TABEL OF CONTENTS

ABSTRAC	T (Chin	ese)	i
ABSTRAC	T (Engl	ish)	ii
ACKNOW	LEDGE	MENTS	iii
TABLE OF	CONT	ENTS	iv
LIST OF T	ABLES		vi
LIST OF FI	GURES	5	vii
CHAPTER	1	Motivation of this research	1
CHAPTER 2 A Planar		A Planar Shaped-Beam Antenna with metal grating	5
	2.1	Structure Configuration	5
	2.2	Method of Analysis	7
	2.3	Numerical and Experimental Results	11
	2.3.1	Measurement results of antenna	11
	2.3.2	Effect of the dielectric slab thickness on the radiation pattern	33
	2.3.3	Effect of the relative dielectric constant on the radiation pattern	35
	2.3.4	Effect of the number of metal strips on the radiation pattern	36
	2.3.5	Effect of the line source position on the radiation pattern	37
	2.3.6	Frequency range of operation	39
	2.3.7	Shaped-bean antenna for wireless LAN band operation	40
CHAPTER 3 A Plan		A Planar Shaped-Beam Antenna with dielectric grating	44
	3.1	Structure Configuration	44
	3.2	Method of Analysis	46
	3.3	Numerical Results	52
	3.3.1	Effect of the relative dielectric constant on the radiation pattern	52

	3.3.2	Effect of the aspect ratio of the grating layer on the radiation	
		pattern	55
	3.3.3	Effect of the dielectric grating thickness on the radiation pattern	58
	3.3.4	Effect of the line source position on the radiation pattern	60
	3.3.5	Frequency range of operation	62
CHAPTER	4	Concluding Remarks	64
REFERENC	CES		65
APPENDIX	I	Input-Output relation for a metal grating : Mode-matching	
		analysis	68
APPENDIX	X II	Mode function in the dielectric grating layer	71
APPENDIX III		Far-field Calculation	76
PERSONAL INFORMATION			
(CHINESE)			
PUBLICATION LIST			

