著整理上式，先將其線性化 

13( ) 4
( ) ( ) ( )

2

n n n
p p k k k k k k

x p p y p p x p p

U U M U U U
F A U G B U H C U S

t
δ δ δ

τ

−∆ + ∆ − +
Γ + + + ∆ + + ∆ + + ∆ =

∆ ∆
 

                                                                      (3-80) 

其中
1k k

p p pU U U+∆ = − ，
p

U
M

U

∂=
∂

 

1k n
pU U M U+ = + ∆ ， 1k k

p pF F A U+ = + ∆ ，
k

k
p

p

F
A AM

U

∂= =
∂
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再將 pU∆ 項放置在等號左邊，其餘則在右邊: 

1 1 13
( )

2
k k k k

x p y p x p p

I
M A B C U R

t
δ δ δ

τ
− − − + Γ + Γ + + ∆ = Γ ∆ ∆ 

                  (3-81) 

此處
13 4

( ) ( )
2

k n n
k k k k

x y x

U U U
R S F G H

t
δ δ δ

−− += − − + +
∆

， I 為單位矩陣， 

其中
p

U
M

U

∂=
∂

， p
p

F
A

U

∂=
∂

、 p
p

G
B

U

∂=
∂

與 p
p

H
C

U

∂=
∂

為 flux Jacobian。 

k 為 artificial time中的疊帶次數， n 為 physical time的計算階數。上述方程式，當

artificial time term收斂時，
1

0
k k
p pU U

τ

+ −
Γ =

∆
，方程式即會回復到原始的 Navier-Stokes方程

式，並且包含著時間項，故程式可以計算暫態結果。 
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3-6、、、、LUSGS 法法法法: 

本研究採用 LUSGS implicit法計算時間方程式(3-77)，此法的優點除了收斂快速外，

還有不需額外的 Artificial Dissipation來幫助程式收斂。本文選用收斂速度較快的 LUSGS

法來計算修改後的方程式。 

由方程式(3-81): 

1 1 13
( )

2
k k k k

x p y p x p p

I
M A B C U R

t
δ δ δ

τ
− − − + Γ + Γ + + ∆ = Γ ∆ ∆               

(3-82) 

此處
13 4

( ) ( )
2

k n n
k k k k

x y x

U U U
R S F G H

t
δ δ δ

−− += − − + +
∆

， I 為單位矩陣 

現在令 1 k
p pA A−= Γɶ 、

1 k
p pB B−= Γɶ 、 1 k

p pC C−= Γɶ  

並將其分為兩部分: 

p p pA A A+ −= +ɶ ɶ ɶ 、 p p pB B B+ −= +ɶ ɶ ɶ 、 p p pC C C+ −= +ɶ ɶ ɶ                   (3-83) 

其中
1

( | | )
2p p A

A A Iλ± += ± ɶ
ɶ ɶ 、

1
( | | )

2p p B
B B Iλ± += ± ɶ
ɶ ɶ 、

1
( | | )

2p p C
C C Iλ± += ± ɶ
ɶ ɶ             

A
λ ɶ 、 B

λ ɶ、 C
λ ɶ分別為 pAɶ 、 pBɶ 、 pCɶ 中最大的特徵值。 

將上述帶入(3-82)得
 

� � � �

� � � � � � � �

, , 1 , 1 , 11

, , 1 , 1 , 1 , , 1 , 1 , 1 1

3
[

2

]

p i p i p i p i

p i p i p i p i p i p i p i p i k
p

I A A A A
M

t x x

B B B B A A C C
U R

y y z z

τ

+ + − +
− + −−

+ + − + + + − +
− + − − + − −

− −+ Γ + + +
∆ ∆ ∆ ∆

− − − −+ + + ∆ = Γ
∆ ∆ ∆ ∆        (3-84)

 

其中

~ ~ ~ ~
~ ~ ~ ~

, , 1 , 1 , 1( ) p i p i p i p i
x p p x p x p

A A A A
A A A A

x x
δ δ δ

+ + − +
− + −+ − − + + − − −

+ = + = +
∆ ∆       

 

可將(3-84)式整理成 

1( ) k
pL D U U R−+ + ∆ = Γ
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1

0
k k
p pU U

t

+ −
Γ =

∆

其中 

1, , , 1, , , 1

1 1 1
( ) ( ) ( )p i j k p i j k p i j kL A B C

x y z
+ + +

− − −
 

= − + + ∆ ∆ ∆ 
ɶ ɶɶ  

1
, , , , , , , , , , , ,

3 1 1 1
( ) ( ) ( ) ( ) ( ) ( )

