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Abstract

An investigation of heat transfer in a three-dimensional tapered chimney with
consideration of the flow compressibility is studied numerically.The finite difference method
is adopted and the computational approaches are divided into two parts. One is the Roe
scheme applied for the flux of inviscid terms.and the preconditioning matrix is added for the
efficiency in all speed fields: The other.one is the central difference method of second order
utilized to solve viscous terms. The temporal term is solved by LUSGS. Non-reflection
conditions at the outlet is derived in order to resolve reflections induced by acoustic waves. In
many important natural convection problems; the temperature differences are often higher
than 30K. Boussinesq assumption is unreasonable. Besides, the OpenMP method is also used

to promote the computing efficiency.

By numerical results, there is the greatest flow speed near the outlet in the
three-dimensional vertical natural convection pushed upward by buoyancy effect. The
enhancement of heat transfer of Reynolds number 400 is worse than the enhancement of
Reynolds number 100, 200. It is mainly due to the more flow rate sucked from exterior near
the outlet in the case of Reynolds number 100, 200. And the flow sucked from the exterior
impacted the flow exiting the outlet in the case of Reynolds number 100. The heat transfer is
worse than the case of Reynolds number 200. Besides, the flow field is unstable due to the

backflow near the outlet in the case of Reynolds number 100, 200.
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Nomenclature

a sound speedfi3™]

C, constant-pressure specific heatkg™ [k ™]
C, constant-volume specific heat[kg ™ k]
d caliber of the vertical square tubm]

e internal energy) (kg™]

g acceleration of gravityh(3?]

h enthalpy[J |

k thermal diffusivityw n* k]

I length of the vertical square tubm]

Nu Nusselt number defined in-Eq.(4-6)
d 0T
Nu, = —
iR
Nu average Nusselt number with area defined in Eq.(4-7)
Nu=— j j Nudxdy = — j j {k(T)a—T}dxdy
ko(T h~ To) 0z

(NUx)t average Nusselt number with time defined in Eq.(4-8)

1 d oT
(M40, = K 5

(N_u)t average Nusselt number defined with area and time in Eq.(4-9)

) -2

(J‘ Nuy) Total Nusselt number and average with time defined in Eq.(4-10)
X t

(j NU ) H kO(Td TO){k(T)g—-lz_}dxdt

viii



Ra

Re

Ri

Total flow in a section defined in Eq.(4-14)
Q = pu,d?
gas constant] kg™ (k']

Rayleigh number defined in Eq.(4-11)

2 _ 3
Ra = PiGr = ProX2 (T, Tg)d
Top(T)

Reynolds number defined in Eq.(4-5)

Re: pOUOd
Ho

Richardson number defined in Eq.(4-12)
Gr

R re
Kelvin temperaturek |
Surrounding temperaturg(]
temperature of heat surfac¢e]
time differencef]
velocity component inx -direction[m3™]
velocity component iny -direction[m3™]
velocity component inz -direction[m3™]
Cartesian coordinate system x direction
Cartesian coordinate system y direction

Cartesian coordinate system z direction

friction force acting per unit area on the surface



Greek symbols

p density[kg (]

-3
Po surrounding densityfd ]
v kinematics viscosityfn’ [$™]
H absolute viscosityfg.m™.s™]

4 specific heat ratio
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e=CT +§(u2+v2+w2) ' C, 5 B E

LG -5 TR VP

P=pRT (2-7)
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23~ FRhiEe

AR TR chiLies 425 5 7 R 45 Navier-stokes® #25% » Bt

T i PO S i N N A - R oL JEC 3
231 Ak f DA R AR Al B R
4o B u s 0Om/s
b B v 0m/s
A deiE B w: 0m/s
P a4 pro— & F &4 (101300Pa)
FARBAR O T % F %A (11842kg/me)
2-3.2 v g
*UER UL U, (REF) RS RN (B AR
roig v 0m/s (RAFR) 2EE ST (p R HE)
»rag R w: Om/s (R G#R) ~ 2R SR R (A R HE)
U R4 piE SR
MR R TR SR
2-33 Mo g
Mo R U 2R R ER
MRV ZER SR
Mvag Bow bR SRR
M R4 pbE B E R
MR R TR B R
2-3.4 FEo # R
ERER D AFVFHBEL S usv=w=0m/s

HRER D A HEEGRAT,

GRS D EEDEG G HREE 020
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G
A E
X
F
u=v=w=0
| T=T,
g
X
e
D ¥
K
“3
A "\ %
d P =10130(Pa
B T, = 29859
uO

W21 %3 § 2 R R



CE S

7 ;% % Navier-Stokes® #2;% - &%

“)“‘

f
vz &4

Laws)[27] > ¢

feid g2 Rgm % o

e

L 3EF I8 B ALAF TR o

%4 129 4 ROE j2

bl

g

‘/z‘

AL

-2 L 55
* = F Bty

okt Rl B O P e R o B - 87 AR S ST fRen

FudeLi & 4 [22]2 #ci = i > A4 7 #2345

a h

B ERRF IR R R R R L L0 e K C
- (Roe Scheme)[26] 1 * ROE ;& % fd) 2L 4E7% 38 il £ -
MUSCL ;# (Monotone Upstream-centered Schemes for Conservation

L0213 ROEZ Y & % chipefz TR T B

g 12 §

& MUSCL £ #& & e % 3 4258 ¢ 4 » Minmod limiter 12 7z 1}

2543 g3 4T B &5 4% Preconditioningz [28] - F]15 § 3t H MR ¥ ORNFIAEE 0 F
# B Arg @ hlic® & (order)t X R < o LBicE A TR AFEE 0 AT S AEAT 0 - A2

JF & * Preconditioningiz - % T
4v ~ Artificial time term @ gl 7 = B
Z # * Dual time steppingp i > @& H &
P 42 B 4250 o
algorithm)[30] » #2.;% #] 4 ?

