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摘 要 

本篇論文旨在分散式語音辨認架構下，針對語者變異與傳輸錯誤的影響分別提供其強健

性處理。語者變異所造成的效能失真，其影響源自於語音辨認器在模型訓練與實際測試

兩個階段的語者不匹配。針對聽障中文語者的發聲，我們提出語音轉換機制使其能匹配

辨認模型所蘊含的語音特性。此轉換系統的設計乃是基於中文語音的特性，考慮聲母-韻

母組合的音節結構及聲調變化，分別針對頻譜與韻律兩層次的特徵參數進行轉換，而特

徵參數的擷取則是依據正弦語音模型。頻譜轉換需考慮不同音類在聲學特性的明顯差

異，並據以針對聲母及韻母所屬的次音節參數分別設計其最佳化轉換函數。此外，構音

速度的調變亦針對不同類型的次音節，設計其線性或非線性的轉換機制。至於聲調的調

變，則考慮中文四聲變化的結構，先藉由正交轉換分析基頻變化曲線的特徵參數，再利

用向量對應機制估算最佳的基頻轉換曲線。系統模擬證實，語音轉換機制可有效改善聽

障者語音的清晰度，進而有效提升其語音辨認的正確率。分散式辨認系統的另一研究重

點是語音特徵參數於無線傳輸過程中，將遭遇叢發性通道錯誤而導致其辨認效能衰減。

有鑑於此，我們設計一錯誤隱匿解碼機制，其關鍵在於有效整合訊源編碼輸出的殘餘冗

息以及通道錯誤的相關特性。在辨認特徵參數的冗息分析中，編碼輸出的量化索引序列

仍存在大量的相關特性，而行動通訊的叢發性錯誤則適於以馬可夫模型來模擬。我們結

合這兩種訊息，再依據最大後驗機率準則設計一合併訊源通道解碼演算法。實驗結果證

實訊源通道解碼器在無線傳輸環境能有效提升其錯誤隱匿效能。 
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ABSTRACT

This study focuses on the robustness of distributed speech recognition (DSR) sys-

tems against the inter-speaker and channel variabilities. In the first part, we develop

joint source-channel decoding algorithms with increased robustness against channel er-

rors in mobile DSR applications. An MAP symbol decoding algorithm which exploits

the combined a priori information of source and channel is proposed. This is used

in conjunction with a modified BCJR algorithm for decoding convolutional channel

codes based on sectionalized code trellises. Performance is further enhanced by the

use of the Gilbert channel model that more closely characterizes the statistical depen-

dencies between channel bit errors. In the second part, we develop voice conversion

approaches based on the feature transformation to perform speaker adaptation for

hearing-impaired Mandarin speech. The basic strategy is the combined use of spec-

tral and prosodic conversions to modify the hearing-impaired Mandarin speech. The

analysis-synthesis system is based on a sinusoidal representation of the speech produc-

tion mechanism. By taking advantage of the tone structure in Mandarin speech, pitch

contours are orthogonally transformed and applied within the sinusoidal framework

to perform pitch modification. Also proposed is a time-scale modification algorithm

that finds accurate alignment between hearing-impaired and normal utterances. Using
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the alignments, spectral conversion is performed on subsyllabic acoustic units by a

continuous probabilistic transform based on a Gaussian mixture model.
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Chapter 1

Introduction

Recent progress in automatic speech recognition (ASR) technology has enabled the

development of more sophisticated spoken language interface applications. These ap-

plications make use of speech to replace or complete an interface for communicating

with a machine, e.g. for accessing a service or controlling a functionality of an equip-

ment. Moreover, combined with use of distributed client-server operation mode, ASR

has become a common service for mobile communications and computing devices. The

fantastic growth of the Internet has also created a demand for easy ways of accessing

and retrieving all the available information and services. Through the use of distributed

ASR capability, people can access information anytime and anywhere [1].

The block diagram of the speech recognition system is shown in Figure 1.1. The

basic strategy begins with an extraction of parameter set from the speech signal. These

parameters describe the speech by their variation over time and hence can be used

to build up a pattern that characterizes the speech. In the training phase statistic

models are estimated for every phoneme used in the target application, which are then

concatenated to form the word-based models. In the recognition phase testing speech

signals are analyzed to compute the acoustic parameters and the acoustical decoding

block is used to search for the closest speech templates whose corresponding models are

1



Figure 1.1: Structure of a speech recognition system based on HMM models.

the closest to the observed sequence of acoustic parameters. The most common way

to characterize acoustic modelling is based on the Hidden Markov Models(HMMs).

Due to the diversity of the capabilities and characteristics of terminal devices and

networks, it is expected that various client-server modalities of speech recognition exist

in the mobile environment. The client-server framework of distributed speech recogni-

tion (DSR) is shown in Figure 1.2. Various kinds of devices such as personal computers,

smart devices, wire and wireless telephones can act as speech-enabled client devices.

Through the data channel, the characteristic features of speech are transmitted to the

engine server for back-end recognition. Finally, the server recognizes the speech ac-

cording to an application-specific servers and sends the result string or action back to

the client.

In a DSR system, centralized servers can share the computational burden between

users and enable the easy upgrade of new services without any additional cost for the

user. However, transmitting acoustic data over communication networks changes the

encoded information and consequently leads to severe degradation in the recognizer

performance. In the case of packet-erasure channels, several packet loss compensation

techniques such as interpolation [13] and error control coding [14] have been intro-

duced for DSR. For wireless channels, joint source-channel decoding (JSCD) techniques
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Figure 1.2: The principle framework of DSR.

[15,16,17] have been shown effective for error mitigation using the source residual re-

dundancy and assisted with the bit reliability information provided by the soft-output

channel decoder. However, the usefulness of these techniques may be restricted be-

cause they only exploited the bit-level source correlation on the basis of a memoryless

AWGN channel assumption. In the thesis, we attempt to capitalize more fully on the a

priori knowledge of source and channel and then develop a DSR system with increased

robustness against channel errors. The first step toward realization is to use quantizer

indexes rather than single index-bits as the bases for the JSCD, since the dependencies

of quantizer indexes are much stronger than the correlations of the index-bits. The

next knowledge source to be exploited is the channel error characteristics on which the

decoder design is based [18]. For this investigation, we focused on the Markov chain

model proposed by Gilbert [19]. This model can characterize a wide range of digital

channels and has a recursive formula for computing the channel transition probabilities.

Speech is a dynamic acoustic signal with many sources of variation. As the produc-

tion of phonemes involves different movements of the speech articulators in different en-

vironments, there is much freedom in the timing and degree of vocal tract movements.

A more difficult challenge is that the speech recognition system is very sensitive to

variations and mismatches between training and testing environments. Several speech

variabilities can be due to the following [2].

3



• Inter-speaker variability: Physiological differences, articulatory habits and speak-

ing styles are important sources of variation between speakers. For example,

male-female differences account for some basic differences between speakers, since

a shorter vocal tract length generally yields higher formant values.

• Intra-speaker variability: A speaker can change his/her voice quality, speaking

rate, fundamental frequency or articulation patterns. Small changes in articula-

tion patterns can result in big changes at the acoustic level. The environment

changes also induce intra-speaker variability. Background noise or stress condi-

tions yield an increase in the speakers’ vocal effort and a modification of speech

production.

• Environment variability: The environment in which speech is produced plays

an important role and affects its production, perception, and acoustic repre-

sentation. The elements of this variability include: room acoustics and rever-

beration, recording equipment, microphone placement, background noise, and

transmission channel. Often environmental changes are difficult to simulate in

the laboratory because of their large variation. This explains why there is a big

difference between laboratory and filed performance. To combat the environment

variability, researchers have developed algorithms for environment normalization,

microphone independence, and noise robustness.

• Linguistic variability: Linguistic variations are generally associated with audible

variations in terms of accents and dialects. Often the major differences which

occur between dialects are apparent in their phonological, phonetic, and lexical

composition. It is still not clear where the boundary is between speaker charac-

teristics and the linguistic variations.

• Contextual variation: There exists different kinds of contextual relevant sources,

such as coarticulation, local phonetic environment, and linguistic context includ-

ing syntax, semantics, and pragmatics. Coarticulation is a language-dependent
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phenomenon, which involves changes in the articulation and acoustics of a

phoneme due to its phonetic context. Recent research has shown that it is able

to provide important cues and should be exploited in ASR.

The aim of this thesis is to enhance the robustness of DSR systems against the inter-

speaker and channel variabilities. First, it is well known that the performance of ASR

systems is sensitive to mismatches between training and testing conditions. Especially,

when the acoustic characteristics of a new speaker are very different from those of the

speakers in the training data, the recognition accuracy for the new speaker might be

far below the average accuracy. Several different approaches to solve this problem have

been proposed. They are roughly grouped into two categories, namely feature transfor-

mation methods [3,4] and model adaptation methods [5,6,7]. Feature transformation

approaches attempt to transform the speaker’s feature space to match the space of the

training population. These approaches have the advantage of simplicity. In addition,

if the number of free parameters is small, then transformation techniques adapt to

the new user with only a small number of adaptation data. Among model-adaptation

approaches, the maximum a posteriori (MAP) technique [5] and maximum likelihood

linear regression (MLLR) technique [6] have been widely used. The MAP adaptation

process is referred to as Bayesian adaptation, which involves the use of priori knowl-

edge about the model parameter distribution. With a large amount of adaptation data,

the MAP method can adapt model parameters to be converged to the corresponding

speaker-dependent model parameters. On the other hand, the MLLR methods are

popular due to their effectiveness and computational advantages. MLLR adaptation

formulae take only a limited amount of adaptation data from a new speaker and update

the HMM model parameters to maximize the likelihood of the adaptation data.

Unlike previous work, we investigate the use of voice conversion based on feature

transformation to perform speaker adaptation for hearing-impaired Mandarin speaker.