2 p i j k p i j k p i j k p i j k p i j k p i j k

I
D M A A B B C C

t x y zτ
− + − + − + − 

    = + Γ + − + − + −     ∆ ∆ ∆ ∆ ∆ 
ɶ ɶ ɶ ɶɶ ɶ

1, , , 1, , , 1

1 1 1
( ) ( ) ( )p i j k p i j k p i j kU A B C

x y z
− − −

+ + +
 

= + + ∆ ∆ ∆ 
ɶ ɶɶ  

最後整理為
1 1( ) ( ) k k

pL D D D U U R− −+ + ∆ = Γ  

上式可以用以下的步驟解出： 

1. * 1( ) k
pL D U R−+ ∆ = Γ  

其中
* 1( ) k

p pU D D U U−∆ = + ∆  

2. *( ) k
p pD U U D U+ ∆ = ∆  

* 1k k
p p pU U D U U−∆ = ∆ − ∆  

3. 1k k
p p pU U U+ = + ∆  

4.重複步驟一至三，直到     則下一個物理時間項可求得。 
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3-7、、、、非反射性邊界非反射性邊界非反射性邊界非反射性邊界(Non-reflecting Boundary)：：：： 

本研究主要探討可壓縮流在三維垂直管道內流動與熱傳，過去在模擬低速可壓縮流

流場時，出口條件多利用速度完全發展流條件及大氣壓力邊界，然而此上述的出口條件

設定方式，由於壓力波易會在出口處反射回計算區域而影響收斂，因此不適用於低速可

壓縮流；且完全發展流出口在物理模式的設定上需有一定長寬比例，將使網格需求量增

加。故本文在出口條件部分採用 Fu和 Li 等人[22]改善 Poinsot和 Lele[25]的非反射性邊

界條件(non-reflecting boundary)，可適用於極低速可壓縮流，且大幅減少網格總數及計

算時間。 

根據 Poinsot等人[25]所提出的 LODI(The local one-dimensional invsicid relations)將(3-78)

簡化成在出口邊界的一維 Navier-Stokes 方程式:  

0pU F

xτ
∂ ∂Γ + =
∂ ∂

                      (3-85) 

為了將
F

x

∂
∂

轉換成主要變數形式(primitive form)，將(3-76)的左邊乘上 1−Γ  

1 0pU F

xτ
−∂ ∂+ Γ =

∂ ∂
                            (3-86) 

其中 1 1 1p p
p

p

U UF F
A

x U x x
− − −∂ ∂∂ ∂Γ = Γ = Γ

∂ ∂ ∂ ∂
                 (3-87) 

將(3-87)代入方程式(3-85)以主要變數形式為變數(primitive variables)的方程式如下所示： 

1 0p p
p

U U
A

xτ
−∂ ∂

+ Γ =
∂ ∂

                     (3-88) 

再將
1

pA−Γ 做相似轉換以得到進出口的特徵速度： 

1 1
pA K Kλ− −Γ =                      (3-89) 

此處K 為特徵向量 (Eigen vector)，λ 為
1

pA−Γ 的特徵值(Eigen values)，即為出口處的特

徵速度。根據 Dennis等人[31]轉換低速情況下原流體速度u及原音速c，將其調整使修

正過後的流場速度u′與聲速 'c 冪次級數(order)接近。 

特徵值矩陣為 
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1

2

3

4

5

u

u

u

u c

u c

λ
λ
λλ
λ
λ

 
 
 
 = =
  ′ ′+ 

   ′ ′−  

                              (3-90) 

其中
( 1)

2

u
u

β +′ = 與
2 2 2( 1) 4

2

u c
c

β β− +′ =  

再令 1 pU
L K

x
λ − ∂

=
∂

                   (3-91) 

展開 L 可得 

1

2

3

4

5

1
( )

( )

( )[ ( ) ]

( )[ ( ) ]

T P P
u

x x x

wL u
xL

vLL u
x

L
P u

u c u c uL
x x
P u

u c u c u
x x

κ
ρκ

ρ

ρ

∂ ∂ ∂  + −  ∂ ∂ ∂


∂ 
 ∂
 ∂ = = −
 ∂
 ∂ ∂   ′ ′ ′ ′+ − − −  ∂ ∂ 
 ∂ ∂′ ′ ′ ′− − + − 

∂ ∂ 

                  (3-92) 

L 之物理意義即為邊界條件，波強度隨時間變化量。 

為了得到 L 與
pU

t

∂
∂

的關係，將(3-91)代回(3-88)並整理可得 

0pU
KL

τ
∂

+ =
∂

                       (3-93) 

展開(3-92)可得壓力、速度與溫度在邊界條件上的方程式如下： 

4 5

4 5

3

2

1 4 5

1
[ ( ) ( )] 0

2
1

( ) 0
2

0

0

1 1 1
[ ( ) ( )] 0

2

p
L u c u L u c u

c
u

L L
c

v
L

w
L

T
L L u c y L u c y

c

τ

τ ρ

τ

τ
γ

τ ρ γ

∂ ′ ′ ′ ′+ + − − − − =
′∂

∂ + − =
′∂

∂ − =
∂
∂ + =
∂
∂ − ′ ′ ′ ′+ + + − − − − =

′∂

           (3-94) 
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方程式(3-94)可離散如下： 

1
4 5

1
4 5

1
3

1
2

1 1
1

[ ( ) ( )]
2

( )
2

1 1
( )

k k

k k

k k

k k

k k k k

p p L u c u L u c u
c

u u L L
c

v v L

w w L

T T L p p

τ
ρ
τ

ρ
τ
τ

γτ
ρ γ

+

+

+

+

+ +

∆ ′ ′ ′ ′= − + − − − −
′

∆= − −
′

= + ∆

= − ∆
+= − ∆ + −

             (3-95) 