Fe o w2 Z & 4e »~ Artificial time term» & pFrs 53

& % Dual time stepping %] * Preconditioning;# p¥ »

RFEORES AEN 5 T R E AR S R R F

22

p _\

Y

Artificial domainjzacpr 4 si& > T - B E 3

s

o % ~.&r 5 LUSGSZ (implicit lower-upper symmetric Gauss-Seidel

& * Preconditioningz - @ fsifrs 4zl

EHER2Z AR L0 R ARTLERTNLRTEFRLE AN FR
B P E MR L Vi A% LlE b 3t AR L > 1% MUSCL 2 § )
ROE 272 & chpe R HF 2 E > I 24Fad g > £2 A58 £ F 4 r
Preconditioning;# » 43727 § & chfic® & (order)e &£ ki@ ¥ - PRV L3R L E HALF
FiadE A Em ROAEFIE D RS EL Y ROEZ Rl § 26 FFE T 12 § o &
is ¢ * Dual time steppingt LUSGS# fp & 12 ) It grpfd endr 32§

14



31~ i g2k
AT AR RS G HAE S RN AT LA XA - N 5 g
S ARN o H D R L AR o

ou oF A oG  oH
+—+—+

ot Tox Toy oz 0 (3-1)
ot o0x a9y o0z
He
U=(p pu pv pw pe) (3-2)
ou
pu+P-1, a3
- PW T,
PUW—T
V? oT
p|e+— U+ Pu—Kk———Ur =Vr W,
2 OX
o
AU-T,
G= wHP =Ty (3-4)
PW-T,,
2
P(e+—jV+Pv—kg—;—uryx—vrw—wryz
OW
PWU—T,
= PN T (3-5)
"= PW +P -1,
? T
,0(6‘+—jw+PW-kE—urzx—vrzy—wrZZ
0
~(o-m0)o
=0 (3-6)
0
~(o-po)ou
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PiBR PRI cU~VWAEHEZ XY ~2z3%auE R o Ki thermal diffusivity o

e=CT +%(u2 +v2+w?) » C,

L

G P

Y AA 2

B

L-L?g!‘. o

A 0
pu’ +P .
F =Fisia T Fisia = v - Ty (3-7)
oUW r
2 Xz
p(e+v—ju+Pu—ka—T ur, +vr. +Wwr
2 1) X i @
OV
0
oVU
T
pYHP g 3-8
G =G igid  Giigia = oW A Ty (3-8)
V2 oT i
P e+7 v+Pv—ka—y ur,, +vr, +wr,
P 0
ey r
H=H igia * Hisia = ,0\21W - Ty (3-9)
o+ P r
V?2 oT z
+— |\w+Pw-k—
,o(e 5 jw Pw-k > UT, +VT, +WT,
= id 2t3

PEALF L A A2t RS AP ARt o

16



3-2 ~ Roescheme :

L Senw EA5N S fg NP FH AR 25 3 i e B B T (piecewise)

I~

¥l Al PR AL S B (Riemann)fP 4L - F1 5 2 & 53 2 @ Fjz o Flot aonagt

P ERER AT o - BAPFE S BN beT

3)
P irall-p (3-10)
H¢ ai- ¥ #icJacobiarke*L o

N _ _fu. x<0
AR Y SR u(x,O)—uO(x)—{UR >0

HaTH B (3-10)

W, U,
ot [1)4

T Az BFiciaaErl ) 2 ks £

A 0
A=KAK™ s 829 A4 Epcaed t A= 2 " 1o

0 .. 2

m
K=[K® K™ 5 s £ 5 AKO=2KO

2B ¥ 7 & Facg W (characteristic variables # z_% 4T
W=W(t,x) » W=KU & U =KW -

_"ﬂﬁha_U:Ka_W_E’ a_U:Kaﬂ ,
ot ot [6)4 o0X

Bl Bk &~ (3-10)0 ¢ T

KW, + AKW, =0 >

GRS §TRUET

W, + AW, =0 (3-11)
> 4234 (3-11)f % canonical formgt characteristic form

Bt o S ] H e

17



W A 0w
W, 0O ... Ofw
LTI B R 2| =0 (3-12)
ot 0x ) S :
W [0 o AW,
P'\‘—jd’%ﬁ(ﬂ’ E e i ﬁﬁ*ﬁ‘:
a, X—-At<O
W) =wO (x-Ay=10 "7 (3-13)
B x-At>0

B oo 8 B i A gl d 2t U =KW > 7 0 18 3]
U(X,t) :ZV\I[O)(X_/‘it)K(i)
2}}% @(3-1)’ ¥ ol _g’E__ ’5#’&%-:’:

U(xt)= Za K® + Z BKY (3-14)

i=p+l

gt 2 cb o B g U (xt) P sjump AU

AU =U_-U, => aK® (3-15)

MARMEE AP > BER G exact solution i f AR AEAR T ) * fp i E S
o pEER TR Y S B FP AFRERY PR Rl L0 fRARFAL ) - R
Wk fRiT R & R 4E (approximation Riemann problenyz s % & 4 £ H exact solutiorr
hoRfET NS R AP BARR LR ch 2 5 Roedtik 4 - 77 L Roe scheme X p %
4o
=6 SO LRl i A
ou  oF

——+—=0 3-16
ot ox ( )

1244 chain rule> ¥ #-= 4254 (3-16)c B 4o

18



ouU OF ou _

ot 6U oX

E A(U)—a—llj’*““”ﬁi (3167 127 A

oU
=+ AU )— =0 (3-17)

2e s A(U)ifuﬁl:% Jacobian® it -

@ Roe schemé-i 4 1 Jacobiane't AU) * ¥ #i Jacobiane'L ( constant Jacobian

matrix) AU Ug) &% » Tt & %k cnfy § BAET e B 235 K § R AL

a—U+A(U)——O
ot
U, x<0
U 0):{ : (3-18)
U, x<0
R A S T U E NGB8t fF e d M B ET (B AT L AL
Roeq|* ¥ #c JacobianE'L B~ X i A& Jacobiame "t = et d L@ LM

drdpiF 50 e 0 T L @RS AR (3 16T iR o 37 & K AL i
JacobianEr*L » £ 7 Roe s 74 Jieram 38 0E i

1L UgF 2/ 5aFapmgsaopy e

2. Fé%f UR_UL -U B A(UL’UR) - A(U) ’ l}L}f@A:gLFJ c

3. AU, -Uy)=F -F, -

4, B A B FRABBE o

pw IR g ‘FK{%@' M2 ARNATE BB o ek L P 7 Roedrdt ey i
Jacobiarve*E & 5 F HeA A o H T R e B ARSI o gt 2 v iR
3.0 E 57 # &= (conservation law £ Rankine-Hugoniots i -

MRS R AL R 20 T 02 $2(3-13) (3-15)R @ 3] » U | (X/t) chjg® 11 i ¥
i+

.1(x/t) U +> aK® (3-19)
* A <0
19



il(x/t) =Ug-> aK® (3-20)

A>0
1 s m
H I+§z\7r B2 B e (face)o
AR R RREART R RUEAJRT R S RAESL
oU oFU) _ = _ &
4 =0 > 34 (3-18)" ¥ 4 F = AU
ot ox 19(3-18)

‘]fJL‘fJ’}ré‘f’Jp*]._’rﬂLb‘E‘\ 'El‘:,\.