In Figure 1.3, this approach behaves as a preprocessing step at the speech recognizer in

order to reduce the speaker variability. The goal of voice conversion is to improve the

5



Figure 1.3: Speaker adaptation approach using voice conversion for HMM-based ASR.

intelligibility and the naturalness of hearing-impaired speech. By controlling speech

individuality or adding individual cues to converted speech, it can be used to con-

vert voice quality from one speaker to another. The technique of voice conversion

has many applications, such as text-to-speech synthesis [8] and improving the qual-

ity of alaryngeal speech [9]. Most current systems [10,11] concentrate on the spectral

envelope transformation, while the conversion of prosodic features is essentially ob-

tained through a simple normalization of the average pitch. Such systems may lead to

an unsatisfactory conversion quality for tonal languages, such as Chinese, which uses

lexical tones to distinguish meanings of syllables that have the same phonetic com-

positions. In view of the important roles of prosody in Mandarin speech perception,

further enhancement is expected by better modelling of pitch contour dynamics and by

additionally incorporating prosodic transformation into the voice conversion system.

The key to solving the problem of voice conversion lies in the detection and exploitation

of characteristic features that distinguish the source speech from the reference speech

[12]. To proceed with this, we found the phonological structure of Chinese language

could be used to advantage in the search for the basic speech units. Also proposed is a

subsyllable-based approach to voice conversion that takes into consideration both the

prosodic and the spectral characteristics.

This thesis is organized as follows. In Chapter 2, we give an overview of distributed
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speech recognition system and examine alternative architectures for the implementation

of client-server system. Chapter 3 investigates the error mitigation algorithms for DSR

systems to increase the robustness against wireless channels. In Chapter 4, we present

the combined use of spectral and prosodic conversion to enhance the quality of hearing-

impaired Mandarin speech and therefore reduce inter-speaker variability for their use

of commercial speech recognition systems. Finally, chapter 5 concludes this thesis and

outlines some directions for future research.
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Chapter 2

Distributed Recognition of

Mandarin Speech

The primary objective of using speech recognition technique is to enable an easy access

of the information. For multimedia communication over wireless network, the concept

of distributed client-server system is considered by the mobile devices in lack of com-

putational power. In this chapter we briefly examine alternative architectures for the

design of distributed recognition systems and discuss their core techniques.

2.1 Distributed Speech Recognition System

Figure 2.1 illustrates the functional blocks for a distributed speech recognition system.

Typically, the front-end processing performs a short-time Fourier analysis and extracts

a sequence of feature vectors used for speech recognition. The source encoder removes

the redundancy from the speech features to achieve lower data rate. In addition,

the channel encoder adds controlled redundancy to overcome the adverse effects of

noise and interference. At the receiver the channel decoder and source decoder are

used to reconstruct the desired speech parameters. After that the speech recognizer

8



Figure 2.1: Block diagram of a DSR system.

based on the acoustic and language models is used to perform the features recognition

and language understanding. The final goal of our system design is to provide high

recognition accuracy over wireless channel, which keeping low bit rate and complexity

for the client device. A detailed description of each functional block is given as follows.

• Front-end signal processing The way how to extract speech feature is an

important task in the speech signal processing. Depending on the problem to

be solved, the extracted features can be very simple such as zero-crossing rate,

energy and pitch period, or more complex. For speech recognition applications,

the power spectrum representing information about the source signal energy and

vocal tract is generally used. The human ear resolves nonlinear frequency re-

sponse across the audio spectrum. Empirical evidence suggests that designing

a front-end to operate in a nonlinear manner improves recognition performance.

The front-end processing performs a short-time Fourier analysis and extracts a

sequence of acoustic vectors. Mel Frequency Cepstral Coefficients (MFCC) are

typical feature vectors for ASR. The nonlinear Mel frequency scale, which is used

by the MFCC representation, approximates the behavior of the human auditory

response. The MFCC ci is defined as the discrete cosine transform of the M filter
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outputs as follows

ci =

√
2

N

M∑

j=1

mjcos(
πi

N
(j − 0.5)), 1 ≤ i ≤ N (2.1)

where mj is the jth log filterbank amplitude, M is the number of filterbank

channels and N is the number of cepstral coefficients. Davis and Mermelstein

[20] showed MFCC parameters are beneficial for speech recognition with increased

robustness to noise and spectral estimate error.

• Source coding The task of the source coder is to compress the source signal so

that the signal can be reconstructed with as little distortion as possible, under the

constraint that the source coding rate cannot exceed the channel capacity. Vari-

ous data compression techniques can be applied to remove redundancy from the

original signal to achieve low bit rate for transmission and storage. Among them,

vector quantization (VQ) has been widely used in many applications and allows

optimum mapping a large set of input vectors into finite set of representative

codevectors.

• Channel coding The function of the channel encoder is to introduce some

artificial redundancy, which can be used at the receiver to combat the noise

encountered in the data transmission. The encoding process generally involves

taking k information bits and mapping each k-bit sequence into a unique n-bit

sequence. The amount of redundancy introduced is measured by the ratio k/n,

also called the code rate. The added redundancy serves to increase the reliability

of the received data and aids the receiver in decoding the desired information

sequence.

• Communication Channel The channel is a transmission medium which pro-

vides the connection between the transmitter and the receiver, and introduces

distortion and noise to the transmitted signals. Transmission errors encountered

in most real communication channels exhibit various degrees of statistical depen-

dencies that are contingent on the transmission medium and on the particular

10



modulation technique used. A typical example occurs in digital mobile radio

channels, where speech parameters suffer severe degradation from error bursts

due to the combined effects of fading and multipath propagation. In this the-

sis we focused on the Markov channel model. This model has several practical

advantages over the Gaussian channel [4]-[6] and binary symmetric channels [9].

• HMM-Based Speech Recognition Hidden Markov models are often used

to characterize the non-stationary stochastic process represented by the sequence

of observation vectors. In HMM-based speech recognition, it is assumed that

the sequence of observed vectors O corresponding to each word is generated by

a Markov model. In the recognition phase, the acoustical decoding searches the

state sequence for each vocabulary word and finds the most likely sequence of

words W with the highest accumulated probability. This can be done by using

Bayes’ rule

Ŵ = arg max
W

P (W |O) = arg max
W

P (W )P (O|W )

P (O)
. (2.2)

The probability P (W ) of the word sequence W is obtained from the language

model, whereas the acoustic model determines the probability P (O|W ). A

Markov model is a finite state machine which changes state once every time

unit and the state sequence S is not observed. The probability of O is obtained

by summing the joint probability over all possible state sequences S, giving

P (O|W ) =
∑

S P (O|S,W )P (S|W ), where the probability P (S|W ) is governed

by the state transition probability and the probability P (O|S,W ) is based on the

observation distribution.

A client-server speech recognition system is implemented to provide speech-enabled

applications over the Internet network. This system uses two major signal processing

technologies, source coding and speech recognition, to provide efficient transmission

and recognition performance. There are several alternative architectures for the client-

server applications [21] over wireless communication, as shown in Figure 2.2.
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Figure 2.2: Block diagram of the different approaches for DSR.

• The first strategy(client-only processing) is to perform most of the speech recog-

nition processing at the client side and then transmit results to the remote server.

The recognition can obtain high quality speech parameters with less transmis-

sion channel error and more reliability. However, these client systems must be

powerful enough to perform the recognition decoding with the heavy computa-

tion and memory resources. In addition, the recognition processing may not be

inconvenient for upgrading applications.

• The second alternative(server-only processing) is to perform speech compression

and coding at the client side, and transmit the user’s voice parameters to the

server for recognition processing. Alternatively, the recognition engine may uti-

lize the synthesized speech as an input to ASR feature extraction or directly

bitstream-based feature extraction without the synthesis process. This approach

has the smallest computational and memory requirements on the client and allows

a wide range of mobile communication systems to access the speech-enable appli-

cations. The disadvantage of this approach is that the recognition performance

is degraded in low bit-rate connections.

• The third(client-server processing) is to perform only the front-end processing at

12



the client and transmit characteristic features for speech recognition to the server.

This approach only has a small part of computation for the front-end processing at

the client, allows a wide range of mobile systems to operate various applications,

and also enables the easy upgrade of technologies and services provided. To make

speech recognition servers available from variety systems, front-end processing

and compression need to be standardized and ensure compatibility between the

client machines and the remote recognizer.

2.2 The ETSI-DSR Framework

The standard ETSI ES 202 212 [22] describes the speech processing, transmission,

and quality aspects of a DSR system. The block diagram is shown in Figure 2.3. In

the client side, the specification defines three major parts: the algorithm for front-

end feature extraction, the processing to compress these features, and the formatting

of these features. In the feature extraction part, noise reduction is performed on a

frame-by-frame basis, and then mel-cepstral features are extracted. Noise reduction is

performed based on Wiener filter theory in the frequency domain. After subdividing

the input signal, the linear spectrum of each speech frame and the frequency-domain

Wiener filter coefficients are calculated by using the estimates of speech spectrum and

noise spectrum. The noise spectrum is estimated only within the silence frames, which

are located by a voice activity detector. An adaptive noise reduction filter is used to

subtract an additive noise from the input signal so as to improve the signal-to-noise

ratio. For the cepstral analysis, noise-reduced speech signals are analyzed using a 25

ms Hamming window with 10 ms frame shift. The ceptsral coefficients are calculated

from the mel-frequency warped Fourier transform representation of the log-magnitude

spectrum. Mel-cepstral coefficients contain important cues in characterizing the speech

sounds and are widely used in speech recognition applications.