根據圖 3-3(a)，如果流體從管內往大氣流出時， 1L 、 2L 、 3L 與 4L 方向與流體流動方向

相同，因此可利用方程式(3-92)定義 1L 、 2L 、 3L 與 4L 。由於u c′ ′− 小於零的關係， 5L 的

方向則與流體流動方向相反。由於壓力於極遠處的變化為零，所以 0
p

τ
∂ =
∂

，方程式(3-94)

將如下： 

4 5

1
[ ( ) ( )] 0

2
L u c u L u c u

c
′ ′ ′ ′+ − − − − =

′
                     (3-96) 

因此 5L 可定義如下： 

5 4

( )

( )

u c u
L L

u c u

′ ′+ −=
′ ′− −

                            (3-97) 

圖 3-3(b)則為流體從大氣環境往管內流動。 4L 可由方程式(3-96)直接求得，由於非反射

性邊界的關係， 1L 、 2L 與 3L 則設定為 0。 5L 則可由方程式(3-97)得到。 
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(b) 

 

 

圖 3-3. 1L 、 2L 、 3L 、 4L 與 5L 於管道兩端的方向性示意圖 
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第四章 結果與討論 

 本研究探討混合對流前，先討論三維垂直方形管道因高溫壁面而造成自然對流之溫

度場與速度場，並說明高溫壁面上平均紐塞數的變化，進而比較在不同浮慣比之溫度場

與速度場的影響及對熱傳效率的提升。本研究共計算四種不同入口速度之混合對流及自

然對流，其寬度皆為 0.04d m= 、加熱管長皆為 0.12l m= 。另外本研究在程式模擬計算

中使用的為有因次之參數，但為求結果討論之比較方便性，故在輸出及數據表示上則轉

為無因次之表示法，如下所示為無因次化參數： 

x
X

d
=  ，

y
Y

d
= ，

z
Z

d
=                      (4-1) 

0

0h

T T

T T
θ −=

−  

其他有因次之參數表示如下： 

2 2 2( ) ( ) ( )magV u v w= + +
                     

(4-2) 

0 298T K= ， KTh 398= ， 3
0 1.1842 /kg mρ =  

0 100hT T T K∆ = − =  

以空氣為工作流體，其黏度及熱傳導係數依 Sutherlands’s law 如下所示： 

3
2

0
0

0

( )
T T S

T
T T S

µ µ
 + =   +  

                                                  (4-3) 

( )
( 1)Pr

R
k T

γµ
γ

=
−

                                                       (4-4) 

其中 110airS = ， 5 2
0 1.85 10 /Ns mµ −= × ， 287 /R J kg K= ⋅ ，Pr 0.72= ， 1.4γ =  

考慮流體的黏性及可壓縮性，以下將雷諾數及紐塞數之定義為： 

0 0

0

Re
u dρ
µ

=                                                      (4-5)  

0 0

( )
( )x

h

d T
Nu k T

k T T z

∂ =  − ∂ 
                                (4-6)                                                                       
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2Re

Gr
Ri =

對面積平均之紐塞數之定義為： 

0 0

1 1
( )

( )hA A

d T
Nu Nudxdy k T dxdy

A A k T T z

∂ = =  − ∂ 
∫∫ ∫∫

               
(4-7)

                                     

其中 A 為加熱面紐塞數之面積。 

對時間平均之局部紐塞數之定義為： 

( )
0 0

1
( )

( )x t t
h

d T
Nu k T dt

t k T T z

∂ =  − ∂ 
∫                 (4-8) 

對時間及面積平均之紐塞數之定義為： 

( ) 1
tt

Nu Nudt
t

= ∫                                                         (4-9) 

對時間平均之沿 X 方向加總的局部紐塞數之定義為： 

( )
0 0

1
( )

( )yx t xt
h

d T
Nu k T dxdt

t k T T z

∂ =  − ∂ 
∫ ∫ ∫

                
(4-10) 

由於同時考慮可壓縮性與溫度對於流體黏度的影響，因此 Rayleigh數定義如下： 

2 3
0 0

2
0 0

( )
Pr Pr

( )
hg T T d

Ra Gr
T T

ρ
µ

−= ⋅ =                 (4-11) 

 為探討自然對流及強制對流的影響，定義浮慣比(Richardson number)如下： 

                      (4-12) 

 