'f(UR)_lf(UL):F(UR)_F(UL) (3-21)

3}1

BE LS

i’g ﬁi IR & T ﬁ%&t?l]Jﬁ#U 1(0) ¥ ]pf‘Jﬁﬁ(f|UX)ﬁ7$ﬁf_E’; oa5v

F L =FU ,(0)-FU)-FU,) (3-22)

FHF =AU B 59 7 g H 218

F =AU ,(0)-FUq)-AU, (3-23)

i+X
2 2

£ F95(3-19):¢ &2 (3-20);¢ w4 3 dy

L =FUR) -AY K =FUR) > A@K® (3-24)
2 A>0 i=1
& F l—F(UR)+AZUK")—F(U )+ Y. AaKY (3-25)
" 2 A>0 i=1

(3-24)¢ (3-25)%#;1 m/Tl" 5] )Ii+ Aw R A e aciE e o e B F R I T

SR MF {E-Hia

i+l

2
F 1=§{F(UR)+F(uL)—iWczK“’} (3-26)
"3 i=1
B (B4R T R A FEF | 6015040
2
Fa= [F(UR)”F(UL) [Aau | (3-27)
|/]1| ’ O
#¢ AU =U,-U, =A-A =RART A= P
O ) |/]m|



BT OREH Y

ST E IR o & T A R

FF - HER AP AR

Ut+F(U)x :O

o] ]
u2 IOu f2 ,OlJ+ap

+ 47 7% (3-28): Jacobiane i #7 H i e e (e 22 e B Ao T ArR

oF 0o 1
AU)=——=
V=50 {aﬂwﬁ zJ

e * A=u-a-> A, =u+a

e £ K‘”:{ 1 } , K‘Z):{ 1 }
u—a u+a

# ¥ i¥ %_parameter vector Q

SN

E#FeUf* Q47 :

%7 47 2 AU 2 AF £ & % % averaged vect@ :

Q{ﬂ-l@ +QR)—§[ Vo e }

AU+ Prlg
AN B=BQ & C=CQ) ¢
AU =BAQ ; AF =CAQ

#(3-34)p e v A

21

(3-28)

(3-29)

(3-30)

(3-31)

(3-32)

(3-33)

(3-34)



(3-35)

AF =(CB™MAU
£ 1395+ i 3 KT 1w Jcaobiane L
A=CB™ (3-36)
= 0 % E(3-34) 7wk E
3 2q1 0 ~ qz q1j|
. "l o 3-37
{qz QJ {2&20I1 G5 ( )
£ % ~(3-36)7 7
. i : 3-38
= a2—02 20 (3.38)
0 5 Roe averaged velocity
u + u
e (3-39)
o .
k3 b'fz" IV S }F%{—v /;‘\ %gilj«"j—ri;"ﬂ‘g_ .
+
V= PV PrVr a0
o
W + Wy
1 - (3-41)
o o
H + H.
" 0 (3-42)

Jo e
(3-43)

a=[(y-)(H-1/27)f"*

WA A XS e Y S ez e o H 8R4 N 5 Bqed # ¢ (3-39)

He G~V~WA

~(3-42);8 ¢ U, 1 2 U Bl 4% MUSCL i# &) o

22



[
»

x<0 X=0 x>0

B 3-1 5 & K AT S

23



3-3 ~ Monotonic Upstream-Centered Scheme for Conservation Laws(MUSCL) :

A2 & % hE g% | Abalakin £[27]¢ #1 * (fE A2 o H 3 RN 4o T
uiL+1/2 =y +1/ 2AuiL+1/2 (3-44)
uiFi1/2 =u -1/ ZAuiFiuz (3-45)

AuiL+1/2 =@Q-8)u, —u)+ B(u —u,) +9C(_Ui—1 +3ui _3*'”1 +Ui+2)
+6" (“U_, +3u_, — 3 +u,,) (3-46)
AuiFillz =1-B)u, —u)+BUu,, —u,) +t6°(-u_ +3u -3, +u,,)

+¢° (=u, +3u,, — 3, + U, ) (3-47)

H ¥ (3-46)~ (3-4T)0 ¢ B~ 65~ @ULETD A (B AE o kxR R ET 2 E T A
boed R o kb BIALR Y Z BRI GRS B i) il

BAZRY 0 B A AREA BB ABFSERT S FARBTR 0 5T EKRET > AP
% & MUSCL ;2 46~ & % e02 f2 58 ¢ 4ox minmod limiter> * Jorziffz:8 2 € 2 47 o

F]4t (3-44)22 (3-45)¢ F sx B AT

Usy/p = U +1/2minmodfuy,, | (3-48)
Uy, =U —1/2minmodQu?,, | (3-49)

minmod( .y )= Sgn & Max {0,Min[x ], ySan(x)}

24



B o° 6° Order
1/3 0 0 3
1/3 -1/6 0 4
1/3 0 -1/6 4
1/3 -1/10 -1/15 5

25




3-4 ~ Preconditioning i* :

20 ®/B AN DORT FH 0 A Navier-Stokes® 425¢ ¥ 4c » preconditioning - 3 425 7

R MR TR TV EE Rk
a_U+a_F+a_G a_H_S (3_50)
ot ox o9y oz

R RAeT A2 B F R T A58 (conserved variableg g = o & % #2378 (primitive

variables) » H 353 40T @

ouU
Mo OF 06,1 g (3-51)

ot ox ody o0z

2eU =[puv wTlM;#E#eL:

Py 0O 0 O Or
5 pu p 0 .0 oru
m=Y - pv 0 po 0 JonY (3-52)
oy,
PW 0O 0 p OrW
PH-1 pu v pw pH+PC, |
ap 0p
He =F
e T ap O Tt
¥ #4-(3-51)% e f2 gk api K
i 1 0O 0 0 O
-u 1 0 0 O
K = -V 0O 1 0 O (3-53)
-w 0O 0 1 o
-H-M) u ~v -w 1
E#KeMipgk
'p, 00 0 p
0O p 00 O
KM={0 0 p O O (3-54)
0O 0 0 p O
-1 0 0 0 pC,