The local front-end consists of a feature extraction algorithm and an encoding
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Figure 2.3: Block diagram of the ETSI-DSR system.

scheme for speech input to be transmitted to a remote recognizer. Each speech frame

is represented by a 14-dimension feature vector containing log-energy logE and 13

Mel-frequency cepstral coefficients (MFCCs) ranging from C0 to C12. These features

are further compressed based on a split vector codebook where the set of 14 features

is split into 7 subsets with two features in each. Each feature pair is quantized using

its own codebook to obtain a lower transmission data rate. MFCCs C1 to C10 are

quantized with 6 bits each pair, (C11, C12) is quantized with 5 bits, and (C0, logE) is

quantized with 8 bits. Experiments on small and large vocabularies indicated that the

compression of mel-cepstrum parameters does not produce a significant degradation

in recognition performance. After the split vector quantization, two quantized frames

are grouped together and protected by a 4-bit cyclic redundancy check creating a

92-bit frame-pair packet. Twelve of these frame-pairs are combined and appended

with overhead bits resulting in an 1152-bit multiframe packet representing 240 ms of

speech. Multiframe packets are concatenated into a bit-stream for transmission via a

data channel with an overall data rate of 4800 bits/s.

The remote back-end server performs three procedures step-by-step, including the

error mitigation, decompression and recognition decoding. The error mitigation al-

gorithm consists of two stages: detection of speech frames received with error and

substitution of parameters when error are detected. The error detection includes a
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CRC checking and a data consistency test. When an incorrect CRC is detected, the

corresponding frame pair is classified as received with error. Besides, the consistency

test is used to determine whether adjacent frames in a frame pair have a minimal conti-

nuity. When a frame is labelled as having errors, then the whole frame is replaced with

the copy of the parameters from the nearest correct frame received. The front-end

parameter are decompressed to reconstitute the DSR mel-cepstrum features. These

are passed to the recognition decoder residing on the server. The reference recognizer

is based on the HTK software package from Entropic. HTK is primarily designed

for building HMM-based speech processing tools, in particular recognizers. HMM ap-

proach to speech recognition is a well-known statistical method used for characterizing

the spectral properties of the speech.

In our work, the recognition of Mandarin digit strings is considered as the task

without restricting the string length. A mandarin digit string database recorded by 50

male and 50 female speakers was used in our experiments. Each speaker pronounced

10 utterances and 1-9 digits in each utterance. The speech of 90 speakers (45 male and

45 female) was used as the training data, and the speech of other 10 as test data. The

number of digits included in the training and test data were 6796 and 642, respectively.

The digits were modelled as whole word Hidden Markov Models (HMMs) with 8 states

per word and 64 mixtures for each state. In addition, a 3-state HMM was used to

model pauses before and after the utterance and a one-state HMM was used to model

pauses between digits. For recognition the 12 Mel-cepstrum coefficients and log-energy

plus the corresponding delta and acceleration coefficients are considered.

2.3 Chinese Language Characteristics

Mandarin Chinese is a tonal language in which each syllable, with few exceptions, rep-

resents a morpheme [23]. A distinctive feature of the language is that all the characters

are monosyllabic. Traditional descriptions of the Chinese syllable structure divide syl-
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lables into combinations of initials and finals rather than into individual phonemes.

An initial is the consonant onset of a syllable, while a final comprises a vowel or diph-

thong but includes a possible medial or nasal ending. There are 22 initials and 38

finals in Mandarin and all the syllables with the initial-final combinations have 408

possible candidates. To convey different lexical meanings, each syllable can be pro-

nounced with four basic tones; namely, the high-level tone (tone 1), the rising tone

(tone 2), the falling-rising tone (tone 3), and the falling tone (tone 4). The tones are

acoustically correlated with different fundamental frequency (F0) contours, and they

use duration and intensity of the vowel nucleus to provide secondary information. It

has been found that for Mandarin speech the vocal tract shape or parameters are es-

sentially independent of the tones, and the tones can be separately recognized using

the pitch contour information. Therefore, the tone-syllable structure is able to provide

a concise and practical recognition unit and is helpful to design the Mandarin speech

recognition system.

Vowels and consonants are different in the manner of their production. Most vowels

are pronounced with the vocal folds vibrating, with each vowel being modified by the

particular shape of the vocal tract. Depending on the manner of articulation, initial

consonants can be further categorized into five phonetic classes including fricatives,

affricates, stops, nasals, and glides. The major distinction in consonant type is between

resonant and occlusive. Occlusive consonants depend on the obstruction degree of the

airstream. Stops are produced with the mouth completely closed, and the airstream is

completely stopped. In fricative consonants the mouth is not shut and the airstream is

only directed through a narrow space. Affricates can be considered a combination of a

stop and a fricative. In general, they start out with complete closure of the vocal tract,

but then they are released in a fricative. Moreover, resonant consonants, like nasals and

glides, are closer to vowels, and the vocal tract is not obstructed. Furthermore, vowels

can be considered as more steady-state in nature with several hundred milliseconds

in duration. By contrast, consonants are characterized by a more rapid changing
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articulation with the specific acoustic information in more fixed duration.
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Chapter 3

Channel-Robust DSR over Wireless

Networks

The increasing use of mobile communications has lead to DSR systems being devel-

oped. Transmitting DSR data over wireless environments can suffer from channel errors

and consequently leads to degraded recognition performance. The ETSI Aurora DSR

standard includes a basic error mitigation algorithm that has been shown effective for

medium and good quality channels. In the case of packet-erasure channels, several

packet loss compensation techniques such as interpolation and error control coding

have been introduced for DSR. However, better mitigation algorithms have been de-

rived from the joint source-channel decoding. In this chapter we attempt to capitalize

more fully on the a priori knowledge of source and channel, and investigate the er-

ror mitigation algorithms for DSR systems with increased robustness against channel

errors.
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3.1 Joint Source-Channel Coding

This work is devoted to channel error mitigation for DSR over burst error channels.

Figure 3.1 gives the block diagram of the transmission scheme for each DSR feature

pair. Suppose at time t, the input vector vt is quantized to obtain a codevector

ct ∈ {c(i), i = 0, 1, . . . , 2k − 1} that, after bit mapping, is represented by a k-bit

combination ut = (ut(1), ut(2), . . . , ut(k)). Each bit combination ut is assigned to a

quantizer index i ∈ {0, 1, . . . , 2k −1} and we write for simplicity ut = ui
t to denote that

ut represents the i-th quantizer index. Unlike source coding, the goal of DSR front-end

for speech recognition is not to obtain a very low bit rate by removing the redundancy in

the speech signal. Therefore, the VQ encoder exhibits considerable redundancy within

the encoded index sequence, either in terms of a non-uniform distribution or in terms

of correlation. If only the non-uniform distribution is considered and the indexes are

assumed to be independent of each other, the redundancy is defined as the difference

of between the index length k and the entropy given by

H(ut) = −
∑

ut

P (ut) · log2 P (ut). (3.1)

If inter-frame correlation of indexes is considered by using a first-order Markov model

with transition probabilities P (ut, ut−1), the redundancy is then defined as the index

length k and the conditional entropy given by

H(ut|ut−1) = −
∑

ut

∑

ut−1

P (ut, ut−1) · log2 P (ut|ut−1). (3.2)

Table 3.1 shows the index lengths and entropies for the seven feature pairs of the

ETSI DSR frond-end. For each column in Table 3.1, the probabilities P (ut) and

P (ut, ut−1) have to be estimated in advance from a training speech database. There is

considerable residual redundancy left in the encoded index. From it we see that the

DSR index sequence is better characterized by a first-order Markov process. For error

protection individual index-bits are fed into a binary convolutional encoder consisting
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Figure 3.1: Transmission scheme for each DSR feature pair.

of M shift registers. The register shifts one bit at a time and its state is determined

by the M most recent inputs. After channel encoding, the code-bit combination cor-

responding to the quantizer index ut is denoted by xt = (xt(1), xt(2), . . . , xt(n)) with

the code rate R = k/n. One of the principal concerns in transmitting VQ data over

noisy channels is that channel errors corrupt the bits that convey information about

quantizer indexes. Assume that a channel’s input xt and output yt differ by an error

pattern et, so that the received bit combination is yt = (yt(1), yt(2), . . . , yt(n)) in which

yt(l) = xt(l) ⊕ et(l), l = 1, 2, . . . , n, and ⊕ denotes the bitwise modulo-2 addition. At

the receiver side, instead of using a conventional codebook-lookup decoder, the JSCD

decoder will find the most probable transmitted quantizer index given the received

sequence. The decoding process starts with the formation of a posteriori probability

(APP) for each of possibly transmitted indices ut = i, which is followed by choosing

the index value î that corresponds to the maximum a posteriori (MAP) probability for

that quantizer index. Once the MAP estimate of the quantizer index is determined,

its corresponding codevector becomes the decoded output v̂t = c(̂i). The APP that a

decoded index ut = i can be derived from the joint probability P (ui
t, st, y

T
1 ), where st

is the channel encoder state at time t and yT
1 = (y1, y2, . . . , yT ) is the received sequence
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Table 3.1: Entropies for DSR feature pairs.

from time t = 1 through some time T . We have chosen the length T = 24 in compliance

with the ETSI bit-streaming format, where each multiframe message packages speech

features from 24 frames. Proceeding in this way, the symbol APP can be obtained by

summing the joint probability over all encoder states, as follows:

P (ut = i|yT
1 ) =

∑

st

P (ui
t, st, y

T
1 )

P (yT
1 )

, i = 0, 1, . . . , 2k − 1. (3.3)

As measure of quality the parameter signal-to-noise ratio can be formulated as

SNR = 10 log10

E{v2

t
}

E{(v̂t − vt)2}
. (3.4)