 本研究比較在網格大小依次序為 x y z× × ，以72 30 30× × 、96 40 40× × 、120 50 50× ×

三種網格作紐塞數比較，以自然對流為例，作沿高溫壁面上中央位置之紐塞數圖。如圖

4-1 所示，使用網格數72 30 30× × 時，可見其紐塞數高於其他兩種網格所得結果；而在

使用網格較大的 96 40 40× × 及 120 50 50× × 時所得結果十分貼近，故本研究採用

96 40 40× × 為總網格數，以期在最佳網格數得精確之結果亦可縮短計算時間。 

    在本研究中，第一個案例是以加熱管長 0.12l m= 之三維垂直方形管之自然對流，

56.7846 10Ra = × ，其初始條件為溫度、壓力與大氣環境相同且速度為零，出、入口皆設
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為非反射性邊界。其他物理參數設定為 3X = 及 0 100hT T T K∆ = − = 。當 0t > 時，管道內

的加熱壁面升溫至 hT 。圖 4-2為進口之質量隨時間的變化，可發現在 2t s= 之後，自然

對流會隨著一曲線向上爬升至浮力效應最大的流量。圖 4-3為沿 X 方向之淨出口流量

,out netQ 其定義如下： 

2
,out netQ udρ=

        
                (4-13)

其中
,    0

      
0,    0

u if u
u

if u

>
=

<
 

圖 4-4(a)~(h)為中央 XY 截面流線圖，圖 4-4(a) 在 0.015t s= 時，因為熱開始藉著熱

傳導從壁面傳至流體，流體吸收了壁面的熱量，密度變輕、體積膨脹，造成流體從管道

進口與出口端擠出，此現象無法利用不可壓縮流的方式模擬而觀察到。圖 4-4(b)在

0.065t s= ，在進口端逐漸形成迴流以彌補管中質量的缺損，因壁面附近的流體浮力效

應影響越來越廣，出口速度亦因此而提升，其迴流漸漸擴大，當浮力效應影響至迴流，

會將迴流慢慢往浮力方向推，由圖 4-4(c)~(f)可觀察此現象。 

圖 4-4(g)在 1.005t s= 時，迴流推至出口處，流量不足之部分由出口端供應，圖 4-4(h)

在 7.755t s= 時，其浮力效應可帶動的流量已達飽和，由圖 4-2亦可觀察出其進口流量已

達上限，流場之流體逐漸達到穩態狀態。圖 4-5為穩態時中央 XY 截面等溫線圖，在高

溫壁面附近由於溫度較高，流體藉由浮力效應所帶動的能量帶走熱能。圖 4-6(a)~(d)表

示在高溫壁面上不同位置的截面速度場分布圖，其中 A 至 B 點為流體進口及高溫壁面

起始位置，C 至 D 點為流體進口及高溫壁面起始位置一倍寬的距離，E至 F點為流體進

口及高溫壁面起始位置二倍寬的距離，G 至 H 點為流體出口及高溫壁面結束位置的距

離，圖 4-6(a)為在高溫壁面區域入口位置，因壁面之剪應力大於浮力效應，故中央速度

較壁面大，圖 4-6(b)受浮力效應影響，速度開始往四周擴展，圖 4-6(c)在壁面剪應力與

自然對流之浮力效應相互影響下，產生速度的差異，圖 4-6(d)為其出口速度分布圖。 

由自然對流之流量Q可計算平均入口速度為 0u ，由平均入口速度 0u 可求得入口之雷

諾數約為 950。此時浮慣比( Ri =1)，探討高浮慣比的情況，其他情況的入口雷諾數及浮
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2
0

0 2

0Re 950

Q u d

Q
u

d

u d

ρ

ρ
ρ

µ

=

=
⋅

= ≐

慣比列於表 4-1，並由圖4-2可比較不同浮慣比及雷諾數與自然對流進口之流量。 

 

                     (4-14) 

                        (4-15) 

                     (4-16)

  

 

第二個案例是混合對流，雷諾數分別為 950、400、200、100，其浮慣比分別為1、

5.9、23.6、94.2，初始條件為溫度、壓力與大氣環境相同，入口為強制對流、出口為非

反射性邊界，其他物理參數設定為 1

1
/

3
d l = 及 0 100hT T T K∆ = − = 。當 0t > 時，管道內的

加熱壁面升溫至 hT 。圖 4-7為浮慣比( 1Ri = )雷諾數( Re 950= )穩態時中央 XY 截面的流

線圖，因已給定自然對流可吸進大的最大值，其流場很快就達到穩態。圖 4-8為穩態時

中央 XY 截面之等溫線圖，在高溫壁面附近由於溫度較高，流體藉由浮力效應及強制對

流的能量迅速地帶走熱能。圖 4-9(a)為在高溫壁面區域入口位置，因速度已給定，故其

截面為定速，圖 4-9(b)圖及 4-9(c)因其入口給定的速度已足夠自然對流所吸進的量，只

有壁面受壁面剪應力之影響，圖 4-9(d)為在高溫壁面區域出口位置，可觀察出接近角落

附近的速度由強制對流、浮力效應及壁面剪應力的影響，有四個點的速度較高。 

圖 4-10為浮慣比( 5.9Ri = )、雷諾數(Re=400)穩態時中央 XY 截面流線圖，可發現在

入口流量不足時，會由出口端中心吸入部分流體。圖 4-11 為其等溫線圖，與上述案例

類似，在高溫壁面附近溫度較高，流體藉快速流動帶走熱能，故在靠近高溫壁面區域等

溫線分布密集。圖 4-12(a)~(d)表示在高溫壁面上不同位置的截面速度場分布圖，圖 4-12(a)