LIST OF FIGURES

1.	Figure 1(a). The planar shaped-beam antenna; structure configuration and	
	parameters assignment	5
2.	Figure 1(b) The planar shaped-beam antenna; front view	6
3.	Figure 1(c) The planar shaped-beam antenna; side view	6
4.	Figure 2(a) Measured, computed and target patterns of the shaped-beam antenna	
	$(\varepsilon_r = 2.59, a = 5 \text{mm}, b = 15 \text{mm}, t_m = 0.05 \text{mm}, t_d = 1.86 \text{mm}, d_1 = 12.52 \text{mm}, d_2 = 3.0 \text{mm},$	
	16 metal strips); 10.9GHz.	13
5.	Figure 2(b) Measured, computed and target patterns of the shaped-beam antenna	
	$(\varepsilon_r = 2.59, a = 5 \text{mm}, b = 15 \text{mm}, t_m = 0.05 \text{mm}, t_d = 1.86 \text{mm}, d_1 = 12.52 \text{mm}, d_2 = 3.0 \text{mm},$	
	16 metal strips); 11.35GHz.	14
6.	Figure 2(c) Measured, computed and target patterns of the shaped-beam antenna	
	$(\varepsilon_r = 2.59, a = 5 \text{mm}, b = 15 \text{mm}, t_m = 0.05 \text{mm}, t_d = 1.86 \text{mm}, d_1 = 12.52 \text{mm}, d_2 = 3.0 \text{mm},$	
	16 metal strips); 11.37GHz.	15
7.	Figure 2(d) Measured, computed and target patterns of the shaped-beam antenna	
	$(\varepsilon_r = 2.59, a = 5 \text{mm}, b = 15 \text{mm}, t_m = 0.05 \text{mm}, t_d = 1.86 \text{mm}, d_1 = 12.52 \text{mm}, d_2 = 3.0 \text{mm},$	
	16 metal strips); 11.41GHz.	16
8.	Figure 2(e) Measured, computed and target patterns of the shaped-beam antenna	
	$(\varepsilon_r = 2.59, a = 5 \text{mm}, b = 15 \text{mm}, t_m = 0.05 \text{mm}, t_d = 1.86 \text{mm}, d_1 = 12.52 \text{mm}, d_2 = 3.0 \text{mm},$	
	16 metal strips); 11.43GHz.	17
9.	Figure 2(f) Measured, computed and target patterns of the shaped-beam antenna	
	$(\varepsilon_r = 2.59, a = 5 \text{mm}, b = 15 \text{mm}, t_m = 0.05 \text{mm}, t_d = 1.86 \text{mm}, d_1 = 12.52 \text{mm}, d_2 = 3.0 \text{mm},$	
	16 metal strips); 11.45GHz.	18
10.	Figure 2(g) Measured, computed and target patterns of the shaped-beam antenna	
	$(\varepsilon_r = 2.59, a = 5 \text{mm}, b = 15 \text{mm}, t_m = 0.05 \text{mm}, t_d = 1.86 \text{mm}, d_1 = 12.52 \text{mm}, d_2 = 3.0 \text{mm},$	
	16 metal strips); 11.47GHz.	19
11.	Figure 2(h) Measured, computed and target patterns of the shaped-beam antenna	
	$(\varepsilon_r = 2.59, a = 5 \text{mm}, b = 15 \text{mm}, t_m = 0.05 \text{mm}, t_d = 1.86 \text{mm}, d_1 = 12.52 \text{mm}, d_2 = 3.0 \text{mm},$	
	16 metal strips); 11.51GHz.	20
12.	Figure 2(i) Measured, computed and target patterns of the shaped-beam antenna	
	$(\varepsilon_r = 2.59, a = 5 \text{mm}, b = 15 \text{mm}, t_m = 0.05 \text{mm}, t_d = 1.86 \text{mm}, d_1 = 12.52 \text{mm}, d_2 = 3.0 \text{mm},$	
	16 metal strips); 11.53GHz.	21
13.	Figure $2(j)$ Measured, computed and target patterns of the shaped-beam antenna	
	$(\varepsilon_r = 2.59, a = 5 \text{mm}, b = 15 \text{mm}, t_m = 0.05 \text{mm}, t_d = 1.86 \text{mm}, d_1 = 12.52 \text{mm}, d_2 = 3.0 \text{mm},$	
	16 metal strips); 11.57GHz.	22

14. Figure 2(k)	Measured, computed and target patterns of the shaped-beam antenna	L
$(\varepsilon_r = 2.59, a =$	=5mm, b =15mm, t_m =0.05mm, t_d =1.86mm, d_1 =12.52mm, d_2 =3.0 mm,	
16 metal stri	ips); 11.90GHz	23
15. Figure 3(a)	Measurement setup in chamber	25
16. Figure 3(b)	The probe is at the position (<i>x</i> , <i>y</i> , <i>z</i>) = $(0, 0, 52)$	25
17. Figure 3(c)	The probe is at the position (<i>x</i> , <i>y</i> , <i>z</i>) = $(0, 90, 52)$	26
18. Figure 3(d)	The probe	26
19. Figure 4	Measured reflection coefficient for the probe	27
20. Figure 5(a)	Measured contour map of the y-direction electric field strength on a	
rectangular	plane; 10.9GHz	27
21. Figure 5(b)	Measured contour map of the y-direction electric field strength on a	
rectangular	plane; 11.37GHz	28
22. Figure 5(c)	Measured contour map of the y-direction electric field strength on a	
rectangular	plane; 11.43GHz	28
23. Figure 5(d)	Measured contour map of the y-direction electric field strength on a	
rectangular	plane; 11.45GHz	29
24. Figure 5(e)	Measured contour map of the y-direction electric field strength on a	
rectangular	plane; 11.47GHz	29
25. Figure 5(d)	Measured contour map of the y-direction electric field strength on a	
rectangular	plane; 11.53GHz	30
26. Figure 5(f)	Measured contour map of the y-direction electric field strength on a	
rectangular	plane; 11.90GHz	30
27. Figure 6	Measured and calculated reflection coefficient for the shaped-beam	
-	antenna	31
28. Figure 7	Radiation pattern for different dielectric layer thicknesses at	
C	11.43GHz ($\varepsilon_r = 2.59$, $a = 5$ mm, $b = 15$ mm, $t_m = 0.05$ mm, $d_1 = 12.52$ mm,	
	<i>d</i> ₂ =3.0mm)	34
29. Figure 8	Radiation pattern for different dielectric constants at	
C	11.43GHz ($a=5$ mm, $b=15$ mm, $t_m=0.05$ mm, $t_d=1.86$ mm, $d_1=12.52$ mm	n
	<i>d</i> ₂ =3mm)	36
30. Figure 9	Radiation pattern for different number of metal-strip array at	
C	11.43GHz (ε_r =2.59, a=5mm, b=15mm, t_m =0.05mm, t_d =1.86mm,	
	$d_1 = 12.52$ mm, $d_2 = 3$ mm)	37
31. Figure 10	Radiation pattern for different distances from the line source to	
C	metal ground plane ($\varepsilon_r = 2.59, a = 5$ mm, $b = 15$ mm, $t_m = 0.05$ mm,	
	$t_d=1.86$ mm, $d_l=12.52$ mm, 11.43GHz)	38
32. Figure 11	Radiation pattern for various frequencies ($\varepsilon_r = 2.59, a = 5$ mm,	
-	$b=15$ mm, $t_m=0.05$ mm, $t_d=1.86$ mm, $d_1=12.52$ mm, $d_2=3$ mm)	40