3.2 Modified BCJR Algorithm

Depending upon the choice of the symbol APP calculator, a number of different MAP

decoder implementations can be realized. For decoding convolutional codes, conven-

tional BCJR algorithm [24] has been devised based on a bit-level code trellis. In a

bit-level trellis diagram, there are two branches leaving each state and every branch

represents a single index-bit. Proper sectionalization of a bit-level trellis may result

in useful trellis structural properties [25] and allow us to devise MAP decoding algo-

rithms which exploits bit-level as well as symbol-level source correlations. To advance

with this, we propose a modified BCJR algorithm which parses the received code-bit
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Figure 3.2: Trellis diagrams used for (a) the encoder and (b) the MAP decoder.

sequence into blocks of length n and computes the APP for each quantizer index on a

symbol-by-symbol basis. Unlike conventional BCJR algorithm that decodes one bit at

a time, our scheme proceeds with decoding the quantizer indexes in a frame as nonbi-

nary symbols according to their index length k. By parsing the code-bit sequence into

n-bit blocks, we are in essence merging k stages of the original bit-level code trellis

into one. As an example, we illustrate in Figure 3.2 two stages of the bit-level trellis

diagram of a rate 1/2 convolutional encoder with generator polynomial (5, 7)8. The

solid lines and dashed lines correspond to the input bits of 0 and 1, respectively. Figure

3.2 also shows the decoding trellis diagram when two stages of the original bit-level

trellis are merged together. In general, there are 2k branches leaving and entering each

state in a k-stage merged trellis diagram. Having defined the decoding trellis diagram

as such, there will be one symbol APP corresponding to each branch which represents a

particular quantizer index ut = i. For convenience, we say that the sectionalized trellis

diagram forms a finite-state machine defined by its state transition function S(ui
t, st)

and output function X(ui
t, st). Viewing from this perspective, the code-bit combination

xt = X(ui
t, st) is associated with the branch from state st to state st+1 = S(ui

t, st) if

the corresponding quantizer index at time t is ut = i.
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We next modified the BCJR algorithm based on sectionalized trellis to exploit the

combined a priori information of source and channel. We begin our development of the

modified BCJR algorithm by rewriting the joint probability in (3.3) as follows:

P (ui
t, st, y

T
1 ) = αi

t(st)β
i
t(st), (3.5)

where αi
t(st) = P (ui

t, st, y
t
1) and βi

t(st) = P (yT
t+1|u

i
t, st, y

t
1). For the MAP symbol de-

coding algorithm, the forward and backward recursions are to compute the following

metrics:

αi
t(st) =

∑

st−1

∑

j

P (ui
t, st, u

j
t−1, st−1, yt, y

t−1
1 )

=
∑

st−1

∑

j

αj
t−1(st−1)γi,j(yt, st, st−1) (3.6)

βi
t(st) =

∑

st+1

∑

j

P (uj
t+1, st+1, yt+1, y

T
t+2|u

i
t, st, y

t
1)

=
∑

st+1

∑

j

βj
t+1(st+1)γj,i(yt+1, st+1, st) (3.7)

in which

γi,j(yt, st, st−1) = P (ui
t, st, yt|u

j
t−1, st−1, y

t−1
1 )

= P (st|u
j
t−1, st−1, y

t−1
1 )P (ui

t|st, u
j
t−1, st−1, y

t−1
1 )

· P (yt|u
i
t, st, u

j
t−1, st−1, y

t−1
1 ). (3.8)

Having a proper representation of the branch metric γi,j(yt, st, st−1) is the critical

step in applying MAP symbol decoding to error mitigation and one that conditions

all subsequent steps of the implementation. As a practical manner, several additional

factors must be considered to take advantage of source correlation and channel memory.

First, making use of the sectionalized structure of a decoding trellis, we write the first
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term in (3.8) as

P (st|u
j
t−1, st−1, y

t−1
1 ) = P (st|u

j
t−1, st−1) =






1 , st = S(uj
t−1, st−1)

0, otherwise.
(3.9)

The next knowledge source to be exploited is the residual redundancy remaining in the

DSR features. Assuming that the quantizer index is modelled as a first-order Markov

process with transition probabilities P (ut|ut−1), the second term in (3.8) is reduced to

P (ui
t|st, u

j
t−1, st−1, y

t−1
1 ) = P (ut = i|ut−1 = j). (3.10)

In addition to source a priori knowledge, specific knowledge about the channel memory

must be taken into consideration. There are many models describing the correlation of

bit error sequences. If no channel memory information is considered, which means that

the channel bit errors are assumed to be random, the third term in (3.8) is reduced to

P (yt|u
i
t, st, u

j
t−1, st−1, y

t−1
1 ) = P (yt|xt = X(ui

t, st)) = P (et) = ǫl(1 − ǫ)n−l (3.11)

where ǫ is the channel bit error rate (BER) and l is the number of ones occurring

in the error pattern et. When intraframe and interframe memory of the channel are

considered, the third term in (3.8) becomes

P (yt|u
i
t, st, u

j
t−1, st−1, y

t−1
1 ) = P (yt|xt = X(ui

t, st), xt−1 = X(uj
t−1, st−1), yt−1)

= P (et|et−1). (3.12)

3.3 Probability Recursions for Gilbert channel

Designing a robust DSR system requires that parameterized probabilistic models be

used to summarize some of the most relevant aspects of error statistics. It is apparent

from previous work on channel modelling [26] that we are confronted with contrasting
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Figure 3.3: Gilbert channel model.

requirements in selecting a good model. A model should be representative enough

to describe real channel behavior and yet it should not be analytically complicated.

To permit theoretical analysis, we assumed that the encoded bits of DSR features

were subjected to the sample error sequences typical of the Gilbert channel [27]. The

Gilbert channel model consists of a Markov chain having an error-free state G and a

bad state B, in which errors occur with the probability (1 − h). The state transition

probabilities are b and g for the G to B and B to G transitions, respectively. The

model state-transition diagram is shown in Figure 3.3. The effective BER produced

by the Gilbert channel is ǫ = (1 − h)b/(g + b). Notice that in the particular case of

a Gilbert model with parameter values b = 1, g = 0, h = 1 − ǫ, the channel model

reduces to a memoryless binary symmetric channel with the BER ǫ.

The effectiveness of the MAP symbol decoding depends crucially on how well the

error characteristics are incorporated into the calculation of channel transition probabil-

ities P (et|et−1). Although using channel memory information was previously proposed

for MAP symbol decoding [28], their emphasis were placed upon channels with no inter-

frame memory. When only access to the intraframe memory is available, it was shown

[27] that the channel transition probabilities of the Gilbert channel have closed-form

expressions that can be represented in terms of model parameters {h, b, g}. Under such

conditions, we can proceed the MAP symbol decoding in a manner similar to the work

of [28]. Extensions of these results to channels with both intraframe and interframe

memory has been found difficult. Recognizing this, we next develop a general treat-
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ment of probability recursions for the Gilbert channel. The main result is a recursive

implementation of MAP symbol decoder being closer to the optimal for channels with

memory. For notational convenience, channel bit error et(l) will be denoted as rm, in

which the bit time m is related to the frame time t as m = n(t− 1) + l, l = 1, 2, . . . , n.

Let qm ∈ {G,B} denote the Gilbert channel state at bit time m. The memory of the

Gilbert channel is due to the Markov structure of the state transitions, which lead to

a dependence of the current channel state qm on previous state qm−1.

To develop a recursive algorithm, it is more convenient to rewrite the channel

transition probabilities as

P (et|et−1) =
nt∏

m=n(t−1)+1

P (rm = 1|rm−1
m0

)rmP (rm = 0|rm−1
m0

)1−rm (3.13)

where rm−1
m0

= (rm0
, rm0+1, . . . , rm−1) represents the bit error sequence starting from

bit m0 = n(t − 2) + 1. The following is devoted to a way of recursively computing

of P (rm = 1|rm−1
m0

) from P (rm−1 = 1|rm−2
m0

). The Gilbert channel has two properties,

P (qm|qm−1, r
m−1
m0

) = P (qm|qm−1) and P (rm|qm, rm−1
m0

) = P (rm|qm), which facilitate the

probability recursions. By successively applying Bayes rule and the Markovian property

of the channel, we have

P (rm = 1|rm−1
m0

) = P (rm = 1|qm = B, rm−1
m0

)P (qm = B|rm−1
m0

)

= (1 − h)P (qm = B|rm−1
m0

) (3.14)

in which

P (qm = B|rm−1
m0

) = P (qm = B|qm−1 = G, rm−1
m0

)P (qm−1 = G|rm−1
m0

)

+P (qm = B|qm−1 = B, rm−1
m0

)P (qm−1 = B|rm−1
m0

)

= b + (1 − g − b)
P (rm−1|qm−1 = B)

P (rm−1|rm−2
m0

)

P (rm−1 = 1|rm−2
m0

)

1 − h
.(3.15)
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3.4 Experimental Results

Computer simulations were conducted to evaluate three MAP-based error mitigation

schemes for DSR over burst error channels. First a bit-level trellis MAP decoding

scheme BMAP is considered that uses the standard BCJR algorithm to decode the

index-bits. The decoders SMAP1 and SMPA2 exploit the symbol-level source redun-

dancy by using a modified BCJR algorithm based on a sectionalized trellis structure.

The SMAP1 is designed for a memoryless binary symmetric channel, whereas the

SMAP2 exploits the channel memory though the Gilbert channel characterization.

The channel transition probabilities to be used for the SMAP1 is p(et) in (3.11), and

p(et|et−1) in (3.12) for the SMAP2. For purpose of comparison, we also investigated

an error mitigation scheme [15] which applied the concept of softbit speech decoding

(SBSD) and achieved good recognition performance for AWGN and burst channels. A

preliminary experiment was first performed to evaluate various decoders for reconstruc-

tion of the feature pair (C0, logE) encoded with the DSR front-end. A rate R = 1/2

convolutional code with memory order M = 6 and the octal generator (46, 72)8 is cho-

sen as the channel code. Table 3.2 presents the signal-to-noise ratio (SNR) obtained

from transmission of the index-bits over Gilbert channel with BER ranging from 10−3

to 10−1. The results of these experiments clearly demonstrate the improved perfor-

mance achievable using the SMAP1 and SMAP2 in comparison to those of BMAP and

SBSD. Furthermore, the improvement has a tendency to increase for noisy channels

with higher BER. This indicates that the residual redundancy of quantizer indexes is

better to be exploited at the symbol level to achieve more performance improvement.