#-(3-54)% F » (3-51)F » @ g el
26



dp. dpu v dpw
(p)+pupvp

3-55

ox oy 0z ( )
LI K ALY T H(355)E £ 7
Y 9Py, 0pu OV, 0PN _ o (3-56)
C’'ot” ox o9y o0z
He Ci B
#3356 T gl RERREET o d 3 p 2 F o (3-BE)N M- A
Opu , 9pv , OpwW _ o (3-57)

ox oy o0z

ST L 2V RGeS AR5 o

Fostik > T OB AR & e (3540 ¢ chp 5 0 f1% 3§+ ngE & (local velocity) 0
EH 1 T ) S T S R R T e o @ R
# B =t s dk(orderyp ok 5u3 F % 3| CFL(Courant-Friedrichs-Lewy Conditio#f) it &
SETIRIE: - Vs s e S

‘N’# Hﬁxfll ppIE .

1
6= ;
(Uz TC, (3-58)
exU,., if |u<exC
U, = |ul if exC<|u[<C (3-59)
C if |u>C

He gL -4 hiE > %310° > 23 8 §% % 22 (stagnation point %
P E T A ehd B EL (singular poind T % o 3t ARGIM RS S 0 U % R < TR

sy » Pt & (local diffusion velocity) » 1ot U B 7 4o > 7 75241 ¢
Vv
U =maxU, —
 =maxy, )

#-0F ~ (3-54)5% 15 > ¥ BT - RTELT

27



& 0 0 0 po

0O p 00 O
=0 0 o0 O (3-60)

0 00 p O

-1 0 0 0 pC,|
E i E 2 {80 3 AR EBBL)N E AT
ouU

r P 4 K(a_F+a_G +a_H) =S (3-61)

oot ox oy 0z
STMEBOLN Y i AL AR ERT AN, Ak KT

aUp +a_F+a_G+a_H:S (3-62)

(K™T,.)
ot oOx oy oz

15 (3-62)s" » T

& 0 0.0 r

T

6u 0 O B

p T

r=K.= v 0 pii0n
6w 0 O —

p T
GH-1 pu pv pw _?’OH+,0Cp

b5 AR T R e T AR

+——+—+——=S (3-63)

# ¢ [ % preconditioninge*L - U % primitive form[P,u,v,w,T]'

g3 g N A PRI B T E AT Roed T T R & 2 o A(3-27)

;\4 v o ¥ llﬁ%f‘] F 1
i+=
2

1 " v .
B Ad E(F(UR)+F(UL))ﬁw’ A A GEAC L RS G
e . . 1, e . .
F* %2 0 artificial viscosity term EWAU frke s o 4e x preconditioning? A28 B F A

artificial viscosity termiazc % v » H g F 4o @
28



[‘aUp +a_F+a_G+a_H:S

ot ox o9y 0z

aUp +r‘1(a_F+a_G+a_H) =Ts
ot ox oy o0z
ouU
I T CA Y LA LA Y 1
ot ox ay 0z

oy, ouU ouU 1
+BM —2+CM —2)=T"'S
oy 0z

(3-64)

U, .
+I(AM
ot 16)4

e M:a_U

ou,

#7112 artificial viscosity termsc & 4- ™

1 1 __
F =5 (Fa+F) =S "AM[AU, (3-65)

# ¢ |FAM|= KAx|DAxKA™

FEAFPEIT S AARFEIT S G ok Y SR AR A A e A AR S RN Y 2B e Y

-

SRERERERZ Bl 250 Flp AAEFEIE G 6 S R F D R RS SR A

PR e 35 o TH N ZAAX S e sl BIS25H T3 B -
B 329 & ShBher it & e} A S50

1 (,j +1K) ;29(i+%,j,k) 13> (+1]+1K) ;

4> G,j.k-1) :59(i+%,j,k—1) 6> (+1j.k-1;

75 G, 7.K) :89(i+%,j,k) 9> (+1].K) ;

10 (,j.k+1) 119(i+%,j,k+1) L 125 (+1].k+1) ;

135 (,j 1K) ; 149(i+%,j—],k) D155 (+1]-1K) :

BE@EREZAS A BT 457 0

U _AU _U@9)-U(@)
X~ AX AX

(3-66)
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vV _AV _V(©)-V()

OX  AX AX
oW AW _W(9)-W(7)
X  AX AX

oUu _ AU _U(29-U @4

oY 2AY 20Y
o U(2):U (3);U(1) : U(14):U (13)42rU (15
):’Li—q[‘}‘
U@+U@®, U @L3+U (@5
ou O ) )y @)U @)-U @39+ 09)
oY  2AY 20Y - ANY
e
VE+V@D), V@L3I)+V (L5
v _ ) ) @V @2y a3+ as
oY  2AY 20Y = ANY
W@E)+W(@Q), W @L3)+W (L5
ow _ 5 ) b )W @)+W (1)=W 13 +W (15)
Yy 20Y 2AY - NY%

U _ AU _U@1)-U)

0Z 2AZ 207
20 uqy=UE0tUEd e UAUE
e,
U 0)+U 12), U (4)+U 6)
ou_ 5 ) ) U ao+U a9)-U @) +U )
0z 207 207 B 407
e
V @0)+V (L2, V(4)+V(6)
ov_ ) ) vaorvaa-v@+veE
0z 207 207 - 4NZ
W L0)+W (12 W (4) +W (6)
ow _ 5 ) ) woao+w 09-w @)+ W)

0z 20NZ 207 LTAVA
30

(3-67)

(3-68)

(3-69)

(3-70)

(3-71)

(3-72)

(3-73)

(3-74)

(3-75)

(3-76)



10

] 2 3
' — & | !
7
¢ s a
13 14 15
Y

Bl 3-2 24 7 &L F
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3-5 ~ Dual time stepping :

= #7354 (3-51)¢ 7 Navier-Stokes™ #2;% & PFFF 38 = m i i3 ez > F]PL % 2 2 fd en
AN KPFEHAELET 2B E 0 T A4 L 4~ dual time stepping[29f#-ie 5 7
RN A AR o b (RGN IS et EER -