為在高溫壁面區域入口位置，因速度已給定，故其截面為定速，圖 4-12(b)為在高溫壁面

區域入口位置一倍寬的距離，因浮力效應帶動，靠近壁面附近速度較大，圖 4-12(c)為在

高溫壁面區域入口位置二倍寬的距離，在角落附近的浮力效應拉動速度加快，圖 4-12(d)

為在高溫壁面區域出口位置，可觀察出中央位置其 X 方向速度為負號，表示流場需要吸

入流體。圖 4-13為浮慣比( 23.6Ri = )、雷諾數(Re=200)穩態時中央 XY 截面流線圖，圖
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4-13(a)在 0.355t s= 時，因下方的流量不足以供給浮力效應推出出口之流量，故從出口

端吸進大量的流體，並形成迴流，迴流慢慢上升至出口端，其現象在圖 4-13(b) 0.655t s=

可觀察出，圖 4-13(c)~(e)在 2.505t s= 開始迴流在慢慢往下延伸，在圖 4-13(f) 7.505t s= 時

迴流快觸到入口處，會造成在流場中有速度反曲點，造成其不穩定性，如圖

4-13(g) 9.005t s= 所示。圖 4-14(a)~(d)為中央 XY 截面等溫線圖，圖 4-14(b) 2.505t s= 其

溫度場受到迴流的影響，溫度梯度往中央發展，圖 4-14(d) 10.005t s= 溫度場受速度場

影響，造成溫度的不穩定。圖 4-15(a)~(d)表示在高溫壁面上不同位置的截面速度場分布

圖，圖 4-15(a)為在高溫壁面區域入口位置，因速度已給定，故其截面為定速，圖 4-15(b)

為在高溫壁面區域入口位置一倍寬的距離，因不穩定性造成流場偏擺，且需要吸入流

體，故會有 X 方向速度為負值，圖 4-15(c)為在高溫壁面區域入口位置二倍寬的距離，

在角落附近的浮力效應拉動速度加快，圖 4-15(d)為在高溫壁面區域出口位置，可觀察出

口方向之流場受不穩定性的影響較小。圖 4-16為四面沿 X 方向之紐塞數加總比較，其

四面中有兩面較不穩定，但其四面之平均後，其紐塞數對稱，可知其不穩定性以橫向偏

擺為主。 

圖 4-17(a)~(d)為浮慣比( 94.2Ri = )、雷諾數(Re=100)穩態時中央 XY 截面流線圖，

圖 4-17(a)在 0.5t s= 時，因下方的流量不足以供給浮力效應推出出口之流量，故從出口

端吸進大量的流體，並形成迴流，圖 4-17(c)在 6t s= 時迴流快觸到入口處，會造成在流

場中有速度為零的點，造成其不穩定性，其迴流向下延伸較雷諾數(Re=200)還要接近入

口，不穩定性較雷諾數(Re=200)還大，如圖 4-17(d) 10t s= 所示。圖 4-18(a)~(d)為中央

XY 截面等溫線圖，其溫度場受到迴流的影響，溫度梯度往中央發展，圖 4-18 (c)在 6t s=

時，入口的流體溫度可帶走之熱量已無法大於出口處可帶走的熱量。圖 4-19(a)~(d)表示

在高溫壁面上不同位置的截面速度場分布圖，圖 4-19(a)為在高溫壁面區域入口位置，因

速度已給定，故其截面為定速，圖 4-19(b)為在高溫壁面區域入口位置一倍寬的距離，因

不穩定性造成流場偏擺，且需要吸入流體，故會有 X 方向速度為負值，在角落附近的浮

力效應拉動速度開始加快，圖 4-19(c)為在高溫壁面區域入口位置二倍寬的距離，其流場

偏擺不穩定，圖 4-19(d)為在高溫壁面區域出口位置，可觀察出口方向之流場受不穩定性
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的影響較圖 4-19(c) 小。圖 4-20為四面沿 X 方向之紐塞數加總比較，其四面均不穩定，

但其四面之平均後，其紐塞數對稱，可知其不穩定性以橫向偏擺為主。 

 圖 4-21為不同雷諾數進口速度分布圖，除自然對流外，混合對流皆為給定一速度，

由圖可知自然對流入口速度中央部分速度最大，因浮力效應未能大於壁面剪應力所導

致。圖 4-22為不同雷諾數出口速度分布圖，隨時間平均之速度定義為： 

( ) 1
t t

u udt
t

= ∫                     (4-17) 