A comparison of the SMAP1 and SMAP2 also revealed the importance of matching

the real error characteristics to the channel model on which the MAP symbol decoder

design is based. The better performance of SMAP2 can be attributed to its ability to

compute the symbol APP taking interframe and intraframe memory of the channel into

consideration, as opposed to the memoryless channel assumption made in the SMAP1.

We further validate the proposed decoding algorithms for the case where error se-
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Table 3.2: SNR(dB) performance for various decoders on a Gilbert channel.

quences were generated using a complete GSM simulation. The simulator is based on

the CoCentric GSM library [29] with TCH/F4.8 data and channel coding, interleaving,

modulation, a channel model, and equalization. The channel model represents a typical

case of a rural area with 6 propagation paths and a user speed of 50 km/h. Further,

cochannel interference was simulated at various carrier-to-interference ratios (CIR). In

using the SMAP1 and SMAP2 schemes, the channel transition probabilities have to be

combined with a priori knowledge of Gilbert model parameters which can be estimated

once in advance using the gradient iterative method [30]. For each of simulated error

sequences, we first measured the error-gap distribution by computing the probability

that at least l successive error-free bits will be encountered next on the condition that

an error bit has just occurred. The optimal identification of Gilbert model parame-

ters was then formulated as the least square approximation of the measured error-gap

distribution by exponential curve fitting. Table 3.3 gives estimated Gilbert model pa-

rameters for the GSM TCH/F4.8 data channels operating at CIR = 1, 4, 7, 10 dB. The

next step in the present investigation concerned the performance degradation that may

result from using the SMAP2 scheme under channel mismatch conditions. In Table

3.4, CIRd refers to the CIR value assumed in the design process, and CIRa refers to

the true CIR used for the evaluation. The best results are in the main diagonal of the

table, where channel-matched Gilbert model parameters are used for the channel tran-
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Table 3.3: Estimated Gilbert model parameters for GSM TCH/F4.8 data channels.

Table 3.4: SNR performance of the SMAP2 over the GSM data channel under channel

mismatch conditions.

sition probability computation of (3.13). The performance decreases in each column

below the main diagonal when the CIRd is increased. The investigation further showed

that the SMAP2 is not very sensitive to a channel mismatch between the design and

evaluation assumptions.

We next considered the speaker-independent recognition of Mandarin digit strings

as the task without restricting the string length. A Mandarin digit string database

recorded by 50 male and 50 female speakers was used in our experiments. Each speaker

pronounced 10 utterances and 1-9 digits in each utterance. The speech of 90 speakers

(45 male and 45 female) was used as the training data, and the other 10 as test data.

The total numbers of digits included in the training and test data were 6796 and 642,

respectively. The DSR results obtained by various error mitigation algorithms for the
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Figure 3.4: Recognition performances for DSR transmission over a Gilbert channel.

Gilbert channel are shown in Figure 3.4. It can be seen that employing the source a

priori information, sectionalized trellis MAP decoding, and channel memory constantly

improves the recognition accuracy. The SMAP2 scheme performs the best in all cases,

showing the importance of combining the a priori knowledge of source and channel by

means of a sectionalized code trellis and Gilbert channel characterization.

3.5 Summary

A JSCD scheme which exploits the combined source and channel statistics as an a priori

information is proposed and applied to the channel error mitigation in DSR applica-

tions. We first investigate the residual redundancies existing in the DSR features and

find ways to exploit these redundancies in the MAP symbol decoding process. Also

proposed is a modified BCJR algorithm based on sectionalized code trellises which
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uses Gilbert channel characterization for better decoding in addition to source a priori

knowledge. Experiments on Mandarin digit string recognition indicate that the pro-

posed decoder achieved significant improvements in recognition accuracy for DSR over

burst error channels.
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Chapter 4

Speaker-Adaptive DSR for

Hearing-Impaired Mandarin Speech

In this chapter we investigate the use of voice conversion based on feature transforma-

tion to perform speaker adaptation and to reduce the speaker variability for hearing-

impaired speaker. Due to the lack of adequate auditory feedback, the hearing-impaired

speakers produce speech with segmental and suprasegmental errors. This motivates our

research into trying to devise a voice conversion system that modifies the speech of a

hearing-impaired (source) speaker to be perceived as if it was uttered by a normal (tar-

get) speaker. The key to our proposed conversion lies in the detection and exploitation

of characteristic features that distinguish the impaired speech from the normal speech

at segmental and prosodic levels. Segmental features that contribute to speech individ-

uality are encoded in the spectral envelop, whereas prosodic information can be found

in pitch, energy, and duration variations that span across segments. Thus, we present

that speech waveforms are modelled by the sinusoidal framework which decomposes

speech signals into the product of excitation and system spectra and makes the recon-

struction a best fit to the original speech [31]. Next, the conversion techniques were

applied on the framework to enhance the hearing-impaired Mandarin speech.
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4.1 Characteristics of Hearing-Impaired Mandarin

Speech

Speech communication by profoundly hearing-impaired individuals suffers not only

from the fact that they cannot hear other people’s utterances, but also from the poor

quality of their own productions. Due to the lack of adequate auditory feedback, the

hearing-impaired speakers produce speech with segmental and suprasegmental errors

[32]. It is common to hear their speech flawed by misarticulated phonemes, with vary-

ing degrees of severity associated with their hearing thresholds [33,34]. Their speech

intelligibility is further affected by abnormal control over phoneme duration and pitch

variations. Specifically, the duration of vowels, glides, and nasals were longer while

the duration of fricatives, affricates, and plosives were shorter than in normal speech,

and the pitch contour over individual syllables is either too varied or too monotonous.

Their intonation also shows limited pitch variation, erratic pitch fluctuations, and in-

appropriate average F0 [35].

Recent perceptual work on Chinese deaf speech [36,37] has shown that speakers with

greater than moderate degrees of losses (≥ 50 dB HL bilaterally) were perceived with

an average accuracy of 31% in phoneme production, and further, that the most errors

in the consonants were affricates and fricatives. This finding may have more serious

implications for Mandarin than for other languages as these two phonetic classes make

up more than half of the consonants in Mandarin Chinese. Moreover, since most of

them are palatal or produced without apparent visual cues, they are difficult to correct

through speech training. In tone production, their accuracy only reached an average of

54%, with most errors involving confusions between tones 1 and 4, tones 1 and 2, and

tones 2 and 3. The results also showed that tones produced by speakers with profound

losses were only half as likely to be judged correct as those produced by speakers with

less loss. Again, as tones are produced by phonatory, rather than articulatory control,

they are almost impossible to correct through non-instrumental-based speech therapy.
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The four basic Mandarin tones mentioned earlier have distinctive shapes of F0

contours, whose perception is correlated with the starting frequency, the initial fall

and the timing when the turning point appears, as involved in tones 2 and 3 [38]. Our

teenage data supported the general conclusion with a different measure. Specifically,

instead of focusing on the interactions between the frequency and temporal aspects,

we recorded the frequency differences between the highest and the lowest point found

on the contours. The results showed a clear trend for the normal speakers with the

difference increased when going from tone 1 to tone 4 (e.g., 19.6, 24.8, 53, 113.1 Hz),

which was less orderly (e.g., 9.3, 16, 28, 66.4 Hz) for the impaired speakers. The

most frequent perceptual mistakes made by our impaired speakers were substitutions

of tone 3 with tone 2, which left only three perceptual categories 1, 2, and 4 in their

tonal repertoire. Unstable tonal productions across recorded tokens were also common.

As stated earlier [35], the speech of the hearing-impaired speakers contains numer-

ous timing errors, including a lower speaking rate, insertion of long pauses, and failure

to modify segment duration as a function of phonetic environment. In Figure 4.1 the

mean phoneme durations produced by the hearing impaired were plotted against those

produced by the normal speakers. Data were collected from two normal speakers (one

male and one female) and three hearing-impaired speakers (one male and two females),

all aged 15. The phonemes tested were five fricatives, six affricates, and three vowels.

It can be seen that the mean duration ratios of impaired-to-normal utterances were

quite different for different phonemes and that vowels, as a group, stayed much in line

with the normal production than the two consonant groups, with the mean ratios for

vowels, fricatives, and affricates being 1.12, 0.4, and 0.34, respectively. All consonants,

with the exception of /h/, of the hearing impaired were shorter, as indicated by their

uniform appearances on the lower half of the graph. Our perceptual judgment showed

that this shortening that could measure 10 to 1 (as seen in /sh/ and /shi/) was the

result of substituting the two consonant classes with stops.
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Figure 4.1: Phoneme duration statistics for (a) vowels and fricative consonants and (b)

affricate consonants.

4.2 Sinusoidal Framework for Voice Conversion

The general approach to voice conversion consists of first analyzing the input speech to

obtain characteristic features, then applying the desired transformations to these fea-

tures, and synthesizing the corresponding signal. Essentially, the production of sound

can be described as the output of passing a glottal excitation signal through a linear

system representing the characteristics of the vocal tract. To track the nonstationary

evolution of characteristic features, both the spectral and prosodic manipulations will

be performed on a frame-by-frame basis. In this work, speech signals were sampled at

11 kHz and analyzed using a 46.4 ms Hamming windows with a 13.6 ms frame shift.