4 0 & & R4 Navier-Stokes® #2355 40 » — B #EPFF 38 > #L 5 artificial time terme
> A Ve g T

ouU 6U aF 6G aH (3-77)
ar ot 6x 6y 9z

H ¢ 1 % artificial time t 3 physical time

U % conservative forrfip, pu, pv, ow, pe)’

a—

£ ¥ % artificial time term#c ~ preconditioning method :

oy,
r& 09 0F 0G H _g (3-78)
ar ot ox oy 0z

& (s ¥ artificial time termix — F§ 633 *L L 4~ 345> 4 physical time termg: = P 0%

GF 0G _OH
5 £ A A N L S
* ox oy 0z 5 '
kil _pk K+l _ n n-1
rUp UP +&J M +U _(Fk+1 Fk+1 )+ (Gk+l Gk+l ) 1 (Hk+1 _Hk+1 1)=S
AT 2N\t |+21k i—zj,k Ay IJ+2k ij- 2k JAVA |Jk+E i,j,k—E
(3-79)
4'_%_ X TPJ_ —\ s ;'{J;LZ_‘F' —’g{l\r’} i
AU 3U"+MAU )-4U"+U™
Arp + 2pAt +3,(F*+ AAU ) +0,(G“ +BiAU ) +J,(H* +CAU ) =S
(3-80)
2 AU, =URt-Us, M =Y
p p p aup

+1 _n +H1 Fk
U =U"+MAU, » F*' =F + AAU, > p=py =2

o,
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£RAU TEE B R BARR A

|, 3 ]
[E” M HTHEA+O B +5Xcg)}aup =R (3-81)

s R =s5-2

k _ n n-1
4Jt+u )-(OF*+3,G +aH ) > | 3 ¥ gt

oU _OF 5 _ G oH

geom=2

H = = flux Jacobian -
oy, U, Pou,

#C =
s C,

p
k % artificial time ? ¢dp ¥ =t #ic > n % physical times2* 5 Fédic o it > 258 >

k+1_Uk

artificial time termjcacps > Y5 “Ys _g 5 S et ¢ w41 I| 42 Navier-Stokes* 42
AT

Fo TP EFEFRRE ANV ETESES -
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3-6 ~ LUSGS /x:
AR 3 % LUSGS implicit;2 3+ & pF & > 42.58(3-77) 24 m@m‘;gf |z ap i o >

$#3 7 7 % ¢t o Artificial Dissipation & § 24 42 5% Jx age & 2 iF * T agid & #pP-e7 LUSGS

d = 4% ;4 (3-81):

I 3

k _ n n-1
&&R%S—@J 2&ﬂj)%@ﬂ+@@+@Hﬁ’léE&%i

A=K +A . B =B +B € =C +C, (3-83)
~ . 1~ ~ 1 1, =,
2dA _E( pi|/1A|I)\B E( J_r|/] [1) ~ E(Cpiué“)
A~ A~ Acanla A s BiaCod Bk e i e
#- bt o~ (3-82)F
[|—+F_1M 3 +AAp,i _Ap,i—l +Ap,i+1__APi—l +
AT 2At AXx AX
Ep,i+_§p,i—1+ + ép,i+1__§pi—1+ + ,Api+_FApl—I +6p,i+1__6p,i—1+]AUp - r_le
Ay Ay Az Az (3-84)

50 g A= A g A = e B s
7 9(3-84)% fETE &

—r-1
(L+D+U)AU, =T'R

34



H
L:—%(A;)i_l,j,k oy B +é(é;)i,,-,k_l}

D :t’LF_lM %’L{A_lx[(ﬁ;)i,i,k _(ﬁi)i.J,k}LAiy[(B;)i,i,k _(é;)i,j,k]Jré[(é;)i,j,k —(é;)i,j,k]}
U= [i(/l;)iﬂ,j,k 2 B +é(6;)i,j,m}

B4 g s (L+D)D(D+U)AUS =R

AT T o R

1L(L+D)AU" =T'R

#¢ AU° =D?(D+U)AU",

2. (D+U)AU* =DAU,

AU* =AU ' -D*UAUX,

3. U =Uf+AU

. N Uk+l_uk - , L
AEHEHIH- 1= B Flre e R T - BHIEpEFEFET KE
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3-7~ 25 5448 & (Non-reflecting Boundary) :

AFLARFHT RN A ALE FEN R ERD B AR RE T RN
R N EE SRR FRINGEEE S FRAER  Ra gt P o iE
KA d RS G EE RN T ek IR RS P e FIB AR T HRET
Bsgin ;2 22 Bindir AR - LR R b R R F REH
dvo A AU E A * Fude Li ¥ A [22]:c £ Poinsotfr Lele[25]s2t & b4 if
7 % i (non-reflecting boundary) ¥ i * »* & i1 ¥ R EE > 2 KRRt e i x 3
B

1245 Poinsot¥ 4 [25]#73% ! 11 LODI(The local one-dimensional invsicid relatios]3-78)

i pdie f R - & Navier-Stokes™ #7.3¢:
0 oF
"o *&:O o

ES % #ﬁia&%a\ L& % #8295\ (primitive form) s #(3-76) = f kIt

ou oF
P+r*—=0 3-86
or 0x ( )
ou ouU
po ra0F o OF 08 _pap O, (3-87)

-1
0X U, ox A 0X
#-(3-87)% » = 425 (3-85) 1 & % #cA)38 L # c(primitive variablesy= 4z 3% 4o #757 ¢
U, , ) Y, o
or g ox (3-88)
B TTA fdp D g 2 B B o i R
A =KAK™ (3-89)
MoK i e £ (Eigenvectory A F T A)m;}'i‘fﬁ;;p (Eigen values) o 3 ) g

Mk B oo 1935 Dennis® A [31]## M Fin ™ RitME BUZ R #Co BADER B
I (S ek B U 2 Bk ¢ R s dikc(order)i i o

FHEEL S
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A u
A, u
A=A =] u (3-90)
A, u+c
A u-c

#e u':M_,@ C'=\/u2(,3_1)2+4,[)’c2

2
ouU
'ﬂ Z: L:AK_l—p (3_91)
0x
ERLV#®
oT 1 0P OP
Ut (k)
0X pK 0X 0x
L el
L, ox
L=k = u-2Y) (3-92)
L 0x
’ v nOP © ., 0u
u'+c)[—-p(u'=c —u)y—
L) | ( )[ax A )ax]