自然對流與雷諾數(Re=950)的出口相似，可知若其自然對流可吸進之流量給定成混

合對流之速度，出口速度分布會因給定之流量已達到自然對流可吸進之流量，而不會再

向上增加。因浮力效應影響，靠近壁面周圍為最大速度位置，在雷諾數(Re = 400、200、

100)的中央速度皆為負值，表示有流體吸入流場中。比較其紐塞數，如圖 4-23為沿 X

方向壁面中央局部紐塞數比較圖，在壁面中央位置之熱傳效果以自然對流為最佳，但在

出口端其熱傳效果因速度場影響，速度往兩邊分散，造成壁面中央帶走的熱量有微量的

減少，而浮慣比( 1Ri = )的案例則是在出口端之前速度就往角落附近分散，所以在出口端

沒有紐塞數下降的情形。圖 4-24為沿 X 方向角落之紐塞數比較圖，其角落紐塞數皆小

於壁面中央之紐塞數，因角落之剪應力較大，速度也較小，熱傳效果也較差。圖 4-25

是隨時間變化之平均紐塞數圖，可以看出在雷諾數(Re=950)及浮慣比( 1Ri = )的案例在

7.5t s= 之前都較自然對流熱傳效果好，但由圖 4-2可知，自然對流亦在 7.5t s= 之後達

到最大流量，其浮力效應達到最大，帶動的熱傳量亦較雷諾數(Re=950)佳。其差距約在

6%，因自然對流其流動動力皆來自於浮力效應，而雷諾數(Re=950)與其流量相同，但速

度是以均勻流進入流場，故自然對流熱傳較佳。 

 圖 4-26為對時間及面積平均之紐塞數比較圖，其自然對流之熱傳效果最好，

浮慣比( 23.6  94.2Ri = 、 )又較浮慣比( 5.9Ri = )的佳，由圖 4-27中央等溫線比較圖可比較

進口處其浮慣比( 1Ri = )比自然對流熱傳效果佳，但在 X=0.5以後自然對流其熱傳效果

較浮慣比( 1Ri = )好，亦可驗證圖 4-23在 X=0.5前後的紐塞數，由圖 4-3可知，浮慣比

( 23.6  94.2Ri = 、 )從出口吸進的流量比浮慣比( 5.9Ri = )從出口吸進的冷空氣流量多，其
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浮慣比( 23.6  94.2Ri = 、 )之熱傳效果較佳。 

 圖 4-28(a)~(e)為 15t s= 時之中央 XY 截面速度分布圖，由表 4-1可比較不同案

例的進口速度及最大速度，由雷諾數(Re=0、950、400、200、100)其最大速度與進口速

度之比值依次為 1.43、1.46、2.76、5.25、8.75，再由圖 4-28可知雷諾數(Re=950、400、

0)的最大速度皆在出口端靠近壁面附近，而雷諾數(Re=200、100)的最大速度主要分布在

流場中央由出口吸進的流體，所以當遇到速度反曲點且最大速度與進口速度之比值大於

5.25以上，會造成流場之不穩定現象。 

圖 4-29為隨時間變化之平均紐塞數圖(Re=200、100)，可觀察到在不穩定後，會回

穩定狀態，再產生速度反曲點時，則會開始不穩定，有週期的現象發生。 

圖 4-20為時間平均之 X 方向速度分布圖，當不穩定現象再回到穩定現象，其對時

間平均較穩定的那一段時態，可得到較對稱之速度分布，因雷諾數(Re=100)其需補足的

流量較雷諾數(Re=200)大，從出口端吸入的速度亦較大，會衝擊到從壁面出去的流體，

由圖 4-3隨 X 截面出口方向流量變化圖可發現雷諾數(Re=100)在 X=2.4左右有下降的趨

勢，其表示出口端吸進的流體有部分無法從出口端出去，留在迴流中補足不足的流體，

從圖 4-31時間平均之中央雷諾數分布來分析，可以明顯看到雷諾數(Re=100)的案例，其

速度最大可以達到雷諾數 1000，雷諾數(Re=100)中央吸進的速度比出口速度大，故雷諾

數(Re=100)之熱傳效應較雷諾數(Re=200)差，圖 4-32時間平均之中央溫度分布，當不穩

定現象再回到穩定現象，其對時間平均較穩定的那一段時態，可得到較對稱溫度分布。 
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圖 4-1網格測試圖(Re=0) 
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圖 4-2進口流量圖 
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圖 4-3 隨 X 截面出口方向流量變化圖 
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表 4-1 討論案例之資料( )T 100K∆ =  

 

 

 

Flow 

Inlet 

( kg s ) 

Outlet 

( kg s ) 

V-inlet 

(m/s) 