Therefore, the analysis frame interval Q was fixed at 13.6 ms. For the speech on the

mth frame, the vocal tract system function can be described in terms of its amplitude

function M(w; m) and phase function Φ(w; m). Usually the excitation signal is repre-

sented as a periodic train during voiced speech, and is represented as a noise-like signal

during unvoiced speech. An alternative approach [39] is to represent the excitation

signal by a sum of K(m) sine waves, each of which is associated with the frequency
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wk(m) and the phase Ωk(m). Passing this excitation signal through the vocal tract

system results in a sinusoidal representation of speech production. As noted elsewhere

[40], this sinusoidal framework allows flexible manipulation of speech parameters such

as pitch and speaking rate while maintaining high speech quality.

A block diagram of the proposed voice conversion system is shown in Figure 4.2.

The system has five major components: speech analysis, spectral conversion, pitch

modification, time-scale modification, and speech synthesis. The analysis begins by es-

timating from the Fourier transform of input speech the pitch period P0(m), the voicing

probability Pv(m), and the system amplitude function M(w; m). The voicing probabil-

ity will be used to control the harmonic spectrum cutoff frequency, wc(m) = πPv(m),

below which voiced speech was synthesized and above which unvoiced speech was syn-

thesized. The second step in the analysis is to represent the system amplitude function

M(w; m) in terms of a set of cepstral coefficients {cl(m)}24
l=0. The main attraction of

cepstral representation is that it exploits the minimum-phase model, where the log-

magnitude and phase of the vocal tract system function can be uniquely related in

terms of the Hilbert transform [41]. A more comprehensive discussion of the sine-wave

speech model and the corresponding analysis-synthesis system can be found in [39].

The main part of the modification procedure involves the manipulation of functions

which describe the amplitude and phase of the excitation and vocal tract system con-

tributions to each sine-wave component. The effectiveness of voice conversion depends

on a successful modification of prosodic features, especially of the time-scale and the

pitch-scale. With reference to the sinusoidal framework, speech parameters included

in the prosodic conversion are P0(m), Pv(m), and the synthesis frame interval. The

time-scale modification involves scaling the synthesis frame of original duration Q by

a factor of ρ(m), i.e., Q′(m) = ρ(m)Q. The pitch modification can be viewed as a

transformation which, when applied to the pitch period P0(m), yields the new pitch

period P ′

0(m), with an associated change in the F0 as w′

0(m) = 2π/P ′

0(m). It is worth

noting also that the change in pitch period also corresponds to modification of the
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Figure 4.2: Block diagram of the voice conversion system.

sine-wave frequencies w′

k(m) and the excitation phases Ω′

k(m) used in the reconstruc-

tion. Below the cutoff frequency the sine-wave frequencies are harmonically related as

w′

k(m) = kw′

0(m), whereas above the cutoff frequency w′

k(m) = k∗w′

0(m) + wu, where

k∗ is the largest value of k for which k∗w′

0 ≤ wc(m), and where wu is the unvoiced F0

corresponding to 100 Hz. A two-step procedure is used in estimating the excitation

phase Ω′

k(m) of the kth sine wave. The first step is to obtain the onset time n′

0(m)

relative to both the new pitch period P ′

0(m) and the new frame interval Q′(m). This

is done by accumulating a succession of pitch periods until a pitch pulse crosses the

center of the mth frame. The location of this pulse is the onset time n′

0(m) at which

sine waves are in phase. The second step is to compute the excitation phase as follows:

Ω′

k(m) = −n′

0(m)w′

k(m) + ǫ′k(m), (4.1)

where the unvoiced phase component ǫ′k(m) is zero for the case of w′

k(m) ≤ wc(m) and

is made random on [−π, π] for the case of w′

k(m) > wc(m).

In addition to prosodic conversion, the technique of spectral conversion is also

needed to modify the articulation-related parameters of speech. The problem with the
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spectral conversion lies with the corresponding modification of the vocal tract system

function. Thus there is a need to estimate the amplitude function M ′(w; m) and the

phase function Φ′(w; m) of the vocal tract system. If it is assumed that the vocal tract

system function is minimum phase [41], the log-magnitude and phase functions form a

Hilbert transform pair and hence can be estimated from a set of new cepstral coefficients

{c′l(m)}24
l=0. The system amplitudes M ′

k(m) and phases Φ′

k(m) are then given by samples

of their respective functions at the new frequencies w′

k(m), i.e., M ′

k(m) = M ′(w′

k; m)

and Φ′

k(m) = Φ′(w′

k; m). Finally, in the synthesizer the system amplitudes are linearly

interpolated over two consecutive frames. Also, the excitation and system phases are

summed and the resulting sine-wave phases, θ′k(m) = Ω′

k(m)+Φ′

k(m), are interpolated

using the cubic polynomial interpolator. The final synthetic speech waveform on the

mth frame is given by

s(n) =
K(m)∑

k=1

M ′

k(m)cos[nw′

k(m) + θ′k(m)], tm ≤ n ≤ tm+1 − 1 (4.2)

where tm =
∑m−1

i=1 Q′(i) denotes the starting time of the current synthesis frame.

4.3 Spectral Conversion

Mandarin is a syllable-timed language in which each syllable consists of an initial part

and a final part. The primary difficulties in the recognition of Mandarin syllables are

tied to the durational differences between the syllable-initial and syllable-final part.

Specifically, the initial part of a syllable is short when compared with the final part,

which usually causes distinctions among the initial consonants in different syllables to

be swamped by the following irrelevant differences among the finals. This may help

explain why early approaches that used whole-syllable models as the conversion units

did not produce satisfactory results for Mandarin speech conversion. To circumvent this

pitfall, we perform spectral conversion only after decomposing the Mandarin syllables

into smaller sound units as in phonetic classes. The acoustic features included in
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the conversion are cepstral coefficients derived from the smoothed spectrum. The

conversion system design involves two essential problems: 1) developing a parametric

model representative of the distribution of cepstral coefficients, and 2) mapping the

spectral envelopes of the source speaker onto those of the target. In the context of

spectral transformation, Gaussian mixture models (GMMs) have been shown to provide

superior performance to other approaches based on VQ or neural networks [42]. Our

approach began with a training phase in which all cepstral vectors of the same phonetic

class were collected and used to train the corresponding GMM associated with the

phonetic class by a supervised learning procedure. We consider that the available

data consists of two sets of time-aligned cepstral vectors xt and yt, corresponding,

respectively, to the spectral envelopes of the source and the target speakers. The

GMM assumes that the probability distribution of the cepstral vectors x takes the

following parametric form

p(x) =
I∑

i=1

αiN (x; µx
i ,Σ

xx
i ) (4.3)

where αi denotes a weight of class i, I = 24 denotes the total number of Gaussian

mixtures, and N (x; µx
i ,Σ

xx
i ) denotes the normal distribution with mean vector µ

x
i and

covariance matrix Σxx
i . It therefore follows the Bayes theorem that a given vector x is

generated from the ith class of the GMM with the probability:

hi(x) =
αiN (x,µx

i ,Σ
xx
i )

∑I
j=1 αjN (x,µx

j ,Σ
xx
j )

. (4.4)

With this, cepstral vectors are converted from the source speaker to the target speaker

by the conversion function that utilizes feature parameter correlation between the two

speakers. The conversion function that minimizes the mean squared error between

converted and target cepstral vectors was given by [42],

F(xt) =
I∑

i=1

hi(xt)[µ
y
i + Σ

yx
i (Σxx

i )−1(xt − µ
x
i )], (4.5)
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where for class i, µ
y
i denotes the mean vector for the target cepstra, Σxx

i denotes

covariance matrix for the source cepstra, and Σ
yx
i denotes the cross-covariance matrix.

Within the GMM framework, training the conversion function can be formulated

as one of the optimal estimation of model parameters λ = {αi,µ
x
i ,µ

y
i ,Σ

xx
i ,Σyx

i }. Our

approach to parameter estimation is based on fitting a GMM to the probability distri-

bution of the joint vector zt = [xt,yt]
T for the source and target cepstra. Covariance

matrix Σz
i and mean vector µ

z
i of class i for joint vectors can be written as

Σz
i =




Σxx
i Σ

xy
i

Σ
yx
i Σ

yy
i


 , µ

z
i =




µ
x
i

µ
y
i


 . (4.6)

The expectation-maximization (EM) algorithm [43] is applied here to estimate the

model parameters which guarantees a monotonic increase in the likelihood. Starting

with an initial model λ, the new model λ̄ is estimated by maximizing the auxiliary

function

Q(λ, λ̄) =
T∑

t=1

I∑

i=1

p(i|zt, λ) · log p(i, zt|λ̄), (4.7)

where

p(i, zt|λ̄) = ᾱiN (zt, µ̄
z
i , Σ̄

z
i ), (4.8)

and

p(i|zt, λ) =
αiN (zt,µ

z
i ,Σ

z
i )∑I

j=1 αjN (zt,µz
j ,Σ

z
j)

. (4.9)

On each EM iteration, the reestimation formulas derived for individual parameters of

class i are of the form

ᾱi =
1

T

T∑

t=1

p(i|zt, λ), (4.10)
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µ̄
z
i =

∑T
t=1 p(i|zt, λ)(zt)∑T

t=1 p(i|zt, λ)
, (4.11)

Σ̄z
i =

∑T
t=1 p(i|zt, λ)(zt − µ

z
i )(zt − µ

z
i )

T

∑T
t=1 p(i|zt, λ)

. (4.12)

The new model λ̄ then becomes λ for the next iteration and the reestimation process

is repeated until the likelihood reaches a fixed value.