- - o - Y
[)4 [5)4

Lo e g & i R iFe ARREFRRLIE -

ouU
20 EIL e mpm%ﬁ’%ﬁgnwwﬁﬁ&igﬂ?@

- +KL=0 (3-93)
or

EEGBO2F #RA R AEEERE SR IEE Y 53 7N e

op 1

—+—[L,(u+c -u)-L(u'-c'-u)] =0
a7 2c’[ A ) = Ls( )]
ou 1
—+—(L,-L)=0
or 2pc'( « L)

5, L =0 (3-94)

M1, =0

or

aT 1y-11

—+ +___L u!+cl_ _ ur_Cl_ :0
Py L, 5y 2C,[4( y) — Ls( )l
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= 4758 (3-94)F AATheT

p“t = p* —A—T,[L4(u’ +C'—u) - Ly(u'—c' —u)]

2pcC
utt =u _A_T,(L4 ~Ls)
2p0cC
V=V + LAT (3-95)
W =w - LAT
Tk+l :Tk LlAT-I' 1 y 1( pk+l_ pk)

‘%Q%?] 3'3(3)’ ’Q\'—"‘g‘ ‘/rl /[k’? F\ ,{j_ :‘fT ‘, PIB?’: ’ L ~ L L "i L4-—}, ‘?’_"’_ /” %ﬁ/” - __;7 '?:"

Ak o Flpt w1 34238 (3-92) 2 |_ L~ L& L4o\;§%§u'—c’ R R PR L eh

e R SRR B vWFod”@JAﬁéﬁm%u;?’%”%Lm’%ﬂﬁega
T

BdoeT L

1 I U I U

E[L4(u +c'-u) - L(u-c'-u)] =0 (3-96)

A Ly T kAT

(U +c'—u)
(ur_cr_u) 4

QESOIRIE EE R T 2:8 § S8 SRB el il N €O LES SSRGS

Ls = (3-97)

PR R o L L LRI RS 00 LoRI7 d = 4258 (3-97) 51 -
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aperture

channel g
— > L
U > O =— L, surroundings

Y fluid velocity > = L,
X «---L
@)
aperture

- - =
channe .
«<--L

U < O + — — | surroundings

y fluid velocity < —> L,
X ---L

(b)

B33 L~ L~ Ly~ L& L i A seh= o 7 2
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22

Fr ¥ BEEHH

AFEIHEWHREHI T A H 2 BLE A FE FIREAG A R R
RHEE RS B BEEG L T0e RN LRV RET I LR AN
RS L e R A s I P ERCEE
RE o AEARY 2d=0.04m b fF £ A 1=012m e ¥ AR R Ade s R B
R PR RIETE = SRS S S R R CERE S S IR < E T

B FF 2 omiE o A0 0 5 T S

(4-1)

Vieg =AU+ (V)7 + (w)? (4-2)
T, =298 » T, =398 - p;=1.184%g M’
AT =T, -T, 100K

R F s TEIAE o HAER 2 £ 8 E G dicik Sutherlands's lawke T ST

a T g T,+S
() —uo[?oj (2] @

_ yR
k(T)_'u(y—l)Pr

(4-4)
#¢ S, =110+ 4, =1.85x 10°Ns hn* » R=287] kg[K - Pr=0.72 y=1.4
TR AR R T RG> T R iR bR B WA G

Re - IOOUOd (4_5)
Ho

N, :—[k(T)‘Z—l (4-6)
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o ff L3022 €55

:%\J-A" Nudxdy = —

1 d oT
. | A[ m[k(ﬂg}dxdy (4-7)

B AL oBa e Rl G e

HEF T2 hle iz T4 5 ¢

1 d oT
(40, = <M 3 “9

}‘J‘Eﬁﬂ&mf?liﬁ7 J.%QQ;\ ;:'Ri .

(M)t = % [/ Nuct (4-9)

CEU RIS T RS £ SR TN

(JN,), :flft Lﬁ{kﬁ)%—ﬂ ot (4-10)

Bt Y TR SRILE R IMAE R HR S Tt Rayleigh#ic T g 4eT

3
Ra. PIEGI’ — PrgIOO (Th O)d (4_11)
Tou(Ty)?
IR RN AR E > & FF v (Richardson numbely ™ :
. Gr
R = (4-12)
R€

ARG AT A ) R B G xxyxZ o 11 72x30x 3C~ 96% 40x 4C ~ 120x 50x 5(
SRR RO U RN A B (TSR RGP A R 2 e R HE o AR
4-1 #7510 @ PR T72x30x 3CF 0 VA H b R HF N H B A BRERTERE A A
% e X 96X 40x 403 120x 50 5(PF 118 R % L A BRI 0 L ARG E Y
96x 40% 4C5 et I b R R REEHAL SR T e EERE -
BAFTY 0 ¥ - BEH A HAF L0122 = EE A E 2 f AR

RA=6.7846¢ 10 » Hi-4aif 2 5 B ~ B4 &4 FRBAF T ER SR~ v FR

B X
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REE MR c BB PR EFR T L X=3% AT =T, -T,=100K - 5 t>0pF > g p

-

iR AEET, c M A25ET L FEEREE AR > PERAL=2S2 (50 f A
A & R TR ER SRRy S I

435X > Edr g

Qout net')'d‘ igﬁ'& T

Quine = oud’ (4-13)

u, ifu>0
A U=
; u{o,ifu<o

Bl 4-4(@)~(h)s ¥ & XY #5 75AF > Bl 4-4(2) &t=001%p > 515 # B 4 ff ¥ 8
BEGEEER BN o RS BRG AR 0 R R R MR i SRR
o gdie B PR EE I 7 ?@‘ﬂﬁf F NS BRI - B 4-4(b)A
t=0.065 » it v i 50 Sak R LA F PR a3 0 FIERG TR IR 4 ok
BB FAR AR > Mo RS Fpta gk A b e b < o § R4 R T n
g R I S e g o B 4-4(C)~(F B % -

B 4-4(g)7et =1.00%pF > s s 2 dodu in £ 3 K2 A d 4 v & B 4-4(h)
Lt=T7.75% P Hifd T A AR e d A2 T RAN SR AR e
T R RAEbRE PIAEAGR A c B AD AR £ XY £ 5 £EAR 4B
BEEG YHiTd TR RERE %ﬂ%ﬁr’ FA AT B e £ A o B 4-6(a)~(d):
FEBEEG PARCESRGERAEATE B A BRLatiEr 2 3R
Azdp> ¥ CI DEgLinMiEr 2 3G AR E - B e - EL FEL AL
TR REEEG A Y - B AR G I H gBa e 2 3RS BRI E R
o B 4-6(Q)5F ABRER RE AT EE > FEGZT RS ANEA R &Y LER
FREG % 0 B 4-6(0)E 54 AR BT R BINAT H A 0 B 4-6(C)kG R4 &
BRI Z F A eI BET A2 RNLE S B4 BN CERASF R

dp RN EQVFE I AT ERLIU D T ERU T RE T 2T

#5950 o I V(RI=1) I B FR v R BB R ah o U g Rl R F
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For s 41> 3d MA27 0 13 b iflf v 2 3 A ) RS 2R R