V-max 

(m/s) 
Nu Ri 

Natural 

Convection 
7.0×10-4 6.6×10-4 0.37 0.53 9.46 

 

Mixed 

Re=950 
7.0×10-4 6.9×10-4 0.37 0.54 8.87 1.0 

Mixed 

Re=400 
3.0×10-4 2.9×10-4 0.17 0.47 7.16 5.9 

Mixed 

Re=200 
1.5×10-4 1.4×10-4 0.08 0.42 7.71 23.6 

Mixed 

Re=100 
7.5×10-5 7.2×10-5 0.04 0.35 7.64 94.2 
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( ) 0.015a t s=     ( ) 0.065b t s=    ( ) 0.1c t s=    ( ) 0.165d t s=   

 

 

 

圖 4-4 中央 XY 截面流線圖(Re=0) 
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( ) 0.19e t s=   ( ) 0.255f t s=   ( ) 1.005g t s=    ( ) 7.755h t s=  

 

 

 

圖 4-4中央 XY 截面流線圖(Re=0) 
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圖 4-5中央 XY 截面等溫線圖(Re=0) 

 

 

 



 

54 
 

 

 

 

圖 4-6(a) A點至 B 點速度場分布 ( )Re 0=  

 

 

 

圖 4-6(b) C點至 D 點速度場分布 ( )Re 0=  
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圖 4-6(c) E點至 F點速度場分布 ( )Re 0=  

 

 

 

圖 4-6(d) G點至 H 點速度場分布 ( )Re 0=  
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圖 4-7中央 XY 截面流線圖(Re=950) 
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圖 4-8中央 XY 截面等溫線圖 (Re=950) 
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圖 4-9(a) A點至 B 點速度場分布 ( )Re 950=  

 

 

 

圖 4-9(b)C點至 D 點速度場分布 ( )Re 950=  
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圖 4-9(c) E點至 F點速度場分布 ( )Re 950=  

 

 
 

圖 4-9(d)G點至 H 點速度場分布 ( )Re 950=  
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圖 4-10  中央 XY 截面流線圖(Re=400) 
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圖 4-11  中央 XY 截面等溫線圖(Re=400) 
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圖 4-12(a) A點至 B 點速度場分布 ( )Re 400=  

 

 

 

圖 4-12(b) C點至 D 點速度場分布 ( )Re 400=  
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圖 4-12(c) E點至 F點速度場分布 ( )Re 400=  

 

 

 

圖 4-12(d) G點至 H 點速度場分布 ( )Re 400=  
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( ) 0.355a t s=     ( ) 0.655b t s=     ( ) 2.505c t s=    ( ) 4.005d t s=   

 

 

 

 

圖 4-13中央 XY 截面流線圖(Re=200) 
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( ) 5.005e t s=      ( ) 7.505f t s=    ( ) 9.005g t s=   ( ) 10.005h t s=  

 

 

 

圖 4-13中央 XY 截面流線圖(Re=200) 
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( ) 0.355a t s=    ( ) 2.505b t s=
  ( ) 5.005c t s=    ( ) 10.005d t s=   

 

 

 

 

圖 4-14中央 XY 截面等溫線圖(Re=200) 
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圖 4-15(a) A點至 B 點速度場分布 ( )Re 200=  

 

 

圖 4-15(b) C點至 D 點速度場分布 ( )Re 200=  
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圖 4-15(c) E點至 F點速度場分布 ( )Re 200=  

 

 

圖 4-15(d) G點至 H 點速度場分布 ( )Re 200=  
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圖 4-16四面沿 x 方向之紐塞數加總比較(Re=200) 

 

 

 

Y

( )yx t
Nu∫

Four Surfaces Average 

Four Surfaces 



 

70 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( ) 0.5a t s=    ( ) 2.5b t s=       ( ) 6c t s=       ( ) 10d t s=  

 

 

 

圖 4-17  中央 XY 截面流線圖(Re=100) 
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   ( ) 0.5a t s=    ( ) 2.5b t s=        ( ) 6c t s=      ( ) 10d t s=  

 

  

 

 

圖 4-18  中央 XY 截面等溫線圖(Re=100) 
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圖 4-19(a)A點至 B 點速度場分布 ( )Re 100=  

 

 

 

圖 4-19(b) C點至 D 點速度場分布 ( )Re 100=  
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圖 4-19(c) E點至 F點速度場分布 ( )Re 100=  

 

 

 

圖 4-19(d) G點至 H 點速度場分布 ( )Re 100=  
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圖 4-20四面沿 x 方向之紐塞數加總比較(Re=100) 
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圖 4-21進口速度分布圖 
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圖 4-22出口速度分布圖 
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圖 4-23沿 X 方向局部紐塞數比較圖 
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圖 4-24沿 X 方向局部紐塞數比較圖 
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圖 4-25 隨時間變化之平均紐塞數 
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圖 4-26 平均紐塞數比較圖 
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( )Re 950a =                        ( )Re 0  (  )b Natural Convection=  

 

 