4.4 Prosodic transformation

Most current approaches to voice conversion make little or no use of pitch measures,

despite evidence showing that intonational information is highly correlated to speech

individuality. The main reason for this is the difficulty in finding an appropriate fea-

ture set that captures linguistically relevant intonational information. This problem

is alleviated in Mandarin speech conversion task as its tonal system allows relatively

non-overlapping characterizations of the corresponding F0 contour dynamics. Speech

enhancement can therefore be realized by a proper analysis and control of the F0 con-

tour dynamics. Since pitch is defined only for voiced speech, the pertinent tone-related

portions of syllables are the vowel or diphthong nuclei from which distinctive pitch

changes are perceived. Recognizing this, we need only to concatenate F0 values of

the final subsyllable into a vector and represent it by a small linguistically motivated

parameter set. Unlike the conventional frame-based VQ approaches [10], this segment-

based approach makes it possible to convert not only the static characteristics but also

the dynamic characteristics of F0 contours.

Choosing an appropriate representation of F0 contour is the first step in applying

pitch modification to the voice conversion. By taking advantage of the simple tone

structure of F0 contours in mandarin speech, the polynomial curve fitting technique is

used to decompose the F0 contour into mutually orthogonal components in transform

domain [44]. The F0 contour can therefore be represented by a smooth curve formed
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by orthogonal expansion using some low order transform coefficients. In describing the

source speaker’s F0 contour, F0 are measured only for the final subsyllable and are in

the form of {w0(mx), Bx ≤ mx ≤ Tx}. For notational convenience, the F0 contour of a

segment with Ix + 1 frames is rewritten as {w0(ix), 0 ≤ ix ≤ Ix}, where ix = mx − Bx

and Ix = Tx − Bx. Parameters for pitch modification are then extracted from the F0

contour segment by the orthogonal polynomial transform:

b
(x)
j =

1

Ix + 1

Ix∑

ix=0

w0(ix) · Ψj(
ix
Ix

), j = 0, 1, 2, 3. (4.13)

Due to the smoothness of an F0 contour segment [44], the first four discrete Legendre

polynomials are chosen as the basis functions Ψj(·) to represent it. Based on this

orthogonal polynomial representation, the source F0 contour is characterized by a 4-

dimensional feature vector, b(x) = (b
(x)
0 , b

(x)
1 , b

(x)
2 , b

(x)
3 )T , which will be quantized using

vector quantization (VQ) technique. Similarly, b(y) = (b
(y)
0 , b

(y)
1 , b

(y)
2 , b

(y)
3 )T is a feature

vector representing the F0 contour of the target speaker.

Our conversion technique is based on the codebook mapping and consists of two

steps: a learning step and a conversion-synthesis step. In the learning step, the source

and target F0 codebooks were separately generated using an orthogonal polynomial

representation of F0 contours in training utterances. Each of the two codebooks in-

cludes 16 codevectors and is designed using the well-known LBG algorithm [45]. Next,

a histogram of correspondence between codebook elements of the two speakers is calcu-

lated. Using this histogram as a weighting function, the mapping codebook is defined

as a linear combination of target F0 codevectors. In the conversion-synthesis step, the

F0 contour of input speech was orthogonally transformed and vector-quantized using

the source F0 codebook. Then, the pitch modification was carried out by decoding

them using the mapping codebook. If the decoded codevector is b̂ = (b̂0, b̂1, b̂2, b̂3)
T ,

the modified F0 for frame mx = ix + Bx can be approximated as

w′

0(ix + Bx) =
3∑

j=0

b̂j · Ψj(
ix + Bx

Ix

), 0 ≤ ix ≤ Ix. (4.14)

42



Hearing-impaired speech is generally characterized by a much lower speaking rate

and by excessive shortening of consonants. For the converted speech to carry the

naturalness of human speech, the duration of individual phonemes needs to match

those found in the natural speech. This can be done by modifying the interval of

each synthesis frame by a time-varying factor ρ(m) in a way of Q′(m) = ρ(m)Q.

The case ρ(m) > 1 corresponds to a time-scale expansion, while the case ρ(m) < 1

corresponds to a time-scale compression. The next step is to determine the time-

scaling factor ρ(m) based on spectral representations of the same syllable uttered by

the source and target speakers. In describing the source speaker’s spectral envelope,

cepstral coefficients are measured frame by frame and are of the following form: X =

{x(mx),mx = 1, 2, . . . , Tx}, where Tx is the syllable duration in frames. Similarly,

Y = {y(my),my = 1, 2, . . . , Ty} is the sequence of Ty cepstral vectors representing the

target speaker’s spectral envelope. Acoustic analysis of Mandarin hearing-impaired

speech has indicated that unvoiced sound such as consonants may not be subjected to

the same scaling as the vowels. Thus for time-scaling of speech, different approaches

should be applied in the time-intervals where the frames corresponding to both speakers

were marked as Mandarin initials or finals. The boundary between the initial and final

parts of an isolated syllable is relatively easy to detect by a voiced/unvoiced decision

based on the voicing probability Pv. Let Bx and By represent the starting frame for

the final subsyllables in the source and target utterances, respectively. For constituent

frames of the initial consonant, a linear time normalization was applied with a fixed

factor ρ = (By − 1)/(Bx − 1). With regards to the final subsyllables, two sets of

paired cepstral vectors, {x(mx), Bx ≤ mx ≤ Tx} and {y(my), By ≤ my ≤ Ty}, were

time aligned using the procedure of dynamic time warping (DTW) [46]. Usually the

problem of DTW is formulated as a path finding problem over a finite range of grid

points (mx,my). The basic strategy applied here is to interpret the slope of the DTW

path as a time-scaling function, which indicates on a frame-by-frame basis how much

to shorten or lengthen each frame of the source utterance in order to reproduce the

same duration as in target utterance.
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The DTW aims to align two utterances with a path through a matrix of similarity

distances that minimizes the sum of the distances. We begin by defining a partial ac-

cumulated distance DA(mx,my), representing the accumulated distance along the best

path from the point (Bx, By) to the point (mx,my). For an efficient implementation, a

dynamic programming recursion is applied to compute DA(mx,my) for all local paths

that reach (mx,my) in exactly one step from an intermediate point (m′

x,m
′

y) using a

set of local path constraints. Table 4.1 summarizes the local constraints and slope

weights for three local paths, ℘1, ℘2, and ℘3, chosen for the implementation. The local

distance d(mx,my) between the time-aligned pairs of cepstral vectors is defined by a

squared Euclidean distance. We summarize the dynamic programming implementation

for finding the time-scaling factor at every frame of a final subsyllable as follows.

1) Initialization: Set DA(Bx, By) = d(Bx, By)

2) Recursion: For Bx + 1 ≤ mx ≤ Tx and By + 1 ≤ my ≤ Ty, compute

DA(mx,my) = min
(m′

x,m′

y)
[DA(m′

x,m
′

y) + ς((m′

x,m
′

y), (mx,my))] (4.15)

where the incremental distortion ς((m′

x,m
′

y), (mx,my)) and the intermediate

point (m′

x,m
′

y) along three local paths ℘1, ℘2, and ℘3 are given in Table 4.1.

3) Path backtracking: According to the optimal DTW path, we define the time-

scaling factor ρ(m)=0.5, 1, or 2, for the case where the move from the point

(m′

x,m
′

y) to the point (mx,my) is via the local path ℘1, ℘2, or ℘3, respectively.

4.5 Experimental Results

Experiments were carried out to investigate the potential advantages of using the pro-

posed conversion algorithms to enhance the hearing-impaired Mandarin speech. Our

efforts began with the collection of a speech corpus that contained two sets of mono-

syllabic utterances, one for system learning and one for testing in our voice conversion
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Table 4.1: Incremental distortions and slope weights for local paths.

experiment. The text material consisted of 76 isolated tonal CV syllables (19 base

syllables × 4 tones), formed by pairing the three prominent vowels /a,i,u/ with 11 con-

sonants, the five fricatives and the six affricates of Mandarin Chinese, but excluding

combinations that were phonologically unacceptable. The choice of these two classes

was based on the research findings showing these consonants appeared as the most fre-

quently misarticulated sounds made by the hearing-impaired Mandarin speakers [47].

Speech samples were produced by two male adult speakers, one with normal hear-

ing sensitivity and the other with congenital severe-to-profound (> 70 dB) hearing

loss. The speech of the impaired speaker was largely intelligible in sentences but often

caused misunderstanding if produced in syllable forms due to prosodic deviations and

misarticulated initial consonants.

Figure 4.3 presents the results of our pitch modification method for transforming

F0 contours. Panels 4.3(a) and 4.3(c) are the F0 contours for the source and the

target syllable /ti/ spoken with four different tones, and panel 4.3(b) is the converted

F0 contour using VQ and orthogonal polynomial representation. Comparison of F0

variations as a function of time found in panel 4.3(b) with 4.3(a) clearly shows the

improvements on tones 2 and 3. Our next examination focused on how the converted

F0 contours were perceived in relation to those of the source. For easy judgments of

the tonal categories, only syllables with one consonant class (affricate) were used, with

a total of 40 tonal syllables (10 for each tone). Four male and one female adult native
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Figure 4.3: F0 contours for syllable /ti/ spoken with four different tones: (a) source

speech, (b) converted speech, and (c) target speech.
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Table 4.2: Confusion matrix showing tone recognition results for source syllables.

Table 4.3: Confusion matrix showing tone recognition results for converted syllables.

speakers of Mandarin Chinese, all with normal hearing status, served as the listeners.

Tables 4.2 and 4.3 present the confusion matrices showing the tone recognition results

for the source and the converted set, respectively. The results in each table were

based on the listeners’ judgments of 400 responses (40 tonal syllables× 5 listeners× 2

sessions). It is clear that the proposed system resulted in more intelligible stimuli with

an average tone recognition score of 86.25%, compared with 69% for the source stimuli.

The results further showed an improvement of 38% and 28% for syllables with tone 2

and tone 3, respectively.

To establish the statistical significance of these results, we calculated the P -value

using a Z-test [48]. If we let p1 and p2 denote the recognition rates for the source and
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Table 4.4: Raw data and tone recognition rates derived from Tables 2 and 3.

converted set, respectively, our objective was to test the null hypothesis H0 : p1 ≥ p2.