Q = pu,d?

o (4-14)
Uy = Q

o? (4-15)
Re &;d: 95( (4-16)

¥ B EGIESR EHIE > F s W 5 9502400 ~200 ~100 0 H st A s A L

59:28.6-942 5 A hix B SRR S BA B FRBEARE > 2 v SRFIEN S e G2

"=

Foplbf o 86 432 8k 2.5 d/l, =22 AT =T, -T, =100K - % t >0pF » & if p

1
3
Se# G LB I T, o B 47 5 (Ri=1)F #%8(Re= 950 £ i pF @ 4 XY # 5
SR 0 BT %R T % e S S e PR - W48 5 R
P XY #62 BIEAR O A EEG O CNRERS o Al 5 2w dH
i R E e A A o Bl 49@)F R EEG FE v mE 0 FlER S B & H
“ooR Zad 0 Bl 4-9(D)R) 2 A-Q(C)FIH A TR R & 2 KA A RIS SE o T
4}1 Em X ke TR 1‘% ' Bl 4-9(d): EREEG BT 2R VERERIZITE 7)‘?

ST R SN RS ot BEG T kS R o BB RRF

B 4-10 5 513 v (Ri =5.9)~ § #%#c(Re=400JE i pF @ 4 XY # 6 in KB 7 M4
MUGRER R gd v kY S MRS o B 4-11 S HE RSB B bk
o B RS %ﬁﬁ&ﬁ%’ﬁ@%%ﬁﬁﬁ%{%ﬁ’ﬁ&iﬁ$ﬁﬁﬁ%$?
BRLE R RER4-12@)~dpE 7 AR P2 PR GRS AT BB 4-12(0)
FEBEES RF T Y TR L R L iE o Bl 4-12(b)s A R G
T3 U B - B REEY - FIIES4 R B ITENG HiTHE R R~ 0 Bl 4-12(0)5 &

o

BEER RE T

=\

e

S EPREAL > b DT iR s B B e e W] 4-12(d)
B RN RENCEECVRRNVLCEEAX 2R BRI A AT B

* kg o B 4-13 5 5 v (Ri=23.6) ~ 7 % #(Re=200f fu pF @ & XY £ 5 /iR E > B
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4-13(@)t=0.35%pF > F]T P gy g A KBRS FS sipd e 200 g o s e

i R Rl B S o a2 1 0o sy B4 AR 4-13(b)t =0.655
T RLE A B 4-13(C)~(e)et = 2.505 B 45w i AR AT 4 © 0 A& F] 4-13(f)t = 7.505% &

ORERI N T R §H A ANEY JHEAF Y B A HE L R
4-13(g)t =9.005 7+ - B 4-14(a)~(d): * £ XY # & %8 5§ B 4-14(b) t =2.505 #
BRFLIR NS BAEYA LY L FE > B 4-14(d) t =10.005:8 & F% @& B 3
PSRRI FET - B 4-15@)~(d} 7 B BEER L AR PR G R AL T
B B 4-15(): B B AEG REE A v Y > FliE R C L wHE A5 5 2aE 0 B 4-15(b)
FEBEER RE T E - BRI FFREILE SNSRI T F LR
okt X 3@ RS EE B 4150C):5 i BEAEG B » ¢ =8 - B e
T

T en 3}—4 “I}@-tﬁ‘*r?)ﬁﬁ P ) %] 4- 15(d) T_LL* av-@%m ?v 5 L f__%_ ’ ?ﬁ% :hl

7
)

P 2R A AR ] B 416 s s X e 2 bR R H

T

Bl 4-17()~(d)s 13+ (Ri=94.2) ~ § - Bc(Re=100¥& i p¥ # & XY # 5 jn s

Bl 4-17(a)et=0.5pF » BT > dun B A KL B g4 sei v 2 n R

\ng
e il o F A5 R o B 4-17(C)Rt =6spE SRR B~ v R € i 2 R
P FEARLFOR g S E 2N Hiwiie T UV RT FE(Re=200)R & £iT »
roo R AR M RE EB(Re=200) < » 4@ 4-17(d)t =10s #77 - Bl 4-18(a)~(d)s ¥ =
XY #6 $ 8RB H BRSSP mhBE BRPFRELY &4 E > B 4-18 ()i t=6s
P TR AT A A2 AR EiE A e AT A 4R E - B 4-19@)~(d% 7

BEER P AREE ARG E RSAS T B B 4-19@)s B EEG BT 2E 5 F
RSB wEEw 2 B4-19b): AR RS B v - BRI T
FPARETMEINFHRA T ER AN R EF X 3w R L B Ak F gy
Aoanfed B g B B AsAe b Bl 4-19(C)F BB R ARG R U B - B R hiEg s H LS

it £ T B 4-19(d): 3 B BB C Y VRERNC 3 w2 RS 3 E T
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EERF 4-19(C) | B 4-205 B s X G w2 bRl B R B 6 R R

)

RHw g2 T30 HeZdoftfl > 7ol 2 A e B L o
B 42152 Fapcer AL TR p BRERG REHRE BT R
dRIF TR R v R A BBk o FIES A <OV ERG T4 T H
RoeBlA425 2 FEHkhcERATR PR TH2 8 R TR
u), :% [ uet (4-17)
AR % HB(Re=950y0d v Ap iz » T arE H g ARER T iz i B AR
BB AR M ERST LR RS ETp ABNTRELNE A §E
vt e o Bk oo TR ¥ RS AR 0 &7 d(Re = 400 200+
100)h% &g B 5 > o F ool ~ Y o R e AoR 4235 0 X
S RGP b0 o ] BEEG  RER 2 Blkk p REIR A A e
g Rk Pl R AR R LA A SRR Y L AR E R
Fboa R (R =1) &b R v s i&{@&zw%ﬂﬁ’wu ho g
P e RETEON,  FlA24 A X I AT L e R RF) o B A e Y]
ERG Y 2 bRl FlEF AT RS s o RS ol o BBk s L o B 4-25
AR gt 2 Toe R 0 ¥ g 0 AT H8(Re=950F #f vt (R =1)ehsk bl &