圖 4-27 中央 XY 截面等溫線比較圖 
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        ( )Re 950b =               ( )Re 400c =
 

 

 

 

圖 4-28 15t s= 時中央 XY 截面速度比較圖 
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( )Re 200d =                     ( )Re 100e =  

 

 

 

圖 4-28 15t s= 時中央 XY 截面速度比較圖 
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圖 4-29 隨時間變化之平均紐塞數(Re=200、100) 
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  ( )Re 200a =                          ( )Re 100b =
 

 

 

 

圖 4-30時間平均之中央 XY 截面速度分布比較圖 
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( )Re 200a =                          ( )Re 100b =  

 

 

 

圖 4-31時間平均之中央 XY 截面雷諾數分布比較圖 
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( )Re 200a =                          ( )Re 100b =  

 

 

圖 4-32時間平均之中央 XY 截面溫度分布比較圖 
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第第第第五五五五章章章章 結論結論結論結論 

本研究利用數值方法探討可壓縮流在三維垂直管道中的流動與熱傳機構。將

Navier-Stokes方程式分成黏性項及非黏性項兩部分，黏性項採用二階中央差分法，

而非黏性項的部分則以 Roe法來解方程式，MUSCL 法解出 ROE 法中使用的網格

之間的物理量，當計算低速可壓縮流時，因速度和音速的數量級上差距過大，在數

值分析時造成計算的困難，為彌補此一缺點須使用 Preconditioning 法。利用 LUSGS 

Scheme，而程式因為在使用 Preconditioning時加入 Artificial time term ，已破壞了

整個統御方程式，因此需使用 Dual time stepping疊代使其在 Artificial domain 收斂

時才能進入下一個真實時階，出口設非反射性邊界條件避免低速可壓縮流中壓力波

的干擾。本程式利用 OpenMP來進行平行化運算，效率為原程式的四倍，減少計算

時間及成本。根據本研究計算模擬的結果與前述的各案例討論，所得到結論如下： 

1. 穩態時，在固定溫差狀態下，在三圍垂直管道中，由於進口有冷卻流體以均勻

流速 u0 進入，而在高溫壁面上，由於考慮重力效應且存在溫度差，因此有自然

對流產生，其自然對流方向與主流方向同向。在計算自然對流與混合對流其進

口流量相同時，因自然對流其流動動力皆來自於浮力效應，而雷諾數(Re=950)

速度是均勻流進入流場，故自然對流熱傳較佳。 

2. 雷諾數(Re=200、100)從出口吸進冷空氣流量比雷諾數(Re=400)從出口吸進的冷

空氣流量多，故雷諾數(Re=200、100)熱傳效果較佳。 

3. 因雷諾數(Re=100)其需補足的流量較雷諾數(Re=200)大，從出口端吸入的速度亦

較大，衝擊到出口速度，故熱傳較雷諾數(Re=200)小。 

4. 比較不同案例的進口速度及最大速度，由雷諾數(Re=0、950、400、200、100)

其最大速度與進口速度之比值依次為 1.43、1.46、2.76、5.25、8.75，雷諾數

(Re=950、400、0)的最大速度皆在出口端靠近壁面附近，而雷諾數(Re=200、100)

的最大速度主要分布在流場中央由出口吸進的流體，所以當遇到速度反曲點且

最大速度與進口速度之比值大於 5.25以上，會造成流場之不穩定現象。 
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附錄 

 

1. YZ 中央截面之速度場分布 X=0 

 

2. YZ 中央截面之速度場分布 X=0.5 
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3. YZ 中央截面之速度場分布 X=1 

 

 

4. YZ 中央截面之速度場分布 X=1.5 
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5. YZ 中央截面之速度場分布 X=2 

 

 

6. YZ 中央截面之速度場分布 X=2.5 
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7. YZ 中央截面之速度場分布 X=3 
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8. YZ 截面之溫度場分布 X=0.1 (Re=950) 

 

 

9. YZ 截面之溫度場分布 X=0.1 (Re=0) 
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10. YZ 截面之溫度場分布 X=0.5 (Re=950) 

 

 

11. YZ 截面之溫度場分布 X=0.5 (Re=0) 
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12. YZ 截面之溫度場分布 X=1 (Re=950) 

 

 

13. YZ 截面之溫度場分布 X=1 (Re=0) 
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14. YZ 截面之溫度場分布 X=1.5 (Re=950) 

 

 

15. YZ 截面之溫度場分布 X=1.5 (Re=0) 
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16. YZ 截面之溫度場分布 X=2 (Re=950) 

 

 

17. YZ 截面之溫度場分布 X=2 (Re=0) 
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18. YZ 截面之溫度場分布 X=2.5 (Re=950) 

 

 

19. YZ 截面之溫度場分布 X=2.5 (Re=0) 
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20. YZ 截面之溫度場分布 X=3 (Re=950) 

 

 

21. YZ 截面之溫度場分布 X=3 (Re=0) 

 

 