Based on the statistics in Table 4.4, the Z-test yielded a small P -value (P < 0.0002);

therefore, the null hypothesis was strongly rejected. Further evidence of improvement

is seen on Figure 4.4, which shows our prosodic modification applied to continuous

speech. A four-syllable utterance, containing tones 4-4-3-3, was used. According to

the tone-sandhi rule, the first tone 3 should be produced with a tone 2 F0 pattern.

The audio presentation, however, showed that the first tone 3 was produced more like

tone 1 than the targeted tone 2. A comparison of the F0 contours for the source and

the target utterances showed that the former exhibited fewer fine fluctuation details,

even though the variation ranges were both within 100 Hz. Further, the first tone 4

was essentially carrying a tone 1 F0 pattern and the last tone 3 was produced with the

rising part truncated. The improvement due to prosodic modification can be seen in

the following areas. First, the missing falling part in the fist tone 4 and the dipping

of the last tone 3 were fully restored. Second, the rising part of the first tone 3

segment was steeper in slope, making it more appropriate for the targeted tone 2.

To hear audio examples of the voice conversion system, please visit the web site at

http://a61.cm.nctu.edu.tw/demo.

Results of the spectral conversion were analyzed acoustically with software spectro-

graph to assess how closely the converted speech resembled the target speech in render-

ing acoustic cues for phoneme perception. The improvement for the fricatives is shown
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Figure 4.4: F0 contours for a four-syllable utterance /ying-4 yong-4 ruan-3 ti-

3/(Application software): (a) source speech, (b) converted speech, and (c) target

speech.
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in three aspects: (1) lengthening of the consonant duration, (2) a less abrupt transi-

tion, or a gradual blending of the acoustic energy, near the consonant-vowel boundary,

and (3) a redistribution of acoustic energy around appropriate frequency regions, such

as an elevation to 3 kHz for the syllable /shu/ or to 4 kHz for the syllable /shii/. An

example of such spectral differences for the syllable /shu/ is shown in Figure 4.5. Even

closer spectrographic matches were obtained for the affricates, as shown in Figure 4.6

using /chii/ as an example. In normal production, affricates are stops followed by

fricatives, which are individually represented on the spectrograph as a burst with its

energy concentrated at higher frequencies to be blended immediately with those of the

following fricative. The distorted affricate, however, was translated spectrographically

into a stop that included a full voicing gap but not much of frication. Our analysis

revealed that the conversion filled the gap, softened the burst, removed the low fre-

quency energy and elevated the fricative portion to normal frequency ranges. When

examined along with audio presentations, this modification also resulted in a change of

the vowel percept from the erroneous, high front but lip-rounding, vowel /yu/ to the

correct /i/, even though formant modification for the vowel was less apparent.

Two listening tests, preference and intelligibility, were conducted to determine

whether the above spectrographic enhancement could also be realized perceptually.

The five listeners for the previous tone recognition test were used. In the preference

test, the listeners were asked to give their preference judgments over pairs of source vs.

converted syllables. A two-alternative-forced-choice (2AFC) test paradigm was used, in

which the presentation order of the two stimuli was randomized. For converted stimuli,

two sets of converted syllables were used: (1) those with spectral conversion only and

(2) those with combined spectral and time-scaled conversions. The results showed 62%

of the 380 responses (2 stimulus sets × 19 base syllables × 5 listeners × 2 sessions)

preferred spectrally modified syllables to source syllables, while 84% preferred those

with combined modifications. To further validate the effect of the proposed approach,

intelligibility measures were obtained for 19 base syllables before and after spectral
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conversion. The listeners were instructed to write down their responses using Man-

darin phonetic symbols. Figure 4.7 shows comparison of the percent correct phoneme

recognition scores for the source and the converted stimuli. Individual phonemes were

arranged from left to right into three groups, fricative, affricate, and vowel. Recognition

of vowels /a,u/ was near perfect even without the modification. In contrast, recogni-

tion for the affricates and the fricatives (with the exception of /h/) was either near

or at 0%, a finding consistent with our earlier observation that these two consonant

classes are frequently substituted with stops by the hearing-impaired speakers. The

relatively good recognition for /h/, even for the source, could be explained by the fact

that little oral modification of the glottal air source was required during articulation.

With the converted stimuli, an improvement was seen in all three groups. An average

increase of 47.25% was obtained for the fricatives, with /h/ counted out. The amount

was further increased by 20% (=67.17%) for the affricates, with /ji, chi/ showing a

total correction, making this group the phoneme class that benefited the most from

our application. The vowels, despite their small improvement, were the only group

showing a total correction for all its members.

Again, we considered a recognition experiment only based on the spectral con-

version to perform supervised speaker adaptation for hearing-impaired speaker. The

recognition system of Mandarin digit strings as the task without restricting the string

length was described in Section 4.2. The source speaker and the target speaker are

male. The recognition accuracy of the target speaker is 96.04% on the training tokens.

After conversion, the recognition accuracy of the source speaker can be improved from

19.51% of the original speech to 36.02% of the converted speech.

4.6 Summary

This chapter presents a novel means of exploiting spectral and prosodic transformations

in enhancing disordered speech. In spectral conversion, subsyllable-based GMMs were
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applied within the sinusoidal framework to modify the articulation-related parameters

of speech. In prosodic conversion, we found the tone structure of F0 contour in Man-

darin speech could be used to advantage in orthogonal polynomial representation of

pitch contours. The results also suggest a new approach to time-scaling modification

in which the initial part of a syllable is linearly normalized with a fixed factor, and

then a DTW algorithm is used to control the time-varying scaling factor for the final

part. Evaluations by objective tests and listening tests show that the proposed tech-

niques can improve the intelligibility and naturalness of the hearing-impaired Mandarin

speech.
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Figure 4.5: Spectrograms for syllable /shu/: (a) source speech, (b) converted speech,

and (c) target speech.
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Figure 4.6: Spectrograms for syllable /chii/: (a) source speech, (b) converted speech,

and (c) target speech.
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Figure 4.7: Percent correct phoneme recognition scores for source and converted speech.
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Chapter 5

Conclusions and Future Work

5.1 Summary

Robust DSR systems provide substantial benefits for mobile applications, which ne-

cessitates ubiquitous access from communication networks with a guaranteed level of

recognition performance. This study addressed two robustness issues of DSR sys-

tems. One is the inter-speaker variability, which is caused by the mismatches between

training and testing conditions in the recognizer. The other issue is how to combat

channel errors, which often leads to severe degradation in the recognition performance.

The inter-speaker variability is a typical and well-known problem in ASR applications.

Unlike the state-of-art approaches, we presented the voice conversion system based on

feature transformation to perform speaker adaptation for hearing-impaired speaker. By

taking advantage of the syllable phonetic structures of Mandarin, spectral and prosodic

conversions were applied within the sinusoidal speech framework to modify the spec-

tral envelop, pitch contour and rate of articulation. Simulation results indicated that

the proposed system can achieve good adaptation performance in speech recognition

applications and also improve intelligibility and naturalness of hearing-impaired Man-

darin speech. In the second part of this study, we presented JSCD algorithms with
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increased robustness against channel errors in mobile DSR applications. Through the

use of the modified-BCJR algorithm, the MAP symbol decoder which exploits the

combined source and channel statistics as an a priori information is proposed. We

first investigated the residual redundancies existing in the DSR features and exploited

these redundancies in decoding process. Also proposed is a modified BCJR algorithm

based on sectionalized code trellises which uses Gilbert channel characterization for

better decoding in addition to source a priori knowledge. Simulation results indicated

that the proposed decoder achieved significant improvements in recognition accuracy

for DSR over wireless networks.

5.2 Future Work

Through the consideration of personalization and humanization, mobile communication

devices can evolve to meet people’s needs. DSR facilitates the creation of an exciting

new set of applications and services combining voice and data. The proposed solution

to robust DSR systems is only the beginning in the development of Human-Machine

Interface service over wireless networks. Each of our proposed algorithms may be

further examined to discover some possible contributions. This section briefly outlines

some directions of future work.

The goal of voice conversion is to control speech individuality or add individual

cues to speech processing algorithms. In this thesis, nice conversion technologies have

be applied to convert voice quality from hearing-impaired speaker to normal speech.

The key strategy is the detection and exploitation of characteristic features in spectral

and prosodic levels. When voice personality can be more accurately characterized

and exploited, more technologies can be integrated into voice-controlled services. For

example, as the personal communication system becomes pervasive in mobile financial

transactions and information retrieval services, the utility of speaker identification and

authentication based on voice individuality increases. A speaker identification system
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based on Gaussian mixture models for characterizing spectral shapes can attain high

identification accuracy [49]. Further, the GMM framework allows a direct integration

with robust well-developed speech recognition systems. In addition, voice conversion

can be applied to computer-assisted language learning. A learning system needs to

provide the utility for detecting and correcting errors by mining the speech signal for

information about learner’s deviations from reference speakers’ pronunciation. Recent

research has found that a better solution for pronunciation learning should address not

only the phone articulation but also the speech prosody.

In this thesis, a JSCD scheme which exploits the combined source and channel

statistics as an a priori information is proposed for the channel error mitigation. The

basic strategy is to exploit the large amount of residual redundancy existing in the DSR

features. Similar analysis also indicated that substantial residual redundancy existed

in the source-encoded speech parameters. Therefore, the proposed JSCD scheme can

be applied to speech transmission systems in order to attain robust performance over

wireless networks. The channel information considered in the decoding algorithm is

the error statistics averaged over a training sequence. However, in the real-world

communication the statistics of channel information also vary with time. Adaptively

exploiting time-varying channel information is an important issue for the design of

JSCD algorithms.
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