=

t:7.$ir‘?ﬁ‘[§.’f§$ﬁiﬁ Rl dr o wd Bl4-2¥ v p AR At=7.552 {8
TR AE o B RE At > AR B RT #K(Re=950)F - # LR &
6% Flp ARyttt 4 F ok paigd sk @ 7 B(Re=950 H i B Ap b > ik
BANMBE GRS mp R R BRI o
Bl 4-26 5 HPEFER 2 6 fg T392 o R8O Bl 2 p R 2 £ 8sk B4
b (Ri=23.6 ~ 94.0* fgli v (Ri=5.9)c0ik » d B 4-27 ¢ & 55 500 B 7 v
v E R (Ri=1)w p AR @k 4 0 2 2 X=05 115 p A%nE S ilan sk
FOFR (R =) > P 5% B 4-23 2 X=05% (s eha g lic > o B 4-37 0o g

(Ri=23.6 ~ 949/ 0 v iy & v 3 v (RI=5.9) 10 o s it el 2 § 00

\“b
S

5 A
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IR (Ri=23.6 ~ 94.02 # iBsak it o
B 4-28(a)~(ef t=15spF2 @ & XY R G AL TH » d £ 417 " R7 k%

BlemiE v i B2 R AR 0 d % E#(Re=0+950 ~400~ 200~ 100)H £ = i B @i v 3§
Bzt g k= 5 1.43-1.46~2.76~5.25-8.75> & d [ 4-287 47 # #i(Re=950- 400~
O)ehd % ik B % Bl v B 3TEEG 1T > @ § #%#(Re=200 100)h& < & B 1 & 4 7 &
Y dd e SRR T BT RF W B R A RBET ER 2B
5251 5 g ynd2 A AETIN G o

B 4-29 5 "E A 8 1 2 T35k % #Fl(Re=200 ~100) > ¥ AT & F £ 215 0 £ W
FEURE L A2 ERF M P B R P IREF L o

B 4205 T32 X2 o @ BRATH > § 7T L v PRI % - 2P
BT 3o g R 70— By 0 7 O RRE LR R A F 0 T F8(Re=100 F 4 &b
BT 3 8(Re=200) » | © sheon dug B TR < o ¢ B PRSI gl
d B 43X 5 00 2 i B BT 2T H8(Re=100y: X=2.4 = %} T " 14§

R RS T Y T R I S R ST T ST

PR A-BLPEF T 352 @ 4§ e B R A 4T BOAP B F T § % c(Re=100)1% b > H
@R BT Y % 4 10000 3 2 8(Re=100y & wxigehig B v B % > &3 %

#(Re=100) # #»c B § % #c(Re=200) - B 4-32pfFF L322 ¢ LB R AF > § 7 &

G R RO o L HPER T RGE RN B T @ SRR R AT o

46



70

60

50

40

30

20

10

120x 50x 5(
96x 40x 4(
72x 30x 3C

o

B 4-1 % $3p] 3% Bl (Re=0)
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0.0

Natural Convection (Re=0)

Bl 4-2:2 v jt & B

48



x1o™
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e Re= 400Ri = 59 7
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% 4-1 3k b2 T4 (AT =100K)

Inlet

Outlet

V-inlet V-max

Flow Nu Ri

(kg/s) (kg/s) (m/s) (m/s)
Natural

7.0x10% 6.6x10" 0.37 0.53 9.46
Convection
Mixed

7.0x10* 6.9x10* 0.37 0.54 8.87 1.0
Re=950
Mixed

3.0x10% 2.9%10 0.17 0.47 7.16 5.9
Re=400
Mixed

1.5x10* 1.4x10" 0.08 0.42 7.71 23.6
Re=200
Mixed

7.5x10° 7.2x10° 0.04 0.35 7.64 94.2

Re=100
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(a)t=0.015  (b)t=0.065 (c)t=0.1s (d)t=0.165

B 4-4 ¢ & XY £ 6 ;s Fl(Re=0)
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380
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B 457 £ XY #a 5§

53

4 ) (Re=0)




DL

B 4-6(b) Cg-2 D gkt B 34 * (Re: o)
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m
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05
0.4
03
02
0.1

z

£

®l 4-6(c) Egk5 Farié vk 34 # (Re= 0)

0.5
0.4
0.3
0.2
0.1

L.

B 4-6(d) G2 H 2k & #-4~ # (Re=0)
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Bl 4-7 7 & XY # & /= 4 Bl (Re=950)
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360
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320
300

Bl4-8+¢ & XY #6 %8 4% (Re=950)
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L.

1 4-9(b)C#-3 D #hit & #-4 # (Re= 950
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L.

W 4-9(d)GE-1 H 2hi¢ & 34 # (Re= 950
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B 4-10 ¢ 4 XY # 5 ;4 B (Re=400)
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380
360
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320
300

B 4-11 ¢ & XY # 5 &8
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z

.

B 4-12(a)AB-% B Zi# B ¥4 + (Re= 400

.

B 4-12(b) C%:- 3 D - & ¥4 *# (Re= 400

62



B 4-12(c)EZ-* F 22 B4 # (Re= 400

L

® 4-12(d) G2 H gk & 34~ + (Re= 400
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(a)t=0.35%  (b)t=0.65% (c)t=2.50% (d)t=4.00%

Bl 4-137¢ & XY # 5 i 4 §(Re=200)
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-

(a)t=0.355% (b)t=2.50% (c)t=5.00% (d)t=10.00%

Bl 4-147¢ & XY # 5 % § % F(Re=200)
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®l 4-15(b) C2: 1 D 2hi¢ & 34 # (Re= 200
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L.

Fl 4-15(d) Gt 2 H kit & 34 % (Re= 200
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B 4-17 © & XY # 5 ;7 4B (Re=100)



380
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300

(a)t=0.5s

(b)t=2.5s (c)t=6s

B 4-18 ¢ & XY #a & §
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4 Bl(Re=100)
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B 4-19(a)A ok (Re: 10()

.

F 4-19(b) C#:-% D #-i# & 3~ # (Re= 100

72

5]

il



L

W 4-19(c) Egh 5 F B & 54 + (Re= 100
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