33.	Figure 1	l 2(a)	Radiation pattern for 2.4GHz; (a) 4 metal strips	42
34.	Figure 1	l2(b)	Radiation pattern for 2.4GHz; (b) 6 metal strips	42
35.	Figure 1	l 3(a)	Radiation pattern for 5.2GHz; (a) 8 metal strips	43
36.	Figure 1	l 3(b)	Radiation pattern for 5.2GHz; (b) 12 metal strips	43
37.	Figure 1	14	The structure configuration and parameters assignment of the	
			shaped-beam antenna	45
38.	Figure 1	15	Radiation pattern for different dielectric constant	
			at 5.4GHz	53
39.	Figure 1	16	Electric field magnitude on the antenna aperture for different	
			relative dielectric constant of dielectric rods at 5.4GHz	54
40.	Figure 1	17	Radiation pattern for different aspect ratio at 5.4GHz	56
41.	Figure 1	18	Electric field magnitude on the antenna aperture for different	
			aspect ratio at 5.4GHz	57
42.	Figure 1	19	Radiation pattern for different dielectric grating layer thickness at	
			5.4GHz (<i>a</i> =0.5, <i>b</i> =1.0, <i>d_a</i> =5, <i>d₁</i> =1.05, <i>d₂</i> =0.68)	58
43.	Figure 2	20	Electric field magnitude on the antenna aperture for different	
			dielectric grating layer thickness at 5.4GHz	59
44.	Figure 2	21	Radiation pattern for different distances from line source to metal	
			ground plane at 5.4GHz	61
45.	Figure 2	22	Radiation pattern for different operation frequency	63
46.	Figure 2	23	Multiplayer planar structure and its equivalent network	
			Representation	71
47.	Figure 2	24(a)	Transverse field distribution of first six modes with effective	
			dielectric constant; (a) 2.584	71
48.	Figure 2	24(b)	Transverse field distribution of first six modes with effective	
			dielectric constant; (b) 2.335	71
49.	Figure 2	24(c)	Transverse field distribution of first six modes with effective	
			dielectric constant; (c) 1.927	72
50.	Figure 2	24(d)	Transverse field distribution of first six modes with effective	
			dielectric constant; (d) 1.384	72
51.	Figure 2	24(e)	Transverse field distribution of first six modes with effective	
			dielectric constant; (e) 0.846	71
52.	Figure 2	24(f)	Transverse field distribution of first six modes with effective	
			dielectric constant; (f) 0.669.	71